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ABSTRACT

Background: Inflammatory breast cancer (IBC) is a rare and poorly characterized type
of breast cancer with an aggressive clinical presentation. The biological mechanisms
driving the IBC phenotype are relatively undefined—patrtially due to a lack of
comprehensive, large-scale genomic studies and limited clinical cohorts.

Patients and Methods: A retrospective analysis of 2457 patients with metastatic breast
cancer who underwent targeted tumor-only DNA-sequencing was performed at Dana-
Farber Cancer Institute. Clinicopathologic, single nucleotide variant (SNV), copy number
variant (CNV) and tumor mutational burden (TMB) comparisons were made between
clinically confirmed IBC cases within a dedicated IBC center versus non-IBC cases.

Results: Clinicopathologic differences between IBC and non-IBC cases were consistent
with prior reports—including IBC being associated with younger age at diagnosis, higher
grade, and enrichment with hormone receptor (HR)-negative and HER2-positive tumors.
The most frequent somatic alterations in IBC involved TP53 (72%), ERBB2 (32%),
PIK3CA (24%), CCND1 (12%), MYC (9%), FGFR1 (8%) and GATA3 (8%). A
multivariate logistic regression analysis revealed a significant enrichment in TP53 SNVs
in IBC; particularly in HER2-positive and HR-positive disease which was associated with
worse outcomes. Tumor mutational burden (TMB) did not differ substantially between
IBC and non-IBC cases and a pathway analysis revealed an enrichment in NOTCH
pathway alterations in HER2-positive disease.

Conclusion: Taken together, this study provides a comprehensive, clinically informed
landscape of somatic alterations in a large cohort of patients with IBC. Our data support
higher frequency of TP53 mutations and a potential enrichment in NOTCH pathway
activation—but overall; a lack of major genomic differences. These results both
reinforce the importance of TP53 alterations in IBC pathogenesis as well as their
influence on clinical outcomes; but also suggest additional analyses beyond somatic
DNA-level changes are warranted.

Key words: Breast cancer, inflammatory breast cancer, metastasis, cancer genomics,
tumor profiling, TP53
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BACKGROUND

Inflammatory breast cancer (IBC) is a rare and aggressive disease with unique
histopathological and clinical behaviors® 2. Patients with IBC have worse outcomes®, are
enriched for the more proliferative clinical subtypes of breast cancer (triple-negative and
HER2-positive disease)* °, more often present with de novo metastases, and
experience shorter breast cancer specific survival® °. Despite this uniquely aggressive
clinical presentation and distinct histopathologic features such as dermal lymphatic
invasion’, the molecular drivers of the IBC phenotype remain poorly defined. To
improve research outcomes and develop more biologically informed and effective
therapies, it is imperative to conduct more thorough molecular analyses of this rare yet
deadly disease.

The genomics of IBC has been interrogated by a few studies, yet the rarity of the
diagnosis—estimated to be 1-2% of breast cancers®—makes large-scale analyses
difficult. Nonetheless, efforts have attempted to identify pathways and genomic
alterations specific to IBC with potential enrichments in TGF-B signaling® and MYC
amplifications®, as well as a recent whole-genome sequencing study of 20 patients
which showed minimal genomic differences between IBC and non-IBC cases™.
Additionally, IBC is composed of different proportions of molecular subtypes vs non-
IBC, which makes it a challenge to attribute molecular differences to true IBC biology—
especially with a limited number of cases per study. Lastly, even the clinical
classification of IBC can be wrought with misdiagnosis, further complicating the ability to

interrogate the disease accurately and comprehensively™.
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To address these challenges and better define clinicogenomic features enriched
in IBC, we compared clinicopathological and associated targeted DNA-sequencing data
from a large cohort (n = 140) of advanced IBC cases to non-IBC cases. Importantly,
each IBC case was identified and reviewed within a dedicated IBC Center at a single
institution and harbored associated clinical and genomic data—making this the most

comprehensive correlative study of IBC to date.

