

1 **MoLst8 regulates autophagy and lipid homeostasis in *Magnaporthe***
2 ***oryzae***

3 Xingwei Cao¹, Lin Li², Jiandong Bao², Jiaoyu Wang², Xiaohong Liu¹, Xueming Zhu^{2*} and Fucheng
4 Lin^{1,2,3*}

5 1. State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-
6 products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of
7 Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou
8 310058, China.

9 2. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of
10 Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory
11 of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang
12 Academy of Agricultural Sciences, Hangzhou 310021, China.

13 3. Xianghu Laboratory, Hangzhou, 311231, China.

14

15 **ABSTRACT**

16 TOR, a widely conserved eukaryotic protein kinase, forms TORC1 and TORC2 to regulate diverse
17 cell signaling. TORC1 controls protein synthesis, cell cycle, and autophagy, whereas TORC2
18 manages cell polarity, cytoskeleton, and membrane structure. Our previous research found that
19 MoVast2, along with MoVast1, regulates TOR in rice blast fungus *Magnaporthe oryzae*,
20 maintaining lipid and autophagy balance. Lst8, a key TOR complex component in yeast and
21 mammalian cells. However, the precise role of MoLst8 in *M. oryzae* is still unclear. In this study,
22 we obtained the Δ MoLst8 mutant through high-through gene knockout strategies. The results showed
23 that loss of *MoLST8* leading to a series of defects, such as growth and sporulation reduction,
24 abnormal conidia, and loss of virulence. In addition, this mutant is highly sensitive to rapamycin,
25 leading to growth arrest and autophagy impairment, indicated that MoLst8 positively regulates
26 TORC1 for cellular growth, metabolism, and autophagy. Lipidomics analysis in the mutant revealed
27 lipid metabolism dysregulation, sphingolipid reduction, disrupting membrane tension and
28 homeostasis, suggested that TORC2 mediated lipid regulation is disordered in Δ MoLst8 mutant.
29 Additionally, the study explored TOR-MAPK crosstalk, finding that the mutant shows heightened

30 cell wall stress sensitivity but fails to restore integrity despite MAPK activation. These findings
31 offer insights into MoLst8's role in fungal pathogenesis, contributing to an understanding of fungal
32 biology and disease control strategies.

33 **KEYWORDS:** *Magnaporthe oryzae*, MoLst8, TOR, autophagy, PM homeostasis, membrane
34 tension

35

36 INTRODUCTION

37 In recent years, rice blast fungus has become rampant in temperate and tropical regions, causing
38 substantial economic losses to crops [1, 2]. The significant decline in global rice production has
39 emerged as a serious threat to food security, capturing the attention of nations worldwide [3, 4].
40 *Magnaporthe oryzae*, prevalent in 85 countries with diverse ecological settings, presents a
41 significant menace as it primarily targets cultivated rice (*Oryza sativa*), a crucial staple sustaining
42 above 50% of the world's population [5]. In a conducive environment, its invasion can have
43 devastating consequences for rice, reducing harvests up to 30%, and in severe cases, leaving rice
44 grains unproductive [2, 6]. *M. oryzae* is declared to be the most globally destructive pathogen [5].
45 It has the capacity to afflict rice at their growth stages and invade various tissues, including leaf
46 blades, stems, panicle necks, spikelet stalks and grains [2]. The infected lesions appear as elliptical
47 or spindle-shaped spots with deeper edges, and a single spot can produce spores for more than 20
48 days, producing thousands of spores a night. Once they merge with the surrounding lesions, they
49 cause the entire leaf to wither. Infections on the nodes result in stem breakage, and infections on the
50 panicles lead to the complete necrosis of the panicle, preventing seed production. Infections at the
51 leaf collar, where the leaf blade connects with the leaf sheath, result in the necrosis of the entire leaf.
52 The conidia it produces consists of a clusters of three cells, resembling tear drops [7]. Utilizing the
53 mucilage held at their tips, these conidia firmly attach to the surface of their host, initiating
54 germination and the production of germ tubes [8]. The demise of these conidia acts as a catalyst for
55 the formation of specialized structural appressoria. Subsequently, these appressoria undergo
56 darkening and glycerol accumulation, resulting in their expansion and the creation of inward tension.
57 This pressure aids their infiltrating of the host's epidermal cells, enabling the invasive mycelium to
58 establish colonization within the plant. Furthermore, they possess the capacity to influence the
59 development of intercellular hyphae, enabling intercellular movement and, in turn, generating

60 conidia that are dispersed in the air through airflow [9].

61 Autophagy is a cellular mechanism that involves the degradation and recycling of components
62 within the cytoplasm, including organelles and macromolecules, in response to various stresses or
63 developmental cues [10-13]. In recent years, autophagy was confirmed to contribute significantly
64 to many pathogenic fungi. In rice blast fungus, autophagy-associated genes including *MoATG1*,
65 *MoATG7*, *MoATG8*, *MoATG9* and *MoATG14*, have been documented to control the formation of
66 the appressorium—a unique fungal structure utilized for infecting host plants. [14-16]. The
67 development of appressoria is coupled with autophagy-induced the demise of conidial cells,
68 supplying nourishment and energy necessary for the appressorial function. [17, 18]. In the wheat
69 disease agent *Fusarium graminearum*, autophagy key proteins FgAtg1-10, FgAtg12, FgAtg14-18
70 were required for pathogenicity and deoxynivalenol (DON) toxin biosynthesis [28]. In *Harpophora*
71 *oryzae*, an endophytic fungus, the removal of the autophagy gene *HoATG5* led to heightened
72 vulnerability to agents that disrupt the cell wall, including SDS, CFW, and Congo red [26]. Recently,
73 few autophagy regulate proteins were identified and confirmed to play vital roles in autophagy
74 pathway. MoSnt2, a histone h3 deacetylation enzyme, oversees MoTOR-dependent autophagy and
75 aids in the infection of plants by *M. oryzae* [6]. The novel vacuolar protein Imp1 is particularly
76 important for maintaining membrane homeostasis and TOR-independent autophagy activation [19].
77 Nowadays, two new autophagy regulate proteins MoVast1 and MoVast2 were verified that they can
78 control autophagy flux by mediating TOR activity and plasma membrane tension [24]. These results
79 pointed towards the vital importance of autophagy in maintaining cellular homeostasis, regulating
80 fungal cell death, and facilitating the development of infection structures. Understanding
81 mechanisms of autophagy in *M. oryzae* could provide significant perspectives for formulating fresh
82 tactics to curb rice blast disease [16].

83 Rapamycin target protein (TOR), a serine/threonine kinase conserved across eukaryotes,
84 governs protein synthesis, cell cycle progression, mitosis, polarity, and cell homeostasis [29, 30].
85 Mammals possess two distinct mTOR complexes, mTORC1 and mTORC2. mTORC1 comprise of
86 five components: mTOR, Raptor, mLST8, PRAS40, and DEPTOR. Its primary function is to govern
87 cell growth and metabolism, and it is responsive to rapamycin. On the other hand, mTORC2
88 comprises six components, including mTOR, Rictor, mLST8, Deptor, mSIN1, and Protor1/2.
89 mTORC2 chiefly governs cellular survival, growth, and the restructuring of the cytoskeleton [32].

90 Research shows mTOR's involvement in essential cellular procedures, encompassing protein
91 synthesis to autophagy. Its hyperactivation links to cancer, diabetes, and aging, occurring in 70% of
92 human cancers [33]. In *Saccharomyces cerevisiae*, there exist two TOR kinases, namely Tor1 and
93 Tor2. Among these, Tor1 forms the TORC1 complex by binding with Kog1, Tco89, and Lst8. It is
94 primarily localized around the vacuolar or endosomal membranes and is responsible for regulating
95 cell growth, nutrient absorption, and autophagy [34]. The TORC2 complex consists of Tor2, Avo1,
96 Avo2, Avo3, Bit61, and Lst8. The TORC2 complex is pivotal in preserving the stability and integrity
97 of the cell membrane [35]. When sphingolipids are reduced or the plasma membrane undergoes
98 changes, the TORC2-Ypk1 signaling pathway is activated to promote sphingolipid synthesis,
99 maintaining plasma membrane homeostasis, integrity, fluidity, signal transduction, and other
100 functions [36, 37]. Research shows that myriocin-induced sphingolipid synthesis inhibition
101 phosphorylates and inactivates Orm1/Orm2, boosting sphingolipid production. This is mediated by
102 Ypk1, sensing sphingolipid levels and activating TORC2-Ypk1 signaling via Orm protein
103 phosphorylation [38]. These researches suggested that TOR pathway plays key roles among
104 eukaryotes. MAPK (Mitogen-activated protein kinase) cascades constitute conserved signaling
105 systems in eukaryotes that range from cellular growth and differentiation to responses to various
106 environmental stresses [39-41]. In fission yeast, Tor1/Tor2 sense nutrition, impacting cell cycle and
107 sex differentiation. MAPK stress response pathway (SRP) oversees cellular size and mitotic
108 processes, adapting to nutrition supply. TOR and MAPK, despite their differences, are
109 interconnected for cell growth and division [42]. In *Schizosaccharomyces pombe*, it has revealed a
110 intricate crosstalk existing between the TOR and MAPK signaling pathways. Ryh1, an activator of
111 TORC2, can activate Pmk1, a core member of the MAPK pathway, while stress-activated Pmk1 can
112 also inhibit Ryh1 signaling. This crosstalk involves both signal activation and inhibition, which is
113 crucial for cellular adaptability and survival, especially during changes in phosphoinositide
114 metabolism [43].

115 *Magnaporthe oryzae*'s rapamycin target protein (MoTOR) is a preserved serine/threonine
116 kinase in eukaryotes that oversees cell growth, metabolism, and pathogenicity. In *S. cerevisiae* and
117 mammalian cell, Lst8, as a component of TORC1 and TORC2 complexes, is the only protein in the
118 TORC1 and TORC2 complex that co-exists. It binds to TOR kinase and provides support for the
119 full catalytic activity of TOR, which act as cellular sensors for nutritional status [71, 72]. Studying

120 Lst8 provides insights into how cells perceive their nutritional environment and transmit signals for
121 growth regulation, balancing biosynthetic and degradative processes. The mutation in the *LST8-1*
122 gene that will be significantly expressed in *Arabidopsis*, while not dying, will lead to stunted growth,
123 subsequent delayed flowering, and an over-sensitivity too short to long day [73]. A recent study
124 found that in *Chlamydomonas reinhardtii*, the mutation of *LST8* disrupts TORC1 signaling and
125 cellular response to phosphorus starvation, leading to elevated triacylglycerol accumulation under
126 both phosphorus-replete and phosphorus-limited conditions [74]. However, in plant pathogenic
127 fungi, the constituents of the TORC2 complex and its role are predominantly unexplored. In our
128 investigation, we pinpointed a postulated TOR subunit protein MoLst8 and obtained *MoLST8*
129 knockout mutant. The Δ *Molst8* showed a series of defects, such as growth and sporulation reduction,
130 abnormal conidia, and loss of virulence. In addition, this mutant is highly sensitive to rapamycin,
131 leading to growth arrest and autophagy impairment. Lipidomics analysis in the mutant revealed lipid
132 metabolism dysregulation, sphingolipid reduction, disrupting membrane tension and homeostasis.
133 Additionally, we find that the mutant shows heightened cell wall stress sensitivity but fails to restore
134 integrity despite MAPK activation. Our research provides comprehensive insights into the
135 multifaceted role of MoLst8 in *M. oryzae*, revealing its involvement in TORC1 and TORC2
136 activities, growth, development, toxicity, autophagy regulation, sphingolipid homeostasis,
137 membrane dynamics, and cellular responses to environmental stresses. The interconnection between
138 TOR and MAPK pathways, mediated by MoLst8, emerges as a crucial regulatory axis orchestrating
139 essential cellular processes for the survival and virulence of *M. oryzae*. These findings deepen our
140 comprehension of fungal pathogenicity and open the path for further exploration of molecular
141 mechanisms governing critical cellular processes in *M. oryzae*. Its multifunctionality positions Lst8
142 as a key regulatory node in eukaryotes, offering insights for understanding TOR signaling and
143 potential avenues for developing therapeutic approaches for various diseases.

144 RESULTS

145 Identify the TOR subunit MoLst8 in *M. oryzae*

146 To explore TOR complexes in *M. oryzae*, we searched the whole genome of rice blast fungus and
147 found some TOR complex consisted of proteins. The most important component of TOR complexes,
148 the *MoLST8* cDNA, has a total length of 2.192 kb and consists of 4 exons, namely MGG_07284-E1
149 (258 bp), MGG_07284-E2 (22 bp), MGG_07284-E3 (496 bp), and MGG_07284-E4 (1075 bp), and

150 3 introns, namely intron 1-2 (127 bp), intron 2-3 (103 bp), and intron 3-4 (112 bp) (Fig. S1A).
151 Therefore, a sequence of 317 amino acid residues was encoded, predicting a molecular weight of
152 35.10 kDa and a theoretical pI of 6.18. *MoLST8* gene produces MoLst8, which serves as a
153 component of the protein target-rapamycin complex. Comparison of this protein with Lst8 proteins
154 from fungal pathogens in the NCBI database showed a high level of conservation and homology,
155 with a similarity of over 80% (Fig. S1B). We constructed a tree to visualize the relationships
156 between the MoLst8 protein and a dataset of highly conserved pathogenic fungal proteins, which is
157 presented in Fig. S2A. To predict the structure of the MoLst8 protein (XP_003715510.1), we used
158 Swiss-Model for homology modeling. We derived an AlphaFold DB model template from the
159 homologous protein encoded by the gene A0A4Q4XXX6_9PEZI in *Monosporascus* sp CRB-8-3,
160 which highly matches the target sequence with a sequence similarity of 86.12%. We used the
161 homologous protein A0A4Q4XXX6.1 as a template to construct a structural model, as shown in Fig.
162 S2B.

163 The characteristic of *MoLST8* deletion mutant in *M. oryzae*

164 In order to explore the function of the TORC2 complex in *M. oryzae*, we try to knock out these
165 genes of TOR complex through the gene knockout approach outlined by Lu et al. [75]. After many
166 rounds of screening, we obtained *MoLST8* detection mutant (Fig. S3). To test the impact of MoLst8
167 in cell growth and conidiation, we cultured Guy11 and Δ *Molst8* on complete media (CM) for a
168 duration of 9 days at 25°C.. Some significant morphological differences were observed among
169 Δ *Molst8* and Guy11. Firstly, the mycelium of Δ *Molst8* appeared white and folded (Figure 1A).
170 Secondly, Δ *Molst8* exhibited slower growth and a significantly reduced conidiation rate compared
171 to Guy11 (Figure 1B and 1C). Next, we studied the conidial morphology of Guy11, Δ *Molst8*, and
172 Δ *Molst8-C*. In Δ *Molst8*, compared with Guy11 and Δ *Molst8-C*, the conidia failed to develop
173 normally and exhibited abnormal morphology. When collecting conidia on CM plates, they were
174 easily broken (Figure 1D and 1E). To test whether MoLst8 is involved in the virulence of *M. oryzae*,
175 virulence tests were conducted on rice and barley, two distinct hosts. We added spore droplets ($5 \times$
176 10^4 spores/ml) of Δ *Molst8*, wild type, and Δ *Molst8-C* on barley and rice seedlings (CO-39) that
177 were two weeks old. Seven days after inoculation, the Δ *Molst8* produced only small lesions,
178 whereas the wild-type and Δ *Molst8-C* induced numerous, characteristic fused lesions, forming a
179 clear contrast (Figure 1F and 1K). We conducted host penetration assays to further understand the

180 impact of $\Delta Molst8$ on disease progression in barley. Mycelia plugs of Guy11, $\Delta Molst8$, and $\Delta Molst8-C$ were placed onto excised barley and rice leaves. After four days, Guy11 and $\Delta Molst8-C$ induced severe lesions, whereas the $\Delta Molst8$ mutant did not cause any lesions (Figure 1H and 1J). Subsequently, we conducted invasive hyphae (IH) assays to assess Guy11, $\Delta Molst8$, and complemented strain infection on barley leaves. In Guy11 and the complemented strain, appressoria developed normally to form IH structures. The IH then colonized adjacent cells, often more than two cells. In contrast, approximately 30% of the $\Delta Molst8$ appressoria developed IH structures, and their ability to colonize adjacent cells was weak (Figure 1G and 1I). Overall, the $\Delta Molst8$ mutant exhibited significant growth retardation, reduced sporulation with abnormal morphology, and difficulty in forming IH structures to colonize adjacent host cells. The virulence was essentially lost. Our findings suggest that the *MoLST8* gene is pivotal for normal growth and development of *M. oryzae* mycelia, conidia, and appressoria as well as virulence.

192

193 **MoLst8 positive regulate the activity of TORC1**

194 Inhibitors like rapamycin impact cell metabolism and growth by targeting the TORC1 complex [77].
195 MoLst8 is a TORC1 component, and we studied its relationship with MoTOR kinase under
196 rapamycin's influence to understand its regulatory significance [74, 78, 79]. The Guy11 and
197 $\Delta Molst8-C$, cultured with 100 ng/ml rapamycin on CM media for 8 days, exhibited significantly
198 smaller colonies, indicating substantial growth inhibition. In contrast, the $\Delta Molst8$ mutant showed
199 heightened sensitivity to rapamycin, essentially halting growth (Figure 2A and 2B). To validate the
200 regulatory role of MoLst8 on MoTOR activity, we measured the phosphorylation level of the
201 TORC1 activity marker Rps6 in both Guy11 and $\Delta Molst8$ under CM liquid media without
202 rapamycin and with 100 ng/ml rapamycin. The results in Figure 2C revealed that the degree of
203 phosphorylation of Rps6 in $\Delta Molst8$ was already weak in comparison to Guy11, indicating a
204 significant reduction in TORC1 activity due to the absence of the *MoLST8* gene. After the addition
205 of rapamycin, the $\Delta Molst8$ mutant exhibited complete loss of Rps6 phosphorylation (Figure 2D),
206 indicating the complete inhibition of TORC1 activity in response to rapamycin. In summary, the
207 *MoLST8* gene is a direct positive regulator of TORC1 activity.

208 Subsequently, we examined how the major component of the rice blast fungus TORC1 complex,
209 *MoLST8* gene, participates in regulating normal cell growth under the influence of rapamycin. Spore

210 suspensions of wild-type Guy11 were placed onto detached barley leaves and incubated for a
211 duration of 4 days with varying concentrations of rapamycin (0, 100 ng/ml, 1 µg/ml, 10 µg/ml).
212 Lesions on barley leaves gradually diminished, suggesting a gradual decrease in pathogenicity even
213 at elevated rapamycin concentrations. As rapamycin concentration increases, fewer attached
214 appressoria invade and establish adjacent to more than two cells, while the number of those adjacent
215 to one or two cells increases. (Figure 2E and 2F). Under rapamycin influence, attached appressoria
216 retain the capability to produce IH and invade host cells.

217

218 **Autophagy was depressed in $\Delta Molst8$ mutant**

219 Autophagy is a pivotal intracellular mechanism regulating various stages of fungal growth [14, 80,
220 81]. TOR regulates autophagy, shaping cellular responses to nutrition and the environment,
221 impacting metabolism and survival [83, 84]. To explore the function of MoLst8, a major component
222 of TOR, in regulating autophagy, we expressed GFP-MoAtg8 fusion proteins in Guy11 and $\Delta Molst8$
223 strains. Autophagic flux was assessed through fluorescence microscopy and immunoblotting. In
224 nutrient-rich CM, GFP-MoAtg8 fluorescence predominantly appeared as punctate structures around
225 vacuoles in the cytoplasm, with significantly fewer punctate structures in $\Delta Molst8$ compared to
226 wild-type Guy11. Under amino acid and ammonium sulfate deficiency (SD-N) after 6 hours of
227 starvation, Guy11 displayed extensive vacuole fragmentation, and GFP-MoAtg8 puncta formed
228 larger structures inside vacuoles. These structures aggregated into a sheet-like distribution
229 challenging to discern within and around vacuoles. As starvation progressed up to 12 hours, the
230 sheet-like distribution of GFP-MoAtg8 fluorescence dispersed along with the fragmented vacuoles,
231 and punctate edges became less distinct. Under starvation in synthetic media (SD-N), $\Delta Molst8$
232 exhibited a distinct response from wild-type Guy11. Most GFP-MoAtg8 fluorescence in $\Delta Molst8$
233 was within vacuoles and almost completely degraded. Punctate signals of GFP-MoAtg8
234 fluorescence in $\Delta Molst8$ significantly decreased. After 12 hours of starvation, vacuoles exhibited a
235 fragmented distribution, and only a few punctate GFP-MoAtg8 signals were observed around
236 vacuoles (Figure 3A-C). Subsequently, western blot analysis was conducted to assess autophagic
237 flux by monitoring the degradation of GFP and GFP-MoAtg8 proteins. This evaluation aimed to
238 elucidate the autophagic activity in response to nitrogen starvation conditions and provided insights
239 into the autophagy dynamics in the fungal strains under investigation. In CM liquid media, the GFP-

240 MoAtg8 band in $\Delta Molst8$ was noticeably weaker than in Guy11. Upon six hours of starvation, the
241 band representing free GFP signal increased, while the signal corresponding to the GFP-MoAtg8
242 fusion protein band intensity decreased, and the degradation rate of GFP-MoAtg8 in $\Delta Molst8$ was
243 slower than in Guy11 (Figure 3D and 3E). Additionally, we analyzed the endogenous lipidation of
244 MoAtg8 using western blotting. Under nutrient restriction in SD-N, both Guy11 and $\Delta Molst8$
245 exhibited significantly higher levels of MoAtg8-PE compared to nutrient conditions. Moreover,
246 under both CM and SD-N conditions, the $\Delta Molst8$ mutant showed much greater amounts of
247 MoAtg8-PE than the Guy11 (Figure 3F).

