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(10.6084/m9.figshare.25574679). The raw empirical data used in this study are freely and

public available, and the clean data that is used in this manuscript can also be found on

figshare (see Supporting Information).
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Abstract1

Knowledge about the per capita interactions between organisms and their intrin-2

sic growth rates, and how these vary over environmental gradients, allows under-3

standing and predicting species coexistence and community dynamics. Estimating4

these crucial ecological parameters requires tedious experimental work, with isola-5

tion of organisms from their natural context. Here, we provide a novel approach for6

inferring these key parameters from time-series data by using weighted multivariate7

regression on the per capita growth rates of populations. Beyond the validation of8

our approach on synthetic data, we reveal from experimental data an expected al-9

locative trade-off between grazing resistance and rapid growth in algae. Application10

of observational data suggests facilitation between cyanobacteria and chrysophyte,11

indicating a possible explanation for cyanobacteria bloom. Our approach offers12

a way forward for inferring per capita interactions and intrinsic growth rates di-13

rectly from natural communities, providing realism, mechanistic understanding of14

eco-evolutionary dynamics, and key parameters to develop predictive models.15
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Introduction16

To adapt to our rapidly changing planet, ecologists must be able to understand and17

predict the responses of entire ecosystems. This requires the study of species not as18

individuals but as interacting agents who collectively determine the emergent proper-19

ties of complex and dynamic communities (Bascompte & Jordano, 2007; Cohen et al.,20

2009; Godoy et al., 2018). As such, most modern ecological and evolutionary theoretical21

models are founded on two key parameters (Chesson, 2000; Vincent & Brown, 2005; Hil-22

leRisLambers et al., 2012; Saavedra et al., 2017) that are essential for understanding and23

modelling how organisms interact (Turchin, 1999): the intrinsic growth rate of a pop-24

ulation and the per capita interaction coefficient. By definition, these factors quantify,25

respectively, the per capita rate of change of a population at a low density, meaning in26

the absence of any limitations, and the effect that co-occurring organisms have on each27

other’s abundance. These key parameters are essential for understanding and predicting28

species coexistence, community composition, and ecosystem biodiversity (Chesson, 2000;29

Vincent & Brown, 2005; Bascompte & Jordano, 2007; HilleRisLambers et al., 2012; Baert30

et al., 2016; Saavedra et al., 2017; Bartomeus et al., 2021). However, direct measurements31

or more practical estimations of these parameters remain challenging for ecologists.32

33

This challenge currently stems from the complexity of the experimental setups that34

are required to measure these parameters and variations in how interactions are measured35

due to differences in dimensions and units (Berlow et al., 2004; Arditi et al., 2021). As36

an example dating back to 1969, Vandermeer estimated all pairwise per capita interac-37

tions and intrinsic growth rates of four species of protozoa by fitting experimental data of38

monocultures and bi-cultures using the Lotka-Volterra multi-species model (Vandermeer,39

1969), which has served as the foundation of most theoretical models in ecology and evo-40

lution (Vandermeer, 1969; Turchin, 1999; Chesson, 2000; HilleRisLambers et al., 2012;41

Saavedra et al., 2017). This work required at least 10 time-series (four monocultures and42

six bicultures), without replication. Furthermore, the per capita interaction is not the43
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only measurement of interaction. Subsequent work by Laska & Wootton (1998) identified44

three additional representations of the concept of interaction, including: (i) the Paine’s45

index that reflects the difference in abundance of a community containing all species and46

lacking a focal species; (ii) the Jacobian matrix that shows the direct effect of one species47

on the total abundance of another species; and (iii) the inverted Jacobian matrix that48

includes both direct and indirect effects, such as apparent competition and competition49

via resources (Bender et al., 1984; Berlow et al., 2004). It is worth noting that these50

three concepts of interaction either require populations at ecological equilibrium, such as51

Paine’s index, or are density-dependent, such as the Jacobian matrix. However, to un-52

derstand community dynamics in terms of governing mechanisms and to develop realistic53

mechanistic models, it requires the intrinsic growth rate and the per capita interactions54

inferred in Vandermeer’s work and in later experimental studies (Levine & HilleRisLam-55

bers, 2009; Bartomeus et al., 2021; Van Dyke et al., 2022).56

57

To overcome labour-intensive experimental work, Sugihara and collaborators use a58

weighted multivariate multilinear regression, the S-map method, to infer the Jacobian59

matrix directly from observational data (Sugihara, 1994; Deyle et al., 2016). While this60

technique does not require populations to be at ecological equilibrium, as one can study61

the temporal change of the Jacobian elements, it still infers elements of the Jacobian62

matrix and not the per capita interaction strengths (Berlow et al., 2004; Chang et al.,63