METHODS

Institutional Review Board (IRB), Cohorts, and Inclusion Criteria. We conducted
this study using a prospectively maintained institutional database with both
clinicopathological and genomic data from Dana-Farber Cancer Institute (DFCI) and
Brigham and Women’s Hospital. The study was conducted in accordance with the
Declaration of Helsinki and approved by the IRB of the Dana-Farber/Harvard Cancer
Center (DF/HCC Protocols: 11-035, 11-104, 17-000, 17-482; 09-204, 05-246). Patients
with breast cancer who had CLIA-certified, tumor-only, exome-targeted next-generation
sequencing (OncoPanel)*® successfully performed on primary or metastatic samples
from July 2013 to December 2020 were included in this study. Patients with IBC who
underwent OncoPanel testing were identified from the DFCI IBC Program database
(Protocol 11-035) exported in December 2020, with final inclusion of those with both
manually curated, sample-level clinicopathological information (n=140) and genomic
results at time of metastatic disease'®. IBC cases were diagnosed via American Joint
Committee on Cancer (AJCC) guidelines as part of the DFCI IBC program. Cases
without an IBC diagnosis were identified from the same database for comparison and

designated non-IBC cases (n = 2317). American Society of Clinical Oncology/College of

5


https://doi.org/10.1101/2024.05.07.592972
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.07.592972; this version posted May 10, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

American Pathologists (ASCO/CAP) criteria were used to categorize each case into a
breast cancer subtype—either HR-positive, HER2-positive, or TNBC—using molecular
data at the time of metastatic diagnosis or, if no metastatic diagnostic biopsy was
performed or data were unavailable, at the time of primary breast cancer diagnosis. In
cases where patients were HR-positive and HER2-positive, they were classified as
HERZ2-positive disease and all HR-positive classified cases were HER2-negative by

ASCO/CAP criteria.

Targeted tumor-only sequencing and tissue processing. Formalin-fixed, paraffin-
embedded (FFPE) tumor tissue with >20% tumor cellularity per histopathologic review
underwent DNA extraction and was assessed using OncoPanel (Supplemental Table
Sl)—atargeted, tumor-only sequencing platform that interrogates 277 (V1), 302 (V2),
or 447 (V3) cancer-associated genes. The assay is performed centrally within the
Clinical Laboratory Improvement Amendments (CLIA)-certified Center for Advanced
Molecular Diagnostics at Brigham and Women’s Hospital (Boston, MA). Existent data

was analyzed as part of the aforementioned consented research protocols.

OncoPanel Analysis. Somatic alterations including SNVs CNVs were called as
previously described*® *°. Given tumor-only data, common germline variants present in
the gnomAD*’ or Benign or Likely Benign variants in ClinVar'® databases were
removed, unless also present in COSMIC. To ensure consistent, unbiased calls
across OncoPanel versions, genes that overlapped between the 3 different versions of

OncoPanel were used for enrichment analyses of IBC vs. non-IBC (Supplemental Table
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S2). Somatic SNVs were further classified by their suspected oncogenicity using the
OncoKB database and the predicted functional consequence of the mutation (i.e.
nonsense, missense or frameshift mutations—Supplemental Table S3). For gene-level
CNV calls, high amplifications and deep deletions were called as previously described
(Supplemental Table S4)*3. Sample-level TMB was estimated by dividing the frequency
of all mutations in an individual by total panel size; units reflected as mutations/MB

(Supplemental Table S5).

Statistical Considerations. Clinicopathologic characteristics between IBC and non-IBC
cases were compared using chi-squared for categorical and Wilcoxon test for
continuous variables respectively. Regarding enrichment of genomic alterations in IBC
vs non-IBC, such as SNVs and CNVs, cases were classified as either altered or
unaltered based on the presence of a mutation or gene-level CNV. Enrichment for a
particular group was performed using Fisher’'s exact tests (Supplemental Tables S6-
S9). If the variable of interest was continuous (i.e. TMB), a Wilcoxon test was used. For
multiple comparisons, false-discovery rate (FDR) correction was performed using the
Benjamini-Hochberg method to reduce the chance of Type | errors®’. For the subtype-
informed enrichment analysis, modeling was performed using a multivariate logistic
regression accounting for HER2 and HR status. Only models that reached significance
under multiple hypothesis correction for rejecting the log-likelihood null were included,
as well as those that converged after 500 iterations. Only oncogenic mutations and high
amplifications or deep deletions in over 1.5% of all IBC or non-IBC samples were

included in this analysis (Supplemental Tables S10 — S11). For pathway alteration
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analysis, gene alterations were collated into 6 canonical cancer pathways
(CELL_CYCLE, NOTCH, PI3K, RTK_RAS, TP53, WNT)—pathways were limited to
those that contained at least 3 representative genes on the panel (Supplemental Table
S12)*. The frequency of samples that harbored at least one alteration in each pathway
was determined and compared between IBC and non-IBC cases (Supplemental Table
S13). An exploratory survival analysis was performed using time from OncoPanel result
date to last follow-up. Kaplan Meier analysis was performed in R (survminer) with

statistical significance between survival curves assessed using the log-rank test.

