

Probiotic Lactobacilli activate Formyl-Peptide Receptor 2

^{1*}Kretschmer Dorothee, ¹Rosenstein Ralf, ¹Elsherbini Ahmed, ¹Krismer Bernhard, ²O'Toole Paul W.,
³Gerlach David, ^{1,4,5}Peschel Andreas

¹Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany

⁶School of Microbiology & APC Microbiome Institute, University College Cork, Cork, Ireland.

7 ³Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany

8 ⁴German Center for Infection Research, partner site Tübingen, Germany

9 ⁵Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany

10

*** Correspondence:**

12 Dorothee Kretschmer

13 dorothee.kretschmer@uni-tuebingen.de

14

15

16

Abstract

18 Changes in the composition of the human microbiota can negatively impact human health. Probiotic
19 bacteria like many lactobacilli help prevent or repair dysbiosis but it is largely unclear which molecules
20 of these bacteria mediate the probiotic effects. Given the extensive crosstalk between the immune
21 system and microbiome members, we investigated whether lactobacilli activate the formyl-peptide
22 receptor 2 (FPR2), a pattern recognition receptor that is expressed on the surface of intestinal epithelial
23 cells and known to promote wound healing and immune homeostasis.

24 Probiotic strains of *Lacticaseibacillus paracasei*, *Lactiplantibacillus plantarum*, and *Lacticaseibacillus*
25 *rhamnosus* were isolated from probiotic compounds and sequenced. Calcium influx experiments in
26 FPR1 or FPR2 overexpressing HL60 cells, and primary human neutrophils, along with pharmacological
27 inhibition of FPR2, revealed that culture filtrates of the isolated lactobacilli strongly activate FPR2,
28 promote killing of the methicillin resistant *S. aureus* USA300 and induce neutrophil chemotaxis.

29 Pretreatment of culture filtrates with proteinase K reduced FPR2 activity, indicating that the FPR2
30 ligands are peptides. In silico analysis of the amphipathic properties of the signal peptides of lactic acid
31 bacteria identified selected signal peptides of *L. plantarum* with the ability to predominantly activate
32 FPR2 *in vitro*. Thereby, via targeted activation of FPR2, peptides released by some lactobacilli are likely
33 to positively influence the outcome of inflammatory gut diseases and could be used to treat
34 inflammatory diseases.

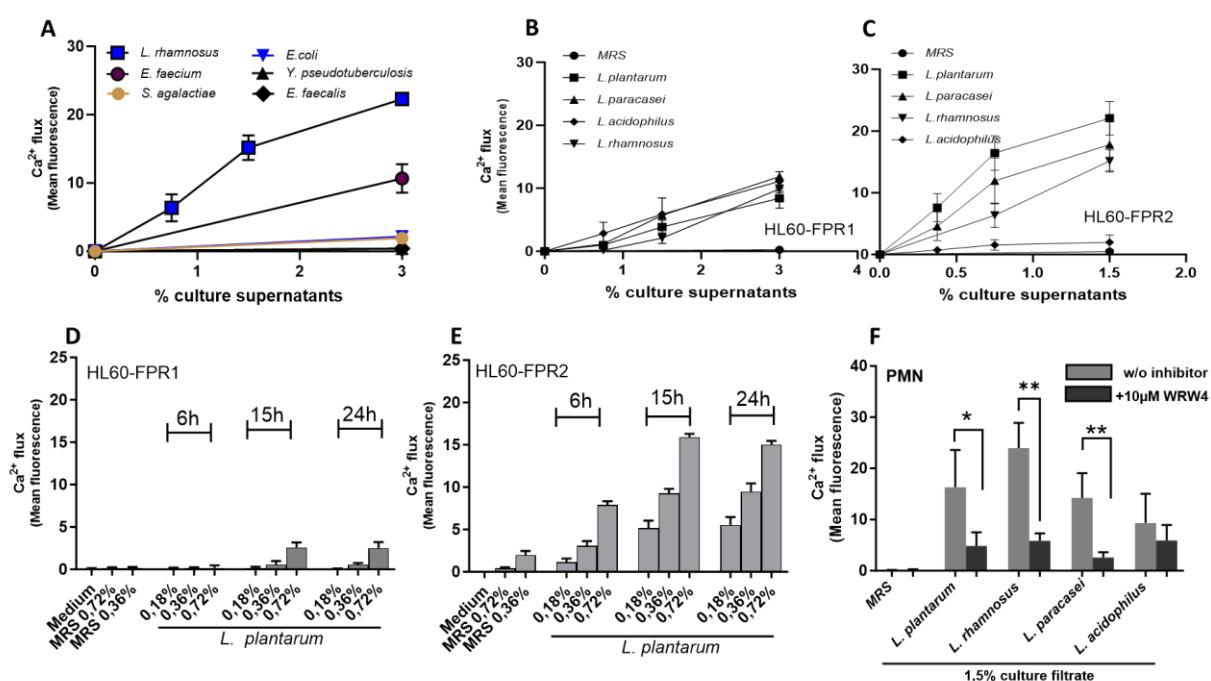
35

36 **Introduction**

37 Pathogenic and commensal bacteria have many properties in common. They release microbe-
38 associated molecular patterns (MAMPs), which are either metabolites or cell components, e.g.,
39 flagellin, with the ability to activate different pattern recognition receptors (PRRs) of the host (Clasen
40 et al. 2023). N-terminal formylation is a hallmark of bacterial peptides as only prokaryotic ribosomes
41 start protein biosynthesis with a formylated methionine (Schiffmann, Corcoran, and Wahl 1975).
42 Nevertheless, bacteria differ in the amounts of formyl groups that are cleaved off by deformylases
43 (Yuan and White 2006). They also differ in the type and amounts of signal peptides that are cleaved off
44 from membrane or secreted proteins by dedicated peptidases (de Souza et al. 2011; Ravipaty and Reilly
45 2010; Bufe et al. 2015). Accordingly, host cells are equipped to respond to different types of bacterial
46 peptides via a unique class of PRRs, the so-called formyl-peptide receptors (FPRs). While FPR1
47 exclusively senses short, formylated, hydrophobic peptides, FPR2 accepts longer, α -helical,
48 amphipathic peptides (Kretschmer et al. 2015; Forsman et al. 2015). FPR2 prefers formylated peptides
49 too (Rautenberg et al. 2011), but responds also to some non-formylated peptides including certain
50 human peptides such as the antimicrobial peptide LL-37 (Singh et al. 2013). Virtually all bacteria
51 activate FPR1, but it is unclear how widespread the ability to activate FPR2 is among bacteria. We have
52 found that many staphylococci and some enterococci activate FPR2, but whether FPR2 activation is a
53 widespread trait and plays a role in probiotic bacteria is still unclear.

54 The human microbiota, especially the one in the gut, is crucial for human health and changes in its
55 composition, also known as dysbiosis, are associated with different pathological states (Beller et al.
56 2021; Talapko et al. 2022). Probiotic bacteria can help avoid or repair dysbiosis and a few probiotic
57 bacteria have been described for the treatment of diarrhea (Hou et al. 2020), but the reason for their
58 probiotic effects are often undefined. While intestinal bacteria are known to communicate with gut
59 epithelia cells (Kaur, Ali, and Yan 2022), it remains unclear which bacterial agonists distinguish probiotic
60 from non-probiotic bacteria.

