

1 **Mitochondrial DNA removal is essential for sperm development and**
2 **activity**

3
4 Zhe Chen¹, Fan Zhang¹, Annie Lee¹, Michaela Yamine¹, Zong-Heng Wang¹, Guofeng
5 Zhang², Chris Combs¹ & Hong Xu^{1*}

6
7
8 1. National Heart, Lung, and Blood Institute, NIH
9 2. National Institute of Biomedical Imaging and Bioengineering, NIH

10 * Correspondence: Hong Xu (hong.xu@nih.gov)

11

12

13 During multicellular organisms' reproduction, organelles, cytoplasmic materials, and
14 mitochondrial DNA (mtDNA) are all derived from maternal lineage. Active mtDNA
15 elimination during spermatogenesis has emerged as a conserved mechanism ensuring
16 the uniparental mitochondrial inheritance in animals^{1 2 3 4}. However, given the existence
17 of post-fertilization processes degrading sperm mitochondria^{5 6 7 8 9}, the physiological
18 significance of sperm mtDNA removal is not clear. We report that mtDNA removal is
19 indispensable for sperm development and activity. We uncover a novel mitochondrial
20 exonuclease, ExoA (Exonuclease A) that is specially expressed in late spermatogenesis
21 and exclusively required for mtDNA elimination. Loss of ExoA impairs mtDNA clearance
22 in elongated spermatids and impedes the progression of individualization complexes that
23 strip away cytoplasmic materials and organelles. Additionally, persistent mtDNA in mature
24 sperm causes marked fragmentation of nuclear genome and complete sterility of *exoA*
25 mutant male flies. All these defects can be suppressed by expressing a mitochondrially
26 targeted bacterial exonuclease to ectopically remove mtDNA. Our work illustrates the
27 developmental necessity of mtDNA clearance for the effective cytoplasm removal at the
28 end of spermatid morphogenesis and to prevent potential nuclear-mito imbalance in
29 mature sperms, in which the activity of nuclear genome is shutdown. Hence, the
30 uniparental mitochondrial inheritance seems co-evolved with a key feature of sexual
31 reproduction, the asymmetry between two gametes.

32
33

1 **Main**

2 Mitochondrial genome is transmitted exclusively through maternal lineage in most
3 sexually reproduced organisms. However, the underlying mechanisms of uniparental
4 inheritance are not well-understood, and its physiological significance remains elusive.
5 The maternal inheritance was once attributed to the simple dilution of sperm mitochondrial
6 DNA (mtDNA) in the zygote, which contains an enormous amount of maternal mtDNA¹⁰
7¹¹. However, increasing evidence suggests that mtDNA and mitochondria-derived
8 structures are actively eliminated during spermatogenesis^{1 2 3 4} or embryogenesis^{5 6 7 8}
9⁹, respectively. Considering the high energy demand of the spermatogenesis process and
10 sperm motility, it is intriguing why fathers proactively remove sperm mtDNA before
11 fertilization. Understanding the evolutionary drive of mtDNA removal in spermatogenesis
12 is of great interest. In *Drosophila* testis, abundant mitochondrial nucleoids are observed
13 along the length of mitochondrial derivatives in elongating spermatids², but the majority
14 of them abruptly disappear in fully elongated spermatids. Few remaining nucleoids are
15 stripped away by progressing actin cones during spermatid individualization, and
16 eventually end up in waste bags. EndoG², a mitochondrial endonuclease, and Tamas³,
17 the mitochondrial DNA polymerase, are involved in the pre-individualization mtDNA
18 removal. EndoG is a site-specific endonuclease, targeting both mtDNA^{12 13} and nuclear
19 DNA (nuDNA)¹⁴. Notably, the polymerase activity of Tamas, not its exonuclease activity,
20 is required for mtDNA removal³. Hence, additional nucleases, particularly an
21 exonuclease, are likely involved in further degrading EndoG-nicked mtDNA. Additionally,
22 the pleiotropy of EndoG and Tamas poses challenges to understanding the physiological
23 significance of mtDNA removal during spermatogenesis.

24
25

26 **A testis mitochondrial nucleoid protein, ExoA, is required for male fertility**

27 We hypothesized that a protein specifically involved in mtDNA removal would likely show
28 biased expression in testis and be associated with mitochondrial nucleoids. To this end,
29 we surveyed the expression patterns of *Drosophila* homologs of previously identified
30 mammalian nucleoid proteins^{15 16 17} (Extended Data Fig. 1; Supplementary table 1).
31 Among them, a candidate nucleoid protein encoded by the CG12162 locus, known as
32 Poldip2, was found to be highly enriched in testes (Extended Data Fig. 1). Poldip2 was

1 initially identified as a human polymerase δ P50-interacting protein in a yeast two-hybrid
2 screen¹⁸ and has been proposed to be involved in nuclear genome replication and repair
3¹⁹. However, Poldip2 was exclusively localized to the mitochondrial matrix based on a
4 GFP complementation assay (Fig. 1a) and concentrated on mitochondrial nucleoids (Fig.
5 1b). Therefore, Poldip2 is unlikely to interact with polymerase δ, a nuclear protein. To
6 avoid future confusion, we renamed Poldip2 to ExoA due to its exonuclease activity, as
7 described below.

8

9 Using CRISPR/Cas9-mediated non-homologous end joining, we generate a deletion,
10 *exoA^{del}*, which removed most the coding region of *exoA* (Fig. 1c). No ExoA protein was
11 detected in *exoA^{del}* flies (Fig. 1d), indicating this deletion is a null allele. The *exoA^{del}* flies
12 were largely healthy, except that male flies were semi-sterile (Fig. 1e). Newly-eclosed
13 male *exoA^{del}* flies produced much less progeny compared to wild-type (wt) flies and
14 became completely sterile after two weeks (Fig. 1e). The fertility of *exoA^{del}* male flies was
15 fully restored by a mini gene spanning the genomic region of *exoA* (Fig. 1e),
16 demonstrating that impaired male fertility is caused by the loss of ExoA. Additionally, a
17 transgene containing the cDNA of human homolog of *exoA*, *hPoldip2*, flanked by 5'- and
18 3'-UTRs of *exoA*, largely restored the fertility of *exoA^{del}* male flies, indicating a conserved
19 function of ExoA in maintaining male fertility in metazoans (Fig. 1e).

20

21 **Persistent mtDNA impairs male fertility**

22 To elucidate the underlying cause of impaired fertility of *exoA^{del}* male flies, we examined
23 the developmental expression pattern of ExoA in the testes. We generated an ExoA-
24 mNeonGreen (ExoA-mNG) reporter by inserting the *mNeonGreen* cDNA into the
25 endogenous locus of *exoA* (Fig. 1c). ExoA-mNG expression was hardly detected in early
26 spermatogenesis stages but exhibited an abrupt increase in fully elongated spermatids,
27 which were marked with polyglycylated tubulin (Fig. 1f). Its expression persisted through
28 all subsequent developemetal stages, including mature spermatozoa desposited in
29 seminal vesicles (Fig. 1g).

30

31 The onset of ExoA expression coincided with mtDNA removal in elongated spermatids².
32 Additionally, ExoA was found to be enriched on mitochondrial nucleoids (Fig. 1b). These

1 observations intrigued us to test whether ExoA is involved in mtDNA removal. We stained
2 isolated spermatid bundles with DAPI, a fluorescent DNA dye, to visualize mtDNA. In
3 elongating spermatids, mitochondrial nucleoids were evenly distributed in both wt and
4 *exoA^{del}* sperm tails (Fig. 2a). The total number of nucleoids in early- and mid-elongating
5 spermatids was comparable between wt and *exoA^{del}* (Fig. 2d and Extended Data Fig. 2a),
6 although some nucleoids were notably larger in *exoA^{del}* spermatids (Extended Data Fig.
7 2c), suggesting a potential defect in nucleoid organization. In fully elongated spermatids,
8 most mitochondrial nucleoids disappeared in wt (Fig. 2b, d, e and Extended Data Fig. 2a,
9 b), indicating active mtDNA removal at this stage. In contrast, a significant amount of
10 mtDNA remained in *exoA^{del}* spermatids (Fig. 2b, d, e and Extended Data Fig. 2a, b) and
11 persisted after individualization (Fig. 2c). As intact seminal vesicles are impermeable to
12 DAPI, we imaged an endogenously tagged TFAM reporter, TFAM-mNeonGreen²⁰, which
13 marks mitochondrial nucleoids (Extended Data Fig. 2d, e), to assess mtDNA in mature
14 sperm. Many TFAM puncta were detected inside *exoA^{del}* seminal vesicles, while no
15 nucleoids were found in wt seminal vesicles (Fig. 2f).

16
17 We further quantified the copy number of mtDNA molecules in mature sperms. Either
18 *w¹¹¹⁸* or *exoA^{del}* male flies carrying wild-type mtDNA (*mt:wt*) were mated with *w¹¹¹⁸* female
19 flies carrying homoplasmic *mt:ND2^{del1}*, which contains a 9-base pair deletion on mtDNA-
20 encoded *ND2* locus. Subsequently, we dissected the sperm storage organ, spermatheca,
21 from copulated female flies and subjected them to droplet digital PCR analysis, using
22 primers specifically targeting paternal mtDNA (*mt:wt*) (Extended Data Fig. 2f, f'). In the
23 cross using *w¹¹¹⁸* male flies, no paternal mtDNA was detected (Extended Data Fig. 2g,
24 g'), supporting the notion that mature sperm are devoid of mtDNA in *Drosophila*^{2 3}.
25 However, when fathers were *exoA^{del}* flies, a significant amount of paternal mtDNA was
26 detected (Extended Data Fig. 2g, g'). On average, each mature sperm of *exoA^{del}* had 59
27 copies of mtDNA (Fig. 2g). Paternal mtDNA was detected in embryos 30 minutes after
28 egg laying but disappeared 6 hours later (Extended Data Fig. 2h, h'), consistent with the
29 notion that sperm mitochondria are destroyed during early embryogenesis⁸. Altogether,
30 these observations demonstrate that ExoA is essential for mtDNA removal in late
31 spermatogenesis.

32

1 We next addressed whether the persistence of mtDNA in mature sperm is the cause of
2 impaired fertility in *exoA^{del}* male flies. Given that EndoG nicks mtDNA in developing
3 spermatids², we reasoned that ectopically introducing an exonuclease into mitochondria
4 would degrade mtDNA nicked by EndoG in *exoA^{del}* spermatids. We replaced the coding
5 region of *exoA* with a fusion gene consisted of a mitochondrial targeting sequence and
6 the cDNA encoding *E.coli* Exonuclease III (*mitoExoIII*), using CRISPR/Cas9 mediated
7 recombination (Fig. 3a). To prevent potential leaky expression of *mitoExoIII*, we placed
8 the SV40 transcription-terminating sequence²¹, flanked by two Flippase (FLP)
9 recombination target (FRT) sites, in front of *mitoExoIII*. In the presence of FLP activated
10 by a *Bam-gal4*, FRT-mediated recombination excises the termination sequence, allowing
11 the expression of *mitoExoIII* under the control of *exoA* promoter exclusively in germline.
12 Expression of *mitoExoIII* in the heteroallelic combination of the *exoA* null background
13 reduced the abundance of remaining mitochondrial nucleoids in mature sperm (Fig. 3b),
14 and importantly, restored male fertility in both young and old *exoA* null flies (Fig. 3c),
15 indicating that the persistence of mtDNA in late spermatogenesis impairs male fertility.
16

17 **ExoA is a mitochondrial exonuclease.**

18 A previous study showed that Poldip2 diminished the signal of DNA probes¹⁹, although
19 this phenomenon has not been further investigated. Herein, we found that a foreign
20 exonuclease can functionally replace ExoA in *Drosophila*. These observations prompted
21 us to explore whether ExoA might have nuclease activity. We expressed and purified the
22 full-length recombinant ExoA protein from *E.coli* to a purity above 96% (Extended Data
23 Fig. 3a). Incubation of 5'-6-FAM labeled 20-nt poly(dT) (Fig. 3d) or poly(dA) (Extended
24 Data Fig. 3b) with recombinant ExoA resulted in a ladder-like pattern of oligonucleotides
25 ranging from monomer to 19-mer. ExoA also degraded 3'-6-FAM labeled 20-nt poly(dT)
26 (Fig. 3e) or poly(dA) (Extended Data Fig. 3c) in the 5'-3' direction. In a reaction using a
27 single-stranded DNA (ssDNA) substrate consisting of mixed nucleotides (Extended Data
28 Fig. 3d), different intensities of degradation intermediates were observed, suggesting a
29 potential nucleotide preference of ExoA. Indeed, ExoA showed minimal degradation on a
30 20-nt poly(dC) (Extended Data Fig. 3e-h), and a stretch of tandem dC hindered the
31 progression of ExoA on a ssDNA substrate (Fig. 3f). Furthermore, we examined ExoA's
32 exonuclease activity on double-stranded DNA (dsDNA) substrates with various

1 configurations. While the intact dsDNA substrate exhibited minimal degradation by ExoA,
2 dsDNA with either a nick or a gap was susceptible to degradation (Fig. 3g). Collectively,
3 these results demonstrate that ExoA is a DNA exonuclease, which can degrade both
4 ssDNA and dsDNA with breaks, and prefers dA/dT over dG/dC. We hence renamed the
5 *CG12162* locus, previously known as *Drosophila Poldip2* to *exonuclease A* (*exoA*).
6

7 **Persistent mtDNA impedes individualization**

8 We have established that ExoA is a mitochondrial exonuclease highly enriched in the
9 testis, specifically degrading mtDNA in elongated spermatids. We next explored how the
10 presence of mtDNA impairs male fertility in *exoA^{del}* flies. The testis of *exoA^{del}* flies did not
11 exhibit obvious morphological defects (Extended Data Fig. 4a, f). Consistent with ExoA's
12 spatial pattern, early stages of spermatogenesis seemed unaffected in *exoA^{del}* testes.
13 While the formation of individualization complexes (ICs), traveling ICs and waste bags
14 also appeared normal in *exoA^{del}* testes (Extended Data Fig. 4, b-d, g-i), the coiling region
15 was notably enlarged (Fig. 4a and Extended Data Fig. 4k), accumulating many needle-
16 shaped nuclei, some of which remained bundled together (Fig. 4a), suggesting a potential
17 individualization defect. The seminal vesicles of both 3-day and 2-week-old *exoA^{del}* flies
18 were notably smaller and contained fewer mature sperm compared to wt (Fig. 4b and
19 Extended Data Fig. 4e, j). In transmission electron microscopic analysis of the
20 individualized cyst of *exoA^{del}* flies, some spermatids were still enveloped in a continues
21 membrane structure, aside from the remaining spermatids that were properly
22 individualized (Fig. 4c, red arrowhead). Additionally, individualized spermatids showing
23 incomplete membrane contour were frequently observed (Fig. 4c, red arrows). Both
24 phenotypes suggest a potential defect in sperm individualization.
25

26 If persistent mtDNA impedes ICs progression, one would expect that a greater amount of
27 remaining mtDNA would lead to a stronger individualization defect. ExoA, a mitochondrial
28 exonuclease, might work in synergy with EndoG, a mitochondrial endonuclease, to rapidly
29 eliminate mtDNA in elongated spermatids ². Hence, we attempted to examine the
30 spermatids individualization in a background lacking both *exoA* and *endoG*. We deleted
31 the entire coding region of *endoG* using CRISPR technology and combined *exoA^{del}* with
32 a trans-heterozygous combination consisting of *endoG^{KO}* and *EndoG^{MB07150}*. The double

1 mutant (*endoG*^{MB07150/KO}; *exoA*^{del}) was completely sterile, contrasting with the normal
2 fertility of trans *endoG* (*endoG*^{MB07150/KO}) (Fig. 4d). Individual nucleoids were further
3 enlarged in size on average (Fig. 4e-g and Extended Data Fig. 4I), indicating more severe
4 defects in nucleoid organization or morphology. In elongated spermatids, approximately
5 74.5% of mitochondrial nucleoids persisted in double mutant, whereas 11.3% and 23.8%
6 remained in the *endoG* mutant and *exoA*^{del}, respectively (Fig. 4h). Importantly, the
7 travelling ICs were disorganized, and abundant mtDNA was detected at both basal and
8 distal regions of cystic bulges in the double mutant (Fig. 4g). The observation that more
9 remaining mtDNA caused more severe individualization defects further substantiates that
10 mtDNA removal is necessary for individualization, allowing the rapid and smooth progress
11 of travelling ICs.

