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Abstract

One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous
studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially
in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterised across
human populations, and it is unclear how genetic and environmental variation contribute to alternative splicing. Here, we
examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline
that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of
functionally significant AS events and their consequences. Using a hierarchical event-based statistical model, we detected
over 1,000 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants
associated with changes in splicing (splicing quantitative trait loci; SQTLs), some of which are driven by Papuan-like
genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations.
Computational predictions of RNA binding activity revealed that a fraction of these sSQTLs directly modulate the binding
propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute towards

elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.

Introduction

Pre-mRNA splicing is a critical and highly regulated process through which multiple mRNA isoforms are produced
from a single gene through the excision of introns and ligation of exons |1]. While constitutive splicing yields identically

spliced mRNA isoforms, the process of alternative splicing (AS) produces isoforms that differ from each other based
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on their unique combinations of exons. AS is one of the regulatory mechanisms influencing the functional capacity of
genes, and the resulting alternatively spliced isoforms contribute significantly to the protein diversity and functional
complexity observed in eukaryotic organisms [2]. In humans, approximately 95% of multi-exon genes undergo AS [3.|4],
and aberrant AS has been implicated in over 15% of human hereditary diseases and cancers [5,/6]. AS has been found
to be highly specific, with isoform expression regularly restricted to certain tissues and cell-types [7H11], although the
degree to which alternative isoforms are functional remains unclear [12H14]. Nevertheless, isoform-level transcriptome
analyses have revealed that splicing can play significant roles in the cellular response to environmental cues, including
immune pressures [15-21]. In humans, this natural variation in alternative splicing has been highlighted as a phenomenon
influencing complex traits and disease prevalence [22].

Alternative splicing is tightly regulated through an intricate protein-RNA interaction network comprised of cis
regulatory elements and trans-acting factors [23]. Genetic polymorphisms can alter these splicing regulatory elements
and splice site usage, thereby influencing gene expression and protein products [24]. Splicing quantitative trait loci
(sQTL) analysis has become a leading method for elucidating these genotype-splicing associations. sQTL analyses across
multiple tissues have shed light on the contributions of AS to a number of traits, including breast cancer [25], Alzheimer’s
disease [26], and schizophrenia [27]. The GTEx Consortium has recently characterised sQTLs in over 50 human healthy
tissues [10], providing an overview of baseline healthy variation. Such studies are vital for advancing our understanding of
gene regulation and disease mechanisms. They provide a bridge between genetic variation and complex traits, contributing
to the development of innovative diagnostic tools and therapeutic interventions. The unprecedented scale and granularity
of these analyses is, however, frustrated by the fact that the majority of participants involved in these studies are of either
Furopean or undocumented ancestry. This lack of diversity limits our collective understanding of variation in mRNA
regulation and how these regulatory mechanisms might, in turn, contribute to human phenotypic diversity.

Multiple studies have sought to characterise the extent of variation across human populations in both splicing and the
genetic mechanisms that regulate it, with existing data suggesting that both genetic ancestry and environmental variation
make substantial contributions to these traits. In lymphoblastoid cell lines (LCLs) from 7 different global populations,
population differences in genetic ancestry explained 25% of differences between individuals in genes expressing at least
two transcripts [28], but expression differences, rather than splicing ones, accounted for the bulk of this effect. However,
LCLs are known to trend towards a homogeneous pattern of gene expression that blunts the effect of inter-individual
diversity [29], and thus this number may provide a lower-bound estimate of the true amount of variation. Indeed, the
majority of AS events across GTEx tissues have been recently attributed to differences in ancestry between individuals,
rather than to other demographic drivers such as age, sex or BMI [30].

The number of studies to map sQTLs is much more limited, and even more so when considering populations other
than urban, genetically European cohorts; additionally most studies have used LCLs instead of primary tissue (reviewed
in [31]). However, there are notable exceptions. A study of the response to infection in monocytes from individuals of
European and African descent living in Belgium showed that genetic ancestry consistently contributed to differences
in splicing, and highlighted the role of archaic introgression from Neanderthals [21] in particular. Recently, a separate
study examining both expression and splicing in whole blood in East African populations has shown that overall, the
genetic architecture of splicing is shared between individuals of African and European ancestry, but nonetheless identified
a substantial number of sQTLs in individuals from Tanzania and Ethiopia that have not been reported in European
cohorts [32].

Here, we focus on 115 previously described whole blood samples drawn from three traditional Indonesian populations
[33L[34] that span the genetic ancestry cline that makes up the region [35]. We explore the prevalence and functional

significance of alternative splicing variation across this region of the world, working towards deepening our understanding
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of the regulatory mechanisms that shape the landscape of immune gene regulation across the Indonesian archipelago. To
elucidate the genetic variants influencing these splicing events, we identified 6,405 cis-sQTLs (4,199 unique SNPs) affecting
2,423 genes, and investigate possible biological mechanisms driving these observations. We discuss the implications of
these gene regulatory patterns on a global scale, comparing our findings with those derived from European samples.
Finally, we characterize the landscape of alternative splicing events across our groups of interest and investigate the
functional consequences of the differential isoform usage between them. Thus, our work contributes to the growing catalog

of putative regulatory elements that shape and influence alternative splicing in human populations.

Materials and Methods

RN A-seq processing and read alignment

We used a published set of 115 (all male) matched DNA and RNA data from three distinct Indonesian populations [33],
available at (EGAS00001003671). The samples span the main west-east axis of genetic diversity in the Indonesian
archipelago [35,/36]: (i) the inhabitants of Mentawai (MTW, n = 48), a small barrier island in western Indonesia, are of
West Island Southeast Asian-like genetic ancestry; (ii) the Korowai (KOR, n = 19), from western New Guinea Island, are
of Papuan-like genetic ancestry; while (iii) the inhabitants of Sumba (SMB, n = 48), a small island east of the Wallace
line in central Indonesia, carry an approximately 80/20 admixture of either ancestry. Previous work has shown that the
Korowai individuals in the data carry approximately 2% of archaic Denisovan introgression [34]. Both data collection and
subsequent analyses were approved by the institutional review board at the Eijkman Institute (EIREC #90 and EIREC
#126) and by the University of Melbourne’s Human Ethics Sub-Committee (approval 1851639.1). All individuals gave
written informed consent for participation in the study. Permission to conduct research in Indonesia was granted by the
Indonesian Institute of Sciences and by the Ministry for Research, Technology and Higher Education (RISTEK).

Reads were assessed with FastQC (v.0.11.9) [37] and pre-processed with Trimmomatic v0.36 [38], removing leading
and trailing bases with a Phred score below 20 prior to any further analysis.

