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Abstract22

Spatial omics technologies revolutionize our view of biological processes within tissues. However, ex-23

isting methods fail to capture localized, sharp changes characteristic of critical events (e.g. tumor24

development). Here, we present StarTrail, a novel gradient based method that powerfully defines25

rapidly changing regions and detects “cliff genes”, genes exhibiting drastic expression changes at26

highly localized or disjoint boundaries. StarTrail, the first to leverage spatial gradients for spatial27

omics data, also quantifies directional dynamics. Across multiple datasets, StarTrail accurately de-28

lineates boundaries (e.g., brain layers, tumor-immune boundaries), and detects cliff genes that may29

regulate molecular crosstalk at these biologically relevant boundaries but are missed by existing meth-30

ods. For instance, StarTrail precisely pinpointed the cancer-immune interface in a HER2+ breast31

cancer dataset, unveiled key cliff genes including a potential prognostic biomarker IGSF3, highlight-32

ing NK-, B-cell mediated immunity, and B cell receptor signaling pathways missed by all spatial33

variable gene methods attempted. StarTrail, filling important gaps in current literature, enables34

deeper insights into tissue spatial architecture.35
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1 Main37

Spatial data, with its inherent geographical, topological or geometric coordinates, enables structured38

views of cellular and inter-cellular dynamics and allows researchers to discern patterns, relationships, and39

changes over different spatial scales. Leveraging spatial information has proven invaluable in numerous40

fields including biomedical imaging studies, environmental science and computational biology [see, for41

e.g., 1–3]. In recent years, spatial omics technologies have emerged as valuable tools in biological and42

biomedical studies [4]. Their significance lie in the unique capability to provide omics measurements while43

simultaneously retaining spatial location information, e.g. gene expression in spatial transcriptomics44

(ST), and protein expression in spatial proteomics. Notable technologies in this domain include 10X45

Visium [5], Slide-seqV2 [6], and MERFISH [7] for ST, and CODEX [8] earmarked for spatial proteomics.46

The dual insight has transformed our understanding of cellular organization within tissues.47

The ST literature has seen several focused developments that have garnered attention and gained48

popularity. Methodology employed in the detection of spatially variable genes (SVGs) is one of the most49

popular [see, e.g., 9, 10] areas. It aims to detect genes that exhibit differential expression (DE) across50

spatial locations. SVG detection methods enable the identification of important genes that are associated51

with tissue architecture, function, or pathology, based on their spatial expression patterns. Note that52

SVGs and DE genes (DEGs) have been used exchangeably in ST literature. Here we use SVGs for genes53

exhibiting spatial changes without the need to pre-define spatial regions and use DEGs for genes showing54

differences between two pre-defined regions. Besides SVG and DEG detection, there is an increasing55

emphasis on developing methods to detect spatial clusters, also often referred to as spatial domains [see,56

e.g., 11–14], specifically using histology images and spatial coordinates. These spatial clustering methods57

aim to reliably represent the natural biological patterns found within tissues.58

However, at least three notable limitations are present in the aforementioned methodologies. First,59

although methods for identifying SVGs can reveal genes that vary across space, they are unable to60

pinpoint the exact locations of these variations. In the clustering context, the spatial domains defined61

can vary substantially depending on which genes are selected for analysis. Second, no existing method62

is sufficiently powerful to identify omics features (e.g., genes, proteins) that exhibit drastic changes63

along highly localized or disjoint boundaries. We name such genes cliff genes, distinct from SVGs, which64

typically manifest global changes or at least across larger areas. Third, existing methods provides no65

directionality information. In other words, no method quantifies how exactly the expression of any given66

gene changes in the 2-dimensional (2D) space. Owing to these methodological gaps, the underlying67

intricacies that drive the manifestation of localized boundaries in spatial omics data remain largely68

unexplored. Many current approaches rely on DE analyses at specific boundary intersections [15, 16],69

but this barely touches on the depth of spatial dynamics involved.70
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To address these limitations, we introduce StarTrail (Scalable spaTiAl gRadienT pRocess Approx-71

Imation utiLizing nearest-neighbor Gaussian process). StarTrail is the first method that leverages 2D72

spatial gradient for the analysis of spatial omics data. Spatial gradients, a concept borrowed from calcu-73

lus, measuring rate of changes across spatial locations, offer perspectives complementary to raw omics74

measurements and thus into nuances of spatial data changes missed by existing approaches. Specifi-75

cally in response to the three aforementioned limitations, StarTrail provides quantitative, directional,76

super-resolution gradient estimates that illuminate more precisely where and how changes occur. It is77

important to note that our use of the term ‘gradient’ specifically refers to its mathematical sense as the78

derivative of a function, describing the rate of changes in an omics feature relative to spatial coordinates.79

This definition is distinct from the more philosophical or intuitive use of ‘gradient’ found in some other80

studies [see, e.g., 17, 18]. Our focus is on the concrete and quantitative aspects of spatial data variation.81

As a motivating example, in cancer samples, the tumor region(s) can be rather small (e.g., newly82

developed or developing cancerous regions) and disjoint (multiple primary or a combination of primary83

and metastatic regions) with each having its own localized boundary. Existing methods proposed to84

identify SVGs are under-powered to identify omics features that manifest drastic changes along these85

boundaries because they can easily be an negligible portion of the entire tissue space examined. These86

boundaries, however, frequently coincide with vital biological junctures, such as the interface that distin-87

guishes diseased from healthy tissues or areas of distinct biological functions [see, e.g., 17]. Complemented88

with histology images, gradient analyses are further enriched, e.g.,g enabling the analysis of gradi-89

ent along pathologist-annotated boundaries. Previous research primarily concentrated on constructing90

slide topological maps using low-dimensional features, typically one-dimensional (1D) attributes such as91

pseudo-time or iso-depth [see, e.g., 17, 19–22]. These studies often leaned on stringent assumptions, such92

as assuming that every gene’s gradient direction is either null or aligned with the 1D latent variable [19],93

or the gradient calculation depends heavily on the choice of the model [20]. However, accurately inferring94

gene-wise spatial gradients [19] and appropriately applying gradients to understand spatial dynamics of95

each gene expression remain as open and challenging tasks.96

StarTrail is highly flexible and versatile: it can accommodate various spatial omics features, encom-97

passing genes, proteins, as well as annotations or derived features such as estimated cell type proportions.98

StarTrail harnesses spatial gradients to project the vector field of each omics feature, pinpointing re-99

gions of the most rapid change by their heightened gradient values. This enables the delineation of100

omics boundaries through principal curve [23] (see section 2.1 below). Moreover, when boundaries are101

pre-defined (e.g., based on pathologists’ annotations), StarTrail adeptly calculates gradients along their102

normal vectors (wombling, see section 2.1 below), defining “cliff genes” whose gene expressions shift103

most sharply across the boundaries. Incorporating gradient metrics and Wombling analysis [24], Star-104