2021; Arditi et al., 2021). Moreover, the intraspecific components of the Jacobian matrix,64

determined by the diagonal elements, are often neglected because they entangle intrinsic65

growth rates and per capita intraspecific interactions. Regardless, an inference of both66

intrinsic growth rate and per capita interaction strength, as was done originally in Van-67

dermeer (1969), is required for studying community coexistence (Chesson, 2000; Saavedra68

et al., 2017), productivity (Parain et al., 2019), and mechanisms underlying community69

and evolutionary dynamics, such as allocative trade-offs between intrinsic growth and per70

capita interaction strengths (Vincent & Brown, 2005; HilleRisLambers et al., 2012).71
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72

Thus, to directly infer the intrinsic growth rate and per capita interaction strength73

from complex, dynamic communities, we herein propose a novel approach called Lotka-74

Volterra map (LV-map), which combines the strength of the S-map’s inference ability and75

the mechanistic understanding of population’s ecological nature in the Lotka-Volterra76

model (Lotka, 1925; Volterra, 1931). The key innovation of our approach is to estimate,77

from observational data, the intrinsic growth rate and per capita interaction parameters,78

and their potential variation with time and environmental conditions, that are key for un-79

derstanding and modelling ecological communities. To do so, we use the per capita growth80

rate as the response variable for weighted multivariate multilinear regression. In this way,81

the intercept and the slope of this regression naturally correspond to the intrinsic growth82

rate and per capita interaction strength. LV-map is not simply a multivariate regression83

because parameter inference is performed at each time point of the time-series, which en-84

ables the detection of potential time variations in these parameters. We first demonstrate85

on synthetic data that our approach provides the desired and correct parameters, then we86

illustrate its success on empirical data from both controlled experimental communities as87

well as observations. Subsequently, we explain the key differences between the Jacobian88

elements inferred by the S-map method, and the per capita interaction estimated from89

our LV-map. Our approach therefore serves as a robust tool for addressing ecological and90

evolutionary questions both within experimental setups and in natural communities.91

The Lotka-Volterra map approach92

Mechanistic basis of the approach93

To build up the LV-map, it is essential to realise that population dynamics are governed94

by the birth and death of individual organisms. A key metric for monitoring changes in95

population sizes is naturally the per capita rate of change, which is the difference between96
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the per capita birth and death rates. These per capita rates, in turn, are functions of97

the population densities, that is, the so-called density dependence of population growth98

(Turchin, 1999).99

100

From a mathematical standpoint, in a community of S populations (which could be101

at the species, phenotypic, or genotypic levels), the changes in population densities are102

represented by their per capita rates, which are given by the log-ratio of population density103

changes: ln(ni(t+1)/ni(t)) = λi(n(t), e(t)) (Turchin, 1999; Vincent & Brown, 2005). This104

per capita rate depends on all biotic and abiotic factors, represented respectively by the105

population densities n(t) and environmental conditions e(t). We can now incorporate106

our two key terms governing the per capita rate of change: the intrinsic growth rate and107

the limits imposed by interactions within and between species (Turchin, 1999; Sibly &108

Hone, 2002; Vincent & Brown, 2005). The former represents the intrinsic growth of a109

population in the absence of limitations, represented as the per capita rate of change when110

population densities are extremely low, that is, ri(t) = λ(0, e(t)). The latter refers to the111

regulation by both inter- and intraspecific per capita interactions, which is represented112

by the partial derivative of the per capita rates of change, αij(t) = ∂λi(n(t), e(t))/∂nj(t).113

With population densities recorded in time-series, for each time point, we can approximate114

the per capita rates of change by a multivariate function of these population densities as115

follows:116

ln

(
ni(t+ 1)

ni(t)

)
= ri(t) +

S∑
j=1

αij(t) · nj(t) i = 1, . . . , S. (1)

In this approximation, the intercepts correspond to the intrinsic growth rates, while the117

slopes represent the per capita interaction strengths (Vandermeer, 1969; Berlow et al.,118

2004; Vincent & Brown, 2005; Arditi et al., 2021). Equation 1 is, in fact, similar to the119

multi-species Lotka-Volterra model, with one subtle but fundamental difference—we do120

not assume constant values for ri(t) and αij(t). This requires a weighting parameter θ121

that determines how ri(t) and αij(t) vary with time. Details of θ are further explained122

in the next section.123
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Weighted multilinear multivariate regression124

We now show that by using the per capita growth rate of the population λi(n(t), e(t))125

as the response variable, the LV-map is, in fact, a multivariate non-linear autoregressive126

process. Equation 1 can be rewritten as127

pi(t+ 1) = pi(t) + ri(t) +
S∑

j=1

αij(t) · epj(t). (2)

where pi(t) = lnni(t). The parameters ri(t) and αij(t) can be inferred by maximum like-128

lihood techniques, which is equivalent to minimizing the residual sum of squares (RSS):129

RSS =
∑
i,t

(
pi(t+ 1)− pi(t) + ri(t) +

S∑
j=1

αij(t) · epj(t)
)2

. (3)

