

1 Protection against *Clostridioides difficile* disease by a naturally avirulent *C. difficile* strain

2

3 Qiwen Dong^{a,b,#}, Stephen Harper^b, Emma McSpadden^b, Sophie S. Son^{a,c}, Marie-Maude
4 Allen^d, Huaiying Lin^b, Rita C. Smith^b, Carolyn Metcalfe^b, Victoria Burgo^b, Che Woodson^b,
5 Anitha Sundararajan^b, Amber Rose^b, Mary McMillin^b, David Moran^b, Jessica Little^b,
6 Michael Mullowney^b, Ashley M. Sidebottom^b, Aimee Shen^c, Louis-Charles Fortier^d, Eric
7 G. Pamer^{a,b,c}

8

9 ^aDepartment of Medicine, University of Chicago, Chicago, Illinois, USA

10 ^bDuchossois Family Institute, University of Chicago, Chicago, Illinois, USA

11 ^cInterdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois,
12 USA

13 ^dDepartment of Microbiology and Infectious Diseases, Université de Sherbrooke,
14 Sherbrooke, Quebec, Canada

15 ^eDepartment of Molecular Biology and Microbiology, Tufts University, Boston,
16 Massachusetts, USA

17

18 Running Head: Naturally isolated avirulent *C. difficile* prevents CDI

19

20 #Address correspondence to Qiwen Dong, Qiwen.Dong@tufts.edu

21

22 Qiwen Dong current address: Department of Molecular Biology and Microbiology, Tufts
23 University, Boston, Massachusetts, USA

24 **Abstract (250 words):**

25

26 *Clostridioides difficile* (*C. difficile*) strains belonging to the epidemic BI/NAP1/027
27 (RT027) group have been associated with increased transmissibility and disease severity.
28 In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode
29 the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75,
30 that is avirulent in mice despite densely colonizing the colon. Here, we show that co-
31 infecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from
32 colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain.
33 Although avirulence of ST1-75 is due to a mutation in the *cdtR* gene, which encodes a
34 response regulator that modulates the production of all three *C. difficile* toxins, the ability
35 of ST1-75 to protect against acute colitis is not directly attributable to the *cdtR* mutation.
36 Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly
37 than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive
38 advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria
39 by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant
40 glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of
41 *in vivo* nutrient depletion as a mechanism providing strain-specific, virulence-independent
42 competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-
43 75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.

44

45 **Importance (150 words)**

46

47 *Clostridioides difficile* infections (CDI) are prevalent in healthcare settings and are
48 associated with high recurrence rates. Therapies to prevent CDI, including recent FDA-
49 approved live biotherapeutic products, are costly and have not been used to prevent primary
50 infections. While a nontoxigenic *C. difficile* strain (NTCD-M3) protects against virulent
51 CDI in animals and reduced CDI recurrence in a phase 2 clinical trial, protection against
52 CDI recurrence in humans was variable and required high doses of the nontoxigenic strain.
53 Here we show that an avirulent *C. difficile* isolate, ST1-75, efficiently outcompetes virulent
54 *C. difficile* strains in mice when co-infected at a 1:1 ratio. Our data suggest that inter-strain

55 competition results from ST1-75's more rapid depletion of amino acids than the virulent
56 R20291 strain. Our study identifies inter-strain nutrient depletion as a potentially
57 exploitable mechanism to reduce the incidence of CDI.

58

59 **Keywords:** *C. difficile*, virulence, colitis, mouse model, intraspecies competition

60

61 **Introduction**

62

63 *Clostridioides difficile* (*C. difficile*) is a Gram-positive, spore-forming anaerobe
64 that is the leading cause of nosocomial infection in U.S. adults. It is estimated that *C.*
65 *difficile* causes 223,900 cases and 12,800 deaths yearly with annual healthcare costs in
66 excess of \$1 billion dollars (1). *C. difficile* infection (CDI) symptoms range from
67 asymptomatic colonization to mild diarrhea to severe pseudomembranous colitis, which
68 can lead to mortality (2). Susceptibility to CDIs is associated with gut dysbiosis and the
69 loss of microbiota-mediated colonization resistance (3). Thus, prior antibiotic treatment is
70 the major risk factor for development of CDI. Antibiotic administration, however, remains
71 the standard-of-care for treating *C. difficile* infections, even though this treatment
72 perpetuates gut dysbiosis and contributes to a patient's roughly 30% risk of CDI relapse
73 (4).

74

75 Multiple strategies have been applied to prevent primary and recurrent CDI.
76 Hospitals mitigate *C. difficile* transmission by implementing contact precautions, hand
77 hygiene and environmental decontamination (5). However, the effectiveness of these
78 intervention strategies varies from study to study and greatly depends upon healthcare
79 workers' compliance (6–10). Notably, optimizing antibiotic choice, timing, and duration of
80 administration via antibiotic stewardship programs has reduced CDI rates by 24–60% (11–
81 15). While vaccination confers long-lived protection against a range of pathogens, vaccines
82 against *C. difficile* recently failed to show efficacy in protecting primary CDI in phase 3
83 trials (16, 17). Fecal microbiota transplantation (FMT) is the most effective strategy for
84 treating and preventing recurrent CDI, and there are new FDA-approved live
biotherapeutic products that reduce the incidence of recurrent CDI (18, 19).

85 Given FMT's success, there is considerable interest in developing probiotic
86 therapies that are less expensive and simpler to produce on a large-scale. Indeed, several
87 studies have shown that probiotics can work as an adjuvant therapy to reduce the risk of
88 CDI (20) by restoring the gut community and metabolites that restrict *C. difficile* growth.
89 However, due to the complexity of the probiotic composition, administration timing, and
90 duration of the studies, variable outcomes have been reported (21). Another
91 bacteriotherapeutic strategy being explored is the use of nontoxigenic *C. difficile* strains to
92 prevent recurrent CDI. One of such nontoxigenic *C. difficile* strains, NTCD-M3, provided
93 protection against virulent CDI in hamsters and later showed efficacy in a phase 2b clinical
94 study for preventing CDI relapse, with NTCD-M3 treatment being associated with a
95 significantly reduced recurrence rate (11%) compared to the placebo group (30%) (22).
96 Thus, identifying avirulent *C. difficile* strains that can serve as biotherapeutics for
97 combatting virulent infection is of considerable interest (23–26). More complete
98 mechanistic understanding of how avirulent *C. difficile* strains can prevent disease caused
99 by virulent strains may provide additional approaches to prevent CDI.

100 We previously characterized a ribotype 027 *C. difficile* isolate, ST1-75, that is
101 avirulent in mouse models despite encoding all three toxins, including *C. difficile*'s primary
102 virulence factors Toxin A (TcdA), Toxin B (TcdB) and the binary toxin CDT. We showed
103 that avirulence of ST1-75 is attributable to a natural mutation occurring in the *cdtR* gene,
104 which encodes a response regulator for the binary toxin (27, 28). While CdtR regulates the
105 expression of the gene encoding CDT, the natural in-frame deletion of 69 bp from the *cdtR*
106 gene is sufficient to reduce the expression of not only the genes encoding CDT but also
107 Toxin A and Toxin B (27, 29). Here, we found that coinfecting mice with the avirulent
108 strain ST1-75 and the virulent strain R20291 prevents colitis induced by the virulent
109 R20291 strain in mice and results in its rapid clearance from the gastrointestinal tract.
110 Notably, protection against acute colitis by ST1-75 is not due to the mutation it harbors in
111 its *cdtR* gene. Instead, metabolomic analyses indicate that ST1-75 more rapidly depletes
112 amino acids, and spiking amino acids into nutrient-scarce media reduced ST1-75's
113 competitive advantage. Intestinal colonization with ST1-75 prior to antibiotic treatment
114 reduced the risk of CDI following challenge with virulent R20291, suggesting that it may
115 have potential as a prophylactic live biotherapeutic product.