Trail also enhances downstream analysis potentials. For instance, StarTrail can categorize SVGs based on105

their gradients relative to predefined boundaries. Additionally, StarTrail can bolster clustering analysis106
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by leveraging the gradient metric, providing more refined insight into spatial data structures, compared107

with only utilizing the original space. Notably, StarTrail achieves a marked increase in computational108

efficiency, compared to the original spatial gradient process [25, 26], facilitating rapid and sophisticated109

spatial data analysis.110

We demonstrate the versatility of StarTrail on a spectrum of spatial omics data types and datasets,111

including omics data generated by technologies such as 10X Visium [5], Spatial Transcriptomics [5], and112

CODEX [8], as well as derived features such as estimated cell type proportions.113

2 Results114

2.1 Scalable spatial gradient process via StarTrail115

The overview of StarTrail is illustrated in Fig. 1. To understand the relationships between spatial co-116

ordinates s and omics feature Y , StarTrail harnesses the Gaussian Process (GP), Z. Designed to be117

versatile, StarTrail operates seamlessly with both 2D and 3D coordinates. The input data, Y can en-118

compass various spatial omics or spatial annotations, including metrics such as gene expression, protein119

abundance, or cell type proportions. In this illustration, we use gene expression as an example. The sub-120

sequent gradient is adeptly modeled using a spatial gradient process denoted by ∇Z. This forms a joint121

distribution of [Z,∇Z], with cross-covariance characterized by K and its derivatives up to the second122

order [see, for e.g., 25–27]. While GPs offer the advantageous property wherein their derivative remains123

a GP, the large sample size (e.g. the number of spots/cells in ST) in spatial omics data makes the use124

of the original spatial gradient process untenable [25, 26]. For instance, it takes over 40 hours to fit the125

original spatial gradient process on ∼ 3000 spots for one gene. To address this, StarTrail introduces a126

scalable spatial gradient process which utilizes finite differences to approximate gradients. Inspired by127

both plug-in GP [28] and the nearest-neighbor (NN) GP [29, 30], StarTrail establishes a NNGP model.128

The integration of NN facilitates a significant computational economy, reducing the cost of fitting the129

GP from O(n3) to O(nm3), where n represents the total sample size and m is the number of neighboring130

locations used [29, 30].131

Leveraging the advantages of GPs, StarTrail offers the ability to infer spatial omics data in previously132

unmeasured regions, thereby enhancing the resolution to any desired level. Utilizing the inferred gradient,133

∇Z, StarTrail enables a detailed examination of the spatial dynamics. More precisely, it enables the134

evaluation of gradients in any chosen direction. For preliminary analysis, for instance, the process initiates135

by deducing the gradient along the directions represented by e1 := (1, 0) (horizontal direction) and e2 :=136

(0, 1) (vertical direction), respectively. The gradient at every point is then calculated as [∇e1Z,∇e2Z],137

from which we define the gradient flow map which characterizes the direction of local change for each138

spot/cell. Following this, the L2-norm of gradients [∇e1Z,∇e2Z] serves to determine the magnitude139

of the gradient. This nuanced approach enables us to categorize the dynamics of omics data—rapid140
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Figure 1 StarTrail overview. StarTrail takes spatial omics data as its input (top left). Utilizing a scalable spatial gradient
process, StarTrail models the intricate relationship between spatial coordinates s and omics features Y , efficiently inferring
gradients across a tissue region (top right). With the inferred gradients, StarTrail can identify boundaries by pinpointing
areas exhibiting the highest gradient values (bottom left). Additionally, StarTrail employs Wombling analysis across pre-
defined boundaries to detect “cliff genes”—genes with significant expression changes at these boundaries (bottom middle).
Moreover, these gradients could be leveraged to enhance downstream analyses, such as clustering (bottom right).

changes are indicated by high gradient values, while areas exhibiting slow changes are characterized by141

low-magnitude gradients. For omics features exhibiting swift alterations across a region, boundaries can142

be identified along the area of maximal gradient, by using a non-parametric curve fitting algorithm to143

delineate principal curves [for more details, see 23].144

In addition to the ability to infer gradients and delineate boundaries, we recognize that it is equally145

crucial to evaluate the directional gradients along a given boundary. The boundary is usually anno-146

tated by pathologists or experts with domain knowledge. Delving into omics alterations across specific147

boundaries provides invaluable biomedical insights, particularly in scenarios where these boundaries de-148

marcate pivotal biological structures or lurking conditions. To leverage pathologist-annotated boundaries149

or boundaries informed by external information, such as cell type proportion demarcations, we engage150

the “Wombling” technique. This approach involves statistical inference on directional derivatives eval-151

uated along the normal direction (also known as the orthogonal direction) of pre-designated boundary152
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segments. Subsequent integration across the entire curve produces a valid measure that can be used to153

track whether a curve forms a “wombling boundary” [see 24, Section 3.3, for more detail]. Upon an-154

alyzing the curve gradient inferred using wombling, we introduce the concept of a “cliff gene”. A cliff155

gene designates a gene that exhibits pronounced shifts across specific boundaries. Analogously, we can156

expand this concept to other domains and similarly define a “cliff cell type” or a “cliff protein”, each157

signifying an omics feature that manifests significant variations over demarcated regions.158

Utilizing the inferred gradients provides perspectives on spatial dynamics beyond the original feature159

space, enhancing and enriching downstream analyses. Using StarTrail inferred spatial metrics, we can160

precisely link SVGs to specific spatial boundaries based on their gradients. This granularity enables a161

more targeted and precise analysis. Furthermore, the integration of gradient metrics enhances clustering162

analysis, delineating distinct clusters based on spatial intricacies.163

2.2 StarTrail accurately estimates spatial gradient and defines rapid change164

area165

We first benchmark the performance of StarTrail using a series of simulation tests designed to mirror a166

variety of spatial patterns. They range from trigonometric functions (Extended Data Fig. 1, first row), to167

common patterns including linear gradients and hot-spots, as well as regional patterns (Extended Data168

Fig. 1, second row- last row). For each simulated scenario, we calculated gradients along the directions169

e1 = (1, 0) and e2 = (0, 1). The results show that StarTrail achieves high accuracy in recovering the170

gradients along these axes. To pinpoint areas of rapid changes in any given direction, we computed the171

L2-norm of the gradients (referred to L2 in the following context). This metric successfully identified172

regions with the highest gradient magnitude, corresponding to the points of most significant changes in173

our simulation models. Linear gradients and hot-spots represent patterns of changes gradually from one174

constant to another constant, while regional patterns exhibit abrupt jumps from one constant to another.175

Consequently, we have chosen to use L2 as the indicator to mark areas undergoing rapid changes when176

applying StarTrail to real-world data analysis.177

After confirming StarTrail’s efficacy through simulations, we turned our attention to real-world spatial178

omics datasets, starting with ST data. We first analyzed 10x Visium data from human dorsolateral179

prefrontal cortex (DLPFC)[16]. The DLPFC dataset is known for its well-defined seven-layer architecture,180

including layers L1 through L6 and white matter (WM), making it an exemplary instance for studying181

layer-enriched gene expression. The spatially resolved expression has important clinical implications for182

neurological disorders such as autism spectrum disorder and schizophrenia [16]. StarTrail aptly captures183

the intricate relationship between spatial coordinates and gene expression levels, as well as their spatial184

gradients. This capability is demonstrated through the precise modeling of several key layer marker genes185

(Fig. 2b-d, other example genes in Extended Data Fig. 2). MBP, a marker gene enriched in WM, shows186