12

13 **Persistent mtDNA damages nuclear genome**

14 Having demonstrated that mtDNA removal promotes sperm individualization, which
15 explains the reduced fertility of young *exoA*^{del} male flies, we next asked why older *exoA*^{del}
16 male flies were completely infertile. Serendipitously, we found that nuclear DNA (nuDNA)
17 was markedly fragmented in mature sperm of 2-week-old *exoA*^{del} flies, but not in young
18 *exoA*^{del} flies or wild-type flies at either age (Fig. 5a, b). Importantly, the ectopic expression
19 of mitoExoIII, which can degrade mtDNA, suppressed the nuDNA fragmentation in mature
20 sperms of old *exoA*^{del} flies (Fig. 5b), indicating that the persistent mtDNA triggers nuDNA
21 damage.

22

23 During *Drosophila* spermatogenesis, nuDNA breaks occur to facilitate the histone-to-
24 protamine transition from the post-meiotic stage onwards. These breaks are repaired in
25 late elongation and sperm individualization stages. The timing of appearance and
26 disappearance of nuDNA breaks were normal in *exoA*^{del} flies (Extended Data Fig. 5a),
27 suggesting that the nuDNA fragmentation is not caused by defects in chromatin
28 remodeling. We stained the testes with tetramethylrhodamine methyl ester (TMRM) and
29 MitoTracker Green, fluorescent dyes sensitive to mitochondrial membrane potential and
30 mitochondrial mass, respectively. The ratio of TMRM intensity to that of Mitotracker
31 Green, an indication of mitochondrial membrane potential, was decreased in mature
32 sperm of young *exoA*^{del} flies compared to the wt flies (Extended Data Fig. 5b). This

1 reduced membrane potential was more pronounced in 2-week-old *exoA^{del}* flies (Extended
2 Data Fig. 5c). Correspondingly, reactive oxygen species (ROS), visualized with CellROX
3 staining, were markedly increased in mature sperm of 2-week-old *exoA^{del}* flies (Fig. 5c,
4 d). It is likely that remaining mtDNA impairs mitochondrial respiration, which increases
5 oxidative stress over time, and eventually, accumulating ROS damages the nuclear
6 genome.

7

8 **Discussion**

9 Previous studies show that EndoG is involved in degrading mtDNA during *Drosophila*
10 spermatogenesis. However, EndoG only nicks dsDNA at (dG)_n/(dC)_n tracks, whereas
11 metazoan mitochondrial genome possess an unusually biased A/T composition^{22 23 24 25},
12 suggesting that other nucleases must be involved. Here, we discover that ExoA is a
13 mitochondrial exonuclease, highly expressed in *Drosophila* testis, and essential for
14 mtDNA removal in elongated spermatids. ExoA degrades DNA in both directions and
15 prefers dA/dT nucleotides. The *exoA* and *endoG* double mutant exhibited a stronger
16 phenotype than either mutant individually, suggesting that these two enzymes may work
17 in parallel in mtDNA removal. Alternatively, EndoG and ExoA may work in tandem, with
18 EndoG generating initial breaks on mtDNA, followed by ExoA degrading the nicked DNA.
19 The removal of mtDNA is delayed but eventually executed in *endoG* mutant flies, which
20 exhibit normal fertility², suggesting that other mechanisms independent of EndoG may
21 generate breaks on mtDNA, facilitating the degradation of mtDNA by ExoA (Fig. 5e).

22

23 Developmental declines in mtDNA content have also been observed during sperm
24 development in mammals^{4 26 27 28}, albeit to varying extents. The expression of human
25 ortholog of ExoA, hPoldip2 can restore the male fertility of *exoA^{del}* flies, suggesting a
26 potentially conserved function of ExoA homologs in mammals. Unlike ExoA, mammalian
27 Poldip2 is widely expressed across various tissues. It is possible that these proteins may
28 have evolved a broader role in mtDNA homeostasis, extending beyond their primary
29 function in spermatogenesis. Mitochondrial genomes have a substantially higher mutation
30 rate than nuclear genomes in metazoans²⁹. However, the repertoire of repair pathways
31 for mtDNA is limited³⁰. Studies in mammalian cells have demonstrated that damaged
32 mtDNA molecules are rapidly degraded^{31 32}, followed by repopulation with intact

1 genomes. Given the presence of multiple copies of the mitochondrial genome in each cell
2 and the relatively higher cost of repair mechanisms ³⁰, degradation of damaged mtDNA
3 might be an effective way to preserve fidelity. It would be intriguing to investigate the
4 potential roles of Poldip2 in regulating mtDNA homeostasis and maintaining mtDNA
5 integrity.

6

7 In multicellular organisms, the egg is furnished with maternally derived organelles and
8 macromolecules, including RNAs and proteins, deposited with defined polarity and spatial
9 patterns ³³ to support the rapid early embryonic cycles and instruct the subsequent
10 pattern formation. In contrast, the mature sperm is a “stripped down” cell. All
11 macromolecules and organelles in the cytoplasm, including ribosomes, ER, and Golgi,
12 except for mitochondria and axoneme, are cleared ^{34 35}. This clearance process not only
13 prevents the deposition of sperm-derived proteins and mRNAs that could disrupt early
14 embryonic cycles and patterning, but also streamlines sperm shape for effective
15 movement ^{33 35}. It has been demonstrated that mtDNA replisomes are enriched in two
16 membrane-spanning structures and tethered to ER-mitochondrial contacts ^{36 37}, which
17 are frequently observed in developing spermatids ^{34 38}. If not degraded, mtDNA could be
18 linked to ICs indirectly through these structures in individualizing spermatids, impeding
19 the progression of traveling ICs. This proposition explains the association of nucleoids
20 with ICs in the *exoA* and *endoG* double mutants and the individualization defects in these
21 flies. Persistent mtDNA could also cause potential mito-nuclear imbalance. In mature
22 sperm, nuclear genes’ expression is completely shut down. The persistent mtDNA could
23 produce excessive, unassembled mtDNA-encoded electron transport chain subunits,
24 which may impair mitochondrial respiration and lead to the generation of excessive
25 damaging free radicals ^{39 40}. Supporting this idea, mature sperms of old *exoA^{del}* flies
26 exhibited an increased ROS level, along with markedly fragmented nuclear genome. A
27 study in mice also showed that sperm mobility is negatively correlated with mtDNA copy
28 numbers ²⁶. Therefore, mtDNA removal appears essential for two key aspects of male
29 reproductive biology: the effective removal of cytoplasm during sperm development and
30 preventing potential mito-nuclear imbalance in mature sperms. The stringent uniparental
31 inheritance of mitochondrial genome, one of the most mysterious genetic phenomena in

1 multicellular organisms, might be a prerequisite for the asymmetry between two gametes
2 in sexual reproduction.

3

4

5

6

7 **Acknowledgements**

8 We thank Dr. S. Deluca for advice on project; Dr. X. Chen for proving FRT-SV40 PolyA-
9 FRT pBluescript KS (-) plasmid; Bloomington Drosophila Stock Center; Drosophila
10 Genomics Resource Center for various plasmids; BestGene for Drosophila injection
11 service. This work is supported by the National Heart, Lung, and Blood Institute Intramural
12 Research Program.

13

14 **Author contributions:** Z.C. conceived and developed the concept, tested hypothesis,
15 designed and performed the experiments, analyzed data, interpreted results, and wrote
16 and edited the manuscript; F. Z. designed and performed ROS staining, and edited the
17 manuscript; A.L. contributed to the generation and the maintenance of transgenic flies;
18 M.Y. contributed to the generation the maintenance of fly stocks; Z.W. helped with the
19 sperm bundle isolation and staining; G.Z. helped with the TEM experiment; C.C. advised
20 and helped with the super resolution microscopy analysis; H.X. conceived developed the
21 concept; formulated the hypothesis; supervised the project and experimental design,
22 interpreted results, and wrote and edited the manuscript.

23

24 **Competing interests:** Authors declare no competing interests.

25

26 **Materials & Correspondence:** All original data needed to evaluate the manuscript are
27 deposited in the NIH shared drive, and will be available upon request, following the
28 Journal's instruction. All materials presented in this work will be available upon request,
29 under a material transfer agreement with NHLBI. Correspondence and material request
30 should be addressed to H.X (hong.xu@nih.gov).

31

1 Materials and Methods

2 Fly stocks and husbandry

3 *Drosophila melanogaster* was reared in a humidity-controlled incubator under a 12-hour light-dark cycle at
4 25°C using standard cornmeal molasses agar media. The following fly stocks were
5 used: *w*¹¹¹⁸, *EndoG*^{MB07150} (Bloomington Drosophila Stock Center, BDSC, stock 26072), *UAS-FLP* (BDSC,
6 stock 62139), *Bam-gal4*⁴¹, *w*¹¹¹⁸ (*mt:ND2^{del1}*)⁴². The *w*¹¹¹⁸ strain was used as control fly unless otherwise
7 specified.

8

9 Molecular cloning and transgenic flies

10 To construct ExoA-mCherry plasmid that expressing in *Drosophila* S2 cell culture, the coding sequence of
11 *exoA* was PCR amplified from the DGRC (Drosophila Genomics Resource Center) Gold collection
12 (DGRC, stock 3372), fused with C-terminal mCherry tags, and cloned into the pENTR3C vector (Thermo
13 Scientific). Subsequently, the plasmids were recombined into the pAW vector (DGRC, stock 1127) using
14 Gateway LR-clonase II (Thermo Scientific). For the ExoA-mCherry-nGFP plasmid, the *exoA* coding
15 sequence was fused with a C-terminal mCherry tag followed by the N-terminal half of GFP sequence and
16 inserted into the pIB-V5 vector (Thermo Scientific). Plasmid SOD2-cGFP was previously published⁴³.
17 ExoA-6His construct was generated by cloning the *exoA* coding sequence into the pET21b vector, fused
18 with a C-terminal 6His tag.

19

20 To generate the *exoA* mini gene, approximately 5 kb of 5' and 3' flanking sequences of the *exoA* gene
21 were PCR amplified from *w*¹¹¹⁸ genomic DNA and cloned into the pattB vector (DGRC, stock 1420) using
22 the in-fusion cloning method (Takara). The resulting construct was designated as pattB-exoA-mini. For the
23 *hPoldip2* genomic rescue transgene construct, the coding region of *exoA* was substituted with that of
24 *hPoldip2* (GeneCopoeia) on the pattB-exoA-mini plasmid. Subsequently, the rescue transgenes were
25 produced by injecting the plasmids into 25C6 at the attP40 site via PhiC31 integrase-mediated
26 transgenesis (BestGene).

27

28 Generation of CRISPR knock-out and knock-in flies

29 The knock-out and knock-in lines, including *exoA^{del}*, *endoG^{KO}*, ExoA-mNeonGreen and *exoA^{mitoExoII}*, were
30 generated using standard CRISPR methods⁴⁴. For the knock-out lines *exoA^{del}* and *endoG^{KO}*, the non-
31 homologous end joining (NHEJ) approach was employed, involving the design of two guide RNAs
32 (gRNAs) to delete most of the coding region of the respective genes. The guide RNA recognition sites for
33 *exoA* deletion were GCGATGTCCCAGTCTCACAGGG (table. S2, gRNA1) and
34 GCGCGACGATAGCGATTAAGAGG (table. S2, gRNA2), while those for *endoG* deletion were
35 GGCAGCCGAAACAGTTCAAAGG (table. S2, gRNA3) and GAGAGCGTGGAACGCTCGGCGGG
36 (table. S2, gRNA4). The synthesized gRNA sequences were annealed and cloned into pU6-BbsI-chiRNA
37 vector (Addgene #45946). Subsequently, the two plasmids carrying the gRNAs for each gene were
38 injected into Vasa-Cas9 (BDSC, #51323) expressing embryos (BestGene). Enclosed flies were crossed
39

1 with w^{1118} flies, and the progeny carrying the deletions were screened using PCR. Sanger sequencing
2 was performed to verify the deleted sequence.
3

4 For the ExoA-mNeonGreen knock-in line, the *mNeonGreen* coding sequence was inserted into the C-
5 terminus of the *exoA* gene at the genomic locus via the homolog-directed repair mechanism of CRISPR.
6 A homology donor containing a 1000-base pair upstream of the stop codon of *exoA* (left homology arm),
7 a linker sequence ⁴⁵, followed by the *mNeonGreen* coding sequence, and a 1000-base pair downstream
8 of the stop codon of *exoA* (right homology arm), was cloned into the pOT2 vector. The resulting donor
9 plasmid was co-injected with the guide RNA plasmid (table. S2, gRNA2) into Vasa-Cas9 (BDSC, #51323)
10 expressing embryos (BestGene). Eclosed flies were crossed with w^{1118} flies, and the progeny carrying the
11 *mNeonGreen* insertions were screened via PCR. The sequences of the *exoA* genomic region and
12 *mNeonGreen* were verified using Sanger sequencing.
13

14 The *exoA*^{mitoExoIII} line was generated by replacing the coding region of the *exoA* gene with the FRT-SV40-
15 FRT-mitoExoIII cassette through CRISPR. Initially, a homology donor spanning 1000-base pair upstream
16 of the start codon (left homology arm) and the 1000-base pair downstream of the stop codon (right
17 homology arm) of the *exoA* gene was PCR amplified and cloned into pOT2 vector. Concurrently, the FRT-
18 SV40 PolyA-FRT plasmid/pBluescript KS (-) ⁴⁶ was utilized, with a citrate synthase mitochondrial-targeting
19 sequence (MTS, mito) followed by the *E.coli* *xthA* gene (coding Exonuclease III) cloned after the second
20 FRT site via in-fusion cloning (Takara). Subsequently, the entire FRT-SV40-FRT-mitoExoIII sequence
21 was recovered using NotI and EcoRI digestion, replacing the *exoA* coding region on the homology donor
22 plasmid via in-fusion cloning. The resulting donor plasmid was then injected along with two guide RNA
23 plasmids (table. S2, gRNA1 and gRNA2) into Vasa-Cas9 (BDSC, #51323) embryos (BestGene). Eclosed
24 flies were crossed with w^{1118} flies, and the progeny carrying the FRT-SV40-FRT-mitoExoIII cassette
25 insertions were screened via PCR. The sequence of the *exoA* genomic region and the insertions were
26 verified using Sanger sequencing.
27

28 To ensure a homogenous genetic background, all CRISPR lines were backcrossed at least six
29 generations into a w^{1118} background.
30

31 **Male fertility assay**

32 Individual 2-day-old males of the specified genotypes were paired with two virgin w^{1118} females. Every 3
33 days, the male flies were transferred to fresh vials and paired with another two virgin w^{1118} females. The
34 adult progeny from each male fly were counted. A minimum of 20 males per genotype were used for
35 testing.
36

37 **Antibody**

38 The antibodies used in this study were as follows: A custom antibody against ExoA was generated in
39 rabbits using purified full-length protein as the antigen (GenScript). Mouse Polyglycylated-tubulin antibody
40 (1:1000, MABS276, Sigma-Aldrich); Rabbit Anti-BrdU (1:200, ab152095, abcam); Rabbit Anti-hPoldip2

1 (1:500, 15080-1-AP, proteintech); Alexa Fluor 647 Phalloidin (1:50, A22287, Invitrogen); Alexa Fluor 568
2 goat α -mouse IgG (1:200, Invitrogen); and Alexa Fluor 568 goat α -rabbit IgG (1:200, Invitrogen).

