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Abstract

Knowledge about the per capita interactions between organisms and their intrin-
sic growth rates, and how these vary over environmental gradients, allows under-
standing and predicting species coexistence and community dynamics. Estimating
these crucial ecological parameters requires tedious experimental work, with isola-
tion of organisms from their natural context. Here, we provide a novel approach for
inferring these key parameters from time-series data by using weighted multivariate
regression on the per capita growth rates of populations. Beyond the validation of
our approach on synthetic data, we reveal from experimental data an expected al-
locative trade-off between grazing resistance and rapid growth in algae. Application
of observational data suggests facilitation between cyanobacteria and chrysophyte,
indicating a possible explanation for cyanobacteria bloom. Our approach offers
a way forward for inferring per capita interactions and intrinsic growth rates di-
rectly from natural communities, providing realism, mechanistic understanding of

eco-evolutionary dynamics, and key parameters to develop predictive models.
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s Introduction

1w To adapt to our rapidly changing planet, ecologists must be able to understand and
18 predict the responses of entire ecosystems. This requires the study of species not as
1 individuals but as interacting agents who collectively determine the emergent proper-
20 ties of complex and dynamic communities (Bascompte & Jordano, 2007; Cohen et al.,
2 2009; Godoy et al., 2018). As such, most modern ecological and evolutionary theoretical
» models are founded on two key parameters (Chesson, 2000; Vincent & Brown, 2005; Hil-
2 leRisLambers et al., 2012; Saavedra et al., 2017) that are essential for understanding and
2+ modelling how organisms interact (Turchin, 1999): the intrinsic growth rate of a pop-
»s  ulation and the per capita interaction coefficient. By definition, these factors quantify,
% respectively, the per capita rate of change of a population at a low density, meaning in
a7 the absence of any limitations, and the effect that co-occurring organisms have on each
s other’s abundance. These key parameters are essential for understanding and predicting
2 species coexistence, community composition, and ecosystem biodiversity (Chesson, 2000;
s Vincent & Brown, 2005; Bascompte & Jordano, 2007; HilleRisLambers et al., 2012; Baert
a et al., 2016; Saavedra et al., 2017; Bartomeus et al., 2021). However, direct measurements
» or more practical estimations of these parameters remain challenging for ecologists.

33

3 This challenge currently stems from the complexity of the experimental setups that
55 are required to measure these parameters and variations in how interactions are measured
s due to differences in dimensions and units (Berlow et al., 2004; Arditi et al., 2021). As
7 an example dating back to 1969, Vandermeer estimated all pairwise per capita interac-
;s tions and intrinsic growth rates of four species of protozoa by fitting experimental data of
3 monocultures and bi-cultures using the Lotka-Volterra multi-species model (Vandermeer,
w0 1969), which has served as the foundation of most theoretical models in ecology and evo-
a lution (Vandermeer, 1969; Turchin, 1999; Chesson, 2000; HilleRisLambers et al., 2012;
2 Saavedra et al., 2017). This work required at least 10 time-series (four monocultures and

i3 six bicultures), without replication. Furthermore, the per capita interaction is not the
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s+ only measurement of interaction. Subsequent work by Laska & Wootton (1998) identified
»s three additional representations of the concept of interaction, including: (i) the Paine’s
s index that reflects the difference in abundance of a community containing all species and
« lacking a focal species; (ii) the Jacobian matrix that shows the direct effect of one species
s on the total abundance of another species; and (iii) the inverted Jacobian matrix that
s includes both direct and indirect effects, such as apparent competition and competition
so via resources (Bender et al., 1984; Berlow et al., 2004). It is worth noting that these
s1 three concepts of interaction either require populations at ecological equilibrium, such as
s Paine’s index, or are density-dependent, such as the Jacobian matrix. However, to un-
53 derstand community dynamics in terms of governing mechanisms and to develop realistic
s« mechanistic models, it requires the intrinsic growth rate and the per capita interactions
ss inferred in Vandermeer’s work and in later experimental studies (Levine & HilleRisLam-
ss bers, 2009; Bartomeus et al., 2021; Van Dyke et al., 2022).

57

58 To overcome labour-intensive experimental work, Sugihara and collaborators use a
5o weighted multivariate multilinear regression, the S-map method, to infer the Jacobian
oo matrix directly from observational data (Sugihara, 1994; Deyle et al., 2016). While this
&1 technique does not require populations to be at ecological equilibrium, as one can study
2 the temporal change of the Jacobian elements, it still infers elements of the Jacobian
3 matrix and not the per capita interaction strengths (Berlow et al., 2004; Chang et al.,
s 2021; Arditi et al., 2021). Moreover, the intraspecific components of the Jacobian matrix,
ss determined by the diagonal elements, are often neglected because they entangle intrinsic
s growth rates and per capita intraspecific interactions. Regardless, an inference of both
7 intrinsic growth rate and per capita interaction strength, as was done originally in Van-
s dermeer (1969), is required for studying community coexistence (Chesson, 2000; Saavedra
o et al., 2017), productivity (Parain et al., 2019), and mechanisms underlying community
7 and evolutionary dynamics, such as allocative trade-offs between intrinsic growth and per