248 Rapamycin, by inhibiting TOR activity, initiates autophagy, participating in controlling cell
249 growth and metabolism [85]. MoLst8 is known a crucial component of TOR, studying its effect on
250 autophagic flux in the presence of rapamycin can help researchers understand how this gene product
251 interacts with the autophagy machinery and how it might be modulating the process. After 6 hours
252 of rapamycin treatment, wild-type Guy11 showed intense GFP-MoAtg8 fluorescence with smaller
253 punctate structures around vacuoles, while in $\Delta Molst8$, GFP-MoAtg8 fluorescence was mostly
254 within vacuoles and undergoing significant degradation. After 12 hours of rapamycin treatment,
255 $\Delta Molst8$ exhibited more severe vacuolar degradation and GFP-MoAtg8 fluorescence degradation,
256 with GFP-MoAtg8 fluorescence losing its punctate morphology and merging together. Meanwhile,
257 at this time point, the GFP-MoAtg8 fluorescence signal in wild-type Guy11 sharply decreased, and
258 GFP-MoAtg8 fluorescence appeared within vacuoles, initiating degradation (Figure 3G-I).
259 Subsequently, autophagic flux of degraded GFP and GFP-MoAtg8 was analyzed by western blotting.
260 After 6 hours of rapamycin treatment, Guy11 exhibited faster degradation of the fusion protein GFP-
261 MoAtg8 and an increased rate of free GFP bands compared to $\Delta Molst8$. In $\Delta Molst8$, the GFP-
262 MoAtg8 band showed no change, resulting in a slower enhancement of the free GFP band (Figure
263 3J and 3K).

264 **Identification and annotation of phosphorylated proteins in *M. oryzae***

265 Employing the MoMo analysis tool, which relies on the motif-x algorithm, we examined the motif
266 features of the modification sites. For this analysis, we considered peptide sequences encompassing
267 6 amino acids on both sides of all detected modification sites (Fig. S4A). Based on the MoMo
268 analysis results, a heat map was used to show the scoring of the degree of change in amino acid
269 frequency near the modification sites (Fig. S4B). LC-MS/MS analysis identified 3220 proteins,

270 comprising 940 differentially expressed proteins, with 614 being up-regulated and 326 being down-
271 regulated. There were 1352 differential modification sites, wherein 933 proteins were found to be
272 up-regulated and 419 were down-regulated (Fig. S4C). The volcano plot was utilized to represent
273 the differentially expressed proteins between Guy11 and $\Delta Molst8$ mutant strain, with the top 10
274 labeled. The threshold was set at Log2 Fold Change > 0.5 and p-value < 0.05 (Fig. S4D). The
275 heatmap showed significantly different phosphorylated proteins (Figure 4A).

276 To better understand the intracellular functions of phosphorylated differentially expressed
277 proteins, subcellular localization, GO classification, COG/KOG classification, and KEGG pathway
278 classification were performed. WoLFPSORT was used to label their subcellular localization, as
279 shown in Figure 4B. Phosphorylated proteins were in the nucleus (47.98%), cytoplasm (19.47%),
280 mitochondria (14.47%), plasma membrane (9.89%), cytoplasm-nucleus (3.62%), extracellular
281 (2.77%), and others (1.81%). As shown in Figure 4C, phosphorylated proteins were enriched in
282 cellular metabolic process (373 proteins), regulation of biological process (274 proteins),
283 biosynthetic process (172 proteins), cellular response to stimulus (168 proteins), response to stress
284 (110 proteins), and cell communication (101 proteins) in biological process; 180 proteins were
285 enriched in membrane of cellular component; 36 proteins were enriched in lipid binding of
286 molecular function. We also studied protein domains and found that they were enriched in cell
287 wall/membrane/envelope biogenesis (9 proteins), cytoskeleton (28 proteins), signal transduction
288 mechanisms (77 proteins) of cellular processes and signaling; 37 proteins were enriched in
289 translation, ribosomal structure and biogenesis of information storage and processing; 24 proteins
290 were enriched in lipid transport and metabolism of metabolism (Figure 4D). KEGG pathway
291 analysis revealed that 19 pathways were enriched with phosphorylated proteins (Figure 4E),
292 including cell growth and death (21 proteins), signal transduction (30 proteins), lipid metabolism
293 (20 proteins), and membrane transport (6 proteins).

294 Some upregulated proteins are involved in autophagy (Atg1, Atg11, Atg2, Atg3, Atg5), lipid
295 metabolism and plasma membrane homeostasis (Cho2, Nte1, Erg6, Psd2), replication (Tof1), and
296 proteolysis (Pepp). Downregulated proteins participate in stress response (Nst1), transport (Sec31),
297 signal transduction (Hse1 downregulated, Vps27 upregulated), metabolism (Hpd4 downregulated,
298 Katg1 upregulated). Five differentially expressed proteins are involved in transcription, with three
299 (Egd2, Nut1, Sub2) downregulated and two (Htb1, Trf1) upregulated. Five proteins are involved in

300 RNA processing, with two (Ded1, Prp5) downregulated and three (Abd1, Spp2, Tsr3) upregulated.
301 Four proteins are involved in translation, with one (Prt1) downregulated and three (Hcr1, Nip1,
302 Pab1) upregulated ([Table 1](#)). In summary, phosphorylated differentially expressed proteins are
303 involved in autophagy, PM homeostasis, signal transduction, stress response, growth and
304 development, and metabolism.

305

306 **MoLst8 coordinate TORC2 and involve PM homeostasis**

307 The TORC2-Ypk1 signaling module promotes the synthesis of sphingolipids by activating specific
308 enzymes, which is crucial for cytoskeleton reorganization and cell membrane composition and
309 function [36, 37, 86]. To reinforce the involvement of MoLst8 in lipid homeostasis, we quantified
310 lipid levels by means of lipidomics analysis. Detailed lipid components detected in Guy11 and
311 Δ Molst8 samples employed in this experiment are provided in [Data Sheet S1](#). Among the 757
312 quantified lipids, 351 showed significant differences between Guy11 and Δ Molst8 ($\text{Log}_2\text{FC} > 0.5$
313 (FC, fold change) and an adjusted P-value of < 0.05), with 152 displaying negative and 199 showing
314 positive expressions ([Data Sheet S2](#) and [Fig. S5A, B](#)), and [Figure 5A](#) presents a heat map illustrating
315 significant differences among 50 lipids. Enrichment results of the KEGG pathway revealed that
316 dysregulated lipids such as Cer, DAG, LPE, PA, PC, PE, SM, TAG, etc., are involved in processes
317 including sphingolipid metabolism, lipid metabolism, steroid biosynthesis, inositol phosphate
318 metabolism, arachidonic acid metabolism, linolenic acid metabolism, autophagy, amino acid
319 metabolism, phosphatidylinositol synthesis, and phosphatidylinositol signaling system ([Fig. S5C](#)
320 and [Figure 5B-D](#)). TOR signaling inhibition in microalgae triggers triacylglycerol (TAG)
321 accumulation. In addition, TOR inhibition also affects de novo fatty acid synthesis dependent on
322 fatty acid synthase, which is necessary for TAG accumulation. This indicates TOR's key role in
323 TAG synthesis/storage regulation [91]. A study found that in Chlamydomonas, the inhibition or
324 reduced activity of the TORC1 signaling pathway in the *lst8* mutant leads to a significant
325 accumulation of TAG [74]. We found that many types of TAG content were also significantly
326 increased in the *MoLST8* gene-deleted *M. oryzae*, echoing the observations made by Inmaculada
327 Couso, et al. [74]. Among them, individual types such as LacCer d18:1/20:0, PA(14:0/18:1)+AcO,
328 PE(0-16:0/18:3), and PS(16:0/18:0) were also significantly elevated, while other DAG, LPE, LPI,
329 FFA, LPG, PG, PC, SM, Cer, PA and PE levels were significantly reduced ([Fig. S5C](#), [Figure 5C](#)

330 and 5D). These results further confirm that the deletion of *MoLST8* leads to disruption of the TOR
331 signaling pathway, resulting in dysregulation of lipid homeostasis and autophagy.

332 In yeast, TORC2 phosphorylates Ypk1 at T662, enhancing its kinase activity and serving as a
333 TORC2 activity indicator [92]. In *M. oryzae*, a similar site, S619 of MoYpk1, is phosphorylated by
334 TORC2 [24]. MoLst8 is part of TORC2, but its role in TORC2 regulation is unclear. We used
335 western blot to observe MoYpk1 phosphorylation as a proxy for TORC2 activity, seeking a link
336 between MoLst8 and TORC2. In CM liquid medium, the phosphorylation level of MoYpk1 in
337 Δ *Molst8* was very low, substantially lower compared to Guy11. After treatment with 10 μ M
338 palmitoylcarnitine (PalmC), the phosphorylation status of MoYpk1 in Δ *Molst8* increased slowly but
339 remained weak, close to zero. The phosphorylation status of Guy11 gradually decreased and then
340 slowly recovered after 2 hours, and was much higher than that of the Δ *Molst8* mutant at any time
341 point (Figure 6A and 6B). Since the deletion of MoLst8, a component of TORC2, leads to a
342 significant reduction in TORC2 activity to nearly complete loss, we speculate that MoLst8 performs
343 a key function in modulating the activity of TORC2.

344 We are interested in how MoLst8, TORC2's functional regulation heavily relies on it, affects
345 plasma membrane (PM) homeostasis. Therefore, we further examined changes in sphingolipids in
346 Guy11, Δ *Molst8* mutants, and Δ *Molst8-C* strains. Compared to the Guy11 and complementary
347 strains, the Δ *Molst8* exhibited increased susceptibility to myriocin, a naturally occurring inhibitor
348 of sphingolipids that interacts with and suppresses the function of serine palmitoyltransferase (Spt1)
349 (Figure 6C and 6D). Myriocin inhibits sphingolipid synthesis to activate the TORC2-Ypk1 signaling
350 pathway [38]. However, in our current study, we found that when the *MoLST8* gene is deleted,
351 TORC2 activity is almost completely lost, resulting in weak Ypk1 phosphorylation levels. This
352 prevents myriocin from effectively enhancing TORC2-Ypk1 activity and promoting sphingolipid
353 recovery. Since sphingolipids are essential for cell growth, the Δ *Molst8* mutant exhibits further
354 growth inhibition under the influence of myriocin. In summary, the deletion of *MoLST8* disrupts
355 plasma membrane homeostasis, which is detrimental to cell growth.

356 To further understand the role of MoLst8 in maintaining normal cell morphology, we explored
357 the membrane tension and elasticity of Guy11 strains and Δ *Molst8* mutants when exposed to
358 rapamycin. The fluorescent membrane tension probe Flipper-TR converts fluorescence of different
359 lifetimes into different colors for visualization, allowing precise measurement of membrane tension

360 through fluorescence color and time [93, 94]. We used Fluorescence Lifetime Imaging Microscopy
361 (FLIM) technology to quantify the fluorescence lifetime of wild-type and $\Delta Molst8$ mutants, thereby
362 quantifying cell membrane tension [24, 48, 95]. Compared to Guy11, the filipin fluorescence
363 lifetime of $\Delta Molst8$ was notably reduced. However, there was no significant difference in the change
364 of fluorescence lifetime of $\Delta Molst8$ before and after rapamycin treatment, while the fluorescence
365 lifetime of the wild-type Guy11 decreased sharply (Figure 6E-I). Our research data indicate that
366 when the *Molst8* gene is deleted, TORC2 activity is almost completely lost, and the inactivation
367 of the TORC2-Ypk1 pathway will lead to a reduction in sphingolipids, which are an important
368 component of the cell membrane and will seriously affect the lipid composition of the cell
369 membrane, resulting in decreased membrane tension. After treating wild-type Guy11 with
370 rapamycin, the TOR signaling pathway is blocked, affecting lipid metabolism, leading to changes
371 in membrane fluidity, permeability, and a decrease in membrane tension. The deletion of *Molst8*
372 may cause the TOR complex to fail to form or lose its activity, making the TOR signaling pathway
373 completely ineffective. In this case, rapamycin may not influence the inactive TOR complex, which
374 may be one of the reasons why there is no significant change in cell membrane tension under the
375 action of rapamycin in cells with deleted *Molst8* gene.

376 **MoLst8 mediate TOR cross talk with MAPK pathway**

377 We explore the interplay between TOR and MAPK signaling, emphasizing their coordinated cellular
378 responses to environmental stresses, with a spotlight on MoLst8's central role as a TOR component
379 in both pathways. When Guy11, $\Delta Molst8$, and $\Delta Molst8-C$ were grown on solid CM supplemented
380 with 400 μ g/ml CR and 0.0025% SDS, we observed that in comparison to Guy11 and $\Delta Molst8-C$
381 strains, the $\Delta Molst8$ mutant was extremely sensitive to CR and SDS, and its growth rate was very
382 slow. This suggests that after the deletion of the *Molst8* gene, the strain becomes more sensitive to
383 CWI stress (Figure 7A-D). The mitogen-activated protein kinase mps1 and osm1 in *M. oryzae* are
384 key to stress responses, fungicide sensitivity, and plant infection. Mps1 is central to cell wall
385 integrity, plant infection, and stress reactions [101].

386 The Mps1 mutant exhibits reduced sporulation and is deficient in cell wall penetration and
387 infection capabilities [102]. Osm1, meanwhile, is vital for osmoregulation, with its MAPK pathway
388 being a target for fungicides [103]. The $\Delta Molst8$ mutant exhibits severe defects in CWI. To further
389 understand the role of MoLst8 in the MAPK pathway Mps1, we examined the phosphorylation level

390 changes of Mps1 in Guy11 and $\Delta Molst8$ before and after Congo Red treatment. In CM liquid, the
391 Guy11 strain shows nearly no phosphorylation of Mps1, with values close to zero, while
392 phosphorylation of MoMps1 occurred in $\Delta Molst8$. Moreover, the phosphorylation level of MoMps1
393 in $\Delta Molst8$ mutant increased with longer exposure to Congo Red. However, after CR treatment, the
394 phosphorylation level of MoMps1 in Guy11 surged and gradually decreased after 30 minutes of
395 Congo Red exposure (Figure 7E and 7F). These results indicate that when the *MoLST8* gene is
396 deleted, Mps1 is activated, and the longer the duration of CWI damage stress in the $\Delta Molst8$ mutant,
397 the higher the phosphorylation level of Mps1. The Mps1 in Guy11 is immediately activated after
398 CWI damage and its activity decreases as it adapts to the adverse environment. This reveals that
399 MoLst8 is essential for the regulation of CWI by Mps1 MAPK. We delved deeper into the function
400 of MoLst8 in the Osm1 MAPK pathway when subjected to hyperosmotic stress. To ascertain
401 whether $\Delta Molst8$ manages the phosphorylation of MoOsm1 as a response to hyperosmotic stress,
402 Guy11, $\Delta Molst8$, and $\Delta Molst8-C$ were grown in CM medium supplemented with either 0.5M NaCl
403 or 1M sorbitol. In comparison to Guy11 and $\Delta Molst8-C$, $\Delta Molst8$ demonstrated a notable decrease
404 in growth rate (Figure 7G-J). Western blot analysis revealed that the phosphorylation level of Osm1
405 in both $\Delta Molst8$ and Guy11 rose initially and subsequently declined after NaCl treatment (Figure
406 7K and 7L). These data suggest that the *MoLST8* gene can respond to hyperosmotic stress in the
407 Osm1 MAPK pathway. Our research results indicate the hypersensitivity of the $\Delta Molst8$ mutant to
408 cell wall stress. The augmented phosphorylation of both Mps1 and Osm1 in the $\Delta Molst8$ mutant are
409 not enough to repair its cell wall defects. The data provided here confirms that the deletion of the
410 *MoLST8* gene leads to TOR signaling pathway blockage, reduced sphingolipids, decreased cell
411 membrane tension, and disrupted plasma membrane homeostasis. These severely affect the
412 regulation of cell integrity by the MAPK signaling pathway in the $\Delta Molst8$ mutant, making the
413 simple activation of Mps1 and Osm1 insufficient to restore cell wall integrity. Both the TOR and
414 MAPK pathways are major regulators of cellular stress response, growth, and development [42, 43,
415 100]. The deletion of *MoLST8* may disrupt the balance between TOR and MAPK. We postulate that
416 the TOR pathway could potentially mediate environmental cues to the MAPK cascade, facilitating
417 downstream signal transduction as a reaction to external unfavorable conditions.

418

419 **DISCUSSION**

420 The Target of Rapamycin (TOR) pathway, consisting of TORC1 and TORC2 complexes, is essential
421 for managing diverse cellular functions, including growth, development, autophagy, membrane
422 tension, lipid homeostasis and stress responses [46, 47]. TORC1, composed of Tor1 with Kog1,
423 Tco89, and Lst8, controls cell growth, nutrient absorption, and autophagy. TORC2, consisting of
424 Tor2, Avo1, Avo2, Avo3, Bit61, and Lst8, maintains cell membrane homeostasis. Lst8, a shared
425 subunit, links both TORC1 and TORC2 to TOR signaling [34, 35]. TOR's activity is modulated by
426 various proteins like MoVast1/2, MoGap1, ASD4, TIP41, and IMP1, influencing different aspects
427 of fungal physiology and pathogenicity. Mutations in these proteins alter TOR signaling, leading to
428 phenotypic changes [19, 24, 31, 48-50]. Our study revealed the genome of rice blast fungus contains
429 TOR complex proteins, with MoLst8 as a significant component. MoLst8 exhibits high conservation
430 and homology with other fungal Lst8 proteins. The Δ MoLst8 mutant differs significantly from the
431 wild-type Guy11 in both morphology and function. This mutant grows slowly, producing fragile
432 and abnormally shaped conidia, and displays reduced virulence on rice and barley. Its impaired
433 ability to infect and colonize host cells suggests that MoLst8 is essential for growth, spore formation,
434 and pathogenicity in *M. oryzae*.

435 Autophagy, a conserved cellular process in eukaryotes, degrades and recycles undesirable
436 cytoplasmic components to maintain cellular homeostasis [13]. In plant pathogenic fungi, such as
437 *M. oryzae*, autophagy proteins govern the formation of infectious structures, specifically the
438 appressorium, which generates pressure to penetrate host cells. Disrupting autophagy impairs this
439 function and reduces pathogenicity [14, 25, 26, 81]. Recent research has identified novel autophagy
440 regulators, deepening our understanding of this complex mechanism, including the carbon-sensing
441 regulator MoAbl1, the glutaminolysis modulator MoAsd4, the deacetylation protein MoSnt2, and
442 the sterol-interacting protein MoVast1, MoVast2 regulating TOR activity to maintain lipid
443 homeostasis, a yeast amino acid permease homologue MoGap1 and the COP9 signalosome
444 homologue MoCsn6 [24, 48]. Autophagy, controlled by TOR signaling, is key to fungal cell balance,
445 death, and infection. TOR adjusts cellular functions based on nutrient availability: suppressing
446 autophagy when nutrients are plentiful but triggering cellular degradation via autophagosomes when
447 nutrients are scarce or TOR is inhibited by rapamycin. Studying its role in plant-infecting fungi may
448 aid in the avoidance and healing of rice blast disease [16]. MoLst8 is a crucial component of the
449 TOR complex, and our research has found that the absence of *MoLST8* impairs TOR and autophagy.

450 Under starvation, the $\Delta Molst8$ mutant strain hydrolyzes GFP-MoAtg8 slower than wild-type Guy11.
451 With TOR-inhibiting rapamycin, Guy11 effectively adapts via autophagy, but $\Delta Molst8$ struggles to
452 adapt. These results suggest that MoLst8 regulates autophagy and is essential for maintaining
453 homeostasis and stress response in fungal cells.

454 Research shows that Tor activity is crucial for autophagy regulation [47, 76]. Tor kinase
455 inhibitors like rapamycin affect cell metabolism and growth by inhibiting the TORC1 complex [77].
456 The *MolST8* gene, a key TORC1 component, was studied in relation to MoTOR kinase under
457 rapamycin's influence. Our research demonstrates that both wild type Guy11 and a complemented
458 strain exhibit growth inhibition with the existence of rapamycin. However, $\Delta Molst8$ manifests
459 extreme sensitivity, almost completely arresting growth. *MolST8*'s absence causes a diminution in
460 TORC1 activity, resulting in heightened cellular sensitivity to rapamycin's growth-inhibiting effects.
461 This reduction in TORC1 activity is further confirmed by the decreased phosphorylation of Rps6 in
462 the mutant, highlighting the crucial role of MoLst8 in TORC1 function. Moreover, rapamycin
463 further suppresses TORC1 activity in the mutant, suggesting that MoLst8 mediates cellular
464 responses to rapamycin by influencing TORC1. This establishes MoLst8 as a stimulatory regulator
465 of TORC1. In conclusion, the *MolST8* gene positively regulates TORC1 activity, enabling cells to
466 adapt to rapamycin and maintain growth, metabolism, and pathogenicity.

467 TORC2, or Target of Rapamycin Complex 2, is a vital signaling module in fungal cells,
468 particularly in maintaining plasma membrane (PM) homeostasis [35-37]. The PM serves as a vital
469 barrier in fungal cells, maintaining integrity, regulating homeostasis, and defending against
470 environmental stresses [51, 52]. Lipids have vital functions in diverse PM processes, such as
471 material transport, endocytosis, and signal transduction [53-56]. Ist2 and Tcb proteins are involved
472 in PM integrity and phospholipid regulation [54, 55]. Additionally, Slm proteins activate TORC2 in
473 response to PM stress, influencing sphingolipid production [57]. MoFpk1 regulates PM homeostasis
474 and autophagy, while MoVast2 modulates TOR activity, affecting lipid balance [48, 56]. The
475 TORC2-Ypk1 signaling pathway regulates sphingolipid synthesis, maintaining plasma membrane
476 homeostasis. Reduced sphingolipids or membrane changes activate this pathway, ensuring
477 membrane homeostasis and signal transduction. Ypk1 phosphorylation by TORC2 promotes
478 sphingolipid production, crucial for cell growth and morphology [36, 37, 86]. *MolST8* deletion
479 disrupts TORC2 activity, reducing Ypk1 phosphorylation and sphingolipid production. The lack of

480 *MoLST8* gives rise to dysregulated lipid homeostasis, including elevated TAG and reduced levels
481 of other lipid species. The $\Delta Molst8$ mutant exhibits heightened sensitivity to myriocin, inhibiting
482 sphingolipid synthesis and further inhibiting growth. Additionally, *MoLST8* deletion reduces
483 membrane tension, likely due to altered lipid composition. Rapamycin's effect on membrane tension
484 is minimal in the $\Delta Molst8$ mutant, suggesting ineffective TOR signaling. Thus, MoLst8 is crucial
485 for TORC2 function and plasma membrane homeostasis in *M. oryzae*.