Putting back ni(t) in the above equation, we obtain130

RSS =
∑
i,t

(
ln

(
ni(t+ 1)

ni(t)

)
− ri(t) +

S∑
j=1

αij(t) · nj(t)

)2

. (4)

This is the exact same expression for a multivariate regression with Yi(t+ 1) = ln(ni(t+131

1)/ni(t)) the response variables and ni(t) the explanatory variables.132

133

As the values of ri(t) and αij(t) are free to vary with different conditions, and thus134

with time, we have to introduce a weighting kernel which weights each variable relative135

to the time point t that we consider. The state-space weighting kernel, introduced in the136

S-map (Sugihara, 1994; Deyle et al., 2016), takes into account the difference between a137

variable at time point t of focus and variables at other the time point l is defined as138

ω(t, l) = e−θ· ∥n(t)−n(l)∥
d̄ , (5)
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where ∥n(t) − n(l)∥ is the Euclidean distance between the vector of population densi-139

ties n(t) at time point t and the one at time point l, and d̄ is the average Euclidean140

distance computed across all time-points l. The parameter θ determines the strength of141

the weighting kernel. This allows to define Ỹ(t) and ˜X(t) respectively as the matrix of142

weighted response and explanatory variables. Given that143

ỹT
j =

(
ω(t, 1) · lnnj(2)

nj(1)
, ω(t, 2) · lnnj(3)

nj(2)
, ..., ω(t, T − 1) · ln nj(T )

nj(T − 1)

)
(6)

the column vector j of matrix Ỹ(t), and144

x̃i = (ω(t, i) · 1, ω(t, i) · n1(i), ..., ω(t, i) · ns(i)) (7)

the row vector i of matrix X̃(t). Here, Ỹ(t) is of size (T − 1) × S and X̃(t) is of size145

(T − 1)× (S + 1), where T is the total data points of the time-series.146

147

From these two matrices, we compute the lease square estimation of all parameters148

at time t by matrix computation:149

β̂(t) =
(
X̃⊤(t) · X̃(t)

)−1

· X̃⊤(t) · Ỹ(t). (8)

The matrix β̂(t) contains the estimations of the intrinsic growth rates of all populations150

as well as all per capita interaction strength. For instance, its column j is given by151

the column vector b̂Tj = (r̂1(t), α̂j1(t), ..., α̂jS(t)) and provides the estimations of the152

intrinsic growth rate of the population j and the interaction of other populations in the153

communities on the population j. Note that β̂(t) is a matrix of size (S + 1) × S. The154

mathematical proof can be found in chapter 3.2 of Hastie et al. (2001) and chapter 3.3155

of Mardia et al. (1979). The strength of the weighting kernel, θ, is determined by cross156

validation (Supporting Information). Finally, we provided an estimation of the standard157
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error for each r̂i(t) and α̂ij(t) (Supporting Information).158

Fundamental differences between the LV-map and the S-map159

Comparing the LV-map and S-map is essential as both methods use weighted multivariate160

multilinear regression, which has been widely discussed in time-series analysis and stan-161

dard statistics (Hastie et al., 2001; Holger Kantz, 2004), although with different response162

variables. Specifically, with LV-maps, we model the per capita birth and death processes163

by considering the per capita growth rate, while the S-map assumes no process, and mod-164

els directly the total growth rate. It is this subtlety that set a critical difference between165

these two methods, shifting the purpose from prediction to explanation by rendering the166

LV-map the capacity to delve deeply into mechanisms underlying the eco-evolutionary167

properties of communities. While the LV-map is able to infer the intrinsic growth rate168

and the per capita interaction strength, the S-map estimates the Jacobian elements by169

inferring parameters of the following model:170

ni(t+ 1) = bi(t) +
S∑

j=1

Jij(t) · nj(t). (9)

In the S-map, the intercept bi carries no biological meaning, and the Jacobian elements171

can be related to ri(t) and αij(t) of the LV-map as follows:172

Jij(t) = ni(t+ 1) · αij(t) i ̸= j (10)

Jii(t) = exp

(
ri(t) +

S∑
j=1

αij(t) · nj(t)

)
+ ni(t+ 1) · αii(t). (11)

These Jacobian elements of S-maps indicate the total effect of one population on the173

growth of another population, i.e. the effect includes population densities as expressed174

in Equations 10 and 11. The off-diagonal Jacobian elements (Jij(t) for i ̸= j, Equation175

10 represent the per capita interaction strengths multiplied by the population densities,176
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while the diagonal elements (Jii(t), Equation 11 include both the per capita intraspecific177

interaction (αii(t)) and the intrinsic growth rates (ri(t)). Overall, while these methods178

are relatable, the convoluted terms generated by the Jacobian elements in Equations 10179

and 11 make it extremely challenging to pull out values for the intrinsic growth rate and180

per capita interaction strength, especially as compared to the direct estimation of these181

values from the LV-map, as represented by Equation 1.182

Results183

Validating the LV-map using synthetic data184

As our first application of the LV-map, we estimated the ri(t) and αij(t) parameters from a185

discrete-time Lotka-Volterra model with environmental noise (Supporting Information).186