7 capita interaction strengths (Vincent & Brown, 2005; HilleRisLambers et al., 2012).
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7
73 Thus, to directly infer the intrinsic growth rate and per capita interaction strength
72 from complex, dynamic communities, we herein propose a novel approach called Lotka-
75 Volterra map (LV-map), which combines the strength of the S-map’s inference ability and
7 the mechanistic understanding of population’s ecological nature in the Lotka-Volterra
77 model (Lotka, 1925; Volterra, 1931). The key innovation of our approach is to estimate,
7 from observational data, the intrinsic growth rate and per capita interaction parameters,
7o and their potential variation with time and environmental conditions, that are key for un-
so derstanding and modelling ecological communities. To do so, we use the per capita growth
g1 rate as the response variable for weighted multivariate multilinear regression. In this way,
&2 the intercept and the slope of this regression naturally correspond to the intrinsic growth
s rate and per capita interaction strength. LV-map is not simply a multivariate regression
& because parameter inference is performed at each time point of the time-series, which en-
s ables the detection of potential time variations in these parameters. We first demonstrate
s on synthetic data that our approach provides the desired and correct parameters, then we
7 illustrate its success on empirical data from both controlled experimental communities as
ss  well as observations. Subsequently, we explain the key differences between the Jacobian
g0 elements inferred by the S-map method, and the per capita interaction estimated from
o our LV-map. Our approach therefore serves as a robust tool for addressing ecological and

o1 evolutionary questions both within experimental setups and in natural communities.

- The Lotka-Volterra map approach

s Mechanistic basis of the approach

oo To build up the LV-map, it is essential to realise that population dynamics are governed
os by the birth and death of individual organisms. A key metric for monitoring changes in

o population sizes is naturally the per capita rate of change, which is the difference between
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the per capita birth and death rates. These per capita rates, in turn, are functions of
the population densities, that is, the so-called density dependence of population growth

(Turchin, 1999).

From a mathematical standpoint, in a community of S populations (which could be
at the species, phenotypic, or genotypic levels), the changes in population densities are
represented by their per capita rates, which are given by the log-ratio of population density
changes: In(n;(t+1)/n;(t)) = Xi(n(t), e(t)) (Turchin, 1999; Vincent & Brown, 2005). This
per capita rate depends on all biotic and abiotic factors, represented respectively by the
population densities n(¢) and environmental conditions e(t). We can now incorporate
our two key terms governing the per capita rate of change: the intrinsic growth rate and
the limits imposed by interactions within and between species (Turchin, 1999; Sibly &
Hone, 2002; Vincent & Brown, 2005). The former represents the intrinsic growth of a
population in the absence of limitations, represented as the per capita rate of change when
population densities are extremely low, that is, r;(t) = A(0,e(t)). The latter refers to the
regulation by both inter- and intraspecific per capita interactions, which is represented
by the partial derivative of the per capita rates of change, a;;(t) = O\;(n(t), e(t))/0n;(t).
With population densities recorded in time-series, for each time point, we can approximate
the per capita rates of change by a multivariate function of these population densities as

follows:
(t+1
1 (nz(t )

S
) zn(t)JrZaij(t)’nj(t) i=1,...,5 (1)

In this approximation, the intercepts correspond to the intrinsic growth rates, while the
slopes represent the per capita interaction strengths (Vandermeer, 1969; Berlow et al.,
2004; Vincent & Brown, 2005; Arditi et al., 2021). Equation 1 is, in fact, similar to the
multi-species Lotka-Volterra model, with one subtle but fundamental difference—we do
not assume constant values for r;(t) and «;;(t). This requires a weighting parameter ¢
that determines how r;(t) and «;;(t) vary with time. Details of # are further explained

in the next section.
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Weighted multilinear multivariate regression

We now show that by using the per capita growth rate of the population \;(n(t),e(t))
as the response variable, the LV-map is, in fact, a multivariate non-linear autoregressive

process. Equation 1 can be rewritten as
pi(t+1) =pi(t) +ri(t) + Z o (t) - ePit) (2)

where p;(t) = Inn;(t). The parameters r;(t) and «;;(t) can be inferred by maximum like-

lihood techniques, which is equivalent to minimizing the residual sum of squares (RSS):

RSSzZ(i(zf—i—l)—pZ +ri(t +ZO‘” e”ﬂ”). (3)

it

Putting back n;(t) in the above equation, we obtain

2
RSS = ; <ln (T(t)) - 7”; + Z Oéz] ) . (4)
This is the exact same expression for a multivariate regression with Y;(t + 1) = In(n; (¢t +

1)/n;(t)) the response variables and n;(t) the explanatory variables.