Differential alternative splicing analysis

For event-based quantification of local splicing variation, we employed SUPPA2 [39]. SUPPA2 generates the percent
spliced-in (PSI) values for each splicing event across all samples simultaneously using pseudoalignment-based transcript
quantification. First, standard local splicing variations were computed using the SUPPA2 generateEvents command,
applied to the reference annotation (GRCh38 Ensembl release 110). Then, the sample-wise PSI values for each event
were calculated using transcript abundances (TPMs) obtained from Salmon v1.9.0 [40]. These PSI values denote the
relative abundance of transcripts containing an exon (or intron, in RI cases) over the relative abundance of transcripts
for the gene of interest containing the exon/intron. PSI scores were computed for five well-defined classes of alternative
splicing events, namely, skipped exons (SE), retained introns (RI), mutually exclusive exons (MXE), alternative 5’ splice
sites (A5SS), and alternative 3’ splice sites (A3SS). To ensure high confidence event calling, events were restricted to
protein-coding and lincRNA genes, the percentage of exons with missing PSI values had to be below 5% per sample, and
average TPM within a population had to be > 1).

To identify differential alternative splicing between the three groups, we corrected PSI values for batch effects and
other technical confounders using fractional regression [41,{42]. Each splicing event was fit with logit-transformed PSI
values (glm function in the R stats package (R v4.3.3), setting family = quasibinomial(‘logit’)). We selected the following

covariates as the most relevant to incorporate into the model: RIN, sequencing batch, age of donor, and blood cell type
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proportions from previously computed [33] estimates of the proportion of CD8T, CD4T, NK, B cells, monocytes, and
granulocytes in each sample. Using these corrected PSI values, differentially spliced events were identified by computing
APSI values between each pair of sample groups . Only splicing events that were detected in all groups were retained for
differential testing (i.e., no NAs), as recommended in the SUPPA2 manual. Differential events were deemed statistically
significant if they had a |APSI| > 0.1 and FDR < 0.05.

In parallel, we conducted intron-based quantification of splicing variation (necessary for sQTL mapping) using
LeafCutter [43], which identifies intron excision events across samples. Intron clustering (representing alternative intron
excision events) was performed using default settings of 50 reads per cluster and a maximum intron length of 500kb. For
each intron cluster, the proportion of reads supporting a specific intron excision event was calculated. Intron excision
ratios were then standardized across individuals and quantile-normalized. LeafViz [43] was used for the annotation and

visualization of intron clusters and splicing events.

Comparative visualization of RN A-seq read alignments

We summarized exon- and junction-spanning RNA-seq densities for all sample groups using MISO’s [44] sashimi_plot tool.
Read densities for all exons were quantified using RPKM units [45]. Junction reads were plotted as arcs spanning the
exons that the junction borders. Isoform structure was obtained from the GFF annotation (GRCh38 Ensembl release 110)
of each splicing event. For ease of visualization, intron lengths were scaled down by factor of 30, and exon lengths were

scaled down by a factor of 4.

Isoform switching analyses

We identified instances of isoform switching by testing each individual isoform for differential usage across the three
populations. Changes in isoform usage for a gene are represented by the difference in isoform fraction values (dIF), where
IF = isoform expression/gene expression. Pseudoaligned transcript abundance and genomic coordinates were aggregated
with the R package IsoformSwitchAnalyzeR [46]. Prior to isoform switch testing, we filtered out completely unused
isoforms, single-isoform genes, as well as genes with an average TPM level (in each population) < 1. Confounding effects
(RIN, sequencing batch, age, and blood cell type proportions, as above) were accounted for by applying the limma [47]
removeBatchEffect function to the isoform abundance matrix. Statistical identification of isoform switches was conducted
via DEXseq using default settings [48]. Isoforms were considered differentially switched and retained for further analysis
if the difference in isoform fraction (dIF) > 0.1 and Benjamini-Hochberg-adjusted FDR < 0.05. We consider the first
population in the switch comparison as the ground state, and the second population as the changed stated. For example,
an up-regulated isoform in KOR versus MTW is one that is used more in MTW when compared to KOR. We then
translated the coding sequences of the switching isoforms into amino acids, and predicted their coding capabilities, protein
structure, peptide signaling, and presence of protein domain families using CPC2 [49], IUPred2A [50], SignalP [51], and
Pfam [52], respectively.

The functional consequences of each significant isoform switch were evaluated by analyzing the annotation differences
between the isoform(s) used more (switching up, dIF > 0) and the isoform(s) used less (switching down, dIF < 0). In
other words, if a gene has at least one isoform with a significant change in usage between the three populations, the
functional annotation of this isoform is compared to that of the isoform(s) with the compensatory change in usage. For
genes with multiple significant switching events, we compared the functional annotation of all pairwise combinations
of the isoforms involved. The following functional properties were compared: isoform coding potential, open reading

frame (ORF) sequence similarity, the presence or absence of protein domain families, the presence or absence of signal
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peptides, the presence of intrinsically disordered regions (IDRs; regions that lack a fixed or ordered structure), and
nonsense-mediated decay (NMD) sensitivity. For sequence similarity comparisons, we used the default minimum length
difference cut-off of 10 amino acids [46]. Changes in protein domain or IDR, length are only reported if the shorter protein
domain (or IDR) is < 50% of the length of the longer region.

cts-sQTL mapping

RNA-seq reads were aligned to GRCh38 Ensembl release 110 using the default settings of STAR (v.2.7) [53] with the
exception of -alignEndsType EndToEnd to remove soft-clipping of the reads and -sdjbOverhang 100 for optimal splice
junction overhang length. Mapped reads were used as input to LeafCutter [43] to obtain standardized and normalized
intron excision ratios (the number of reads defining an excised intron over the total number of intron cluster reads), which
were then used as phenotypes for sSQTL mapping. We used QTLTools [54] to test for an association between variants and
intron ratios within a cis-region of +£1Mb of the intron cluster, using 10,000 adaptive permutations. After observing that
the vast majority of our detected associations occurred within 250kb of the intron clusters, we restricted our analyses to
this 250kb window. We controlled latent sources of variation using covariates identified with the Probabilistic Estimation
of Expression Residuals (PEER) method [55]. The number of PEER factors was determined as a function of sample
size, with the first 29 PEER factors (25% of our sample size) selected. The top 5 genotyping principal components were
included to account for population structure, since they account for approximately 9% of the genotype variance observed,
with diminishing returns for all subsequent PCs. Nominal p-values for each variant-phenotype pair were obtained by
testing the alternative hypothesis that the slope of the linear regression model between genotype and excision ratios

deviates from 0.