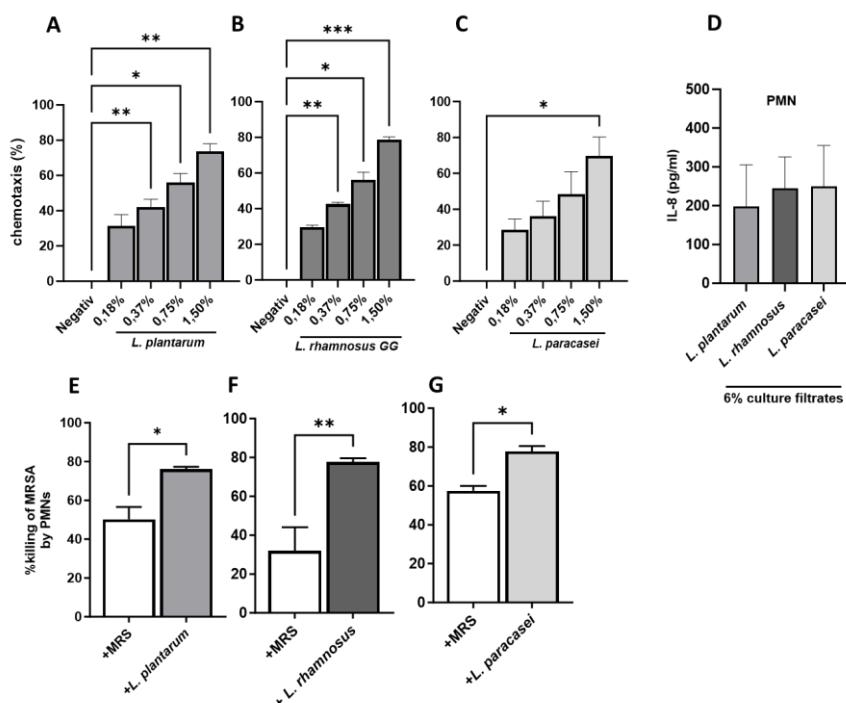
61 Gut epithelia cells possess a variety of receptors to recognize bacterial molecules such as
62 peptidoglycan, lipopeptides, or formylated peptides (Burgueno and Abreu 2020; Chen et al. 2023; Alam
63 et al. 2014). Among those receptors, FPR2 has a special role. It is unresponsive to most bacterial species
64 except for intestinal enterococci, some of which are used as therapeutic probiotics and produce FPR2
65 agonists (Bloes et al. 2012). In addition, skin-colonizing staphylococci can activate leucocytes via FPR2.
66 FPR2 activation of intestinal epithelia cells induces ROS production and thereby leads to improved
67 wound healing and immune homeostasis (Birkl et al. 2019). Interestingly, FPR2 expression is
68 upregulated in inflamed intestinal tissue of patients with Crohn's disease (Prescott and McKay 2011).
69 Moreover, endogenous FPR2 ligands such as lipoxin A4 or annexin positively influence the course of
70 disease by dampening inflammation via FPR2 (Vong et al. 2012).


71 The best known and most potent stimulators of FPR2 among the bacteria belong to the Firmicutes.
72 Potentially probiotic bacteria like lactobacilli also belong to the Firmicutes and promote immune
73 homeostasis in the gut. We asked whether they can also activate FPR2. We found that culture filtrates
74 of lactic acid bacteria, including *Lacticaseibacillus paracasei*, *Lactiplantibacillus plantarum* and
75 *Lacticaseibacillus rhamnosus*, strongly activate FPR2 and to a minor degree FPR1 on the surface of
76 FPR1- or FPR2- overexpressing HL60 cells and primary human neutrophils. Digestion with proteinase K
77 and cultivation with the deformylase inhibitor actinonin revealed that the FPR2 ligands are formylated
78 peptides. It was shown that signal peptides from many bacteria could represent a pool of formylated
79 peptides. Therefore, we speculated that the FPR2 ligands in culture filtrates of lactobacilli could be
80 signal peptides. To investigate this, we sequenced the genome of *L. paracasei*, *L. plantarum* and *L.*
81 *rhamnosus* and explored *in silico* the amphipathic properties of the signal peptides of these and further
82 lactic acid bacteria. The amphipathic properties of some signal peptides fitted into this assumption as
83 observed for α -PSMs, known FPR2 ligands. To experimentally prove this, we analyzed selected signal
84 peptides of *L. plantarum* regarding their FPR2 activity and observed that the analyzed signal peptides
85 of *L. plantarum* strongly activate FPR2. Our results indicate that lactobacilli release signal peptides that
86 activate predominantly FPR2. Thereby, they are likely to positively influence the outcome of
87 inflammatory gut diseases.

88

89 **Results**

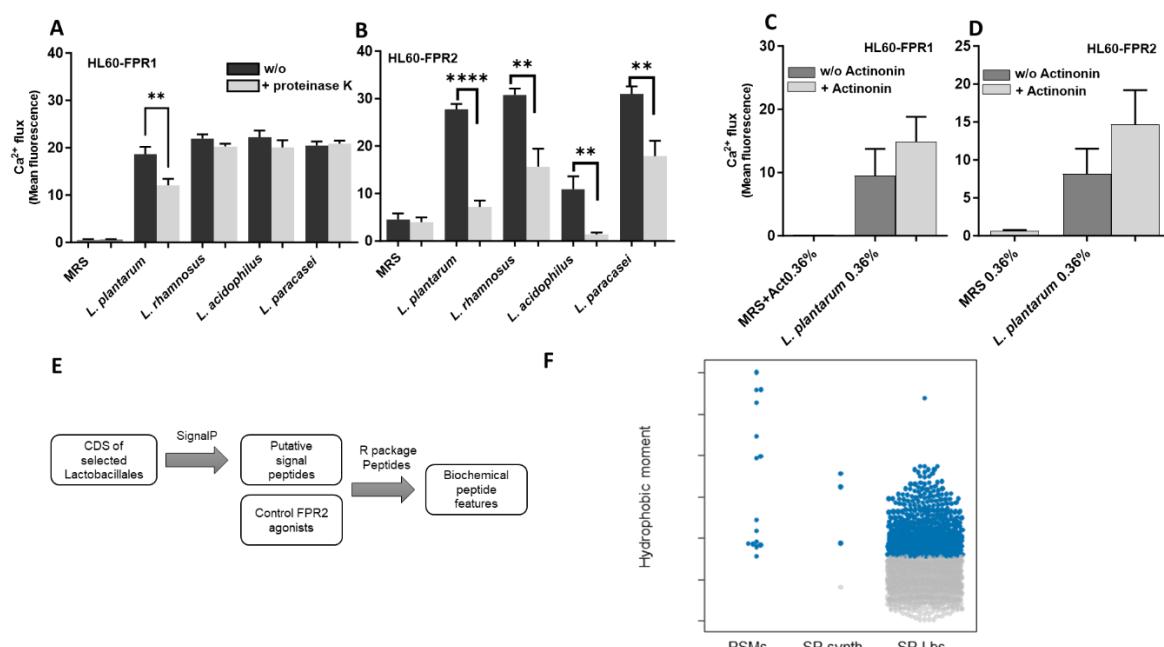
90 **Culture filtrates of lactobacilli activate formyl-peptide receptors.** We analyzed culture filtrates of
91 various bacteria like *Escherichia coli*, *Yersinia pseudotuberculosis*, *Streptococcus agalactiae*,
92 *Enterococcus faecium* and *E. faecalis* for their ability to activate FPR1 and FPR2. Only for the culture
93 filtrates of *Enterococcus faecium* and *Lacticaseibacillus rhamnosus* we observed a moderate and a