3

4 **Immunostaining of *Drosophila* testes**

5 *Drosophila* testes with the specified genotypes were dissected in Schneider's *Drosophila* medium (21720,
6 Gibco) supplemented with 10% fetal bovine serum (FBS) and fixed in PBS containing 4%
7 paraformaldehyde (Electron Microscopy Sciences) for 20 minutes. After three washes with PBS, the
8 tissues were permeabilized in 0.5%Triton X-100 in PBS for 20 minutes. Subsequently, the testes were
9 incubated with blocking solution (PBS, 0.2% BSA, 0.1% Triton X-100) for 1 hour before being incubated
10 with primary antibodies diluted in blocking solution at 4°C overnight. Following three washes with blocking
11 solution, the tissues were incubated with Alexa Fluor 647 Phalloidin and Alexa Fluor-conjugated
12 secondary antibodies for 1 hour at room temperature. Finally, the testes were mounted in Vectashield
13 mounting medium with DAPI (H-1500, Vector Laboratories). Images were acquired using a Leica SP8
14 confocal system (Leica HC PL APO 63 \times /1.4 oil lens; LAS X acquisition software version 3.5.7; scan
15 speed 400 Hz; Pinhole 1 A.U; Excitation 405, 488, 561 and 640 nm; z-stacks with 1 μ m per step). A tile
16 scan was performed to obtain stitched images of whole testes and seminal vesicles. Image processing
17 was performed using Fiji software (version 2.14.0, NIH).

18

19 **Cell culture**

20 S2 cells were cultured in Schneider's *Drosophila* medium supplemented with 10% FBS and penicillin–
21 streptomycin (100 U/mL) following standard procedures. One day before transfection, S2 cells were
22 seeded onto eight-well glass bottom chambered coverslips (Lab-Tek II, Nunc) pre-treated with a 0.5
23 mg/ml Concanavalin A (Sigma) solution. Plasmids were transfected into S2 cells with Effectene
24 transfection reagent (301425, Qiagen). Fluorescent images were acquired using a Perkin Elmer Ultraview
25 confocal system (Zeiss Plan-apochromat 63 \times /1.4 oil lens; Velocity acquisition software; Hamamatsu
26 Digital Camera C10600 ORCA-R2) approximately 48 hours after transfection.

27

28 To stain mitochondrial nucleoids in S2 cells, the Picogreen reagent (P11496, Invitrogen) was diluted 1:300
29 in the cell culture medium and incubated with the cells for 30 minutes (protected from light). After rinsing
30 with PBS three times, fluorescent images were obtained.

31

32 **Staining of spermatid cysts and quantification of mitochondrial nucleoids**

33 Isolation and staining of spermatid cysts were carried out following a previously published protocol with
34 minor modifications². Testes were dissected from 2- to 3-day old male flies in ice-old TB buffer (10 mM
35 Tris pH 6.8, 183 mM KCl, 47 mM NaCl, 1 mM EDTA) and transferred to a small drop of TB (approximately
36 10 μ l) on a siliconized coverslip (HR3-215, Hampton Research). The base of the testis was gently torn off
37 using forceps. While holding the unopened anterior tip of the testis with forceps, the contents were
38 extruded using a glass capillary tube as a squeegee. The sample was then sandwiched between a poly-
39 L-lysine (0.01%, Sigma) treated slide and the coverslip. The sandwich was briefly frozen in liquid nitrogen
40 for 20-30 seconds, the coverslip was removed with a razor blade, and the slide containing the samples

1 was incubated in ice-cold absolute ethanol. The tissues were fixed with 3.7% paraformaldehyde in PBS
2 for 20 minutes, washed twice with PBS for 5 minutes each, and permeabilized with 0.1% Triton X-100 in
3 PBS for 30 minutes. After washing in PBS twice, the samples were incubated with Alexa Fluor 647
4 Phalloidin diluted in blocking solution (PBS, 0.2% BSA, 0.1% Triton X-100) for 2 hours at 37°C in a humid
5 chamber. Samples were washed three times with PBS, stained with DAPI (1 µg/ml in PBS, Sigma) for 30
6 minutes at room temperature, followed by washing in PBS three times and mounting in Vectashield
7 mounting medium with DAPI (H-1500, Vector Laboratories). Images were acquired on a Perkin Elmer
8 Ultraview confocal system (Zeiss Plan-apochromat 63x/1.4 oil lens; Volocity acquisition software;
9 Hamamatsu Digital Camera C10600 ORCA-R2; z-stacks with 0.5 µm per step). A tile scan was performed
10 to obtain stitched images of whole spermatid cysts.

11

12 To assess the numbers and size of mitochondrial nucleoids in spermatid bundles, image analysis was
13 performed using Fiji (NIH). Initially, various regions of interest (ROIs) along the length of a spermatid
14 bundle were chosen and duplicated as z-stack images. The length of the spermatid bundle in each ROI,
15 as well as the distance of the ROI from the nuclear head, was measured using “measure” function.
16 Subsequently, within each ROI, the spermatid cyst was outlined, and the “clear outside” function was
17 applied to focus solely on the area within the spermatid cysts for analysis. Next, in the 405 nm (DAPI)
18 channel, individual mitochondrial nucleoids were segmented using the Fiji plugin “trainable Weka
19 segmentation 3D”. The resulting hyperstack “probability maps” were further analyzed using the “3D
20 objects counter” function. This enabled the quantification of the numbers of segmented mitochondrial
21 nucleoids, as well as the volume of each individual nucleoid within the ROI. The nucleoid density was
22 calculated by dividing the total number or total volume of mitochondrial nucleoids by the length of the
23 spermatid bundle in the respective ROI. To determine the total numbers or volumes of mitochondrial
24 nucleoids in each spermatid bundle, nucleoid density at various points along the length of the bundle
25 were plotted (Fig. 2e and Extended Data Fig. 2b) using GraphPad Prism (version 10.1.1). The area under
26 the curve, which represents the total nucleoid numbers or volumes in 64 spermatids, was subsequently
27 calculated.

28

29 **Quantification of paternal mtDNA copy number using droplet digital PCR (ddPCR)**

30 To quantify mtDNA copy number in mature sperm, *w¹¹¹⁸* (*mt:ND2^{del1}*) females were crossed with *w¹¹¹⁸*
31 (*mt:wt*) or *exoA^{del}* (*mt:wt*) males. For each cross, 30 2-day-old virgin females were mated with 30 2-day-
32 old virgin males for 24 hours at 25°C. Spermatheca, the sperm storage organ, from mated or virgin
33 control *w¹¹¹⁸* (*mt:ND2^{del1}*) females, was dissected in PBS. Tissues were promptly transferred to the ATL
34 lysis buffer from QIAamp DNA micro kit (56304, Qiagen), and total DNA was extracted following the
35 manufacturer’s instructions. To detect paternal mtDNA in embryos, 2-day old *w¹¹¹⁸* (*mt:ND2^{del1}*) females
36 were crossed to 2-day-old *w¹¹¹⁸* (*mt:wt*), *exoA^{del}* (*mt:wt*), or control *w¹¹¹⁸* (*mt:ND2^{del1}*) males. Embryos
37 were collected for 30 minutes on standard grape juice agar plates, and total DNA was extracted from the
38 eggs using QIAamp DNA micro kit at indicated developmental time points.

39

1 Droplet digital PCR (ddPCR) was employed to quantify paternal mtDNA copy number and the number of
2 sperm. Due to the expected much higher abundance of mtDNA compared to single-copy nuclear genes,
3 quantification using the duplex method was deemed unreliable. Therefore, a simplex ddPCR approach
4 was used, where mtDNA and nuDNA assays were analyzed separately using different amounts of input
5 DNA. To specifically detect paternal wild-type mtDNA (*mt: wt*) without detecting maternal mtDNA carrying
6 the 9-bp deletion (*mt:ND2^{del1}*), a primer pair and a double quenched FAM-labelled probe were designed.
7 Additionally, a primer pair and a 3' quenched FAM-labelled probe targeting the Y-chromosome gene *kl-2*
8 were designed to quantify the sperm numbers. Primers/probe sets (IdtDNA Technologies) used in the
9 ddPCR reaction are listed in the table S3.

10

11 Total DNA from *Drosophila* tissues was digested with EcoRI enzyme at 37°C for 1 hour. Subsequently, a
12 ddPCR reaction mix containing 1× ddPCR Supermix for Probes (186-3023, Bio-Rad), 250 nM of probe,
13 900 nM of each primer and the DNA template (as indicated in figure legends), was assembled. The
14 reactions were conducted in the QX200 ddPCR system (Bio-Rad), which includes droplet generation
15 using QX200 droplet generator, PCR reaction on a C1000 Touch thermal cycler, and analysis on a droplet
16 reader. The cycling conditions were as follows: For *mt:ND2* detection, one cycle of 95 °C for 10 minutes,
17 42 cycles of 95 °C (2 °C /second ramp) for 30 seconds, 51°C (2 °C /second ramp) for 1 minute, 72 °C
18 (2°C /second ramp) for 15 seconds, one cycle of 98 °C for 10 minutes, 4°C hold. For the Y-chromosome
19 gene, one cycle of 95 °C for 10 minutes, 40 cycles of 95 °C (2 °C /second ramp) for 30 seconds, 60°C (2
20 °C /second ramp) for 1 minute, one cycle of 98 °C for 10 minutes, 4°C hold. The QuantaSoft analysis
21 software (Bio-Rad) was used to acquire and analyze data.

22

23 To evaluate the specificity of the primers/probe set for *mt:ND2*, a reaction containing 10 ng of total DNA
24 from *w¹¹¹⁸* (*mt:ND2^{del1}*) flies mixed with varying amounts (0, 0.001, 0.005, 0.01 or 0.05 ng) of total DNA
25 from *w¹¹¹⁸* (*mt:wt*) flies was performed (Extended Data Fig. 2f, f'). The coefficient of correlation (R^2) was
26 calculated to be 0.9947, indicating a good correlation between the input *w¹¹¹⁸* (*mt:wt*) DNA amount and
27 the measured copy number. It is noted that although the background signal is low, the input *w¹¹¹⁸* (*mt:wt*)
28 DNA amounts lower than 0.001 ng is out of the linear range. Furthermore, the background signal arising
29 from the presence of a large amount of *w¹¹¹⁸* (*mt:ND2^{del1}*) DNA (from maternal mtDNA) was considered
30 and subtracted in the calculation.

31

32 **Purification of ExoA protein**

33 To produce recombinant ExoA protein, the *exoA* coding sequence was cloned in frame with the C-
34 terminus 6His-tag of pET21b vector. The plasmid was transformed, and the protein was expressed in
35 BL21(DE3) competent cells (EC0114, Thermo Scientific). Bacteria were cultured in Luria-Bertani medium
36 at 37°C until the optical density at the wavelength of 600 nm reaches approximately 0.6. Subsequently,
37 0.4 mM isopropyl-β-D-thiogalactoside (IPTG) (Sigma) was added and the bacteria were cultured for an
38 additional 20 hours at 18°C. Cells were harvested and lysed in buffer A (50 mM sodium phosphate,
39 pH 7.4, 0.3 M NaCl, 10 mM imidazole, 5% (vol/vol) glycerol, 10 mM β-mercaptoethanol) supplemented
40 with 1 mg/ml lysozyme (Sigma) and EDTA-free protease inhibitor (11873580001, Roche) for 1 hour on

1 ice, followed by sonication 5 times for 5 minutes each. The cell lysates were clarified by centrifugation at
2 12,000 g for 30 minutes. The supernatants were first purified using affinity chromatography on a HisTrap
3 column (17524802, Cytiva) on an ÄKTA pure protein purification system (Cytiva). The column was
4 washed sequentially with 40 mM and 80 mM imidazole (Sigma) in buffer A, and the bound proteins were
5 eluted with 250 mM imidazole in buffer A. The eluted protein was dialyzed against buffer B (20 mM Tris-
6 HCl, pH 7.5, 0.1 M NaCl, 5% (v/v) glycerol, and 1 mM DTT), and then loaded onto a 5 ml HiTrap heparin
7 column (17040703, Cytiva) that had been equilibrated with buffer B. Following washing with buffer B,
8 ExoA protein was eluted with a 40 ml gradient of 0.1 M to 1 M NaCl in buffer B, with ExoA eluting at salt
9 concentrations of 0.1-0.3 M. The ExoA-containing fraction was concentrated and further purified using a
10 Superdex 200 increase 10/300 GL size-exclusion chromatography column (28990944, Cytiva)
11 equilibrated in buffer C (20 mM Tris-Cl, pH 7.5, 20 mM NaCl, 5% (v/v) Glycerol, 1 mM DTT and 0.1 mM
12 EDTA). The purified proteins were stored at -80°C and the protein concentration was determined using
13 Bradford plus protein assay reagents (23238, Thermo Scientific).

14

15 **Nuclease assay**

16 All 6-FAM-labelled DNA oligos were synthesized using the RNase-free HPLC purification method (IdtDNA
17 Technologies). To generate the dsDNA substrate, equal molar oligonucleotides were mixed in nuclease-
18 free duplex buffer (IdtDNA Technologies), heated to 95°C for 5 minutes, and gradually cooled to 25°C for
19 45 minutes. The nuclease assay was carried out using a reaction mixture containing 10 mM Tris-HCl, pH
20 8.3, 2.5 mM MgCl₂, 0.5 mM CaCl₂, 5 mM DTT, and 100 nM of 5'- or 3'-6-FAM-labelled ssDNA or dsDNA
21 substrate (table. S4). The reaction was initiated by adding the purified ExoA protein with the
22 concentrations indicated in the figure legends, incubated at 37°C for the indicated time and terminated by
23 adding Novex™ TBE Urea sample buffer (LC6876, Thermo Scientific). The reaction mix was denatured
24 for 5 minutes at 75°C and resolved on a 20% denaturing polyacrylamide gel (SequaGel, EC-833, National
25 Diagnostics) using a Model V16 vertical electrophoresis apparatus (15 cm × 17 cm × 0.8 mm, Apogee
26 Electrophoresis) at 300 V for 2 hours. The gels were imaged on a Typhoon biomolecular imager (GE
27 Healthcare) using the fluorescence scanner (Cy2). Remaining substrate (%) was quantified using Fiji
28 (NIH) and calculated by normalizing the substrate band density at each time point to the band density at
29 time point zero.

30

31 **Transmission electron microscopy (TEM)**

32 *Drosophila* testes were dissected in Schneider's *Drosophila* medium supplemented with 10% FBS and
33 immediately fixed in fixation solution (2.5% glutaraldehyde, 2% formaldehyde in 0.1 M sodium cacodylate
34 buffer) at room temperature for 5 minutes, followed by an additional fixation on ice for 1 hour. After
35 washing in cold cacodylate buffer, the testes were postfixed with reduced 2% Osmium tetroxide (Sigma,
36 reduced by 1.5% potassium ferrocyanide right before use) for 1 hour on ice. After washing with water, the
37 tissues were placed in the thiocarbohydrazide (Electron Microscopy Sciences) solution for 20 minutes at
38 room temperature. Then, the testes were fixed in 2% Osmium tetroxide for 30 minutes at room
39 temperature, stained *en bloc* with 1% uranyl acetate (Electron Microscopy Sciences) overnight at 4°C,
40 and further stained with Walton's lead aspartate solution for 30 minutes at 60°C. After dehydration with

1 ethanol series, the samples were embedded in Epson-Aradite (Electron Microscopy Sciences). The 80
2 nm thin sections cut by Leica EM UC6 ultramicrotome were viewed on a Tecnai T12 (FEI, Hillsboro, OR)
3 transmission electron microscope.

4

5 **TUNEL assay**

6 *Drosophila* testes were dissected in Schneider's *Drosophila* medium (10% FBS) and fixed in PBS
7 containing 4% paraformaldehyde for 20 minutes. After washing in PBS three times, the tissues were
8 permeabilized in 0.25%Triton X-100 in PBS for 20 minutes. Then, the testes were processed following the
9 instructions of APO-BrdU kit (AU1001, Phoenix Flow Systems, Inc). Briefly, the samples were rinsed
10 twice in the wash buffer before being incubated in the DNA-labeling solution containing Tdt enzyme, Br-
11 dUTP, and Tdt reaction buffer. The reaction proceeded at 37°C for 1 hour, after which the samples were
12 rinsed twice in rinse buffer. The samples were blocked in blocking buffer (2% BSA in PBS) for 60 minutes,
13 then incubated with the anti-BrdU antibody (1:200, ab152095, abcam) for 2 hours at room temperature or
14 overnight at 4°C. After three washes with PBS, the samples were incubated with Alexa Fluor 647
15 Phalloidin and Alexa Fluor 568 goat α -rabbit IgG (1:200, Invitrogen). Finally, the samples were mounted
16 in Vectashield antifade mounting medium with DAPI. Images were acquired on a Perkin Elmer Ultraview
17 confocal system.