486 The intricate interplay between TOR and MAPK signaling pathways in fungi orchestrates
487 cellular responses to environmental stresses, including cell wall integrity (CWI) stress and
488 hyperosmotic conditions [42, 43, 100]. MoLst8, a central component of the TOR complex,
489 influencing fungal growth, development, and pathogenicity. The removal of *MoLST8* causes
490 increased susceptibility to cell wall stress, indicating its importance in maintaining cell integrity.
491 Furthermore, *MoLST8*'s absence elevates the phosphorylation of Mps1 and Osm1 MAPKs, but this
492 activation is insufficient to restore cell wall integrity, suggesting disrupted regulation of cell integrity
493 by the MAPK pathway in $\Delta Molst8$. These findings underscore the interconnectedness of TOR and
494 MAPK signaling and suggest that TOR signaling may transmit environmental signals to the MAPK
495 cascade to regulate cellular responses to adverse conditions.

496 The study revealed that MoLst8, a TOR complex component, plays critical roles in cell growth,
497 membrane homeostasis, autophagy, virulence, membrane tension and cell wall stress in *M. oryzae*.
498 MoLst8 positively regulates TORC1 activity, evident in decreased TORC1 function and rapamycin
499 sensitivity in $\Delta Molst8$ mutants. It also mediates TORC2, affecting sphingolipid synthesis and
500 membrane stability. $\Delta Molst8$ mutants demonstrate enhanced susceptibility to cell wall stress and
501 augmented MAPK phosphorylation but fail to restore cell wall integrity, indicating disrupted TOR-
502 MAPK crosstalk. Future research on MoLst8's role in *M. oryzae* pathogenesis promises deeper
503 insights into TOR and MAPK signaling crosstalk, potentially revealing new antifungal targets. This
504 could lead to more effective disease control strategies, enhancing crop protection and global food
505 security.

506

507 **Materials and methods**

508 **Creation of mutant strains and their complements**

509 The mutant was produced using high-throughput gene deletion approaches detailed by Lu et al. in

510 2014 [75]. In summary, PCR amplification with specific primers was used to obtain separate
511 fragments of roughly 1000 bp located upstream and downstream from the *MoLST8* gene. These
512 fragments, along with the resistance gene fragment HPH, were then seamlessly integrated into the
513 cleaved PKO3A plasmids using a recombinase enzyme. The recombinant cassettes obtained were
514 inserted into the Guy11 by employing the AGL1. Positive transformants were subsequently
515 identified on CM plates containing 200 µg/mL hygromycin B and 0.5 µM 5-fluoro-2'-deoxyuridine.
516 Further verification of the Δ *Molst8* mutant strain was carried out using PCR and southern blot
517 analysis [24]. To assemble the complementation vector, the entire gene sequences from Guy11 were
518 effortlessly inserted into the PKD5-GFP vector. Utilizing the ATMT approach, the vector was
519 efficiently transferred into the Δ *Molst8* mutant strain. Verification of positive transformants was
520 accomplished by employing a combination of molecular techniques, including western blot analysis
521 and fluorescence microscopy.

522

523 **Phenotypic observation of strains**

524 Phenotypic characteristics were assessed from the Guy11, Δ *Molst8* mutant, and Δ *Molst8-C* strain
525 on CM for a duration of 8 days, followed by measurements of colony diameter and conidial
526 production. To evaluate virulence, mycelial plugs and spore suspensions (5×10^4 spores/ml) were
527 set onto excised barley and rice leaves and incubated at 25°C for a duration of 4 days. The Guy11
528 conidial suspension (5×10^4 spores/ml) was enriched with rapamycin at concentrations of 0, 100
529 ng/ml, 1 µg/ml, and 10 µg/ml and inoculated on barley leaves in vitro for 4 days, and the plaque and
530 invasive hyphae (IH) were observed to detect infection.

531

532 **Strain stress experiments**

533 In the drug stress experiment, wild-type Guy11, Δ *Molst8* mutants, and Δ *Molst8-C* strains were
534 cultivated on CM medium containing 100 ng/mL of rapamycin for an eight-day duration. For the
535 plasma membrane (PM) homeostasis test, CM was prepared with 1 µm myriocin. Cell wall stress
536 was assayed using CM formulated within 0.0025% SDS and 400 µg/ml of Congo Red.
537 Hyperosmotic stress was induced by preparing CM with a combination of 0.5M NaCl and 1M
538 sorbitol. Each strain was replicated three times, and the development of colonies was noted, captured
539 in photographs, and the diameters of each were gauged to ascertain the rate of growth inhibition.

540

541 **Monitoring autophagy flux**

542 To monitor autophagy flux, *Agrobacterium tumefaciens* was used to transfer the PKO3A vector
543 carrying the GFP-MoAtg8 fragment into Guy11 and Δ *Molst8* mutant strains, respectively. PCR and
544 fluorescence microscopy were employed to verify the successful transfer. In the autophagy
545 degradation experiment, Guy11 and Δ *Molst8* mutant strains containing GFP-MoAtg8 strains were
546 initially propagated on CM solid medium, subsequently shifted to CM liquid medium, and cultivated
547 at 25°C with constant shaking at 150 rpm for a period of 48 hours. Subsequently, they were relocated
548 to SD-N as well as CM liquid medium infused with 100 ng/ml of rapamycin, respectively, for
549 induction periods of 6 hours and 12 hours. Autophagosomes in the hyphae were observed and
550 counted using fluorescence confocal microscopy.

551

552 **Liquid chromatography-mass spectrometry (LC-MS) analysis**

553 Samples were processed with a 4 \times volume of phenol extraction buffer containing stabilizers and
554 inhibitors, followed by equal volume Tris-buffered phenol addition and centrifugation. The
555 supernatant was precipitated with 0.1M ammonium acetate/methanol, cleaned with methanol and
556 acetone, subsequently dissolved in 8M urea. After TCA addition and precipitation, the pellet was
557 washed with pre-cooled acetone, dissolved in 200mM TEAB, and enzymatically broken down using
558 trypsin in a 1:50 proportion overnight. Reduction with DTT and alkylation with IAA were
559 performed, followed by peptide solubilization in a buffer solution. The peptides were then loaded
560 onto IMAC material, washed, and phosphopeptides were eluted with 10% ammonium hydroxide.
561 The eluents were vacuum-dried, dispersed in Liquid chromatography mobile phase A, followed by
562 partitioning with the aid of a vanquish neo UHPLC system with a gradient mobile phase. The
563 peptides underwent ionization within an NSI ion source and were subsequently assessed using
564 Orbitrap Exploris 480 mass spectrometry.

565

566 **Targeted lipidomics analysis**

567 To conduct the lipidome profiling, both the Guy11 and Δ *Molst8* were grown in CM liquid for 48
568 hours at a constant temperature of 25°C before being harvested and dehydrated using a freeze dryer.
569 For every 50 mg of the dried sample, 200 μ L of an aqueous methanol mixture (3:1, v:v) was

570 incorporated and combined with 1 mL of MTBE (methyl tert-butyl ether) at a low temperature of
571 4°C for a 60-minute extraction process. Following this, 200 µL of water was introduced and allowed
572 to stand for 10 minutes, the mixture was kept at room temperature. Subsequently, it was centrifuged
573 at 4°C and 8000 rpm for 20 minutes to isolate the supernatant, which was subsequently treated with
574 200 µL of SDT to dissolve any precipitated protein. The proportion of lipids in each sample was
575 ascertained by referencing the protein content. A standard volume of supernatant from each sample
576 was extracted for vacuum drying. The dried extracts obtained were then dissolved in 100 µL of a
577 dichloromethane/methanol mixture (1:1, v:v), and subsequently centrifuged at 4°C and 10000 rpm
578 for 15 minutes. The supernatant obtained from this step was then subjected to LC-MS/MS analysis
579 for lipid profiling. This comprehensive lipidomic analysis was performed by Bioprofile, adhering
580 to instrumentation parameters outlined in previous research studies [104].

581

582 **Western blot analysis**

583 The Guy11 and Δ Molst8 strains were grown in CM at 25°C with 150 rpm for 48 hours. To detect
584 phosphorylated MoOsm1, the cultures were divided into four portions. One portion was left
585 untreated (0 min), while the other three were transferred to CM liquid containing 0.5M NaCl and
586 incubated at 25°C with 150 rpm for 30, 60, and 120 minutes, respectively. To detect MoMps1 and
587 phosphorylated MoMps1, 400µg/ml CR was added to the CM liquid medium containing the mycelia.
588 Similarly, 100 ng/ml rapamycin was added to detect phosphorylated MoRps6 levels using anti-
589 phosphorylated rps6 (S235/S236) antibody (Cell Signaling Technology, 2211) and anti-rps6
590 antibody (Abcam, ab40820) as controls. For detecting phosphorylated MoYpk1 levels, 10 uM
591 PalmC was added, and anti-phosphorylated MoYpk1 (S619) antibody along with anti-MoYpk1
592 antibody (prepared by ABclonal Biotechnology Co., Ltd.) were used. Proteins were isolated
593 employing the TCA-SDS technique [105]. To detect GFP-MoAtg8, the mycelia were incubated in
594 SD-N media and 100 ng/ml rapamycin media for 0 and 6 hours, respectively, and then ground in
595 liquid nitrogen. Following this, a lysis buffer composed of 50 mM Tris-HCl (pH 7.6), 150 mM NaCl,
596 1% Triton X-100, and 0.5 mM EDTA was used to extract the proteins. The resolved proteins on
597 SDS-PAGE gels were then identified using GFP antibodies.

598

599 **Membrane tension assessment**

600 The tension of the plasma membrane (PM) was assayed by employing Flipper-TR (Spirochrome,
601 SC020), a fluorescent dye whose fluorescence lifetime varies in response to membrane curvature.
602 Both Guy11 and $\Delta MoLst8$ fungal strains were cultivated in CM for 48 hours and subsequently
603 labeled with 2 μ M Flipper-TR for a duration of 15 minutes at 25 °C. Fluorescence Lifetime Imaging
604 Microscopy (FLIM) was performed by utilizing an Olympus FV3000 microscope fitted with a
605 PicoHarp 300 Time-Correlated Single-Photon Counting (TCSPC) module from PicoQuant.
606 Excitation was provided by a 488 nm laser operating at a 20 MHz repetition rate, and fluorescence
607 emission was collected through a 565–625 nm bandpass filter. The SymPhotime 64 software suite
608 was utilized to analyze the collected lifetime data through a three-exponential decay model.

609

610 **Statistical evaluation**

611 The fluorescence signals obtained from fluorescence and immunoblot assays were quantified
612 using ImageJ software. The data is expressed as the average value along with its standard
613 deviation, calculated from a minimum of three independent replicates. To determine statistical
614 significance, with the assistance of GraphPad Prism version 10.0 software, a two-sample Student's
615 t-test was performed, and the significance of the findings was evaluated based on the p-value (*
616 P< 0.05, ** P < 0.01, ** P<0.001, ****P < 0.0001).

617

618 **Acknowledgements**

619 We extend our gratitude to Maurizio Del Poeta for his contributions to the study of sphingolipids in
620 pathogenic fungi, as well as to Aurélien Roux and Robbie Loewith for their research on plasma
621 membrane tension.

622

623 **Disclosure statement**

624 All authors declare no conflict of interest.

625

626 **Funding**

627 This study was supported from the National Natural Science Foundation of China [32100159] and
628 the National Key Research and Development Program of China [2023YFD1400200].

629

630 **References**

631 1. Liu LW, Hsieh SH, Lin SJ, Wang YM, Lin WS. Rice Blast (*Magnaporthe oryzae*) Occurrence
632 Prediction and the Key Factor Sensitivity Analysis by Machine Learning. *Agronomy-Basel*.
633 2021;11(4).

634 2. Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by
635 *Magnaporthe oryzae*. *Nat Rev Microbiol*. 2009;7(3):185-95.

636 3. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. An overview of global rice production,
637 supply, trade, and consumption. *Ann N Y Acad Sci*. 2014;1324:7-14.

638 4. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to
639 antifungal drugs challenges human health and food security. *Science*. 2018;360(6390):739-42.

640 5. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The
641 Top 10 fungal pathogens in molecular plant pathology. *Mol Plant Pathol*. 2012;13(4):414-30.

642 6. He M, Xu YP, Chen JH, Luo Y, Lv Y, Su J, et al. MoSnt2-dependent deacetylation of histone
643 H3 mediates MoTOR-dependent autophagy and plant infection by the rice blast fungus. *Autophagy*.
644 2018;14(9):1543-61.

645 7. Ebbole DJ. *Magnaporthe* as a model for understanding host-pathogen interactions. *Annu Rev*
646 *Phytopathol*. 2007;45:437-56.

647 8. Ribot C, Hirsch J, Balzergue S, Tharreau D, Notteghem JL, Lebrun MH, et al. Susceptibility
648 of rice to the blast fungus, *Magnaporthe grisea*. *J Plant Physiol*. 2008;165(1):114-24.

649 9. Kankanala P, Czymbek K, Valent B. Roles for rice membrane dynamics and plasmodesmata
650 during biotrophic invasion by the blast fungus. *Plant Cell*. 2007;19(2):706-24.

651 10. Cao JJ, Liu CX, Shao SJ, Zhou J. Molecular Mechanisms of Autophagy Regulation in Plants
652 and Their Applications in Agriculture. *Front Plant Sci*. 2021;11.

653 11. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation.
654 *Antioxid Redox Signal*. 2014;20(3):460-73.

655 12. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. *Curr Top*
656 *Microbiol Immunol*. 2009;335:1-32.

657 13. Mizushima N. Autophagy: process and function. *Genes Dev*. 2007;21(22):2861-73.

658 14. Liu XH, Gao HM, Xu F, Lu JP, Devenish RJ, Lin FC. Autophagy vitalizes the pathogenicity of
659 pathogenic fungi. *Autophagy*. 2012;8(10):1415-25.

660 15. Zhu XM, Li L, Wu M, Liang S, Shi HB, Liu XH, et al. Current opinions on autophagy in

661 pathogenicity of fungi. *Virulence*. 2019;10(1):481-9.

662 16. Asif N, Lin F, Li L, Zhu X, Nawaz S. Regulation of Autophagy Machinery in Magnaporthe
663 oryzae. *Int J Mol Sci*. 2022;23(15).

664 17. Liu XH, Lin FC. Investigation of the biological roles of autophagy in appressorium
665 morphogenesis in Magnaporthe oryzae. *J Zhejiang Univ Sci B*. 2008;9(10):793-6.

666 18. Veneault-Fourrey C, Talbot NJ. Autophagic cell death and its importance for fungal
667 developmental biology and pathogenesis. *Autophagy*. 2007;3(2):126-7.

668 19. Sun G, Elowsky C, Li G, Wilson RA. TOR-autophagy branch signaling via Imp1 dictates plant-
669 microbe biotrophic interface longevity. *PLoS Genet*. 2018;14(11):e1007814.

670 20. Puente C, Hendrickson RC, Jiang X. Nutrient-regulated Phosphorylation of ATG13 Inhibits
671 Starvation-induced Autophagy. *J Biol Chem*. 2016;291(11):6026-35.

672 21. Wallot-Hieke N, Verma N, Schlutermann D, Berleth N, Deitersen J, Bohler P, et al. Systematic
673 analysis of ATG13 domain requirements for autophagy induction. *Autophagy*. 2018;14(5):743-63.

674 22. Mugume Y, Kazibwe Z, Bassham DC. Target of Rapamycin in Control of Autophagy: Puppet
675 Master and Signal Integrator. *Int J Mol Sci*. 2020;21(21).

676 23. Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK. The Tor and PKA signaling
677 pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. *Proc
678 Natl Acad Sci U S A*. 2009;106(40):17049-54.

679 24. Zhu XM, Li L, Cai YY, Wu XY, Shi HB, Liang S, et al. A VASt-domain protein regulates
680 autophagy, membrane tension, and sterol homeostasis in rice blast fungus. *Autophagy*.
681 2021;17(10):2939-61.

682 25. Liu XH, Zhao YH, Zhu XM, Zeng XQ, Huang LY, Dong B, et al. Autophagy-related protein
683 MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus. *Sci
684 Rep-Uk*. 2017;7.

685 26. Liu N, Ning GA, Liu XH, Feng XX, Lu JP, Mao LJ, et al. An autophagy gene, HoATG5, is
686 involved in sporulation, cell wall integrity and infection of wounded barley leaves. *Microbiol Res*.
687 2016;192:326-35.

688 27. Yin Z, Feng W, Chen C, Xu J, Li Y, Yang L, et al. Shedding light on autophagy coordinating
689 with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae. *Autophagy*.
690 2020;16(5):900-16.

691 28. Lv W, Wang C, Yang N, Que Y, Talbot NJ, Wang Z. Genome-wide functional analysis reveals
692 that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in
693 *Fusarium graminearum*. *Sci Rep.* 2017;7(1):11062.

694 29. Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, et al. TOR Signaling and
695 Nutrient Sensing. *Annu Rev Plant Biol.* 2016;67:261-85.

696 30. Eltschinger S, Loewith R. TOR Complexes and the Maintenance of Cellular Homeostasis.
697 *Trends Cell Biol.* 2016;26(2):148-59.

698 31. Marroquin-Guzman M, Wilson RA. GATA-Dependent Glutaminolysis Drives Appressorium
699 Formation in *Magnaporthe oryzae* by Suppressing TOR Inhibition of cAMP/PKA Signaling. *PLoS*
700 *Pathog.* 2015;11(4):e1004851.

701 32. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease (vol 168, pg
702 960, 2017). *Cell.* 2017;169(2):362-.

703 33. Marques-Ramos A, Cervantes R. Expression of mTOR in normal and pathological conditions.
704 *Mol Cancer.* 2023;22(1):112.

705 34. Chen EJ, Kaiser CA. LST8 negatively regulates amino acid biosynthesis as a component of the
706 TOR pathway. *J Cell Biol.* 2003;161(2):333-47.

707 35. Riggi M, Kusmider B, Loewith R. The flipside of the TOR coin - TORC2 and plasma
708 membrane homeostasis at a glance. *J Cell Sci.* 2020;133(9).

709 36. Niles BJ, Joslin AC, Fresques T, Powers T. TOR complex 2-Ypk1 signaling maintains
710 sphingolipid homeostasis by sensing and regulating ROS accumulation. *Cell Rep.* 2014;6(3):541-
711 52.

712 37. Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J. TORC2-dependent protein
713 kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids.
714 *Elife.* 2014;3.

715 38. Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J. Protein kinase Ypk1
716 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in
717 *Saccharomyces cerevisiae*. *Proc Natl Acad Sci U S A.* 2011;108(48):19222-7.

718 39. Zhao X, Mehrabi R, Xu JR. Mitogen-activated protein kinase pathways and fungal
719 pathogenesis. *Eukaryot Cell.* 2007;6(10):1701-14.

720 40. Jiang C, Zhang X, Liu H, Xu JR. Mitogen-activated protein kinase signaling in plant

721 pathogenic fungi. *PLoS Pathog.* 2018;14(3):e1006875.

722 41. Turra D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic fungi: conserved
723 regulators of infection. *Annu Rev Phytopathol.* 2014;52:267-88.

724 42. Petersen J, Nurse P. TOR signalling regulates mitotic commitment through the stress MAP
725 kinase pathway and the Polo and Cdc2 kinases. *Nat Cell Biol.* 2007;9(11):1263-72.

726 43. Madrid M, Vázquez-Marín B, Franco A, Soto T, Vicente-Soler J, Gacto M, et al. Multiple
727 crosstalk between TOR and the cell integrity MAPK signaling pathway in fission yeast. *Sci Rep-*
728 *Uk.* 2016;6.

729 44. Broach JR. Nutritional control of growth and development in yeast. *Genetics.* 2012;192(1):73-
730 105.

731 45. Crespo JL, Powers T, Fowler B, Hall MN. The TOR-controlled transcription activators GLN3,
732 RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. *Proc Natl Acad Sci*
733 *U S A.* 2002;99(10):6784-9.

734 46. Gonzalez A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. *EMBO J.*
735 2017;36(4):397-408.

736 47. Wang Y, Zhang HB. Regulation of Autophagy by mTOR Signaling Pathway. *Adv Exp Med*
737 *Biol.* 2019;1206:67-83.

738 48. Zhu XM, Li L, Bao JD, Wang JY, Liang S, Zhao LL, et al. MoVast2 combined with MoVast1
739 regulates lipid homeostasis and autophagy in *Magnaporthe oryzae*. *Autophagy.* 2023;19(8):2353-
740 71.

741 49. Huang C, Li L, Wang L, Bao J, Zhang X, Yan J, et al. The Amino Acid Permease MoGap1
742 Regulates TOR Activity and Autophagy in *Magnaporthe oryzae*. *Int J Mol Sci.* 2022;23(21).

743 50. Qian B, Liu X, Ye Z, Zhou Q, Liu P, Yin Z, et al. Phosphatase-associated protein MoTip41
744 interacts with the phosphatase MoPpe1 to mediate crosstalk between TOR and cell wall integrity
745 signalling during infection by the rice blast fungus *Magnaporthe oryzae*. *Environ Microbiol.*
746 2021;23(2):791-809.