Our inferred parameters matched the true values, which was expected as this data is187

simulated from the Lotka-Volterra model (Figure 1). Note that the population dynamics188

of the simulated data demonstrate a cyclic behaviour, but the parameters (ri and αij)189

used for the simulation are constant (Figure 1a - c). Here, the key difference between190

our LV-map and the S-map is that the net interactions (Jacobian elements) inferred by191

the S-map change with respect to population density. As by definition, these are the192

total effects of one population on the others, and hence, are naturally density-dependent,193

as shown in Equation 10 (Figure 1b and d). This difference is also shown in the cross194

validation results, where θ = 0 with LV-map, and θ > 0 with S-map (Figure 2). When195

comparing to the LV-map, the net interaction of population 3 on population 2 inferred by196

the S-map is stronger due to the high density of the population 2, but not because the per197

capita interaction strength itself is inherently stronger (Figure 1c, d). More importantly,198

we could use LV-map to infer both intrinsic growth rates and intraspecific interactions,199

and were thus not limited to interspecific interactions as in previous studies (Paine, 1992;200

Deyle et al., 2016; Chang et al., 2021).201
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FIGURE 1 Estimations of the synthetic cyclic system, comparing the LV-map to the S-map.
(a) Intrinsic growth rates estimated from LV-map. (b) Population dynamics of a Lotka-Volterra
system with three competing populations. (c) Per capita interaction strengths of all populations
on population 2, as estimated from LV-map. (d) Off-diagonal Jacobian elements for population
2, as estimated by S-map. Solid lines represent estimated values, and shaded areas illustrate the
standard error. Dotted lines represent true values. Parameter inference for populations 1 and 3
and cross validation results can be found in Figure S1. Parameters used for the simulations are
r = [3.8; 0.3; 2.4], α = −[(0.2, 0.4, 0.8); (1/90, 1/30, 1/15); (0.2, 0.2, 0.6)]. Environmental
noise follows a normal distribution ϵi ∼ N (0, 0.042 · r2i ).
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FIGURE 2 Cross validation results for the cyclic Lotka-Volterra model. (a), LV-map method.
(b), S-map method. Red points indicate the value of θ with the smallest value of RMSE.
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Then we test the LV-map against chaotic dynamics, which often is the case in nature.202

Figure 3a and c shows that while the LV-map can accurately infer the ri(t) and αij(t),203

Figure 3d shows that in contrast, the S-map seems unable to infer the correct Jacobian204

elements. This is probably due to abrupt changes in population densities in the chaotic205

Lotka-Volterra dynamics, which challenges the inference of the density-dependent Jaco-206

bian elements. These two applications to synthetic data prove that we can effectively207

retrieve the expected values of the key ecological parameters governing community dy-208

namics, with varying levels of complexity.209
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FIGURE 3 Estimations of a synthetic chaotic system, comparing the LV-map to the S-map.
(a) Intrinsic growth rates estimated from LV-map. (b) Population dynamics of a Lotka-Volterra
system with three competing populations. (c) Per capita interaction strengths of all populations
on population 2, as estimated from LV-map. (d), Off-diagonal Jacobian elements for population
2, as estimated by S-map. Solid lines represent estimated values, and shaded areas illustrate the
standard error (here, the standard errors are too small that they are almost not visible on the
graphs). Dotted lines represent true values. Estimation of parameters for populations 1 and 3
and cross validation results can be found in Figure S2. Parameters used for the simulations are
r = [11.4; 0.9; 7.2], α = −[(0.6, 1.2, 2.4); (0.033, 0.1, 0.2); (0.6, 0.6, 1.8)]. Environmental
noise follows a normal distribution ϵi ∼ N (0, 0.032 · r2i )

13

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.07.592896doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.07.592896
http://creativecommons.org/licenses/by-nc/4.0/


Analysing real-world data using LV-map210

To then perform a proof-of-concept test of our approach using empirical data, we first211

applied the LV-map to a phytoplanktonic predator-prey system from Blasius et al. (2020)212

and Yoshida et al. (2003) (Supporting Information). We then apply it to a high-frequency213

time-series of five phytoplankton groups from lake data (Supporting Information).214

215

The first set of phytoplanktonic experimental data was obtained from chemostat ex-216

periments wherein rotifers (Brachionus calyciflorus) and algae (Monoraphidium minutum217

inBlasius et al. (2020) and Chlorella vulgaris in Yoshida et al. (2003)) were cultivated218

together in constant environmental conditions with daily density measurements (Figure219

4a - c and Figure S5a - c). These measurements were conducted on the clonal level for220

algae, resulting in three time-series data sets for each system.221

222

We thus applied the LV-map on all six time-series data and inferred the intrinsic223

growth rates and per capita interaction rates. The inferred intrinsic growth rates of all224

algae clones are positive, suggesting their autotrophic nature (Figure 4d and Figure S5d).225