6

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.08.593025doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593025
http://creativecommons.org/licenses/by-nc-nd/4.0/


spatial gradients with the highest L2 values concentrated at the boundary between WM and layer L6.187

StarTrail further identifies the boundary using the principal curve fitted to the points with L2 exceeding188

its 90% quantile. The resulting boundary (Fig. 2b) accurately defines the zone of the most dramatic189

expression changes. Additionally, the direction of these gradients is effectively summarized by aggregating190

the horizontal and vertical gradients ([31], Fig. 2c). The gradient flow map generated from this approach191

provides an insightful visualization of gene expression dynamics, visualizing the change direction of gene192

expression, and pinpointing locations of extreme expression (singularities), where neighboring gradients193

converge (indicating maximal expression) or diverge (indicating minimal expression). StarTrail also194

accurately estimated spatial gradients for other layer-specific markers such as PCP4 for layer L5 and195

HPCAL1 for layer L1, further demonstrating the robustness and accuracy of StarTrail in deciphering196

spatial expression patterns. Moreover, one fundamental advantage of employing a spatial gradient process197

lies in its ability to construct a spatial model between spatial locations and their corresponding omics198

feature as well as gradients. Consequently, StarTrail is equipped to extrapolate spatial omics features199

to areas that were not originally sampled, effectively filling in the gaps and providing a more complete200

super-resolutional picture of the spatial dynamics (Fig. 2b).201

Moving to a finer-resolution and non-layered dataset, we next applied StarTrail on HER2+ breast202

cancer data from the Spatial Transcriptomics platform (focusing on slide H1 shown in Fig. 2f). Breast203

cancer encompasses a variety of subtypes, among which HER2-positive (HER2+) subtype is particularly204

known for the overexpression of ERBB2, commonly referred to as HER2 [32]. The dataset was annotated205

by pathologist into six distinct histo-pathological regions: noninvasive ductal carcinoma in-situ (DCIS),206

invasive breast cancer (IBC), adipose tissue, immune infiltrate, breast glands, or connective tissue (Fig.207

2f left panel). As mentioned, a key advantage of StarTrail is its adaptability to various spatial measure-208

ments. For this dataset, we applied StarTrail to model the spatial distribution of cell type proportions209

inferred by RCTD (Fig. 2f middle panel) [33]. Cancer epithelial cells, as expected, are predominantly210

located within cancerous regions [32, 34, 35]. StarTrail’s inference of spatial gradients showed accu-211

rate delineation, particularly with high L2 values around the DCIS zones (Fig. 2f right panel). Notably,212

the steepest gradients were identified at the interface between the DCIS and the immune infiltrate ar-213

eas. This observation suggests that the most pronounced changes in cell type composition occurs at the214

boundary of these two regions, potentially offering insights into the tumor microenvironment and the in-215

terface of cancerous and immune responses. As evidenced in Extended Data Fig. 3, StarTrail also works216

well on other cell types.217

StarTrail was further tested on spatial proteomic data from human tonsils measured by the CODEX218

platform [36] (Fig. 2g, Extended Data Fig. 4). The spatial pattern of the tonsil tissue is characterized by219

the presence of germinal centers (GC), known for heightened abundance of CD15 and a predominance220

of B cells. StarTrail successfully delineated spatial gradients within this complex tissue structure. The221
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Figure 2 Gradient analysis. DLPFC: (a) Histology image of DLPFC slide 151676. (b) A workflow outlines the process
of detecting gene expression boundaries, using MBP as an example. StarTrail first smoothes raw gene expression and
estimates the spatial gradients, and then fits a principal curve to spots where the L2 norm of the gradients exceeds the 0.9
quantile, effectively delineating the gene expression boundary. (c) Gradient flow map for MBP, arrows colored by smoothed
and normalized expression (d) Inferred boundaries for PCP4 and HPCAL1, points colored by smoothed and normalized
expression (e) Pathologist annotation. HER2+ breast cancer: (f) left: pathologist annotation, middle: estimated cancer
epithelial cell proportion, right: estimated L2. CODEX: (g) left: cell type assignment, right: detected boundary for CD15,
points colored by smoothed and normalized abundance.

highest L2 values are indicative of the steepest expression changes, occurring at the GC boundary.222

Notably, this occurs at the transition zones between two types of B cells.223

Our results demonstrate that, across various datasets, StarTrail can precisely estimate spatial gra-224

dients and delineate areas of rapid changes. StarTrail’s ability to handle multiple data types makes it a225

unifying tool for integrated omics analysis. StarTrail thus boasts great potential to facilitate the integra-226

tive analysis of multiple assays, such as dual gene expression studies or joint analyses of gene expression227

and proteomics with either computationally inferred or pathological annotations. For example, we could228

calculate the gradients of one gene and compare that to the gradients of the cell type proportion on229

the same slide. This adaptability is essential to the current landscape of biological research, where the230

integration of different omics is increasingly crucial for a deeper understanding of complex biological231

patterns and dynamics.232
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2.3 Spatial Wombling enables the identification of cliff genes233

One of the primary aims in spatial omics research is to illuminate variations between different tissue234

regions. Based on histology images, pathologists often mark biologically relevant boundaries, which is235

a labor-intensive process. In the absence of such annotations, computational methods, such as image236

segmentation or cell type borders identification, can infer such information. These boundaries between237

tissue regions represent not merely physical divisions, but also transition zones where critical biological238

changes occur, such as the shift from healthy to diseased tissue. Investigating these boundaries is key to239

understanding the underlying causes and mechanisms behind the formation of distinct regions, especially240

in the context of health and disease research, where understanding the factors that influence disease241

development and progression is critical.242

StarTrail leverages these boundaries to identify “cliff genes”, which exhibit sharp expression shifts243

across boundaries. This cliff-gene approach transcends traditional DE analysis between the two domains244

separated by the boundaries, by revealing localized gene expression changes that might be missed in DE245

analysis, where signals are diluted over larger areas. In addition, StarTrail’s capability extends beyond246

a single boundary. It can adeptly handle multiple boundaries for which traditional DE analyses often247

struggle due to their intrinsic limitations to two-region comparisons. StarTrail’s flexibility in accommo-248

dating different boundary shapes, be they open or closed curves, circumvents the need to assign spots or249

cells to specific regions, a requirement in DE analysis [16]. This allows for a more dynamic, flexible, and250

finer-resolution DE and SVG analysis. Focusing on boundary-induced expression changes is essential for251

understanding the spatial structure of tissues and changes across regions.252

DLPFC: Delving further into the DLPFC analysis [16], we continued to explore StarTrail’s ca-253

pabilities to decipher gene expression gradients perpendicular to pathologically annotated boundaries254

(Fig. 3a). By aggregating these gradients along a single boundary, we were able to identify genes that255

demonstrate substantial shifts in expression across different regions (Fig. 3b, Extended Data Fig. 5,6,256

Supplementary Table 1). For example, StarTrail successfully identified PLP1, previously noted for pro-257

nounced gradients at the WM boundary (boundary 6), as a cliff gene with the highest gradient (L2 =258

