

1 **Murine trypanosomiasis recapitulates transcriptomic features of acute kidney
2 injury**

3
4 John Ogunsola¹, Anneli Cooper¹, Juan F. Quintana^{1,2,3*} & Annette MacLeod^{1*†}

5
6 ¹School of Biodiversity, One Health & Veterinary Medicine (SBOHVM), College of Medical,
7 Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. ²Lydia Becker Institute of
8 Immunology and Inflammation, University of Manchester, UK. ³Division of Immunology,
9 Immunity to Infection and Respiratory Medicine, Manchester Academic Health Science
10 Centre, University of Manchester, UK.

11 *These authors contributed equally to this work.

12 †Corresponding author: annette.macleod@glasgow.ac.uk

13
14
15
16
17 **Keywords:** African trypanosomes, *Trypanosoma brucei*, acute kidney injury, RNA-
18 seq, kidney.
19
20

21 **Abstract**

22 The African trypanosome, *Trypanosoma brucei*, disseminates systemically in tissues
23 of the infected host resulting in complex immunopathology. The kidneys which are
24 important in the response to the anaemia characteristic of African trypanosomiasis,
25 are prone to acute kidney injury (AKI) from multiple noxious stimuli. Little is known
26 about the transcriptional responses of the kidney to trypanosome infection. To assess
27 the tissue-specific response to infection with *Trypanosoma brucei*, we profiled the
28 clinicopathologic and transcriptional responses of the kidney in BALB/C (susceptible)
29 and C57BL/6 (tolerant) murine models, at early (7 dpi) and late (21 dpi) time points of
30 infection. Trypanosomes in the renal interstitium, tubular necrosis and inflammation
31 characterised early infection in both mouse strains. By late infection, we observed
32 extensive tubular necrosis in the susceptible BALB/C but reparative tubular
33 regeneration in the tolerant C57BL/6 mice. *T.b. brucei* infection resulted in significant
34 increases in serum creatinine in both strains. Consistent with the clinicopathologic
35 findings, RNA-seq detected both mouse strain- and time-dependent transcriptional
36 responses in the kidney. These included perturbations in genes associated with
37 solute/ion transport, upregulation of markers of tubular injury, hypoxia, glycolysis, and
38 a profound inflammatory and immune response, mirroring the responses observed in
39 other models of AKI. Differential tissue pathology at late time point is preceded by
40 expansion of CD8⁺ T cells, profound expression of transcription factors and
41 upregulation of anti-inflammatory pathways in C57BL/6 mice. Our findings
42 demonstrate that experimental *T. brucei* infection-induced kidney injury (TIKI) is a
43 model of AKI and may have clinical implications for Human African Trypanosomiasis
44 cases, who currently are not routinely screened for markers of kidney function.

45

46 **Introduction**

47 The African trypanosome, *Trypanosoma brucei*, is of immense economic and medical
48 importance in sub-Saharan Africa where it causes potentially fatal disease in humans
49 and domestic animals, through Human African Trypanosomiasis (HAT) and Animal
50 African Trypanosomiasis (AAT), respectively. These flagellated protozoan parasites
51 are transmitted by a tsetse vector (*Glossina spp*) (Vickerman 1985) and cause an initial
52 haemo-lymphatic infection followed by a later meningo-encephalitic stage when
53 trypanosomes colonise the central nervous system (Kennedy 2013). Historically, *T.*
54 *brucei* has been regarded as a blood- and lymph-dwelling parasite, but recent reviews
55 have challenged this view with colonisation of several tissues described (Alfituri *et al.*
56 2020; Crilly and Mugnier 2021). In humans, domestic animals and experimental
57 models, extravascular compartments such as skin (Capewell *et al.* 2016; Camara *et*
58 *al.* 2020; Quintana *et al.* 2023), circumventricular organs (Quintana *et al.* 2022),
59 adipose (Trindade *et al.* 2016; Machado *et al.* 2021; Sinton *et al.* 2023) and
60 reproductive organs (Carvalho *et al.* 2018) have been characterised.

61
62 *T. brucei* survives and multiplies in tissue compartments of their mammalian host
63 despite being confronted by the innate and adaptive arms of the immune system. In
64 visceral organs and the associated microenvironmental niches, host-derived factors
65 are thought to impact on parasite survival, growth dynamics and transmission (De Niz
66 *et al.* 2021). A combination of parasites' tissue colonisation and the associated host's
67 inflammatory and immune responses also result in well described organ-specific
68 pathologies such as lymphadenopathy, hepatosplenomegaly, orchitis and pancarditis
69 (Stijlemans *et al.* 2016). These pathologies mediate clinical signs of the disease.

70
71 One of the main clinical features of trypanosome infection is anaemia (Brun and Blum
72 2012). In response to anaemia and tissue hypoxia that ensues, the kidneys secrete
73 the hormone erythropoietin which drives production of red blood cells (Moore and
74 Bellomo 2011). The functional unit of the mammalian kidney is the nephron which
75 comprises of a glomerulus and an extensive, multi-segment tubule (Chi *et al.* 2006).
76 Due to the anatomic peculiarities of its blood supply, intense oxygen requirements and
77 extreme reliance on aerobic respiration, the kidneys are sensitive to hypoxia and prone
78 to acute kidney injury (AKI) (Evans *et al.* 2020). AKI is characterized clinically by abrupt
79 reduction in urine output and elevation of serum creatinine and results in significant
80 morbidity if left uncontrolled (Liu *et al.* 2017). Hypoxia is one of the notable causes of
81 AKI. Despite multiple causes of AKI, a common pathologic feature is tubular injury
82 (Gaut and Liapis 2021), thus suggesting a unified tissue response at the transcriptomic
83 level. At least four mouse models to induce AKI (including ischemia-reperfusion,
84 sepsis, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) have been
85 developed and they share similar molecular characteristics and outcomes (Hultström
86 *et al.* 2018). However, our understanding of the pathology and molecular response of
87 the kidneys during *T. brucei* infection is limited.

88

89 Severity of organ pathologies, following *T. brucei* infection in susceptible hosts, is in
90 part due to host genetics (Naessens 2006; Noyes *et al.* 2009). In mice,
91 ‘trypanotolerance’ characterized by mild disease is linked to a control of the
92 parasitaemia (Naessens 2006). In murine models, different strains have been
93 observed to demonstrate differing degrees of susceptibilities to trypanosome infection
94 (Magez *et al.* 2004). Here, using two murine models with differential susceptibilities to
95 trypanosome infection, RNA sequencing and informatic approaches, we set out to
96 characterise the clinicopathological, immunological and transcriptional responses of
97 the murine kidney to acute and chronic *T. brucei* infection.

98
99 Our studies demonstrate that *T. brucei* infection induces histological and
100 transcriptional responses comparable to those observed in other models of AKI.
101 Furthermore, our results demonstrate that in the trypanotolerant C57BL/6 mouse
102 model, the trypanosome infection-induced kidney injury (TIKI) is resolved, likely
103 mediated by the upregulation of tissue repair gene pathways, a controlled upregulation
104 of CD8+ T cell-associated transcripts and a superior response to hypoxia, whereas
105 the trypanosusceptible BALB/c mice maintain kidney pathology driven by markers of
106 T cell exhaustion such as PD-1/PD1L. Together, our findings demonstrate that
107 experimental *T. brucei* infection results in infection-induced AKI, and presents an
108 attractive model to explore renal responses to infection. These observations have
109 clinical implications for HAT patients who currently are not routinely screened for
110 markers of kidney function.

111

112 **Materials and methods**

113 **Ethics statement**

114 All animal experiments were approved by the University of Glasgow Ethical Review
115 Committee and performed in accordance with the Home Office guidelines UK Animals
116 (Scientific Procedures) Act, 1986 and EU directive 2010/63/EU. All experiments were
117 conducted under SAPO regulations and UK Home Office project licence number
118 PC8C3B25C.

119 **Trypanosoma brucei infection**

120 Eight-week-old, female C57BL/6 mice ($n = 7$) and BALB/c mice ($n = 6$) (JAX, stock
121 000664) were inoculated by intraperitoneal injection with 3,000 parasites of strain *T.*
122 *b. brucei* Antat 1.1E (Le Ray *et al.* 1977). Parasitaemia was monitored by regular
123 sampling from tail venepuncture and examined using light microscopy and the rapid
124 “matching” method (Herbert and Lumsden 1976). Uninfected mice of the same strain,
125 sex and age, served as uninfected controls ($n = 3$). Mice were fed *ad libitum* and kept
126 on a 12-hour light-day cycle. Samples were collected to capture the histologic and
127 transcriptional changes in the murine kidney during the first peak of infection at 7 days
128 post infection (dpi) and during late stage of infection at 21 dpi. Both kidneys were
129 removed from each mouse; the left kidney preserved in RNAlater (ThermoFisher) for
130 RNA extraction and the right kidney preserved in neutral buffered formalin for
131 histopathology analysis.

132

133 **Histopathology scoring of the murine kidneys**

134 Kidney slices were fixed in formalin for 24 hours at 4°C before proceeding with paraffin-
135 embedding. 3 µm-thick histologic sections were stained with routine haematoxylin and
136 eosin (H&E) or periodic acid Schiff (PAS) and mounted. Microscopic examination of
137 the sections was performed with the pathologist blinded to the infection time point and
138 mouse strain. A semi-quantitative grading scale for the severity of lesions (with 0, 1, 2
139 and 3 corresponding to absent, mild, moderate, and marked respectively), was
140 designed to evaluate specific pathologies of the glomeruli, tubules and renal
141 interstitium. For each section, 20 glomeruli were counted and the number of glomeruli
142 with >3 mesangial cells per mesangial area was determined: <1, 1-5, 6-10, and >10
143 glomeruli corresponded to absent, mild, moderate, and marked respectively. The
144 tubular compartment in 20 random high-power fields of the renal cortex was examined
145 for evidence of tubular degeneration (vacuolation, loss of brush border) and necrosis
146 (pyknosis, karyorrhexis). Severity of tubular lesions were graded based on the number
147 of high-power fields where lesions were present: 0-1, absent; 2-4 mild; 5-7, moderate
148 and >7 marked. The number of foci of inflammatory aggregates in the renal interstitium
149 were quantified and graded: 0, absent, 1-2 foci as mild, 3-5 foci as moderate and >5
150 foci as marked. A composite score (sum of the score for each compartment) was
151 generated for each mouse to compare the severity of renal lesions.

152 **Immunohistochemistry**

153 Immunohistochemistry was performed to detect and demonstrate African
154 trypanosomes in the murine kidney. Rabbit anti-trypanosome BIP diluted at 1:10,000
155 was used, kindly donated by JD Bangs University at Buffalo,. Sections were counter-
156 stained with haematoxylin.