As the values of r;(t) and «;;(t) are free to vary with different conditions, and thus
with time, we have to introduce a weighting kernel which weights each variable relative
to the time point ¢ that we consider. The state-space weighting kernel, introduced in the
S-map (Sugihara, 1994; Deyle et al., 2016), takes into account the difference between a
variable at time point ¢ of focus and variables at other the time point [ is defined as

g.Im®)—nll

wt,)=e"a (5)
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where ||n(t) — n(l)|| is the Euclidean distance between the vector of population densi-
ties n(t) at time point ¢ and the one at time point [, and d is the average Euclidean
distance computed across all time-points [. The parameter € determines the strength of
the weighting kernel. This allows to define Y (¢) and X(t) respectively as the matrix of
weighted response and explanatory variables. Given that

n_(2)

ng = (w(t, 1)- lnn;(l)’

wit,2) ™S T -1 znﬂ) (6)

n;(2)

the column vector j of matrix Y(t), and
T, = (w(t,1) - 1, wt,i) - ni(i),..., w(t,i) - ns(i)) (7)

the row vector 7 of matrix X(t). Here, Y(t) is of size (T' — 1) x S and X(t) is of size

(T'—1) x (S+ 1), where T is the total data points of the time-series.

From these two matrices, we compute the lease square estimation of all parameters

at time ¢ by matrix computation:

A

B = (X7 X)) -X7(0)- Y (). 0

The matrix B(t) contains the estimations of the intrinsic growth rates of all populations
as well as all per capita interaction strength. For instance, its column j is given by
the column vector BJT = (7(t), &1 (t),...,4;s(t)) and provides the estimations of the
intrinsic growth rate of the population 5 and the interaction of other populations in the
communities on the population j. Note that B(t) is a matrix of size (S + 1) x S. The
mathematical proof can be found in chapter 3.2 of Hastie et al. (2001) and chapter 3.3
of Mardia et al. (1979). The strength of the weighting kernel, 6, is determined by cross

validation (Supporting Information). Finally, we provided an estimation of the standard
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error for each 7;(t) and &;;(t) (Supporting Information).

Fundamental differences between the LV-map and the S-map

Comparing the LV-map and S-map is essential as both methods use weighted multivariate
multilinear regression, which has been widely discussed in time-series analysis and stan-
dard statistics (Hastie et al., 2001; Holger Kantz, 2004), although with different response
variables. Specifically, with LV-maps, we model the per capita birth and death processes
by considering the per capita growth rate, while the S-map assumes no process, and mod-
els directly the total growth rate. It is this subtlety that set a critical difference between
these two methods, shifting the purpose from prediction to explanation by rendering the
LV-map the capacity to delve deeply into mechanisms underlying the eco-evolutionary
properties of communities. While the LV-map is able to infer the intrinsic growth rate
and the per capita interaction strength, the S-map estimates the Jacobian elements by

inferring parameters of the following model:
nit+1) =bi(t) + Y Jij(t) - ny(t). (9)

In the S-map, the intercept b; carries no biological meaning, and the Jacobian elements

can be related to r;(t) and «;;(t) of the LV-map as follows:

Jii(t) = ni(t+1) - a(t) i (10)

s
Jii(t) = exp <ri(t) + Zaij(t) -nj(t)> +n;(t+ 1) - ay(t). (11)

These Jacobian elements of S-maps indicate the total effect of one population on the
growth of another population, i.e. the effect includes population densities as expressed
in Equations 10 and 11. The off-diagonal Jacobian elements (J;;(t) for i # j, Equation

10 represent the per capita interaction strengths multiplied by the population densities,

10
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while the diagonal elements (J;;(¢), Equation 11 include both the per capita intraspecific
interaction (ay;(t)) and the intrinsic growth rates (r;(t)). Overall, while these methods
are relatable, the convoluted terms generated by the Jacobian elements in Equations 10
and 11 make it extremely challenging to pull out values for the intrinsic growth rate and
per capita interaction strength, especially as compared to the direct estimation of these

values from the LV-map, as represented by Equation 1.

Results

Validating the LV-map using synthetic data

As our first application of the LV-map, we estimated the r;(¢) and «;;(t) parameters from a
discrete-time Lotka-Volterra model with environmental noise (Supporting Information).
Our inferred parameters matched the true values, which was expected as this data is
simulated from the Lotka-Volterra model (Figure 1). Note that the population dynamics
of the simulated data demonstrate a cyclic behaviour, but the parameters (r; and «;;)
used for the simulation are constant (Figure la - c¢). Here, the key difference between
our LV-map and the S-map is that the net interactions (Jacobian elements) inferred by
the S-map change with respect to population density. As by definition, these are the
total effects of one population on the others, and hence, are naturally density-dependent,
as shown in Equation 10 (Figure 1b and d). This difference is also shown in the cross
validation results, where # = 0 with LV-map, and 6 > 0 with S-map (Figure 2). When
comparing to the LV-map, the net interaction of population 3 on population 2 inferred by
the S-map is stronger due to the high density of the population 2, but not because the per
capita interaction strength itself is inherently stronger (Figure lc, d). More importantly,
we could use LV-map to infer both intrinsic growth rates and intraspecific interactions,
and were thus not limited to interspecific interactions as in previous studies (Paine, 1992;

Deyle et al., 2016; Chang et al., 2021).