81.21) along boundary 6 across all genes. Other genes identified by StarTrail with top-rank gradients259

along a single boundary also conform to anticipated spatial expression profiles. To validate the accu-260

racy of the estimated gradients, we extended both outward and inward from the pathologist annotated261

boundaries [37], with each step encompassing one delineated layer of spots (Supplementary Fig. 1,2).262

For every delineated layer of spots, we computed the average gene expression counts. The concordance263

between the estimated boundary gradients and the slopes of gene expression change at the boundaries264

was striking (Pearson correlation between estimated gradient and slope in cliff genes: boundary0: 0.97,265

boundary1: 0.94, boundary2: 0.99, boundary3: 0.94, boundary4: 0.80, boundary5: 0.95, Extended Data266

Fig. 7, Supplementary Fig. 2). Genes with a steeper slope across the boundary consistently exhibited267
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higher estimated boundary gradients. This agreement attests to the utility and robustness of our gradi-268

ent estimation method, confirming that the boundary gradients inferred by StarTrail accurately reflect269

the actual changes in gene expression as one moves across the pathologically defined boundaries. Gradi-270

ent estimation along boundaries goes beyond naive exploratory summaries of the change in spatial gene271

expression. Our boundary-informed supervised analysis thereby facilitates the discovery of “cliff genes”272

which are intricately linked to biological boundaries.273

Figure 3 Wombling analysis. DLPFC: (a) Annotation boundaries. The arrows indicate the normal direction for a single
boundary: between white matter (WM) and layer 6 (L6). (b) Selected genes with top-tier gradients over single boundaries.
(c) An example for the normal direction when combining two boundaries: one between WM and L6 and the other between
layer 5 (L5) and L6. (d) Selected genes with top-tier weighted-sum gradients over multi-boundaries. HER2+ breast
cancer: (e) Cancer epithelial cell boundaries. The arrows indicate the normal direction across the boundaries. (f) Top 2
genes with the highest gradients over the two cancer epithelial cell boundaries combined. (g) Top 2 genes with the lowest
gradients over the multi-boundaries. (h) Top gene with the highest gradient over the multi-boundaries only detected by
StarTrail. (i) Upset plot for detected cliff genes and SVGs. (j) Top 10 pathways identified by cliff genes with the largest
gene ratio. All the gene expression in the figure are smoothed and normalized. epi: epithelial.

The biological intricacy of the DLPFC necessitates an analysis that is not confined to single boundary274

definitions. For example, while MBP expression shows a consistent increase from the top right to the275
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bottom left, as indicated by multiple positive boundary gradients, contrasting genes like PCP4 display276

heterogeneity in their expression patterns. This is marked by their positive and negative gradients across277

different single boundaries (Fig. 3b). This variability accentuates the need to accommodate multiple278

boundaries into spatial omics analyses. When engaging with multiple boundaries, StarTrail aggregates279

information by taking the weighted sum of gradients along multiple boundaries. For instance, StarTrail280

enables the delineation of WM-enriched genes through analyzing gradients over boundary 6 (Fig. 3a).281

Similarly, StarTrail helps to identify genes with high expression in L6 by analyzing the weighted sum282

of gradients along boundaries 5 and 6 (Fig. 3c). By analyzing multiple boundary pairs (for example,283

boundaries 5,6 for layer L6, boundaries 4,5 for layer L5, boundaries 3,4 for layer L4, boundaries 2,3 for284

layer L3, boundaries 1,2 for layer L2), StarTrail accurately identifies genes enriched in specific layers or285

regions (Fig. 3d, Extended Data Fig. 8).286

Breast cancer: In addition, StarTrail’s ability to harness estimated gradients for detecting bound-287

aries in various contexts, such as gene expression or cell proportions, extends its utility to the288

simultaneous modeling of multi-omics data. This capacity is particularly advantageous with co-assay289

data, for example gene expression and cell type annotation, where cliff genes can be identified in relation290

to cell-type-defined boundaries. In our study of HER2+ breast cancer, we applied StarTrail, focusing291

squarely on the previously identified cancer epithelial cell boundary, to estimate boundary gradients for292

gene expression (Fig. 3e-h, Extended Data Fig. 9, Supplementary Table 2). ERBB2, known as a marker293

gene of cancer epithelial cells, was pinpointed by StarTrail with the highest boundary gradient, demon-294

strating its efficacy in identifying genes critical to cancer pathology. Further examination of genes with295

pronounced boundary gradients revealed their biological significance in cancer progression. For instance,296

MGP, whose gene expression was found to be negatively associated with patients’ overall survival, is297

a promising prognostic biomarker [38]. Similarly, increased CD24 expression in breast cancer tissues298

compared to normal tissues, as observed in TCGA, underscores its potential as a potential biomarker299

for prognosis [39]. When contrasting the top genes identified by cell type-specific boundaries with those300

discerned by pathologist-annotated cancer boundaries, we observed remarkable concordance (Extended301

Data Fig. 9). This suggests that, in the absence of pathological annotations, cell type boundaries can302

serve as an effective proxy for delineating the dynamic interface between cancerous and non-cancerous303

regions. These results demonstrate StarTrail’s precision in delineating spatial expression boundaries and304

corroborate the robustness of StarTrail’s gradient estimation techniques. StarTrail’s ability to accurately305

identify genes with drastic expression changes at cellular boundaries enables researchers to focus on re-306

gions of rapid changes, which often harbor critical biological insights. In the context of disease pathology,307

such as cancer, discovery of these rapidly changing zones can provide a wealth of information regarding308

the mechanisms of disease progression, invasion, and interaction with the surrounding tissue microen-309

vironment. By targeting these rapidly transitional areas, researchers can gain a more comprehensive310
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understanding of omics dynamics and cellular heterogeneity at the tumor margin, which is essential for311

the development of targeted therapies and better predictive prognostic markers.312

2.4 StarTrail-identified cliff genes and pathways offer novel insights313

We benchmark StarTrail’s performance in identifying cliff genes against established SVG detection meth-314

ods in the human DLPFC and HER2+ breast cancer dataset. We chose four widely-used SVG methods:315

Spark-X [40], SoMDE [41], nnSVG [42], and SpatialDE [43].316

DLPFC: Analyzing the DLPFC 151576 dataset, among 11,686 genes, Spark-X, SpatialDE, nnSVG,317

and SoMDE identified 9,673, 5,266, 1,622 and 1,185 SVGs respectively; and StarTrail identified 758318

cliff genes (Supplementary Fig. 3, Supplementary Table 1). Notably, in this dataset, most cliff genes319

detected by StarTrail were identified by some SVG method(s), with only 7 StarTrail-exclusive genes320

missed by all four SVG methods (see Methods for threshold recommendations). Investigation into these321

7 unique genes revealed a commonality: each exhibited rather localized patterns of hot spots along at322

least one pre-defined boundary (Supplementary Fig. 4). To substantiate the validity of StarTrail findings323

beyond visual assessments, we checked cliff genes that StarTrail identified from one single slide against324

genes identified by combining information across 8 slides from the spatialLIBD study [16]. Reassuringly,325

we observed a substantial overlap: for instance CCDC80, MEX3D, and RRP8 showed significance at326

the L6-WM boundary, while MSX1 and ID4 were significant at the L1-L2 boundary (as detailed in327