116

117 **Results**

118

119 **Avirulent ST1-75 protects mice from R20291-induced CDI colitis.**

120

121 Nontoxigenic or low virulence bacterial strains can provide protection against
122 colitis induced by highly virulent strains. We tested whether the avirulent ST1-75 strain
123 can prevent the virulent RT027 R20291 strain from causing disease when mice are co-
124 infected with both strains. To sensitize mice to *C. difficile* infection, the mice were treated
125 with an antibiotic cocktail consisting of metronidazole, neomycin, and vancomycin
126 (MNV), in their drinking water for 3 days. Clindamycin was then administered by
127 intraperitoneal injection 2 days after the MNV cocktail was stopped. Twenty-four hours
128 later, mice were inoculated with either 200 *C. difficile* spores for the individual strains or
129 100 ST1-75 and 100 R20291 spores each during the co-infection (1:1 ratio, **Fig 1A**). As
130 expected, mice infected with the avirulent ST1-75 strain alone did not exhibit weight loss
131 or disease symptoms (based on an acute disease score), and the virulent R20291 strain
132 induced severe weight loss and diarrhea (27). However, mice coinfected with both ST1-75
133 and R20291 did not exhibit any disease symptoms, similar to the ST1-75 infection alone
134 (**Fig 1B-1C**), indicating that ST1-75 was able to protect mice from R20291-induced colitis.
135 While comparable total fecal CFUs were measured for *C. difficile* for all three groups (**Fig**
136 **1D**), qPCR analyses revealed that R20291 comprised the minority of the fecal CFUs
137 recovered from the co-infected mice (**Fig 1E**), suggesting that ST1-75 efficiently
138 outcompetes R20291 *in vivo*. This intraspecies competition presumably allows ST1-75 to
139 protect mice from developing *C. difficile*-induced colitis during coinfection.

140 To determine if there is a window of time in which ST1-75 can outcompete R20291
141 during infection, we assessed the ability of ST1-75 to prevent R20291-mediated colitis if
142 mice were first challenged with R20291 and then ST1-75 was administered 6 hours
143 afterwards at either a 1:1 ratio (200 R20291 and 200 ST1-75 spores) or a 1:50 ratio (200
144 R20291 and 10,000 ST1-75 spores). ST1-75 failed to prevent weight loss induced by
145 R20291 in mice, even when ST1-75 was given in large (50-fold) excess (**Fig S1B**). Since
146 this higher dose of ST1-75 administered 6 hours post-R20291 infection (blue diamonds)

147 allowed ST1-75 to outcompete R20291 within 24 hrs at levels similar to the simultaneous
148 1:1 coinfection (light blue triangles), our results suggest that there is a critical window of
149 time in which ST1-75 can prevent *C. difficile* pathogenicity.

150 Notably, even though R20291 predominated at the 24 hr timepoint when equal
151 amounts of ST1-75 spores were administered 6 hours post-R20291 infection, ST1-75
152 eventually out-competed R20291 by Day 7 (green upside-down triangles) (**Fig S1C**). In
153 contrast, when high doses of ST1-75 relative to R20291 were administered 24 hours post-
154 R20291 infection, ST1-75 failed to outcompete R20291 even 7 days post-infection
155 (maroon open circles) (**Fig S1C**). This result suggests that *C. difficile* establishes
156 colonization resistance to secondary invading strains within 24 hours after infection. Taken
157 together, our data reveal a competitive dynamic between ST1-75 and R20291 and indicate
158 that ST1-75 retains its competitive fitness advantage even if administered a few hours after
159 R20291.

160
161 **Protection by the avirulent ST1-75 is not due to differences in the lysogenic phages**
162 **between strains.**

163
164 ST1-75 harbors two unique prophages in its genome, namely phiCD75-2 and
165 phiCD75-3, which can become infectious upon induction (27). Prophages can determine
166 the susceptibility of the bacterial host to phage infections via superinfection exclusion or
167 other anti-phage defense systems (30–32). For example, ST1-75 is immune to infection
168 and lysis induced by either phiCD75-2 or phiCD75-3 because ST1-75 carries these two
169 prophages in its genome. In contrast, these same phages can infect and induce lysis in
170 R20291. To assess whether prophages alter the competitive index between ST1-75 and
171 R20291, we coinjected mice with ST1-75 and R20291 strains previously lysogenized with
172 either phiCD75-2 (R_phiCD75-2) or phiCD75-3 (R_phiCD75-3), or both (R_phiCD75-
173 2/3) (**Fig 2A** and **Fig S2A**). Notably, lysogenized R20291 strains retained the ability to
174 cause disease in mice (27) (**Fig 2B** and **Fig S2B**), but they were outcompeted by ST1-75
175 with similar kinetics to their parental R20291 strain (**Fig 2B-2D** and **Fig S2B-S2D**). Taken
176 together, our results suggest that prophages within ST1-75 contribute minimally to the
177 competitive advantage of ST1-75 over R20291.

178

179 **Protection by the avirulent ST1-75 strain is not due to differences in the *cdtR* genes**
180 **between strains.**

181

182 We previously showed that the avirulence of ST1-75 is due to a 69-base pair
183 deletion in its *cdtR* gene, which encodes a regulator of CDT toxin, toxin A, and toxin B
184 gene expression. Since introducing this *cdtR* mutation (*cdtR*^{*}) into R20291 is sufficient to
185 render it avirulent (R20291 *cdtR*^{*} or R_ *cdtR*^{*}) (27), we sought to assess whether the *cdtR*
186 mutation impacts the inter-strain competition between ST1-75 and R20291. To test this
187 possibility, we coinfect mice with the avirulent R20291 *cdtR*^{*} mutant we previously
188 constructed (27) and the virulent R20291 parental strain (**Fig 3A**). Mice coinfecte with
189 R20291 *cdtR*^{*} and R20291 lost weight to a similar degree as mice infected with R20291
190 alone, indicating that R20291 *cdtR*^{*} is not as protective as ST1-75 (**Fig 3B**). When we
191 measured the relative abundance of these two strains, we found that the R20291 *cdtR*^{*}
192 failed to outcompete R20291 by 1-day post-infection, in contrast with ST1-75. However,
193 on 8 days post-infection, the R20291 *cdtR*^{*} mutant outcompeted R20291, suggesting that
194 the *cdtR*^{*} mutation partially contributes to the competitive advantage of ST1-75 in *C.*
195 *difficile* even though it cannot protect against virulent infection. Thus, ST1-75 must use
196 additional mechanisms to outcompete R20291 more quickly and prevent mice from
197 developing colitis.

198 To gain further insight into this possibility, we compared the competitive fitness of
199 R20291 *cdtR*^{*} to the parental R20291 strain when R20291 *cdtR*^{*} was used to infect mice
200 6 hours before R20291 infection. Despite being administered first, R20291 *cdtR*^{*} was
201 unable to prevent R20291 from causing disease, even though the R20291 *cdtR*^{*} strain
202 eventually outcompeted its parental R20291 strain on Day 21 post-infection (**Fig S3B**).
203 Since these clearance kinetics were slower than those observed for ST1-75, overall, the
204 data suggest that ST1-75 has unique properties that allow it to outcompete R20291 and
205 prevent virulent infection.

206

207 **Protection by the avirulent ST1-75 is independent of the microbiome and host**
208 **immunity.**

209

210 To gain further insight into the mechanisms that contribute to ST1-75's competitive
211 advantage over R20291, we assessed whether the dysbiotic microbiome generated after
212 MNV + Clindamycin treatment contributes to the competitive advantage of ST1-75 over
213 R20291. Specifically, we measured the competitive fitness of ST1-75 and R20291 strains
214 in germ-free mice during co-infection. Similar to the results obtained using antibiotic-
215 treated mice, germ-free mice coinfecte with ST1-75 and R20291 were protected from
216 developing CDI (**Fig 4A-4B**), and the virulent R20291 strain was outcompeted by 24 hours
217 post coinfection (**Fig 4C-4D**). These data indicate that the host microbiome is dispensable
218 for ST1-75 to outcompete R20291 in mice. Additional experiments were conducted in
219 MyD88^{-/-} mice, which lack a key innate immunity signaling factor (33), and Rag1^{-/-} mice,
220 which lack adaptive immune responses (34). In both these immunodeficient strain
221 backgrounds, the avirulent ST1-75 strains was able to outcompete the virulent R20291
222 strain (**data not shown**), indicating that the competitive advantage of ST1-75 in mice is
223 independent of host immunity.