11


https://doi.org/10.1101/2024.05.07.592896
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.07.592896; this version posted May 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

(a) LV-map method (b) Ecological dynamics
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FIGURE 1 Estimations of the synthetic cyclic system, comparing the LV-map to the S-map.
(a) Intrinsic growth rates estimated from LV-map. (b) Population dynamics of a Lotka-Volterra
system with three competing populations. (c) Per capita interaction strengths of all populations
on population 2, as estimated from LV-map. (d) Off-diagonal Jacobian elements for population
2, as estimated by S-map. Solid lines represent estimated values, and shaded areas illustrate the
standard error. Dotted lines represent true values. Parameter inference for populations 1 and 3
and cross validation results can be found in Figure S1. Parameters used for the simulations are
r =[3.8; 0.3; 2.4], a = —[(0.2, 0.4, 0.8); (1/90, 1/30, 1/15); (0.2, 0.2, 0.6)]. Environmental
noise follows a normal distribution ¢; ~ N(0, 0.04% - r2).

(a) LV-map method (b) S-map method
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FIGURE 2 Cross validation results for the cyclic Lotka-Volterra model. (a), LV-map method.
(b), S-map method. Red points indicate the value of § with the smallest value of RMSE.
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202 Then we test the LV-map against chaotic dynamics, which often is the case in nature.
203 Figure 3a and ¢ shows that while the LV-map can accurately infer the r;(¢) and o;(t),
204 Figure 3d shows that in contrast, the S-map seems unable to infer the correct Jacobian
25 elements. This is probably due to abrupt changes in population densities in the chaotic
26 Lotka-Volterra dynamics, which challenges the inference of the density-dependent Jaco-
207 bian elements. These two applications to synthetic data prove that we can effectively
28 retrieve the expected values of the key ecological parameters governing community dy-

200 namics, with varying levels of complexity.

(a) LV-map method (b) Ecological dynamics
Intrinsic growth rates
" aa. 1 = o () aa P | aa aa
> 10°1 s " . 1 S e
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(c) LV-map method (d) S-map method
Interaction coefficients on population 2 Jacobian elements on population 2
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-0.15 ax
azs -1.5 — Ja
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FIGURE 3 Estimations of a synthetic chaotic system, comparing the LV-map to the S-map.
(a) Intrinsic growth rates estimated from LV-map. (b) Population dynamics of a Lotka-Volterra
system with three competing populations. (c¢) Per capita interaction strengths of all populations
on population 2, as estimated from LV-map. (d), Off-diagonal Jacobian elements for population
2, as estimated by S-map. Solid lines represent estimated values, and shaded areas illustrate the
standard error (here, the standard errors are too small that they are almost not visible on the
graphs). Dotted lines represent true values. Estimation of parameters for populations 1 and 3
and cross validation results can be found in Figure S2. Parameters used for the simulations are
r = [11.4; 0.9; 7.2], & = —[(0.6, 1.2, 2.4); (0.033, 0.1, 0.2); (0.6, 0.6, 1.8)]. Environmental
noise follows a normal distribution ¢; ~ N(0, 0.03% - r?)
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Analysing real-world data using LV-map

To then perform a proof-of-concept test of our approach using empirical data, we first
applied the LV-map to a phytoplanktonic predator-prey system from Blasius et al. (2020)
and Yoshida et al. (2003) (Supporting Information). We then apply it to a high-frequency

time-series of five phytoplankton groups from lake data (Supporting Information).

The first set of phytoplanktonic experimental data was obtained from chemostat ex-
periments wherein rotifers (Brachionus calyciflorus) and algae (Monoraphidium minutum
inBlasius et al. (2020) and Chlorella vulgaris in Yoshida et al. (2003)) were cultivated
together in constant environmental conditions with daily density measurements (Figure
4a - ¢ and Figure Sba - ¢). These measurements were conducted on the clonal level for

algae, resulting in three time-series data sets for each system.