Supplementary Table S4C of the spatialLIBD paper).328

Breast cancer: we similarly compared cliff genes identified by StarTrail with genes detected by the329

SVG methods. In this dataset, spatialDE, nnSVG, and Spark-X identified 192, 458, and 1,585 SVGs330

respectively. StarTrail identified 463 cliff genes at either of the two cancer epithelial cell boundaries, and331

the weighted-sum of the two boundaries gradients led to 100 cliff genes (Fig. 3i, Supplementary Table 2,332

Supplementary Fig. 5, 6). Note that SoMDE did not detect any SVGs and was thus omitted from further333

analysis. Among the 463 (100) cliff genes, 212 (12) were StarTrail-exclusive, not recognized by any SVG334

method. The 12 genes (Supplementary Fig. 6) manifest high expression in either cancer in situ region (e.g.335

IGSF3 ) or the immune infiltrate region (e.g. MBP). IGSF3 (Fig. 3h), exhibiting the largest gradient in336

StarTrail’s multi-boundaries analysis but undetected by all SVG methods, is part of the immunoglobulin337

superfamily (IgSF), which includes members whose gene expression levels are known to vary in breast338

cancer, making them potential prognostic biomarkers. [44]. IGSF3, in particular, has been highlighted339

as a possible target for Chimeric antigen receptor (CAR) therapy and is considered essential in 80% of340

head and neck squamous cell carcinoma cell lines (classified as “common-essential” by DepMap) [45].341

Moreover, TCGA DE analysis between tumor and adjacent normal tissue revealed significant differences342

in over 90% of IgSF genes in at least one cancer type. Specifically, IGSF3 demonstrates a marked over-343

expression in breast invasive carcinoma samples from TCGA, highlighting its relevance and potential344

impact in the context of breast cancer [46].345
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StarTrail not only identifies cliff genes that offer insights missed by existing methods but also un-346

covers undetected pathways. Gene Ontology (GO) analysis was conducted to delve into the pathways347

of these cliff genes (Fig. 3g) [47]. Cliff genes identified at either boundary revealed 54 pathways missed348

by SVG methods; and using cliff genes detected with the multi-boundaries approach revealed 30 missed349

pathways (Supplementary Tables 3-8). Notably, GO results highlight terms pertinent to the response350

to interleukin-1 (IL-1, GO:0071347 and GO:0070555, Supplementary Fig. 7), one of the major pro-351

inflammatory cytokines known to be elevated in various tumor types including breast cancer. IL-1 has352

been linked to tumor progression through its role in promoting the expression of genes involved in353

metastasis, angiogenesis, and growth factors [48]. Among the 30 GO terms uncovered from StarTrail’s354

multi-boundaries approach, multiple are related to immune response, including the regulation of natural355

killer cell mediated immunity (GO:0002715, Supplementary Fig. 8) and the positive regulation of myeloid356

leukocyte mediated immunity (GO:0002888), presenting granular insights into the immune dynamics357

within the tumor microenvironment. As StarTrail is designed to detect localized spatial patterns, it holds358

the promise of offering superior power and resolution in scenarios where multiple unconnected hot spots359

occur around boundaries, uncovering localized patterns that may well be overlooked by traditional SVG360

detection methods.361

So far we have concentrated on the absolute magnitudes of the gradients. However, the gradients’ sign362

can provide orthogonal insights. Focusing on cliff genes characterized by a negative gradient (indicating363

lower expression within the cancerous regions), we observed a strong association with immune-related364

processes (Supplementary Table 5). Among the top 15 significant pathways identified by StarTrail, an365

impressive 14 were directly tied to immunity, antigens, and B cell functions. This starkly contrasts with366

the findings from SVG detection methods, where nnSVG, Spark-X, and SpatialDE identified 4, 3 and 6367

pathways related to immunity.368

2.5 Enhanced downstream analysis with StarTrail inferred finer spatial369

dynamics370

In addition to StarTrail’s direct benefits of precisely demarcating boundaries and detecting cliff genes,371

integrating StarTrail inferred gradient information can significantly enhance the inferential capabilities372

of traditional spatial methodology. Although a complete evaluation is beyond the scope of this work, we373

demonstrate in this section how harnessing the output of StarTrail inferred spatial dynamics can bolster374

spatial domain detection, commonly referred to as clustering analysis.375

It is important to note that we are not introducing a new clustering method. Rather, we performed376

integration by feeding StarTrail inferred spatial dynamics as input to existing clustering methods. We377

propose two approaches for integration: first, using the L2 norm of gradients as the input for clustering,378

and second, combining the original omics data with the L2 norm of gradients as input. Since high L2
379
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values typically correspond to areas of rapid omics profile change, which often corresponds to biological380

boundaries, the inclusion of L2 enhances the distinction between different spatial regions. To illustrate381

this, we show four genes with diverse expression patterns (Fig. 4a). When L2 values are included with382

gene expression, the contrast between areas enriched for each gene becomes more pronounced.383

Figure 4 Enhanced clustering analysis. (a) Integrating L2 to gene expression enlarges the difference of mean gene ex-
pression between its enriched layer and other layers. (b) Integrating L2 to clustering analysis enhanced clustering, shown
by higher ARI. (c) The clustering result from five methods. Here, ‘Without gradient’ (the first row) represents the best
clustering result (highest ARI) using only gene expression in SVG and cliff gene sets. ‘With gradient’ (the second row)
represents the best clustering result using either L2 alone, or Gene+L2 in SVG and cliff gene sets. We matched the color
of predicted clusters to truth for visualization. See Supplementary Fig. 11 for raw result.

We applied several clustering algorithms, including both traditional clustering methods like K-384

means [49, 50] and spatial clustering methods: BayesSpace [12], SpaGCN [11], Stardust [14] and385

stLearn [13], to the DLPFC dataset based on gene expression alone, L2 norm alone, and the sum of386

gene expression and L2 (Gene+L2). In our analysis, we used two sets of genes: highly variable genes (se-387

lected by SPARK [9]) and cliff gene sets (genes with absolute boundary gradients greater than 5 at any388

boundary). The choice of gene set (either SVGs or cliff genes) and input metric(s) can both influence389

clustering outcomes, with no universally optimal selection for all methods. However, when we compared390

the best Adjusted Rand Index (ARI) [51] scores for clustering methods with and without gradients, the391
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inclusion of StarTrail inferred gradients consistently outperformed analyses relying solely on gene ex-392

pression (Fig. 4b,c, Extended Data Fig. 10, Supplementary Fig. 11). Notably, K-Means clustering with393

L2 demonstrated a marked improvement, revealing a distinct and drastically clearer layer structure (Fig.394

4b,c).395

These findings underscore the potential of including StarTrail inferred spatial dynamics to enhance396

the resolution and accuracy of clustering analyses in spatial omics studies, offering a more comprehensive397

and granular understanding of tissue architecture and function.398

3 Discussion399

StarTrail represents a pioneering and paradigm-shifting approach in the spatial omics field as the first400

method that employs a rigorous yet efficient spatial gradient framework to empower inference at highly401

localized, potentially disjoint regions that existing methods have little power. This innovative technique402

substantially enhances our understanding of spatial omics feature by providing directional, quantita-403

tive, and high-resolution gradient (i.e., rate of change) information. Augmenting the original omics404

measurements with such gradient information, StarTrail sheds new light on tissue structure and function.405