The intraspecific interactions are negative, though, suggesting that the algae compete for226

nutrients (Figure 4e and Figure S5e), and the negative effect of rotifers on algae indicates227

that the algae are eaten by rotifers (Figure 4f and Figure S5f). Interestingly, in the exper-228

iment of Blasius et al. (2020) with algal clone 2, the intrinsic growth rate of the rotifers229

is almost zero, indicating that this predator cannot survive without the algae (Figure230

4g). However, in the experiments with the other algal clones, the rotifers have slightly231

positive intrinsic growth rates, implying that they may exhibit some form of mixotrophic232

behaviour (Figure 4g, and Figure S5g). This result could also be explained by the ability233

of rotifers to exploit other resources in the system, such as particles or dissolved organic234

carbon sources. Overall, the effect of algae on rotifers is positive, suggesting that rotifers235

thrive on algae (Figure 4h and Figure S5h), though the negative interactions between236

rotifers indicate that they compete with each other (Figure 4i and Figure S5i).237
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238

The different parameters inferred by LV-map for the different algal clones suggests239

an allocative trade-off between reproduction and defensive traits. Allocative trade-off240

is common in nature as organisms always experience limited resources which are spent241

on growth, reproduction, defence, and so on (Strauss et al., 2002; Cotter et al., 2004;242

Yoshida et al., 2004). Thus, the more energy invested in one trait, the lesser energy is243

left for the others. Our results from Blasius’ experiment clearly show that the clone with244

the highest intrinsic growth rate (better reproduction) exhibits the strongest intraspecific245

competition and is also the most strongly grazed upon (less defence), and vice versa for246

the clone with the lowest intrinsic growth rate (Figure 4d - f). The experiments of Yoshida247

et al. (2003) exhibit an analogous pattern, despite some fluctuations in parameter values248

(Figure S5).249

250

Another important result from LV-map is the value of the weighting parameter θ from251

cross validation. The best value for θ, which determines how the ri and αij vary with252

time, was zero in four out of the six total data sets with θ = 0 for all experiments in Bla-253

sius et al. (2020)(Figure 5). This suggests that overall, the experimental predator-prey254

dynamics reflects the original Lotka-Volterra model, i.e., the parameters are time inde-255

pendent in a controlled experimental environment. In two other experiments in Yoshida256

et al. (2003), we have θ ̸= 0, suggesting a deviation from the original Lotka-Volterra257

model even though all experiments follow the same procedure (Figure S4). This could258

be because these experiments were short (20 days compared to 190 days in Blasius et al.259

(2020)), indicating that this length might be insufficient for the algorithm to fully capture260

the dynamics. Moreover, in one of these two experiments (Figure S4b), θ is, in fact, close261

to zero, implying that this dynamic could indeed follow the Lotka-Volterra model.262

263

Overall, the application of the LV-map on experimental data shows that we can ef-264

fectively estimate the intrinsic growth rates and per capita interactions in controlled265

15

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2024. ; https://doi.org/10.1101/2024.05.07.592896doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.07.592896
http://creativecommons.org/licenses/by-nc/4.0/


0 50 100 150
10 1

100

101

102
Ab

un
da

nc
e 

(lo
g 

sc
al

e)
(a)  Population dynamics experiment 1

algae clone 1 rotifer experiment 1
0 50 100 150

10 1

100

101

(b)  Population dynamics experiment 2

algae clone 2 rotifer experiment 2
0 50 100 150

10 1

100

101

(c)  Population dynamics experiment 3

algae clone 3 rotifer experiment 3

0 50 100 150
0.0

0.5

1.0

(d)  Intrinsic growth rate (algae)

0 50 100 150

1.5

1.0

0.5

0.0

(e)  Intraspecific interaction (algae)

0 50 100 150
0.020

0.015

0.010

0.005

0.000

(f)  Death of algae by rotifers

0 50 100 150
Day

0.1

0.0

0.1

0.2

0.3

(g)  Intrinsic growth rate (rotifers)

0 50 100 150
Day

0.04

0.03

0.02

0.01

0.00

(h)  Intraspecific interaction (rotifers)

0 50 100 150
Day

0.0

0.5

1.0

(i)  Predation rate of rotifers

FIGURE 4 LV-map estimation of time-series data of the interactions between algae and
rotifers from Blasius et al.Blasius et al. (2020). (a - c), Population dynamics. (d), Intrinsic
growth rate of algae. (e), Intraspecific interactions between algae. (f), Effect of rotifers on
algae. (g), Intrinsic growth rate of rotifers. (h), Intraspecific interaction between rotifers. (i),
Effect of algae on rotifers. Shaded areas represent the standard error.
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FIGURE 5 Cross validation results for experimental data of Blasius et al Blasius et al. (2020).
Results from experiment 1 (a), experiment 2 (b), and experiment 3 (c). Red points indicate the
value of θ with the smallest value of RMSE.