18

19 **Single-molecule fluorescence *in situ* hybridization (smFISH) of mtDNA**

20 The labelling of mtDNA by TFAM-mNeonGreen in testes was assessed using the single-molecule
21 fluorescence *in situ* hybridization (smFISH) assay, following established protocols ⁴⁷. Briefly, testes from
22 TFAM-mNeonGreen knock-in flies were dissected and fixed in fixative buffer (100 mM sodium cacodylate,
23 pH 7.3, 100 mM sucrose, 40 mM potassium acetate, 10 mM sodium acetate, 10 mM EGTA, 5%
24 paraformaldehyde) for 4 minutes. Subsequently, the samples underwent sequential washing steps with
25 2 \times SSCT buffer (2 \times SSC with 0.1% Tween-20), 2 \times SSCT/20% formamide, 2 \times SSCT/40% formamide, and
26 2 \times SSCT/50% formamide, each for 10 minutes. To make hybridization probes, 30 pairs of 5' labeled CAL
27 Fluor Red 590 DNA oligonucleotide primers (see reference ⁴⁷ for sequences) were synthesized (LGC
28 Biosearch Technologies) and used to PCR amplify DNA fragments from *w¹¹¹⁸* genomic DNA. The
29 resulting ~300 bp PCR products from the 30 reactions were gel purified, pooled with equal molarity, and
30 added into the hybridization solution (2 \times SSC, 50% formamide, 10% dextran sulfate, 2 mg/ml BSA, 10 mM
31 vanadyl ribonucleoside complex (Sigma)). Testes were denatured in the hybridization solution containing
32 CAL Fluor Red 590 labeled probes (5 ng/ μ l) at 91°C for 2 minutes, followed by overnight hybridization at
33 37°C. The following day, the samples were subjected to washing steps, starting with incubation in pre-
34 warmed 2 \times SSCT/50% formamide solution at 37°C, followed by room temperature incubation with
35 2 \times SSCT/40% formamide, 2 \times SSCT/20% formamide, and finally 2 \times SSCT. Last, the samples were mounted
36 in Vectashield antifade mounting medium with DAPI, and images were acquired using a Perkin Elmer
37 Ultraview confocal system.

38

39 **Sperm mitochondrial membrane potential staining**

1 Seminal vesicles from male flies of the indicated genotypes were dissected in Schneider's *Drosophila*
2 medium (10% FBS) and transferred to a slide with PBS containing 500 nM Tetramethylrhodamine
3 (TMRM, I34361, Invitrogen) and 500 nM MitoTracker green (M7514, Invitrogen). After covering the tissue
4 with a coverslip, sperm were extruded from seminal vesicles by gently applying force on the coverslip.
5 Imaging was performed immediately to minimize the effects of hypoxia. Live images were captured using
6 a Visitech instant structured illumination microscope (iSIM, BioVision) with 488-561 Dual camera
7 acquisition mode (Olympus UPlanApo 60x /1.3 Sil oil len; Visiview acquisition software; ORCA-Flash4.0
8 V2 Digital CMOS camera C11440; excitation wavelength 488 nm and 561 nm; exposure time 300
9 millisecond). To calculate the TMRM/MitoTracker Green ratios, image analysis was performed using Fiji
10 (NIH). First, the 488 nm and 561 nm channels were separated in a single image. Then, regions of interest
11 (ROI) within a sperm were selected on the TMRM channel (561 nm) using the "color threshold" function.
12 The "restore selection" function was applied to outline the same area on the corresponding MitoTracker
13 Green channel (488 nm). The mean intensity of the ROI and the background area in each channel were
14 obtained through the "mean gray value" using the "measure" function. Last, the intensity of TMRM and
15 mitoTracker Green was obtained by subtracting the background intensity from the ROI intensity,
16 respectively. The ratiometric values were generated by normalizing the mean intensity of TMRM to that of
17 mitoTracker Green channels.

18

19 **Detection of ROS levels**

20 Detection of ROS levels was conducted using CellROX Deep Red according to the manufacturer's
21 protocol (C10422, Thermo Scientific). Briefly, the testes were incubated in Schneider's *Drosophila*
22 medium containing 5 μ M CellROX Deep Red for 45 minutes at 25°C, followed by washes with PBS and
23 fixation with 3.7% paraformaldehyde for 15 minutes. Samples were then mounted in Vectashield antifade
24 mounting medium with DAPI. Images were captured using a Perkin Elmer Ultraview confocal system, and
25 CellROX intensity was quantified using Fiji (NIH). Regions of interest (ROIs) within a seminal vesicle were
26 selected on the CellROX Deep Red channel (640 nm). The mean intensity of CellROX signal
27 was obtained through the "measure" function on the selected ROI with background subtracted.

28 **Statistical analysis**

29 Data are shown as mean \pm SD (standard deviation). GraphPad Prism software 10.0 was used to generate
30 charts and perform statistical analysis. We used multiple unpaired t test to determine significant
31 differences between two groups. The P value was indicated by stars: ***P < 0.0001; **P < 0.001;
32 *P < 0.05.

33 **Supplementary Table 2. PCR primers used in this study (target length in base pairs)**

34

Purpose	Forward Primer (5'-3')	Reverse Primer (5'-3')
Clone <i>exoA</i> coding sequence (1230)	ATGAGCTTGGTGGCAAGTG	ATCGCTATCGCGCGCTTTTATC

Clone <i>exoA</i> mini gene (5596)	GAAAAGGTGTGTTGAACTAAC	GTTACTATTCTGGGGACATTAC
Clone <i>hPoldip2</i> coding region (1107)	ATGGCAGCCTGTACAGCCGG	CTACCAGTGAAGGCCTGAGGG
<i>exoA^{del}</i> CRISPR knock-out & ExoA-mNeonGreen knock-in		
Clone gRNA1	CTTC GCGATGTCCCATGCTCCACA	AAAC TGTGGAGCATGGGACATCGC
Clone gRNA2	CTTC GCGCGACGATAGCGATTAAG	AAAC CTTAACGCTATCGTCGCGC
Genotyping <i>exoA^{del}</i> (2066) (1364 bp is deleted in <i>exoA^{del}</i> fly)	CTAGATCGAACCGAACCTGAG	CTTACACGCAGTTATTGGCG
PCR homology arm (2000, including left and right arms)	CTCCGCTTCCCCAACGGCTGC	CGATGGGTTTCGCCAACGTTAC
PCR mNeonGreen coding sequence (a linker sequence coding “GSAGS” was added) (720)	GGATCAGCTGGTTCTGTGAGCAAGG GCGAGGAGGAT	CTTGTACAGCTCGTCCATGCC
Genotyping <i>mNeonGreen</i> insertion (1703)	CTAGATCGAACCGAACCTGAG	GGTGGACTTCAGGTTAACTCC
<i>endoG</i> CRISPR knock-out		
Clone gRNA3	CTTC GGCAGCCGAAACAGTTCAA	AAAC TTGGAACGTTCGGCTGCC
Clone gRNA4	CTTC GAGAGCGTGGAACGCTCGGC	AAAC GCCGAGCGTCCACGCTCTC
Genotyping <i>endoG</i> knockout (2355) (731 bp is deleted in <i>endoG^{KO}</i>)	ACCGCAAGGAGTTCCAGAAAA	TTCAGATTACACATCCCCACG
<i>exoA^{mitoExoIII}</i> CRISPR		
PCR homology arm (3407)	TATTAAAGGAAAATATACAGAG	AAGCGATGGGTTTCGCCAACG
Clone citrate synthase MTS (150)	ATGTCGCTCTATCGCATTCC	CTTACGCGCTCCTGCTCCTG
Clone <i>ExoIII</i> coding sequence (801)	AAATTGTCTTTAATATCAACG	TTAGCGGCGGAAGGTCGCCA

1

2

3 **Supplementary Table 3. Primers/probe sets for detecting mt:ND2 and Y-chromosome gene using ddPCR.**

4

	ddPCR <i>mt:ND2</i>	ddPCR Y-chr gene <i>kI-2</i>
--	---------------------	------------------------------

Forward Primer (5'-3')	GGACTAAATCAAACCTTC	AGCCGTGCTTATTAGAAGGG
Reverse Primer (5'-3')	TAAAGATCTTAATATTCATC	ACAGCAGCATCTATCATAGGC
Probe (5'-3')	6-FAM/TTCTTCAAT/ZEN/TAAT CATTAG/IABkFQ	6-FAM/ACAGCTCGTGCAGACTT GGAGGTGGTAA/IABkFQ

1
2 6-FAM: 5' six-FAM fluorophore modification.
3 IABkFQ: 3' Iowa Black FQ quencher modification.
4 ZEN: Internal quencher modification.
5
6 **Supplementary Table 4. oligonucleotide sequence for nuclease assay**
7

Oligo name	Sequence (5'-3')
5'-FAM-dT ₂₀	6-FAM/TTTTTTTTTTTTTTTTTTTT
5'-FAM-dA ₂₀	6-FAM/AAAAAAAAAAAAAAAAAAAAAA
5'-FAM-dC ₂₀	6-FAM/CCCCCCCCCCCCCCCCCCCC
3'-FAM-dT ₂₀	TTTTTTTTTTTTTTTTTT/6-FAM
3'-FAM-dA ₂₀	AAAAAAAAAAAAAAA/6-FAM
3'-FAM-dC ₂₀	CCCCCCCCCCCCCCCCCCCC/6-FAM
5'-FAM-5PS-dT ₂₅	6-FAM/T*T*T*T*T*TTTTTTTTTTTTTTTT
5'-FAM-5PS-dT ₁₅ dC ₁₀	6-FAM/T*T*T*T*T*CCCCCCCCCTTTTTTT
5'-FAM-ssDNA	6-FAM/TACGTCTATCCGGGCTCCTCTAGACTCGACCG
dsDNA_5'-FAM-For	6-FAM/CTACTGATCTACTGACTGTTACATATACAT
dsDNA_Rev1	ATGTATATGTAACAGTCAGTAGATCAGTATAG
dsDNA_Rev2	ATGTATATGTAACAGTCAGT
dsDNA_Rev3	AGATCAGTATAG
dsDNA_Rev4	GATCAGTATAG
molecular marker_32 nt	6-FAM/TACGTCTATCCGGGCTCCTCTAGACTCGACCG
molecular marker_20 nt	6-FAM/TACGTCTATCCGGGCTCCTC
molecular marker_10 nt	6-FAM/TACGTCTATC
molecular marker_5 nt	6-FAM/TACGT

8 To make the dsDNA substrates (Fig. 3g), equal molar of the following oligonucleotides was mixed and
9 annealed:
10 blunt-ended dsDNA: dsDNA_5'-FAM-For and dsDNA_Rev1.
11 dsDNA with a single nick: dsDNA_5'-FAM-For, dsDNA_Rev2, and dsDNA_Rev3
12 dsDNA with a single gap: dsDNA_5'-FAM-For, dsDNA_Rev2, and dsDNA_Rev4
13
14 6-FAM: Six-FAM fluorophore modification.
15 *: Internucleotide phosphorothioate (PS) bonds
16

1 References

2

3 1 Nishimura, Y. *et al.* Active digestion of sperm mitochondrial DNA in single living sperm
4 revealed by optical tweezers. *P Natl Acad Sci USA* **103**, 1382-1387 (2006).
<https://doi.org:10.1073/pnas.0506911103>

5 2 DeLuca, S. Z. & O'Farrell, P. H. Barriers to Male Transmission of Mitochondrial DNA in
6 Sperm Development. *Developmental Cell* **22**, 660-668 (2012).
<https://doi.org:10.1016/j.devcel.2011.12.021>

7 3 Yu, Z. S., O'Farrell, P. H., Yakubovich, N. & DeLuca, S. Z. The Mitochondrial DNA
8 Polymerase Promotes Elimination of Paternal Mitochondrial Genomes. *Current Biology*
9 **27**, 1033-1039 (2017). <https://doi.org:10.1016/j.cub.2017.02.014>

10 4 Lee, W. *et al.* Molecular basis for maternal inheritance of human mitochondrial DNA. *Nat
11 Genet* **55**, 1632-1639 (2023). <https://doi.org:10.1038/s41588-023-01505-9>

12 5 Sutovsky, P. *et al.* Development - Ubiquitin tag for sperm mitochondria. *Nature* **402**, 371-
13 372 (1999). <https://doi.org:DOI 10.1038/46466>

14 6 Sutovsky, P. *et al.* Ubiquitinated sperm mitochondria, selective proteolysis, and the
15 regulation of mitochondrial inheritance in mammalian embryos. *Biol Reprod* **63**, 582-590
16 (2000). <https://doi.org:DOI 10.1095/biolreprod63.2.582>

17 7 Zhou, Q. H. *et al.* Mitochondrial endonuclease G mediates breakdown of paternal
18 mitochondria upon fertilization. *Science* **353**, 394-399 (2016).
<https://doi.org:10.1126/science.aaf4777>

19 8 Politi, Y. *et al.* Paternal Mitochondrial Destruction after Fertilization Is Mediated by a
20 Common Endocytic and Autophagic Pathway in Drosophila. *Developmental Cell* **29**, 305-
21 320 (2014). <https://doi.org:10.1016/j.devcel.2014.04.005>

22 9 Sato, M. & Sato, K. Degradation of Paternal Mitochondria by Fertilization-Triggered
23 Autophagy in *C. elegans* Embryos. *Science* **334**, 1141-1144 (2011).
<https://doi.org:10.1126/science.1210333>

24 10 Gyllensten, U., Wharton, D., Josefsson, A. & Wilson, A. C. Paternal Inheritance of
25 Mitochondrial-DNA in Mice. *Nature* **352**, 255-257 (1991). [https://doi.org:DOI 10.1038/352255a0](https://doi.org:DOI
10.1038/352255a0)

26 11 Wolff, J. N. & Gemmell, N. J. Lost in the zygote: the dilution of paternal mtDNA upon
27 fertilization. *Heredity* **101**, 429-434 (2008). <https://doi.org:10.1038/hdy.2008.74>

28 12 Cote, J. & Ruizcarrillo, A. Primers for Mitochondrial-DNA Replication Generated by
29 Endonuclease-G. *Science* **261**, 765-769 (1993). [https://doi.org:DOI 10.1126/science.7688144](https://doi.org:DOI
10.1126/science.7688144)

30 13 Ruizcarrillo, A. & Renaud, J. Endonuclease-G - a (Dg)N.(Dc)N-Specific Dnase from
31 Higher Eukaryotes. *Embo J* **6**, 401-407 (1987). [https://doi.org:DOI 10.1002/j.1460-2075.1987.tb04769.x](https://doi.org:DOI
10.1002/j.1460-2075.1987.tb04769.x)

32 14 Li, L. Y., Luo, L. & Wang, X. D. Endonuclease G is an apoptotic DNase when released
33 from mitochondria. *Nature* **412**, 95-99 (2001). [https://doi.org:DOI 10.1038/35083620](https://doi.org:DOI
10.1038/35083620)

34 15 Han, S. *et al.* Proximity Biotinylation as a Method for Mapping Proteins Associated with
35 mtDNA in Living Cells. *Cell Chem Biol* **24**, 404-414 (2017).
<https://doi.org:10.1016/j.chembiol.2017.02.002>

36 16 Bogenhagen, D. F., Rousseau, D. & Burke, S. The layered structure of human
37 mitochondrial DNA nucleoids. *J Biol Chem* **283**, 3665-3675 (2008).
<https://doi.org:10.1074/jbc.M708444200>

38 17 Rajala, N. *et al.* Whole Cell Formaldehyde Cross-Linking Simplifies Purification of
39 Mitochondrial Nucleoids and Associated Proteins Involved in Mitochondrial Gene
40 Expression. *Plos One* **10** (2015). [https://doi.org:ARTN e0116726
10.1371/journal.pone.0116726](https://doi.org:ARTN e0116726
10.1371/journal.pone.0116726)