Identifying shared cis-sQTLs and differences in effect sizes

We compared our Indonesian sQTLs to two European whole blood sQTL studies: GTEx v8 [10] (n = 670) and
BLUEPRINT [9] (n = 197) with freely available complete summary statistics. For both European studies, the sQTL
mapping approaches that were employed are in line with those used for our Indonesian data here, making comparisons
possible without extensive raw data reprocessing. Specifically, both studies applied a linear modeling approach, testing for
associations with variants within £1Mb of each gene’s transcription start site. For consistency, GTEX and BLUEPRINT
sQTL sets were restricted to 250kb, and coordinates for the BLUEPRINT data were converted from hgl9 to hg38 using
the R package liftOver v1.26.0 [56]. Shared and population-specific sQTLs across Indonesian and European populations
were assessed using the multivariate adaptive shrinkage (mash) approach implemented in the R package mashr [57]. The
input for mash consisted of sQTL effect sizes and their standard errors (obtained from the QTLTools output). The
correlation structure among the null tests was estimated using a large, random subset of all tests (40%). For each intron
cluster within each gene, the SNP with the smallest p-value across all tested SNPs was retained in order to produce a
confident set of sSQTLs. The data-driven covariance matrix was constructed using this strong set, and posterior mean
effect sizes were calculated by applying the mash model that was built using the random set. sQTLs were considered
shared across populations if the magnitude of effect sizes was within a factor of 0.5 between groups, and the sign of the

effect was the same. A local false sign rate (LFSR) < 0.05 was used as a threshold for significance.

Variance in sQTL genotype explained by local genetic ancestry

Using all significant permutation-based sQTLs, we quantified the variance in sQTL genotype explained by modern local

genetic ancestry (LA). To do this, we adapted a previously described approach [5§], fitting a linear model V. = o x PAP
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+ f for each variant. V is the genotype vector and PAP is a covariate which represents the number of alleles assigned to
Papuan-like genetic ancestry. This analysis was conducted using the 73 samples (30 Mentawai, 29 Sumba, 14 Korowai)
with available 30x depth whole-genome sequencing data [34]. Variants were categorized as highly correlated with LA if
they had an absolute R > 0.7.

Gene ontology overrepresentation analysis

We tested for overrepresentation of GO and KEGG terms using the R package clusterProfiler (v.4.0.5) [59], setting the
gene universe as all tested genes. We used an FDR threshold of 0.05 to identify significantly enriched terms. For GO term
representations across sGenes, we employed REVIGO [60] (parameters: allowed similarity = 0.9, database =H.sapiens,
semantic metric = SimRel) to remove highly redundant GO terms from clusterProfiler output and visualize semantic

similarity-based GO term representations.

Estimation of sQTL variant pathogenicity

We intersected our sQTL SNPs with clinically annotated variants in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar)
in order to assess their possible pathogenicity. We considered two sets of variants for analysis—lead SNPs located within

the gene body, and all sSQTL SNPs that were located directly within a splice junction.

Evaluating the impact of sequence variations on the binding affinity of splicing RNA

binding proteins

We used DeepCLIP to quantify the effects of SNPs on protein-RNA binding [61]. Specifically, we used DeepCLIPs
pre-trained models for 33 splicing-associated RNA binding proteins (RBPs). These RBPs were chosen because they
have been previously characterized in eCLIP (enhanced Cross-Linking and ImmunoPrecipitation) studies from HepG2
and K562 cell lines and have well-documented roles in splicing regulation and spliceosome activity [62,/63]. Using the
pre-trained models, we ran prediction in paired sequence mode using all significant sQTL SNPs, with 10 bp flanking
sequences on both sides. The output from DeepCLIP is a set of binding profiles and overall scores for the reference
and variant sequences. The binding profile scores range from 0 to 1, and indicate whether regions of a sequence contain

potential binding sites (1) or if they are most likely to be random genetic background (0) [61].

Colocalization analysis with GWAS hematological traits

Colocalization analyses were performed between sQTLs and 13 hematological traits using coloc v5.2.3 [64]. We tested for
colocalization between our detected permutation-based sQTLS and GWAS loci from a trans-ethnic study that included
East Asian populations [65]. We assumed a prior probability that a SNP is associated with i) the GWAS trait (p1, default
= 1x 107%), ii) alternative splicing (p2, default = 1 x 10~%), and iii) both the GWAS trait and alternative splicing (p12,
default = 1 x 107%). We identified robust colocalization with the default threshold of CCV > 0.8 and a ratio CCV/DCV >
5. The 13 hematological traits measured in the East Asian populations were: basophil count, eosinophil count, hematocrit,
hemoglobin concentration, lymphocyte count, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration,
mean corpuscular volume, monocyte count, myeloid white blood cell count, neutrophil count, platelet count, and RBC
density. All GWAS summary statistics were obtained from the GWAS catalog. Since we did not have access to linkage
disequilibrium values for the Indonesian samples and our sample size is too small to build a robust LD matrix [66], the

colocalization analyses performed here did not allow for the identification of multiple causal variants.
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Results

Characterizing differential alternative splicing events between Indonesian populations

To characterize the splicing landscape across the Indonesian archipelago, we carried out alternative splicing analyses using
paired-end RNA-seq data generated from 115 previously described male whole blood samples [33]. Samples were obtained
from three Indonesian populations: the people of Mentawai (of genetically West Island Southeast Asian-like ancestry), the
people of Sumba (approximately 80/20% admixed between West Island Southeast Asian-like and Papuan-like genetic
ancestries), and the Korowai of New Guinea Island (of Papuan-like genetic ancestry) (Figure [1]A).

Across the three populations, we observed 38,611 alternative splicing events in the Korowai, while the Mentawai and
Sumba groups had 39,728 and 39,769 alternative splicing events, respectively. This slight difference in total detected
events can be attributed to the smaller sample size of the Korowai group (n = 19). Our results show that the splicing
events across these three populations were generally shared. Specifically, 38,144 (94.2%) of all alternative splicing events
were seen in all three island groups, 1,337 events (3.3%) were shared between only two of three groups, and 1,002 events
(2.5%) were found in just one of the three groups (Figure [IB). We additionally observe that the Mentawai and Sumba
groups make up the majority of the pairwise AS event sharing (74.1% of all events shared by any two island groups,
Supplementary Figure —F), although this is likely attributable to our increased power in these two groups relative to the
Korowai. To gain further insight into the genes that contain these 1,002 population-specific alternative splicing patterns
(434 events in MTW, 447 events in SMB, and 121 events in KOR), we tested for their enrichment against GO and KEGG
pathways . Overlapping enriched GO categories and KEGG pathways for the Korowai population are related to
nervous system function, transmembrane transportation, and substance dependence. In Mentawai, significantly enriched
GO categories are generally related to regulation of synaptic signaling, however, no enriched KEGG pathways were
detected. For Sumba, enriched GO categories and KEGG pathways include renal system processes, hormone transport,
and calcium signaling.