experimental time series, avoiding the need for isolating species in monoculture, bicul-266

ture, or other artificial setups as in previous studies (Vandermeer, 1969; Levine & Hil-267

leRisLambers, 2009; Bartomeus et al., 2021; Van Dyke et al., 2022). In addition, these268
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estimated parameters allow elucidating eco-evolutionary interactions and can be directly269

implemented in LV-type models of community dynamics.270

As a second real-world application of LV-map that tests its function on compara-271

tively noisy data, we used high-frequency (daily) time-series data from Lake Greifensee,272

Switzerland. The data were collected by automated underwater imaging between March273

2019 and December 2022 (Merz et al., 2021) (Supporting Information, Figure S6). We274

applied the LV-map to five phytoplankton groups, namely cyanobacteria, green algae,275

chrysophytes, diatoms, and cryptophytes (Figure 6). Here, our inferred intrinsic growth276

rates for phytoplankton are generally positive, except for cyanobacteria, which displayed277

an intrinsic growth rate of nearly zero (Figure 6 a). This suggests that cyanobacteria278

grow quite slow in nature, compared to other algae. Most of the inferred inter- and279

intraspecific interactions are small, except for chrysophytes, which had a large effect on280

the other groups (Figure 6 b-f). In some cases, we observed positive interspecific inter-281

actions, suggesting facilitating effects between groups (Figure 6 b,d). In particular, the282

positive interaction between the chrysophytes and the cyanobacteria may be an impor-283

tant hypothesis to test in follow-up studies in relation to cyanobacterial blooms — these284

events are becoming more and more common worldwide, they are difficult to predict and285

generally explained as a function of only abiotic environmental drivers (Huisman et al.,286

2018). In addition, these parameters show temporal fluctuations that can be reconciled287

with a seasonal variation of the environmental context, as would be expected for a dy-288

namic system (Figure S7). Overall, this second application shows that we can effectively289

estimate the intrinsic growth rates and per capita interactions in natural phytoplankton290

communities using noisy in situ data, and retrieve valuable information to understand291

and model real-world problems (e.g. cyanobacterial blooms).292
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FIGURE 6 LV-map parameter inference from time-series data of five autotrophic groups
in Lake Greifensee, Switzerland. (a), Intrinsic growth rates. (b), Effect of other groups on
cyanobacteria. (c), Effect of other groups on green algae. (d), Effect of other groups on
chrysophytes. (e), Effect of other groups on diatoms. (f), Effect of other groups on cryptophytes.
The shaded area represents the standard error.

Discussions293

In this article, we present a new approach, termed LV-map, which we validated on syn-294

thetic, experimental and observational data. The LV-map is a weighted multivariate295
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regression that offers a robust method for inferring ecological parameters without iso-296

lating organisms from a community context — a key issue in studies on community297

dynamics. These key ecological parameters, namely, per capita interaction and intrin-298

sic growth rate, dictate the eco-evolutionary dynamics of communities. Together, they299

determine possibilities for species coexistence (Chesson, 2000; Saavedra et al., 2017),300

structures of communities in nature (Bascompte & Jordano, 2007; Cohen et al., 2009),301

and the relationships between biodiversity and ecosystem functioning (Baert et al., 2016,302

2018; Bartomeus et al., 2021).303

304

The LV-map approach presents subtle differences with the S-map that expand its305

utility in ecology and evolution: LV-map can infer the per capita interactions instead of306

the elements of Jacobian matrix by using the per capita rate of population change rather307

than the total densities. Consequently, the intercepts and the slopes of the LV-map ap-308

proach correspond naturally to the intrinsic growth rates ri(t) and per capita interaction309

strengths αij(t), respectively. The determination of these two values often stymies studies310

into eco-evolutionary outcomes. As the multivariate regression is weighted, estimations311

made using LV-map can also be made time-dependent, such that it has the capacity to312

detect variations in ri(t) and αij(t) across time.313

314

One of the highlights of the LV-map is that it presents an alternative to the laborious315

experimental work that is normally required to determine ri(t) and αij(t), as it infers316

these values directly from time-series data and thus offers the opportunity to study these317

parameters in natural communities instead of experimental ones. Compare this to, for318

instance, Van Dyke et al. (2022), who showed that rainfall changes largely affect the319

conditions for species coexistence. This work required a combination of theoretical ap-320

proach and sophisticated field experiments involving six plant species and 106 planting321

plots subjected to two environmental treatments over two years. We thus expect this322

simplification provided by LV-map to generate many novel insights in the study of com-323
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munity dynamics. Our ability to directly query the per capita interaction strength and324

sign, which has been indicated to profoundly affect the niche differences between species325

in theoretical studies (Chesson, 2000; Saavedra et al., 2017; Song et al., 2020), such that326

greater deviations in species’ niches increase the possibility for coexistence. In addition,327