157 ***Trypanosoma brucei* quantitation in mice kidneys**

158 To detect trypanosome DNA in the kidneys, the number of copies of the *Pfr2* gene
159 present within 20 ng of DNA prepared from approximately 30 mg of kidney
160 homogenate was determined by quantitative TaqMan PCR. A modified protocol as
161 described by Laperchia *et al.* (2016) was employed. Briefly, TaqMan PCR, using
162 primers and probe specifically designed to detect the trypanosome *Pfr2* gene, was
163 performed in a 25 µL reaction mix comprising 1× TaqMan Brilliant II master mix
164 (Agilent, UK), 0.05 pmol/µL forward primer (CCAACCGTGTGTTCCCTCCT), 0.05
165 pmol/µL reverse primer (GAAAAGGTGTCAAACACTGCG), 0.1pmol/µL probe
166 (FAM-CTTGTCTTCTCCTTTTGCTCTTTCCCCCT-TAMRA) (Eurofins, Germany)
167 and 20 ng template DNA. A standard curve was constructed using a serial dilution
168 (range; 1 × 10⁶ to 1 × 10² copies) of pCR®2.1 vector containing the cloned *Pfr2* target
169 sequence (Eurofins). The amplification was performed on a MxPro 3005 (Agilent) with
170 a thermal profile of 95°C for 10 minutes followed by 45 cycles of 95°C for 15 seconds,
171 60°C for 1 minute and 72°C for 1 second. The MxPro qPCR software (Agilent) was
172 used to generate a standard curve and extrapolate the relative preponderance of
173 trypanosomes using the number of *Pfr2* copies as a proxy.

174 **RNA extraction and transcriptomics analysis**

175 Half of the kidney (approximately 30mg) was transferred into an RNase-free tube
176 containing a lysing Matrix M bead (MPbiomedical). Tissue was lysed in a mechanical

177 tissue lyser (Qiagen LT) at 50 revolutions per second for 2 minutes. From this lysate,
178 RNA was extracted using the RNeasy Mini Kit (Qiagen) according to the
179 manufacturer's instructions. RIN scores assessed using a Bioanalyzer (Agilent; 2100
180 Expert) were >7. All RNA samples were submitted to the Beijing Genomics Institute
181 (BGI, Hong Kong) for library preparation, sequencing, and quality control. Briefly, prior
182 to sequencing, mRNAs were enriched using oligo-dT beads. This was followed by
183 fragmentation, first-strand and second-strand cDNA synthesis. The synthesized cDNA
184 was subjected to end-repair and then was 3' adenylated. Adaptors were ligated to the
185 ends of these 3' adenylated cDNA fragments. DNA nanoball synthesis followed rounds
186 of PCR amplification of the cDNA. Sequencing was performed on the DNBSEQ
187 Technology platform to generate 150bp paired-end reads. The total number of raw
188 reads is presented in **Supplementary S1**. Filtered, high-quality reads were aligned to
189 the *Mus musculus* genome (GCF_000001635.26_GRCm38.p6) (Zerbino *et al.* 2017)
190 using HISAT2 (Kim *et al.* 2015) with default parameters. To quantify expression,
191 Bowtie2 (Langmead and Salzberg 2012) was used to map the clean reads to the
192 reference gene sequence (transcriptome), and then RSEM (Li and Dewey 2011) to
193 calculate the gene expression level of each sample. *In silico* analysis for deconvolution
194 of inflammatory cellular composition in each sample was performed using seq-
195 ImmuCC (Chen *et al.* 2017). Differential gene expression analysis was performed
196 using DESeq2 (v1.18.1) (Love *et al.* 2014). Genes having an adjusted *p*-value < 0.05
197 and a log2fold-change (LFC) < -0.5 or > 0.5, across comparisons were considered
198 differentially expressed. Comparisons were performed for each mouse strain: naïve
199 versus early infection, naïve versus late infection, and early infection versus late
200 infection. Gene lists for each comparison for each mouse strain were generated. Raw
201 and processed RNA-sequencing data files have been deposited in the GEO database
202 under the accession number GSE224927. Venn diagrams, heatmaps and PCA plot
203 were created using package *ggplot2* (v3.0.0) (Wickham 2016) in the RStudio
204 (v2021.09.0) interface of the R (v3.6.3) statistical software.

205 **Gene Ontology Analyses**

206 To understand renal-specific transcriptomic responses, we adopted a bioinformatic
207 approach where we compared our dataset to other published reports/datasets.
208 Specifically, we compared the lists of dysregulated genes for both naïve-versus-early
209 and naïve-versus-late comparisons in both mouse strains to previously published
210 mouse atlases of kidney compartment-specific genes (Lee *et al.* 2015; Park *et al.*
211 2018). We also compared our dataset to a previously reported list of genes common
212 to 4 models of AKI in humans (Hultström *et al.* 2018). We performed Gene Ontology
213 Biological Process annotation (Ashburner *et al.* 2000) on downregulated gene sets for
214 each comparison using the web-based *g:Profiler* (version e106_eg53_p16_65fc97)
215 (Raudvere *et al.* 2019) with the following settings: *i*) an ordered query of dysregulated
216 genes, *ii*) Benjamini correction method with significance threshold of 0.05, *iii*) the
217 statistical domain comprised only of annotated genes and term sizes ranged from a
218 minimum of 5 to maximum of 500. We then focused on a subset of genes with log2fold-
219 change (LFC) > 1, from our upregulated gene lists for each comparison. Each
220 upregulated (LFC > 1) subset gene list was put through *g:Profiler* using settings as

221 outlined above to determine either Kyoto Encyclopaedia of Genes and Genomes
222 (KEGG) (Kanehisa et al., 2002) pathways. Finally, we then focused on common
223 differentially expressed genes that were dysregulated throughout infection (that is,
224 genes in the intersection of naïve-versus-early (NvE), naïve-versus-late (NvL) and
225 early-versus-late time point (EvL) comparisons) for each mouse strain. Within the
226 intersection gene list for each strain, we inputted genes that were upregulated for all
227 comparisons into *g:Profiler* and performed KEGG pathway enrichment. Similarities
228 and differences among the enriched KEGG pathways in both mouse strains were
229 noted.

230

231 **Serum creatinine measurements**

232 *Mouse.* Sera was obtained from each mouse at experimental endpoints. Serum
233 creatinine was measured using the *Abcam* serum creatinine ELISA kit (ab65340)
234 in accordance with manufacturer's instructions.

235 *Human subjects.* Sera was obtained from the TrypanoGEN biobank (Ilboudo et al.
236 2017) of individuals with gambiense HAT in the DRC. Plasma creatinine was
237 measured in freshly thawed plasma samples using the CREP2 kit (Catalog Number
238 03263991190) on a Cobas 311 analyser (Roche, USA). Assays were performed by a
239 commercial laboratory in the UK. Samples were de-identified except for their HAT
240 status (controls or cases) and necessary approvals from ethical boards received.

241

242 **Statistical Analysis**

243 Parasite load in the blood (parasitaemia) and kidney (*Pfr2* gene copies) are presented
244 as mean \pm SEM. An independent *t* test or the non-parametric Mann-Whitney U-test
245 (for ordinal values) was performed to compare the histopathologic scores between any
246 two groups in a strain- or time-dependent manner. For more than two groups, a
247 Kruskal-Wallis test was used. A *p*-value <0.05 was considered statistically significant.

248

249 **Results**

250 ***Trypanosoma brucei* colonises the kidney early in infection resulting in**
251 **clinicopathological features of AKI**

252 Here, we set out to characterise the responses of the kidney to *T. brucei* infection using
253 two murine models of infection, BALB/c and C57BL/6 mice, considered to be
254 susceptible and tolerant to the infection by African trypanosomes, respectively (**Figure**
255 **1A**). In both strains, mice developed detectable parasitaemia by 4 days post infection
256 (dpi) which reached first peak at 6 dpi and was not significantly different between
257 BALB/c (2×10^8 parasites/ml) and C57BL/6 (1×10^8 parasites/ml). Following this initial
258 peak parasitaemia, the strains diverged in their abilities to control parasitaemia.
259 Whereas the trypanotolerant C57BL/6 mice successfully controlled parasitaemia to
260 less than 10^6 parasites/ml following the first (6 dpi) and second (14 dpi) peaks of
261 infection, the parasitaemia remained high in the trypanosusceptible BALB/c mice for
262 the duration of the infection (**Figure 1B**). Our findings are consistent with other studies
263 (Magez *et al.* 2004; Magez and Caljon 2011) that describe the parasitaemia in these
264 strains of mice with differential susceptibility to *T.b. brucei* infection with C57BL/6 being
265 relatively trypanotolerant and BALB/c mice as trypanosusceptible.

266 To assess kidney function we measured serum creatinine in both strains to determine
267 the effect of infection. The early and late timepoints were combined as a single *T.b.*
268 *brucei* infection group to increase the power of this assay. *T.b. brucei* infection resulted
269 in significant increases in serum creatinine in both strains, compared to uninfected
270 control mice (**Figure 1C**).

271 With evidence of azotaemia (elevated serum creatinine concentrations) and the
272 propensity for *T.b. brucei* to invade tissues, we reasoned azotaemia might be a
273 consequence of *T.b. brucei* invasion and colonisation of the kidney. We estimated the
274 parasite burden in the kidneys using qPCR to quantify the *T.b. brucei*-specific *Pfr2*
275 gene copies. We found that parasite DNA was detected in both mouse strains at both
276 infection time points but not in the naïve controls. Susceptible BALB/c mice had higher
277 parasite burden in the kidneys than tolerant C57BL/6 mice at both the early (1.6-fold)
278 and late (3-fold) timepoints although this increase did not attain statistical significance
279 (**Figure 1D**).

280 As our clinical and qPCR data indicated kidney injury in the presence of trypanosomes,
281 we next evaluated the histopathology of the kidneys with a view to characterising the
282 pattern of injury and detecting the location of the parasites.

283 To assess the impact of *T.b. brucei* infection on the structural integrity of the kidney,
284 we examined H&E and PAS stained sections in each group of susceptible BALB/c and
285 tolerant C57BL/6 (**Figure 2A and B**). Tubular degeneration and necrosis, which were
286 the most prominent pathologic features, coincided with both mouse strain differences
287 and time of infection. There were multiple foci of patchy tubular degeneration and
288 necrosis at the early stage of infection in both mouse strains mostly in the outer stripe
289 of the outer medulla. However, by the late time point (21 dpi), tubular necrosis was
290 locally extensive and severe only in the susceptible BALB/c but not in the tolerant
291 C57BL/6 mice. In the trypanotolerant C57BL/6 strain by day 21 of infection, there was
292 evidence of regenerating tubules with dilated lumina and cytoplasmic basophilia of

293 tubular epithelial cells were present. Inflammatory aggregates (comprised mostly of
294 mononuclear cells) were present around the juxtamedullary region and peri-renal fat.
295 Lesions in the glomeruli were evidenced by an increase in mesangial cells and an
296 increased deposition of PAS-positive mesangial matrix in *T.b. brucei*-infected BALB/c
297 and C57BL/6 mice. These histologic findings are indicative of a mesangiproliferative
298 glomerulopathy and consistent with a previous report (van Velthuysen and Florquin
299 2000), in addition to tubular injury and interstitial inflammation. Overall, the composite
300 score of lesion severity was higher in BALB/c than C57BL/6 by day 21 of infection (p
301 < 0.05) (**Table 1**).