224

225 **Enhanced amino acid depletion provides ST1-75 competitive advantages to R20291.**

226

227 Since the ability of ST1-75 to outcompete R20291 in mice is independent of the
228 murine microbiome or immune defenses, we compared the competitive fitness of these two
229 strains in different growth conditions *in vitro*. First, we analyzed the relative fitness when
230 ST1-75 and R20291 vegetative cells were co-inoculated at a 1:1 ratio in BHIS, a rich
231 medium routinely used to culture *C. difficile*, at 3, 8, and 24 hrs post-co-inoculation.
232 Surprisingly, ST1-75 did not gain a growth advantage over R20291 in rich broth, in
233 contrast with our observations in mice (**Fig 5A**). When we co-cultured ST1-75 and R20291
234 in a medium derived from filtered cecal contents from germ-free mice, ST1-75
235 outcompeted R20291 by a ratio of 6:1 after 24 hrs and 12:1 after 96 hrs (**Fig 5B**).
236 Conversely, when we compared the relative fitness of R20291 to the R20291 *cdtR** in
237 BHIS and *ex vivo* cecal content media, R20291 *cdtR** exhibited similar fitness to R20291
238 in either BHIS or cecal media, consistent with the limited growth advantage of R20291
239 *cdtR** over R20291 observed in mice (**Fig 5A-5B**).

240 Since cecal contents have relatively limited nutrients compared to rich BHIS
241 medium, we hypothesized that the competition between ST1-75 and R20291 is nutrient-
242 dependent. To test this hypothesis, we compared the contents of cecal cultures of ST1-75
243 vs. R20291 using metabolomics. These analyses revealed that several amino acids,
244 including glycine, alanine, and phenylalanine, were depleted significantly faster by ST1-
245 75 than either the WT or R20291 *cdtR** strains (**Fig 5C and S4**).

246 Notably, glycine is a potent co-germinant for *C. difficile* spores (35), and previous
247 work has shown that limiting amounts of glycine can impair the ability of a virulent *C.*
248 *difficile* strain to colonize mice if the mice are pre-colonized with a low virulence *C.*
249 *difficile* strain (23). This is because colonization by the low virulence strain depletes
250 glycine from cecal contents and reduces the germination of the invading virulent *C. difficile*
251 strain. Based on these observations, we considered the possibility that ST1-75 spores
252 germinate more readily (i.e. are more sensitive to glycine co-germinant) than R20291
253 spores in the mouse gut such that ST1-75 can establish a replicative niche in the gut more
254 rapidly than R20291 and thus reduce the availability of glycine and potentially R20291
255 spore germination. To test this possibility, we compared the sensitivity of ST1-75 and
256 R20291 spores to low concentrations of glycine co-germinant. An optical density-based
257 (OD₆₀₀) germination assay was used to compare the co-germinant sensitivity of ST1-75
258 and R20291 at two physiologically relevant concentrations of glycine. These analyses
259 revealed that the germination profiles for the ST1-75 and R20291 spores were identical at
260 both glycine concentrations tested (**Fig 5D**), strongly suggesting that the competitive
261 fitness advantage of ST1-75 is not due to differences in germination levels or rates.

262 On the other hand, several studies have implicated specific amino acids in
263 promoting *C. difficile* colonization in the gut, consistent with the finding that CDI patients
264 often have higher levels of amino acids than non-CDI patients (36, 37). To test if a limited
265 availability of amino acids allows ST1-75 to outcompete R20291, we co-cultured ST1-75
266 and R20291 in cecal media supplemented with 18 amino acids at concentrations previously
267 described to be sufficient for *C. difficile* growth (38). Amino acid supplementation was
268 sufficient to ablate the growth advantage of ST1-75 over R20291 compared to the non-
269 supplemented control (**Fig 5E**). These data strongly suggest that ST1-75 competes more

270 efficiently for scarce amino acids in cecal contents and, by extension, during murine
271 infection.

272 To identify additional amino acids beyond glycine, alanine, and phenylalanine (**Fig 5, S4**) that may impact the competition between ST1-75 and R20291, we measured the
273 relative concentration of targeted amino acids after ST1-75 or R20291 were individually
274 cultured in the amino acid-supplemented cecal media. These analyses revealed that valine,
275 methionine, and isoleucine were also consumed faster by ST1-75 (**Fig S5**). Taken together,
276 our data suggest that ST1-75 depletes multiple amino acids more rapidly than R20291,
277 which presumably limits the growth of R20291 and allows ST1-75 to out-compete R20291
279 in the murine gut.

280

281 **ST1-75 confers long-term protection and can outcompete multiple virulent *C. difficile* strains.**

283

284 The avirulence of ST1-75 in both WT and immunodeficient mice (27) and its ability
285 to outcompete a virulent *C. difficile* strain suggest that it could be used as a bacterial
286 therapeutic for preventing CDI. However, a few concerns are routinely raised when
287 considering the use of probiotics for providing colonization resistance against pathogens,
288 specifically how long probiotics colonize the host gut and how well they persist upon
289 antibiotic treatment. To address these concerns, we inoculated antibiotic-treated mice with
290 ST1-75 (one oral gavage) and monitored its long-term colonization (one month) (**Fig 6A**).
291 We found that ST1-75 established high-level colonization throughout the month (**Fig 6B**).
292 After this colonization period, we treated ST1-75 colonized mice with additional
293 antibiotics and then challenged them with virulent R20291 (**Fig 6A**). While the antibiotics
294 successfully reduced ST1-75 levels by ~3-log (**Fig 6B**), the CFUs of ST1-75 rebounded
295 prior to the R20291 challenge. This rebound was sufficient to provide colonization
296 resistance against R20291 infection and protect mice from CDI colitis (**Fig 6C-6E**). Such
297 “relapse” of ST1-75 is likely attributable to its antibiotic-resistant spores. These data are
298 promising and support the potential of using ST1-75 to confer long-term colonization
299 resistance and protection against *C. difficile* in patients following repeat antibiotic
300 treatment. Mouse experiments are not fully translatable to humans as mice are coprophagic,

301 allowing them to re-inoculate ST1-75 on a regular basis. Thus, in a non-coprophagetic
302 recipient, serial oral administration may be required to maintain colonization resistance.

303 We next wondered whether ST1-75 can outcompete *C. difficile* strains that were
304 isolated more recently or are from other ribotypes. Using a similar coinfection strategy by
305 coinfecting antibiotic-treated mice with a 1:1 ratio of ST1-75 and either ST1-12 or ST1-49
306 (Fig 7A). ST1-12 and ST1-49 are recent isolates that we previously reported to be more
307 virulent than R20291 in mice (27). Coinfection with ST1-75 reduced the disease severity
308 caused by ST1-49 and, to a lesser extent, ST1-12 (Fig 7B), although the data did not reach
309 statistical significance after adjusting the false discovery rate for multiple comparisons.
310 Indeed, co-inoculating ST1-75 and ST1-49 almost completely reversed the weight loss
311 phenotype (Fig 7B). qPCR measuring the relative abundance of each *C. difficile* strain
312 indicated that ST1-75 rapidly outcompetes ST1-49, consistent with the weight loss
313 phenotype (Fig 7C-7D). In contrast, ST1-75 was unable to clear ST1-12 by day 1,
314 consistent with the weight loss observed in mice coinfecting with ST1-75 and ST1-12 (Fig
315 7B-7D). However, ST1-12 was eventually outcompeted by ST1-75 at later time points (Fig
316 7D).

317 VPI10463 strain is commonly used to evaluate therapeutics since it is a high toxin
318 producer and cause lethal infections in mice (39, 40). To determine whether ST1-75 could
319 protect against non-RT027 ribotype infection, we coinfecting antibiotic-treated mice with
320 1:1 ratio of ST1-75 and VPI10463. Notably, ST1-75 also outcompetes this more distantly
321 related *C. difficile* strain (41) and protects mice from its virulence (Fig 7E-7G). Overall,
322 these data suggest that ST1-75 has a competitive advantage over closely and more distantly
323 related *C. difficile* strains.