1 18 Liu, L., Rodriguez-Belmonte, E. M., Mazloum, N., Xie, B. & Lee, M. Y. W. T. Identification
2 of a novel protein, PDIP38, that interacts with the p50 subunit of DNA polymerase δ and
3 proliferating cell nuclear antigen. *Journal of Biological Chemistry* **278**, 10041-10047
4 (2003). <https://doi.org:10.1074/jbc.M208694200>

5 19 Maga, G. et al. DNA polymerase delta-interacting protein 2 is a processivity factor for
6 DNA polymerase lambda during 8-oxo-7,8-dihydroguanine bypass. *P Natl Acad Sci USA*
7 **110**, 18850-18855 (2013). <https://doi.org:10.1073/pnas.1308760110>

8 20 Zhang, F. et al. Genetic and bioinformatic analyses reveal transcriptional networks
9 underlying dual genomic coordination of mitochondrial biogenesis. *bioRxiv* (2024).
10 <https://doi.org:10.1101/2024.01.25.577217>

11 21 Connelly, S. & Manley, J. L. A functional mRNA polyadenylation signal is required for
12 transcription termination by RNA polymerase II. *Genes Dev* **2**, 440-452 (1988).
13 <https://doi.org:10.1101/gad.2.4.440>

14 22 Gammie, P. A. & Frezza, C. Mitochondrial DNA: the overlooked oncogenome? *Bmc
15 Biology* **17** (2019). <https://doi.org:ARTN> 53 10.1186/s12915-019-0668-y

16 23 Kurabayashi, A. & Ueshima, R. Complete sequence of the mitochondrial DNA of the
17 primitive opisthobranch gastropod Pupa strigosa: Systematic implication of the genome
18 organization. *Molecular Biology and Evolution* **17**, 266-277 (2000). [https://doi.org:DOI 10.1093/oxfordjournals.molbev.a026306](https://doi.org:DOI
19 10.1093/oxfordjournals.molbev.a026306)

20 24 Wolstenholme, D. R. Animal mitochondrial DNA: structure and evolution. *Int Rev Cytol*
21 **141**, 173-216 (1992). [https://doi.org:10.1016/s0074-7696\(08\)62066-5](https://doi.org:10.1016/s0074-7696(08)62066-5)

22 25 Chen, Z., Zhang, F. & Xu, H. Human mitochondrial DNA diseases and Drosophila
23 models. *J Genet Genomics* **46**, 201-212 (2019).
24 <https://doi.org:10.1016/j.jgg.2019.03.009>

25 26 Luo, S. M. et al. Unique insights into maternal mitochondrial inheritance in mice. *P Natl
26 Acad Sci USA* **110**, 13038-13043 (2013). <https://doi.org:10.1073/pnas.1303231110>

27 27 May-Panloup, P. et al. Increased sperm mitochondrial DNA content in male infertility.
28 *Human Reproduction* **18**, 550-556 (2003). <https://doi.org:10.1093/humrep/deg096>

29 28 Larsson, N. G., Oldfors, A., Garman, J. D., Barsh, G. S. & Clayton, D. A. Down-
30 regulation of mitochondrial transcription factor A during spermatogenesis in humans.
31 *Human Molecular Genetics* **6**, 185-191 (1997). <https://doi.org:DOI 10.1093/hmg/6.2.185>

32 29 Lynch, M., Koskella, B. & Schaack, S. Mutation pressure and the evolution of organelle
33 genomic architecture. *Science* **311**, 1727-1730 (2006).
34 <https://doi.org:10.1126/science.1118884>

35 30 Fu, Y., Tigano, M. & Sfeir, A. Safeguarding mitochondrial genomes in higher eukaryotes.
36 *Nature Structural & Molecular Biology* **27**, 687-695 (2020).
37 <https://doi.org:10.1038/s41594-020-0474-9>

38 31 Srivastava, S. & Moraes, C. T. Manipulating mitochondrial DNA heteroplasmy by a
39 mitochondrially targeted restriction endonuclease. *Human Molecular Genetics* **10**, 3093-
40 3099 (2001). <https://doi.org:DOI 10.1093/hmg/10.26.3093>

41 32 Nissanka, N., Bacman, S. R., Plastini, M. J. & Moraes, C. T. The mitochondrial DNA
42 polymerase gamma degrades linear DNA fragments precluding the formation of
43 deletions. *Nature Communications* **9** (2018). <https://doi.org:ARTN> 2491 10.1038/s41467-
44 018-04895-1

45 33 Kimelman, D. & Martin, B. L. Anterior-posterior patterning in early development: three
46 strategies. *Wiley Interdiscip Rev Dev Biol* **1**, 253-266 (2012).
47 <https://doi.org:10.1002/wdev.25>

48 34 Fabian, L. & Brill, J. A. Drosophila spermiogenesis: Big things come from little packages.
49 *Spermatogenesis* **2**, 197-212 (2012). <https://doi.org:10.4161/spmg.21798>

50 35 Barratt, C. L., Kay, V. & Oxenham, S. K. The human spermatozoon - a stripped down but
51 refined machine. *J Biol* **8**, 63 (2009). <https://doi.org:10.1186/jbiol167>

1 36 Meeusen, S. & Nunnari, J. Evidence for a two membrane-spanning autonomous
2 mitochondrial DNA replisome. *J Cell Biol* **163**, 503-510 (2003).
3 <https://doi.org/10.1083/jcb.200304040>

4 37 Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA
5 synthesis with mitochondrial division in human cells. *Science* **353** (2016).
6 <https://doi.org/ARTN aaf5549 10.1126/science.aaf5549>

7 38 Tokuyasu, K. T. Dynamics of Spermiogenesis in Drosophila-Melanogaster .3. Relation
8 between Axoneme and Mitochondrial Derivatives. *Experimental Cell Research* **84**, 239-
9 250 (1974). [https://doi.org/Doi 10.1016/0014-4827\(74\)90402-9](https://doi.org/Doi 10.1016/0014-4827(74)90402-9)

10 39 Zhao, Q. *et al.* A mitochondrial specific stress response in mammalian cells. *Embo J* **21**,
11 4411-4419 (2002). <https://doi.org/10.1093/emboj/cdf445>

12 40 Sutandy, F. X. R., Gossner, I., Tascher, G. & Munch, C. A cytosolic surveillance
13 mechanism activates the mitochondrial UPR. *Nature* **618**, 849-854 (2023).
14 <https://doi.org/10.1038/s41586-023-06142-0>

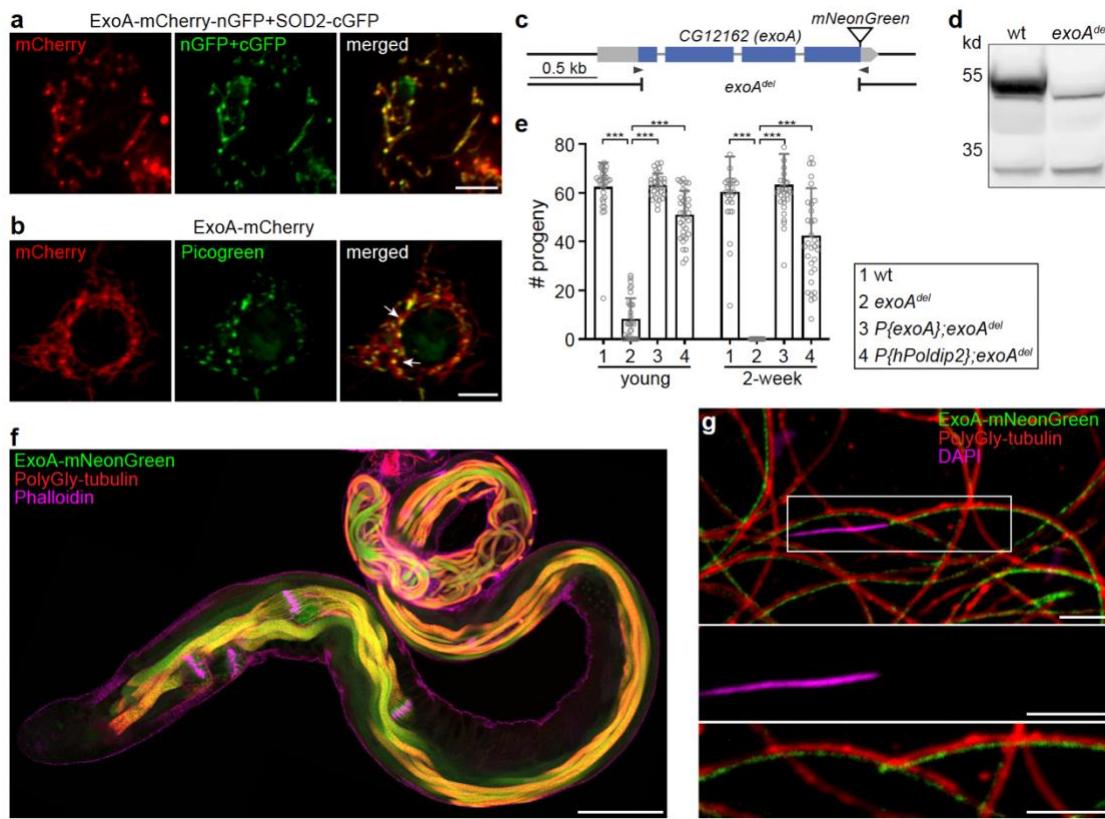
15 41 Chen, D. & McKearin, D. M. A discrete transcriptional silencer in the bam gene
16 determines asymmetric division of the Drosophila germline stem cell. *Development* **130**,
17 1159-1170 (2003). <https://doi.org/10.1242/dev.00325>

18 42 Xu, H. Manipulating the metazoan mitochondrial genome with targeted restriction
19 enzymes (vol 321, pg 575, 2008). *Science* **322**, 1466-1466 (2008).

20 43 Zhang, F. *et al.* The cAMP phosphodiesterase Prune localizes to the mitochondrial
21 matrix and promotes mtDNA replication by stabilizing TFAM. *Embo Reports* **16**, 520-527
22 (2015). <https://doi.org/DOI 10.15252/embr.201439636>

23 44 Gratz, S. J., Rubinstein, C. D., Harrison, M. M., Wildonger, J. & O'Connor-Giles, K. M.
24 CRISPR-Cas9 Genome Editing in Drosophila. *Curr Protoc Mol Biol* **111**, 31 32 31-31 32
25 20 (2015). <https://doi.org/10.1002/0471142727.mb3102s111>

26 45 Waldo, G. S., Standish, B. M., Berendzen, J. & Terwilliger, T. C. Rapid protein-folding
27 assay using green fluorescent protein. *Nat Biotechnol* **17**, 691-695 (1999).
28 <https://doi.org/10.1038/10904>

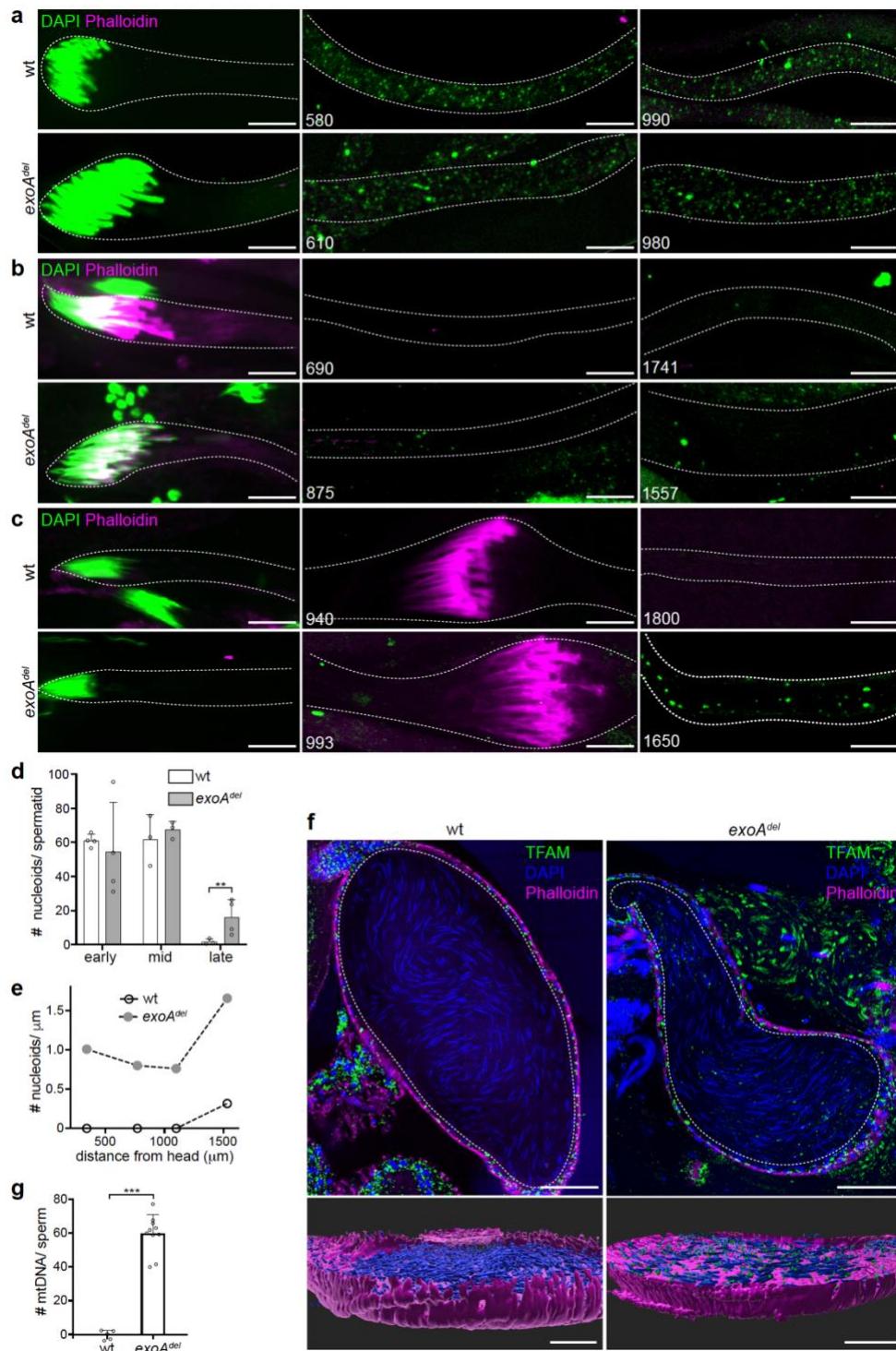

29 46 Tran, V., Lim, C., Xie, J. & Chen, X. Asymmetric Division of Drosophila Male Germline
30 Stem Cell Shows Asymmetric Histone Distribution. *Science* **338**, 679-682 (2012).
31 <https://doi.org/10.1126/science.1226028>

32 47 Hurd, T. R. *et al.* Long Oskar Controls Mitochondrial Inheritance in Drosophila
33 melanogaster. *Dev Cell* **39**, 560-571 (2016). <https://doi.org/10.1016/j.devcel.2016.11.004>

34

35

1 Figures and Figure Legends


2
3 **Fig. 1. A mitochondrial nucleoid protein, ExoA is required for male fertility. a, A**
4 representative image of S2 cells co-expressing ExoA-mCherry-nGFP (red) and SOD2-cGFP.
5 Two half-GFP molecules reconstitute into a functional whole GFP (green), demonstrating that
6 ExoA is co-localized with SOD2 in mitochondrial matrix. Bar, 5 μ m. **b**, ExoA concentrates on
7 specific loci on mitochondria which stain positively for Picogreen (arrows), indicating ExoA is
8 associated with mitochondrial nucleoids. Bar, 5 μ m. **c**, Schematic representation of the
9 CG12162 genomic locus, illustrating CG12162 transcripts, 5'- and 3'-UTR (grey bars), exons
10 (blue bars), and the deleted region in exoA^{del}. Arrows illustrate the target sites of guide RNAs
11 used for generating the exoA deletion, and for knocking in mNeonGreen. **d**, Western blot
12 confirms the deletion of the ExoA protein in exoA^{del} flies. **e**, The exoA^{del} flies are male semi-
13 sterile. The number of progenies produced per day are shown. Compared with wild-type, male
14 exoA^{del} flies produce significantly fewer progeny at a young age and become completely sterile
15 after two weeks. The semi-sterile phenotype can be rescued by expressing either ExoA or
16 hPoldip2 protein in exoA^{del} flies. Error bars represent standard deviation. *** P<0.0001. **f**, ExoA
17 is highly expressed in fully elongated spermatids and all subsequent developmental stages
18 within *Drosophila* testes. Polyglycylated tubulin marks fully elongated axonemal microtubules.
19 Phalloidin stains actin cones and outlines the testis. Bar, 100 μ m. **g**, Representative image
20 shows that ExoA aligns alongside microtubules and is absent from the nuclear head region in

1 spermatozoa, demonstrating that ExoA exclusively localizes in mitochondria in mature
2 spermatozoa (enlarged view outlined). Green: ExoA-mNeon-Green; Red: Polyglycylated tubulin;
3 Magenta: DAPI; Bar, 5 μ m.