302 We demonstrated the presence of *T.b. brucei* parasites in the kidney by
303 immunohistochemistry staining with *T.b. brucei*-specific anti-BIP in infected mice.
304 Extravascular parasites were observed in the kidney at both early (7 dpi) and late (21
305 dpi) in both strains of mice. Parasites were present and localised to the renal
306 interstitium mostly in the outer medulla in infected mice of both strains (**Figure 2C**).
307 Our data demonstrate that *T.b. brucei* localises to the extravascular space in the
308 murine kidney, in consonance with previous reports (De Niz *et al.* 2021; Mabille *et al.*
309 2022).

310 Thus, the pathologic findings indicate that trypanosomes occupy the kidney
311 interstitium from at least the first peak of parasitaemia where it elicits patchy tubular
312 damage accompanied by mononuclear inflammatory cellular aggregates in both
313 strains, and suggestive of AKI-like phenotype. By late infection (21 dpi), pathologic
314 findings diverged, with worsening tubular necrosis and a higher parasite burden in the
315 susceptible BALB/c mice but a reparative tubular regeneration and lower parasite
316 burden in the tolerant C57BL/6 strain. Taken together, the clinical and morphologic
317 features observed in our models of *T. brucei* infection-induced kidney injury (TIKI) are
318 consistent with AKI, and the pathology occurs in a mouse strain-dependent and
319 temporal manner.

320

321 **Transcriptomic signature reflects clinicopathologic features of hypoxic AKI**

322 The stark contrast in the progression of the pathology in both strains of mice from the
323 early to late stages of infection raised the question of what molecular mechanisms
324 underlie the temporal similarities and differences across both strains. To unravel this,
325 we performed whole-kidney total mRNA sequencing of 3 – 4 biological replicates from
326 BALB/c and C57BL/6 mice at both early (7 dpi) and late (21 dpi) time points and
327 compared the differentially expressed genes (adjusted p < 0.05, log2fold change [LFC]
328 either <0.5 or >0.5) relative to uninfected controls. Based on the top 500 most
329 expressed genes, mouse strain (BALB/c or C57BL/6) and infection status (naïve, early
330 and late infection) explained over 90% of the variance seen in the expression profiles
331 (**Figure 3A**). In the sections that follow, we describe the transcriptomic findings in the
332 context of known models of AKI using kidney-related differentially expressed genes,
333 and the profound inflammatory and immune responses using functional gene analysis.

334

335 Since we observed injury of the proximal tubules at histopathology, we compared our
336 transcriptomic data to *a priori* list of genes specific to the proximal tubules in addition
337 to known kidney injury markers (Liu *et al.* 2017).

338 Consistent with the acute tubular degeneration and necrosis of proximal tubules,
339 established kidney injury markers such as *Lcn2* and *Havcr1* (Liu *et al.* 2017; Gravina
340 *et al.* 2023), were significantly elevated at both time points of infection in both mouse
341 strains. Genes with endogenous expression in normal proximal tubules (*Ass1*, *Dio1*,
342 *Miox*, *Slc7a13*, *Xpnpep2*) were downregulated (**Supplementary Table S2**). Of 67
343 solute carrier family genes (*Slc*) dysregulated in both strains at any time point during
344 infection, 51 (76%) were downregulated. Notably, the sodium-independent organic
345 anion transporters (solute carrier family 22) were downregulated. In addition, there
346 was downregulation of pyruvate dehydrogenase (*Pdha1*), the enzyme that converts
347 pyruvate to acetyl CoA (required for oxidative phosphorylation) in both mouse strains
348 at both time points whereas both mouse strains during infection upregulated the
349 glycolytic enzymes, hexokinase-3 (*Hk3*), phosphofructokinase platelet isoform (*Pfkp*)
350 and pyruvate dehydrogenase kinase 3 (*Pdk3*) indicating a shift to glycolytic
351 metabolism. We propose that the downregulation of genes involved in solute/ion
352 transport and a metabolic shift to glycolysis is likely due to hypoxia resulting from the
353 well reported infection-induced anaemia in mice (Amole *et al.* 1982; Stijlemans *et al.*
354 2018). Similarly, the patchy distribution of tubular necrosis is suggestive of a
355 hypoxic/ischaemic insult. Although we did not measure erythrocyte indices clinically,
356 we found that the canonical marker of hypoxia, carbonic anhydrase-9 (*Car9*) (Schaub
357 *et al.* 2021), was markedly upregulated (relative to naïve controls) in both strains at
358 early (BALB/c, LFC = 1.8; C57BL/6, LFC = 0.6) and late (BALB/c, LFC = 2.9; C57BL/6,
359 LFC = 2.1) time points supporting an interpretation that TIKI is, at least in part, of
360 hypoxic origin. Hypoxia was present early in infection and probably independent of the
361 magnitude of parasitaemia (**Table 2**).

362 To evaluate the response to hypoxia in both strains, we profiled the expression
363 patterns of the hypoxia-inducible factor alpha (HIF- α) and downstream target genes.
364 HIF- α orchestrates cellular adaptation to low oxygen tension, functioning as a master
365 regulator of hundreds of genes in response to hypoxic conditions (Watts *et al.* 2020;
366 Della Rocca *et al.* 2022). *Hif3a* was upregulated in both strains at 7 dpi (BALB/c, LFC
367 = 1.6; C57BL/6, LFC = 2.3), but only the trypanotolerant C57BL/6 strain by 21 dpi
368 (LFC = 2.4). In the same vein, a downstream target gene of *Hif3a* involved in
369 erythropoiesis, erythropoietin (*Epo*), was significantly upregulated only in C57BL/6
370 mice at both early (LFC = 4.5) and late (LFC = 5.9) time points but was not upregulated
371 at any infection time point in BALB/c mice. Interestingly, other genes that function to
372 increase oxygen delivery were upregulated in both mouse strains either at both
373 infection time points (*Timp1*) or only at 21 dpi (*Nos2*, and *Hmox1*). Taken together,
374 these findings suggest that recovery in renal structure from acute tubular injury seen
375 in C57BL/6 might be linked to a more intense response to hypoxia including effective
376 erythropoiesis and oxygen delivery to tissues.

377

378 ***T. brucei* elicits a phenotype consistent with other models of acute kidney injury**
379 **(AKI) in mice**

380 With evidence of morphologic and transcriptional features characteristic of AKI in both
381 mouse strains at the early time point, we then compared the molecular features in our
382 infection model with those reported in other models of AKI using a bioinformatic
383 approach. We found that of the 212 genes that were common to four out of six models
384 of AKI (Hultström *et al.* 2018), 120 genes (~ 57%) were dysregulated (adjusted $p <$
385 0.05) at either early or late infection time point compared to naive. At the molecular
386 level, AKI has been described as a stress response associated with active
387 transcription, upregulation of genes involved in regeneration, apoptosis and survival,
388 extracellular matrix organisation as well as a loss of mature phenotype
389 (downregulation of genes that correspond to adult renal function) (Safirstein 2004).
390 We found that while some transcription factors were upregulated (*Irf1*, *Irf7*, *Ddit3*,
391 *Tgif1*, *Batf*) in both mouse strains, most were upregulated in C57BL/6 only and either
392 downregulated (*Klf4*, *Klf6*, *Jund*, *Maff*, *Csrnp1*) or undetected (*Atf3*, *Elf4*, *Hif3a*) in
393 BALB/c mice (**Table 3**). These strain-specific differential upregulation of factors might
394 explain the reparative tubular response seen in C57BL/6 but not BALB/c mice at 21
395 dpi. Genes related to extracellular matrix organisation and involved in epithelial-
396 mesenchymal transition (*Itgb2*, *Lgals3*, *Spock2*, *Tgfb1*, *Timp1*, *Mmp9*, *Mmp14*) were
397 also upregulated (**Table 3**). These findings combined with the downregulation of genes
398 involved in tubular function suggest that TIKI in mice show recapitulates the features
399 seen in other models of AKI.

400
401 ***T. brucei* induces inflammatory and immune transcriptomic signatures in the**
402 **kidneys**

403 Following our histologic finding of inflammation during infection and in consonance
404 with what has been previously reported, we characterised the transcriptomic
405 landscape to gain broad insights into what mechanisms might be at play during
406 infection by gene ontology analysis of lists of differentially expressed genes (DEGs;
407 adjusted $p < 0.05$) whose log₂fold-change (LFC) were either greater than 1 or less
408 than -1. The number of DEGs for naïve-versus-early infection, naïve-versus-late
409 infection, and early-versus-late infection comparisons were 1,567; 2,152 and 774,
410 respectively, in susceptible BALB/c mice (**Figure 3B**). In the trypanotolerant C57BL/6
411 mice, the number of DEGs for naïve-versus-early infection, naïve-versus-late
412 infection, and early-versus-late infection comparisons were 1,606; 3,473 and 1293
413 respectively (**Figure 3C**). Associated volcano plots for naïve-versus-early infection
414 (**Figure 4A**), naïve-versus-late infection (**Figure 4B**) and early-versus-late infection
415 (**Figure 4C**) in both mice strains are presented.

416 To get a clearer picture of the processes driven by the DEGs, we conducted gene
417 ontology and functional analyses using gene lists derived from naïve-versus-early
418 infection and naïve-versus-late infection comparisons, in both strains. The
419 predominant downregulated biological processes included organic anion transport,
420 monocarboxylic acid transport, cholesterol metabolism and fatty acid metabolism
421 which were related to renal metabolism and function (**Table 4**). Functional gene

422 analysis of upregulated genes ($LFC > 1$ & adjusted $p < 0.05$) in infected mice relative
423 to naïve at both time points in both mouse strains revealed that the significantly
424 enriched KEGG pathways were related to inflammation, phagocytosis, innate and
425 adaptive immune responses, and haematopoiesis (**Figure 5A**). Thus, the
426 clinicopathologic features of TIKI coincides with a transcriptional downregulation of
427 renal tubular function, and in part mediated by the trypanosome-induced
428 inflammatory/immune response as well as the hypoxia-driven tissue injury.

429

430 **Kidney damage is resolved in C57BL/6 but not BALB/c mice**

431 Early in infection, we see a pattern of transcriptional changes that are consistent with
432 the clinical and morphologic features of AKI, and these patterns are common to both
433 strains of mice. However, we observed a profound difference in pathology in the mouse
434 strains at the later time point. To investigate this further, we performed gene ontology
435 on the genes which were differentially upregulated at the late stage, relative to early
436 stage of infection in BALB/c and C57BL/6 mice. We identified enriched KEGG
437 pathways that were common to both strains as well as those unique to each strain
438 (**Figure 5B**).

439 Notably, only the Th17 signalling pathway was upregulated in susceptible BALB/c
440 whereas KEGG pathways relating to innate immunity (platelet activation, chemokine
441 signalling, antigen presentation, efferocytosis, natural killer cell mediated cytotoxicity
442 and NOD-like receptor signalling) were upregulated in trypanotolerant C57BL/6 mice.
443 Thus, whereas pathways regulating cell-mediated adaptive immunity were associated
444 with susceptibility in BALB/c mice, pathways involving pathogen recognition, innate
445 immunity and anti-inflammatory responses were associated with reduced organ
446 pathology/and or improved tissue recovery in the tolerant C57BL/6. Consistent with
447 the clinicopathology, the transcriptomic profiles of BALB/c and C57BL/6 mice by late
448 infection (21 dpi), differ dramatically reflecting the worsening tubular necrosis in
449 BALB/c mice but reparative tubular regeneration and lower parasite density in
450 C57BL/6 mice.