LV-map will also help confirm insights into the intrinsic growth rates, which are known to328

impact fitness differences, where smaller differences enable species coexistence (Chesson,329

2000; Saavedra et al., 2017; Song et al., 2020).330

331

Applying LV-map to experimental data, we were able to detect the allocative trade-offs332

between intrinsic growth rates and the per capita interaction strength, which essentially333

determines evolutionary outcomes in populations and communities. In fact, coexistence334

status can change as evolutionary processes direct within-species variations of intrinsic335

growth rates and per capita interaction coefficients (Lankau, 2011; Hart et al., 2019).336

Here, we show that fast-growing clones exhibit higher intraspecific competition and are337

more likely to be eaten by predators than slow-growing ones, i.e. there is a trade-off be-338

tween growth versus competition and defence. We thus expect LV-map to provide deeper339

insights into underlying evolutionary processes.340

341

While we did not use regularisation techniques for the LV-map in this study, appro-342

priate techniques have been proposed, validated (Cenci et al., 2019), and can be applied343

if needed. Additionally, interpreting the inferred parameters requires caution, as un-344

expected results have been demonstrated by both the LV-map (Figure 4g) and S-map345

method (Deyle et al., 2016). In particular, in the occurrence of migration, the inferred346

ri(t) may no longer represent the intrinsic growth rate as it now encompasses both emigra-347

tion and immigration. In the future, demographic characteristics of populations should348

also be considered in this model, as population dynamics may be structured in terms349

of age or sex, meaning that it may not be straightforward to interpret the parameters350

without consideration for these characteristics.351
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352

Overall, the LV-map is a promising approach for resolving many ecological and evo-353

lutionary questions while avoiding the time-consuming, labour-intensive, and disruptive354

isolation of organisms from their natural context. We expect that our proposed approach355

for inferring intrinsic growth rates and per capita interactions could pave the way for356

a broader understanding of ecological dynamics by allowing the use of time-series data357

from a range of natural and experimental communities. This feature alone should fur-358

ther improve our understanding of how species, phenotypes or genetic lineages coexist359

in complex ecosystems, and the mechanisms governing biodiversity. Given the increas-360

ing amount of time-series data being collected worldwide across systems (Benincà et al.,361

2015; Ehrlich & Gaedke, 2020; Merz et al., 2023), the broad applicability of this approach362

should help improve our overall understanding of the changing dynamics of ecosystems363

in our increasingly changing world.364
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Supporting Information for1

Inferring intrinsic growth rates and per capita2

interactions from ecological time-series3

Standard error of the parameters4

The standard error (SE) of the intercept (intrinsic growth rate; ri) and coefficient (inter5

and intraspecific interaction; αij) follows the statistics of conventional multivariate regres-6

sion method. The linear regression assumes that the deviation of the response variable7

Ỹ from its predicted values ˆ̃Y follows a normal distribution, therefore for each column i8

of the response matrix Ỹ we have9

10

ỹi = X̃βi + ϵi. (S1)

The vector βi corresponds to the column i of the matrix of parameters β. The resid-11

uals ϵi are assumed to be independent and identically distributed and follow a normal12

distribution with mean zero and variance σ2
i . The residual variance σ2

i can be estimated13

by14

σ2
i =

1

T − 2− S

T−1∑
j

(yij − ŷij)
2 (S2)

Then the estimation β̂i of the parameters βi follows a normal distribution of mean β and15

variance-covariance matrix given by16

σ2
i · (X̃T X̃)−1. (S3)

And thus, the square roots of the diagonal elements of this variance-covariance matrix17

are the standard error of β̂i. See chapter 3.2 of Hastie et al. (2001) and Chapter 3.3 of18

Mardia et al. (1979). The computation of the standard errors is done at each time point t.19
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20

Cross validation21

The weighting parameters, θ, is estimated using cross-validation technique. As the data22

points in time-series data are dependent, we cannot use classical cross validation methods23

that randomly split the training data (or in sample data) and the test data (or out of24

sample data). Instead, we use the cross validation on rolling origin forecast.25

26

This cross validation technique uses the first-t observation of population abundance27

(n(l), for l = 1, . . . t) to predict the population abundance n̂(t + 1) at time step t + 1.28

This process of prediction is iterated for t from Ts to T − 1. The initial time step Ts is29

usually chosen as 10% of the total number of time point T , i.e., Ts = round(p · T ) with30

p = 0.1. The best θ is the one minimizing the root mean sum of error squares (RMSE).31

The expression of the RMSE is given by32

RMSE =

√∑T−1
t=Ts

(∥n̂(t+ 1)− n(t+ 1)∥2)
T − 1− Ts

. (S4)