To better understand the splicing variation across these populations, we conducted a differential alternative splicing
analysis. We identified 419 significant (|JAPSI| > 0.1 and FDR < 0.05) differential alternative splicing events between
Mentawai and Sumba, 515 events between Korowai and Mentawai, and 738 events between Korowai and Sumba (Figure
and D). These differences are in line with previously reported gene expression patterns across these groups, with
the Korowai vs. Sumba comparison yielding the most differentially expressed genes, closely followed by Korowai vs.
Mentawai [33]. These findings suggest that the Korowai population might be driving a lot of the observed inter-island
variability, with the Sumba and Mentawai populations exhibiting higher levels of shared homogeneity, although we
cannot confidently disambiguate whether these differences are caused by genetic or environmental factors. Differentially
alternatively spliced (DAS) genes between Korowai and Sumba are related to mRNA processing (e.g., SLTM, BARDI,
DYRKI1A, CDK11A, QKI, RNPS1), splicing regulation (e.g., RBM23, TRA2B, TMBIM6, MBNL1, HNRNPH1, RNPS1,
PTBP2), and cell cycle signaling (e.g., MRE11, BRIP1, DONSON, ZWILCH, CDC14B), indicating potential population-
based differences in post-transcriptional regulatory patterns . While DAS genes between Korowai and Mentawai
were not enriched for either GO or KEGG terms, we found that DAS genes between Mentawai and Sumba were enriched for
transcription corepressor (e.g., DPF2, ATF7IP, MTA1, HDACY, SF1) and coactivator (e.g., MED2/, KMT2C, SMARCA2,
MED12, ACTN1) activity . Overall, these findings indicate that the DAS genes between these populations are

predominantly impacting aspects of cell division and regulation of gene expression.
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Figure 1. Characterization of differential alternative splicing across Indonesian populations. A) Geographical
location of the three sampling sites (n = 115). B) Schematic diagram of the five alternative splicing events profiled with
SUPPA2. Horizontal bar plots correspond to the event categories to the left, and illustrate the sharing of alternative
splicing events across the three island groups (i.e., the splicing event either occurs in all three groups, in only two of
the three groups, or in only one group). The x-axis is logjg transformed. C) UpSet plots summarize the DAS gene
intersections for the three pairwise comparisons. Only significant events (JAPSI| > 0.1, FDR < 0.05) are shown. D) For
each population pair, the distributions of APSI values are plotted for each splicing category (A3SS, A5SS, MXE, RI, and
SE). The direction of the arrows indicate whether the alternatively spliced exon is excluded more or included more in
each sample (i.e. exon exclusion levels). In the case of an MXE event, if the strand is positive, then the inclusion form
includes the first exon and excludes the second; if the strand is negative, then the inclusion form includes the second exon
and skips the first.
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Characterisation of Indonesian cts-sQTLs in whole blood

To understand the genetic regulation of alternative splicing across our Indonesian populations, we performed a cis-sQTL

mapping analysis using all 115 samples. sQTLs were mapped using linear regression to quantify the association between

the intron excision ratios and SNP genotypes (Materials and Methods|). Splice ratios from a total of 49,122 splice clusters

(i.e., overlapping introns that share a spice donor or acceptor site) were included in the sQTL analysis. We detected a
total of 6,077 c¢is-sQTLs affecting 1,977 genes at an FDR level of 0.01, comprising 3,658 unique SNPs (Table S4| and [Table
IS5). Positional enrichment of significant sSQTL SNPs showed clustering closest to the detected splice junctions, with 75.2%

of SNPs occurring within 50kb of the nearest junction (Figure [2]A). This observation is consistent with previous research
suggesting that most variants that fall in close proximity to splice junctions influence splicing regulatory functions [67}/68]

GO enrichment analysis of sGenes (genes with a significant sQTL) revealed enrichment for numerous immune-related
pathways, including: immune response-regulating signaling (e.g., THEMIS2, ERMAP, GBP2, VAV3, FCRL3, AIM2,
FCGR34), immune response-activating signaling (e.g., DENND1B, MAPKAPK2, CR1, NLRC/, NAGK, IFIHI, PRKCD),
phagocytosis (e.g., VAVS, NCF2, C4BPA, DYSF, MARCO, CD302), regulation of innate immune response (e.g., GBP2,
ADAR, FCRLS, IFI16, AIM2, CFH), and interleukin-1 beta production (e.g., IFI116, AIM2, NLRC4, CASP8, GHRL,
CX3CR1), highlighting the impact of splicing on immune-related genes (Supplementary Figure [3] [Table S6)). Indeed,
some of the strongest sSQTL signals are present in immune-related genes such as TRIM58, which is additionally implicated
in malignancies such as lung cancer, liver cancer, and pancreatic ductal adenocarcinoma [69-72], and is involved in
innate immunity and cell proliferation [69,73], and ERMAP, which is a B7 family immune regulator that has been found
to promote the phagocytosis of tumor cells [74-76] and encodes the protein responsible for the Scianna blood group
system [77] (Supplementary Figure ).

Given that the majority of sQTL studies to date have profiled European populations, we wanted to compare the
overlap between our detected sQTLs and previously published datasets. We focused our comparison on two large studies
of whole blood, namely: GTEx v8 |10] (n = 670) and BLUEPRINT [9] (n = 197). We found that sQTL effects are
largely shared between the two European data sets, but they are not shared to the same extent with the Indonesian data.
Out of 4,550 unique sGenes (amongst the three datasets), 330 (7.3%) are shared across all datasets, 364 are detected in
both European cohorts but not in the Indonesian data (8%), and 1008 (22.2%) are solely in the Indonesian data; similar
values were private to both GTEx and BLUEPRINT, suggesting either incomplete power to detect sQTLs across studies,
winner’s curse, or a genuine poor generalizabilty of sQTLs across studies (Figure ) To better estimate shared and
population-specific effects and ascertain the degree of sharing between our detected Indonesian sQTLs and the European
sQTLs, we applied a multivariate adaptive shrinkage model, mashr. Using a local false sign rate cut-off of 0.05, an sQTL
is considered shared if the effect sizes share the same sign and fall within a factor of 0.5 of each other. As with the more
naive approach above, sQTL effects are largely shared across European datasets (Figure ) Additionally, we detected
312 Indonesia-specific (LFSR < 0.05) SNP-sGene pairs (Figure ) In line with previous eQTL analyses carried out on
this set of samples [34], we observe significantly larger effect sizes of Indonesian-specific sQTLs within Indonesia than
we do in the European datasets (ANOVA, p < 2.2e-16; Figure ), again suggestive of incomplete power across all
considered datasets, and highlighting the importance of establishing larger cohorts for QTL mapping in general.

While there was no evidence of enrichment of GO or KEGG terms across these Indonesia-specific genes, many genes
with sQTLs are implicated in signal regulation (i.e. IRF1, SIRPB1) and oncogene pathways (i.e. RAP1A, RAPI1B,
FES, and DNMS3). In spite of our limited sample size, these findings suggest a distinctive and distinguishable (relative
to previously characterized European data) Indonesian sQTL signal, as we would expect sharing between GTEx and
BLUEPRINT to also be negatively impacted by the relatively low sample size in BLUEPRINT and their distinct processing

pipelines. By profiling the differences and similarities across these groups, we can more accurately characterize the gene
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Figure 2. Indonesian cis-sQTL characteristics. A) Relative distance of sQTLs to the nearest splice junction. B)
Shared and unique sGenes across the Indonesian and European datasets. C) Pairwise sharing of sQTLs between the
datasets evaluated by mashR. D) Distribution of effect sizes for Indonesia-specific sQTLs. E) Linear regression between
the number of QTL minor alleles and number of inferred Papuan alleles reveals 11 sQTLs largely driven by Papuan-like

genetic ancestry (R? > 0.7).

relationship between the number of inferred Papuan alleles and sQTL minor alleles.