We thus applied the LV-map on all six time-series data and inferred the intrinsic
growth rates and per capita interaction rates. The inferred intrinsic growth rates of all
algae clones are positive, suggesting their autotrophic nature (Figure 4d and Figure S5d).
The intraspecific interactions are negative, though, suggesting that the algae compete for
nutrients (Figure 4e and Figure She), and the negative effect of rotifers on algae indicates
that the algae are eaten by rotifers (Figure 4f and Figure S5f). Interestingly, in the exper-
iment of Blasius et al. (2020) with algal clone 2, the intrinsic growth rate of the rotifers
is almost zero, indicating that this predator cannot survive without the algae (Figure
4g). However, in the experiments with the other algal clones, the rotifers have slightly
positive intrinsic growth rates, implying that they may exhibit some form of mixotrophic
behaviour (Figure 4g, and Figure S5g). This result could also be explained by the ability
of rotifers to exploit other resources in the system, such as particles or dissolved organic
carbon sources. Overall, the effect of algae on rotifers is positive, suggesting that rotifers
thrive on algae (Figure 4h and Figure S5h), though the negative interactions between

rotifers indicate that they compete with each other (Figure 4i and Figure S5i).
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238
230 The different parameters inferred by LV-map for the different algal clones suggests
20 an allocative trade-off between reproduction and defensive traits. Allocative trade-off
21 18 common in nature as organisms always experience limited resources which are spent
22 on growth, reproduction, defence, and so on (Strauss et al., 2002; Cotter et al., 2004;
23 Yoshida et al., 2004). Thus, the more energy invested in one trait, the lesser energy is
s left for the others. Our results from Blasius’ experiment clearly show that the clone with
25 the highest intrinsic growth rate (better reproduction) exhibits the strongest intraspecific
26 competition and is also the most strongly grazed upon (less defence), and vice versa for
27 the clone with the lowest intrinsic growth rate (Figure 4d - f). The experiments of Yoshida
2s et al. (2003) exhibit an analogous pattern, despite some fluctuations in parameter values
29 (Figure S5).

250

251 Another important result from LV-map is the value of the weighting parameter 6 from
22 cross validation. The best value for 6, which determines how the r; and «;; vary with
3 time, was zero in four out of the six total data sets with § = 0 for all experiments in Bla-
2 sius et al. (2020)(Figure 5). This suggests that overall, the experimental predator-prey
s dynamics reflects the original Lotka-Volterra model, i.e., the parameters are time inde-
6 pendent in a controlled experimental environment. In two other experiments in Yoshida
27 et al. (2003), we have 6 # 0, suggesting a deviation from the original Lotka-Volterra
253 model even though all experiments follow the same procedure (Figure S4). This could
250 be because these experiments were short (20 days compared to 190 days in Blasius et al.
20 (2020)), indicating that this length might be insufficient for the algorithm to fully capture
21 the dynamics. Moreover, in one of these two experiments (Figure S4b), € is, in fact, close
x%2  to zero, implying that this dynamic could indeed follow the Lotka-Volterra model.

263

264 Overall, the application of the LV-map on experimental data shows that we can ef-

x5 fectively estimate the intrinsic growth rates and per capita interactions in controlled

15
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FIGURE 4 LV-map estimation of time-series data of the interactions between algae and
rotifers from Blasius et al.Blasius et al. (2020). (a - c), Population dynamics. (d), Intrinsic
growth rate of algae. (e), Intraspecific interactions between algae. (f), Effect of rotifers on
algae. (g), Intrinsic growth rate of rotifers. (h), Intraspecific interaction between rotifers. (i),
Effect of algae on rotifers. Shaded areas represent the standard error.

(a) RMSE of data of clone 1 (b) RMSE of data of clone 2 (c) RMSE of data of clone 3
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FIGURE 5 Cross validation results for experimental data of Blasius et al Blasius et al. (2020).
Results from experiment 1 (a), experiment 2 (b), and experiment 3 (c). Red points indicate the
value of 6 with the smallest value of RMSE.

%6 experimental time series, avoiding the need for isolating species in monoculture, bicul-

27 ture, or other artificial setups as in previous studies (Vandermeer, 1969; Levine & Hil-

28 leRisLambers, 2009; Bartomeus et al., 2021; Van Dyke et al., 2022). In addition, these
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estimated parameters allow elucidating eco-evolutionary interactions and can be directly
implemented in LV-type models of community dynamics.

As a second real-world application of LV-map that tests its function on compara-
tively noisy data, we used high-frequency (daily) time-series data from Lake Greifensee,
Switzerland. The data were collected by automated underwater imaging between March
2019 and December 2022 (Merz et al., 2021) (Supporting Information, Figure S6). We
applied the LV-map to five phytoplankton groups, namely cyanobacteria, green algae,
chrysophytes, diatoms, and cryptophytes (Figure 6). Here, our inferred intrinsic growth
rates for phytoplankton are generally positive, except for cyanobacteria, which displayed
an intrinsic growth rate of nearly zero (Figure 6 a). This suggests that cyanobacteria
grow quite slow in nature, compared to other algae. Most of the inferred inter- and
intraspecific interactions are small, except for chrysophytes, which had a large effect on
the other groups (Figure 6 b-f). In some cases, we observed positive interspecific inter-
actions, suggesting facilitating effects between groups (Figure 6 b,d). In particular, the
positive interaction between the chrysophytes and the cyanobacteria may be an impor-
tant hypothesis to test in follow-up studies in relation to cyanobacterial blooms — these
events are becoming more and more common worldwide, they are difficult to predict and
generally explained as a function of only abiotic environmental drivers (Huisman et al.,
2018). In addition, these parameters show temporal fluctuations that can be reconciled
with a seasonal variation of the environmental context, as would be expected for a dy-
namic system (Figure S7). Overall, this second application shows that we can effectively
estimate the intrinsic growth rates and per capita interactions in natural phytoplankton
communities using noisy in situ data, and retrieve valuable information to understand