94 strong FPR2 activity, respectively, measured as calcium influx induction (Fig.1 A). To assess whether
95 lactic acid bacteria can activate FPRs, we tested whether culture filtrates of various lactobacilli induced
96 calcium influx in FPR1- or FPR2-overexpressing HL60 cells. We observed that culture filtrates of these
97 lactobacilli strains activated to a moderate degree FPR1, and that diluted culture filtrates of some of
98 them (*L. paracasei*, *L. plantarum*, *L. rhamnosus*) activated FPR2. Interestingly, all analyzed culture
99 filtrates also induced calcium influx in primary human neutrophils, which express FPR1 and FPR2.
100 Accordingly, preincubation of neutrophils with the FPR2 inhibitor WRW4 significantly reduced
101 activation of PMNs by culture filtrates.

102
103 **Figure 1. *L. plantarum*, *L. rhamnosus* and *L. paracasei* activate the formyl-peptide receptor 2.** Calcium influx in FPR2-
104 transfected HL60 cells induced by culture filtrates of different bacteria (A). Calcium influx induced by culture filtrates of the
105 indicated lactobacilli in FPR1- (B) or FPR2- (C) overexpressing HL60 cells. Calcium influx in FPR1- (D) or FPR2- (E) overexpressing
106 HL60 cells induced by *L. plantarum* culture filtrates cultivated for 6h, 15h or 24 h. Calcium influx in neutrophils +/- 10µM WRW4
107 induced by culture filtrates of the indicated lactobacilli (F). Data represent means +/- SEM of three independent experiments,
108 and three different culture filtrates (A-C) or 2 independent experiments using two different culture filtrates (D-F) using blood
109 from different donors (F). $P < 0.05$; **, $P < 0.01$, significant difference versus untreated neutrophils as calculated by paired (F).
110 two-tailed Student's *t* test.

111
112 **Culture filtrates of lactobacilli induce neutrophil migration, activation and enhance bacterial killing.**
113 It is known that FPR activation induces chemotaxis of neutrophils and IL-8 release. Therefore, we tested
114 diluted culture filtrates of *L. plantarum*, *L. rhamnosus* and *L. paracasei* regarding their capacity to
115 trigger migration of neutrophils and observed that all analyzed culture filtrates induced dose-
116 dependent chemotaxis (Fig 2 A-C). Similarly, the culture filtrates of *L. plantarum*, *L. rhamnosus* and *L.*

117 *paracasei* induced IL-8 release by neutrophils (Fig.2D). With respect to the ability of promoting
118 neutrophil killing of bacterial pathogens, culture filtrates of all lactobacilli enhanced neutrophil killing
119 of an important pathogen, the methicillin-resistant *Staphylococcus aureus* (MRSA) USA300 (Fig.2E-G).

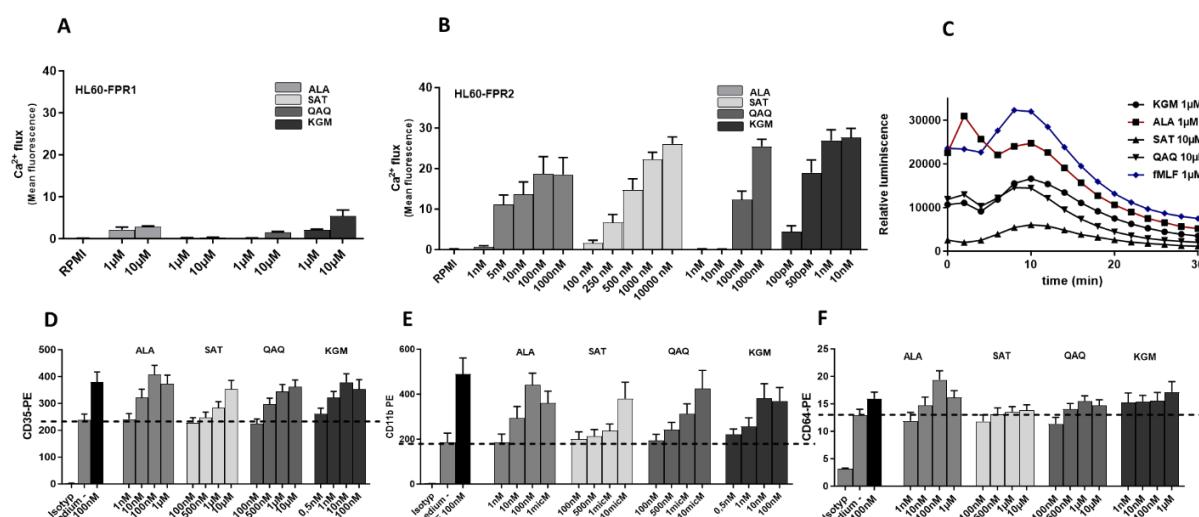


120
121 **Figure 2. Culture filtrates of probiotic lactobacilli induce neutrophil migration, activation and enhance bacterial killing**
122 Neutrophil migration induced by the culture filtrate of (A) *L. plantarum* (B) by *L. rhamnosus*, (C) by *L. paracasei* after 80
123 minutes. IL-8 release by neutrophils stimulated for 5 hours with the indicated culture filtrates of lactobacilli (E). Killing of *S.*
124 *aureus* USA300 (MRSA) by neutrophils preincubated or not with culture filtrates of the indicated lactobacilli (E-G). Data
125 represent mean+/- SEM of at least three independent experiments, using neutrophils from at least three different donors, (A-
126 G). $P < 0.05$; **, $P < 0.01$ ***, $P < 0.001$, significant difference versus the indicated control treated neutrophils as calculated
127 by one-way Anova (A-C) or unpaired (E-G) two-tailed Student's *t* test.

128
129 **The FPR2 ligands released by lactobacilli are peptides.** To elucidate if the measured FPR2 activity is
130 due to peptides present in the culture filtrates we treated culture filtrates of lactobacilli for two hours
131 with proteinase K and analyzed afterward their capacity to activate FPR1 or FPR2. In case of the culture
132 filtrate of *L. paracasei*, *L. acidophilus* and *L. rhamnosus* FPR1 activity was not influenced; only in *L.*
133 *plantarum* a slight reduction of FPR1 activity was observed (Fig.3A). In contrast, proteinase K treatment
134 markedly reduced FPR2 activity in all culture filtrates, except in the control (Fig.3B). Since FPR2 can be
135 activated by formylated and nonformylated ligands, we tested whether inhibition of the bacterial
136 deformylase by actinonitin during growth of *L. plantarum* enhanced only FPR1 or also FPR2 activation.
137 Inhibition of the deformylase led to enhanced FPR1 and FPR2 activity (Fig.3 C, D).