F) An sQTL that is strongly correlated with Papuan-like genetic ancestry. Plot shows the
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regulatory mechanisms underlying diversity in genetic traits, highlighting the value of trans-ethnic, trans-environment
QTL mapping to maximize discovery of gene regulatory variation across humans [30}32].

After quantifying sQTL-level differences between the Indonesian and European cohorts, we wanted to assess the
extent to which variance in sQTL genotype is driven by local genetic ancestry in modern Indonesians. Specifically, using

local genetic ancestry haplotype information for each significant sQTL, we investigated whether there was a correlation

between the inferred ancestral source of the genotype and gene splicing (Materials and Methods|). We found 11 sQTLs
that show strong evidence (R? > 0.7) of being driven by Papuan-like genetic ancestry (Figure , . Although
small and likely underpowered due to the very limited representation of Papuan-like genetic ancestry in our dataset,
this set included several immune genes, one of which was DNM3 (Figure ) Otherwise known as Dynamin-3, DNM3

is a microtubule-associated gene that plays a fundamental role in membrane trafficking and the regulation of vesicle

formation in cells [78], and has been implicated in various functions related to the development and colony formation
of megakaryocytes [79-81]. Human DNM3 contains 21 exons, with at least 5 of its exons being alternatively spliced to
generate several isoforms [82]. The Papuan-driven sQTL event that we identified for DNM3 is a skipping event of exon 17
(B = 0.55, g-value = 3.5 x 10™%), associated with the SNP 1510752946, which lies within intron 20 of DNM3 (Figure ,
Figure ) The canonical isoform for this gene, ENST00000627582.3, includes exon 17 and encodes a protein made up of
863 amino acids (GRCh38 Ensembl release 110). Conversely, isoform ENST00000367731.5 is the product of the alternative
splicing event that excludes exon 17, resulting in a loss of 4 amino acids which do not appear to have a significant impact
on protein structure predictions made with AlphaFold. Our results indicate that the Korowai samples have a higher rate
of exon 17 exclusion/skipping (22.5%) than the Mentawai (7.6%) and Sumba (7.5%) groups; in other words, a higher

proportion of expressed DNMS3 isoforms in the Korowai group exclude exon 17.

Indonesian whole blood cis-sQTLs colocalize with hematological GWAS traits

To shed light on the potential interplay between gene splicing regulation and complex traits, we sought to explore
whether the Indonesian sQTLs colocalized with any hematological GWAS traits. Using coloc, a Bayesian test for genetic
colocalization, we performed colocalization analyses between all significant sSQTLs and 13 blood-related traits using
summary statistics from a trans-ethnic study which included 151,807 East Asian participants [65]. Overall, we identified
45 unique sGenes (3.4 % of all significant sGenes) that colocalized with 12 different traits, from a total of 68 significant
GWAS trait-sGene pairs . Seven of these genes colocalized with three traits simultaneously. Of these, FCGRT,
which encodes the neonatal Fc receptor (FcRn) colocalized with red blood cell density, hemoglobin concentration, and
hematocrit, while MAFA, a macrophage erythroblast attacher, colocalised with mean corpuscular hemoglobin, mean
corpuscular volume, and red blood cell density. We also found that the local genetic ancestry-driven sQTL at DNM&
significantly colocalizes with hemoglobin concentration (H4 = 0.837, H4/H3 = 8.445), a trait which refers to the amount
of hemoglobin protein present in a specific volume of blood (Figure [3B).

Assessing the pathogenicity of cis-sQTL variants

Given the growing awareness of the role of splicing in genetic disease and the ancestral diversity biases in existing sQTL
datasets, we intersected sQTL SNPs with clinically annotated variants on ClinVar. We considered two sets of SNPs:
i) all lead sQTL SNPs within the gene body and ii) all SQTL SNPs falling within splice junctions. Across both SNP
sets, the analysis yielded 120 total hits, with 116 of these having benign/likely benign status, 3 variants of uncertain
significance (VUS), and 1 variant with a GWAS disease trait classification . The 3 VUS occur in KLRCY,
(rs139613925, in-sample alternative allele frequency 0.481), HADHB (rs2303893, in-sample alternative allele frequency
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Figure 3. Splicing regulation in the DNM3 gene. A) Sashimi plot illustrating the skipped exon event (exon 17) in
the DNMS3 gene. Isoform expression was summarized using the MISO framework . The numbers over each curved
line represent the junction spanning reads. The canonical isoform for DNM3 is provided. The labels E16, E17, and E18
represent exons 16, 17, and 18, respectively. B) Statistically significant GWAS colocalization between the LAI-driven
sQTL in the DNM3 gene (rs10752946) and the GWAS hemoglobin concentration trait measured in East Asian

populations.
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0.366), and DENNDS3 (rs2289001, in-sample alternative allele frequency 0.307). The protein encoded by KLRC/ belongs
to the Natural Killer Group 2 (NKG2) family of receptors. These receptors are primarily expressed on natural killer
(NK) cells and some subsets of T cells, where they play important roles in the recognition and regulation of immune
responses [83]. The HADHB gene product, MTP-beta, plays a central role in the breakdown of long-chain fatty acids
within mitochondria [84]. DENNDS plays a role in regulating intracellular vesicle trafficking, and has been implicated in
cancer, where dysregulation of vesicle trafficking pathways can contribute to tumor progression and metastasis [85/86]. The
GWAS variant, rs2763979 (in-sample alternative allele frequency 0.468), occurs in HSPA1B and has reported associations
with cancer (p-value = 2 x 10714, European population, n = 475,312) [87] and systemic lupus erythematosus (p-value =
6 x 107¢, Thai population, n = 4,088) [88].

cts-sQTL SNPs influence splicing-RBP binding affinity

We used a deep-learning convolutional neural network, DeepCLIP, to predict the effect of our sQTLs on RBP-RNA
binding as a possible mechanism of action. We employed DeepCLIPs pre-trained models for 33 splicing-associated RNA
binding proteins (RBPs) with well-documented roles in splicing regulation and spliceosome activity [62], and assessed the
impact on their binding abilities across all 3,658 significant lead SNPs within 250kb of the nearest splice site, adding
10bp flanking sequences on both sides. For each reference-alternative allele pair and each RBP, we obtained binding
profiles indicating the likelihood of RBP binding (for the respective protein) along the RNA sequence. These binding
affinity scores, ranging from 0 to 1, can be interpreted as the strength of RBP binding [61]. Globally, we observe that
most sQTL SNPs do not significantly increase or decrease RNA binding affinity, and their difference scores (reference
score - alternative score) tend to fall within the range (99% CI) of likely values (Figure [JA, Supplementary Figure [f)).
However, for RBPs with very uniform motifs, such as EWSR1 (Ewing sarcoma protein) [89], the introduction of sQTL
SNPs has a marked effect on the sequence binding scores, yielding large differences in predicted binding affinity between
the reference and the alternative allele (Supplementary Figure [5)).