Data availability. The targeted panel sequencing data are continually deposited as part
of the American Association for Cancer Research (AACR) Project GENIE—which is a
publicly accessible cancer registry of clinicogenomic data from multiple institutions, of
which DFCI is a contributing member. These data can be accessed after registering for
Project GENIE and agreeing to the AACR'’s terms of access
(https://genie.cbioportal.org/login.jsp). Sample and gene-level mutation data can be
found in Supplementary Data. Additional deidentified clinical information may be
obtained upon request from the corresponding author and approval by the DF/HCC
Breast Clinical Data and Biospecimens Users Committee—assuming adherence to and

compatibility with the referenced protocols and local IRBs.
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RESULTS

Clinicopathologic features of IBC vs. non-IBC. A total of 2457 patients were
identified consisting of 140 cases of clinically confirmed IBC and 2317 cases of non-IBC
(Table 1). Consistent with the more aggressive nature of IBC, patients with IBC were
diagnosed with metastatic disease at an earlier age—developing metastases at a
median age of 51 years versus 54 years of age in patients with non-IBC (p = 0.04).
Patients with IBC notably had nearly double the rate of de novo metastases than
patients with non-IBC disease (54.3% vs. 24.3%, p < 0.0001) with higher proportion of
grade 3 histopathology at diagnosis (74.3% vs. 47.8%, p < 0.0001). As previously
reported, IBC cases were enriched in hormone receptor (HR)-negative disease (54.3%
vs. 25.1%, p < 0.0001) as well as HER2-positive disease (35.0% vs. 14.8%, p < 0.0001)
yet interestingly harbored a lower proportion of HER2-low disease (IHC 1-2+ and
fluorescence in situ hybridization (FISH)-negative; 17.9% vs 27.4%). Regarding the
profiled samples—1622 were from metastatic disease (66.0% of total cohort, 51.4% of
IBC cases, 67.0% of non-IBC cases), 770 were primary tumors (31.3% total, 48.6%
IBC, 30.2% non-IBC), and 65 were representative of a local recurrence (2.6% total, all

non-IBC cases).

LumB-like histopathology enriched in HR-positive IBC. Given the aggressiveness of
the disease, we determined if Luminal B tumors were more enriched in HR-
positive/[HER2-negative IBC vs non-IBC; inferred from histopathological data. Although
a transcriptional subtype, we designated ‘LumB-inferred’ HR-positive tumors as those

with grade 3 histology or progesterone receptor staining < 10% as these features have
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been associated with Luminal B tumors?. We observed a significant enrichment of

LumB-inferred tumors in HR-positive IBC vs. non-IBC (70.0% vs. 40.1%, p = 0.0002).

Landscape of somatic alterations in IBC. To expand beyond clinicopathologic
correlates, the landscape of somatic alterations in IBC across subtypes was determined
from targeted, tumor-only DNA panel sequencing. The most recurrent genomic
alterations spanning all subtypes in IBC were those involving TP53 (72%), ERBB2
(32%), PIK3CA (24%), CCND1 (12%), MYC (9%), FGFR1 (8%) and GATA3 (8%)
(Figure 1). Among the most frequently altered genes, TP53 single nucleotide variants
(SNVs) showed the highest absolute frequency difference among all alterations
between IBC and non-IBC cases (Figure 2A)—particularly in HER2-positive and HR-
positive disease—with an alteration frequency of 85.1% in IBC vs. 62.7% in non-IBC
and 50.0% vs. 26.8%; respectively. ESR1 and GATAS alteration frequencies were, as
expected, present predominantly in HR-positive disease—with an alteration frequency
of 2.5% in IBC vs. 12.0% in non-IBC for ESR1 and 15.0% vs. 12.9% for GATAS.
Regarding copy number variants (CNVs), the most recurrent alterations were similar to
those previously reported and included amplifications of regions involving MYC, ERBB2,

FGFR1 as well as deletions in CDKN2A/B (Figure 2B).