747 51. Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. *Curr*
748 *Top Membr.* 2019;84:67-98.

749 52. Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, et al. Defining raft
750 domains in the plasma membrane. *Traffic.* 2020;21(1):106-37.

751 53. Athanasopoulos A, Andre B, Sophianopoulou V, Gournas C. Fungal plasma membrane
752 domains. *FEMS Microbiol Rev.* 2019;43(6):642-73.

753 54. Wong AKO, Young BP, Loewen CJR. Ist2 recruits the lipid transporters Osh6/7 to ER-PM
754 contacts to maintain phospholipid metabolism. *J Cell Biol.* 2021;220(9).

755 55. Thomas FB, Omnis DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate
756 plasma membrane phospholipid homeostasis. *Life Sci Alliance.* 2022;5(8).

757 56. Wu MH, Yu Q, Tao TY, Sun LX, Qian H, Zhu XM, et al. Genome-Wide Analysis of AGC
758 Kinases Reveals that MoFpk1 Is Required for Development, Lipid Metabolism, and Autophagy in
759 Hyperosmotic Stress of the Rice Blast Fungus. *Mbio.* 2022;13(6).

760 57. Berchtold D, Piccolis M, Chiaruttini N, Riezman I, Riezman H, Roux A, et al. Plasma
761 membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote
762 sphingolipid synthesis. *Nat Cell Biol.* 2012;14(5):542-7.

763 58. Simons K, Sampaio JL. Membrane organization and lipid rafts. *Cold Spring Harb Perspect
764 Biol.* 2011;3(10):a004697.

765 59. Sokolov SS, Trushina NI, Severin FF, Knorre DA. Ergosterol Turnover in Yeast: An Interplay
766 between Biosynthesis and Transport. *Biochemistry-Moscow+.* 2019;84(4):346-57.

767 60. Divito CB, Amara SG. Close encounters of the oily kind: regulation of transporters by lipids.
768 *Mol Interv.* 2009;9(5):252-62.

769 61. Breslow DK, Weissman JS. Membranes in balance: mechanisms of sphingolipid homeostasis.
770 *Mol Cell.* 2010;40(2):267-79.

771 62. Douglas LM, Konopka JB. Fungal membrane organization: the eisosome concept. *Annu Rev
772 Microbiol.* 2014;68:377-93.

773 63. Quon E, Sere YY, Chauhan N, Johansen J, Sullivan DP, Dittman JS, et al. Endoplasmic
774 reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. *PLoS Biol.*
775 2018;16(5):e2003864.

776 64. Olkkonen VM, Li S. Oxysterol-binding proteins: sterol and phosphoinositide sensors
777 coordinating transport, signaling and metabolism. *Prog Lipid Res.* 2013;52(4):529-38.

778 65. Ferrer A, Altabella T, Arro M, Boronat A. Emerging roles for conjugated sterols in plants. *Prog
779 Lipid Res.* 2017;67:27-37.

780 66. Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid

781 content and lipid biosynthesis pathways in the plasma membrane and tonoplast. *Plant Physiol.*
782 2022;189(2):805-26.

783 67. Souza CM, Pichler H. Lipid requirements for endocytosis in yeast. *Biochim Biophys Acta.*
784 2007;1771(3):442-54.

785 68. Shoji JY, Kikuma T, Kitamoto K. Vesicle trafficking, organelle functions, and unconventional
786 secretion in fungal physiology and pathogenicity. *Curr Opin Microbiol.* 2014;20:1-9.

787 69. Kodama S, Kajikawa N, Fukada F, Kubo Y. Niemann-Pick Type C Proteins Are Required for
788 Sterol Transport and Appressorium-Mediated Plant Penetration of *Colletotrichum orbiculare*. *Mbio.*
789 2022;13(5):e0223622.

790 70. Guo Z, Liu X, Wang N, Mo P, Shen J, Liu M, et al. Membrane component ergosterol builds a
791 platform for promoting effector secretion and virulence in *Magnaporthe oryzae*. *New Phytol.*
792 2023;237(3):930-43.

793 71. Wullschleger S, Loewith R, Oppelger W, Hall MN. Molecular organization of target of
794 rapamycin complex 2. *J Biol Chem.* 2005;280(35):30697-704.

795 72. Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, et al. Architecture of human
796 mTOR complex 1. *Science.* 2016;351(6268):48-52.

797 73. Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, et al. Mutations in
798 the *Arabidopsis* homolog of LST8/GbetaL, a partner of the target of Rapamycin kinase, impair plant
799 growth, flowering, and metabolic adaptation to long days. *Plant Cell.* 2012;24(2):463-81.

800 74. Couso I, Perez-Perez ME, Ford MM, Martinez-Force E, Hicks LM, Umen JG, et al. Phosphorus
801 Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas. *Plant Cell.* 2020;32(1):69-
802 80.

803 75. Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors
804 required for development and pathogenicity by high-throughput gene knockout in the rice blast
805 fungus. *PLoS Pathog.* 2014;10(10):e1004432.

806 76. Yao W, Chen Y, Chen Y, Zhao P, Liu J, Zhang Y, et al. TOR-mediated Ypt1 phosphorylation
807 regulates autophagy initiation complex assembly. *EMBO J.* 2023;42(19):e112814.

808 77. Rallis C, Codlin S, Bahler J. TORC1 signaling inhibition by rapamycin and caffeine affect
809 lifespan, global gene expression, and cell proliferation of fission yeast. *Aging Cell.* 2013;12(4):563-
810 73.

811 78. Anjum S, Srivastava S, Panigrahi L, Ansari UA, Trivedi AK, Ahmed S. TORC1 mediated
812 regulation of mitochondrial integrity and calcium ion homeostasis by Wat1/mLst8 in *S. pombe*. *Int*
813 *J Biol Macromol*. 2023;253(Pt 3):126907.

814 79. Maegawa K, Takii R, Ushimaru T, Kozaki A. Evolutionary conservation of TORC1
815 components, TOR, Raptor, and LST8, between rice and yeast. *Mol Genet Genomics*.
816 2015;290(5):2019-30.

817 80. Palmer GE, Askew DS, Williamson PR. The diverse roles of autophagy in medically important
818 fungi. *Autophagy*. 2008;4(8):982-8.

819 81. Kikuma T, Arioka M, Kitamoto K. Autophagy during conidiation and conidial germination in
820 filamentous fungi. *Autophagy*. 2007;3(2):128-9.

821 82. Deng Y, Qu Z, Naqvi NI. Role of macroautophagy in nutrient homeostasis during fungal
822 development and pathogenesis. *Cells*. 2012;1(3):449-63.

823 83. Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, et al. TOR-dependent post-
824 transcriptional regulation of autophagy. *Autophagy*. 2015;11(12):2390-2.

825 84. Neufeld TP. Contribution of Atg1-dependent autophagy to TOR-mediated cell growth and
826 survival. *Autophagy*. 2007;3(5):477-9.

827 85. Carames B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ, Lotz M. Autophagy activation by
828 rapamycin reduces severity of experimental osteoarthritis. *Ann Rheum Dis*. 2012;71(4):575-81.

829 86. Korner C, Frohlich F. Compartmentation and functions of sphingolipids. *Curr Opin Cell Biol*.
830 2022;74:104-11.

831 87. Ishino Y, Komatsu N, Sakata KT, Yoshikawa D, Tani M, Maeda T, et al. Regulation of
832 sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in
833 budding yeast. *FEBS J*. 2022;289(2):457-72.

834 88. Sparks CA, Guertin DA. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer
835 therapy. *Oncogene*. 2010;29(26):3733-44.

836 89. Chen X, Liu M, Tian Y, Li J, Qi Y, Zhao D, et al. Cryo-EM structure of human mTOR complex
837 2. *Cell Res*. 2018;28(5):518-28.

838 90. Rodriguez-Escudero I, Fernandez-Acero T, Cid VJ, Molina M. Heterologous mammalian Akt
839 disrupts plasma membrane homeostasis by taking over TORC2 signaling in *Saccharomyces*
840 *cerevisiae*. *Sci Rep*. 2018;8(1):7732.

841 91. Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima SY, et al. Target of rapamycin
842 (TOR) plays a critical role in triacylglycerol accumulation in microalgae. *Plant Mol Biol.*
843 2015;89(3):309-18.

844 92. Riggi M, Niewola-Staszkowska K, Chiaruttini N, Colom A, Kusmider B, Mercier V, et al.
845 Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2.
846 *Nature Cell Biology.* 2018;20(9):1043-+.

847 93. Grossmann G, Opekarova M, Malinsky J, Weig-Meckl I, Tanner W. Membrane potential
848 governs lateral segregation of plasma membrane proteins and lipids in yeast. *EMBO J.*
849 2007;26(1):1-8.

850 94. Ryder LS, Lopez SG, Michels L, Eseola AB, Sprakel J, Ma W, et al. A molecular
851 mechanosensor for real-time visualization of appressorium membrane tension in *Magnaporthe*
852 *oryzae*. *Nat Microbiol.* 2023;8(8):1508-19.

853 95. Wang L, Zhang X, Li L, Bao J, Lin F, Zhu X. A key sphingolipid pathway gene, MoDES1,
854 regulates conidiation, virulence and plasma membrane tension in *Magnaporthe oryzae*. *Microbiol*
855 *Res.* 2024;279:127554.

856 96. Turra D, El Ghalid M, Rossi F, Di Pietro A. Fungal pathogen uses sex pheromone receptor for
857 chemotropic sensing of host plant signals. *Nature.* 2015;527(7579):521-4.

858 97. Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. A nitrogen response pathway
859 regulates virulence functions in *Fusarium oxysporum* via the protein kinase TOR and the bZIP
860 protein MeaB. *Plant Cell.* 2010;22(7):2459-75.

861 98. Nordzieke DE, Fernandes TR, El Ghalid M, Turra D, Di Pietro A. NADPH oxidase regulates
862 chemotropic growth of the fungal pathogen *Fusarium oxysporum* towards the host plant. *New*
863 *Phytol.* 2019;224(4):1600-12.

864 99. Sakulkoo W, Osés-Ruiz M, Garcia EO, Soanes DM, Littlejohn GR, Hacker C, et al. A single
865 fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. *Science.*
866 2018;359(6382):1399-+.

867 100. Vangalis V, Markakis EA, Knop M, Pietro AD, Typas MA, Papaioannou IA. Components of
868 TOR and MAP kinase signaling control chemotropism and pathogenicity in the fungal pathogen
869 *Verticillium dahliae*. *Microbiol Res.* 2023;271:127361.

870 101. Li G, Zhou X, Xu JR. Genetic control of infection-related development in *Magnaporthe oryzae*.

871 Curr Opin Microbiol. 2012;15(6):678-84.

872 102. Xu JR, Staiger CJ, Hamer JE. Inactivation of the mitogen-activated protein kinase Mps1 from
873 the rice blast fungus prevents penetration of host cells but allows activation of plant defense
874 responses. Proc Natl Acad Sci U S A. 1998;95(21):12713-8.

875 103. Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR. Osmoregulation and fungicide resistance: the
876 *Neurospora crassa* os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl
877 Environ Microbiol. 2002;68(2):532-8.

878 104. Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Yang J, et al. Metabolomic biomarkers identify
879 differences in milk produced by Holstein cows and other minor dairy animals. J Proteomics.
880 2016;136:174-82.

881 105. Zhu XM, Liang S, Shi HB, Lu JP, Dong B, Liao QS, et al. VPS9 domain-containing proteins
882 are essential for autophagy and endocytosis in *Pyricularia oryzae*. Environ Microbiol.
883 2018;20(4):1516-30.

884

885 **Legends**

886 **Figure 1. MoLst8 is involved in growth, development, and virulence.** (A) The Colony
887 morphology and conidiophores of Guy11, Δ *Molst8*, and the complemented strain, bar = 50 μ m. (B)
888 and (C) The colony growth rate and conidiation in Guy11, Δ *Molst8*, and the complemented strain.
889 Data were examined with GraphPad Prism 10.0. (D) and (E) The conidia morphology and
890 abnormality rate of Guy11, Δ *Molst8*, and the complemented strain, bar = 10 μ m. (F) Pathogenicity
891 tests were conducted by spraying conidia onto barely leaves. The concentration of conidial
892 suspensions for each strain was 5×10^4 spores/ml, cultured for 7 days at 25°C. (G) Observation of
893 appressorium-mediated invasive hyphal (IH) colonization on detached barley leaves for Guy11,
894 Δ *Molst8*, and the complemented strain, bar = 10 μ m. (H) The pathogenicity experiment on barley
895 leaves was conducted using mycelial plugs from Guy11, Δ *Molst8*, and the complemented strain.
896 Observation was carried out after 4 days of inoculation under 25°C conditions. (I) Conidial
897 suspensions (5×10^4 spores/ml) from Guy11, Δ *Molst8*, and the complemented strain were applied
898 in the pathogenicity experiment. Observation was carried out after 4 days of inoculation under 25°C
899 conditions. (J) The pathogenicity experiment on barley leaves using mycelial plugs from Guy11,
900 Δ *Molst8*, and the complemented strain. (K) Pathogenicity tests were conducted by spraying conidia

901 onto rice leaves.

902

903 **Figure 2. The *Molst8* gene positively regulates TORC1 activity.** (A) Guy11, Δ *Molst8*, and the
904 complemented strain were cultured on CM supplemented with 100 ng/ml rapamycin at 25°C for 8
905 days. (B) Guy11, Δ *Molst8*, and the complemented strain exhibited different relative growth rates,
906 with statistical significance denoted by double asterisks. (C) Phosphorylation analysis of MoRps6
907 in Guy11 and Δ *Molst8*. (D) Bar chart illustrating the phosphorylation levels of MoRps6 (** p <
908 0.05). (E) Detection of Guy11 conidia virulence on barley leaves under the influence of rapamycin
909 at concentrations of 0, 100 ng/ml, 1 μ g/ml, 10 μ g/ml. Conidia (5×10^4 spores/mL) were cultured on
910 five-day-old barley leaves at 25°C for 4 days, the IH was observed by microscope, bar = 20 μ m. (F)
911 Quantitative statistical analysis of invasive hyphal growth for Guy11, Δ *Molst8*, and complemented
912 strains under the influence of rapamycin at concentrations of 0, 100 ng/ml, 1 μ g/ml, 10 μ g/ml.

913

914 **Figure 3. Autophagy was depressed in Δ *Molst8*.** (A) GFP-MoAtg8 fluorescence assessed
915 autophagy flux in Guy11 and Δ *Molst8* strains expressing the GFP-MoAtg8 fusion protein. After 2
916 days in CM medium, hyphae were shifted to SD-N for 6 and 12 hours, stained with CMAC, and
917 examined under a fluorescence microscope, bar = 10 μ m. (B) Using box plots to statistically analyze
918 the number of autophagosomes in Guy11 and Δ *Molst8* strains under SD-N conditions. (C) ImageJ
919 software was used to determine the colocalization of GFP-MoAtg8 and CMAC vacuolar
920 fluorescence intensity in Guy11 and Δ *Molst8* hyphae under SD-N treatment. (D) Monitoring
921 autophagic flux of GFP-MoAtg8 hydrolysis under SD-N conditions using western blot. (E) Bar
922 chart showing GFP-MoAtg8 hydrolysis rate under SD-N treatment. (F) Western blotting detected
923 the MoAtg8/MoAtg8-PE conversion in Guy11 and Δ *Molst8* in CM and SD-N medium. (G) GFP-
924 MoAtg8 fluorescence assessed autophagy flux in Guy11 and Δ *Molst8* strains expressing the GFP-
925 MoAtg8 fusion protein. After 2 days in CM medium, hyphae were shifted to rapamycin for 6 and
926 12 hours, stained with CMAC, and examined under a fluorescence microscope bar = 10 μ m. (H)
927 The number of autophagosomes in Guy11 and Δ *Molst8* strains were analyzed under rapamycin
928 treatment for 6 and 12 hours. (I) ImageJ software was used to determine the colocalization of GFP-
929 MoAtg8 and CMAC vacuolar fluorescence intensity in Guy11 and Δ *Molst8* hyphae under
930 rapamycin conditions. (J) Monitoring autophagic flux of GFP-MoAtg8 hydrolysis under rapamycin

931 conditions using western blot. (K) Bar chart showing GFP-MoAtg8 hydrolysis rate under rapamycin
932 treatment.

933

934 **Figure 4. Characteristics of identified phosphorylated proteins.** (A) Heatmap of differentially
935 modified phosphorylated protein in Guy11 and $\Delta Molst8$ mutant. (B) Plot the subcellular localization
936 of differentially modified phosphorylated proteins. (C) Performing gene ontology functional
937 classification of differentially modified phosphorylated proteins based on molecular function,
938 cellular component, and biological process. (D) Enrichment analysis of domains in differentially
939 modified phosphorylated proteins. (E) Enrichment analysis of differentially modified
940 phosphorylated proteins based on KEGG pathways.

941

942 **Figure 5. MoLst8 involved in lipid biosynthesis.** (A) Heatmap shows 50 lipids with significant
943 differences between $\Delta Molst8$ and Guy11. (B) KEGG analysis highlights these significant different
944 lipids' role in autophagy, lipid metabolism, and steroid biosynthesis. (C) Bioinformatic analysis
945 quantifies TCA, PE, Cer, SM, DAG, sterols, and other lipids with notable variations. (D) The fold
946 change of lipids in $\Delta Molst8$ mutant.

947

948 **Figure 6 MoLst8 coordinate TORC2 and involve in PM homeostasis.** (A) To study MoYpk1
949 phosphorylation in Guy11 and $\Delta Molst8$ mutants, strains were grown in CM medium for 2 days,
950 treated with 10 μ M PalmC at different time points (30, 60, 120 min), and proteins were extracted
951 using TCA-acetone-SDS for western blot analysis on 12.5% SDS-PAGE. (B) Statistical analysis of
952 MoYpk1 phosphorylation levels in Guy11 and $\Delta Molst8$ mutants using bar graphs. (C) Colony
953 morphologies of Guy11, $\Delta Molst8$, and complementary strains were examined on CM agar with 1
954 μ M myriocin at 25°C. (D) Relative growth rates in Guy11, $\Delta Molst8$, and complementary strains. (E)
955 Fluorescence imaging of Guy11 mycelium with 2 μ M Flipper-TR: longer lifetime correlates with
956 higher PM tension. (F) Fluorescence imaging of $\Delta Molst8$ mycelium with 2 μ M Flipper-TR: longer
957 lifetime correlates with higher PM tension. (G) Fluorescence imaging of Guy11 mycelium treated
958 with rapamycin and stained with 2 μ M Flipper-TR: longer lifetime correlates with higher PM
959 tension. (H) Fluorescence imaging of $\Delta Molst8$ mycelium treated with rapamycin and stained with
960 2 μ M Flipper-TR: longer lifetime correlates with higher PM tension. (I) Box plots display

961 fluorescence lifetime distributions of Guy11 and $\Delta Molst8$ mutant hyphae, comparing before and
962 after rapamycin treatment. They reveal median, interquartile range, and outliers.

963

964 **Figure 7. MoLst8 mediate TOR cross talk with MAPK pathway.** (A) Colony morphologies of
965 Guy11, $\Delta Molst8$, and complementary strains were examined on CM agar with 400 μ g/ml CR at
966 25°C. (B) Relative growth rates in Guy11, $\Delta Molst8$, and complementary strains. (C) Colony
967 morphologies of Guy11, $\Delta Molst8$, and complementary strains were examined on CM agar with
968 0.0025% SDS at 25°C. (D) Relative growth rates in Guy11, $\Delta Molst8$, and complementary strains..
969 (E) To study MoMps1 phosphorylation in Guy11 and $\Delta Molst8$ mutants, strains were grown in CM
970 medium for 2 days, treated with 400 μ g/ml CR at different timepoints (30, 60, 120 min), and proteins
971 were extracted using TCA-acetone-SDS for Western blot analysis on 12.5% SDS-PAGE. (F)
972 Statistical analysis of MoMps1 phosphorylation levels in Guy11 and $\Delta Molst8$ mutants using bar
973 graphs. (G) Colony morphologies of Guy11, $\Delta Molst8$, and complementary strains were examined
974 on CM agar with 0.5 M NaCl at 25°C. (H) Relative growth rates in Guy11, $\Delta Molst8$, and
975 complementary strains. (I) Colony morphologies of Guy11, $\Delta Molst8$, and complementary strains
976 were examined on CM agar with 1 M Sor at 25°C. (J) Relative growth rates in Guy11, $\Delta Molst8$, and
977 complementary strains. (K) To study MoOsm1 phosphorylation in Guy11 and $\Delta Molst8$ mutants,
978 strains were grown in CM medium for 2 days, treated with 0.5 M NaCl at different time points (30,
979 60, 120 min). (L) Statistical analysis of MoOsm1 phosphorylation levels in Guy11 and $\Delta Molst8$
980 mutants using bar graphs.

981

982 **Fig. S1. Diagram of *MoLST8* gene structure, multiple amino acid sequence alignment.** (A) The
983 gene structure of *MoLST8* in *M. oryzae*. (B) Alignment of amino acid sequences of MoLst8 from
984 different pathogenic fungi, colors represent conserved amino acids.

985

986 **Fig. S2. Diagram of MoLst8 structure and phylogenetic tree construction.** (A) Phylogenetic tree
987 showing the evolutionary divergence of MoLst8 with the TOR complex subunit Lst8 proteins from
988 13 other plant pathogenic fungi. (B) Three-dimensional structure of the MoLst8, constructed by
989 Swiss-Model software.