The prediction of n̂(t + 1) is done as follows. Knowing the abundances from time 1 to33

time t, we can estimate r̂(k) and α̂(k) from time 1 to time t − 1. Note that we cannot34

estimate r(t) and α(t), as it would require the knowledge of n(t + 1). Consequently, we35

use r̂(t− 1), ˆα(t− 1) and n(t) to estimate n̂(t+ 1) as follows36

n̂i(t+ 1) = ni(t) · exp

(
ri(t− 1) +

S∑
i=1

αij(t− 1) · nj(t)

)
. (S5)

Synthetic data37

Synthetic data is simulated from a discrete time Lotka-Volterra model with three com-38

peting population and environmental noise. The equation is given by:39

2
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40

ni(t+ 1) = ni(t) · exp

(
ri +

3∑
j=1

αij · nj(t) + ϵi(t)

)
i = 1, 2, 3. (S6)

The parameters ri and αij are the intrinsic growth rate and the per capita interaction41

strengths, respectively. The random variables ϵi(t) represent the environmental noise,42

which are drawn independently at random from a centred normal distribution and of43

standard deviation proportional to the ri, i.e., ϵi(t) ∼ N (0, ri · σ). The parameter σ44

determine the overall environmental noise level. We use all points that are generated by45

the simulation.46

Experimental data47

Time-series experimental data of Blasius et al. (2020) are obtained from open-source48

data, which the author share on FigShare https://doi.org/10.6084/m9.figshare.49

10045976.v1. We interpolate the missing data points. In particular, two missing points50

for experiment C2 and C3 (i.e. clone 2 and clone 3), and seven missing points for exper-51

iment C1 (i.e. clone 1). In experiment C1, we replace the zero density of rotifers by the52

minimum value of rotifer densities and divide it by 8. In addition, the experiment with53

algal clone 1 lasted for 350 days, but we only kept data from the first 190 days to match54

the length of the other two experiments (190 days for experiments with algal clone 2 and55

181 days for algal clone 3).56

57

Time-series experimental data of Yoshida et al. (2003) are obtained using PlotDigitizer58

app https://plotdigitizer.com/app. In particular, we took screen shorts of the figures59

from the paper, uploaded them on the PlotDigitizer website, and manually extracted the60

values of the data points.61
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Observational data62

Plankton high-frequency data were collected from Lake Greifensee, Switzerland, by a63

dual-magnification dark-field imaging microscope Merz et al. (2021). Pelagic plank-64

ton images in the size range between ∼ 10 µm and ∼ 1 cm were collected at 3 m65

depth for 10 minutes every hour, and abundances (as regions of interest per second,66

ROI/s) were aggregated (summed) per day. For this study, we used data collected67

between March 2019 and December 2022. We classified taxa using a deep-learning68

classifier (Kyathanahally et al., 2021) (the code for the classification can be found in69

https://github.com/kspruthviraj/Plankiformer), and focused on five aggregated70

groups of phytoplankton: Cyanobacteria, Green algae, Diatoms, Golden algae, and Cryp-71

tohytes. We interpolate the missing data (50 points out of 1382 points), and replace the72

values that are absolute zero with the min value of the time-series of the corresponding73

group and divide them by 8. In this way, we represent the absolute zero values with74

extremely small values to enable the application of the LV-map.75
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Supplementary figures76
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FIGURE S1 Estimation of parameters for population 2 and 3 of the cyclic Lotka-Volterra
model. (a, c), Off-diagonal Jacobian elements for population 2 and 3. (b, d) per capita interac-
tions for population 2 and 3. Solid lines with shaded areas represent estimated parameters and
their standard errors, and dotted lines represent true values. Note that the per capita interac-
tions of species 1 and 2 on species 3 are the same values, therefore the line red and purple lines
overlap.
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FIGURE S2 Estimation of parameters for population 2 and 3 of the chaotic Lotka-Volterra
model. (a - c) Off-diagonal Jacobian elements for population 2. and 3. (b - d) per capita
interactions for population 2 and 3. Annotations are similar to Fig S1.
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FIGURE S3 Cross validation results for the chaotic Lotka-Volterra model. (a), LV-map
method. (b), S-map method. Red points indicate the value of θ with the smallest value of
RMSE.
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FIGURE S4 Cross validation results for experimental data of Yoshida et al. (2003). Results
from experiment 1 (a), experiment 2 (b), and experiment 3 (c).
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FIGURE S5 Time-series data of algae and rotifers from Yoshida et al. (2003). (a-c) Population
dynamics of different clones. (d) Intrinsic growth rates of algae. (e), per capita intraspecific
interactions between algae. (f), Effect of rotifers on algae. (g), Intrinsic growth rates of rotifers.
(h), per capita intraspecific interactions between rotifers. (i), Effect of algae on rotifers. Different
colours and line styles correspond to different clones (dotted for clone 1, dot-dot-dashed for clone
2, and dashed for clone 3). Shaded areas represent the standard errors.
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FIGURE S6 Time-series data of Cyanobacteria, Crysophyte, Green algae, Diatoms and
Cryptophytes
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FIGURE S7 Cross validation results of the inference using lake data.
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