The fundamental strength of StarTrail lies in its utilization of gradient information, which has multi-406

ple advantages in practical applications. The gradient flow map, a central feature of StarTrail, provides407

an intuitive visualization of omics dynamics, revealing the direction of changes across tissue samples.408

This is particularly valuable in identifying areas of rapid transition within the tissue, thereby aiding409

in the detection of critical biological boundaries. Another significant application is the identification of410

“cliff genes” – genes that exhibit dramatic shifts in expression at specific tissue interfaces. This ability411

to pinpoint genes that are highly variable across spatial boundaries has profound implications beyond412

the routine analysis of SVGs. Furthermore, StarTrail is specifically tailored to precisely demarcate local413

boundaries and to detect local omics patterns near pre-defined boundaries. It is therefore complementary414

to SVG methods proposed in the literature. For instance, significant SVGs with small gradient values at415

any boundary suggest alternative boundaries unknown to us, or the presence of potential new clusters416

(Supplementary Note, Supplementary Figs. 9, 10). For downstream analysis such as clustering analysis,417

the inclusion of gradient information significantly enhances the resolution and accuracy of identifying418

distinct spatial domains within tissue samples.419

Another pivotal advantage of StarTrail is its computational efficiency. Utilizing NNGP models, Star-420

Trail dramatically reduces the computational cost required for analysis – from 40 hours to a mere 2421

minutes per gene per slide, as evidenced in our analysis of the DLPFC dataset. This efficiency is achieved422

without sacrificing accuracy, making StarTrail a practical tool for large-scale studies. Furthermore, Star-423

Trail’s flexibility in handling multiple data types – from measured transcriptomics or proteomics data424
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to computationally inferred annotations – makes it a versatile tool for various spatial omics applications425

and the analysis of co-assays.426

Looking forward, there are several promising directions for extending StarTrail’s capabilities. For427

example, the development of spatial gradient processes that model multiple omics features simultaneously428

is highly warranted. This could provide a more comprehensive understanding of the complex interactions429

among multiple genes or proteins within the same spatial context. Another promising direction is the430

development of clustering methods that are specially designed to incorporate gradient information. Such431

methods could offer a more powerful approach to segmenting tissues based on dynamic changes, leading432

to more accurate and biologically relevant clustering outcomes.433

In conclusion, the introduction of StarTrail to the spatial omics toolkit has the potential to open doors434

to a deeper understanding of the spatial dynamics of biological tissues. This novel approach promises to435

enhance our comprehension of tissue structure and function by leveraging the rich information contained436

within spatial gradients.437
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4 Method442

The StarTrail pipeline The analysis in StarTrail begins by inputting data from spatial omics experi-443

ments or its annotation. For omics data, such as gene expression or protein abundance, we first implement444

a smoothing step to enhance signal quality and reduce noise. The omics measurement of each spot/cell445

is smoothed as the weighted sum of its neighbors and itself. This is followed by data normalization using446

the SCTransform function in Seurat [52]. For cell type proporiton, only the smoothing step is applied.447

This initial phase refines raw data, preparing them for subsequent analysis.448

The core of StarTrail’s workflow involves employing the NNGP [29] [30]. Here, we model the rela-449

tionship between coordinates s and omics feature (e.g., gene expression) Y using the following Bayesian450

hierarchical model [53] [54]451

y(s) = µ(s) + Z(s) + ϵ(s),

where µ is a mean function, Z ∼ GP(0,K) is a zero mean GP with covariance function K, and

ϵ(s) ∼ N(0, τ2) is a zero mean white-noise process capturing measurement error, also known as nuggets.

In particular, the GP Z is a stochastic process with finite dimensional realization being multivariate

Gaussian: for any s1, · · · , sn ∈ R2,

[Z(s1) · · · , Z(sn)] ∼ N(0,Σ),

where Σij = K(si, sj) is the covariance matrix calculated based on predefined kernels. Here we choose

the Matérn kernel as the covariance function due to its flexibility in controlling smoothness [55]:

K(s, s′) =
σ2

Γ(ν)2ν−1
(α∥s− s′∥)νKν(α∥s− s′∥),

where Kν is the modified Bessel function of the second kind.452

Traditional GP modeling is computationally intensive, primarily due to the inverse of the n by n453

covariance matrix Σ, at a cost of O(n3). StarTrail, adopting the NNGP approach, significantly improves454

efficiency and scalability, crucial for handling large datasets common in spatial omics studies. NNGP,455

by focusing on the m-nearest neighbors and a sparse approximation to the covariance, reduces the456

computational cost to O(nm3) ≪ O(n3) [29] [30]. Here we chose m = 10.457

We implemented the spNNGP function (“response” algorithm) in the spNNGP package [30]. The458

priors for the kernel parameters and additional tuning parameters are available in our GITHUB459

repository.460

After fitting the model, the next step is gradient estimation. In the traditional spatial gradient process,461

the gradient ∇Z and curvature ∇2Z are estimated by inferring joint distribution of [Z,∇Z,∇2Z] with462
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cross-covariance characterized by463 
K −(∇K)⊤ ∇2K⊤

∇K −∇2K ∇3K⊤

∇2K −∇3K ∇4K


Given the Matérn kernel is ⌈ν⌉−1 times mean square differentiable (MSD) [55], we set the prior of ν464

to be supported on (2, 5) to ensure that the GP with kernel K is 2-times MSD, i.e., ∇2Z is well-defined.465

Due to the nature of NNGP, and because we do not fix ν in the kernel, the closed form of ∇K is not466

available. As a result, we propose to estimate the gradients using finite differences [56], a mathematical467

method for approximating derivatives. Here, we explain the case for 2D coordinates, calculating the468

gradient in the direction of e1 = (1, 0) and e2 = (0, 1). We denote the posterior mean of f as f̂ , and for469

any given location s, ∇e1Z(s) and ∇e2Z(s) are approximated by470

∇e1Z(s) ≈ f̂(s+ h · e1)− f̂(s)

h

∇e2Z(s) ≈ f̂(s+ h · e2)− f̂(s)

h
,

where h is a sufficiently small step size specified by users. According to our empirical observation, we471

recommended and set as default h = 0.8ι, where ι = mini,j ∥si− sj∥ is known as the minimal separation472

of the locations {si}ni=1.473

Similarly, the curvatures at s are approximated by:474

∇2
e1,e1Z(s) ≈ f̂(s+ 2h · e1)− 2f̂(s+ h · e1) + f̂(s)

h2

∇2
e2,e2Z(s) ≈ f(s+ 2h · e2)− 2f(s+ h · e2) + f(s)

h2

∇2
e1,e2Z(s) ≈ f̂(s+ h · e1 + h · e2)− f̂(s+ h · e1)− f̂(s+ h · e2) + f(s)

h2

Consequently, the gradient at s can be estimated by [∇e1Z(s),∇e2Z(s)].475

Wombling analysis in StarTrail calculates gradients along a given curve γ : [0, T ] → R2, taking

segment points {s(ti)}Ni=0 as input and adopting a piece-wise linear approximation. For each line segment