Limited somatic differences between IBC vs non-IBC, except for a significant
enrichment in TP53 alterations. To determine statistically significant, subtype-
informed enrichments in IBC vs. non-IBC, we implemented a logistic regression analysis

to account for HR and HER2 status. Among the most recurrent SNV alterations, only
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TP53 mutations were significantly enriched after accounting for multiple hypothesis
testing (odds ratio (OR), 2.10 [95% confidence interval (Cl), 1.36 — 3.25, adjusted p-
value = 0.016) (Figure 3A). No significant, gene-level enrichments were observed in
CNVs in IBC (Figure 3B). When assessing alterations in an analysis of six canonical
cancer pathways (CELL_CYCLE, NOTCH, PIK3, RTK_RAS, TP53, WNT — Figure 4)—
the most significantly altered pathways enriched in IBC by subtype were members of
the TP53 pathway in both HER2-positive (Frequency of alterations: 89.3% vs. 74.9%, p-
value = 0.03) and HR-positive disease (60.0% vs. 41.6%, p-value = 0.02) disease and
members of the NOTCH signaling pathway in HER2-positive disease (27.6% vs 14.7%,
p-value = 0.03). No nominally significant enrichments were observed in triple-negative

breast cancer (TNBC).

Lack of tumor mutational burden differences in IBC vs non-IBC. Tumor mutational
burden (TMB) was then assessed in IBC and non-IBC cases. Again, minimal
differences were observed when comparing IBC and non-IBC—segregated by subtype
or by primary vs. metastatic disease (Figure 5). The IBC vs. non-IBC median TMB were
as follows by subtype: HR-positive disease 6.05 [Q1 3.8, Q3 7.79] vs 6.08 [Q1 4.56,
Q3 8.47], HER2-positive disease 6.84 [Q1 3.8, Q3 9.68] vs 6.08 [Q1 3.98, Q3 8.47],

TNBC 6.05 [Q1 4.56, Q3 7.26] vs 6.64 [Q1 4.56, Q3 8.47].

Landscape of TP53 alterations in IBC and association with worse outcomes in
HR-positive disease. Albeit at a higher frequency, no identifiable difference in mutation

patterns was observed in IBC and non-IBC across p53; with the majority being
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predicted loss-of-function alterations (Figure 6A). An exploratory analysis of survival
outcomes showed TP53 alterations were associated with worse outcomes in HR+ IBC
(logrank p-value = 0.028) with a median overall survival—following metastatic genomic
tumor testing—of 495 days in TP53 mutated cases versus 993 days in cases without a
TP53 mutation detected (Figure 6B). No significant survival differences were observed

in HER2+ disease when segregated by TP53 mutation status (logrank p-value = 0.48).
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DISCUSSION

IBC stands out as a unique and notably aggressive variant of breast cancer,
marked by distinct clinical features and unfavorable outcomes. Despite its
distinctiveness, a thorough understanding of this disease remains elusive—largely due
to its rarity and the challenge of assembling large cohorts. In this study, we perform one
of the most comprehensive clinicogenomic analyses of IBC to date, all conducted within
a dedicated IBC center, which enabled a comprehensive and subtype-informed analysis
of clinicopathological characteristics and associated genomic data that are enriched in
IBC vs non-IBC.

In summary, our clinicopathological findings are consistent with prior reports—
with an enrichment of higher risk features such as increased frequency of de novo
metastases, higher grade tumors with an inferred LumB-like histopathology, and a
younger age at metastatic diagnosis. Genomically, we find a significant enrichment in
TP53 alterations—particularly in HR-positive and HER2-positive disease—with a
frequency of 50.0% and 85.1% respectively. This study did not identify other somatic
alterations unique to IBC when correcting for molecular subtypes. We also observed a
lack of gene-level CNV enrichments in IBC and a similar overall TMB when compared to
non-IBC cases. This data suggests IBC has limited unique genomic features versus
non-IBC, at least based on this limited targeted panel sequencing.