4

5

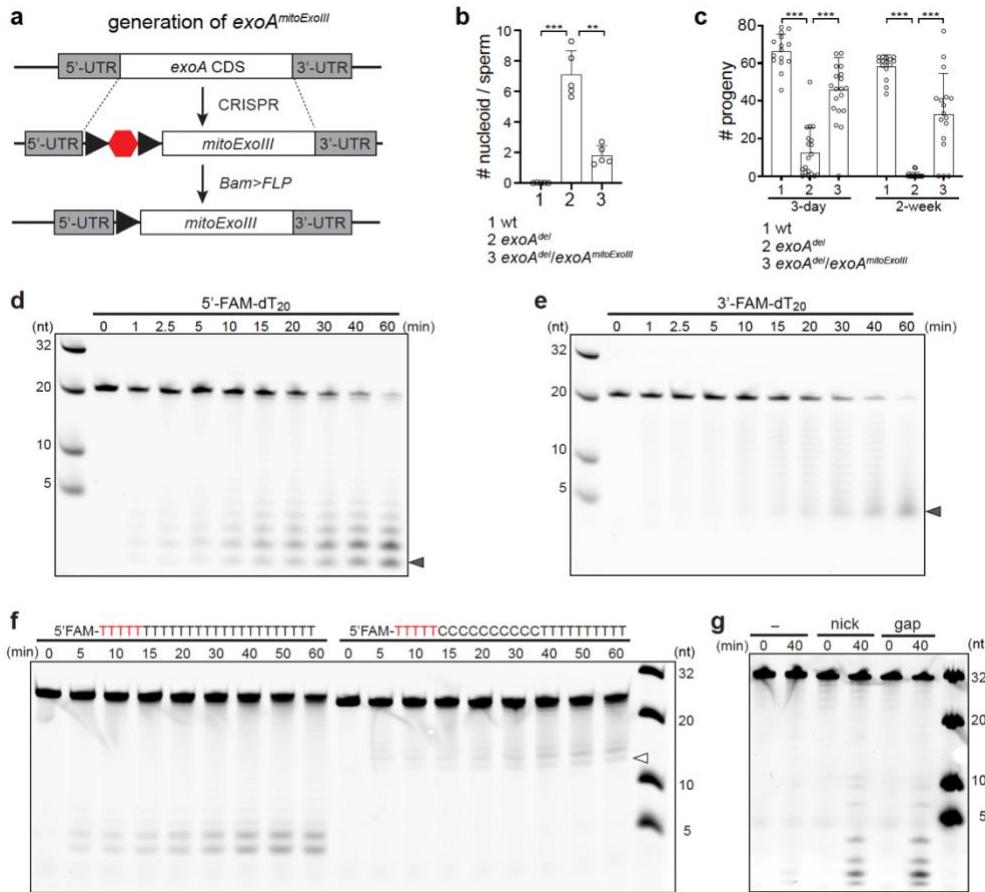
6

1
2 **Fig. 2. mtDNA persist in late spermatogenesis stages of *exoA^{del}* flies. a-c**, Representative
3 images of elongating (a), fully elongated (b) and individualization (c) spermatid bundles isolated
4 from *w¹¹¹⁸* (wt) and *exoA^{del}* flies, and stained for DNA (DAPI, green) and actin cones (Phalloidin,
5 magenta). Note that DAPI stains both nuclear DNA (nuDNA) and mitochondrial DNA (mtDNA) in
6 isolated spermatid bundles. Dashed lines outline bundles. Numbers indicate the distance (μm)

1 from the nuclear head. Bar, 10 μm . **d**, Quantification of the total mitochondrial nucleoid numbers
2 per spermatid at early-elongating (early), mid-elongating (mid) and fully elongated (late) stages.
3 Error bars represent standard deviation. ** $P<0.001$. **e**, Representative density of mitochondrial
4 nucleoids (total numbers per μm) along the length of fully elongated spermatid bundles for w^{1118}
5 (wt) and exoA^{del} flies, respectively. **f**, Representative images show numerous mitochondrial
6 nucleoids labeled by TFAM-mNeonGreen in exoA^{del} , but not wt mature sperms in seminal
7 vesicle (dashed lines). 3D rendering of seminal vesicle. Phalloidin stains actin (magenta); DAPI
8 stains needle-shaped nuDNA (blue). Bar, 50 μm . **g**, Droplet digital PCR (ddPCR) quantification
9 of the average number of paternal mtDNA molecules per sperm in the female spermatheca.
10 Crosses were performed between female w^{1118} ($mt:ND2^{\text{del}}$) flies and male w^{1118} ($mt:wt$) or
11 exoA^{del} ($mt:wt$) flies. Error bars represent standard deviation. *** $P<0.0001$. See also Extended
12 Data Fig. 2g, g'.

13

14

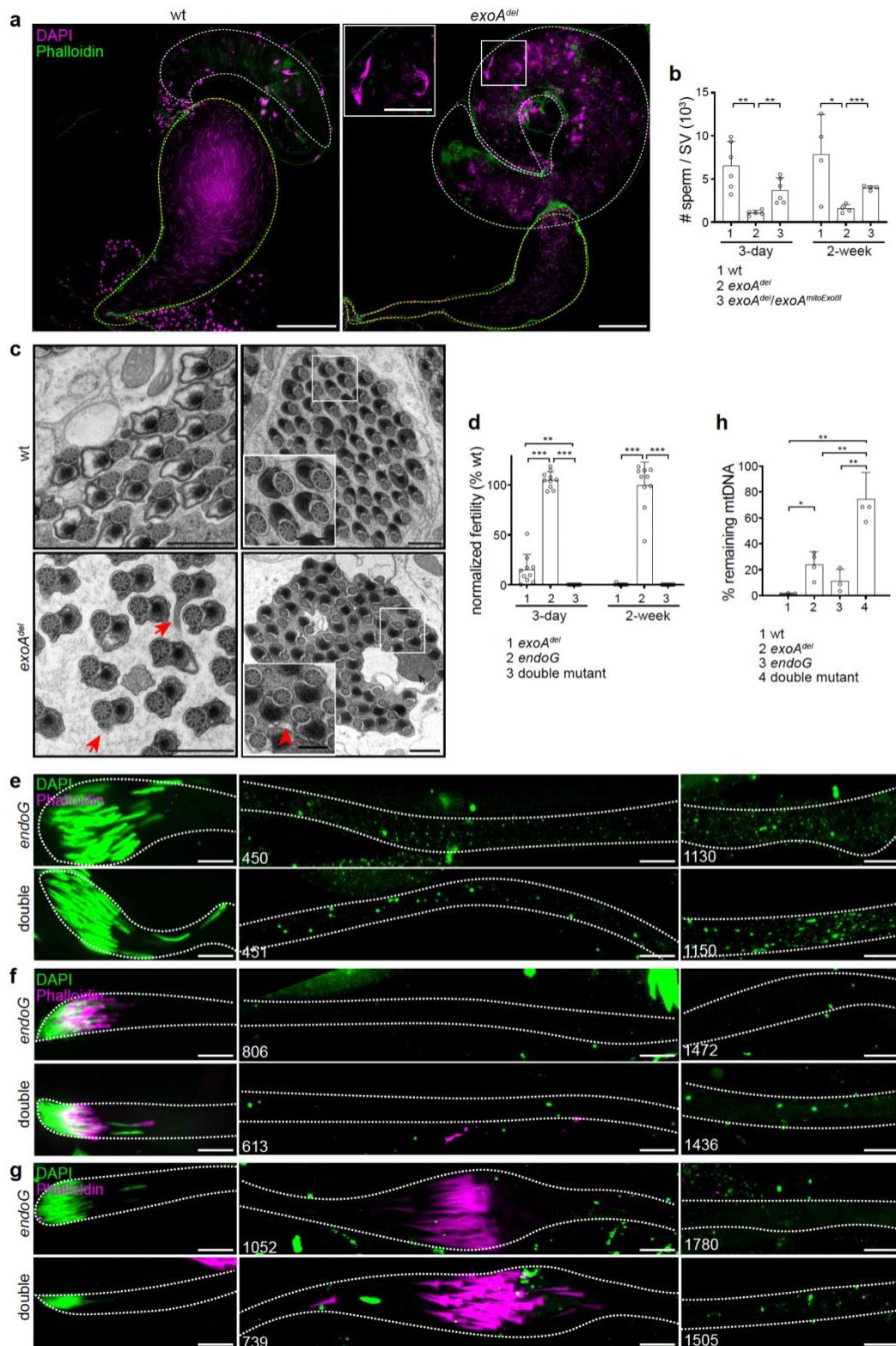

15

16

17

18

19

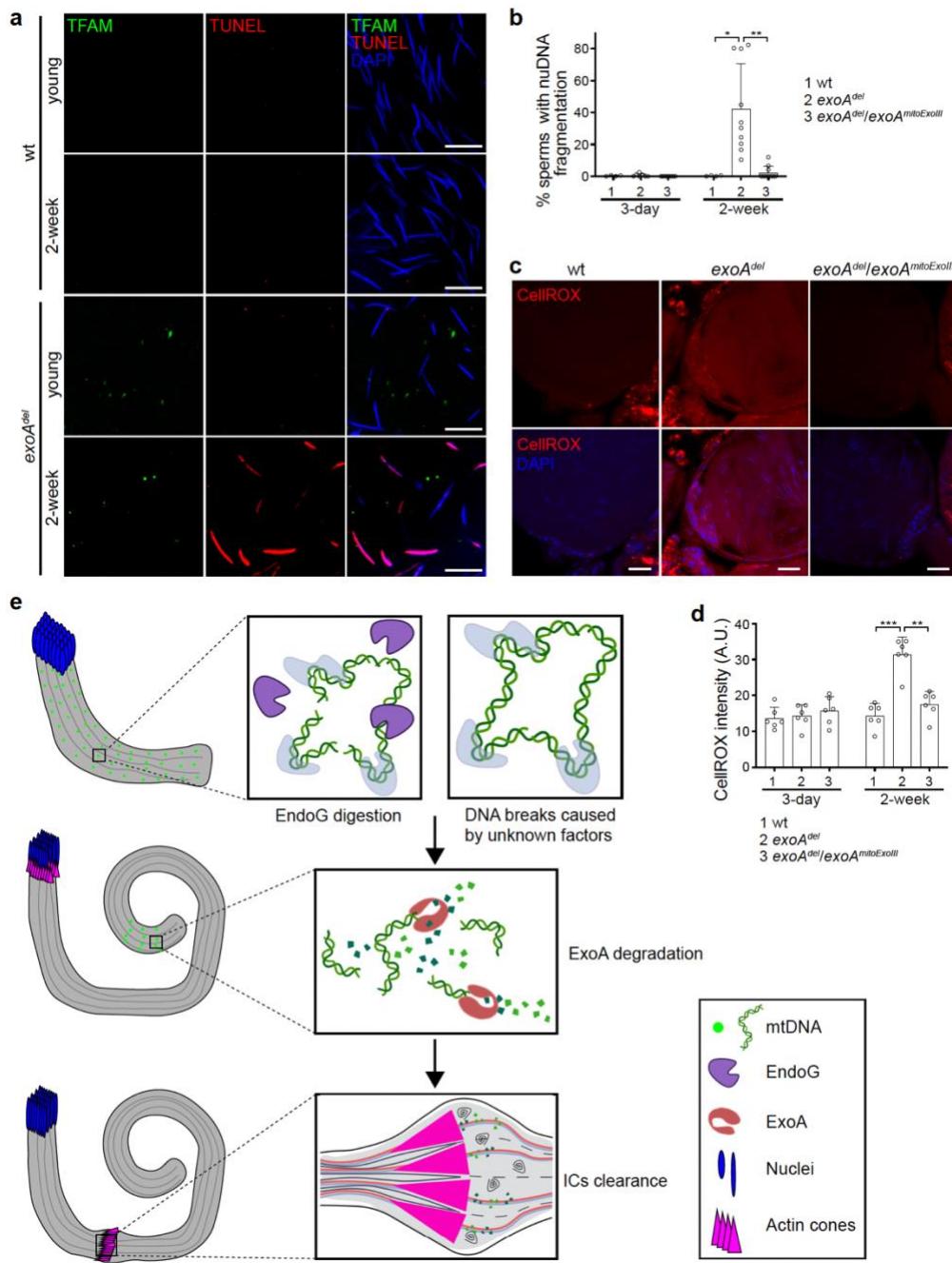

Fig. 3. ExoA is a mitochondrial DNA exonuclease. a, Genetic scheme of replacing *exoA* coding sequence (CDS) with a mitochondrially targeted *E. coli* Exonuclease III (mitoExoIII) in developing spermatids (*exoA*^{mitoExoIII}). The SV40 transcription termination sequence (hexagon) flanked by two FRT sites (arrowheads) allows conditional expression of mitoExoIII induced by Flippase (FLP). **b**, Expression of mitoExoIII in spermatids reduced mitochondrial nucleoid numbers in mature sperms of 3-day-old *exoA*^{del} flies. 1. wt: *UAS-FLP*+/+; *Bam-gal4*, *exoA*^{del} /+. 2. *exoA*^{del}: +/+; *Bam-gal4*, *exoA*^{del}/*exoA*^{mitoExoIII}; 3. *exoA*^{del}/*exoA*^{mitoExoIII}: *UAS-FLP*+/+; *Bam-gal4*, *exoA*^{del}/*exoA*^{mitoExoIII}. Error bars represent standard deviation. ** P<0.001; *** P<0.0001. **c**, Expression of mitoExoIII in spermatids rescued the fertility of both young and 2-week-old male *exoA*^{del} flies. The number of progenies per day are shown. 1. wt: *UAS-FLP*+/+; *Bam-gal4*, *exoA*^{del} /+. 2. *exoA*^{del}: +/+; *Bam-gal4*, *exoA*^{del}/*exoA*^{mitoExoIII}; 3. *exoA*^{del}/*exoA*^{mitoExoIII}: *UAS-FLP*+/+; *Bam-gal4*, *exoA*^{del}/*exoA*^{mitoExoIII}. Error bars represent standard deviation. *** P<0.0001. **d**, ExoA exhibits 3'-5' exonuclease activity. A 5'-6-FAM labeled 20-nt poly(dT) (100 nM) was incubated with the ExoA protein (200 nM) at 37 °C and analyzed at indicated time points. A ladder-like pattern of oligonucleotides ranging from monomer (arrowhead) to 19-mer was generated. **e**, ExoA displays 5'-3' exonuclease activity. A 3'-6-FAM labeled 20-nt poly(dT) (100 nM) was incubated with the ExoA protein (200 nM) at 37 °C and analyzed at indicated time points. The resulting products showed a ladder pattern ranging from 3-mer (arrowhead) to 19-mer. **f**, ExoA

1 degrades dC less efficiently. The 5'-6-FAM labeled 25-nt poly(dT) or 25-nt poly(dTdC) (100 nM)
2 was incubated with the ExoA protein (400 nM) at 37 °C and analyzed at indicated time points.
3 The 5'-end five nucleotides were protected from degradation by incorporating the internucleotide
4 phosphorothioate bonds (red). Note the smallest degradation products is 15-mer (arrowhead) in
5 the reaction of poly(dTdC), suggesting the stretch of dC inhibits the progression of the
6 exonuclease. **g**, ExoA degrades double-stranded (dsDNA) with breaks. Three types of dsDNA,
7 including blunt-ended dsDNA (-), dsDNA with a single nick (nick), and dsDNA with a single gap
8 (gap), were generated using a 5'-6-FAM-labeled, 32-nt long oligonucleotide. The dsDNA
9 substrates (100 nM) were incubated with the ExoA protein (1200 nM) at 37 °C and analyzed
10 after 40 min. The molecular markers in this figure are an equal molar mixture of 5'-6-FAM
11 labeled 32-nt, 20-nt, 10-nt and 5-nt oligonucleotides and were loaded at a concentration of 50
12 nM for each.