451

452 **Cellular composition of the infected kidneys**

453 To characterise the cellular compositions of the immune microenvironment of the
454 kidneys, we performed *in silico* deconvolution of inflammatory cells population using
455 the seq-ImmunoCC pipeline (Chen *et al.* 2017). Our *in silico* deconvolution revealed stark
456 strain differences. While cells of the mononuclear phagocyte system constituted at
457 least 75% of immune cells and this proportion persisted throughout the course of
458 infection in the susceptible BALB/c mice (**Figure 6A**), these cells accounted for only
459 50% in the tolerant C57BL/6. More intriguing is the finding of a massive expansion of
460 CD8+ T cells early in the infection and the return to similar proportions as the naïve
461 during late infection timepoint in C57BL/6 (**Figure 6B**). This suggests that CD8+ T
462 cells might be important in parasite clearance in the tolerant C57BL/6 strain which is
463 consistent with our observation of fewer parasites in the kidneys of these mice. Taken
464 together, it would suggest that while a pro-inflammatory and cytotoxic response is

465 required to clear parasites initially, milder tissue pathology is linked to effective
466 clearance of parasites as well as timed control of the pro-inflammatory response.

467

468 **Serum creatinine is elevated in HAT cases**

469 To confirm if the clinicopathologic features of murine TIKI was also observed in
470 humans, we measured serum creatinine levels in trypanosome-infected individuals
471 from the Democratic Republic of Congo. These serum samples, archived in the
472 TrypanoGEN Biobank (Ilboudo *et al.* 2017), were from individuals who had active
473 infections of *T.b. gambiense* as well as uninfected controls. We found that HAT cases
474 had significantly elevated levels of serum creatinine compared to uninfected
475 individuals (**Figure 7**). This finding indicates that similar mechanisms and renal
476 responses might be at play in HAT as well as AAT, thus HAT cases carry the potential
477 risk of developing TIKI, if not monitored.

478

479 **Discussion**

480 In this work, we sought to characterise the histopathological and transcriptional
481 responses of the kidney to *T. brucei* infection. We utilised well-defined murine models
482 of trypanosusceptibility (BALB/c mice) and trypanotolerance (C57BL/6 mice) and
483 evaluated the renal-specific host responses during the acute (7 dpi) and late (21 dpi)
484 stages of infection. We demonstrate African trypanosomes in the renal interstitium,
485 provide morphologic, and molecular evidence of acute tubular injury in a temporal-
486 and strain-dependent manner, and identify strain-specific immune pathways
487 upregulated throughout infection that likely mediate the differential renal pathology and
488 host susceptibility. In addition, we found clinical evidence of significant elevation of
489 serum creatinine in HAT patients and *T. brucei*-infected mice, thus showing TIKI as a
490 model of AKI. Compared to other previously reported models of AKI, we demonstrated
491 the similarities in the molecular responses that characterise TIKI.

492

493 The molecular basis of AKI appears to be the end-result of a conserved renal response
494 to a variety of noxious stimuli. Previously described mouse models of AKI include
495 ischaemia-reperfusion injury (transient clamping of renal artery), toxic injury (cisplatin),
496 pigment nephropathy (following rhabdomyolysis or haemolysis), sepsis (caecal
497 ligation and puncture) and obstructive injury (unilateral ureteral obstruction). Hultström
498 *et al.* (2018) using an informatic approach, demonstrated that the transcriptomic
499 signatures common to four different models of AKI included cell death, tissue
500 remodelling, hypoxia, oxidative stress, and inflammation. In agreement with that
501 report, we reported upregulation of genes related to cell injury and death (*Lcn2*, *Bcl3*,
502 *Casp12*), hypoxia (*Car9*), tissue remodelling/extracellular matrix reorganisation
503 (*Timp1*, *Plaur*, *Itgb2*, *Mmp14*) and interferon-driven inflammation (*Irf1*, *Ccl19*, *Cxcl10*)
504 in both mouse strains. *T.b. brucei* infection induces anaemia (seen with
505 ischaemic/hypoxic model), intravascular and extravascular haemolysis (pigment
506 nephropathy model) as well as profound inflammation (sepsis-like model). This

507 scenario more closely resembles what happens in humans in high-risk hospital
508 settings: multifactorial concurrent renal insults.

509
510 Inflammation and the immune response contribute to both the elimination of the
511 parasite as well as tissue pathology in host. Consistent with previous reports
512 (Machado *et al.* 2021; Leigh *et al.* 2015), we report a lymphocytic inflammatory and
513 immune response in the kidneys of both mice strains as early as 7 dpi. The strain-
514 dependent differential morphologic features at the late time point of infection appears
515 to be the result of a combination of the type of temporal immune responses, balance
516 between pro-inflammatory and anti-inflammatory processes as well as an effective
517 pro-survival transcriptional response to deleterious environmental cues. Our *in silico*
518 deconvolution analysis revealed the marked expansion of CD8+ cytotoxic
519 lymphocytes at early time point and a return to similar proportions as naïve by the late
520 time point only in tolerant C57BL/6 mice. Compared to the susceptible BALB/c, the
521 proportion of phagocytes were consistently elevated throughout infection. Maintaining
522 a balance between pro-inflammatory and anti-inflammatory processes contributes to
523 the differential severity of renal pathology. Notably, efferocytosis – a process which
524 quells inflammation by stimulating the production of anti-inflammatory cytokines while
525 simultaneously repressing proinflammatory cytokines (Doran *et al.* 2020), was
526 upregulated between the early and late time point of infection only in the tolerant
527 C57BL/6 mice. B cell expansion, which we report in both murine models, is a common
528 feature with trypanosome infection (Magez *et al.* 2008; Quintana *et al.* 2022). We found
529 that *Mcpip-1*, a critical negative regulator of inflammation which limits autoimmunity by
530 its effect on B-cell expansion (Dobosz *et al.* 2021), is upregulated throughout infection
531 only in tolerant C57BL/6 but not in susceptible BALB/c mice. Similarly, p21 (*Cdkn1a*)
532 which has been reported to play a protective role in models of AKI (Safirstein 2004)
533 was significantly upregulated only in C57BL/6 mice, coinciding with limited tissue
534 pathology. Taken together, a fine control of the inflammatory and immune responses
535 limits immunopathology.

536
537 Our models of relative resistance and susceptibility, recapitulate the well characterised
538 clinical features associated with *T. brucei* infection (Magez and Caljon 2011; Naessens
539 2006). Both mouse strains develop similar initial peaks of parasitaemia early in
540 infection. Whereas tolerant mice clear the initial and subsequent peaks of
541 parasitaemia to almost undetectable levels, susceptible mice do not. The severity of
542 renal pathology and associated inflammation mirrored this trend: initial tubular injury
543 in both mouse strains at the early time point, but recovery in tolerant mice and
544 worsening injury in susceptible mice at the late time point. However, clinical (serum
545 creatinine) and molecular (*Lcn2*) markers of AKI did not mirror the recovery in structure
546 seen by histology in the tolerant C57BL/6. We cannot rule out that the elevated serum
547 creatinine is not due in part to other pre-renal factors such as dehydration, although
548 clinical signs, for example loss of skin elasticity, were not observed during the infection.
549 It is likely that restoration of structure precedes the restoration of normal function in
550 the kidney.

551
552 Over the last decade, a link between immunity against HAT and the risk of developing
553 chronic kidney disease has been identified for carriers of recessive risk alleles in the
554 primate-specific apolipoprotein L1 (APOL1) gene (Genovese et al. 2010; Cooper et al.
555 2017). Studies that demonstrate this heightened risk of CKD have been elucidated
556 mostly in people outside of the tsetse-endemic, sub-Saharan parts of the continent
557 (Genovese et al. 2010; Tzur et al. 2010). Currently, HAT patients are not routinely
558 screened for markers of renal function. Our results show that HAT cases may be at
559 risk of azotaemia and thus AKI. Untreated AKI can itself predispose to CKD (Liu et al.
560 2017). Our murine model of TIKI presented here demonstrates the effects of
561 trypanosomes on kidneys in the absence of APOL1 and represent a tool to understand
562 the effect of African trypanosomes on the host's renal function especially in long-term
563 infections. The contribution of HAT to the development of AKI and subsequently CKD
564 in at-risk populations remains undetermined.
565

566 **References**

567
568 Alfituri, O. A., J. F. Quintana, A. MacLeod, P. Garside, R. A. Benson, J. M. Brewer, N.
569 A. Mabbott, L. J. Morrison, and P. Capewell. 2020. 'To the Skin and Beyond:
570 The Immune Response to African Trypanosomes as They Enter and Exit the
571 Vertebrate Host', *Front Immunol*, 11: 1250.
572 Amole, B. O., A. B. Clarkson, Jr., and H. L. Shear. 1982. 'Pathogenesis of anemia in
573 Trypanosoma brucei-infected mice', *Infect Immun*, 36: 1060-1068.
574 Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,
575 K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A.
576 Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin,
577 and G. Sherlock. 2000. 'Gene ontology: tool for the unification of biology. The
578 Gene Ontology Consortium', *Nat Genet*, 25: 25-29.
579 Brun, R., and J. Blum. 2012. 'Human African trypanosomiasis', *Infect Dis Clin North
580 Am*, 26: 261-273.
581 Camara, Mariame, Alseny M'mah Soumah, Hamidou Ilbouldo, Christelle Travallé,
582 Caroline Clucas, Anneli Cooper, Nono-Raymond Kuispond Swar, et al. 2020.
583 "Extravascular Dermal Trypanosomes in Suspected and Confirmed Cases of
584 Gambiense Human African Trypanosomiasis." *Clinical Infectious Diseases*,
585 ciaa897-. doi:10.1093/cid/ciaa897.
586 Capewell, P., C. Cren-Travallé, F. Marchesi, P. Johnston, C. Clucas, R. A. Benson, T.
587 A. Gorman, E. Calvo-Alvarez, A. Crouzols, G. Jouvin, V. Jamonneau, W. Weir,
588 M. L. Stevenson, K. O'Neill, A. Cooper, N. K. Swar, B. Bucheton, D. M. Ngoyi,
589 P. Garside, B. Rotureau, and A. MacLeod. 2016. 'The skin is a significant but
590 overlooked anatomical reservoir for vector-borne African trypanosomes', *Elife*,
591 5.

592 Carvalho, T., S. Trindade, S. Pimenta, A. B. Santos, F. Rijo-Ferreira, and L. M.
593 Figueiredo. 2018. 'Trypanosoma brucei triggers a marked immune response in
594 male reproductive organs', *PLoS Negl Trop Dis*, 12: e0006690.