138 Amphipathic, positively charged signal peptides – and subfragments thereof – originating from the
139 cleavage of the N-termini of bacterial proteins fulfill all the criteria for strong FPR2 agonists
140 (Kretschmer et al. 2015). This suggests that by releasing many of such peptides, bacteria may also be
141 potent activators of human cells via FPR2. We sequenced the genomes of the isolated lactic acid
142 bacteria (<https://www.ncbi.nlm.nih.gov/bioproject/1107177>) and performed computational analysis
143 of potential signal peptides with such properties (N-terminal formylation, a length of 18-45 amino
144 acids, amphipathic) using predicted coding sequences from the newly sequenced genomes as well as
145 publicly available coding sequences of different Lactobacillaceae species (table 1, Fig 3E, F). We then
146 determined the hydrophobic moment for alloobtained signal peptide as compared to a control group
147 consisting of known FPR2 activators (of alpha and beta PSMs). We found that 624 potential
148 subfragments (of 1565 tested Lactobacillaceae signal peptides) possessed the biochemical
149 characteristics of potential FPR2 activators (Fig 3F).

150

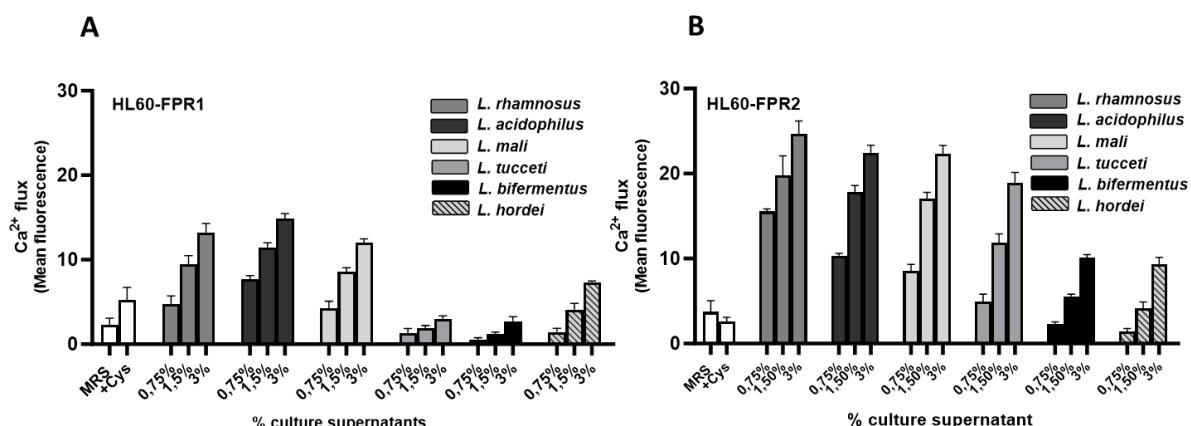


151

152 **Figure 3 Proteinase K digestion of lactococcal culture filtrates reduces FPR2 activation.** Activation of FPR1-(A) or FPR2-(B)
153 overexpressing HL 60 with the culture filtrates (6%) digested for 2 hours +/- proteinase K (5mg/ml). Stimulation of FPR1-(C) or
154 FPR2-(D) overexpressing HL 60 by the culture filtrates of *L. plantarum* treated or not with actinonin. Workflow for determining
155 peptides features in silico. Potential signal peptides of publicly available or predicted coding sequences (CDS) of selected
156 Lactobacillales were obtained using the program SignalP. The obtained peptides and known FPR2 agonists of PSM types alpha
157 and beta were analysed using the R package “Peptides” to obtain biochemical features (E). The hydrophobic moment as
158 measure of FPR2 activation potential of signal peptides from lactobacilli (n=1565) is compared with PSMs (alpha and beta
159 class is indicated) and synthetic peptides used in this study. The lowest hydrophobic moment of known FPRs2 against (PSMs)
160 was used to determine a threshold to identify signal peptides of Lactobacillaceae with FPR2 activation potential (highlighted
161 in blue). Data represents mean +/- SEM of three independent experiments (A, B) or two independent experiments (C, D). $P <$

162 0.05; **, $P < 0.01$ ***, $P < 0.001$, ****, $P < 0.0001$ significant difference versus corresponding non-digested culture filtrates
163 (A, B) as calculated by unpaired two-tailed Student's t test.

164 **Signal peptides of *L. plantarum* strongly activate FPR2** To determine whether signal peptides of *L.*
165 *plantarum* could represent potential FPR2 ligands, we synthesized some of them and analyzed their
166 FPR2 activity. Signal peptides of *L. plantarum* predominantly induced calcium influx in FPR2-
167 overexpressing HL60 cells. Only at high concentration of the two signal peptides ALA and KGM a slight
168 calcium release could be observed in FPR1-overexpressing HL60 cells. Since culture filtrates of
169 lactobacilli enhanced killing of MRSA by neutrophils, we investigated whether these peptides induced
170 oxidative burst and promoted the expression of receptors involved in phagocytosis. All analyzed signal
171 peptides induced oxidative burst, in particular the most active FPR2 ligands (Fig.4C). In addition, these
172 peptides promoted dose-dependent expression of the complement receptors CD11b and CD35, and
173 the peptides KGM as well as ALA also induced the expression of the FC receptor CD64.



174

175 **Figure 4 Signal peptides of *L. plantarum* strongly activates FPR2.** Calcium influx induced by signal peptides
176 (formyl-MAKFRLVLLSISLGLALAGGCRSPDALA (ALA), formyl-MMRGMGNMQSMMKQMKMQAQ (QAQ),
177 formyl-MMKIKTPFRMSLVAKGM (KGM), and formyl-MLSAPKQQATSTKVTQTTNQSAT (SAT) of *L. plantarum* in
178 FPR1 (A) or FPR2 (B)-overexpressing HL60 cells. Oxidative burst induced in neutrophils by the indicated peptides
179 (C). Expression of complement receptor CD-35 (D), CD11b (E) or FC-receptor CD64 by neutrophils after
180 stimulation with the indicated signal peptides. Data represent means (C) +/-SEM of three independent
181 experiments (A, B, D-F), using neutrophils from three different blood Donors (C-E).

182 **Culture filtrates of various lactobacilli activate predominantly FPR2.** To find out whether FPR2 activity
183 is only detectable in response to some lactobacilli or whether it is a characteristic of many lactobacilli
184 strains, we examined the ability of various culture supernatants of different lactobacilli (*L. rhamnosus*,
185 *Liquorilactobacillus mali*, *L. acidophilus*, *Lactobacillus tucetti*, *Loigolactobacillus bifementans*,
186 *Liquorilactobacillus hordei*, Table 2) to activate FPR. Interestingly, we detected FPR2 activity to various

187 degrees in response to all analyzed culture filtrates, whereas the FPR1 activity was rather low in some
188 of these strains (*L. tucetti*, *L. bif fermentans*, *L. hordei*).

189
190 **Figure 5 The ability to activate the formyl-peptide receptor 2 is common to many lactobacilli.** Calcium influx induced by
191 control (MRS, or MRS+0,05% cysteine) or culture filtrates of the indicated lactobacilli (*Loigolactobacillus bif fermentans*,
192 *Lactobacillus tucetti*, *Lactobacillus tucetti*, *Lactobacillus acidophilus*, *Lactobacillus rhamnosus LGG*, *Liquorilactobacillus mali*,
193 *Liquorilactobacillus hordei*) in FPR1 (A) or FPR2 (B)-overexpressing HL60 cells. Data represent mean and SEM of three
194 independent experiments.