13

14

15

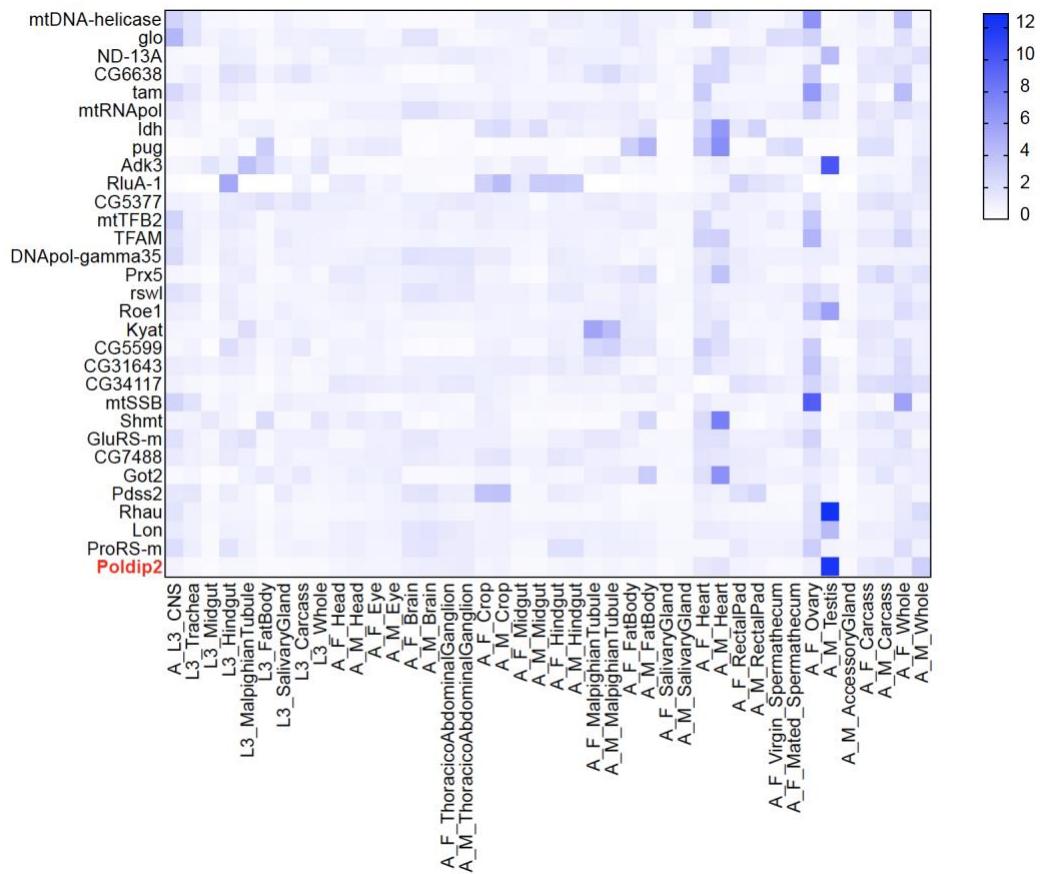


1

2 **Fig. 4. Persistent mtDNA impedes spermatid individualization.** a, Representative images
3 showing the coiling region (white dashed line) and seminal vesicle (yellow dashed line) of w^{1118}

1 (wt) and *exoA^{del}* testes. Bar, 100 μ m. Inset, the coiling region of *exoA^{del}* testes accumulate many
2 needle-shaped nuclei stained with DAPI (magenta), some of which remained bundled together.
3 Phalloidin: green. Bar, 50 μ m. **b**, Fewer mature sperm are present in the seminal vesicles of both
4 young and 2-week-old *exoA^{del}* flies compared with wild-type control, a deficiency that can be
5 rescued by expressing mitoExoIII in spermatids. The number of mature sperm nuclei was
6 quantified in each seminal vesicle of indicated genotypes. 1. wt: *UAS-FLP/+; Bam-gal4, exoA^{del}*
7 */+*. 2. *exoA^{del}*: *+/+; Bam-gal4, exoA^{del}/exoA^{mitoExoIII}*; 3. *exoA^{del}/exoA^{mitoExoIII}*: *UAS-FLP/+; Bam-gal4,*
8 *exoA^{del}/exoA^{mitoExoIII}*. Error bars represent standard deviation. *** P<0.0001; ** P<0.001; * P<0.05.
9 **c**, Representative transmission electron microscopy (TEM) images of cross sections of
10 *Drosophila* testes from 3-day-old flies showing individualized spermatid cysts. In *exoA^{del}* testes,
11 red arrows denote spermatids with incomplete membrane contour; red arrowheads denote two
12 connected spermatids; black arrows denote abnormal mitochondrial derivate structures. Bar, 1
13 μ m. Bar in insets, 500 nm. **d**, The double mutant was completely sterile, in contrast to the normal
14 fertility of *endoG* mutant. The fertility of male *exoA^{del}*, *endoG* (*endoG^{MB07150/KO}*) and double mutant
15 (*endoG^{MB07150/KO}; exoA^{del}*) was normalized to that of *w¹¹¹⁸* male flies and plotted. Error bars
16 represent standard deviation. *** P<0.0001; ** P<0.001. **e-g**, Representative images showing the
17 isolated spermatid bundles of the elongating (**e**), fully elongated (**f**) and individualization (**g**) stages
18 stained for DNA (DAPI) and actin cones (Phalloidin) in *endoG* (*endoG^{MB07150/KO}*) and double
19 mutant (*endoG^{MB07150/KO}; exoA^{del}*). DAPI stains both nuDNA and mtDNA in isolated spermatid
20 bundles. Note the disorganized actin cone structures in the double mutant. Dashed lines mark
21 bundle boundary. Numbers indicate the distance (μ m) from the anterior tip of the spermatid. Bar,
22 10 μ m. **h**, Quantification of remaining mitochondrial nucleoids in fully elongated spermatids of
23 *w¹¹¹⁸* (wt), *exoA^{del}*, *endoG* (*endoG^{MB07150/KO}*) and double mutant (*endoG^{MB07150/KO}; exoA^{del}*) flies.
24 Total mitochondrial nucleoids measured in volumes per spermatid in fully elongated stage were
25 normalized to that of the elongating stage in each genotype. Error bars represent standard
26 deviation. ** P<0.01; * P<0.05.

27
28

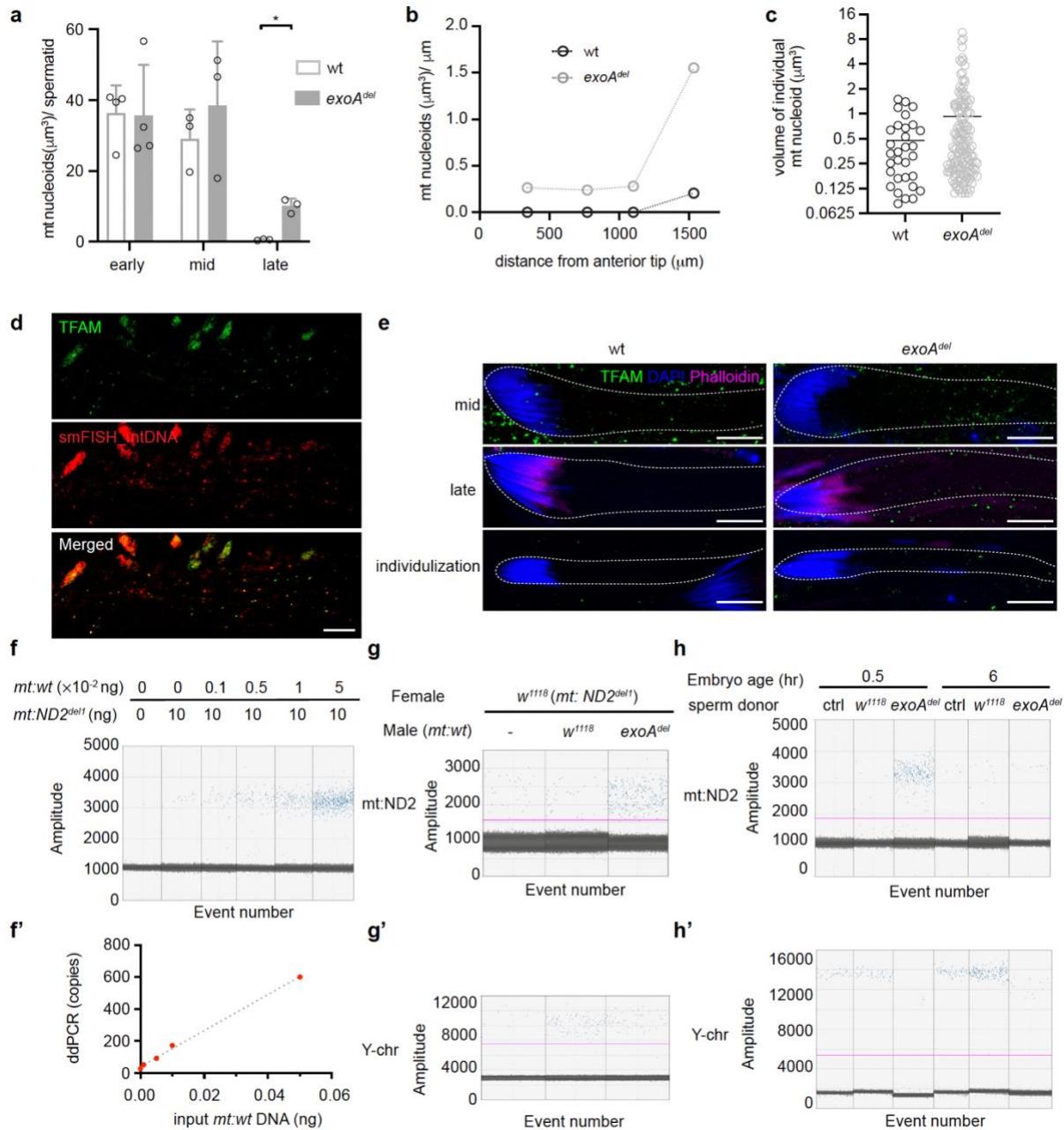


1 $^{del}/exoA^{mitoExoIII}$: *UAS-FLP/+; Bam-gal4, exoA* $^{del}/exoA^{mitoExoIII}$. Error bars represent standard
2 deviation. ** P<0.001; * P<0.05. **c**, Representative images of CellROX Deep Red staining of 2-
3 week-old fly sperms in the seminal vesicles of wt, *exoA* del and *exoA* $^{del}/exoA^{mitoExoIII}$ flies. Red:
4 CellROX Deep Red; Blue: nuDNA stained by DAPI. Bar, 20 μ m. **d**, Quantification of CellROX
5 intensity, as the measure for ROS level in both young and 2-week-old flies with indicated
6 genotypes. 1. wt: *UAS-FLP/+; Bam-gal4, exoA* del $^{+/+}$. 2. *exoA* del : $^{+/+}; Bam-gal4, exoA$
7 $^{del}/exoA^{mitoExoIII}$; 3. *exoA* $^{del}/exoA^{mitoExoIII}$: *UAS-FLP/+; Bam-gal4, exoA* $^{del}/exoA^{mitoExoIII}$. A.U.,
8 arbitrary unit. Error bars represent standard deviation. *** P<0.0001; ** P<0.001. **e**, Proposed
9 model of pre-fertilization mtDNA removal. In elongating spermatids, mitochondria undergo
10 dramatic structural changes, potentially sensitizing mitochondrial nucleoids. This may trigger the
11 EndoG dependent mtDNA nicking or DNA breaks through other unknown mechanisms, initiating
12 the clearance of mtDNA. In the final stage of spermatid elongation, the abrupt expression of
13 ExoA leads to the complete degradation of mtDNA. During the individualization, individualization
14 complexes (ICs) progress down the spermatids, gather any remaining oligonucleotides, and
15 ultimately discard them in waste bags. Consequently, mature sperm are devoid of mtDNA.