324

325 **Discussion**

326

327 While FMT is effective at treating many recurrent *C. difficile* infections, the high
328 cost and challenges in ensuring reproducibility and production at scale has motivated the
329 search for more defined bacterial therapeutics. Several studies have shown that avirulent
330 or less virulent *C. difficile* strains can prevent lethal CDI, yet we do not know all the
331 mechanisms underlying the protection (23, 25, 42, 43). Herein, we characterized a

332 toxigenic but avirulent *C. difficile* isolate, ST1-75, that protects against virulent CDI by
333 outcompeting virulent *C. difficile* strains. ST1-75 can outcompete several closely or
334 distantly related virulent strains, including R20291 (RT027), ST1-12 (RT027), ST1-49
335 (RT027), and VPI10463 (RT087). Our analyses revealed that the ability of ST1-75 to
336 outcompete these more virulent strains can be attributed to ST1-75's enhanced capacity to
337 consume amino acids, which limits the growth of the virulent strains. Finally, we show that
338 ST1-75 establishes long-term colonization in the host and persists after subsequent
339 antibiotic treatment, suggesting a potential prophylactic capacity to prevent primary and
340 recurrent CDI in patients with antibiotic-induced dysbiosis.

341

342 ST1-75 outcompeted virulent R20291 when administered at a 1:1 ratio during co-
343 infection. ST1-75's efficacy at low doses is significant because previous non-toxigenic and
344 low-virulence *C. difficile* strains that have been shown to confer protection against virulent
345 *C. difficile* infections in animals required that they be administered at a significantly higher
346 dosage over virulent *C. difficile* strains and/or days before the virulent strain challenge (23,
347 42). For example, while pre-inoculating nontoxigenic *C. difficile* demonstrated protection,
348 coinfecting nontoxigenic *C. difficile* could not compete with virulent strains, leading to the
349 mortality of infected hamsters (44). In another study, a low-virulence *C. difficile* strain
350 CD630 required 100-fold higher inoculum to protect mice from virulent VPI10463
351 challenge (23). These studies suggest that such nontoxigenic or low-virulence strains may
352 have reduced competitive fitness over virulent *C. difficile* strains.

353

354 The competitive advantages of ST1-75 over the other nontoxigenic or low-
355 virulence *C. difficile* strains may be attributable to its mechanisms to outcompete virulent
356 strains. While the mechanisms utilized by non- or low-virulence strains to provide
357 colonization resistance against more virulent *C. difficile* strains still need further
358 exploration, a previous study reported that pre-colonizing mice with low-virulence *C.*
359 *difficile* depletes the essential germinant glycine to restrict the germination of the secondary
360 virulent strain (23). Here, we found that ST1-75 competes with virulent strains in a
361 different manner, specifically by quickly consuming available amino acids to limit the
362 growth of the virulent strains. Our metabolomic analyses indicate a few amino acid

363 candidates that may be important for ST1-75 to outcompete R20291, namely alanine,
364 phenylalanine, valine, methionine, and isoleucine, that are depleted faster by ST1-75 than
365 R20291. These include important amino acids involved in Stickland metabolism, which
366 were previously implicated to play important roles in *C. difficile* colonization in the gut
367 (40). Here, by supplementing amino acids in a scarce medium, we provided direct evidence
368 supporting the importance of amino acid availability in impacting inter-strain competition.
369 Ornithine and proline metabolisms were previously shown as a battle ground between
370 commensal microbiome and *C. difficile*, with *C. difficile* unable to metabolize ornithine or
371 proline colonizing poorly (36, 45). Our assay did not detect ornithine and proline was not
372 differentially depleted by ST1-75 vs. R20291. Future experiments can dissect if a specific
373 amino acid or a group of amino acids would be needed during the strain-strain competition
374 between ST1-75 and R20291. Such information can contribute to the design of adjunctive
375 therapies, including diet modifications. Additional investigation should also focus on
376 determining the molecular basis of ST1-75's enhanced capacity to consume such amino
377 acids.

378

379 During the investigation of the dynamics of ST1-75 and R20291 competition
380 during coinfection, we found that administering ST1-75 6 hrs post R20291 infection at
381 high dose (50-fold over R20291) outcompeted R20291 by 24 hours, similar to the
382 simultaneous coinfection. However, ST1-75 administration 6 hrs after R20291 did not
383 reverse the level of weight loss. We speculate that there are relatively early changes in
384 intestinal environment, caused by R20291, that commit to pathogenesis. Depending on
385 types of antibiotics treatment, *C. difficile* CFU in the colon and feces can be detected
386 around 6-12 hrs post-infection while spores and toxins were detected 18-24 hrs post-
387 infection (46). The fulminant weight loss can only be observed 2-3 days post-infection in
388 most reported mouse experiments (34, 39, 47). Due to this "delayed" phenotype, most
389 studies on immune changes focused on these time points (34, 48) while the earlier changes
390 of the *C. difficile* infected gut were not well-investigated. We hypothesize that the early
391 events in the gut during *C. difficile* infection contribute to the pathogenesis trajectory.

392

393 Our finding that the R20291 *cdtR** mutant has a small competitive fitness over
394 R20291 is interesting. CdtR is the response regulator of *C. difficile* binary toxin CDT, and
395 mutations in the *cdtR* gene lead to reduced production of CDT and primary toxins TcdA
396 and TcdB (27). The roles of toxins during *C. difficile* strain-strain competition remains
397 unresolved and additional studies are required to determine whether the fitness of R20291
398 *cdtR** mutant is attributable to its reduced toxin production. Previous studies, however,
399 showed that *C. difficile* producing no toxin (NTCD) have reduced fitness compared to
400 virulent strains, while *C. difficile* producing some toxins (ST1-75, LEM1) have greater
401 fitness (24). We have yet to determine whether toxins enhance the growth advantage of
402 ST1-75, especially since toxins were reported to liberate nutrients from the mucus and
403 enhance *C. difficile* colonization (36, 49). Future efforts should also be made to determine
404 if toxin production (though at a reduced level due to the *cdtR* mutation) of ST1-75 is
405 dispensable for its competitive fitness. This is important to know before one can further
406 optimize ST1-75 by knocking out all its toxin genes to make a safer biotherapeutic
407 candidate.

408

409 Strategies to use a non-virulent, commensal bacterial strain to compete for
410 necessary nutrients and thus protect against virulent infections were also demonstrated for
411 a couple of other bacterial pathogens. For example, a *Klebsiella* sp. was first shown to
412 enhance resistance to *Enterobacteriaceae*, such as *E. coli* and *Salmonella* via galactitol
413 competition (50). Galactitol competition was also observed while using a commensal *E.*
414 *coli* strain Mt1B1 to block *Salmonella* Typhimurium invasion (51). Another study
415 demonstrated that *Klebsiella oxytoca* outcompetes *Klebsiella pneumoniae* for various
416 aromatic and non-aromatic beta-glucosides (52). The advantages of using an avirulent
417 strain of a bacterial pathogen to prevent virulent infection are that they would occupy the
418 same niche and compete with the most overlapping nutritional repertoire. Further
419 investigations are needed to better understand the inter-strain competitions to improve the
420 safety and efficacy of using avirulent “pathogens” clinically.

421

422 In summary, we described the use of avirulent isolate ST1-75 as a prophylactic to
423 prevent virulent CDI in mice. ST1-75 can outcompete virulent strains at a low dosage (1:1

424 ratio) and during coinfection, granting it high potential in preventing CDI recurrence and
425 transmission. The mechanism we have discovered is that ST1-75 depletes specific amino
426 acids more quickly than R20291, thus limiting such nutritional access by the virulent strain.
427 Overall, our study provides a unique mechanism for *C. difficile* strain-strain competition
428 that may be applied to other bacterial-bacterial interactions and support the use of ST1-75
429 as a potential biotherapeutic in preventing colonization and disease caused by virulent *C.*
430 *difficile*.

431

432 **Material and Methods:**

433 **Mouse husbandry**

434 Wild-type C57BL/6J mice, aged between 6 to 8 weeks, were purchased from the Jackson
435 Laboratories. Germ-free C57Bl/6J mice were bred and maintained in plastic gnotobiotic
436 isolators within the University of Chicago Gnotobiotic Core Facility and fed ad libitum
437 autoclaved standard chow diet (LabDiets 5K67) before transferring to BSL2 room for
438 infection. Mice housed in the BSL2 animal room are fed irradiated feed (Envigo 2918) and
439 provided with acidified water. All mouse experiments were performed in compliance with
440 University of Chicago's institutional guidelines and were approved by its Institutional
441 Animal Care and Use Committee.