γ(t) with starting point sti and ending point sti+1 , let ui =
sti+1

−sti
∥sti+1

−sti∥
be the unit vector representing

this segment. Then the normal unit vector vi = Rui with R =

0 −1

1 0

 being the rotation matrix of π
2 .
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An approximate to
∫ ti+1

ti
∇vZ(t)dt is given by the Simpson’s rule [57][58]

∇viZ(sti) +∇vi+1Z(sti+1) + 4∇viZ((sti + sti+1)/2)

6
∥si − si+1∥

where476

∇vi
Z(sti) ≈

f̂(sti + hvi)− f̂(sti)

h

∇vi+1Z(sti+1) ≈
f̂(sti+1

+ hvi+1)− f̂(sti+1
)

h

∇vi
Z

(
sti + sti+1

2

)
≈

f̂
(

sti+sti+1

2 + hvi

)
− f̂

(
sti+sti+1

2

)
h

Then the average gradient along the curve γ is approximated as477

∫ T

0

∇v(t)Z(s(t))dt ≈
N−1∑
i=0

∇vi
Z(sti) +∇vi+1

Z(sti+1
) + 4∇vi

Z((sti + sti+1
)/2)

6
∥si − si+1∥

For easier comparison across curves, we scaled the approximated gradient of each curve using its

piece-wise linearly approximated length l̃γ =
∑N−1

i=0 ∥si − si+1∥:

G̃γ =

∫ T

0

∇v(t)Z(s(t))dt/l̃γ .

When considering multiple boundaries γ1, ..., γk, the weighted-sum gradient is approximated as

k∑
i=1

G̃γi l̃γi/

k∑
j=1

l̃γj .

Boundary detection in StarTrail. StarTrail excels in precisely detecting boundaries within spatial478

omics data. This process begins by identifying spots or cells that exhibit high L2, specifically those479

exceeding a predefined quantile threshold (default is 0.9). Subsequently, the dbSCAN algorithm [59] is480

deployed to cluster these points, creating an initial map of areas where substantial changes coalesce,481

and thus suggesting potential boundary locations. For each cluster identified by dbSCAN, a principal482

curve is fitted. This curve acts as a smooth line that passes through the center of each cluster, effectively483

delineating the boundary. The default number of nodes in each principal curve is set as the number of484

points in the cluster divided by ten. Through this methodical approach, StarTrail offers a nuanced and485

precise way to detect boundaries within spatial omics data. By combining rigorous statistical techniques486

with advanced clustering algorithms, StarTrail effectively highlights regions of rapid changes, providing487

valuable insights into the spatial organization and underlying biological dynamics of the sampled tissue.488
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Cliff gene gradient threshold. For DLPFC, we used 0.25σ0.9/ι as the threshold, where. σ0.9 is489

the 0.9 quantile of the standard deviation of smoothed gene expression, and ι is the minimal separation490

between spots. 0.25 here accounts for the change spanning across two rows/columns of spots over half491

of the given boundary. For HER2+ analysis, we used 0.5σ0.9/ι. We note here that this threshold reflects492

the actual change of gene expression and is therefore not a probability. Thus, users could adjust this493

threshold based on their needs.494

Gene+L2. Gene+L2 is designed to augment the original gene expression data with a gradual spatial495

change information. To avoid overshadowing the inherent characteristics of gene expression, we metic-496

ulously regulate the magnitude of the L2 term. Specifically, we use a scaled L2 (divided by the range497

maxL2−minL2). This approach ensures that the alteration to each value does not exceed 1, preserving498

the nuanced nature of the original data.499

Simulations. To mimic a spectrum of patterns in ST data, we simulated data under several dis-500

tinct settings. For simulation 1 (Extended Data Fig. 1 top row), we simulated data from trigonometric501

functions:502

y(sg) ∼ N(10 sin(3πsg,1) + 10 cos(3πsg,2), 1),

where sg,1 and sg,2 are vectors spaced equally from 0 to 1 in increments of 0.05. In the second simulation503

(Extended Data Fig. 1 second row), we created a linear gradient pattern, or ‘streak’, where the data504

transitions gradually from a background level to a higher level towards the center in the (0, 1) direction.505

The third simulation involved the creation of a ‘hot-spot’ pattern (Extended Data Fig. 1 third row),506

which similarly sees a gradual change from the background parameter to a center of a circle. The fourth507

simulation produced a ‘layer’ pattern (Extended Data Fig. 1 bottom row), characterized by a sharp508

transition from one level to another, resembling discrete layers. All the simulated data can be accessed509

in our GitHub repository.510

Clustering analysis. We performed clustering with five methods on gene expression, L2, or511

Gene+L2 to cluster spatial locations, using SVGs (top 3000 SVGs selected by SPARK[9]) or cliff gene512

sets (absolute gradient at any boundary greater than 5). The five methods include BayesSpace [12], K-513

Means [49, 50], SpaGCN [11], Stardust [14] and stLearn [13]. BayesSpace [12], a fully Bayesian method,514

leverages spatial neighborhoods information to enhance resolution in ST data and perform clustering.515

K-Means [60] partitions a dataset into K distinct, non-overlapping clusters by minimizing the variance516

within each cluster. SpaGCN [11] employs a graph convolutional network to identify SVGs and spa-517

tial domains. Stardust [14] integrates gene expression with spatial location to create a pairwise distance518

matrix for clustering using the Louvain algorithm [61]. stLearn [13] utilizes Spatial Morphological gene519

Expression normalization (SME normalization) based on gene expression, spatial location, and image520

data, followed by K-Means clustering [60]. For each method, we adopted the standard pipelines and521
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followed their recommended parameter settings. For BayesSpace, SpaGCN, Stardust, and stLearn, we522

applied log-transformation and Principal Component Analysis (PCA) to all three types of data (i.e.,523

gene expression, spatial location, and image data). We did not perform any transformations on the in-524

put for K-Means. For Gene+L2 in BayesSpace, we add rounded and scaled L2 to the gene expression525

matrix, as the developers recommended when the data contain values between 0 and 1. In BayesSpace,526

K-Means, SpaGCN, and stLearn, the number of clusters is set based on the ground truth (here we used527

7 for DLPFC 151676). Stardust does not have the option to specify the number of clusters.528

De-convolution analysis. We applied RCTD for cell type de-convolution to the HER2+ breast529

cancer data. RCTD is a computational technique that uses single-cell RNA-seq data to decompose cell530

type mixtures while adjusting for technical variations. We set the doublet mode to be “full” to obtain531

the proportion of all the cell types in each spot.532

Gene ontology analysis. We performed gene ontology (GO) analysis using R package GO.db. We533

included three GO categories, molecular function (MF), biological process (BP) and cellular component534

(CC).535

Data availability The DLPFC [16] data is obtained from https://research.libd.org/globus/.536

The breast cancer data are obtained from https://doi.org/10.5281/zenodo.4751624 (ST) and https:537

//singlecell.broadinstitute.org/single cell/study/SCP1039 (scRNA-seq reference). The CODEX [36] data538

is shared by the MaxFuse [37] authors.539

Code availability All code used in this study, including the StarTrail software, can be found at540

https://github.com/JiawenChenn/StarTrail.541
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5 Extended Data669