Conversely, we also observe RBPs with only one or two outliers, suggesting a biologically significant impact of the
sQTL SNP on RBP activity (Figure and B). Specifically, for the HNRNPM protein, which is moderately expressed
within our dataset (Figure ), we predict a 0.71 increase in binding affinity at rs6433311 (A>G, Figure ), which
is an sQTL for the DYNC1I2 gene; in our data, the G allele at rs6433311 is associated with an effect size of -1.174
relative to the A allele (indicating exon exclusion, Supplementary Figure |§|A)7 and segregating at a frequency of 0.739.
The predicted increase in HNRNPM binding as a consequence of this A>G intronic variant is consistent with previous
findings that HNRNPM recognizes GU-rich cis-elements, primarily in introns [90H92]. HNRNPM is a member of the
heterogeneous nuclear ribonucleoprotein (hnRNP) family involved in RNA processing, including pre-mRNA splicing and
mRNA transport [93], and has been found to promote exon skipping across various experimental conditions [92}/94H96].
The DYNC1I2 gene, as a component of the dynactin complex [97], may indirectly influence RNA transport within the
cell, potentially interacting with HNRNPM-associated mRNA complexes during transport. In addition, we predict a 0.73
decrease in the binding affinity of PTBPI at rs27291 (G>A, Figure [B), which is an sQTL for the LNPEP gene; in
this case, the A allele at rs27291 in our data is associated with an effect size of 0.672 (indicating exon inclusion) and
segregating at an allele frequency of 0.434. PTBP1, also known as Polypyrimidine Tract Binding Protein 1, plays crucial
roles in alternative splicing, mRNA stability, mRNA localization, and translation initiation [984101]. Containing four
highly conserved RNA binding domains that recognize short pyrimidine-rich sequences [102], this splicing factor regulates
alternative splicing by inducing exon skipping [103H105]. Thus, a decrease in the binding activity of this protein may

result in higher exon inclusion, which is in line with the positive effect size that we observe at this splicing junction
(Supplementary Figure [6B).
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Figure 4. sQTL impact on RBP binding affinity. A) Mean-difference plots for 9 of the 33 splicing-RBPs. Each
point represents a pair of 21bp-long sequences centered on the lead sSQTL SNP (ref/alt alleles). The y-axis depicts the
difference between the DeepCLIP reference sequence score and the DeepCLIP variant sequence score, while the x-axis
depicts the average between these two scores. Horizontal green and blue lines represent the 95% and 99% ClIs, respectively.
Points that are outside of the 99% CI are colored blue. CNN filters predicted by DeepCLIP, ranked by score, are provided
for each protein. B) DeepCLIP binding profiles for HNRNPM and PTBP1. The variant-reference sequence pairs in
question are circled in panel A. C) Normalized expression (TPM) of the 33 chosen splicing-associated RNA binding
proteins.
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Genome-wide isoform switching analysis reveals significant changes in functional protein

domains as a consequence of fluctuations in isoform usage

In order to better assess the functional implications of our detected splicing events, we conducted an isoform switching
analysis across each of the three pairwise group comparisons (Mentawai vs. Sumba, Korowai vs. Sumba, and Korowai vs.
Mentawai). Isoform switching is defined as the change in relative abundance of different isoforms from the same gene
between conditions. Isoforms were considered differentially switched and retained for further analysis if the difference
in isoform fraction (AIF) > 0.1 and FDR < 0.05. In total, we identified 165 significant isoform switches across 110

genes between Korowai and Mentawai, 244 switches across 158 genes between Korowai and Sumba, and 100 switches

across 66 genes between Mentawai and Sumba(Table S9|and [Table S10|). Altogether, these events impacted 239 unique

genes and 389 unique isoforms. Then, to ascertain the potential biological impact of these isoform switches, we tested
for changes in the functional properties of the transcripts at the sequence level. These properties included the coding
potential of the transcripts, the functional domains and signal peptides (that are either present or absent), the presence of
intrinsically disordered regions, or IDRs (regions that lack a fixed or ordered structure), the sensitivity of the transcript
to nonsense-mediated decay (NMD), and the similarity of the open reading frame (ORF) sequences between transcripts.
For every detected isoform switch in a given gene, the annotations for the most-used isoform (AIF > 0.1) and the
least-used isoform (AIF < 0.1) were compared. Differences in the annotations between the up-regulated isoform and the
down-regulated isoform were categorized as isoform switches with predicted functional consequences (Figure )

Across all switching events between the three Indonesian populations, the most frequent functional consequences
of isoform switching were changes in ORF sequence similarity (36.7%), protein domains identified (23%), and coding
potential (21.4%, . When focusing on switches between Korowai and either Mentawai or Sumba, isoforms
expressed at higher levels in the Mentawai or Sumba groups were more likely to contain an additional domain, with
14.8% of all switching events resulting in a protein domain gain in the up-regulated isoform, while 7.1% resulted in a
domain loss in the up-regulated isoform (Figure ) Furthermore, for up-regulated isoforms in the Sumba population
(KOR vs. SMB and MTW vs. SMB), a greater number of switches resulted in the increased usage of a coding transcript
(15%) as opposed to a non-coding transcript (6.8%). Interestingly, when compared to the Korowai population, isoforms
up-regulated in the Sumba population are more likely to have an IDR gain (9.2%) rather than an IDR loss (5%) and are
also more likely to be coding, whereas the inverse is true for isoforms unregulated in the Mentawai population versus the
Korowai population (Figure ) IDRs act as a flexible point of contact for protein-protein interactions and are often
enriched in protein products that play a critical role in signaling, regulation, and molecular recognition [106-108].

We also found that the number of these functionally significant switches, and the extent of overlap between pairwise
comparisons, varied greatly. For the Mentawai vs. Sumba comparison, we detected statistically significant isoform
switching events with a functional consequence across 36 genes, 106 genes for Korowai vs. Sumba, and 77 genes for the
Korowai vs. Mentawai comparison (58.3%, 68.8%, and 73.2% of all isoform switches in each comparison; Figure ) The
overlap in functionally significant switching genes was greatest between the pairs involving the Korowai group, with the
Mentawai vs. Sumba comparison sharing very few switching genes with either of the other two pairs. Moreover, there
were no functionally significant switching genes that were shared across the three sets.