442

443 ***C. difficile* spore preparation and numeration**

444 *C. difficile* sporulation and preparation was processed as described previously (27). Briefly,
445 single colonies of *C. difficile* strains were inoculated in deoxygenated BHIS broth and
446 incubated anaerobically for 40-50 days. *C. difficile* cells were harvested by centrifugation
447 and five washes with ice-cold water. The cells were then suspended in 20% (w/v)
448 HistoDenz (Sigma, St. Louis, MO) and layered onto a 50% (w/v) HistoDenz solution
449 before centrifugating at 15,000 × g for 15 minutes to separate spores from vegetative cells.
450 The purified spores pelleted at the bottom were then collected and washed for four times
451 with ice-cold water to remove traces of HistoDenz, and finally resuspended in sterile water.
452 Prepared spores were heated to 60°C for 20 min to kill vegetative cells, diluted and plated
453 on both BHIS agar and BHIS agar containing 0.1% (w/v) taurocholic acid (BHIS-TA) for

454 numeration. Spore stocks for mouse infection were verified to have less than 1 vegetative
455 cell per 200 spores (as the infection dose).

456

457 For OD₆₀₀ kinetics assays, spores were prepared a little differently (53). Briefly, single
458 colonies were used to inoculate liquid BHIS cultures, which were grown to early stationary
459 phase before being back diluted 1:50 into BHIS. When the cultures reached an
460 OD₆₀₀ between 0.35 and 0.75, 120 µL of this culture were spread onto 70:30 agar plates
461 and sporulation was induced as previously described for 5 days. The spores were then
462 harvested into ice-cold, sterile water, washed 6 times in ice-cold water and incubated
463 overnight in water at 4°C. The following day, the samples were pelleted and treated with
464 DNase I (New England Biolabs) at 37°C for 60 minutes and purified on a 20%/50%
465 HistoDenz (Sigma Aldrich) gradient. The resulting spores were washed again 2–3 times in
466 water, and spore purity was assessed using phase-contrast microscopy (>95% pure). The
467 optical density of the spore stock was measured at OD₆₀₀, and spores were stored in water
468 at 4°C.

469

470 **Virulence assessment of clinical isolates in mice**

471 Mice were treated and infected with *C. difficile* spores as described previously (27).
472 Briefly, SPF mice were treated with antibiotic cocktail containing metronidazole,
473 neomycin and vancomycin (MNV) in drinking water (0.25g/L for each antibiotic) for 3
474 days, 2 days after removing MNV, the mice received one dose of clindamycin (200
475 µg/mouse) via intraperitoneal injection. Mice were then infected the next day with 200 *C.*
476 *difficile* spores via oral gavage. Germ-free mice were infected with 200 *C. difficile* spores
477 via oral gavage without antibiotic treatments. Following infection, mice were monitored
478 and scored for disease severity by four parameters (34): weight loss (> 95% of initial weight
479 = 0, 95%–90% initial weight = 1, 90%–80% initial weight = 2, < 80% = 3), surface body
480 temperature (> 95% of initial temp = 0, 95%–90% initial temp = 1, 90%–85% initial temp
481 = 2, < 85% = 3), diarrhea severity (formed pellets = 0, loose pellets = 1, liquid discharge =
482 2, no pellets/caked to fur = 3), morbidity (score of 1 for each symptoms with max score of
483 3; ruffled fur, hunched back, lethargy, ocular discharge).

484

485 **Quantification of fecal colony forming units**

486 Fecal pellets from *C. difficile* infected mice were harvested and resuspended in
487 deoxygenated phosphate-buffered saline (PBS), diluted and plated on BHI agar
488 supplemented with yeast extract, taurocholic acid, L-cysteine, D-cycloserine and cefoxitin
489 (CC-BHIS-TA) at 37°C anaerobically for overnight (27, 48).

490

491 **Preparation of Germ-Free Cecal Extract Media**

492 Cecal contents from germ-free wild type C57BL/6 mice were harvested and resuspended
493 in sterile water (200 mg cecal content per 1 mL water). The cecal slurry was vortexed and
494 centrifuged at 4,300 x g using an Allegra X-14R Centrifuge (Beckman Coulter) for 10
495 minutes to pellet solid waste material. The supernatant was collected and centrifuged 3
496 more times before filtration through a 0.2-micron filter. The filter-sterilized cecal
497 supernatant media was aliquoted and frozen at -20°C.

498

499 **Amino Acid Supplementation**

500 Fresh amino acid stocks (histidine, glycine, arginine, phenylalanine, methionine, threonine,
501 alanine, lysine, serine, valine, isoleucine, leucine, proline, aspartic acid, glutamic acid,
502 tyrosine, cysteine) were prepared by suspending 10 mg of each compound in 10 mL of 5N
503 KOH and freezing 1 mL aliquots at -20°C. Amino acids were added to thawed germ-free
504 cecal supernatant media at concentrations previously described to be sufficient for *C.*
505 *difficile* growth (38). Otherwise, an equal volume of sterile water was added to the cecal
506 media. Then, each condition was pH adjusted to 8.4-8.5, filtered through a 0.2-micron
507 filter, and reduced in an anaerobic chamber overnight.

508

509 ***C. difficile* culturing**

510 In an anaerobic chamber (Coylabs), *C. difficile* strains were streaked out on BHI agar
511 supplemented with yeast extract (BHIS) containing 0.1% (w/v) taurocholic acid (BHIS-
512 TA) for single colonies. Colonies were then picked for overnight growth in BHIS broth at
513 37°C anaerobically. Overnight cultures were 1:10 diluted in BHIS and incubated for 3-4
514 hours to grow to the exponential phase, then normalized to OD 0.05 as the starting point

515 for time course incubation, in either BHIS or cecal extracts. All media and cecal extract
516 were deoxygenated in anaerobic chamber before use.

517

518 **Metabolite Extraction from Plasma/Serum/Culture Supernatant**

519 Samples were incubated at -80°C for at least one hour, or up to overnight. Extraction
520 solvent (4 volumes of 100% methanol spiked with internal standards and stored at -80°C)
521 was added to the liquid sample (1 volume) in a microcentrifuge tube. Tubes were then
522 centrifuged at -10°C, 20,000 x g for 15 min and supernatant was used for subsequent
523 metabolomic analysis.

524

525 **Metabolite Analysis using GC-nCI-MS and PFBBr Derivatization**

526 Short chain fatty acids were derivatized as described by Haak et al (54), with the following
527 modifications. The metabolite extract (100 µL) was added to 100 µL of 100 mM borate
528 buffer (pH=10), (Thermo Fisher, 28341), 400 µL of 100 mM pentafluorobenzyl bromide,
529 (Millipore Sigma; 90257) in acetonitrile, (Fisher; A955-4), and 400 µL of n-hexane (Acros
530 Organics; 160780010) in a capped mass spec autosampler vial (Microliter; 09-1200).
531 Samples were heated in a thermomixer C (Eppendorf) to 65°C for 1 hour while shaking at
532 1300 rpm. After cooling to room temperature, samples were centrifuged at 4°C, 2000 x g
533 for 5 min, allowing phase separation. The hexanes phase (100 µL) (top layer) was
534 transferred to an autosampler vial containing a glass insert and the vial was sealed. Another
535 100 µL of the hexanes phase was diluted with 900 µL of n-hexane in an autosampler vial.
536 Concentrated and dilute samples were analyzed using a GC-MS (Agilent 7890A GC
537 system, Agilent 5975C MS detector) operating in negative chemical ionization mode, using
538 a HP-5MSUI column (30 m x 0.25 mm, 0.25 µm; Agilent Technologies 19091S-433UI),
539 methane as the reagent gas (99.999% pure) and 1 µL split injection (1:10 split ratio). Oven
540 ramp parameters: 1 min hold at 60°C, 25°C per min up to 300°C with a 2.5 min hold at
541 300°C. Inlet temperature was 280°C and transfer line was 310°C. A 10-point calibration
542 curve was prepared with acetate (100 mM), propionate (25 mM), butyrate (12.5 mM), and
543 succinate (50 mM), with 9 subsequent 2x serial dilutions. Data analysis was performed
544 using MassHunter Quantitative Analysis software (version B.10, Agilent Technologies)
545 and confirmed by comparison to authentic standards. Normalized peak areas were

546 calculated by dividing raw peak areas of targeted analytes by averaged raw peak areas of
547 internal standards. Raw data (.d, Agilent) was converted with mzMine to open-source
548 formatting (.mzML) and uploaded to MassIVE.