195
196 **Discussion**

197 Bacterial metabolites and MAMPs are sensed by a variety of mammalian receptors, thereby initiating
198 inflammatory responses, eliciting leukocyte chemotaxis, or altering cell proliferation and homeostasis.
199 The best known bacterial FPR2 ligands are the phenol-soluble modulins (PSMs), formylated peptide
200 toxins which are encoded in the core genome of pathogenic and commensal staphylococci (Rautenberg
201 et al. 2011). In addition, host-derived peptides like the cathelicidin LL37 or lipids like resolvin D1 and
202 lipoxin A4 have been shown to be associated with inflammation and bind to FPR2 (Weiss and
203 Kretschmer 2018). These indicate that FPR2 can recognize a diverse set of ligands. In the current work
204 we demonstrated that various lactobacilli release large amounts of ligands that can specifically activate
205 FPR2 and possibly mediate their probiotic effects. We found that among the strongest FPR2 activators
206 are lactobacilli that were reported to promote wound healing and prevent inflammation in the gut
207 (Kelm and Anger 2022).

208 Bufe et al. showed that signal peptides provide a large pool of FPR agonists with different amino acid
209 sequences but a conserved secondary structure (Bufo et al. 2015). Mass spectrometry analyses of
210 bacterial secretomes found complete signal peptides as well as N-terminal fragments in culture
211 filtrates, which show that these molecules can be secreted by bacteria (de Souza et al. 2011; Ravipaty
212 and Reilly 2010). It has been speculated that the release occurs via lysis or autolysis of the bacteria.

213 However, also the release via membrane vesicles could be an explanation which is supported by vesicle
214 releasing *L. plantarum* (Yu et al. 2022). Interestingly, systematic analysis of the signal peptides and
215 culture filtrates of different lactobacilli suggested that further bacterial species from the genera
216 *Lactobacillus*, *Akkermansia*, and *Enterococcus* with described probiotic potential (Li et al. 2024; Im et
217 al. 2023) release putative FPR2 ligands.

218 Using synthetic signal peptides of *L. plantarum*, we could show that they induce ROS in neutrophils. It
219 is known that FPR ligands can induce ROS in a receptor-dependent manner not only in neutrophils via
220 NADPH oxidase (NOX)2 but also in gut epithelia cells via NOX1 (Leoni et al. 2013). It has been described
221 that *L. rhamnosus* GG stimulated myenteric production of ROS in mice via FPR1. However, the authors
222 of the same study also observed reduced ROS production in myenteric ganglions of FPR2 knockout cells
223 indicating that FPR2 is involved in ROS production as well (Chandrasekharan et al. 2019). Such ROS
224 production plays a role in epithelia cell proliferation, migration, barrier function and wound healing in
225 the gut (Alam et al. 2016; Jones et al. 2013). Especially in case of intestinal wound healing, FPR2 seem
226 to play a crucial role because decreased numbers of infiltrating monocytes were observed in healing
227 wounds of FPR2/3 knock out mice (Birkl et al. 2019).

228 A rare sequence variant in NOX1 is responsible for pediatric onset of irritable bowel disease (IBD) which
229 highlights the involvement of human NOX1 in regulating wound healing by altering epithelial
230 cytoskeletal dynamics at the leading edge and directing cell migration (Khoshnevisan et al. 2020).
231 Furthermore, colonic epithelial cells in FPR2-deficient mice displayed defects in commensal bacterium-
232 dependent homeostasis leading to shortened colonic crypts, reduced acute inflammatory responses,
233 delayed mucosal restoration after injury, and increased azoxymethane-induced tumorigenesis (Chen et
234 al. 2013). Moreover, it has been shown that mucosal expression of FPR2/ALX mRNA is 7-fold increased
235 in the gut of patients with ulcerative colitis (Vong et al. 2012). Fpr2 deficiency increased susceptibility
236 to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened
237 inflammatory responses. Additionally, the population of *Escherichia coli* was observed to increase in
238 the colon of Fpr2^{-/-} mice with colitis (Chen et al. 2023). These results indicate that FPR2 is critical in
239 mediating homeostasis, inflammation, and epithelial repair processes in the colon. It is tempting to
240 speculate that FPR2 ligand-producing lactobacilli may positively influence the outcome of inflammatory
241 gut diseases in a FPR2 dependent manner.

242

243 **Material and Methods**

244 **Bacteria and Cell Lines.** *Lacticaseibacillus rhamnosus*, *Lactiplantibacillus plantarum*, *Lacticaseibacillus*
245 *paracasei* were isolated from probiotic compounds. A list of the strains used is provided in Table 1.

246 Bacterial culture supernatants were obtained from cultures grown in MRS for 48h at 37° under low
247 oxygen conditions in closed Falcon tubes without agitation. Bacterial cultures were centrifugated and
248 supernatants subsequent filtrated through 0.2-µm pore size filters (Merck). HL60 cells stably expressing
249 human FPR1, FPR2, have been described recently (Christophe et al., 2001; Dahlgren et al., 2000). These
250 cells were grown in RPMI medium (Biochrom) supplemented with 10% FCS (Sigma-Aldrich), 20 mM
251 Hepes (Biochrom), penicillin (100 units/ml), streptomycin (100 µg/ml) (Gibco), and 1 x Glutamax
252 (Gibco). Transfected cells were grown in the presence of G418 (Biochrom) at a final concentration of 1
253 mg/ml. Culture filtrates from further Lactobacillales(Table 2); *L. bif fermentus*, *L. tucperi*, *L. rhamnosus*,
254 *L. malii*, *L. horderi* were prepared in MRS or MRS+0,05% Cysteine for *L. acidophilus*. *S. aureus* USA300
255 lac (Wang et al. 2007) was cultivated overnight in Tryptic Soy Broth.

256 **Peptides.** Signal peptides from *Lactiplantibacillus plantarum*, namely, formyl-
257 MAKFRLVLLSLSLGLALAGGCRSPDALA (ALA), formyl-MMRGMGNMQSMMKQMKMQAQ (QAQ),
258 formyl-MMKITKPFRMSLVAKGM (KGM), and formyl-MLSKSSAPTKQQATSTKVTSKQTTNQSAT (SAT),
259 were synthesized by EMC Tübingen. fMLF was purchased from Sigma Aldrich.

260 **Sequencing of Lactobacilli** The quality of the raw reads was assessed using FastQC (v0.11.8). Trimming
261 of the raw reads, whole genome assembly, and refining the assembly were carried out using
262 Trimmomatic (v0.39), SPAdes (v 3.15.5), and Pilon (v1.24), respectively (Bolger, Lohse, and Usadel 2014;
263 Prjibelski et al. 2020; Walker et al. 2014). These steps were performed within the Shovill pipeline.
264 Finally, Prokka (v1.14.6) was utilized for the functional annotation of the assembled genomes (Seemann
265 2014).

266 **Isolation of human neutrophils and Chemotaxis.** Human neutrophils were isolated by standard
267 Ficoll/Histopaque gradient centrifugation (Dürr et al., 2006). Blood was kindly donated by healthy
268 volunteers (age 20–50) upon informed consent. The studies were approved by local medical ethical
269 committee (reference numbers 750/2018BO2, 054/2017BO2). For the analysis of the chemotactic
270 capacities of neutrophils exposed to culture filtrates, neutrophils were loaded with 3 µM 2',7'-bis-(2-
271 carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester (BCECF-AM, Molecular Probes). The
272 migration along gradients of the indicated stimuli was monitored using 3-µm polycarbonate trans-well
273 membranes (Greiner) (Schlatterer et al. 2021). The compartments below the cell culture inserts
274 contained the diluted supernatants. After 80 minutes, the cell culture inserts were removed, and the
275 fluorescence intensity of the migrated neutrophils in the lower compartments was measured using a
276 BMG Labtech CLARIOstar plate reader.