The most frequent somatic alterations in IBC involve TP53, ERBB2, PIK3CA,
CCND1, MYC, FGFR1, GATA3 and PTEN—which is generally quite consistent with
prior studies on IBC and overall matches the distribution of driver alterations in

unselected cohorts of breast cancer, like the TCGA?%. When accounting for subtype,
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no significant enrichments were observed in IBC either in our gene-level CNV or SNV
analysis except for a significant enrichment in somatic TP53 alterations. Increased
frequency of mutations in TP53 have been found in smaller studies, yet we notably did
not observe statistically significant enrichments in other genes previously reported to be
enriched in IBC, including ERBB2 mutations, when performing our subtype-informed
analyses®®. We also found no differences in TMB, which contrasts some prior studies
that were performed exclusively on primary tumors®* %°. This could be somewhat
explained by our inclusion of tumors representative of more advanced disease®,
although even when segregating by primary and metastases, we did not find a
statistically significant difference in TMB between IBC and non-IBC cases. Notably,
NOTCH signaling has been implicated in IBC pathogenesis and we did observe a
nominally significant increased frequency of alterations in NOTCH pathway—specifically
in HER2-positive disease?®”.

TP53 mutations were found to be significantly enriched in IBC—especially in
subtypes not thought to harbor these mutations as frequently, such as in the HR-
positive setting where we observe a TP53 alteration frequency of 50% in IBC vs. 27.8%
in non-IBC. Additionally, these alterations were associated with worse outcomes in HR+
IBC. As has been widely studied, TP53 is broadly classified as a tumor suppressor
encoding for a transcription factor with frequent loss-of-function somatic mutations in
human cancers; which can confer increased cellular proliferation via cell cycle
dysregulation, inhibit DNA damage repair processes, and lead to decreased apoptosis
among many other reported functions?®3!. Recently, several small molecules that

restore p53 function through various mechanisms are advancing through clinical
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development, challenging the historical notion that TP53 may be undruggable®. Given
the frequency of TP53 mutations we observe in IBC, a question would be whether some
of these small molecules or strategies targeting the TP53 axis might be particularly
suitable for preclinical testing in models of IBC—especially in the HR+ setting given the
poorer overall survival we observe in our exploratory analysis. Biologically, reports have
shown that loss of p53 in breast cancer drives metastasis through WNT-mediated
recruitment of pro-metastatic systemic inflammation and neutrophilia in mouse
models**—which may be one possible hypothesis connecting the frequency of TP53
mutations to some of the high-risk features seen clinically in IBC; such as a higher
frequency of de novo metastatic disease. TP53 has also been implicated specifically in
progression and metastasis through other mechanisms, such as facilitating epithelial to
mesenchymal transition, cell motility, as well as pro-metastatic receptor tyrosine kinase
signaling®. We postulate that further attention should be made preclinically to
determine which of these mechanisms, if any, may be playing a role in the progression
of IBC and whether modifying the TP53 axis therapeutically could serve as a novel
approach for IBC-directed therapy.

Besides p53 and potential NOTCH enrichments in HER2-positive disease, limited
somatic differences between IBC and non-IBC were observed. This conclusion is
somewhat limited by our use of targeted panel testing and perhaps more
comprehensive assessments of the genome may yield more differences. However, a
recent study that employed whole-genome sequencing to profile IBC cases (n=20) also
did not reveal many somatic enrichments in IBC vs non-IBC—including non-coding

alterations—other than MAST2; albeit this cohort was relatively small**. Collectively, our
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data suggest limited distinct alterations in the IBC genome even with a larger cohort and
when a subtype-informed analysis is performed—at least in commonly interrogated,
cancer-related genes.

A major limitation of this study includes the targeted nature of the sequencing
panel. Perhaps a more comprehensive analysis utilizing whole exome or genome
sequencing may reveal coding and non-coding alterations enriched in IBC. Also,
although the ability to detect SNVs and CNVs with targeted-sequencing data is
somewhat robust, more nuanced structural variation (complex rearrangements,
chromothripsis, chromoplexy, etc.) and RNA-level changes (fusions, splice variants,
expression-based enrichments, etc.) cannot be interrogated by the sequencing platform
in this study. Lastly, our analysis included many patients that harbored metastatic
disease at the time of targeted tumor sequencing testing, which may introduce some
selection bias versus other studies.