595 Chen, Z., A. Huang, J. Sun, T. Jiang, F. X. Qin, and A. Wu. 2017. 'Inference of immune
596 cell composition on the expression profiles of mouse tissue', *Sci Rep*, 7: 40508.

597 Chi, J. T., Z. Wang, D. S. Nuyten, E. H. Rodriguez, M. E. Schaner, A. Salim, Y. Wang,
598 G. B. Kristensen, A. Helland, A. L. Børresen-Dale, A. Giaccia, M. T. Longaker,
599 T. Hastie, G. P. Yang, M. J. van de Vijver, and P. O. Brown. 2006. 'Gene
600 expression programs in response to hypoxia: cell type specificity and prognostic
601 significance in human cancers', *PLoS Med*, 3: e47.

602 Cooper, Anneli, Hamidou Ilboudo, V Pius Alibu, Sophie Ravel, John Enyaru, William
603 Weir, Harry Noyes, et al. 2017. "APOL1 Renal Risk Variants Have Contrasting
604 Resistance and Susceptibility Associations with African Trypanosomiasis." *ELife* 6 (May): 56. doi:10.7554/elife.25461.

605 Crilly, N. P., and M. R. Mugnier. 2021. 'Thinking outside the blood: Perspectives on
606 tissue-resident Trypanosoma brucei', *PLoS Pathog*, 17: e1009866.

607 De Niz, Mariana, Daniela Brás, Marie Ouarné, Mafalda Pedro, Ana M. Nascimento,
608 Lenka Henao Misikova, Claudio A. Franco, and Luisa M. Figueiredo. 2021.
609 'Organotypic endothelial adhesion molecules are key for Trypanosoma brucei
610 tropism and virulence', *Cell Reports*, 36: 109741.

611 Della Rocca, Y., L. Fonticoli, T. S. Rajan, O. Trubiani, S. Caputi, F. Diomedè, J.
612 Pizzicannella, and G. D. Marconi. 2022. 'Hypoxia: molecular pathophysiological
613 mechanisms in human diseases', *J Physiol Biochem*, 78: 739-752.

614 Dobosz, E., G. Lorenz, A. Ribeiro, V. Würf, M. Wadowska, J. Kotlinowski, C.
615 Schmaderer, J. Potempa, M. Fu, J. Koziel, and M. Lech. 2021. 'Murine myeloid
616 cell MCPIP1 suppresses autoimmunity by regulating B-cell expansion and
617 differentiation', *Dis Model Mech*, 14.

618 Doran, Amanda C., Arif Yurdagul, and Ira Tabas. 2020. 'Efferocytosis in health and
619 disease', *Nature Reviews Immunology*, 20: 254-267.

620 Evans, R. G., D. W. Smith, C. J. Lee, J. P. Ngo, and B. S. Gardiner. 2020. 'What Makes
621 the Kidney Susceptible to Hypoxia?', *Anat Rec (Hoboken)*, 303: 2544-2552.

622 Gaut, J. P., and H. Liapis. 2021. 'Acute kidney injury pathology and pathophysiology:
623 a retrospective review', *Clin Kidney J*, 14: 526-536.

624 Genovese, G., D. J. Friedman, M. D. Ross, L. Lecordier, P. Uzureau, B. I. Freedman,
625 D. W. Bowden, C. D. Langefeld, T. K. Oleksyk, A. L. Uscinski Knob, A. J.
626 Bernhardy, P. J. Hicks, G. W. Nelson, B. Vanhollebeke, C. A. Winkler, J. B.
627 Kopp, E. Pays, and M. R. Pollak. 2010. 'Association of trypanolytic ApoL1
628 variants with kidney disease in African Americans', *Science*, 329: 841-845.

629 Gravina, G., M. Ardalan, T. Chumak, A. K. Nilsson, J. C. Ek, H. Danielsson, P. Svedin,
630 M. Pekny, M. Pekna, K. Sävman, A. Hellström, and C. Mallard. 2023.
631 'Proteomics identifies lipocalin-2 in neonatal inflammation associated with
632 cerebrovascular alteration in mice and preterm infants', *iScience*, 26: 107217.

633 Herbert, W. J., and W. H. Lumsden. 1976. 'Trypanosoma brucei: a rapid "matching"
634 method for estimating the host's parasitemia', *Exp Parasitol*, 40: 427-431.

636 Hultström, M., M. Becirovic-Agic, and S. Jönsson. 2018. 'Comparison of acute kidney
637 injury of different etiology reveals in-common mechanisms of tissue damage',
638 *Physiol Genomics*, 50: 127-141.

639 Ilboudo, H., H. Noyes, J. Mulindwa, M. P. Kimuda, M. Koffi, J. W. Kaboré, B. Ahouty,
640 D. M. Ngoyi, O. Fataki, G. Simo, E. Ofon, J. Enyaru, J. Chisi, K. Kamoto, M.
641 Simuunza, V. P. Alibu, V. Lejon, V. Jamonneau, A. Macleod, M. Camara, B.
642 Bucheton, C. Hertz-Fowler, I. Sidibe, and E. Matovu. 2017. 'Introducing the
643 TrypanoGEN biobank: A valuable resource for the elimination of human African
644 trypanosomiasis', *PLoS Negl Trop Dis*, 11: e0005438.

645 Kennedy, P. G. 2013. 'Clinical features, diagnosis, and treatment of human African
646 trypanosomiasis (sleeping sickness)', *Lancet Neurol*, 12: 186-194.

647 Kim, D., B. Langmead, and S. L. Salzberg. 2015. 'HISAT: a fast spliced aligner with
648 low memory requirements', *Nat Methods*, 12: 357-360.

649 Langmead, B., and S. L. Salzberg. 2012. 'Fast gapped-read alignment with Bowtie 2',
650 *Nat Methods*, 9: 357-359.

651 Laperchia, C., M. Palomba, P. F. Seke Etet, J. Rodgers, B. Bradley, P. Montague, G.
652 Grassi-Zucconi, P. G. Kennedy, and M. Bentivoglio. 2016. 'Trypanosoma brucei
653 Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental
654 Sleeping Sickness: Timing and Correlation with Functional Changes', *PLoS
655 Negl Trop Dis*, 10: e0005242.

656 Le Ray, D., J. D. Barry, C. Easton, and K. Vickerman. 1977. 'First tsetse fly
657 transmission of the "AnTat" serodeme of Trypanosoma brucei', *Ann Soc Belg
658 Med Trop*, 57: 369-381.

659 Lee, J. W., C. L. Chou, and M. A. Knepper. 2015. 'Deep Sequencing in Microdissected
660 Renal Tubules Identifies Nephron Segment-Specific Transcriptomes', *J Am Soc
661 Nephrol*, 26: 2669-2677.

662 Leigh, Olufisayo, Benjamin Emikpe, and J. O. Ogunsola. 2015. 'Histopathological
663 changes in some reproductive and endocrine organs of Trypanosoma brucei
664 infected West African dwarf goat does', *BULGARIAN JOURNAL OF
665 VETERINARY MEDICINE*, 18: 31-39.

666 Li, B., and C. N. Dewey. 2011. 'RSEM: accurate transcript quantification from RNA-
667 Seq data with or without a reference genome', *BMC Bioinformatics*, 12: 323.

668 Liu, J., S. Kumar, E. Dolzhenko, G. F. Alvarado, J. Guo, C. Lu, Y. Chen, M. Li, M. C.
669 Dessim, R. K. Parvez, P. E. Cippà, A. M. Krautzberger, G. Saribekyan, A. D.
670 Smith, and A. P. McMahon. 2017. 'Molecular characterization of the transition
671 from acute to chronic kidney injury following ischemia/reperfusion', *JCI Insight*,
672 2.

673 Love, M. I., W. Huber, and S. Anders. 2014. 'Moderated estimation of fold change and
674 dispersion for RNA-seq data with DESeq2', *Genome Biol*, 15: 550.

675 Mabille, D., L. Dirkx, S. Thys, M. Vermeersch, D. Montenye, M. Govaerts, S.
676 Hendrickx, P. Takac, J. Van Weyenbergh, I. Pintelon, P. Delputte, L. Maes, D.
677 Perez-Morga, J. P. Timmermans, and G. Caljon. 2022. 'Impact of pulmonary
678 African trypanosomes on the immunology and function of the lung', *Nat
679 Commun*, 13: 7083.

680 Machado, H., T. Bizarra-Rebelo, M. Costa-Sequeira, S. Trindade, T. Carvalho, F. Rijo-
681 Ferreira, B. Rentoia-Pacheco, K. Serre, and L. M. Figueiredo. 2021.
682 'Trypanosoma brucei triggers a broad immune response in the adipose tissue',
683 *PLoS Pathog*, 17: e1009933.

684 Magez, S., and G. Caljon. 2011. 'Mouse models for pathogenic African trypanosomes:
685 unravelling the immunology of host–parasite–vector interactions', *Parasite
686 Immunology*, 33: 423-429.

687 Magez, S., A. Schwegmann, R. Atkinson, F. Claes, M. Drennan, P. De Baetselier, and
688 F. Brombacher. 2008. 'The role of B-cells and IgM antibodies in parasitemia,
689 anemia, and VSG switching in Trypanosoma brucei-infected mice', *PLoS
690 Pathog*, 4: e1000122.

691 Magez, Stefan, Carine Truyens, Makram Merimi, Magdalena Radwanska, Benoît
692 Stijlemans, Peter Brouckaert, Frank Brombacher, Etienne Pays, and Patrick De
693 Baetselier. 2004. 'P75 Tumor Necrosis Factor–Receptor Shedding Occurs as a
694 Protective Host Response during African Trypanosomiasis', *The Journal of
695 Infectious Diseases*, 189: 527-539.

696 Moore, E., and R. Bellomo. 2011. 'Erythropoietin (EPO) in acute kidney injury', *Ann
697 Intensive Care*, 1: 3.

698 Naessens, J. 2006. 'Bovine trypanotolerance: A natural ability to prevent severe
699 anaemia and haemophagocytic syndrome?', *Int J Parasitol*, 36: 521-528.

700 Noyes, H. A., M. H. Alimohammadian, M. Agaba, A. Brass, H. Fuchs, V. Gailus-Durner,
701 H. Hulme, F. Iraqi, S. Kemp, B. Rathkolb, E. Wolf, M. H. de Angelis, D.
702 Roshandel, and J. Naessens. 2009. 'Mechanisms controlling anaemia in
703 Trypanosoma congolense infected mice', *PLoS One*, 4: e5170.

704 Park, J., R. Shrestha, C. Qiu, A. Kondo, S. Huang, M. Werth, M. Li, J. Barasch, and K.
705 Suszták. 2018. 'Single-cell transcriptomics of the mouse kidney reveals
706 potential cellular targets of kidney disease', *Science*, 360: 758-763.

707 Quintana, J. F., P. Chandrasegaran, M. C. Sinton, E. M. Briggs, T. D. Otto, R. Heslop,
708 C. Bentley-Abbot, C. Loney, L. de Lecea, N. A. Mabbott, and A. MacLeod. 2022.
709 'Single cell and spatial transcriptomic analyses reveal microglia-plasma cell
710 crosstalk in the brain during Trypanosoma brucei infection', *Nat Commun*, 13:
711 5752.