549

550 **OD₆₀₀ kinetics assays**

551 OD₆₀₀ kinetics assays were conducted as described previously with minor modifications
552 (53). For OD₆₀₀ kinetics assays with varying concentrations of glycine, ~2.3 x 10⁷ spores
553 (0.8 OD₆₀₀ units) for each condition tested were resuspended in either 1X 50 mM HEPES,
554 100 mM NaCl, pH=8 and aliquoted into a well of a 96-well plate for each condition tested.
555 5-fold serial dilutions of 100 mM glycine were added to spores resuspended in the
556 appropriate buffer. The spores were then exposed to 1% taurocholate (19 mM) in a total
557 volume of 200 µL and the OD₆₀₀ of the samples was measured every 3 minutes in a Synergy
558 H1 microplate reader (Biotek) at 37°C with constant shaking between readings. The change
559 in OD₆₀₀ over time was calculated as the ratio of the OD₆₀₀ at each time point to the
560 OD₆₀₀ at time zero. All assays were performed on three independent spore preparations.

561 **DNA extraction and quantitative polymerase chain reaction (qPCR)**

562 Fecal DNA was extracted using DNeasy PowerSoil Pro Kit or QIAamp PowerFecal Pro
563 kit (Qiagen) according to the manufacturer's instructions. Quantitative PCR was performed
564 on genomic DNA using primers:

cdtR_commonFor	5'-TCTCCTAGTGTATTACGTATTTT-3'
cdtR_wtFor	5'-TGTGTTGTTTGGAAATAAAACTAAAAGA-3'
VPI_cdtR_commonFor	5'-TCTCCTAGTGTATTATGTATTT-3'
VPI_cdtR_wtFor	5'-TGTGTTGTTTGGAAATGAAACTAAAAGA-3'
cdtR_Rev	5'-TTGTGCTATCCATAATCCATCACA-3'

565 with PowerTrack SYBR Green Master Mix (Thermo Fisher). Reactions were run on a
566 QuantStudio 6 pro (Thermo Fisher). Relative abundance was normalized by $\Delta\Delta Ct$.

567

568 **Quantification and statistical analysis**

569 Results represent means \pm SD. Statistical significance was determined by t test and one-
570 way ANOVA test. Multiple comparisons were corrected with False Discovery Rate with

571 desired FDR at 0.05. Statistical analyses were performed using Prism GraphPad software
572 v9.3.1 (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001)

573

574 **Acknowledgements:**

575 We thank Kristin Kolar, Emma Elmiger and the animal facilities of the University of
576 Chicago for their help on mouse experiments. We thank the Pamer lab members and Shen
577 lab members for helpful discussions. This work was supported by the National Institutes
578 of Health R01 AI095706 and by the Duchossois Family Institute of the University of
579 Chicago. The funders had no role in study design, data collection and interpretation, or the
580 decision to submit the work for publication. Schematics were created with bioRender.com.

581

582 **Author contributions**

583 Q.D., L.C.F. A.S. and E.G.P conceived the project. Q.D., S.H., E.M., S.S.S., and H.L.
584 analyzed the data. Q.D., S.H., E.M., R.C.S., M-M.A., C.M., C.W., V.B., A.S., A.R., M.M.,
585 D.M., J.L., M.M., and A.S. performed experiments. Q.D., A.S., L.C.F., and E.G.P
586 interpreted the results and wrote the manuscript.

587

588 **Declaration of interests**

589 None.

590

591 **Figure titles and legends**

592

593 **Figure 1. Coinfection of avirulent ST1-75 with a virulent *C. difficile* strain prevents
594 disease in antibiotic-treated mice.**

595 (A) Schematic of the experimental procedure. Wild-type C57BL/6 mice (n = 4 per group)
596 were treated with Metronidazole, Neomycin and Vancomycin (MNV, 0.25 g/L for each)
597 in drinking water for 3 days, followed by one intraperitoneal injection of Clindamycin (200
598 mg/mouse), indicated as C in the schematic, 2 days after antibiotic recess. Then, mice were
599 inoculated with 100 R20291 *C. difficile* spores and 100 ST1-75 *C. difficile* spores via oral

600 gavage. Daily body weight and acute disease scores were monitored for 7 days post-
601 infection. (B) %Weight loss relative to the baseline of mice infected with indicated strains.
602 (C) Acute disease scores comprising weight loss, body temperature drop, diarrhea, and
603 morbidity of mice infected with indicated strains. (D) Fecal colony-forming units were
604 measured by plating on selective agar on 1 day post-infection. (E) Relative abundance of
605 R20291 in feces from infected mice was determined by measuring wildtype *cdtR* copies
606 by qPCR on 1 day post infection. UD: Under the limit of detection. Statistical significance
607 was calculated by unpaired t-test and One-way ANOVA, * p < 0.05, ** p < 0.01, *** p <
608 0.001, **** p < 0.0001. Statistical significance was observed between R20291 to ST1-75
609 and R20291 to ST1-75:R20291.

610

611 **Figure 2. Protection by the avirulent ST1-75 isolate is not due to differences in**
612 **lysogenic phages between strains.**

613 (A) Lysogeny R20291 strains generated to harbor phiCD75-2 and phiCD75-3 and infection
614 procedure. Wild-type C57BL/6 mice (n = 4-5 per group) were treated with Metronidazole,
615 Neomycin and Vancomycin (MNV, 0.25 g/L for each) in drinking water for 3 days,
616 followed by one intraperitoneal injection of clindamycin (200 mg/mouse) 2 days after
617 antibiotic recess. Then, mice were inoculated with 100 R_phi75-2/3 *C. difficile* spores and
618 100 ST1-75 *C. difficile* spores via oral gavage. Daily body weight was monitored for 5
619 days post-infection. (B) %Weight loss relative to the baseline of mice infected with
620 indicated strains (C) Fecal colony-forming units measured by plating on selective agar on
621 1-day post-infection. (D) Relative abundance of R20291 in feces from infected mice was
622 determined by measuring wildtype *cdtR* copies by qPCR on 1 day and 5 days post-infection.
623 UD: Under the limit of detection. Statistical significance was calculated by unpaired t-test
624 and One-way ANOVA, * p < 0.05, **** p < 0.0001. Statistical significance was observed
625 between R_phi75-2/3 to ST1-75 and ST1-75:R_phi75-2/3.

626

627 **Figure 3 Coinfection with R20291 *cdtR** does not protect against disease, although it**
628 **outcompetes the parental R20291 strain.**

629 (A) Schematic of infection procedure and generating R20291 harboring 69-bp deletion in
630 *cdtR*. Wild-type C57BL/6 mice (n = 3-5 per group) were treated with Metronidazole,

631 Neomycin , and Vancomycin (MNV, 0.25 g/L for each) in drinking water for 3 days,
632 followed by one intraperitoneal injection of clindamycin (200 mg/mouse) 2 days after
633 antibiotic recess. Then, mice were inoculated with 100 R20291 *C. difficile* spores and 100
634 R_cdtR* *C. difficile* spores via oral gavage. Daily body weight was monitored for 5 days
635 post-infection. (B) %Weight loss relative to the baseline of mice infected with indicated
636 strains. (C) Fecal colony-forming units were measured by plating on selective agar on 1
637 day post-infection. (D) Relative abundance of R20291 in feces from infected mice was
638 determined by measuring wildtype *cdtR* copies by qPCR on 1 day, 5 days, and 8 days post-
639 infection. UD: Under the limit of detection. Statistical significance was calculated by
640 unpaired t-test and One-way ANOVA, * p < 0.05, **** p <0.0001.
641

642 **Figure 4 Protection by ST1-75 against virulent infection is independent of the**
643 **microbiome.**