Given a lack of clear IBC specific biomarkers at the somatic level when
correcting for subtype, other features should be studied to explain what may be driving
the unique IBC clinical phenotype. This work further supports the notion that the
genomic landscape of IBC may not be distinct from that of non-IBC except for TP53
mutations and perhaps NOTCH signaling alterations. Moving forward, understanding
the pathogenesis of IBC may demand discovery efforts using features not captured by
standard genomic profiling—such as environmental exposures, germline-somatic
influences, RNA-level alterations, and microenvironmental interactions—as well as the
application of novel genomic technologies such as single-cell sequencing and spatial

profiling®.
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FIGURE LEGENDS

Figure 1. Genomic landscape of inflammatory breast cancers. Genes ordered by
percentage of somatic alterations in overall cohort. Samples divided by breast cancer
subtype and subdivided by primary or metastatic tissue tested. All variants represent
oncogenic mutations or deep deletions/high amplifications. Tumor mutational burden
(TMB) (mut/mb) is recorded on the top barplot of the OncoPrint.

HER2+, human epidermal growth factor receptor 2-positive; HR+, hormone receptor-positive;
TNBC, triple-negative breast cancer

Figure 2. Frequency of most common SNVs (A, left) and CNVs (B, right) in IBC
and non-IBC colored by subtype. Shading represents the percentage of oncogenic
events (defined by OncoKB for SNVs, defined by estimated high amplification or
predicted double copy deletion for CNVs). For Figure 2B, an annotation of “(A)” beside a
gene represents an amplification and “(D)” represents a deletion.

IBC, inflammatory breast cancer; SNVs, single nucleotide variants; CNVs, copy number variants

Figure 3. Enrichment analysis of SNVs (A, left) and CNVs (B, right) in IBC.
Modeling performed using multivariate logistic regression accounting for HER2 and HR
status. Only models that converged after 500 iterations are shown. Oncogenic
mutations and high amplifications or deep deletions that appeared in over 1.5% of either
all IBC or non-IBC samples were included in the analysis.

IBC, inflammatory breast cancer; SNVs, single nucleotide variants; CNVs, copy number variants

Figure 4. Comparison of somatic alterations grouped by biological pathways
between IBC and non-IBC cases. Proportion of samples with alterations within 6
biological pathways, segregated by breast cancer subtype; colored by IBC status (blue
= IBC, red = non-IBC). Nominally significant enrichment (p < 0.05) highlighted with *
above bar plots.

HER2+, human epidermal growth factor receptor 2-positive;_ HR+, hormone receptor-positive; TNBC, triple-negative
breast cancer
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Figure 5. Comparison of TMB between IBC and non-IBC cases. Tumor mutational
burden (TMB, mutations / MB) between IBC and non-IBC cases; divided by subtype.
Bottom right plot shows tumors segregated by primary vs. metastatic lesion assayed.

IBC, inflammatory breast cancer; HER2+,_ human epidermal growth factor receptor 2-positive; HR+,_ hormone
receptor-positive; TNBC, triple-negative breast cancer