Many of the significant isoform switching events occurred in genes that play critical roles in the immune response, one
of which is the ILISRAP gene, the most significant isoform switching event across all comparisons (g-value = 5 x 10727,
Table S9). The IL18RAP protein (Interleukin 18 Receptor Accessory Protein) serves as a receptor accessory protein
for interleukin-18 (IL-18), a cytokine involved in immune responses and inflammation [109]. As such, ILIS8RAP is a

crucial component of the IL-18 receptor complex, and the dysregulation of ILISRAP expression has been implicated in
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Figure 5. Global isoform switching analysis and functional consequences. A) For each pairwise group
comparison, the consequences of all significant isoform switching events are described. Specifically, the annotation
differences between the up-regulated isoform (dIF > 0) and the down-regulated isoform (dIF < 0) are summarized. The
first population in the switch comparison is the ground state, and the second population is the changed stated. Thus, an
up-regulated isoform in the KOR vs. MTW comparison, for example, is one that is used more in MTW relative to KOR.
B) Venn diagram of the number of genes with overlapping isoform switching events and functional consequences (FDR <
0.05) across all pairwise comparisons. C) The isoform switch in ILI8RAP. Exons with annotated domains are coloured,
and those without are black boxes. Normalized ILIS8RAP expression (TPM), isoform expression, and isoform usage are
plotted. Error-bars indicate 95% confidence intervals. Level of significance (with KOR as the reference) is denoted by
the asterisks. D) Changes in isoform switches against changes in gene expression (x-axis) for each pairwise comparison.
Significant (AIF > 0.1 and FDR < 0.05) isoform switches are coloured accordingly.
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various diseases, including autoimmune disorders, inflammatory conditions, and cancer [110]. In our data, we observe
preferential usage of the longer ILISRAP isoform (ENST00000264260.6) in the MTW group (isoform switch g-value
= 1.8 x 107®), while the SMB and KOR groups exhibit preferential usage of the shorter isoforms ENST00000409369.1
and ENST00000687160.1 (Figure ) Notably, the ENST00000264260.6 isoform contains a signal peptide at the third
exon, while isoforms ENST00000409369.1 and ENST00000497795.1 do not. Signal peptides play a key role in directing
proteins to their appropriate cellular locations. Thus, higher usage of the ILI8RAP signal peptide-containing isoforms
(ENST00000264260.6 and ENST00000687160.1) might be indicative of an up-regulation of ILISRAP protein translocation.
Furthermore, isoforms ENST00000264260.6, ENST00000409369.1, and ENST00000687160.1 contain immunoglobulin
domainslg 2 (PF13895), and Ig_6 (PF18452), which play essential roles in antigen recognition, cell adhesion, receptor-ligand
interactions, and structural stability [111]. Higher isoform usage of these isoforms might therefore influence structural
stability and protein diversity.

In addition, we looked for evidence of significant isoform switching across our 11 detected Papuan ancestry-driven
sGenes, such as DNM3. We observed statistically significant isoform switching that also resulted in functional domain
changes in the BST1 gene (Supplementary Figure [7A). BST! (bone marrow stromal cell antigen 1) is an immune
gene that facilitates pre-B-cell growth and regulates leukocyte diapedesis in inflammation [112]. The isoform switch
in the BST1 gene reveals increased usage of the ENST00000265016.9 isoform within the SMB group (isoform switch
g-value = 1.3 x 107%), while KOR samples exhibit a higher isoform fraction of the ENST00000514989.1 isoform. The
ENST00000514989.1 isoform is non-coding, which means that a switch in isoform usage results in a loss of coding potential.
Interestingly, the ENST00000265016.9 isoform contains a rib hydrolase domain at exons 1-8, which is essential for BST1
enzymatic activity as a NAD+ glycohydrolase [113].

Most differentially expressed genes are not differentially spliced

Our isoform switching analyses illustrate how critical alternative splicing is for the diversification of gene expression
at both the mRNA and protein levels (Figures and D). To assess the extent to which splicing and transcriptional
regulation are linked across each pairwise comparison, we intersected the differentially spliced genes with previously
reported [33] differentially expressed genes in the same groups. We found that differentially spliced genes were very rarely
differentially expressed, with only 13 (Fishers exact test p = 9.7e-04), 65 (Fishers exact test p = 1.1e-07), and 39 (Fishers
exact test p = 2.1e-06) shared genes across both tests for the Mentawai vs. Sumba, Korowai vs. Sumba, and Korowai vs.
Mentawai comparisons, respectively (Supplementary Figure ) In other words, for most genes, we observe changes
in the mRNA splice variants produced without a reciprocal change in total expression. These results support previous

findings of independent regulation of gene splicing and expression [22}/114H117].

Discussion

It is well-established that alternative splicing influences various biological functions [2}/7H11,22]. Studies of the link between
genotypic and splicing diversity in humans, however, have not yet sampled the breadth of genetic and environmental
diversity that characterizes our species, making it challenging to assess the degree to which population-specific forces
contribute to splicing variation. In this work, using a set of 115 samples from three traditional island populations spanning
the regions genetic ancestry cline, we characterize the global alternative splicing landscape across these populations and
identify genetic variants that are associated with splicing (sQTLs), thereby providing a comprehensive map of genetically

regulated alternative splicing events in human whole blood.
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Our detection of alternative splicing revealed that the most frequent splicing event types were skipped exon events
(50.1%) and the least frequent were retained intron events (3.5%). While these proportions are expected in higher
eukaryotes [41,[118-123], it is important to note that short-read algorithms for detecting AS events are less likely to
misassemble skipped exon events and can therefore identify them with high accuracy, but they suffer from poor precision
with respect to RI detection [124,[125]. Accurately disambiguating real splicing events from background noise (such
as partial transcript processing) is greatly facilitated by long-read sequencing technologies, which enable much more
precise discovery and reconstruction of full-length isoforms, significantly improving the characterization of functional
transcripts |[126]. Thus, for future isoform-specific alternative splicing studies, the application of long-read technologies
should be prioritized.

We conducted a global differential alternative splicing analysis between these groups and detected over 1500 significant
events across all comparisons, with Mentawai and Sumba exhibiting the lowest number of differential events (i.e., the
highest level of alternative splicing similarity). Given that these two populations share very similar proportions of
West Island Southeast Asian-like genetic ancestry, while the Korowai are of Papuan-like genetic ancestry, our results
suggest that ancestral differences might play a role in driving some of the variation in splicing across these populations.
Interestingly, our cis-sQTL mapping analysis revealed 11 sQTLs driven by local genetic ancestry differences between
groups. Furthermore, we detected population-specific patterns of splicing regulation at a global scale, identifying 312
Indonesia-specific SNP-sGene pairs with no evidence of shared effects with European sQTLs. Although our analysis
is limited by our sample size, these findings suggest that alternative splicing variation between populations reflects a
complex interplay between genetic and environmental factors.

As a means of characterizing the phenotypic consequence of alternative splicing variation across these Indonesian
samples, we investigated whether GWAS signals for hematological traits measured in East Asian participants colocalized
with Indonesian sQTLs. Of the 13 GWAS traits examined, 45 unique sGenes showed strong evidence of colocalisation
with 12 distinct traits. Although colocalization analysis alone is not a sufficient means by which causal genes can be
defined, the Papuan-driven splicing gene DNM$ significantly colocalized with hemoglobin concentration, indicating its
potential role in regulating this trait, and is notable observation given the role of high altitude corridors in the settlement
of New Guinea Island [127].