644 Germ-free mice (n=3-4 per group) were infected with ST1-75, R20291 or both at the same
645 time at 200 total *C. difficile* spores. (A) %Weight loss relative to baseline of germ-free
646 mice infected with indicated strains. (B) Diarrhea scores of mice infected with indicated
647 strains 2 days post infection. (C) Fecal colony-forming units were measured by plating on
648 selective agar on 1 day post-infection. (D) Relative abundance of R20291 in feces from
649 infected mice was determined by measuring wildtype *cdtR* copies by qPCR on 1 day and
650 14 days post-infection. UD: Under the limit of detection. Statistical significance was
651 calculated by unpaired t-test or One-way ANOVA, * p < 0.05, ** p < 0.01, **** p < 0.0001.
652

653 **Figure 5 ST1-75 protection is attributable to faster amino acids depletion in nutrient-
654 limited environment.**

655 (A-B, E) Relative abundance of R20291 in feces from infected mice was determined by
656 measuring wildtype *cdtR* copies by qPCR. (A) Competitive index (CI) is shown by dividing
657 the relative abundance of R20291 to avirulent strain (ST1-75/R_cdtR*) in BHIS (B)
658 Competitive index (CI) is shown by dividing the relative abundance of R20291 to avirulent
659 strain (ST1-75/R_cdtR*) in diluted germ-free cecal extract. (C) Metabolomic relative
660 abundance of glycine in cecal extracts inoculated with either ST1-75, R_cdtR* or R20291
661 (D) OD-drop assay measuring germination defects of indicated strains while supplemented

662 with 0.4 mM and 2 mM glycine. (E) Competitive index (CI) is shown by dividing the
663 relative abundance of R20291 to avirulent strain ST1-75 in diluted germ-free cecal extract
664 (spiked in with or without amino acids). Statistical significance was calculated by unpaired
665 t-test or One-way ANOVA, * p < 0.5, *** p < 0.001, **** p < 0.0001.

666

667 **Figure 6. ST1-75 confers long-term protection via colonization resistance.**

668 (A) Schematic of the experimental procedure. Wild-type C57BL/6 mice (n = 3-5 per group)
669 were treated with Metronidazole, Neomycin and Vancomycin (MNV, 0.25 g/L for each)
670 in drinking water for 3 days, followed by one intraperitoneal injection of clindamycin (200
671 mg/mouse) 2 days after antibiotic recess. Then, mice were inoculated with 200 ST1-75 *C.*
672 *difficile* spores via oral gavage. Infected mice were maintained for a month and then treated
673 with MNV and Clindamycin again before challenging with 200 R20291 *C. difficile* spores.
674 Daily body weight was monitored for 7 days post R20291 challenge. (B) Fecal colony-
675 forming units were measured by plating on selective agar on indicated days post-infection.
676 (C) %Weight loss relative to the baseline of mice infected with indicated strains. (D) Fecal
677 colony-forming units were measured by plating on selective agar on 1 day post-R20291
678 infection. (E) Relative abundance of R20291 in feces from infected mice was determined
679 by measuring wildtype *cdtR* copies by qPCR on 1 day post-R20291 infection. UD: Under
680 the limit of detection. Statistical significance was calculated by unpaired t-test or One-way
681 ANOVA, * p < 0.05, ** p < 0.01, **** p < 0.0001.

682

683 **Figure 7. ST1-75 clears recent clinical ST1 isolates and the distantly related strain**
684 **VPI10463.**

685 (A) Schematic of the experimental procedure. Wild-type C57BL/6 mice (n = 4 per group)
686 were treated with Metronidazole, Neomycin and Vancomycin (MNV, 0.25 g/L for each)
687 in drinking water for 3 days, followed by one intraperitoneal injection of clindamycin (200
688 mg/mouse) 2 days after antibiotic recess. Then, mice were inoculated with 100 ST1-75 *C.*
689 *difficile* spores and 100 either ST1-12, ST1-49 or VPI10463 *C. difficile* spores via oral
690 gavage. Daily body weight was monitored for 5-7 days post-infection. (B, E) %Weight loss
691 relative to the baseline of mice infected with indicated strains. (C, F) Fecal colony-forming
692 units were measured by plating on selective agar on 1 day post-infection. (D, G) Wildtype

693 *cdtR* copies in feces from infected mice were measured by qPCR on 1 day and 5 days post
694 infection. Some mice died or did not produce a fecal pellet on day 5. Statistical significance
695 was calculated by unpaired t-test or One-way ANOVA, ** p < 0.01, *** p < 0.001, ****
696 p < 0.0001.

697

698 **References**

699 1. CDC A. 2019. Antibiotic resistance threats in the United States. US Dep Health
700 Hum Serv Wash DC USA.

701 2. Abt MC, McKenney PT, Pamer EG. 2016. *Clostridium difficile* colitis: pathogenesis
702 and host defence. *Nat Rev Microbiol* 14:609–620.

703 3. Sorbara MT, Pamer EG. 2019. Interbacterial mechanisms of colonization resistance
704 and the strategies pathogens use to overcome them. *Mucosal Immunol* 12:1–9.

705 4. Feuerstadt P, Boules M, Stong L, Dahdal DN, Sacks NC, Lang K, Nelson WW.
706 2021. Clinical complications in patients with primary and recurrent *Clostridioides*
707 *difficile* infection: A real-world data analysis. *SAGE Open Med*
708 9:2050312120986733.

709 5. Turner NA, Anderson DJ. 2020. Hospital Infection Control: *Clostridioides difficile*.
710 *Clin Colon Rectal Surg* 33:98–108.

711 6. Pokrywka M, Buraczewski M, Frank D, Dixon H, Ferrelli J, Shutt K, Yassin M.
712 2017. Can improving patient hand hygiene impact *Clostridium difficile* infection
713 events at an academic medical center? *Am J Infect Control* 45:959–963.

714 7. Barker AK, Zellmer C, Tischendorf J, Duster M, Valentine S, Wright MO, Safdar
715 N. 2017. On the hands of patients with *Clostridium difficile*: A study of spore
716 prevalence and the effect of hand hygiene on C difficile removal. *Am J Infect
717 Control* 45:1154–1156.

718 8. Kaier K, Hagist C, Frank U, Conrad A, Meyer E. 2009. Two time-series analyses of
719 the impact of antibiotic consumption and alcohol-based hand disinfection on the
720 incidences of nosocomial methicillin-resistant *Staphylococcus aureus* infection and
721 *Clostridium difficile* infection. *Infect Control Hosp Epidemiol* 30:346–353.

722 9. Vernaz N, Sax H, Pittet D, Bonnabry P, Schrenzel J, Harbarth S. 2008. Temporal
723 effects of antibiotic use and hand rub consumption on the incidence of MRSA and
724 *Clostridium difficile*. *J Antimicrob Chemother* 62:601–607.

725 10. Boyce JM, Guercia KA, Sullivan L, Havill NL, Fekieta R, Kozakiewicz J, Goffman
726 D. 2017. Prospective cluster controlled crossover trial to compare the impact of an
727 improved hydrogen peroxide disinfectant and a quaternary ammonium-based
728 disinfectant on surface contamination and health care outcomes. *Am J Infect
729 Control* 45:1006–1010.

730 11. Wenisch C, Parschalk B, Hasenhündl M, Hirschl AM, Graninger W. 1996.
731 Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the
732 treatment of *Clostridium difficile*-associated diarrhea. *Clin Infect Dis Off Publ
733 Infect Dis Soc Am* 22:813–818.

734 12. DiDiodato G, McArthur L. 2016. Evaluating the Effectiveness of an Antimicrobial
735 Stewardship Program on Reducing the Incidence Rate of Healthcare-Associated
736 *Clostridium difficile* Infection: A Non-Randomized, Stepped Wedge, Single-Site,
737 Observational Study. *PloS One* 11:e0157671.

738 13. Patton A, Davey P, Harbarth S, Nathwani D, Sneddon J, Marwick CA. 2018. Impact
739 of antimicrobial stewardship interventions on *Clostridium difficile* infection and
740 clinical outcomes: segmented regression analyses. *J Antimicrob Chemother* 73:517–
741 526.

742 14. Baur D, Gladstone BP, Burkert F, Carrara E, Foschi F, Döbele S, Tacconelli E.
743 2017. Effect of antibiotic stewardship on the incidence of infection and colonisation
744 with antibiotic-resistant bacteria and *Clostridium difficile* infection: a systematic
745 review and meta-analysis. *Lancet Infect Dis* 17:990–1001.