990

991 **Figure S3. The *MoLST8* knockout verification in *M. oryzae*.** PCR confirmation validated the
992 knockout of *MoLST8*, with recombinant DNA detected at the 2000 bp position exclusively in
993 Δ *Molst8* mutants, distinguishing them from Guy11. *MoLST8* gene presence in Guy11 contrasted
994 with its absence in Δ *Molst8* mutants, confirming the deletion of *MoLST8* in *M. oryzae*.

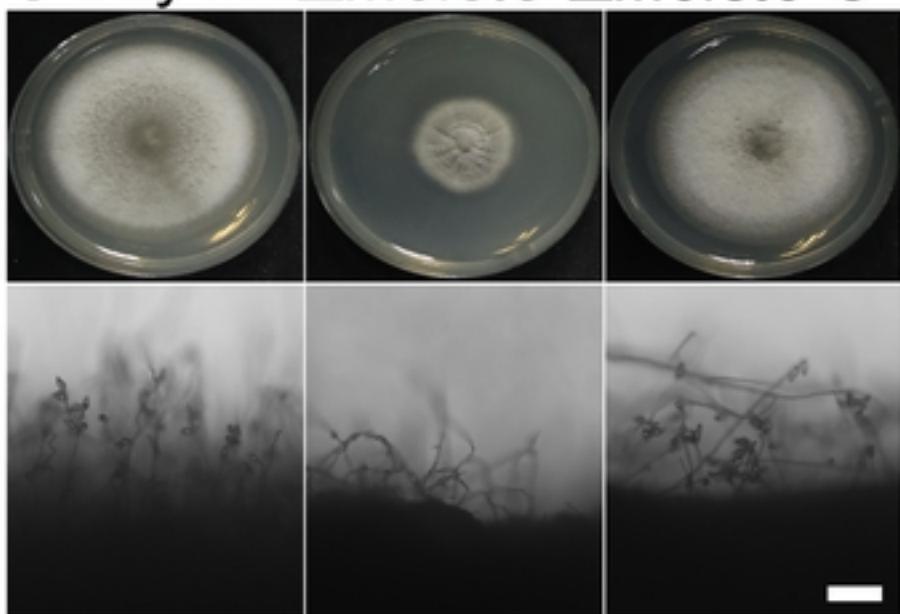
995

996 **Figure S4. Phosphorylation motif and differentially phosphorylated expressed proteins.** (A)
997 The linear motifs enriched in phosphorylation sites detected by Motif-X software. (B) MoMo tool
998 of motif-x algorithm analyzes the heat map of motif characteristics of phosphorylation sites. The
999 analysis background is the peptide segment sequence composed of 6 amino acids upstream and
1000 downstream of all potential modification sites in the species. (C) Draw a histogram to visually
1001 display the distribution of differentially modified phosphorylation sites between Guy11 and
1002 Δ *Molst8* mutant. (D) Volcano plot. Red indicates up-regulated phosphorylated proteins, while green
1003 indicates down-regulated phosphorylated proteins. Five proteins with significant upregulation and
1004 downregulation differences are labeled respectively. The threshold was set at Log2 Fold Change >
1005 0.5 and p-value < 0.05.

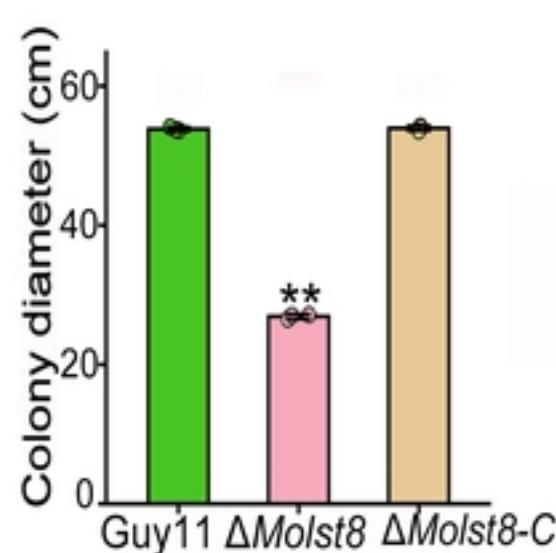
1006

1007 **Figure S5. Lipidomics assessment of lipid components in Δ *Molst8*.** (A) Heatmap depicting the
1008 lipid profiling differences between Δ *Molst8* and the wild-type Guy11 strain (red indicates higher
1009 lipid concentration, blue indicates lower). (B) Scatter plot visualizing the altered lipids in Δ *Molst8*
1010 compared to Guy11. (C) Bioinformatic analysis of relative abundances for lipids with significant
1011 differences.

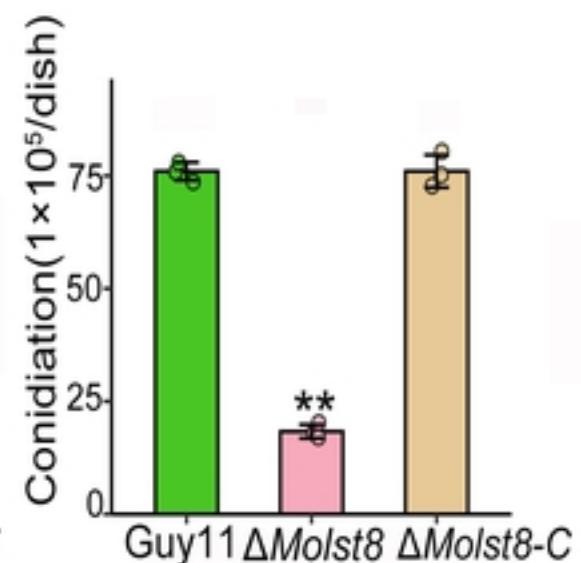
1012

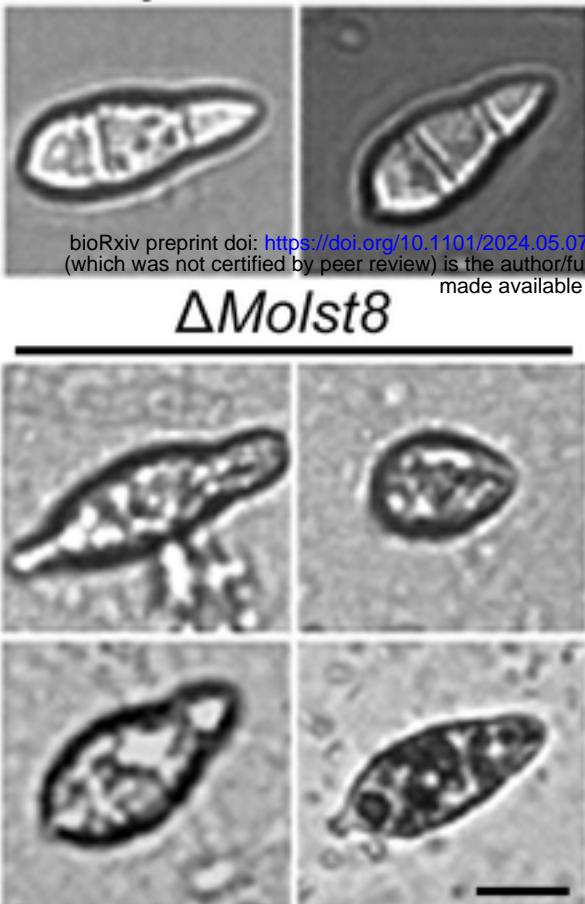

1013 **Table 1. Phosphorylated differentially expressed proteins in *M. oryzae***

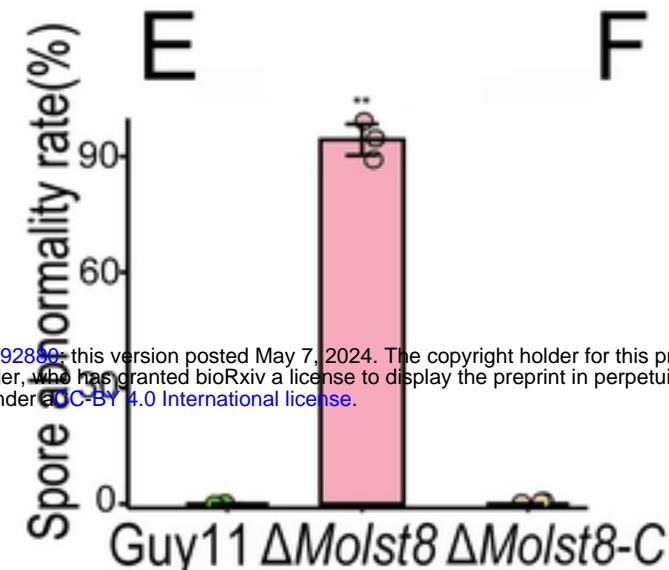
1014 **Data Sheet S1. Detailed lipid components detected in the wild-type Guy11 and Δ *Molst8* mutant**
1015 **samples**

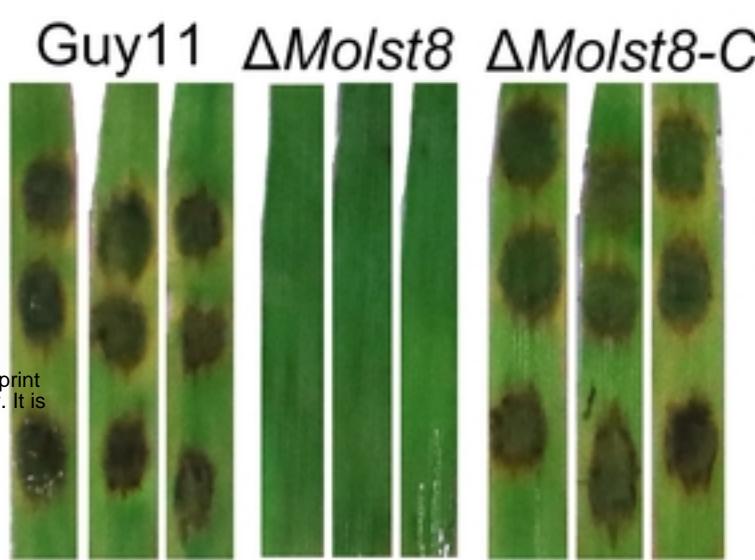

1016

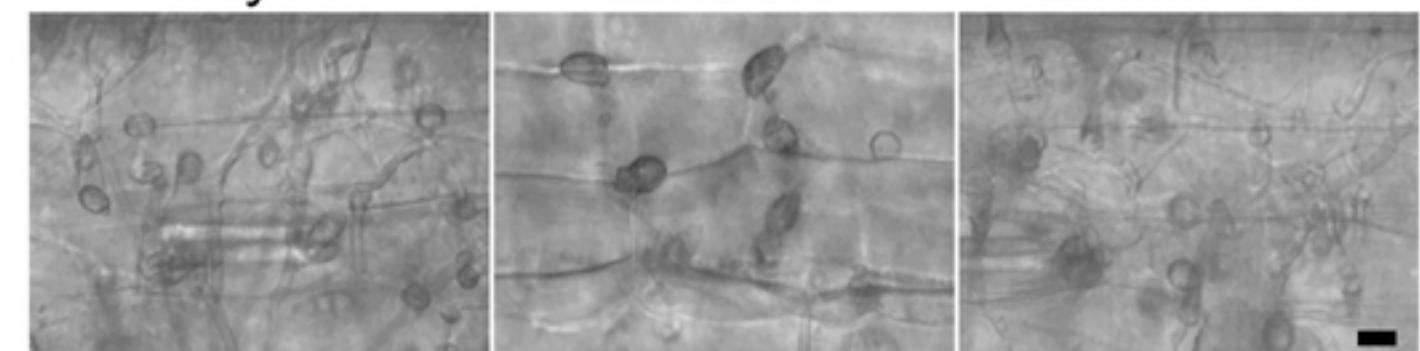
1017 **Data Sheet S2. The significant differences of lipid components between the wild-type and**
1018 **Δ *Molst8* mutant**


A Guy11 $\Delta Molst8$ $\Delta Molst8-C$

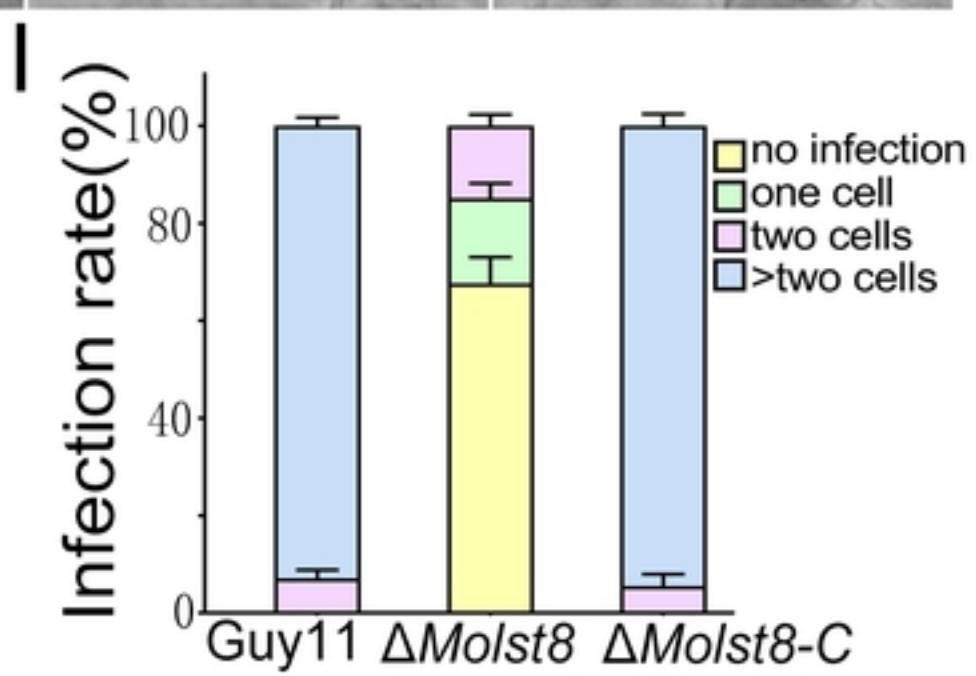

B


C


D Guy11 $\Delta Molst8-C$


E

F


G Guy11 $\Delta Molst8$ $\Delta Molst8-C$

H Guy11 $\Delta Molst8-1$ $\Delta Molst8-2$ $\Delta Molst8-C$

I Infection rate(%)