and model real-world problems (e.g. cyanobacterial blooms).
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FIGURE 6 LV-map parameter inference from time-series data of five autotrophic groups
in Lake Greifensee, Switzerland. (a), Intrinsic growth rates. (b), Effect of other groups on
cyanobacteria. (c), Effect of other groups on green algae. (d), Effect of other groups on
chrysophytes. (e), Effect of other groups on diatoms. (f), Effect of other groups on cryptophytes.
The shaded area represents the standard error.

»: 1J)Iscussions

24 In this article, we present a new approach, termed LV-map, which we validated on syn-

205 thetic, experimental and observational data. The LV-map is a weighted multivariate
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regression that offers a robust method for inferring ecological parameters without iso-
lating organisms from a community context — a key issue in studies on community
dynamics. These key ecological parameters, namely, per capita interaction and intrin-
sic growth rate, dictate the eco-evolutionary dynamics of communities. Together, they
determine possibilities for species coexistence (Chesson, 2000; Saavedra et al., 2017),
structures of communities in nature (Bascompte & Jordano, 2007; Cohen et al., 2009),
and the relationships between biodiversity and ecosystem functioning (Baert et al., 2016,

2018; Bartomeus et al., 2021).

The LV-map approach presents subtle differences with the S-map that expand its
utility in ecology and evolution: LV-map can infer the per capita interactions instead of
the elements of Jacobian matrix by using the per capita rate of population change rather
than the total densities. Consequently, the intercepts and the slopes of the LV-map ap-
proach correspond naturally to the intrinsic growth rates r;(t) and per capita interaction
strengths «;(t), respectively. The determination of these two values often stymies studies
into eco-evolutionary outcomes. As the multivariate regression is weighted, estimations
made using LV-map can also be made time-dependent, such that it has the capacity to

detect variations in r;(¢) and «;;(t) across time.

One of the highlights of the LV-map is that it presents an alternative to the laborious
experimental work that is normally required to determine 7;(t) and a;;(t), as it infers
these values directly from time-series data and thus offers the opportunity to study these
parameters in natural communities instead of experimental ones. Compare this to, for
instance, Van Dyke et al. (2022), who showed that rainfall changes largely affect the
conditions for species coexistence. This work required a combination of theoretical ap-
proach and sophisticated field experiments involving six plant species and 106 planting
plots subjected to two environmental treatments over two years. We thus expect this

simplification provided by LV-map to generate many novel insights in the study of com-
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munity dynamics. Our ability to directly query the per capita interaction strength and
sign, which has been indicated to profoundly affect the niche differences between species
in theoretical studies (Chesson, 2000; Saavedra et al., 2017; Song et al., 2020), such that
greater deviations in species’ niches increase the possibility for coexistence. In addition,
LV-map will also help confirm insights into the intrinsic growth rates, which are known to
impact fitness differences, where smaller differences enable species coexistence (Chesson,

2000; Saavedra et al., 2017; Song et al., 2020).

Applying LV-map to experimental data, we were able to detect the allocative trade-offs
between intrinsic growth rates and the per capita interaction strength, which essentially
determines evolutionary outcomes in populations and communities. In fact, coexistence
status can change as evolutionary processes direct within-species variations of intrinsic
growth rates and per capita interaction coefficients (Lankau, 2011; Hart et al., 2019).
Here, we show that fast-growing clones exhibit higher intraspecific competition and are
more likely to be eaten by predators than slow-growing ones, i.e. there is a trade-off be-
tween growth versus competition and defence. We thus expect LV-map to provide deeper

insights into underlying evolutionary processes.

While we did not use regularisation techniques for the LV-map in this study, appro-
priate techniques have been proposed, validated (Cenci et al., 2019), and can be applied
if needed. Additionally, interpreting the inferred parameters requires caution, as un-
expected results have been demonstrated by both the LV-map (Figure 4g) and S-map
method (Deyle et al., 2016). In particular, in the occurrence of migration, the inferred
r;(t) may no longer represent the intrinsic growth rate as it now encompasses both emigra-
tion and immigration. In the future, demographic characteristics of populations should
also be considered in this model, as population dynamics may be structured in terms
of age or sex, meaning that it may not be straightforward to interpret the parameters

without consideration for these characteristics.