712 Quintana, Juan F., Matthew C. Sinton, Praveena Chandrasegaran, Agatha Nabilla
713 Lestari, Rhianon Heslop, Bachar Cheaib, John Ogunsola, Dieudonne Mumba
714 Ngoyi, Nono-Raymond Kuispond Swar, Anneli Cooper, Neil A. Mabbott, Seth B.
715 Coffelt, and Annette MacLeod. 2023. 'γδ T cells control murine skin
716 inflammation and subcutaneous adipose wasting during chronic Trypanosoma
717 brucei infection', *Nature Communications*, 14: 5279.

718 Raudvere, U., L. Kolberg, I. Kuzmin, T. Arak, P. Adler, H. Peterson, and J. Vilo. 2019.
719 'g:Profiler: a web server for functional enrichment analysis and conversions of
720 gene lists (2019 update)', *Nucleic Acids Res*, 47: W191-w198.

721 Safirstein, R. L. 2004. 'Acute renal failure: from renal physiology to the renal
722 transcriptome', *Kidney Int Suppl*: S62-66.

723 Schaub, J. A., M. A. Venkatachalam, and J. M. Weinberg. 2021. 'Proximal Tubular
724 Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD',
725 *Kidney360*, 2: 355-364.

726 Sinton, Matthew C., Praveena R. G. Chandrasegaran, Paul Capewell, Anneli Cooper,
727 Alex Girard, John Ogunsola, Georgia Perona-Wright, Dieudonné M Ngoyi,
728 Nono Kuispond, Bruno Bucheton, Mamadou Camara, Shingo Kajimura, Cécile
729 Bénézech, Neil A. Mabbott, Annette MacLeod, and Juan F. Quintana. 2023. 'IL-
730 17 signalling is critical for controlling subcutaneous adipose tissue dynamics
731 and parasite burden during chronic murine *Trypanosoma brucei* infection',
732 *Nature Communications*, 14: 7070.

733 Stijlemans, B., P. De Baetselier, S. Magez, J. A. Van Ginderachter, and C. De Trez.
734 2018. 'African Trypanosomiasis-Associated Anemia: The Contribution of the
735 Interplay between Parasites and the Mononuclear Phagocyte System', *Front
736 Immunol*, 9: 218.

737 Stijlemans, Benoît, Guy Caljon, Jan Van Den Abbeele, Jo A Van Ginderachter, Stefan
738 Magez, and Carl De Trez. 2016. 'Immune evasion strategies of *Trypanosoma
739 brucei* within the mammalian host: progression to pathogenicity', *Frontiers in
740 immunology*, 7: 233.

741 Trindade, S., F. Rijo-Ferreira, T. Carvalho, D. Pinto-Neves, F. Guegan, F. Aresta-
742 Branco, F. Bento, S. A. Young, A. Pinto, J. Van Den Abbeele, R. M. Ribeiro, S.
743 Dias, T. K. Smith, and L. M. Figueiredo. 2016. 'Trypanosoma brucei Parasites
744 Occupy and Functionally Adapt to the Adipose Tissue in Mice', *Cell Host
745 Microbe*, 19: 837-848.

746 Tzur, S., S. Rosset, R. Shemer, G. Yudkovsky, S. Selig, A. Tarekegn, E. Bekele, N.
747 Bradman, W. G. Wasser, D. M. Behar, and K. Skorecki. 2010. 'Missense
748 mutations in the APOL1 gene are highly associated with end stage kidney
749 disease risk previously attributed to the MYH9 gene', *Hum Genet*, 128: 345-
750 350.

751 van Velthuysen, M. L., and S. Florquin. 2000. 'Glomerulopathy associated with
752 parasitic infections', *Clin Microbiol Rev*, 13: 55-66, table of contents.

753 Vickerman, Keith. 1985. 'DEVELOPMENTAL CYCLES AND BIOLOGY OF
754 PATHOGENIC TRYPANOSOMES', *British Medical Bulletin*, 41: 105-114.

755 Watts, D., D. Gaete, D. Rodriguez, D. Hoogewijs, M. Rauner, S. Sormendi, and B.
756 Wielockx. 2020. 'Hypoxia Pathway Proteins are Master Regulators of
757 Erythropoiesis', *Int J Mol Sci*, 21.

758 Wickham, Hadley. 2016. *ggplot2: Elegant Graphics for Data Analysis* (Springer-Verlag
759 New York).

760 Zerbino, Daniel R, Premanand Achuthan, Wasiu Akanni, M Ridwan Amode, Daniel
761 Barrell, Jyothish Bhai, Konstantinos Billis, Carla Cummins, Astrid Gall, Carlos
762 García Girón, Laurent Gil, Leo Gordon, Leanne Haggerty, Erin Haskell, Thibaut
763 Hourlier, Osagie G Izuogu, Sophie H Janacek, Thomas Juettemann, Jimmy
764 Kiang To, Matthew R Laird, Ilias Lavidas, Zhicheng Liu, Jane E Loveland,
765 Thomas Maurel, William McLaren, Benjamin Moore, Jonathan Mudge, Daniel
766 N Murphy, Victoria Newman, Michael Nuhn, Denye Ogeh, Chuang Kee Ong,

767 Anne Parker, Mateus Patrício, Harpreet Singh Riat, Helen Schuilenburg, Dan
768 Sheppard, Helen Sparrow, Kieron Taylor, Anja Thormann, Alessandro Vullo,
769 Brandon Walts, Amonida Zadissa, Adam Frankish, Sarah E Hunt, Myrto
770 Kostadima, Nicholas Langridge, Fergal J Martin, Matthieu Muffato, Emily Perry,
771 Magali Ruffier, Dan M Staines, Stephen J Trevanion, Bronwen L Aken, Fiona
772 Cunningham, Andrew Yates, and Paul Flicek. 2017. 'Ensembl 2018', *Nucleic
773 Acids Research*, 46: D754-D761.

774

775 **Figure Legends**

776 **Figure 1. Susceptible BALB/c and tolerant C57BL/6 mouse models of**
777 ***Trypanosoma brucei* infection**

778 **A)** Experimental design and workflow. Susceptible BALB/c and tolerant C57BL/6 mice
779 were infected with *Trypanosoma brucei* and monitored till day 21 post infection.
780 Kidneys were extracted at early (7 dpi) and late (21 dpi) time points for histopathology
781 and bulk transcriptomics. Differentially expressed genes within several comparisons
782 were either compared with pre-published gene lists or analysed for functional pathway
783 enrichment using the KEGG database. **B)** Parasitaemia. *Trypanosoma brucei*-infected
784 tolerant (C57BL/6) and susceptible (BALB/c) mice show comparable first peak of
785 parasitaemia but control parasitaemia differently during infection. **C)** Serum creatinine
786 levels of susceptible BALB/c and tolerant C57BL/6 naïve mice compared to *T. brucei*
787 infected mice (both early and late timepoints). * $p < 0.05$. **D)** Parasite burden in the
788 kidney. Estimation of *Trypanosoma brucei* DNA in the kidneys of tolerant (C57BL/6)
789 and susceptible (BALB/c) mice using the parasite Pfr2 gene as proxy.

790

791 **Figure 2. *Trypanosoma brucei* colonise the renal interstitium and elicits acute**
792 **tubular injury in a temporal and strain-dependent manner.**

793 Kidney histopathology of trypanosusceptible BALB/c and trypanotolerant C57BL/6
794 mice with H&E (A) and PAS (B) staining. Bar: 20 μ m. A) Intact tubules are present in
795 naïve mice. There are multiple foci of vacuolar degeneration (yellow arrowheads) and
796 simplification of epithelial cells of the proximal tubules (black arrow) during early stage
797 infection (7 dpi). In addition, there are foci of acute tubular necrosis (broken outlines)
798 in susceptible BALB/c which becomes progressively severe in the late time point (21
799 dpi) but attenuated in the tolerant C57BL/6. B) Tubular injury is evidenced by loss of
800 PAS-positive brush border (red arrowheads). A focus of acute tubular necrosis (broken
801 outline) is present in BALB/c mice at 7 dpi and there is proliferation of the mesangial
802 cells within the glomeruli (black arrow) at both early and late timepoints that is absent
803 in the tolerant C57BL/6 strain. C) Localisation of *Trypanosoma brucei* in the kidney of
804 both susceptible (BALB/c) and tolerant (C57BL/6) mice (black arrowheads). Anti-
805 trypanosome BIP antibody demonstrates that African trypanosomes are absent in
806 naïve BALB/c and C57BL/6, but localise to the renal interstitium and outer medulla of
807 both the susceptible (BALB/c) and tolerant (C57BL/6) mice as early as 7 dpi and
808 remain at 21 dpi.

809

810

811

812 **Figure 3. Differentially expressed genes from the kidneys during experimental**
813 *T. brucei* in susceptible BALB/c and tolerant C57BL/6 strains of mice

814 Principal component analysis plot (A) based on the top 1,000 most expressed genes.
815 Mouse strain and infection status explain over 90% of variance between the groups.
816 Differentially expressed genes in naïve versus early, naïve versus late, and early
817 versus late comparison in BALB/c (B) and C57BL/6 (C) mice. Venn diagram shows
818 the intersections and unique numbers of dysregulated genes (Log2FoldChange < -1
819 or >1, adjusted p < 0.05).

820

821 **Figure 4. Volcano plots of differentially expressed genes in the kidneys during**
822 murine trypanosomiasis.

823 Volcano plots of dysregulated genes indicated by upregulated (LFC >1 (red)) ,
824 downregulated (LFC < -1 (blue)) or not differentially expressed (LFC <1,>-1 (grey))
825 genes for each timepoint comparison in each strain.

826

827 **Figure 5. Transcriptome demonstrates broad immune and inflammatory**
828 response in the kidneys in a mouse strain-dependent manner.

829 A) Enriched KEGG pathways across both susceptible BALB/c and tolerant C57BL/6
830 mice at either early (7 dpi) or late (21 dpi) timepoints in *Trypanosoma brucei* infection
831 relative to naïve controls. B) Changes in Enriched KEGG pathways in the kidneys
832 between early (7dpi) and late (21 dpi) time points in susceptible BALB/c and tolerant
833 C57BL/6 mice infected with *T. brucei*. Size is number of genes and intensity is
834 significance.

835

836 **Figure 6. In silico deconvolution of immune cells proportions in the kidney.**

837 Proportions of immune cells are shown for each sample, for each timepoint, in each
838 mouse strain for naïve and *T. brucei*-infected susceptible BALB/c (A) and tolerant
839 C57BL/6 (B) mice.

840

841 **Figure 7. HAT cases from DRC show elevated plasma creatinine levels relative**
842 to endemic control individuals. Plasma creatinine levels were measured in humans
843 infected with *T.b. gambiense* and uninfected individuals from HAT endemic foci in
844 DRC. **** p < 0.0001.

845

846

847 **Tables**

848

849 **Table 1.** Composite histopathologic score of mouse kidney. Ascending severity (scale
850 of 0 - 9) of the kidney lesions during experimental *T.b. brucei* infection of relatively
851 susceptible BALB/c and tolerant C57BL/6 mice.