J Guy11 $\Delta Molst8$ $\Delta Molst8-C$

K

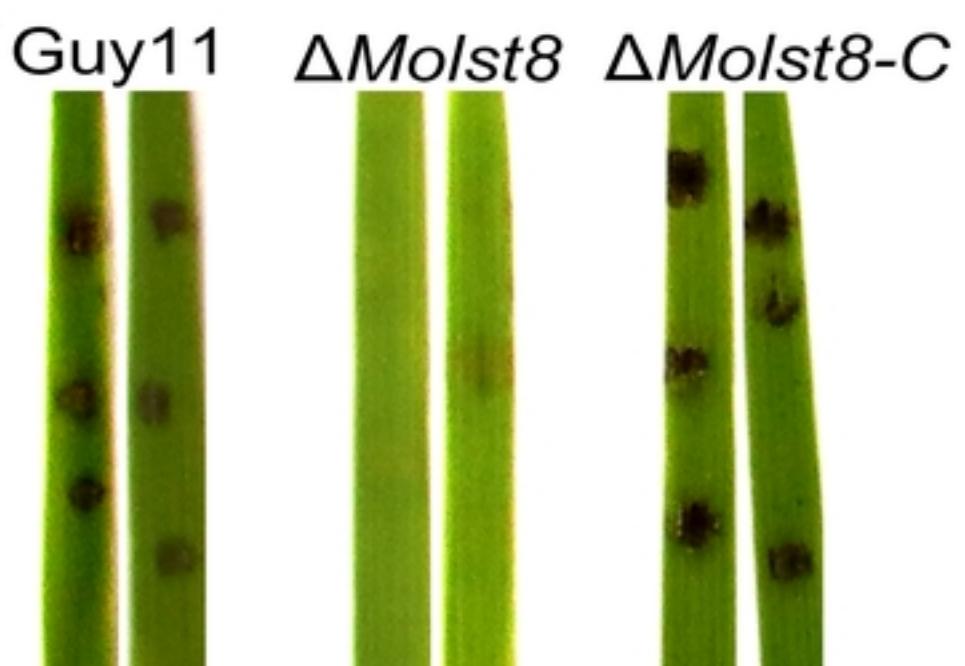


Figure1

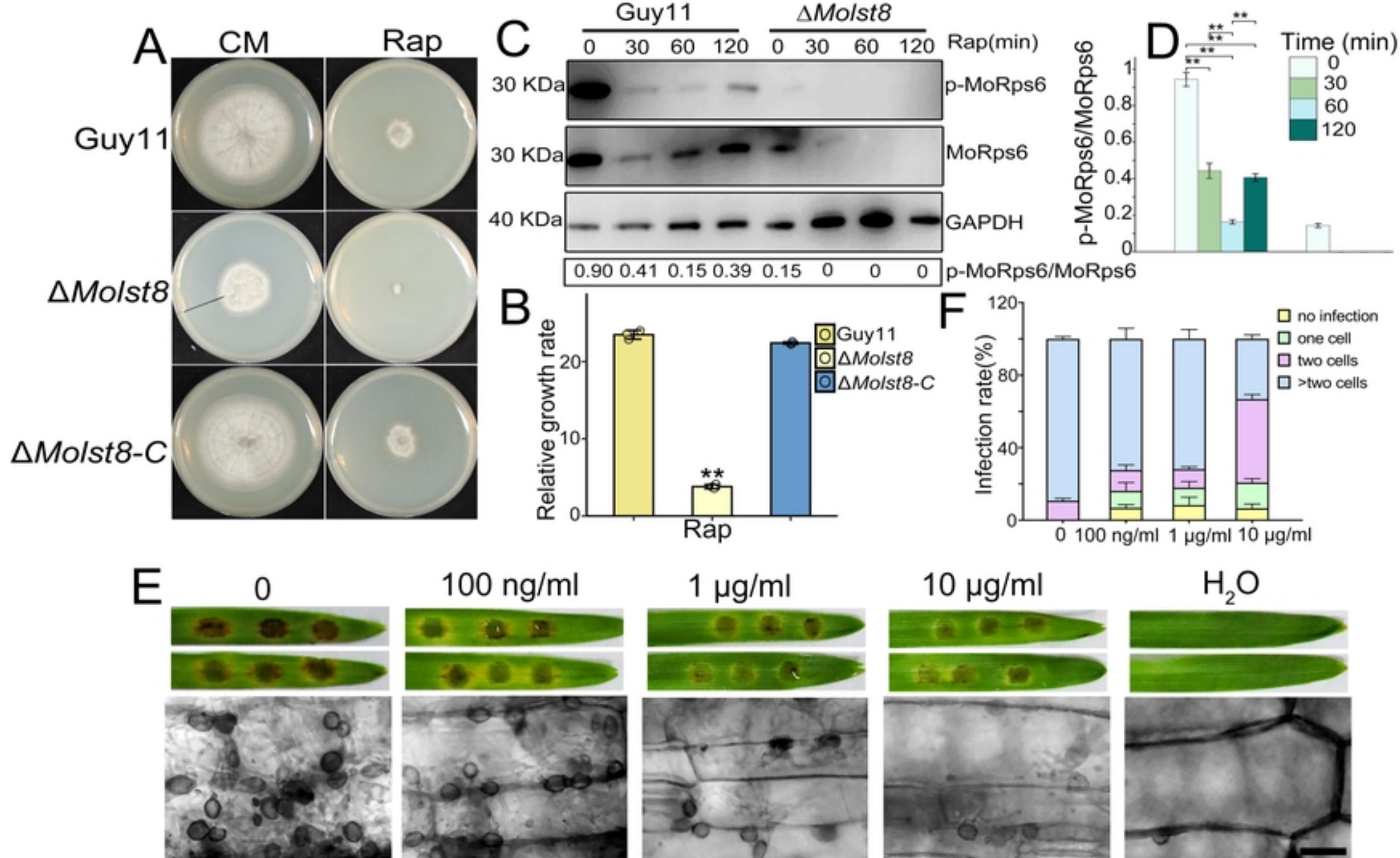


Figure2

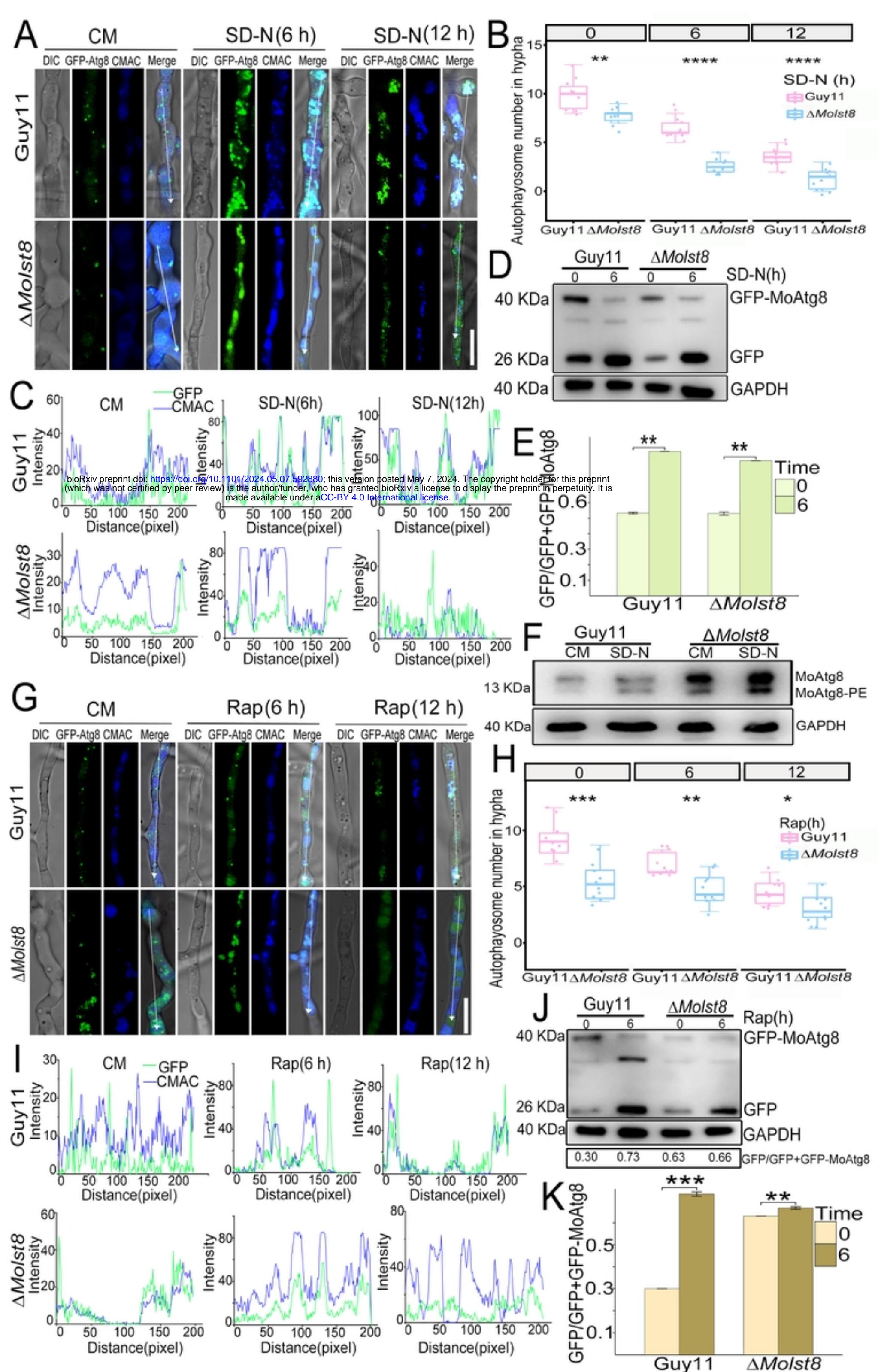


Figure3

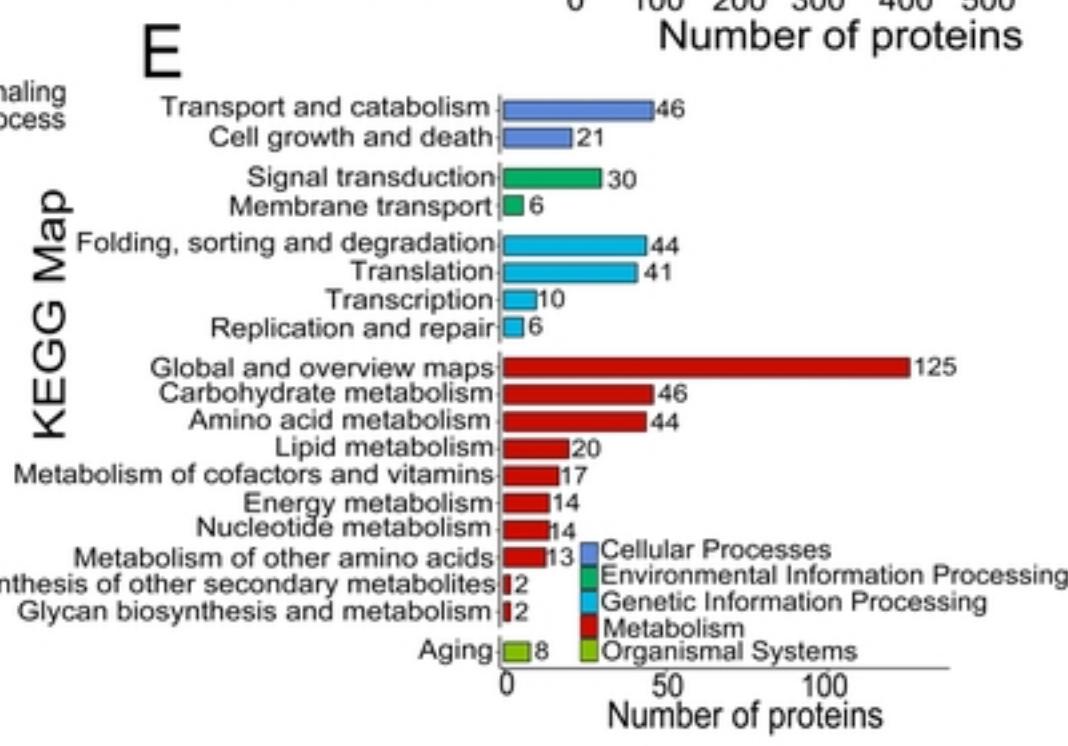
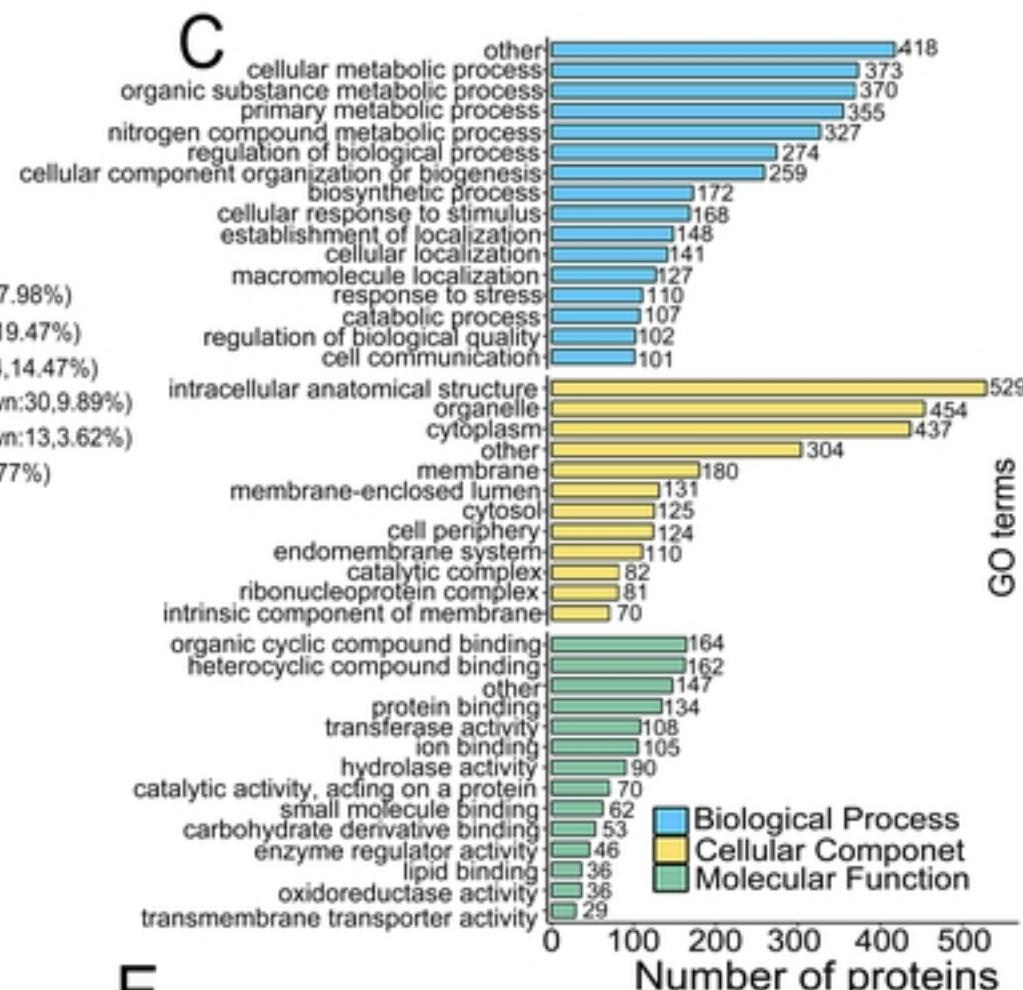
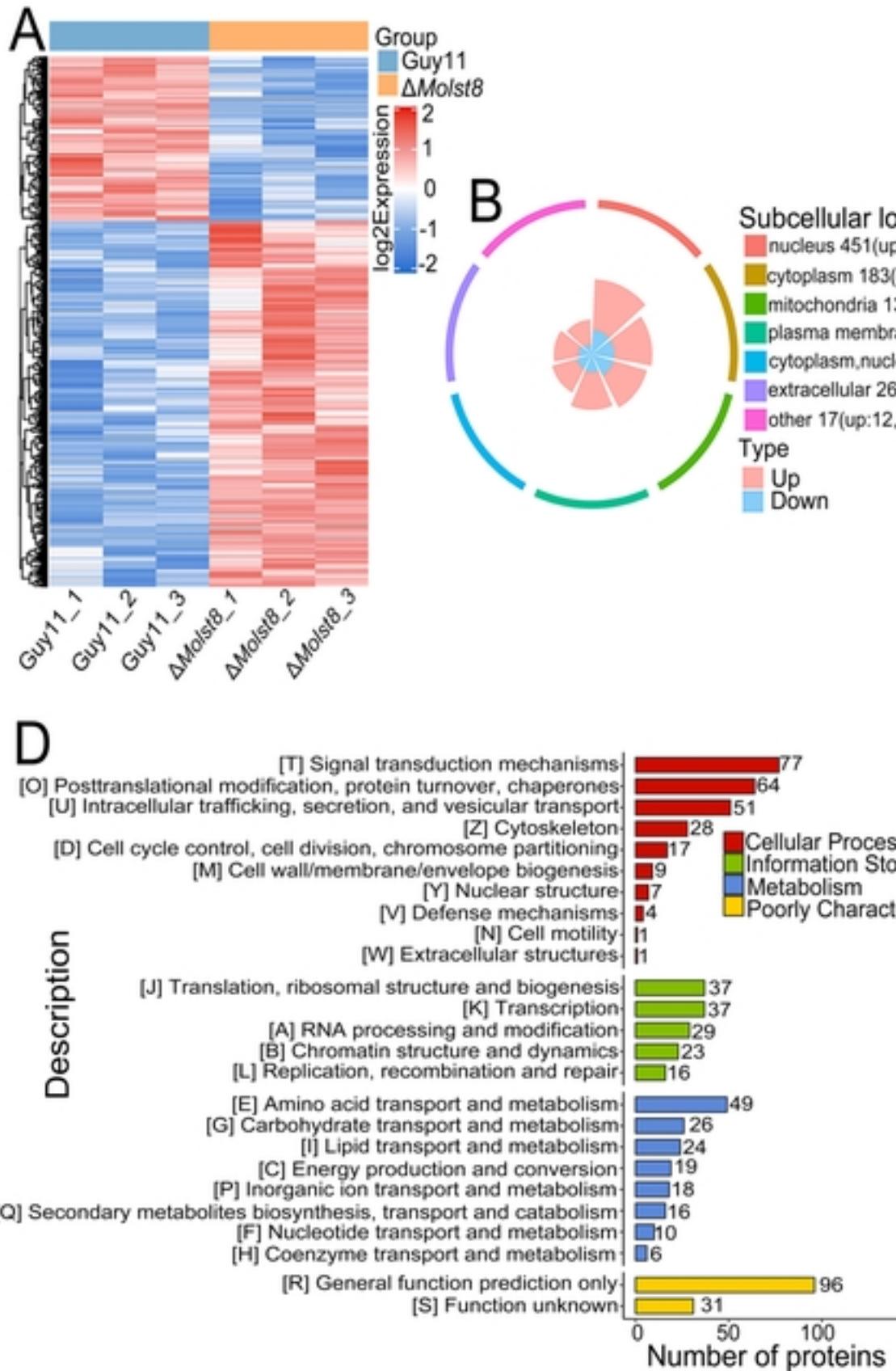