20


https://doi.org/10.1101/2024.05.07.592896
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.07.592896; this version posted May 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

352
353 Overall, the LV-map is a promising approach for resolving many ecological and evo-
4 lutionary questions while avoiding the time-consuming, labour-intensive, and disruptive
35 isolation of organisms from their natural context. We expect that our proposed approach
6 for inferring intrinsic growth rates and per capita interactions could pave the way for
7 a broader understanding of ecological dynamics by allowing the use of time-series data
s from a range of natural and experimental communities. This feature alone should fur-
30 ther improve our understanding of how species, phenotypes or genetic lineages coexist
w0 in complex ecosystems, and the mechanisms governing biodiversity. Given the increas-
31 ing amount of time-series data being collected worldwide across systems (Beninca et al.,
32 2015; Ehrlich & Gaedke, 2020; Merz et al., 2023), the broad applicability of this approach
33 should help improve our overall understanding of the changing dynamics of ecosystems

4 1N our increasingly changing world.
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, Supporting Information for
) Inferring intrinsic growth rates and per capita
. interactions from ecological time-series

+ Standard error of the parameters

s The standard error (SE) of the intercept (intrinsic growth rate; r;) and coefficient (inter
¢ and intraspecific interaction; ;) follows the statistics of conventional multivariate regres-
7 sion method. The linear regression assumes that the deviation of the response variable
s Y from its predicted values f’ follows a normal distribution, therefore for each column
o of the response matrix Y we have

10

9 = X B + €. (S1)

1n  The vector 3; corresponds to the column ¢ of the matrix of parameters 3. The resid-
12 uals €; are assumed to be independent and identically distributed and follow a normal
15 distribution with mean zero and variance o?. The residual variance ¢? can be estimated

14 by

1 T-1
2 A N2
0 =T3¢ ;(Z/m’ — Jij) (52)

15 Then the estimation BZ of the parameters 3; follows a normal distribution of mean 3 and

16 variance-covariance matrix given by
o (XTX)™t (S3)

7 And thus, the square roots of the diagonal elements of this variance-covariance matrix
18 are the standard error of ,5', See chapter 3.2 of Hastie et al. (2001) and Chapter 3.3 of

v Mardia et al. (1979). The computation of the standard errors is done at each time point ¢.
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2 Cross validation

2 The weighting parameters, 6, is estimated using cross-validation technique. As the data
23 points in time-series data are dependent, we cannot use classical cross validation methods
2+ that randomly split the training data (or in sample data) and the test data (or out of
» sample data). Instead, we use the cross validation on rolling origin forecast.

2

27 This cross validation technique uses the first-t observation of population abundance
2 (n(l), forl = 1,...t) to predict the population abundance n(t + 1) at time step ¢ + 1.
20 This process of prediction is iterated for ¢ from T, to T'— 1. The initial time step T} is
% usually chosen as 10% of the total number of time point T, i.e., Ty = round(p - T') with
a2 p=0.1. The best # is the one minimizing the root mean sum of error squares (RMSE).

2 The expression of the RMSE is given by

Sir (I8¢ +1) —n(t+ DIP)
RMSE = \/ T—1-T (54)

13 The prediction of n(t + 1) is done as follows. Knowing the abundances from time 1 to
1 time ¢, we can estimate r(k) and &(k) from time 1 to time ¢ — 1. Note that we cannot
55 estimate r(¢) and a(t), as it would require the knowledge of n(¢ 4+ 1). Consequently, we

s use r(t — 1), a(tA— 1) and n(t) to estimate n(t + 1) as follows

S
ult+1) = n(t) - exp (w 1)+ Y aylt 1) nj(t)> . (S5)

=1

» Synthetic data

;s Synthetic data is simulated from a discrete time Lotka-Volterra model with three com-

3 peting population and environmental noise. The equation is given by:
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nz(t + 1) = nl(t) - exp (Ti + ZOéij : T%(t) + EZ(t)> 1= 1, 2, 3. (86)

j=1
s The parameters r; and «;j are the intrinsic growth rate and the per capita interaction
2 strengths, respectively. The random variables ¢;(t) represent the environmental noise,
s3 which are drawn independently at random from a centred normal distribution and of
« standard deviation proportional to the r;, i.e., €(t) ~ N(0,7; - o). The parameter o
s determine the overall environmental noise level. We use all points that are generated by

s the simulation.

« Experimental data

w Time-series experimental data of Blasius et al. (2020) are obtained from open-source
s data, which the author share on FigShare https://doi.org/10.6084/m9.figshare.
so 10045976.v1. We interpolate the missing data points. In particular, two missing points
st for experiment C2 and C3 (i.e. clone 2 and clone 3), and seven missing points for exper-
2 iment C1 (i.e. clone 1). In experiment C1, we replace the zero density of rotifers by the
53 minimum value of rotifer densities and divide it by 8. In addition, the experiment with
s« algal clone 1 lasted for 350 days, but we only kept data from the first 190 days to match
s the length of the other two experiments (190 days for experiments with algal clone 2 and
ss 181 days for algal clone 3).