Extended Data Fig. 1 Simulation study. Measurements are simulated from a mixture of sine and cosine functions,
streak, hot spot and regional patterns.
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Extended Data Fig. 2 Estimated gradients for gene with top 10 median L2 values in DLPFC. For each gene, the left
panel is the normalized gene expression, the middle panel is the smoothed and normalized gene expression, and the right
panel is the estimated L2. Spots with L2 smaller than 0.7 quantile are masked by gray color.
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Extended Data Fig. 3 Estimated gradients for cell type proportion in HER2+ breast cancer data. For each gene, the
left panel is the cell type proportion, the middle panel is the smoothed cell type proportion, and the right panel is the
estimated L2. Spots with L2 smaller than 0.7 quantile are masked by gray color.
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Extended Data Fig. 4 Estimated gradients for selected proteins in CODEX data. For each protein, the left panel is the
normalized abundance, the middle panel is the smoothed and normalized abundance, and the right panel is the estimated
L2. Spots with L2 smaller than 0.7 quantile are masked by gray color.
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Extended Data Fig. 5 Cliff genes with top five positive gradient for each boundary in DLPFC.
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Extended Data Fig. 6 Cliff genes with top five negative gradient for each boundary in DLPFC.
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Extended Data Fig. 7 Comparison between mean expression change slope (spots in distance 0 layer to -0.05 layer) and
estimated boundary gradients.
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Extended Data Fig. 8 Cliff genes with top five positive gradient for each boundary pair in DLPFC.
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Extended Data Fig. 9 Cliff genes with top five gradient for multi-boundaries in HER2+ breast cancer. (Row 1) top five
genes with positive gradients for hand-drawn cancerous boundary based on pathologist annotation. (row 2) top five genes
with negative gradients for hand-drawn cancerous boundary based on pathologist annotation. (Row 3) top five genes with
negative gradients for cancel epithelial cell boundaries. (Row 4) top five genes with positive gradients for cancel epithelial
cell boundaries.
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Extended Data Fig. 10 Refined clustering results for all methods with different input (gene expression, L2, Gene+L2)
in different gene sets (HVG, cliff genes).
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Supplementary Note for “Investigating spatial670

dynamics in spatial omics data with StarTrail”671

1 Analysis of non-cliff SVGs672

StarTrail, used together with SVG methods, can reveal novel biological insights. For the DLPFC dataset,673

upon examining significant SVGs with minimal gradient values, it becomes apparent that many genes674

exhibit expression changes across multiple boundaries (Supplementary Fig. 9). Notably, genes such as675

HMGCR and BOLA3 manifest high expression in the bottom right of the slide, indicative of poten-676

tially new subregions not yet recognized in literature. These subregions potentially account for the677

distinct cluster observed in the bottom right region in various clustering analysis results (as detailed in678

Supplementary Fig. 12 of the spatialPCA paper [62]).679

In the analysis of HER2+ breast cancer, we discovered that certain SVGs upregulated in adipose680

tissue and breast glands exhibit minimal gradient values at the cancer boundaries (Supplementary Fig.681

10). These observations again suggest that utilizing SVG method alongside StarTrail has the potential682

to unveil genes linked to previously unidentified domains. It is important to note again that StarTrail is683

not a SVG method. Complementary to SVG methods, StarTrail highlights the critical role of boundary684

analysis in spatial omics, revealing its potential to connect omics features with distinct boundary-related685

changes and uncovering novel aspects of tissue structure, disease development or progression.686

2 Matching predicted clusters to true layers687

We match predicted clusters and true layers by relabeling each predicted cluster to allow easier perfor-688

mance comparison across methods and to enhance result visualization (this method is not involved in689

the calculation of ARI). When the number of predicted clusters is greater than or equal to the number690

of true layers, our matching ensures that each true layer has a corresponding set of predicted clusters.691

In cases where the number of predicted clusters exceeds the number of true layers, some predicted clus-692

ters may be merged and assigned to match the same true layer. When the number of predicted clusters693

matches the number of true layers, a one-to-one correspondence is established.694

The matching process starts by iterating through each predicted cluster. Step1: We assign the pre-695

dicted cluster to a new label based on its best-match (i.e., the highest proportion of overlap) true layer.696

Step2: As multiple predicted clusters can have the same best-match true layer, we also evaluate the697

proportion of each predicted cluster in the true layer and select the best-match predicted cluster. For698

instance, if true layer A is the best-match for both predicted cluster a and b in the first step and true699
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layer B is not assigned to any predicted cluster in the first step, we will examine the proportion of pre-700

dicted cluster a and b in true layer A. For example, the proportions of predicted clusters a and b in true701

layer A are 90% and 10%, then true layer A will be assigned to predicted cluster a and true layer B will702

be assigned to predicted cluster b. Step2 is repeated until all the true layers are assigned to at least one703

predicted cluster. In order to reduce computation time, we add a threshold c for Step2: we only consider704

predicted cluster when its number of spots is greater than c. In our analysis, we used c = 10.705
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Supplementary Figs. 1 The distance between spots and DLPFC boundary.
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Supplementary Figs. 2 Comparison of mean expression change across each boundary with the gradients in DLPFC
analysis. The lines are colored by estimated boundary gradients.
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Supplementary Figs. 3 Upset plot for cliff genes and SVGs discovery in DLPFC 151676 analysis. Cliff genes were
detected along each of the six boundaries indicated in Fig. 2e.
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Supplementary Figs. 4 The unique cliff genes detected by StarTrail in DLPFC analysis. For each gene, the left panel
is the raw gene expression, the right panel is the smoothed and normalized gene expression.
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Supplementary Figs. 5 The unique cliff genes detected by StarTrail in HER2+ analysis with top 10 largest absolute
gradient on any cancer epithelial boundary. For each gene, the left panel is the raw gene expression, the right panel is the
smoothed and normalized gene expression.

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.08.593025doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.08.593025
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figs. 6 The unique cliff genes detected by StarTrail in HER2+ analysis with top 10 largest absolute
gradient on the cancer epithelial multi-boundaries. For each gene, the left panel is the raw gene expression, the right panel
is the smoothed and normalized gene expression.
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Supplementary Figs. 7 StarTrail detected cliff genes associated with GO:0071347 in HER2+ analysis. For each gene,
the left panel shows the raw gene expression, while the right panel shows the smoothed and normalized gene expression.
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Supplementary Figs. 8 StarTrail detected cliff genes associated with GO:0002715 in HER2+ analysis. For each gene,
the left panel shows the raw gene expression, while the right panel shows the smoothed and normalized gene expression.
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Supplementary Figs. 9 The SVGs genes that are not cliff genes in DLPFC analysis with top 10 smallest absolute
gradient on any boundary. For each gene, the left panel is the raw gene expression, the right panel is the smoothed and
normalized gene expression.
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Supplementary Figs. 10 The SVGs genes that are not cliff genes in HER2+ analysis with top 10 smallest absolute
gradient on any cancer epithelial boundary. For each gene, the left panel is the raw gene expression, the right panel is the
smoothed and normalized gene expression.
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Supplementary Figs. 11 Raw clustering results for all methods with different input (gene expression, L2, Gene+L2)
in different gene sets (HVG, cliff genes).
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