Figure 6. Landscape of TP53 alterations in IBC and association with worse
outcomes in HR+ IBC. (A) Lollipop plot of TP53 mutations identified in IBC cases (top)
and non-IBC cases (bottom). (B) Overall survival after OncoPanel testing in advanced
IBC cases segregated by presence or absence of TP53 mutation. Median overall
survival (date of OncoPanel testing to date of last follow-up) 495 days in TP53 mutated
cases versus 993 days in cases without a TP53 mutation detected. Logrank p-value
shown on plot.
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TABLES
Table 1. Patient and Clinical Characteristics Among Patients with Metastatic Breast
Cancer with and without Inflammatory Breast Cancer (n=2457)
Total Population Patients with IBC Patients without IBC P-Value
(n=2457) (n=140) (n=2317)
Age in Years at time of metastatic diagnosis*,
median (min, max) 54 (18, 91) 51 (25, 91) 54 (18, 89) 0.04
Gender, n (%) 0.25
Female 2435 (99.1) 140 (100) 2295 (99.0)
Male 22 (0.9) 0(0) 22 (0.9)
Race, n (%) 0.32
African American 116 (4.7) 9(6.4) 107 (4.6)
American Indian, Aleutian, Eskimo 2(0.1) 0 (0) 2(0.1)
Asian or Pacific Islander 88 (3.6) 4 (2.9) 84 (3.6)
Caucasian 2147 (87.4) 126 (90.0) 2021 (87.2)
Other 49 (2.0) 0(0) 49 (2.1)
Unknown 55 (2.2) 1(0.7) 54 (2.3)
Ethnicity, n (%) 0.15
Non-Spanish/Non-Hispanic 2244 (91.3) 134 (95.7) 2110 (91.1)
Spanish/Hispanic 87 (3.5) 3(2.1) 84 (3.6)
Unknown 126 (5.1) 3(2.1) 123 (5.3)
Stage at Initial Diagnosis, n (%) <0.0001
DCIS 28 (1.1) 0(0) 28 (1.2)
| 341 (13.9) 0(0) 341 (14.7)
Il 812 (33.0) 0(0) 812 (35.0)
1 613 (24.9) 64 (45.7) 549 (23.7)
\Y 639 (26.0) 76 (54.3) 563 (24.3)
Unknown 24 (1.0) 0(0) 24 (1.0)
Histology at Initial Diagnosis, n (%) 0.06
DCIS 34 (1.4) 0(0) 34 (1.5)
Invasive Ductal 1811 (73.7) 107 (76.4) 1704 (73.5)
Invasive Lobular 311 (12.7) 8(5.7) 303 (13.1)
Micropapillary 3(0.12) 0(0) 3(0.1)
Mixed (IDC & ILC) 200 (8.1) 18 (12.9) 182 (7.8)
Mucinous 9(0.4) 0 (0) 9(0.4)
Other 16 (0.6) 2(1.4) 14 (0.6)
Tubular 3(0.1) 0(0) 3(0.1)
Unknown 70 (2.8) 5(3.6) 65 (2.8)
Histologic Grade at Initial Diagnosis, n (%) <0.0001
Low 142 (5.8) 0(0) 142 (6.1)
Intermediate 936 (38.1) 32 (22.9) 904 (39.0)
High 1212 (49.3) 104 (74.3) 1108 (47.8)
Unknown 167 (6.8) 4(2.9) 163 (7.0)
Hormone Receptor Status of Sample Tested,
n (%) <0.0001
HR Positive 1530 (62.3) 59 (42.1) 1471 (63.5)
HR Negative 657 (26.7) 76 (54.3) 581 (25.1)
HR Not Done/Unknown 270 (11.0) 5(3.6) 265 (11.4)
Estrogen Receptor Status of Sample Tested,
n (%) <0.0001
ER Positive 1399 (56.9) 48 (34.3) 1351 (58.3)
ER Low Positive 93 (3.8) 4(2.8) 89 (3.8)
ER Negative 692 (28.2) 83 (59.3) 609 (26.3)
ER Not Done/Unknown 273 (11.1) 5(3.6) 268 (11.6)
HER2 Status of Sample Tested, n(%) <0.0001
HER?2 Positive 391 (15.9) 49 (35.0) 342 (14.8)
HER2 Negative 1757 (71.5) 87 (62.1) 1670 (72.1)
HER2 Not Done/Unknown 309 (12.6) 4 (2.9) 305 (13.1)
HER2 Status (with Low Positive) of Sample
Tested, n(%) <0.0001
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HER2-Positive 390 (15.9) 48 (34.3) 342 (14.8)
HER2-Low (IHC 1-2+, FISH-negative) 661 (26.9) 25 (17.9) 636 (27.4)
HER2-0 (IHC 0) 797 (32.4) 45 (32.1) 752 (32.5)
Not Done/Unknown 609 (24.8) 22 (15.7) 587 (25.3)
Type of Specimen Tested, n(%) <0.0001
Primary Breast 768 (31.3) 68 (48.6) 700 (30.2)
Local Recurrence 65 (2.6) 0(0) 65 (2.8)
Metastasis 1624 (66.1) 72 (51.4) 1552 (67.0)
Oncopanel Version, n(%) 0.5
Vi 194 (7.9) 8(5.7) 186 (8.0)
V2 825 (33.6) 45 (32.1) 780 (33.7)
V3and 3.1 1429 (58.2) 87 (62.1) 1342 (57.9)
Unknown 9(0.4) 9(0.4)

IBC, inflammatory breast cancer; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC, invasive

lobular carcinoma; HR, hormone receptor; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2;

FISH, fluorescence in situ hybridization
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A TP53 Mutation Landscape in IBC and Non-IBC B TP33 Mutation Status and
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