57

58 Time-series experimental data of Yoshida et al. (2003) are obtained using PlotDigitizer
so app https://plotdigitizer.com/app. In particular, we took screen shorts of the figures
s from the paper, uploaded them on the PlotDigitizer website, and manually extracted the

s values of the data points.
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» QObservational data

&3 Plankton high-frequency data were collected from Lake Greifensee, Switzerland, by a
s« dual-magnification dark-field imaging microscope Merz et al. (2021). Pelagic plank-
6s ton images in the size range between ~ 10 pym and ~ 1 cm were collected at 3 m
o depth for 10 minutes every hour, and abundances (as regions of interest per second,
e ROI/s) were aggregated (summed) per day. For this study, we used data collected
¢ between March 2019 and December 2022. We classified taxa using a deep-learning
o classifier (Kyathanahally et al., 2021) (the code for the classification can be found in
70 https://github.com/kspruthviraj/Plankiformer), and focused on five aggregated
7 groups of phytoplankton: Cyanobacteria, Green algae, Diatoms, Golden algae, and Cryp-
22 tohytes. We interpolate the missing data (50 points out of 1382 points), and replace the
73 values that are absolute zero with the min value of the time-series of the corresponding
72 group and divide them by 8. In this way, we represent the absolute zero values with

7 extremely small values to enable the application of the LV-map.
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» Supplementary figures

(b) LV-map method
Interaction coefficients on population 1

(a) S-map method
Jacobian elements on population 1

01 —0.2] - e— , S—
_27
-0.4
_47
_6/ -0.6 — an
— Q12
8 - —0.8] - E— — —
0 50 100 150 200 250 300 0 100 200 300

(c) S-map method
Jacobian elements on population 3

(d) LV-map method
Interaction coefficients on population 3
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FIGURE S1 Estimation of parameters for population 2 and 3 of the cyclic Lotka-Volterra
model. (a, c), Off-diagonal Jacobian elements for population 2 and 3. (b, d) per capita interac-
tions for population 2 and 3. Solid lines with shaded areas represent estimated parameters and
their standard errors, and dotted lines represent true values. Note that the per capita interac-
tions of species 1 and 2 on species 3 are the same values, therefore the line red and purple lines
overlap.
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(a) S-map method (b) LV-map method
Jacobian elements on population 1 Interaction coefficients on population 1
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FIGURE S2 Estimation of parameters for population 2 and 3 of the chaotic Lotka-Volterra
model. (a - ¢) Off-diagonal Jacobian elements for population 2. and 3. (b - d) per capita
interactions for population 2 and 3. Annotations are similar to Fig S1.
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FIGURE S3 Cross validation results for the chaotic Lotka-Volterra model. (a), LV-map
method. (b), S-map method. Red points indicate the value of 6 with the smallest value of
RMSE.
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(a) RMSE of data of clone 1 (b) RMSE of data of clone 2 (c) RMSE of data of clone 3
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FIGURE S4 Cross validation results for experimental data of Yoshida et al. (2003). Results
from experiment 1 (a), experiment 2 (b), and experiment 3 (c).
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(a) Population dynamics experiment 1

(b) Population dynamics experiment 2

(c) Population dynamics experiment 3
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(h) Intraspecific interaction (rotifers) (i) Predation rate of rotifers

1
2l 0.0{ ~--=----- A
1\ - - Y N -
\\,»\s\ A /ﬁ‘ / ) __pal N N
1 \ ’I‘,l A i i R o - -=~==-/- N
Lo V! l‘j/\vl —0.1] e /II Y II\\,, v ’,\\ =N -
- (A b '~ \(\J \‘ | v
o -l- /= . ‘ /
11 A
-0.2
0 10 20 30 0 10 20 30 0 10 20 30
Day Day Day

FIGURE S5 Time-series data of algae and rotifers from Yoshida et al. (2003). (a-c) Population
dynamics of different clones. (d) Intrinsic growth rates of algae. (e), per capita intraspecific
interactions between algae. (f), Effect of rotifers on algae. (g), Intrinsic growth rates of rotifers.
(h), per capita intraspecific interactions between rotifers. (i), Effect of algae on rotifers. Different
colours and line styles correspond to different clones (dotted for clone 1, dot-dot-dashed for clone
2, and dashed for clone 3). Shaded areas represent the standard errors.
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FIGURE S6 Time-series data of Cyanobacteria, Crysophyte, Green algae, Diatoms and
Cryptophytes
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FIGURE S7 Cross validation results of the inference using lake data.
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