277 **Measurement of Calcium Ion Fluxes in Human Neutrophils and HL60 Cells.** Calcium fluxes were
278 analyzed by stimulating cells loaded with Fluo-3-AM (Molecular Probes) and monitoring fluorescence

279 with a FACS Calibur flow cytometer (Becton Dickinson) as described recently (). For measuring the
280 influence of WRW4 1×10^6 cells/ml were preincubated with WRW4 at a final concentration of $10\mu\text{M}$,
281 for 20 min at room temperature under agitation. To stimulate neutrophils and HL60 cells, peptides were
282 used at the indicated concentrations in RPMI + HSA0,05%. Culture supernatants were used at indicated
283 dilutions in RPMI +HSA 0,05%. Measurements of 2,000 events were performed and calcium flux was
284 expressed as relative fluorescence. To elucidate if FPR2 -activating compounds in Lactobacilli culture
285 filtrates are of proteinaceous nature, culture filtrates (pH neutralized) were treated with proteinase K
286 beads (1mg/ml) and incubated for 1 h at 37°C under agitation. Proteinase K Eupergit H C beads were
287 subsequently removed by centrifugation (10 min at 250xg). For inhibition of deformylase with actinonin
288 culture filtrates were obtained from *L. plantarum* grown 24 hours in MRS at 30°C in the presence or
289 absence of $10\mu\text{g}/\text{ml}$ actinonin. Bacteria were removed by centrifugation and supernatants were passed
290 through a 0.22 mm-pore size sterile filter. Proteolytically digested culture filtrates or Actinonin treated
291 culture filtrates were used in the calcium flux assay with FPR2 -transfected HL60 cells as described
292 above.

293 **IL-8 detection.** The release of IL-8 from neutrophils was measured with a human IL-8/CXCL8 ELISA Kit
294 (R&D). Primary neutrophils were stimulated with the indicated dilutions of sterile filtered culture
295 filtrates of lactobacilli for 5 hours. Human IL-8 detection in the cellular supernatant was performed
296 according to the IL-8 ELISA vendor's manual using FluoStar optima.

297 **Killing Assay.** *S. aureus* USA300 was inoculated at OD 600 0.1 in tryptic soy broth (TSB) or and grown
298 for 4 h under aerobic conditions (medium to flask ratio 1:5) followed by three washing steps with PBS.
299 For optimal recognition by neutrophils, bacteria were opsonized with 10% pooled normal human
300 serum (NHS) for 60 min and neutrophils and bacteria and were used at a MOI of 0,1. For the bacterial
301 killing assay in the presence of culture filtrates, the neutrophils and bacteria were seeded in a 24-well
302 plate at an MOI of 0.1 and incubated for 60 minutes with $50\mu\text{l}$ culture filtrates or MRS diluted in PMN
303 media (1:10) . After 1 hour, $100 \mu\text{L}$ of each sample was collected, and the neutrophils were lysed with
304 ddH₂O for 15 minutes at 4°C ,1000 rpm. Serial dilutions of the samples were plated on TSA plates using
305 an IUL EDDY Jet 2 spiral plater. On the following day, the colony-forming units (CFUs) were counted with
306 anIUL Flash & Go instrument.

307 **Expression of Complement Receptor and FCy Receptor.** Neutrophils were seeded into a 96-well-plate
308 and stimulated with ALA, KGM, QAQ and SAT peptides at the indicated concentrations for 1 hour.
309 Subsequently, the supernatant was discarded, and then neutrophils were incubated with PE-labeled
310 antibodies against CD11b (BD Pharmingen), CD35 (Miltenyi Biotech), CD64 (Miltenyi Biotech), or an IgG
311 isotype control (Miltenyi Biotech) for 30 minutes on ice. Next, the neutrophils were fixed with 3.7%

312 formaldehyde, and the fluorescence intensity of the neutrophils was determined using a BD
313 FACSCalibur instrument, and the mean fluorescence intensity was analyzed.

314 **Analysis of signal peptides.** Signal peptides of bacterial organisms were identified in publicly available
315 protein sequences (source: NCBI datasets) from selected strains (see Table 1) using the bioinformatic
316 tool SignalP (Version 5.0)(Almagro Armenteros et al. 2019). As positive control for FPR2 agonists we
317 utilized well-defined alpha- and beta-PSMs from staphylococcal species with amphoteric
318 characteristics. Biochemical peptide features were determined using the R package Peptides {Osorio,
319 2015 #1510} (<https://doi.org/10.32614/RJ-2015-001>). To calculate the amphipathic peptide features
320 according to the Eisenberg method {Eisenberg, 1984 #1509} we utilized the provided “hmoment”
321 function. Peptide features were analyzed, and figures were generated using R studio (version 4.2.3).

322

323

324 **Table 1: Overview of the bacterial species used for the characterization of potential signal peptides.**
325 **Complete data of used peptides can be obtained from Supplementary table 1**

Genus	Species	Strain	Source
Lactiplantibacillus	plantarum	ASM326940	NA
Lactobacillus	acidophilus	Do3	commercially available probiotics
Lactobacillus	acidophilus	La14	GenBank: CP005926.2
Lacticaseibacillus	paracasei	Do5	Isolated from yoghurt
Lactiplantibacillus	plantarum	Do4	commercially available probiotics
Lacticaseibacillus	rhamnosus	Do7	commercially available probiotics
Lactobacillus	rhamnosus	GG	GenBank: GCA_003353455.1
Lactococcus	acidophilus	Do6	NA
Lactococcus	lactis	IO1	GenBank: AP012281.1
Lactococcus	piscium	MKFS47	GenBank GCA_000981525.1
Limosilactobacillus	reuteri	ASM918472	NA

326

327

328

329 **Table 2: Overview of the bacterial species used for Analyzes of FPR1 and FPR2 activation (Fig. 5).**

Genus	Species	Strain
<i>Loigolactobacillus</i>	<i>bif fermentans</i>	DSM 20003(Sun et al. 2015)
<i>Lactobacillus</i>	<i>tucceti</i>	DSM 20183(Sun et al. 2015)
<i>Lactobacillus</i>	<i>acidophilus</i>	DSM 20079(Sun et al. 2015)
<i>Lactobacillus</i>	<i>rhamnosus</i>	LGG
<i>Liquorilactobacillus</i>	<i>mali</i>	ATCC 27304
<i>Liquorilactobacillus</i>	<i>hordei</i>	DSM19519 (Rouse, Canchaya, and van Sinderen 2008)

330

331 **Oxidative burst measurements.** Reactive oxygen release (ROS) by human neutrophils was measured
332 over a time of 30 minutes by monitoring luminol-amplified chemiluminescence using 282 μ M luminol
333 (Sigma Aldrich). Neutrophils were stimulated either with negative control (Hank Balanced Salt Solution,
334 Sigma Aldrich) or with fMLF as positive control (1 μ M), KGM (1 μ M), QAQ (10 μ M), SAT (10 μ M), or ALA
335 (1 μ M). Luminescence was measured using Fluostar optima (BMG Labtech).