Figure4

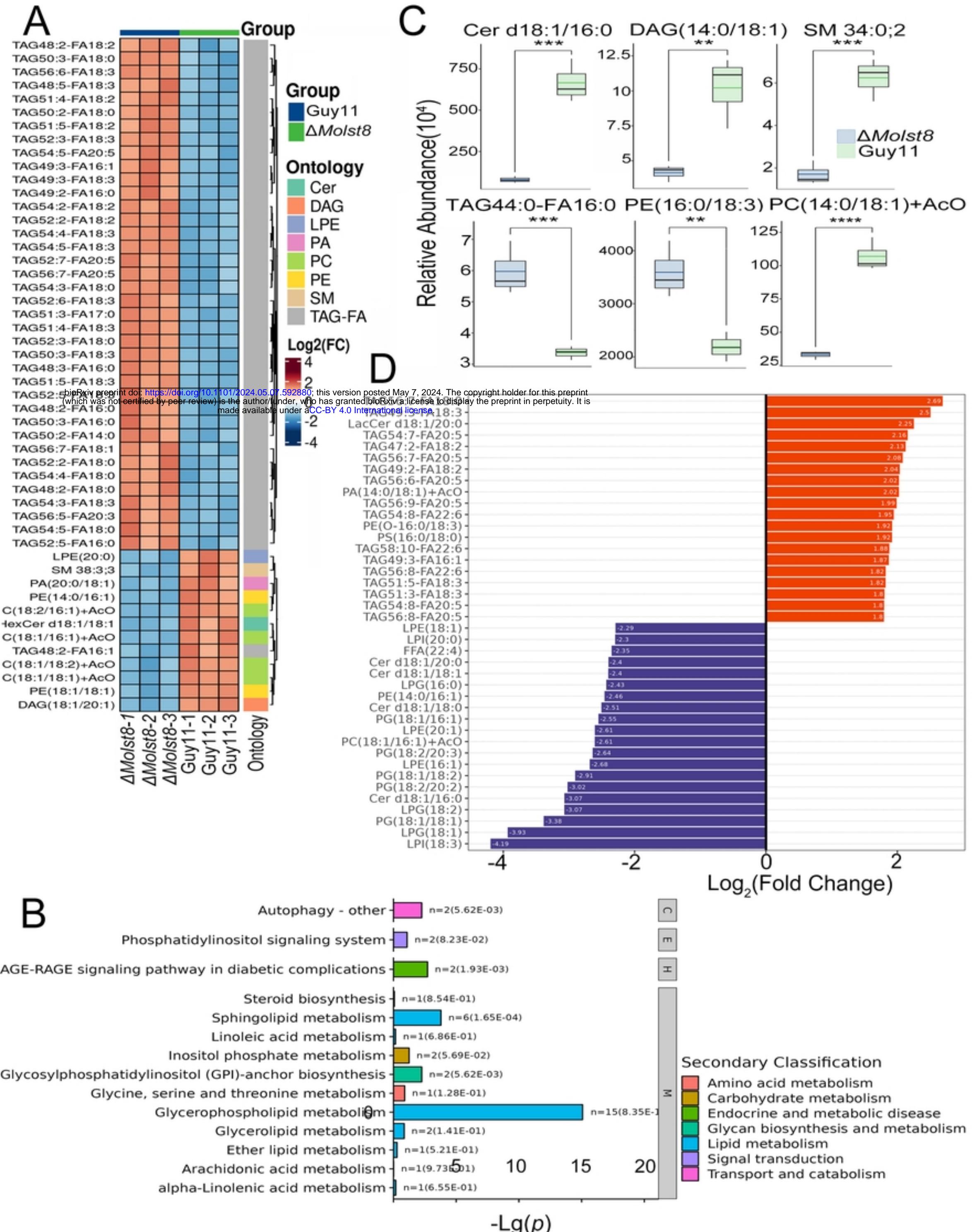
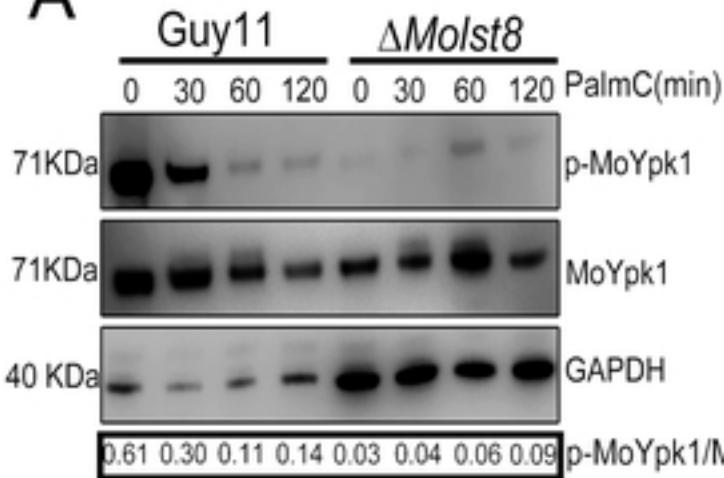
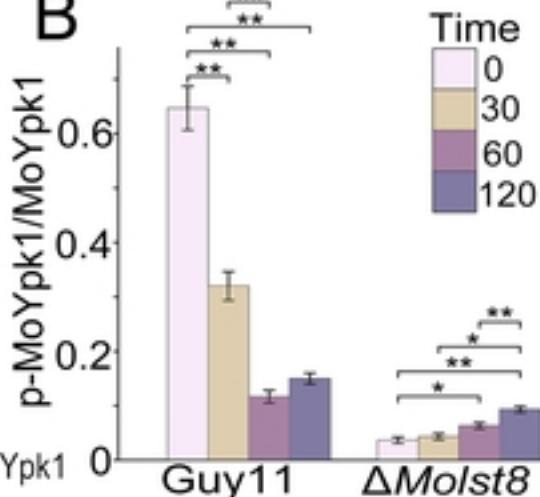
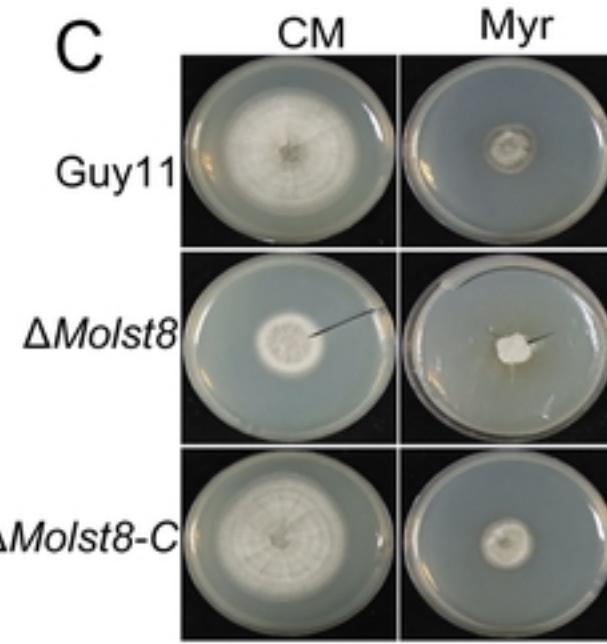
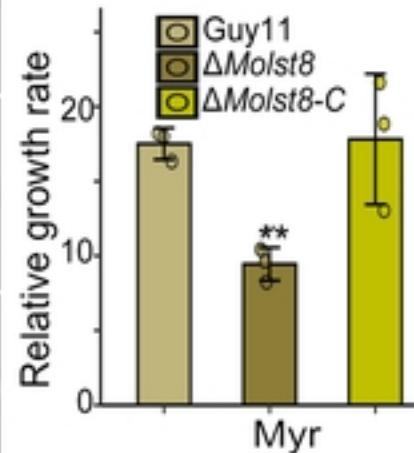
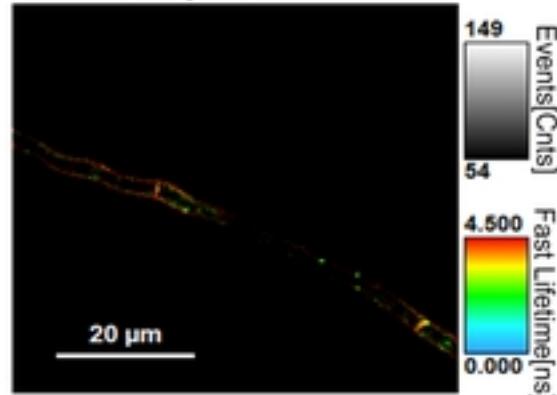
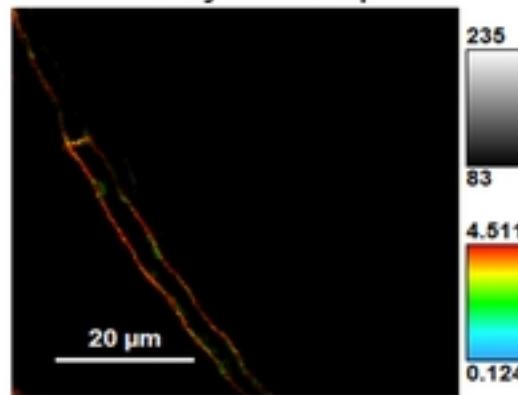
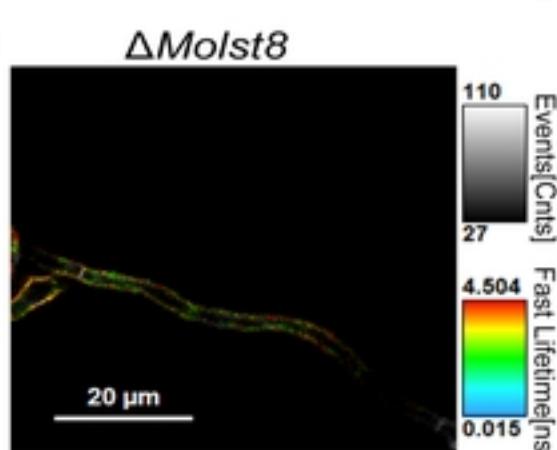
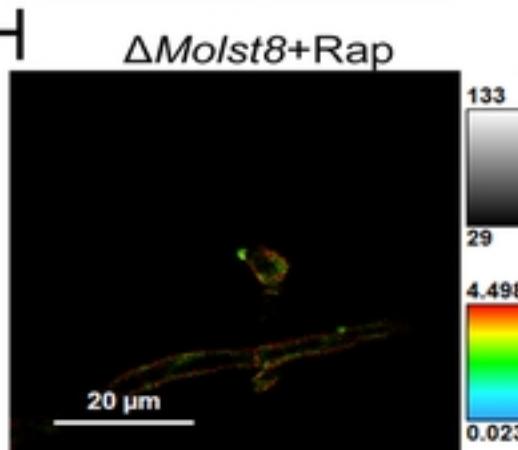
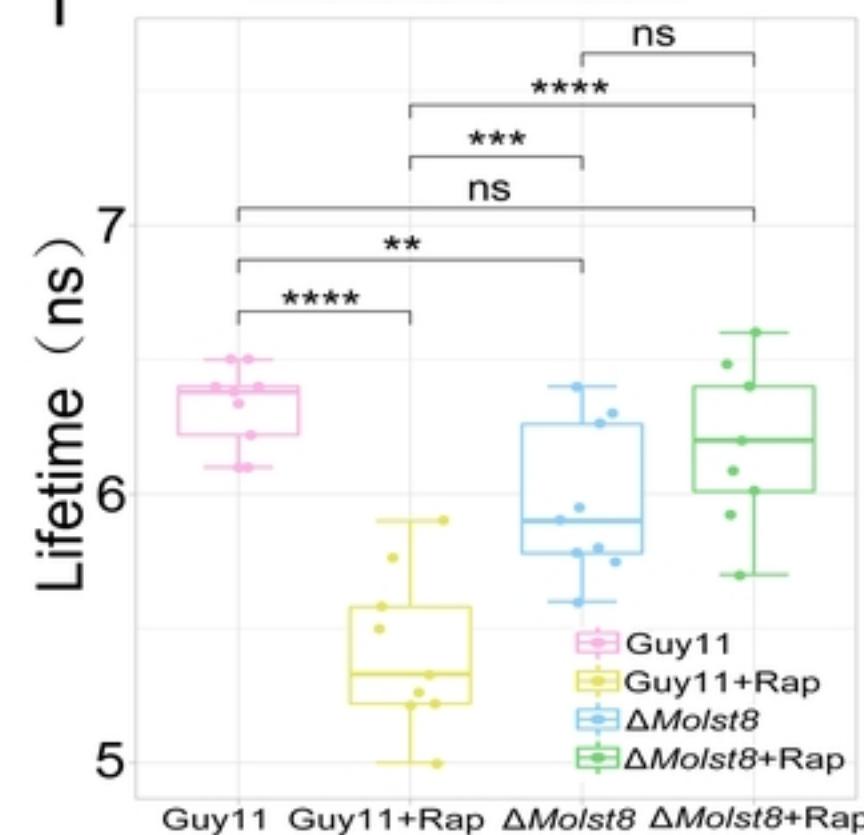
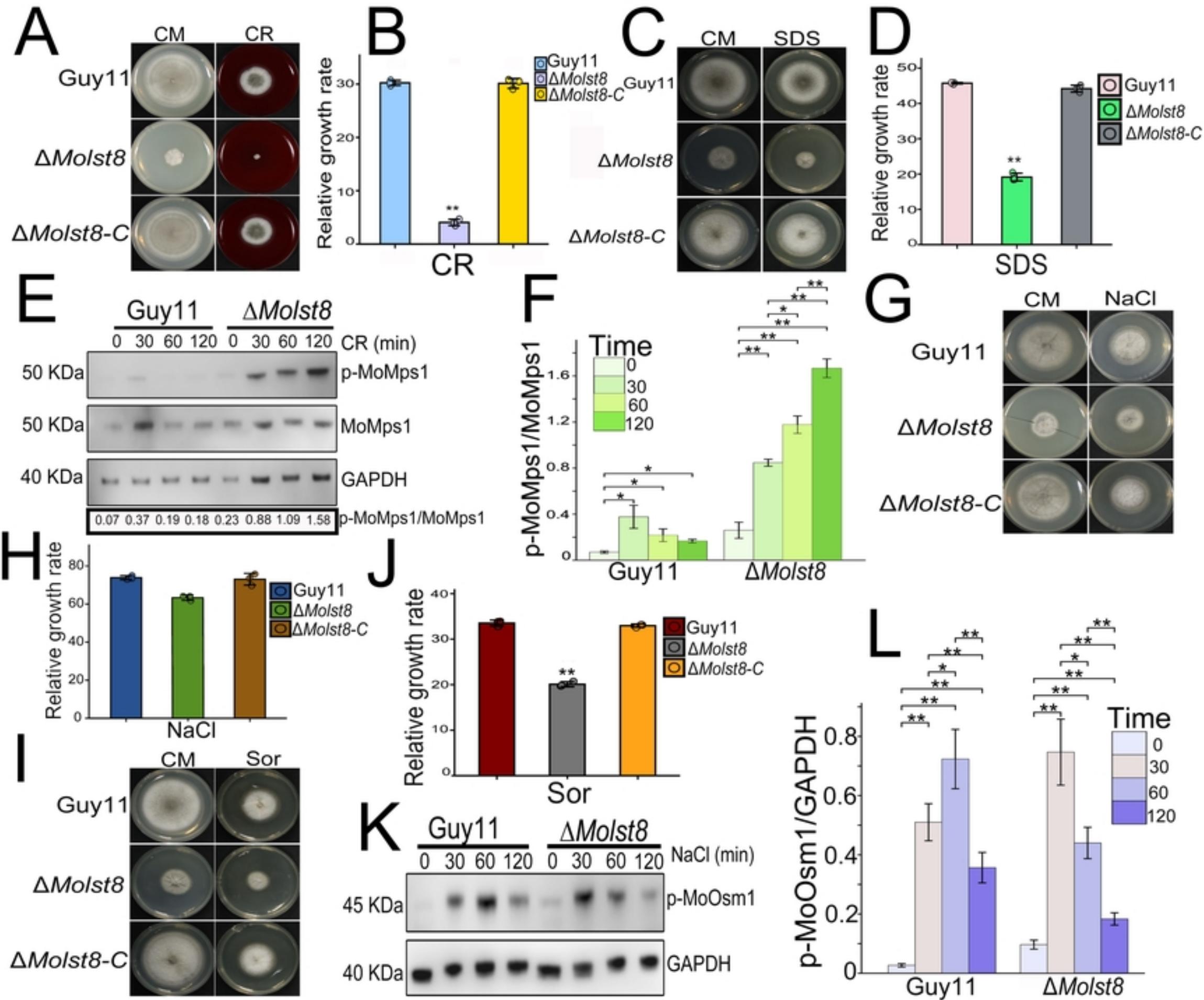
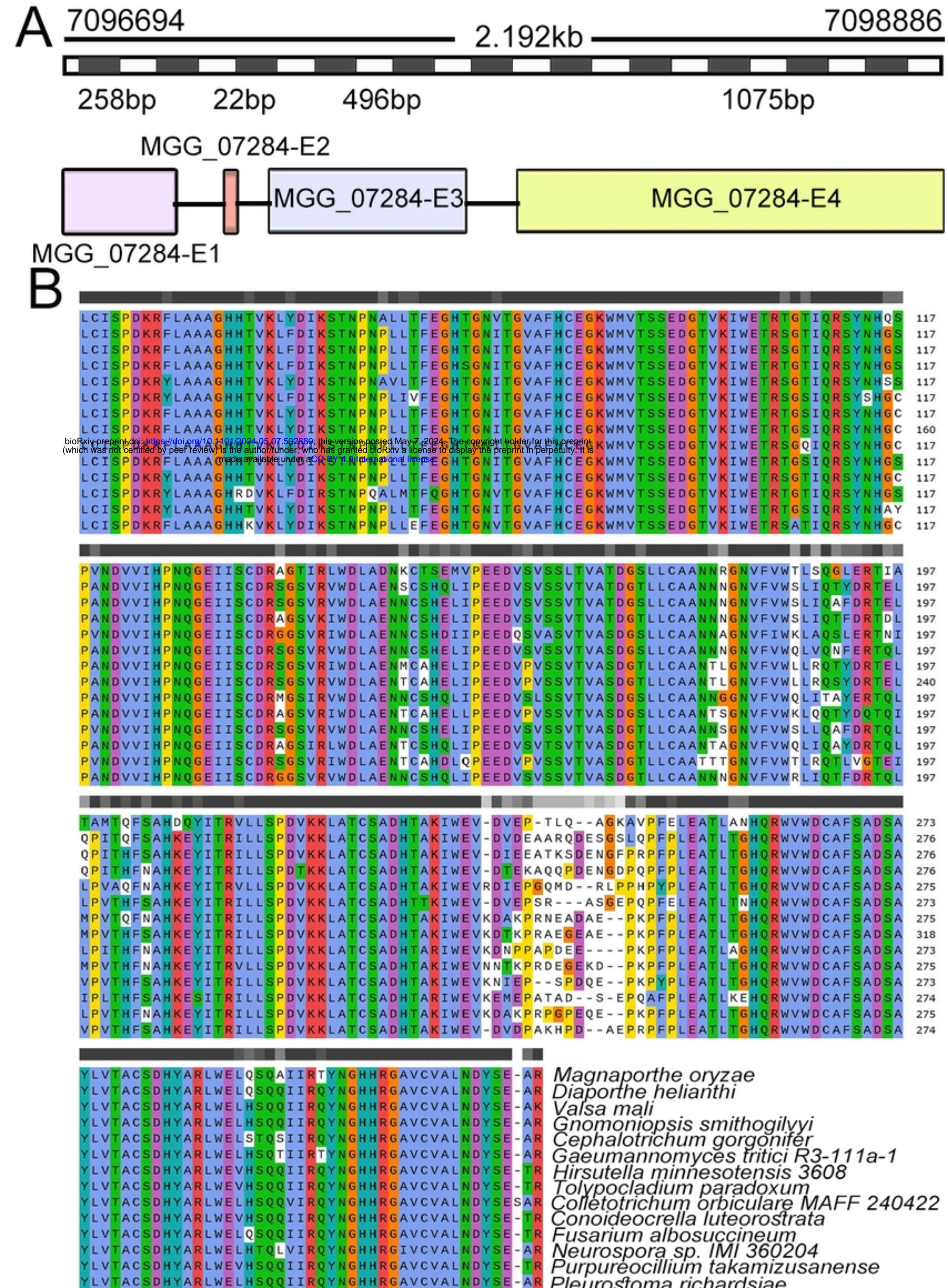
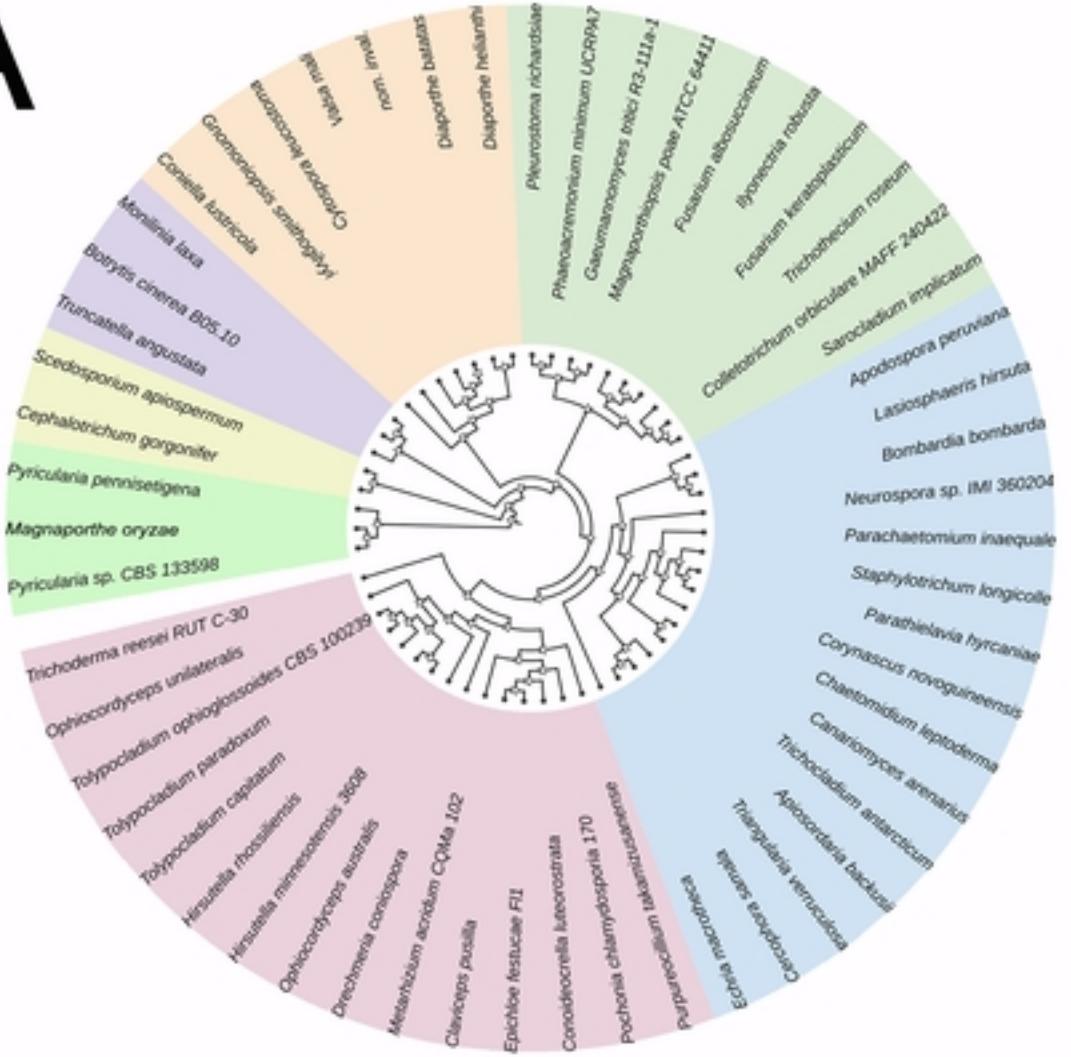
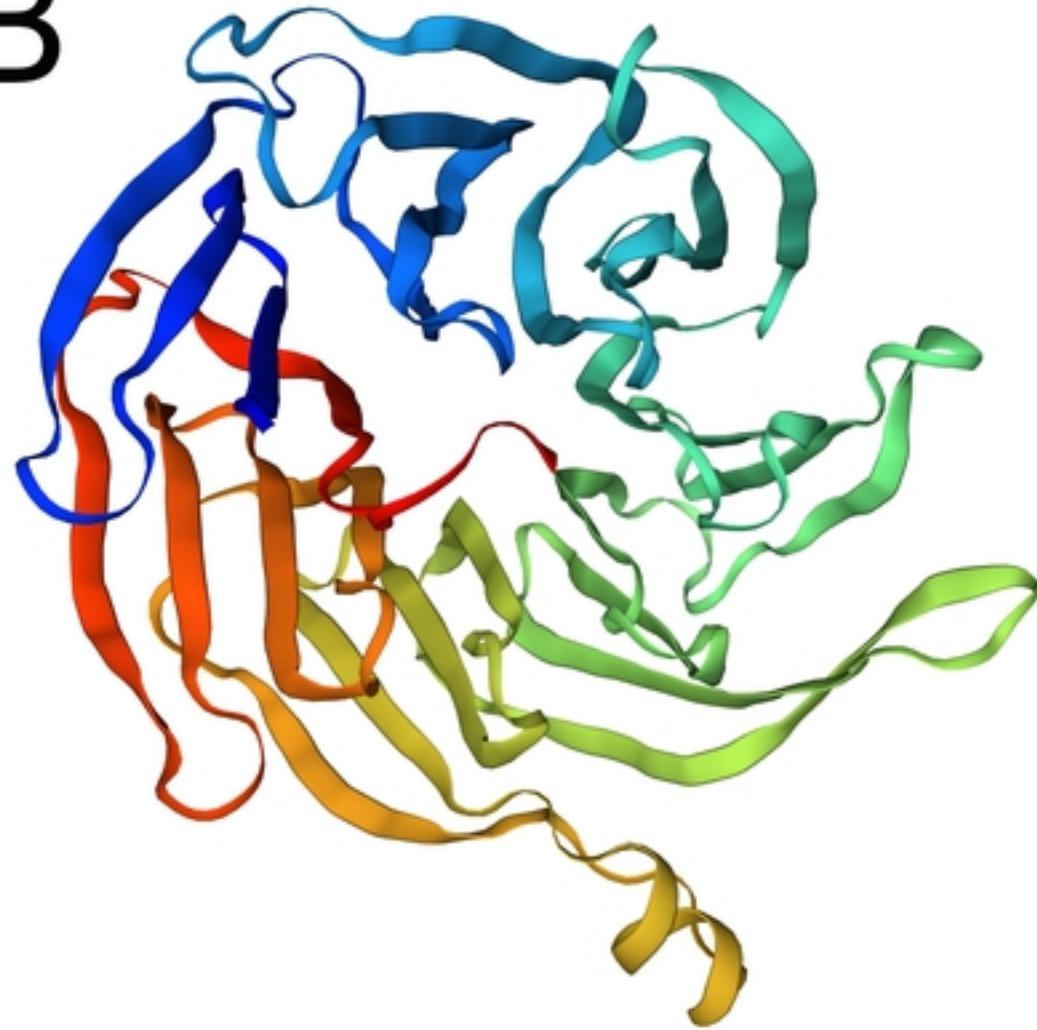