852

Infection Status	BALB/c Median (n)	C57BL/6 Median (n)
Naïve	0 (3)	0 (3)
Early [7 dpi]	4 (3)	5 (4)
Late [21 dpi]*	6 (3)	2 (3)

853 * Composite lesion severity score is significantly higher in BALB/c than C57BL/6 at
854 this time point

855

856 **Table 2.** Tubule-specific expression of transcriptomic signature of *T. brucei*-induced
857 hypoxic AKI at the early time of infection (7dpi)

858

Category	Genes*	BALB/c	C57BL/6
Tubular injury	<i>Lcn2</i>	2.3	3.2
Proximal tubules expression	<i>Ass1</i>	-1.2	-1.2
	<i>Dio1</i>	-2.0	-1.9
	<i>Nat8</i>	-1.2	-1.0
	<i>Xpnpep2</i>	-1.3	-2.0
Solute/ion transporters	<i>Slc10a1</i>	-2.7	-4.7
	<i>Slc22a28</i>	-2.5	-2.2
	<i>Slc11a1</i>	2.3	2.5
Glucose metabolism	<i>Pdha1</i>	-0.7	-0.5
	<i>Pfkp</i>	1.1	1.1
	<i>Hk3</i>	5.1	4.0
Hypoxia	<i>Car9</i>	1.8	0.6

859 *Representative genes are significantly differentially expressed (adjusted $p < 0.05$)

860

861 **Table 3.** Common features of models of AKI with gene-specific expression at the early
862 time of infection (7dpi) relative to uninfected controls

863

Category	Genes*	Log2Fold Change (LFC)	
		BALB/c	C57BL/6
Cell death/Apoptosis	<i>Bcl3</i>	1.5	2.0
Inflammation	<i>C3</i>	1.5	1.3
	<i>Infg</i>	6.8	7.0
	<i>Irf1</i>	4.6	4.1
	<i>Icam1</i>	2.1	2.1
	<i>NfkB2</i>	0.9	1.2
Cell proliferation	<i>Ccnb2</i>	2.0	1.4
	<i>Cdk1</i>	1.9	1.7
Transcription factors	<i>Atf3</i>	ns	1.9
	<i>Ddit3</i>	0.7	1.5

	<i>Elf4</i> <i>Hif3a</i> <i>Irf7</i>	1.3 ns 4.3	1.3 2.3 4.4
Tissue remodelling	<i>Itgb2</i> <i>Timp1</i> <i>Tgfb1</i>	2.9 2.7 2.8	2.7 3.4 1.6

864 *Representative genes are significantly differentially expressed (adjusted $p < 0.05$)

865 ns: not differentially expressed

866

867 **Table 4.** Top downregulated Gene Ontology-biological processes (GO-BP) in the
868 kidney during experimental *T.b. brucei* infection of susceptible BALB/c and tolerant
869 C57BL/6 mice relate mostly to ion transport. Common GO-BP terms between the two
870 strains are highlighted in each comparison.

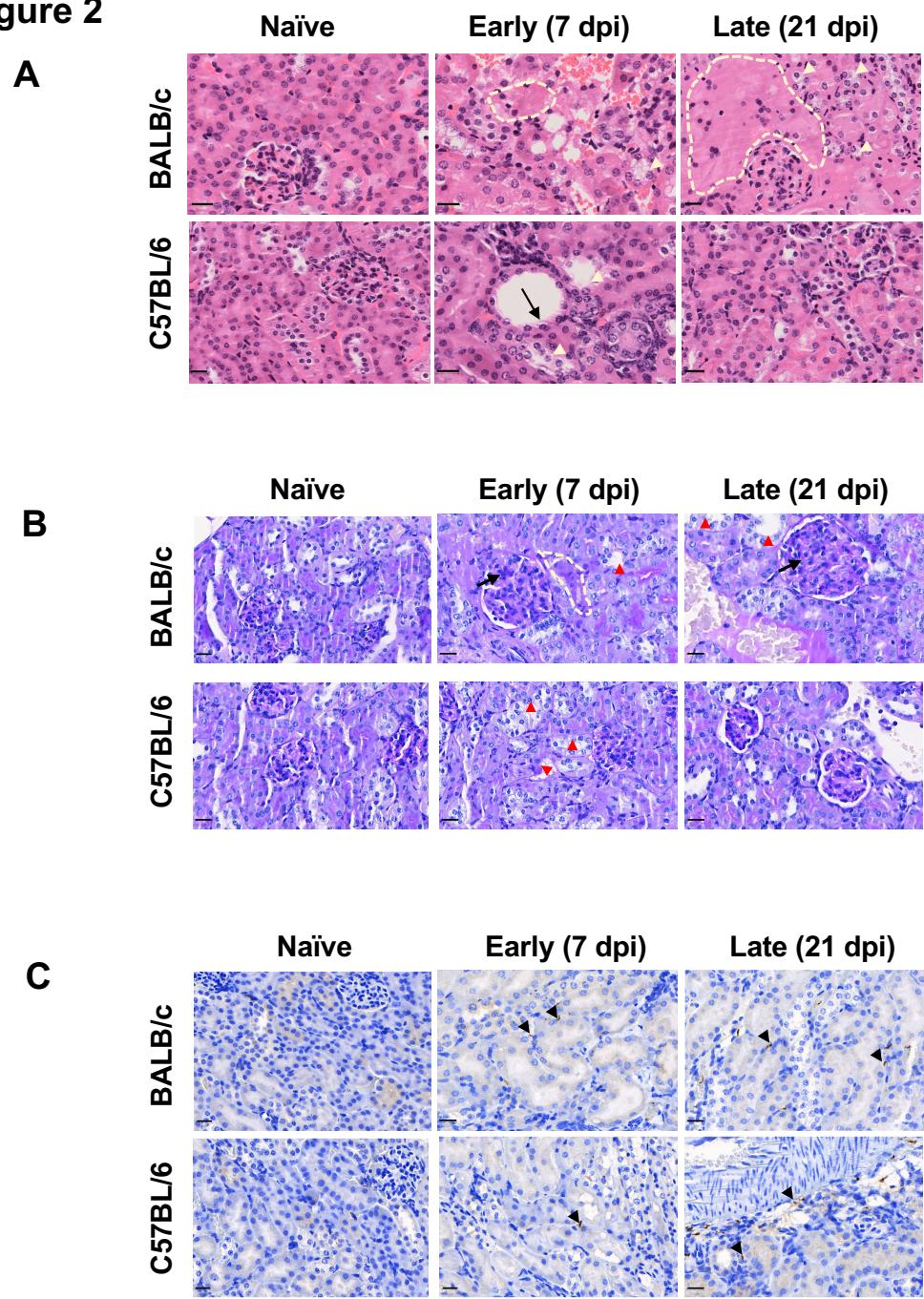
871

Comparison	BALB/c	Adj. p	C57BL/6	Adj. p
Naïve vs Early (7 dpi)	0042632: Cholesterol homeostasis	3.9E-06	0019752: Carboxylic acid metabolism	1.2E-02
	0043691: Reverse cholesterol transport	1.4E-05	0043436: Oxoacid metabolism	1.6E-02
	0036315: Response to sterol	6.2E-05	0006082: Organic acid metabolism	1.7E-02
	0120188: Bile acid secretion	1.6E-03	0015711: Organic anion transport	3.5E-02
	0010887: Cholesterol storage	1.0E-02		
Naïve vs Late (21 dpi)	0015711: Organic anion transport	3.7E-10	0015711: Organic anion transport	5.4E-28
	0007623: Circadian rhythm	1.4E-08	0006629: Lipid metabolism	9.7E-18
	0006629: Lipid metabolism	1.7E-08	0048513: Organ development	1.7E-12
	0042592: Homeostasis	7.5E-05	0030198: ECM organisation	5.9E-04
	0006811: Ion transport	2.6E-04	0042592: Homeostasis	2.6E-04

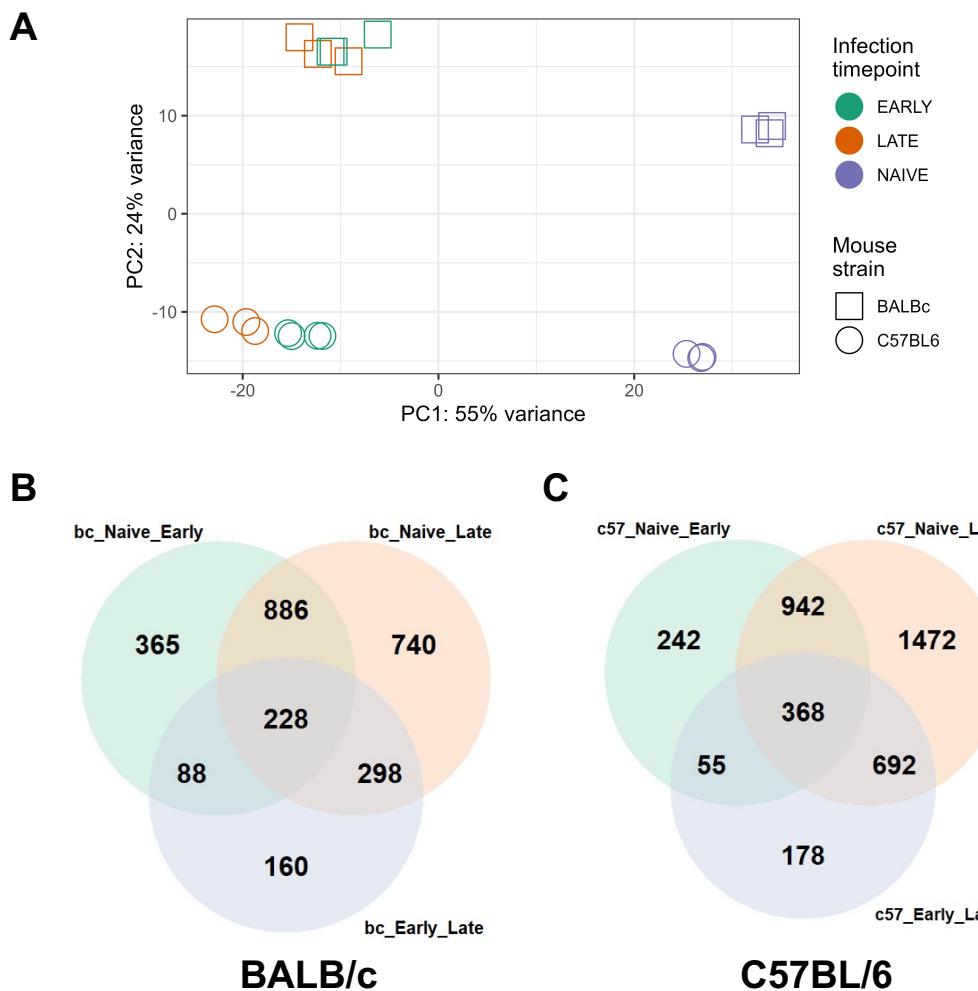
872

873 **Supplementary Tables Legend**

874 **Supplementary Table S1:** Read counts and percentage uniquely mapped from
875 kidney RNA sequencing analysis.