336 **Statistics** All statistical analyses were performed with Graph Pad Prism 10.0 (GraphPad Software, La
337 Jolla, USA). An unpaired or paired two-tailed Student's t test was performed to compare two data
338 groups, while more than two data groups were analysed by one-way ANOVA with Dunnett's multiple
339 comparisons test, if not otherwise noted.

340 **Conflict of Interest**

341 The authors declare that the research was conducted in the absence of any commercial or financial
342 relationships that could be construed as a potential conflict of interest.

343 **Author Contributions**

344 D.K., R.R. and D.G. designed the experiments; D.K., A.E., R.R., D.G. and P. W. O'Toole performed the
345 experiments; D.G, B.K, A.P., and D.K. edited the manuscript and interpreted the data.

346 **Funding**

347 This study was funded by grants from the German Research Foundation. A.P. is supported by the Cluster
348 of Excellence EXC 2124 'Controlling Microbes to Fight Infections' project ID 390838134

349 **Acknowledgments**

350 We thank Cosima Hirt and Cordula Geckeler for excellent technical support, and Libera Lo Presti for
351 critical reading/editing the manuscript. The authors acknowledge support by the High Performance
352 and Cloud Computing Group at the Zentrum für Datenverarbeitung of the University of Tübingen, the
353 state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through
354 grant no INST 37/935-1 FUGG.

355

356 Alam, A., G. Leoni, M. Quiros, H. Wu, C. Desai, H. Nishio, R. M. Jones, A. Nusrat, and A. S. Neish. 2016.
357 'The microenvironment of injured murine gut elicits a local pro-restitutive microbiota', *Nat
358 Microbiol*, 1: 15021.

359 Alam, A., G. Leoni, C. C. Wentworth, J. M. Kwal, H. Wu, C. S. Ardia, P. A. Swanson, J. D. Lambeth, R. M.
360 Jones, A. Nusrat, and A. S. Neish. 2014. 'Redox signaling regulates commensal-mediated
361 mucosal homeostasis and restitution and requires formyl peptide receptor 1', *Mucosal
362 Immunol*, 7: 645-55.

363 Beller, L., W. Deboutte, G. Falony, S. Vieira-Silva, R. Y. Tito, M. Valles-Colomer, L. Rymenans, D. Jansen,
364 L. Van Espen, M. I. Papadaki, C. Shi, C. K. Yinda, M. Zeller, K. Faust, M. Van Ranst, J. Raes, and
365 J. Matthijnsens. 2021. 'Successional Stages in Infant Gut Microbiota Maturation', *mbio*, 12:
366 e0185721.

367 Birk, D., M. N. O'Leary, M. Quiros, V. Azcutia, M. Schaller, M. Reed, H. Nishio, J. Keeney, A. S. Neish, N.
368 W. Lukacs, C. A. Parkos, and A. Nusrat. 2019. 'Formyl peptide receptor 2 regulates monocyte
369 recruitment to promote intestinal mucosal wound repair', *FASEB J*, 33: 13632-43.

370 Bloes, D. A., M. Otto, A. Peschel, and D. Kretschmer. 2012. 'Enterococcus faecium stimulates human
371 neutrophils via the formyl-peptide receptor 2', *PLoS One*, 7: e39910.

372 Bolger, A. M., M. Lohse, and B. Usadel. 2014. 'Trimmomatic: a flexible trimmer for Illumina sequence
373 data', *Bioinformatics*, 30: 2114-20.

374 Bufl, B., T. Schumann, R. Kappl, I. Bogeski, C. Kummerow, M. Podgorska, S. Smola, M. Hoth, and F.
375 Zufall. 2015. 'Recognition of bacterial signal peptides by mammalian formyl peptide
376 receptors: a new mechanism for sensing pathogens', *J Biol Chem*, 290: 7369-87.

377 Burgueno, J. F., and M. T. Abreu. 2020. 'Epithelial Toll-like receptors and their role in gut homeostasis
378 and disease', *Nat Rev Gastroenterol Hepatol*, 17: 263-78.

379 Chandrasekharan, B., B. J. Saeedi, A. Alam, M. Houser, S. Srinivasan, M. Tansey, R. Jones, A. Nusrat,
380 and A. S. Neish. 2019. 'Interactions Between Commensal Bacteria and Enteric Neurons, via
381 FPR1 Induction of ROS, Increase Gastrointestinal Motility in Mice', *Gastroenterology*, 157:
382 179-92 e2.

383 Chen, K., M. Liu, Y. Liu, T. Yoshimura, W. Shen, Y. Le, S. Durum, W. Gong, C. Wang, J. L. Gao, P. M.
384 Murphy, and J. M. Wang. 2013. 'Formylpeptide receptor-2 contributes to colonic epithelial
385 homeostasis, inflammation, and tumorigenesis', *J Clin Invest*, 123: 1694-704.

386 Chen, K., J. McCulloch, R. Das Neves, G. Rodrigues, W. T. Hsieh, W. Gong, T. Yoshimura, J. Huang, C.
387 O'Huigin, S. Difilippantonio, M. McCollum, G. Jones, S. K. Durum, G. Trinchieri, and J. M.
388 Wang. 2023. 'The beneficial effects of commensal *E. coli* for colon epithelial cell recovery are
389 related with Formyl peptide receptor 2 (Fpr2) in epithelial cells', *Gut Pathog*, 15: 28.

390 Clasen, S. J., M. E. W. Bell, A. Borbon, D. H. Lee, Z. M. Henseler, J. de la Cuesta-Zuluaga, K. Parys, J.
391 Zou, Y. Wang, V. Altmannova, N. D. Youngblut, J. R. Weir, A. T. Gewirtz, Y. Belkhadir, and R. E.
392 Ley. 2023. 'Silent recognition of flagellins from human gut commensal bacteria by Toll-like
393 receptor 5', *Sci Immunol*, 8: eabq7001.

394 de Souza, G. A., N. A. Leversen, H. Malen, and H. G. Wiker. 2011. 'Bacterial proteins with cleaved or
395 uncleaved signal peptides of the general secretory pathway', *J Proteomics*, 75: 502-10.

396 Forsman, H., M. Winther, M. Gabl, S. L. Skovbakke, F. Boulay, M. J. Rabiet, and C. Dahlgren. 2015.
397 'Structural changes of the ligand and of the receptor alters the receptor preference for
398 neutrophil activating peptides starting with a formylmethionyl group', *Biochim Biophys Acta*,
399 1853: 192-200.

400 Hou, Q., Y. Huang, Y. Wang, L. Liao, Z. Zhu, W. Zhang, Y. Liu, P. Li, X. Chen, and F. Liu. 2020.
401 'Lactobacillus casei LC01 Regulates Intestinal Epithelial Permeability through miR-144
402 Targeting of OCLN and ZO1', *J Microbiol Biotechnol*, 30: 1480-87.

403 Im, E. J., H. H. Lee, M. Kim, and M. K. Kim. 2023. 'Evaluation of Enterococcal Probiotic Usage and
404 Review of Potential Health Benefits, Safety, and Risk of Antibiotic-Resistant Strain
405 Emergence', *Antibiotics (Basel)*, 12.