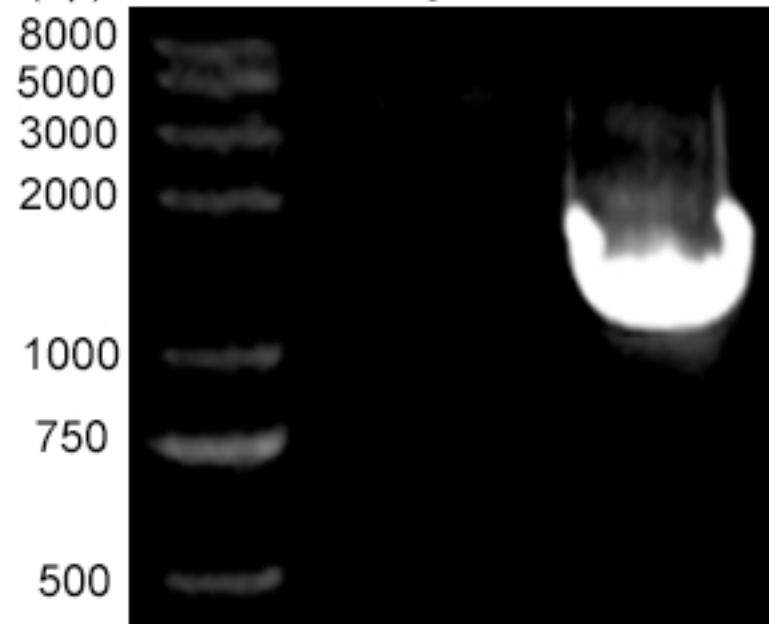
Figure 5

A**B****C****D****E****F****G****H****I****Figure6**

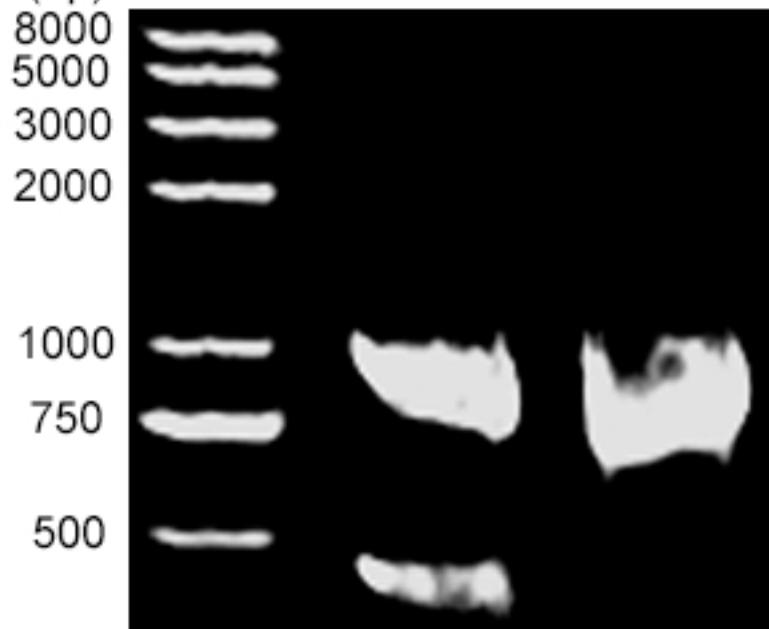





Figure 7

A



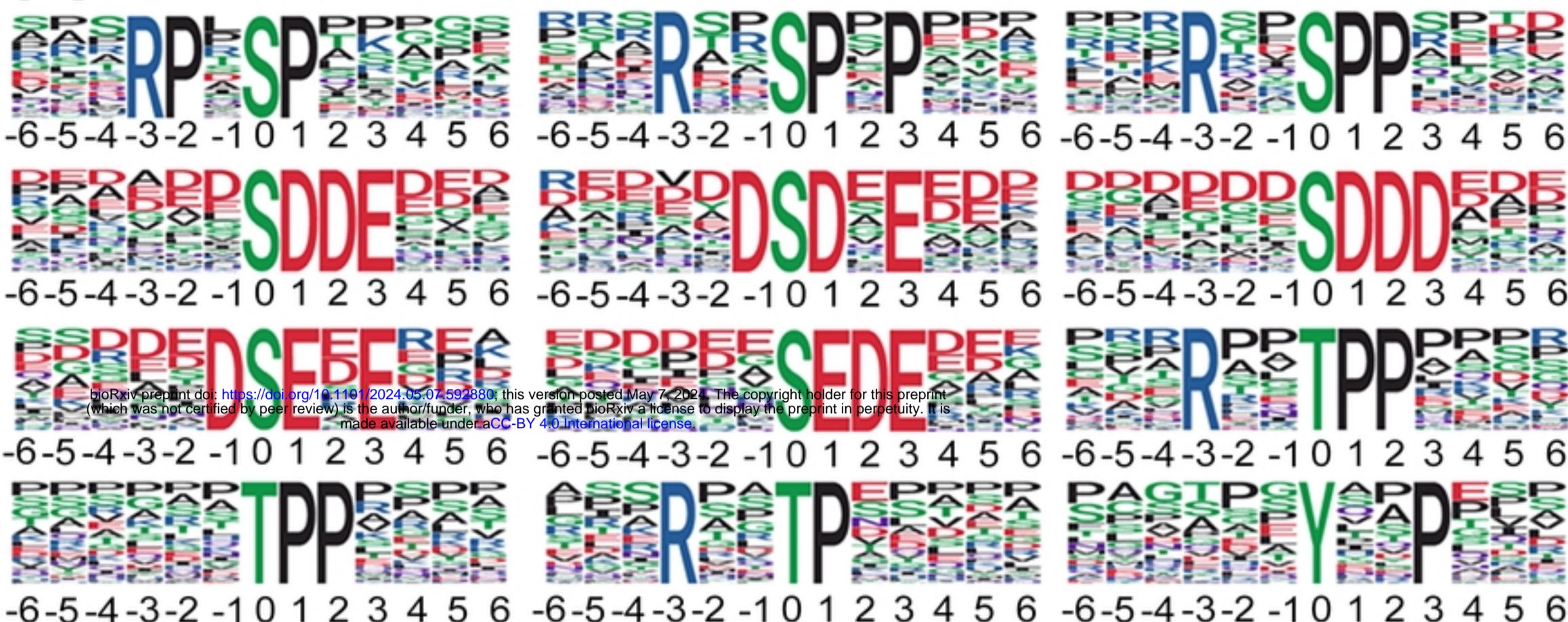
B


FigS2

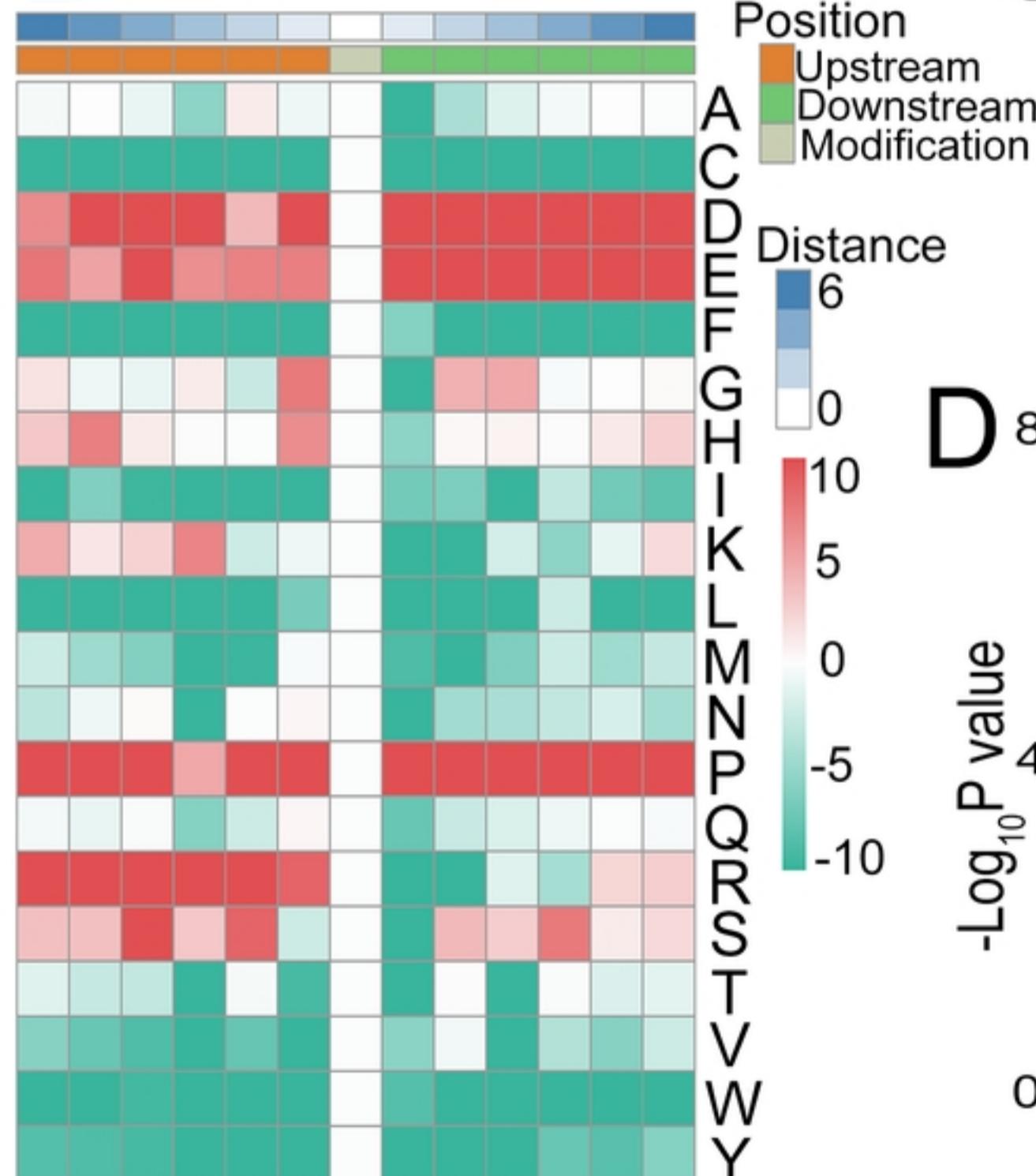
(bp) Marker Guy11 Δ Mo/st8

Recombinational DNA

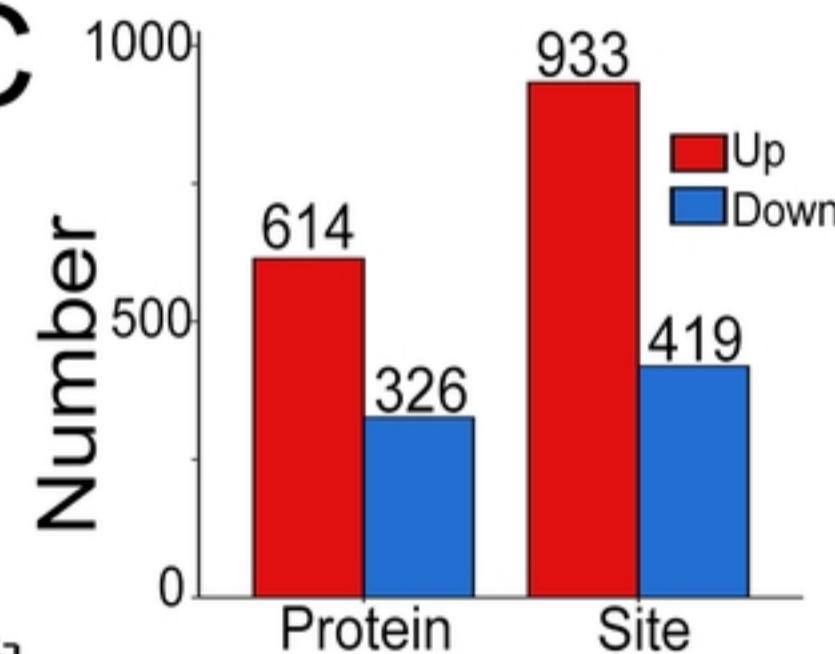
(bp)

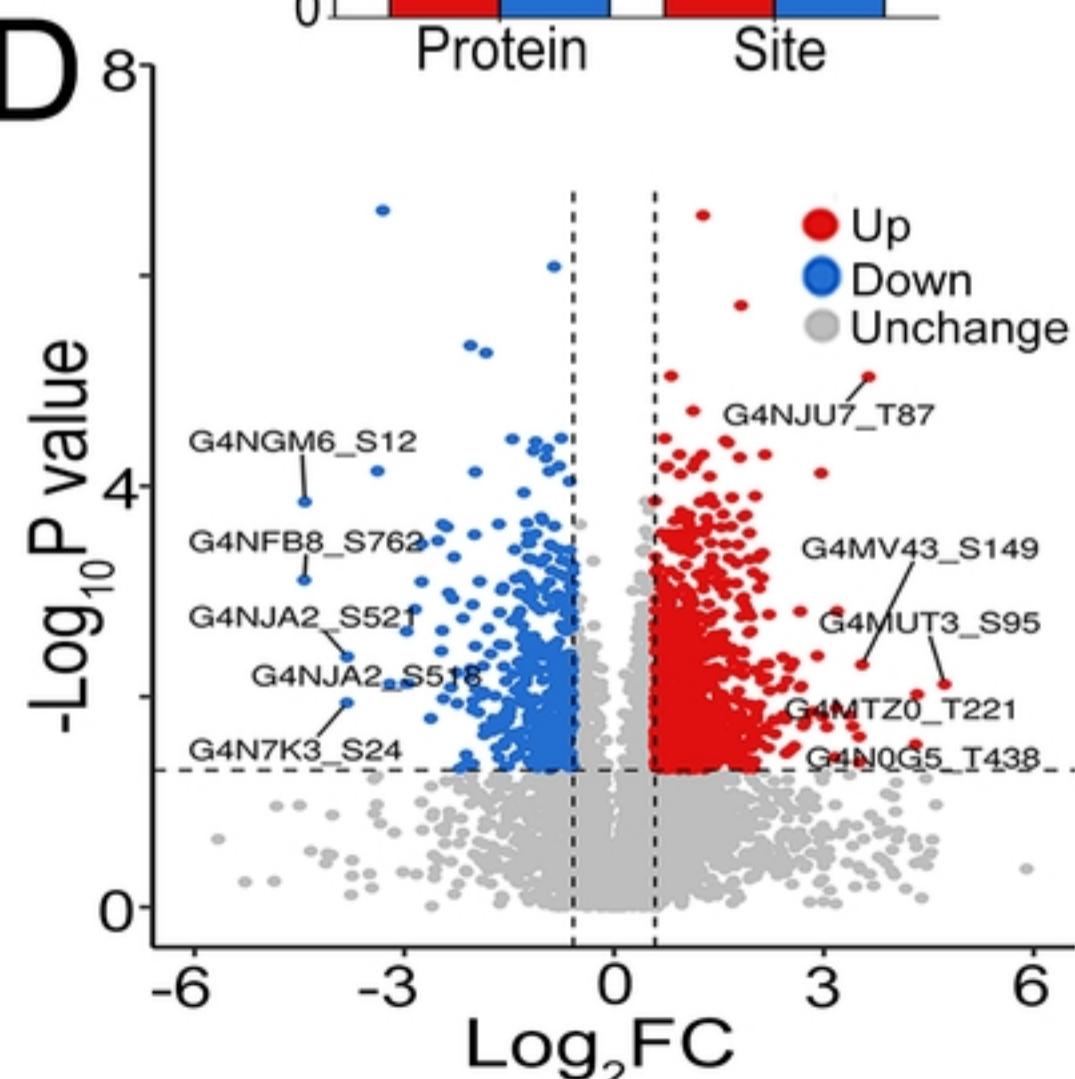


Tubulin

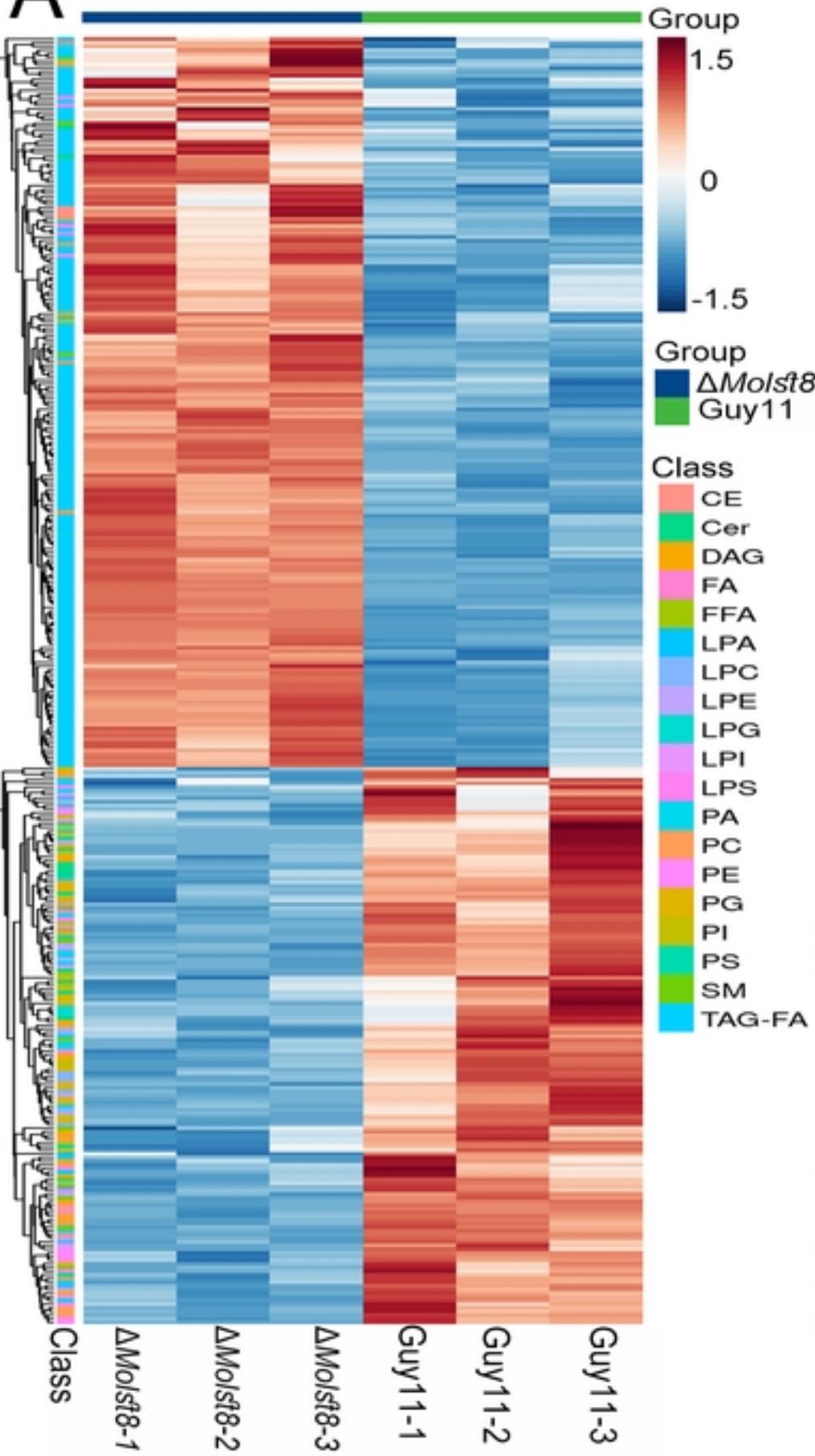

Target gene

FigS3

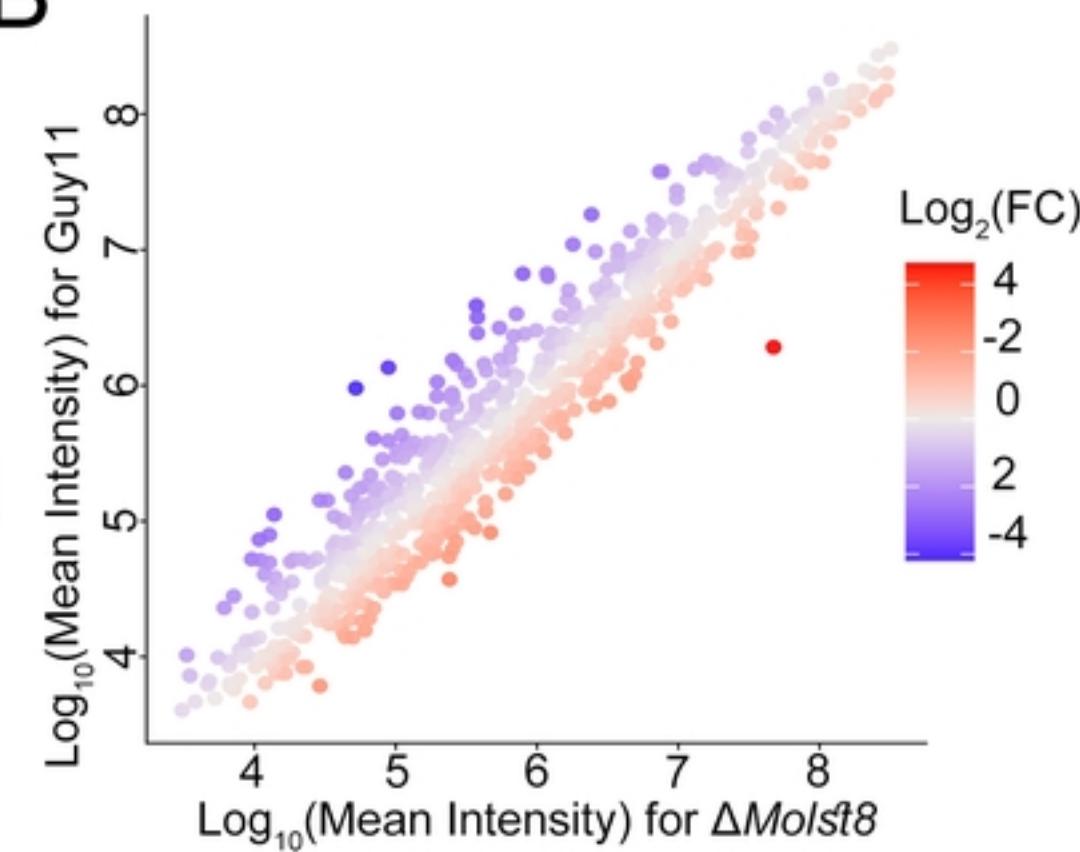

A


B

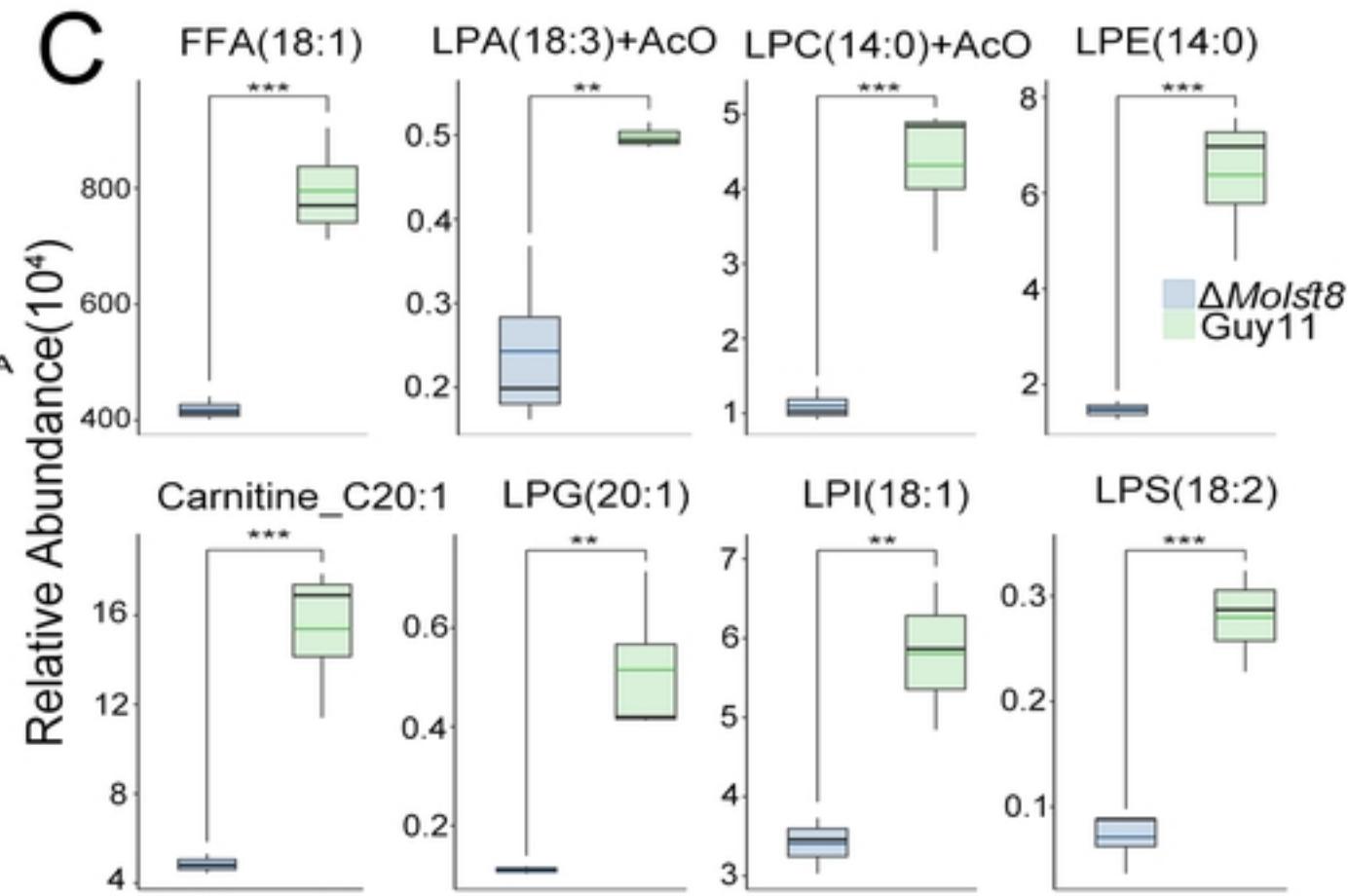
C



D



FigS4


A

B

C

FigS5