To further bridge the gap between our identified sSQTLs and their functional consequences, we employed a deep-learning
model, DeepCLIP, to predict changes in RBP binding affinity. We found that the DeepCLIP predictions of the impact of
sQTL SNPs on RBP binding dynamics correlated with the direction of effects that were observed at these splice junctions.
In particular, we predicted a potential increase in HNRNPM binding affinity at rs6433311 (A>G, DYNC112), while our
sQTL mapping analysis showed that the G allele at rs6433311 is associated with an effect size of -1.174 relative to the A
allele. Leafcutter-predicted skipping junctions (exon skipping events) yield negative effect sizes, while inclusion junctions
(exon inclusion events) yield positive effect sizes. Therefore, the predicted increase in binding affinity of a splicing factor
that promotes exon exclusion [92,|94H96] should be associated with a negative effect size at this SNP, which is indeed what
we observe. For another splicing factor, PTBP1, DeepCLIP analysis highlighted a potential binding disruption at the
rs27291 G>A mutation in the LNPEP gene. In our data, the A allele of this SQTL SNP is associated with an effect size of
0.672, which is indicative of increased exon inclusion. Given the role PTBP1 plays in suppressing exon inclusion (thereby
promoting exon exclusion) [103H105], the predicted reduction in PTBP1 activity directly correlates with a positive effect
size for this sQTL and a higher exon inclusion rate for individuals harbouring the rs27291 A allele. While these results
are consistent with previous findings that sQTLs disrupt the binding affinity of core and auxiliary splice proteins [22}/128],
it is important to note that we have not conducted any experimental validation of the predicted protein binding activity,

thereby limiting our ability to evaluate the accuracy of the deep-learning predictions. Nonetheless, our results highlight
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the molecular mechanisms through which genetic variants impact splicing, and demonstrate the value of applying deep
learning methods to refine our collective understanding of the consequences of human genetic variation.

We also explored evidence of functionally significant isoform switching events across the three populations, identifying
frequent changes in protein domains (domain gain/loss), NMD status, and ORF sequence similarity. We observed
the greatest number of isoform switching genes in comparisons involving the Korowai population, in line with the
population-level alternative splicing differences we identified with SUPPA2. Notably, we report that when an isoform
switch occurs between the Korowai group and the Sumba or Mentawai groups, the up-regulated isoforms in Sumba or
Mentawai are more likely to: i) contain an additional protein domain, ii) contain a signal peptide, and iii) gain a complete
open reading frame. Our analysis identified several significant isoform switching events in genes critical for the immune
response, including the ILI8RAP and BST1 genes. In the ILISRAP gene, we observed preferential usage of different
isoforms across populations, with potential implications for protein translocation and structural stability. Similarly, in the
BST1 gene, isoform switching resulted in changes in coding potential and the presence of functional domains, highlighting
the importance of alternative splicing in immune regulation and disease processes.

As previous studies have reported [129H131], we find that a large subset of genes exhibit isoform switches without
significant changes in their global expression levels. Such genes would typically be overlooked in RNA-seq studies that
strictly focus on differential gene expression, thereby limiting critical biological insight. Irrespective of the global expression
levels of a gene, changes in the relative expression of its isoforms influence protein abundance, which in turn modulates
cellular processes. Furthermore, we detect minimal overlap between differentially expressed genes and differentially
alternatively spliced genes, indicating that the genetic control of splicing and transcription are independent, as previously
observed [17}21,[22,|30,[132134]. Indeed, across our Indonesian dataset, splicing and expression affect different pathways,
as DE and DAS genes were enriched for distinct biological processes and molecular functions. DAS genes were mostly
involved in processes related to post-transcriptional regulation, DNA replication, and cell-cycle signaling. In contrast, DE
genes were enriched in regulatory pathways related to the adaptive immune response and nervous system function [33].
Together, this study provides a comprehensive catalog of genetically regulated alternative splicing events in whole blood
Indonesian samples, and adds to our knowledge of genomic and regional drivers of gene regulatory variation across the

Indonesian archipelago.
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Supplementary Figure 1. AS events quantified with SUPPA2. A) Proportion of each AS event type for Korowai,
Mentawai, and Sumba. B)-F) AS event intersections between sample groups.
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Supplementary Figure 2. Genomic locations of sQTLs. Significant sQTLs and their prevalance in annotated
regions.
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Supplementary Figure 4. sQTL examples. A) Genotype plot of the TRIM58 sQTL event. For this alternative
splicing event, the junction with the most significant association to the SNP is highlighted with bold numbers across
all three genotypes, and these numbers represent the proportion of reads spanning the junction. On the right, boxplots
depict the distributions for each genotype. B) Genotype plot of the ERMAP sQTL event.
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Supplementary Figure 5. sQTL impact on RBP binding affinity. Mean-difference plots for 24 of the 33
splicing-RBPs. Each point represents an sQTL variant sequence (i.e., the sQTL with a 10bp flanking sequence) and
reference sequence pair. The y-axis represents the difference between the DeepCLIP reference sequence score and the
variant sequence score, while the x-axis depicts the average between these two scores. Horizontal green and blue lines
represent the 95% and 99% CIs, respectively. Points that are outside of the 99% CI are colored blue.
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A Isoform switch in BST1 (KOR vs. SMB)
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Supplementary Figure 7. Comparing isoform expression and gene expression. A) Isoform switching analysis
for BST1 (between the Korowai population and the Sumba population). Exons with annotated domains are coloured,
and those without are black boxes. Gene expression (TPM), as well as isoform expression and isoform usage are plotted
for all detected isoforms. Error-bars indicate 95% confidence intervals. Level of significance for differences in isoform
fraction (IF) is denoted by the asterisks. B) The overlap between differentially expressed genes (DEGs) and differentially

alternatively spliced genes (DASGs).
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Supplementary Tables

Table S1

Gene Ontology and KEGG overrepresentation analysis for all AS genes.

Table S2

Gene Ontology and KEGG overrepresentation analysis for population-specific AS genes.

Table S3

Gene Ontology and KEGG overrepresentation analysis for DAS genes.

Table S4

Permutation-significant sQTLs. Available on Figshare: https://melbourne.figshare.com/projects/Profiling_

genetically_driven_alternative_splicing_across_the_Indonesian_Archipelago/204111

Table S5

Nominal sQTL statistics. Available on Figshare: https://melbourne.figshare.com/projects/Profiling genetically_

driven_alternative_splicing_across_the_Indonesian_Archipelago/204111

Table S6

Gene Ontology and KEGG overrepresentation analysis for sGenes.

Table S7

sQTL-LAI correlation results for Papuan-like genetic ancestry.
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