16 Created with BioRender.com.

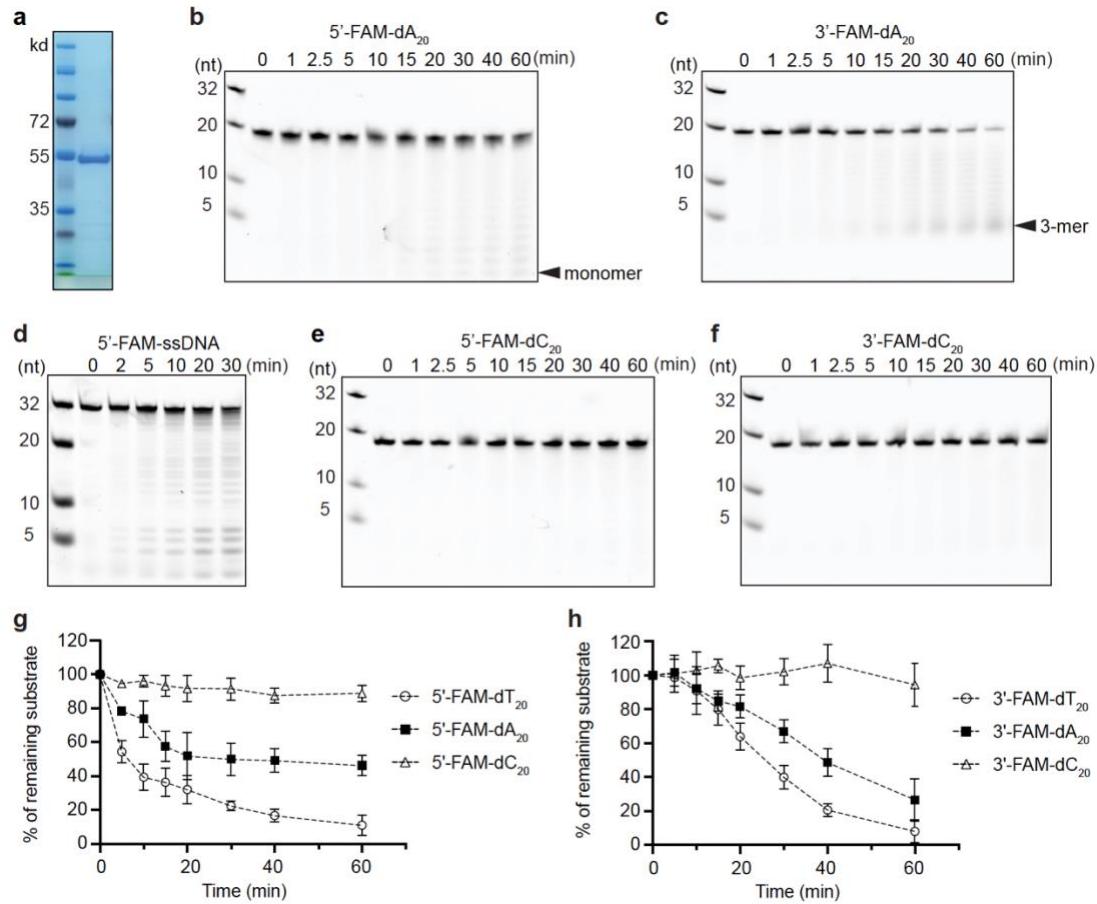
17
18

1 Extended Data figures and tables

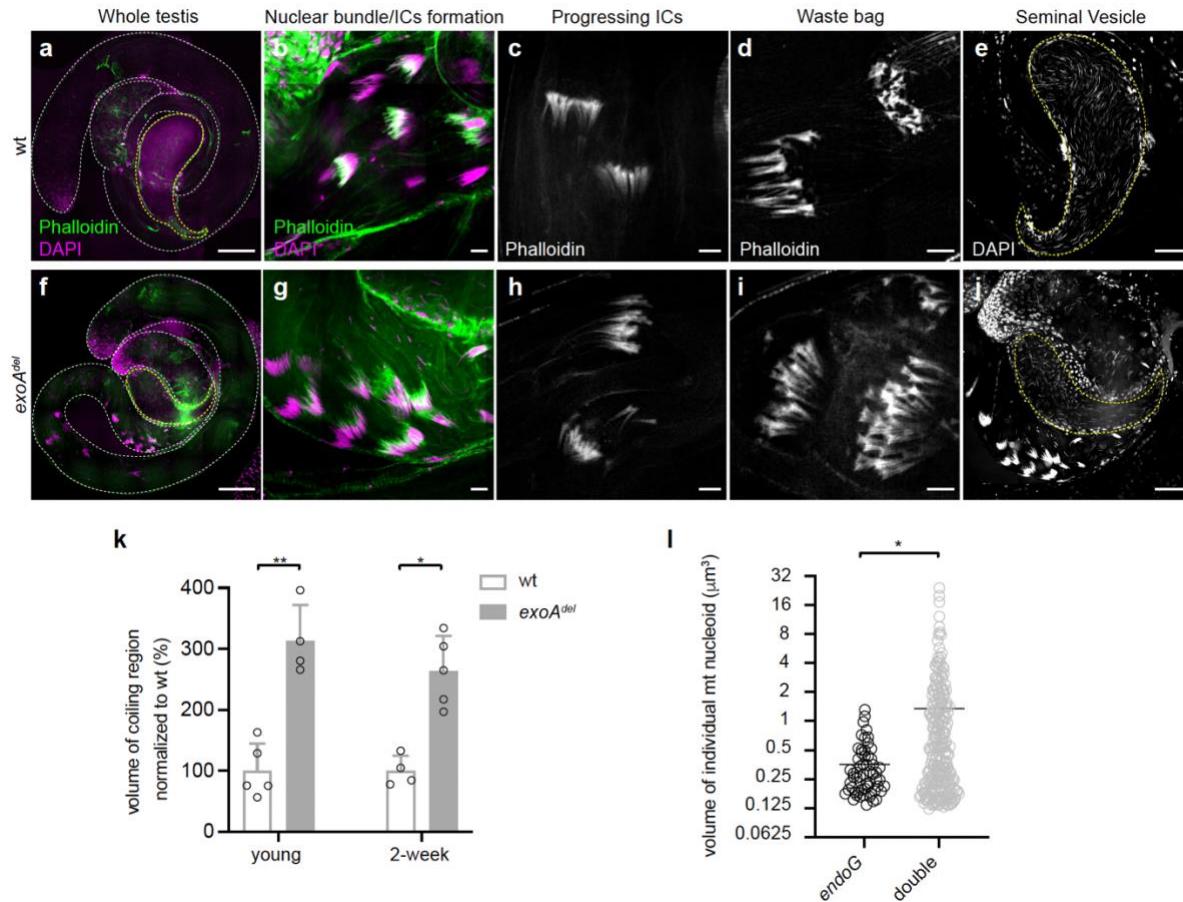


2

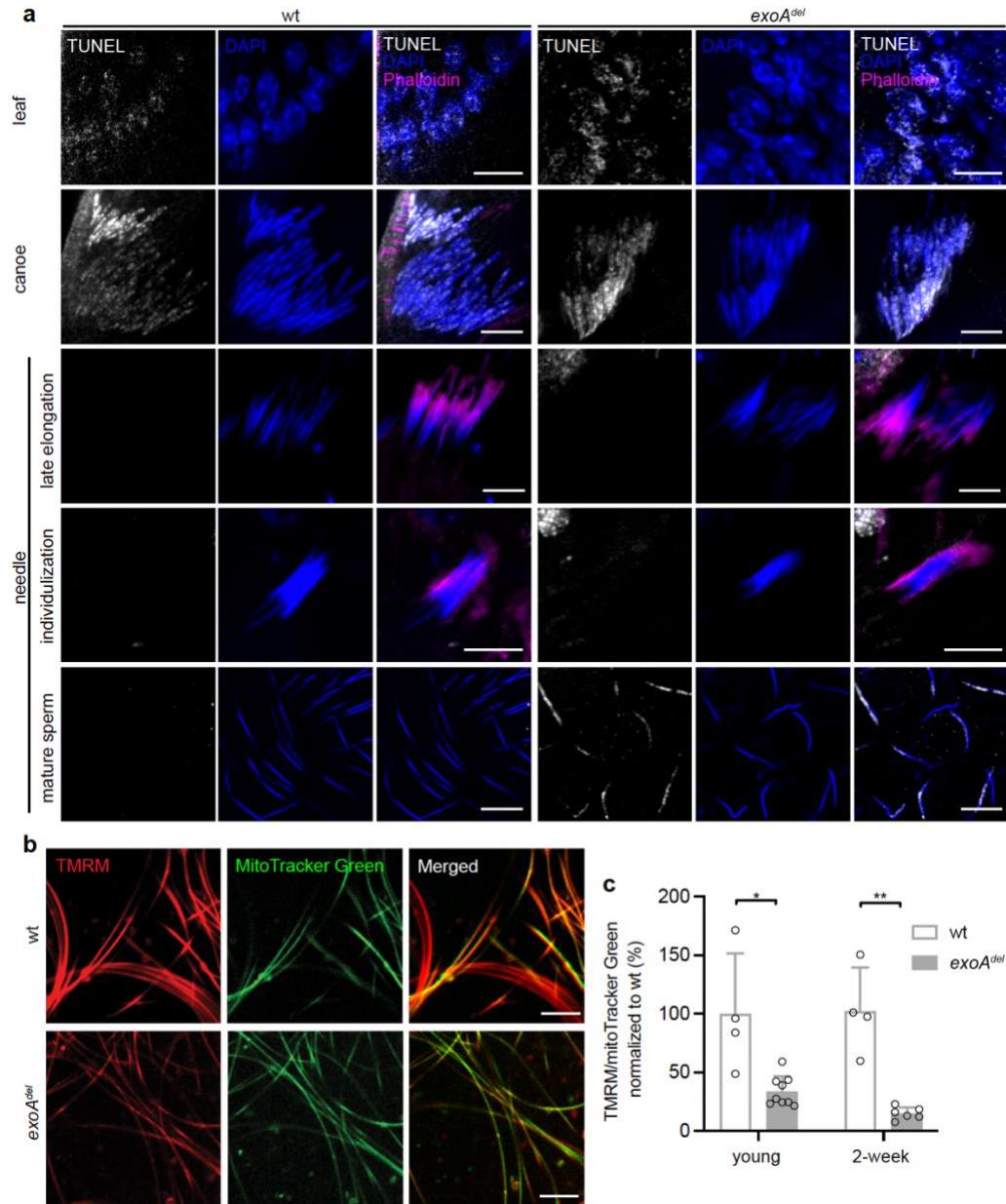
3 **Extended Data Fig 1. Tissue expression profile of *Drosophila* mitochondrial nucleoid
4 associated proteins.** Heatmap was generated with RNA-seq data from FlyAtlas2 (the
5 *Drosophila* gene expression atlas). Color codes indicate the scaled RPKM (reads per kilobase
6 per million mapped reads) folds over tissues. Note the mRNA level of ExoA/Poldip2 is
7 significantly higher in *Drosophila* testis compared to other tissues. A, adult; L3, third instar larva;
8 F, female; M, male.


9

10



1
2 **Extended Data Fig 2. mtDNA persist in late spermatogenesis stages and mature sperm of**
3 ***exoA^{del}* flies.** (a) Total mitochondrial nucleoids measured in volumes per spermatid at early-
4 elongating (early), mid-elongating (mid) and fully elongated (late) stages. Error bars represent
5 standard deviation. * P<0.05. (b) Density of mitochondrial nucleoids (total volumes per μm)
6 along the length of a representative fully elongated spermatid bundle for *w¹¹¹⁸* (wt) and *exoA^{del}*
7 flies, respectively. (c) A scatter dot plot displaying the distribution of individual mitochondrial
8 nucleoid volumes from the elongated stage spermatids of *w¹¹¹⁸* (wt) and *exoA^{del}* flies. The solid
9 lines indicate the mean volume. (d) TFAM-mNeonGreen can be used as a mitochondrial
10 nucleoid marker in *Drosophila* testis. Single-molecule fluorescent *in situ* hybridization (smFISH)


1 analysis using fluorescently labeled DNA probes specific for mtDNA (red) is colocalized with
2 TFAM-mNeonGreen in the *Drosophila* testis. Scale bar, 10 μ m. (e) Mitochondrial nucleoids
3 labeled by TFAM-mNeonGreen demonstrates a consistent pattern of mtDNA elimination during
4 spermatogenesis in both w^{1118} (wt) and $exoA^{del}$ flies, compared with DNA dye staining. In
5 elongating spermatids of both wt and $exoA^{del}$ testis, intense TFAM-mNeonGreen puncta signals
6 were detected. The signals were rare in fully elongated and individualization stage spermatids of
7 wt flies. Conversely, persistent mtDNA was frequently observed in the same stages of $exoA^{del}$
8 spermatids. Phalloidin (magenta) stains actin; DAPI (blue) stains nuDNA. Scale bar, 10 μ m. (f)
9 Evaluating the specificity of the primers/probe sets targeting mtDNA-encoded ND2 locus
10 (*mt:ND2*) using droplet digital PCR (ddPCR) assay. A reaction containing 10 ng of total DNA
11 from w^{1118} (*mt:ND2^{del1}*), a fly strain carrying a 9 base pair deletion on mtDNA-encoded ND2
12 locus, mixed with 0, 0.001, 0.005, 0.01 or 0.05 ng of total DNA from w^{1118} (*mt:wt*, wild-type
13 mtDNA) flies was performed. The ddPCR primers/probe were designed to target the *mt:wt*,
14 while excluding *mt:ND2^{del1}* mtDNA. (f') Correlation of the amount of input w^{1118} (*mt:wt*) DNA with
15 the resulting mtDNA copy numbers using ddPCR. Simple linear regression was carried out and
16 the coefficient of correlation $R^2 = 0.9947$. (g-g') Quantification of the mtDNA copy numbers per
17 sperm in w^{1118} and $exoA^{del}$ flies using ddPCR. Crosses were conducted between female w^{1118}
18 (*mt:ND2^{del1}*) and male w^{1118} (*mt:wt*) or $exoA^{del}$ (*mt:wt*) flies. Then the total DNA from the female
19 spermatheca were extracted and analyzed. The virgin female w^{1118} (*mt:ND2^{del1}*) flies were used
20 as the negative control. The primers/probe sets were designed to target *mt:ND2* (g) and Y-
21 chromosome gene *kl-2* (g'), respectively. The input total DNA for detecting *mt:ND2* gene is 5 ng
22 for each reaction. The input total DNA for detecting Y-chromosome gene is 125 ng for each
23 reaction. (h-h') Sperm-derived mtDNA can be transferred to embryos but gets eliminated
24 quickly. Crosses were conducted between female w^{1118} (*mt:ND2^{del1}*) and male w^{1118} (*mt:wt*) or
25 $exoA^{del}$ (*mt:wt*) flies. The group of w^{1118} (*mt:ND2^{del1}*) being used as the sperm donor were
26 negative control (ctrl). Embryos were collected within 0-30 min after being laid and were
27 analyzed immediately (0.5 hr) or after 6 hours (6 hr) of development. The primers/probe sets
28 were designed to target *mt:ND2* (h) and Y-chromosome gene *kl-2* (h'), respectively. The input
29 total DNA for detecting *mt:ND2* gene is 10 ng for each reaction. The input total DNA for
30 detecting Y-chromosome gene is 10 ng, 10 ng, 250 ng, 10 ng, 10 ng and 50 ng, respectively.
31
32

1
2 **Extended Data Fig 3. ExoA is a mitochondrial DNA exonuclease.** (a) SDS-PAGE of the
3 purified ExoA protein. M, molecular weight marker. (b, c) Degradation pattern of 5'-6-FAM and
4 3'-6-FAM labeled 20-nt poly(dA) single-stranded (ssDNA) substrates. The 100 nM 5'-6-FAM (b)
5 or 3'-6-FAM (c) labeled 20-nt poly(dA) were incubated with ExoA protein (200 nM) at 37 °C and
6 analyzed at the indicated time points. (d) Degradation pattern of a 5'-6-FAM labeled ssDNA
7 substrate consisted of mixed dA, dT, dC and dG. The 100 nM 5'-6-FAM labeled 32-nt ssDNA
8 was incubated with ExoA protein (200 nM) at 37 °C and analyzed at the indicated time points.
9 (e, f) Degradation pattern of 5'-6-FAM and 3'-6-FAM labeled 20-nt poly(dC) ssDNA substrates.
10 The 100 nM 5'-6-FAM (e) or 3'-6-FAM (f) labeled 20-nt poly(dC) were incubated with ExoA
11 protein (200 nM) at 37 °C and analyzed at the indicated time points. (g, h) Quantification of the
12 remaining full-length substrates, including 5'-6-FAM (g) or 3'-6-FAM (h) labeled 20-nt poly(dT),
13 poly(dA) and poly (dC), at each time point. Data are normalized to the initial level of the full-
14 length substrates and plotted (n=3). The molecular markers in this figure are an equal molar
15 mixture of 5'-6-FAM labeled 32-nt, 20-nt, 10-nt and 5-nt oligonucleotides and were loaded at a
16 concentration of 50 nM for each. Error bars represent standard deviation.
17

1
2 **Extended Data Fig 4. Persistent mtDNA impedes spermatid individualization. (a-j)**
3 Representative images showing the whole testis (a, f), individualization complexes (ICs)
4 formation next to the nuclear head in the testis basal region (b, g), actin cone structures in
5 progressing ICs (c, h), waste bags (d, i), and seminal vesicles (e, j, yellow dashed line) in *w¹¹¹⁸*
6 (wt) and *exoA^{del}* flies. Phalloidin stains actin; DAPI stains nuDNA. Scale bar, 100 μm in a and f;
7 10 μm in b-d and g-i; 50 μm in e and j. (k) The coiling region in both young and 2-week-old
8 *exoA^{del}* flies is enlarged compared with wt control. Error bars represent standard deviation. **
9 P<0.001; * P<0.05. (l) A scatter dot plot displaying the distribution of individual mitochondrial
10 nucleoid volumes from the elongated stage spermatids of *endoG* (*endoG^{MB07150/KO}*) and double
11 mutants (*endoG^{MB07150/KO}; exoA^{del}*). The solid lines indicate the mean volume. * P<0.05.
12

1
2 **Extended Data Fig 5. Persistent mtDNA in mature sperm causes nuclear DNA**
3 **fragmentation.** (a) Representative images showing nuDNA breaks labelled by TUNEL assay in
4 the process of chromatin remodeling during spermatogenesis. The highest abundance of
5 TUNEL signal (white) was observed in the late canoe stage, which corresponds to the histone-
6 to-protamine transition phase. The nuDNA breaks subsequently disappeared in needle-shaped
7 nuclei during late elongation and individualization stages, indicating repair of nuDNA breaks
8 after the transition. No significant differences were observed between wt and *exo^{del}* flies
9 throughout this process. The developmental stages were distinguished by the morphology of
10 nuclear heads stained with DAPI (blue), and the positioning of actin cones stained with
11 phalloidin (magenta). Scale bar, 10 μ m. (b) Compromised mitochondrial membrane potential of

1 *exoA^{del}* sperms. Mature sperm from *w¹¹¹⁸* (wt) and *exoA^{del}* seminal vesicles were stained with
2 TMRM (red), a dye sensitive to mitochondrial membrane potential, in combination with
3 mitoTracker Green (green) as a reference. Scale bar, 10 μm . (c) Quantification of
4 TMRM/mitoTracker green ratios in both young and 2-week-old flies. Error bars represent
5 standard deviation. ** P<0.001; * P<0.05.

6

7 **Supplementary Table 1. *Drosophila* ortholog of human mitochondrial nucleoid proteins**
8 **and their tissue expression profile from FlyAtlas2 and modENCODE.**

9