406 Jones, R. M., L. Luo, C. S. Ardita, A. N. Richardson, Y. M. Kwon, J. W. Mercante, A. Alam, C. L. Gates, H.
407 Wu, P. A. Swanson, J. D. Lambeth, P. W. Denning, and A. S. Neish. 2013. 'Symbiotic lactobacilli

408 stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species',
409 *EMBO J*, 32: 3017-28.

410 Kaur, H., S. A. Ali, and F. Yan. 2022. 'Interactions between the gut microbiota-derived functional
411 factors and intestinal epithelial cells - implication in the microbiota-host mutualism', *Front
412 Immunol*, 13: 1006081.

413 Kelm, M., and F. Anger. 2022. 'Mucosa and microbiota - the role of intrinsic parameters on intestinal
414 wound healing', *Front Surg*, 9: 905049.

415 Khoshnevisan, R., M. Anderson, S. Babcock, S. Anderson, D. Illig, B. Marquardt, R. Sherkat, K.
416 Schroder, F. Moll, S. Hollizeck, M. Rohlfs, C. Walz, P. Adibi, A. Rezaei, A. Andalib, S. Koletzko, A.
417 M. Muise, S. B. Snapper, C. Klein, J. R. Thiagarajah, and D. Kotlarz. 2020. 'NOX1 Regulates
418 Collective and Planktonic Cell Migration: Insights From Patients With Pediatric-Onset IBD and
419 NOX1 Deficiency', *Inflamm Bowel Dis*, 26: 1166-76.

420 Kretschmer, D., M. Rautenberg, D. Linke, and A. Peschel. 2015. 'Peptide length and folding state
421 govern the capacity of staphylococcal beta-type phenol-soluble modulins to activate human
422 formyl-peptide receptors 1 or 2', *J Leukoc Biol*, 97: 689-97.

423 Leoni, G., A. Alam, P. A. Neumann, J. D. Lambeth, G. Cheng, J. McCoy, R. S. Hilgarth, K. Kundu, N.
424 Murthy, D. Kusters, C. Reutelingsperger, M. Perretti, C. A. Parkos, A. S. Neish, and A. Nusrat.
425 2013. 'Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair', *J Clin
426 Invest*, 123: 443-54.

427 Li, L., M. Li, Y. Chen, Z. Yu, P. Cheng, Z. Yu, W. Cheng, W. Zhang, Z. Wang, X. Gao, H. Sun, and X. Wang.
428 2024. 'Function and therapeutic prospects of next-generation probiotic Akkermansia
429 muciniphila in infectious diseases', *Front Microbiol*, 15: 1354447.

430 Prescott, D., and D. M. McKay. 2011. 'Aspirin-triggered lipoxin enhances macrophage phagocytosis of
431 bacteria while inhibiting inflammatory cytokine production', *Am J Physiol Gastrointest Liver
432 Physiol*, 301: G487-97.

433 Prjibelski, A., D. Antipov, D. Meleshko, A. Lapidus, and A. Korobeynikov. 2020. 'Using SPAdes De Novo
434 Assembler', *Curr Protoc Bioinformatics*, 70: e102.

435 Rautenberg, M., H. S. Joo, M. Otto, and A. Peschel. 2011. 'Neutrophil responses to staphylococcal
436 pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble
437 modulin release and virulence', *FASEB J*, 25: 1254-63.

438 Ravipaty, S., and J. P. Reilly. 2010. 'Comprehensive characterization of methicillin-resistant
439 Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid
440 chromatography and mass spectrometry', *Mol Cell Proteomics*, 9: 1898-919.

441 Schiffmann, E., B. A. Corcoran, and S. M. Wahl. 1975. 'N-formylmethionyl peptides as
442 chemoattractants for leucocytes', *Proc Natl Acad Sci U S A*, 72: 1059-62.

443 Schlatterer, K., C. Beck, U. Schoppmeier, A. Peschel, and D. Kretschmer. 2021. 'Acetate sensing by
444 GPR43 alarms neutrophils and protects from severe sepsis', *Commun Biol*, 4: 928.

445 Seemann, T. 2014. 'Prokka: rapid prokaryotic genome annotation', *Bioinformatics*, 30: 2068-9.

446 Singh, D., R. Qi, J. L. Jordan, L. San Mateo, and C. C. Kao. 2013. 'The human antimicrobial peptide LL-
447 37, but not the mouse ortholog, mCRAMP, can stimulate signaling by poly(I:C) through a
448 FPRL1-dependent pathway', *J Biol Chem*, 288: 8258-68.

449 Sun, Z., H. M. Harris, A. McCann, C. Guo, S. Argimon, W. Zhang, X. Yang, I. B. Jeffery, J. C. Cooney, T. F.
450 Kagawa, W. Liu, Y. Song, E. Salvetti, A. Wrobel, P. Rasinkangas, J. Parkhill, M. C. Rea, O.
451 O'Sullivan, J. Ritari, F. P. Douillard, R. Paul Ross, R. Yang, A. E. Briner, G. E. Felis, W. M. de Vos,
452 R. Barrangou, T. R. Klaenhammer, P. W. Caufield, Y. Cui, H. Zhang, and P. W. O'Toole. 2015.
453 'Expanding the biotechnology potential of lactobacilli through comparative genomics of 213
454 strains and associated genera', *Nat Commun*, 6: 8322.

455 Talapko, J., A. Vcev, T. Mestrovic, E. Pustijanac, M. Jukic, and I. Skrlec. 2022. 'Homeostasis and
456 Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes
457 in Inflammatory Bowel Disease', *Microorganisms*, 10.

458 Vong, L., J. G. Ferraz, N. Dufton, R. Panaccione, P. L. Beck, P. M. Sherman, M. Perretti, and J. L.
459 Wallace. 2012. 'Up-regulation of Annexin-A1 and lipoxin A(4) in individuals with ulcerative
460 colitis may promote mucosal homeostasis', *PLoS One*, 7: e39244.

461 Walker, B. J., T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, C. A. Cuomo, Q. Zeng, J.
462 Wortman, S. K. Young, and A. M. Earl. 2014. 'Pilon: an integrated tool for comprehensive
463 microbial variant detection and genome assembly improvement', *PLoS One*, 9: e112963.

464 Wang, R., K. R. Braughton, D. Kretschmer, T. H. Bach, S. Y. Queck, M. Li, A. D. Kennedy, D. W. Dorward,
465 S. J. Klebanoff, A. Peschel, F. R. DeLeo, and M. Otto. 2007. 'Identification of novel cytolytic
466 peptides as key virulence determinants for community-associated MRSA', *Nat Med*, 13: 1510-
467 4.

468 Weiss, E., and D. Kretschmer. 2018. 'Formyl-Peptide Receptors in Infection, Inflammation, and
469 Cancer', *Trends Immunol*, 39: 815-29.

470 Yu, S., Z. Zhao, P. Hao, Y. Qiu, M. Zhao, G. Zhou, C. Zhang, J. Kang, and P. Li. 2022. 'Biological Functions
471 and Cross-Kingdom Host Gene Regulation of Small RNAs in Lactobacillus plantarum-Derived
472 Extracellular Vesicles', *Front Microbiol*, 13: 944361.

473 Yuan, Z., and R. J. White. 2006. 'The evolution of peptide deformylase as a target: contribution of
474 biochemistry, genetics and genomics', *Biochem Pharmacol*, 71: 1042-7.

475