876

877 **Supplementary Table S2:** Read counts for genes with endogenous expression in
878 the proximal convoluted tubules (PCT).


Figure 1

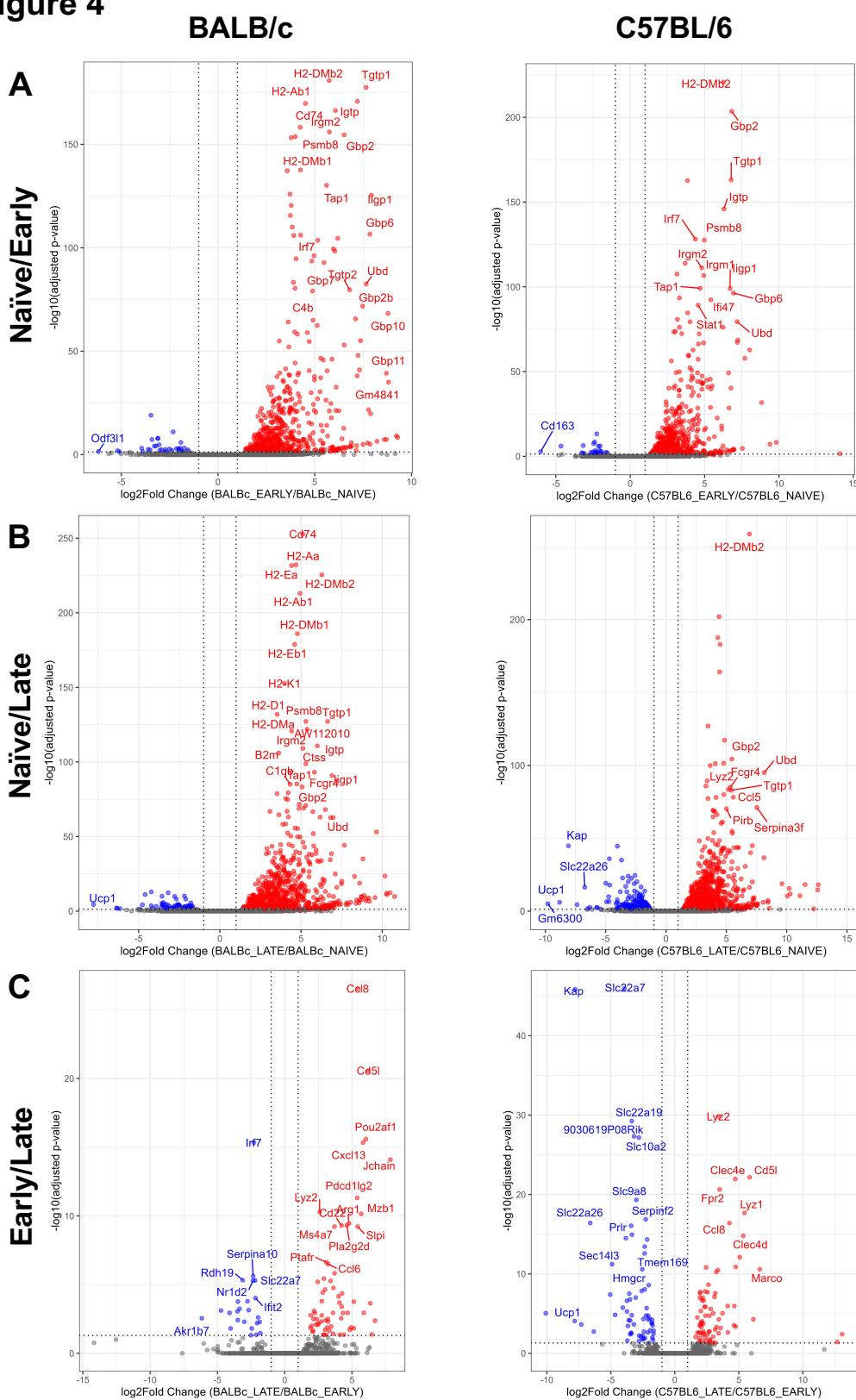

Figure 2

Figure 3

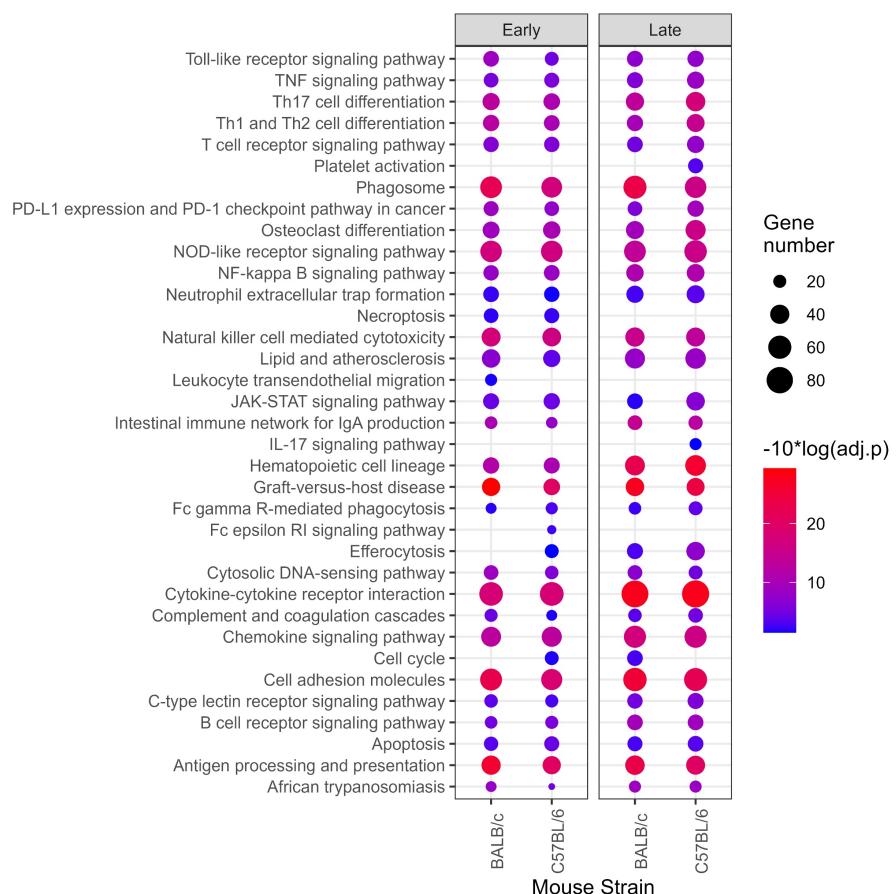


Figure 4

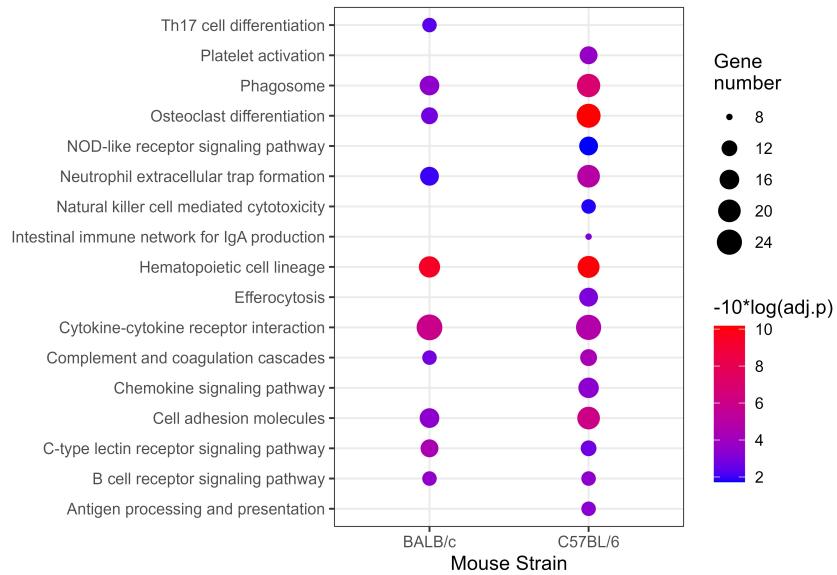
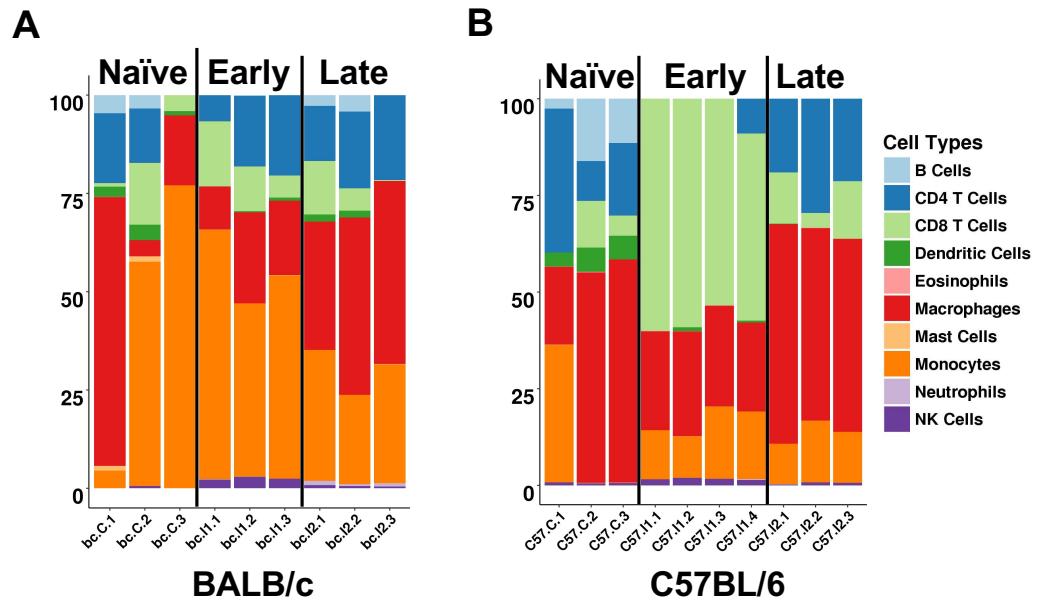


Figure 5


A

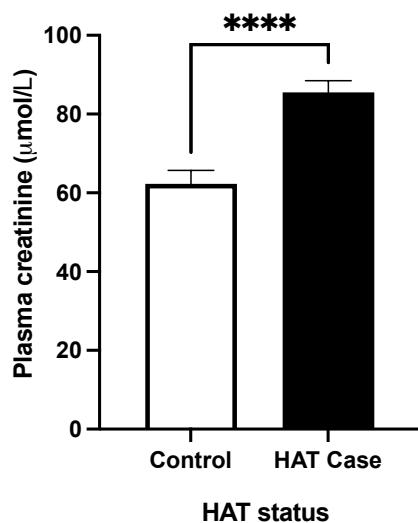

B

Figure 6

Figure 7