746 15. Feazel LM, Malhotra A, Perencevich EN, Kaboli P, Diekema DJ, Schweizer ML.
747 2014. Effect of antibiotic stewardship programmes on *Clostridium difficile*
748 incidence: a systematic review and meta-analysis. *J Antimicrob Chemother*
749 69:1748–1754.

750 16. de Bruyn G, Gordon DL, Steiner T, Tambyah P, Cosgrove C, Martens M, Bassily E,
751 Chan E-S, Patel D, Chen J, Torre-Cisneros J, Fernando De Magalhães Francesconi
752 C, Gesser R, Jeanfreau R, Launay O, Laot T, Morfin-Otero R, Oviedo-Orta E, Park
753 YS, Piazza FM, Rehm C, Rivas E, Self S, Gurunathan S. 2021. Safety,
754 immunogenicity, and efficacy of a *Clostridioides difficile* toxoid vaccine candidate:
755 a phase 3 multicentre, observer-blind, randomised, controlled trial. *Lancet Infect Dis*
756 21:252–262.

757 17. Pfizer. 2023. A PHASE 3, PLACEBO-CONTROLLED, RANDOMIZED,
758 OBSERVER-BLINDED STUDY TO EVALUATE THE EFFICACY, SAFETY,
759 AND TOLERABILITY OF A *CLOSTRIDIUM DIFFICILE* VACCINE IN

760 ADULTS 50 YEARS OF AGE AND OLDER. NCT03090191. Clinical trial
761 registration. clinicaltrials.gov.

762 18. Khanna S, Assi M, Lee C, Yoho D, Louie T, Knapple W, Aguilar H, Garcia-Diaz J,
763 Wang GP, Berry SM, Marion J, Su X, Braun T, Bancke L, Feuerstadt P. 2022.
764 Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized,
765 Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the
766 Prevention of Recurrent *Clostridioides difficile* Infection. Drugs 82:1527–1538.

767 19. Feuerstadt P, Louie TJ, Lashner B, Wang EEL, Diao L, Bryant JA, Sims M, Kraft
768 CS, Cohen SH, Berenson CS, Korman LY, Ford CB, Litcofsky KD, Lombardo M-J,
769 Wortman JR, Wu H, Auniņš JG, McChalicher CWJ, Winkler JA, McGovern BH,
770 Trucksis M, Henn MR, von Moltke L. 2022. SER-109, an Oral Microbiome
771 Therapy for Recurrent *Clostridioides difficile* Infection. N Engl J Med 386:220–229.

772 20. Sharaby AA, Abugoukh TM, Ahmed W, Ahmed S, Elshaikh AO, Sharaby AA,
773 Abugoukh TM, Ahmed W, Ahmed S, Elshaikh AO. 2022. Do Probiotics Prevent
774 *Clostridium difficile*-Associated Diarrhea? Cureus 14.

775 21. Allen SJ, Wareham K, Wang D, Bradley C, Hutchings H, Harris W, Dhar A, Brown
776 H, Foden A, Gravenor MB, Mack D. 2013. Lactobacilli and bifidobacteria in the
777 prevention of antibiotic-associated diarrhoea and *Clostridium difficile* diarrhoea in
778 older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled,
779 multicentre trial. The Lancet 382:1249–1257.

780 22. Gerding DN, Meyer T, Lee C, Cohen SH, Murthy UK, Poirier A, Van Schooneveld
781 TC, Pardi DS, Ramos A, Barron MA, Chen H, Villano S. 2015. Administration of
782 Spores of Nontoxigenic *Clostridium difficile* Strain M3 for Prevention of Recurrent
783 *C difficile* Infection: A Randomized Clinical Trial. JAMA 313:1719–1727.

784 23. Leslie JL, Jenior ML, Vendrov KC, Standke AK, Barron MR, O'Brien TJ,
785 Unverdorben L, Thaprawat P, Bergin IL, Schloss PD, Young VB. 2021. Protection
786 from Lethal *Clostridioides difficile* Infection via Intraspecies Competition for
787 Cogerminant. mBio 12:10.1128/mbio.00522-21.

788 24. Etienne-Mesmin L, Chassaing B, Adekunle O, Mattei LM, Bushman FD, Gewirtz
789 AT. 2018. Toxin-positive *Clostridium difficile* latently infect mouse colonies and
790 protect against highly pathogenic *C. difficile*. Gut 67:860–871.

791 25. Wang S, Heuler J, Wickramage I, Sun X. 2022. Genomic and Phenotypic
792 Characterization of the Nontoxigenic *Clostridioides difficile* Strain CCUG37785
793 and Demonstration of Its Therapeutic Potential for the Prevention of *C. difficile*
794 Infection. Microbiol Spectr 10:e0178821.

795 26. Wang S, Zhu D, Sun X. 2022. Development of an Effective Nontoxigenic
796 *Clostridioides difficile*-Based Oral Vaccine against *C. difficile* Infection. Microbiol
797 Spectr 10:e00263-22.

798 27. Dong Q, Lin H, Allen M-M, Garneau JR, Sia JK, Smith RC, Haro F, McMillen T,
799 Pope RL, Metcalfe C, Burgo V, Woodson C, Dylla N, Kohout C, Sundararajan A,
800 Snitkin ES, Young VB, Fortier L-C, Kamboj M, Pamer EG. 2023. Virulence and

801 genomic diversity among clinical isolates of ST1 (BI/NAP1/027) *Clostridioides*
802 *difficile*. *Cell Rep* 42:112861.

803 28. Carter GP, Lyras D, Allen DL, Mackin KE, Howarth PM, O'Connor JR, Rood JI.
804 2007. Binary toxin production in *Clostridium difficile* is regulated by CdtR, a LytTR
805 family response regulator. *J Bacteriol* 189:7290–7301.

806 29. Lyon SA, Hutton ML, Rood JI, Cheung JK, Lyras D. 2016. CdtR Regulates TcdA
807 and TcdB Production in *Clostridium difficile*. *PLoS Pathog* 12:e1005758.

808 30. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. *Nat*
809 *Rev Microbiol* 8:317–327.

810 31. van Houte S, Buckling A, Westra ER. 2016. Evolutionary Ecology of Prokaryotic
811 Immune Mechanisms. *Microbiol Mol Biol Rev MMBR* 80:745–763.

812 32. Owen SV, Wenner N, Dulberger CL, Rodwell EV, Bowers-Barnard A, Quinones-
813 Olvera N, Rigden DJ, Rubin EJ, Garner EC, Baym M, Hinton JCD. 2021.
814 Prophages encode phage-defense systems with cognate self-immunity. *Cell Host*
815 *Microbe* 29:1620-1633.e8.

816 33. Jarchum I, Liu M, Shi C, Equinda M, Pamer EG. 2012. Critical role for MyD88-
817 mediated neutrophil recruitment during *Clostridium difficile* colitis. *Infect Immun*
818 80:2989–2996.

819 34. Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Sušac B, Ling L, Leiner I,
820 Pamer EG. 2015. Innate Immune Defenses Mediated by Two ILC Subsets Are

821 Critical for Protection against Acute *Clostridium difficile* Infection. *Cell Host*
822 *Microbe* 18:27–37.

823 35. Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for
824 *Clostridium difficile* spores. *J Bacteriol* 190:2505–2512.

825 36. Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal
826 VM, Till LM, Huq L, Smits SA, Moor WJ, Jones-Hall Y, Smyrk T, Khanna S, Pardi
827 DS, Grover M, Patel R, Chia N, Nelson H, Sonnenburg JL, Farrugia G, Kashyap
828 PC. 2018. *Clostridioides difficile* uses amino acids associated with gut microbial
829 dysbiosis in a subset of patients with diarrhea. *Sci Transl Med* 10:eaam7019.

830 37. Bosnjak M, Karpe AV, Van TTH, Kotsanas D, Jenkin GA, Costello SP, Johanesen
831 P, Moore RJ, Beale DJ, Srikhanta YN, Palombo EA, Larcombe S, Lyras D. 2023.
832 Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of
833 enterococcal proliferation and *Clostridioides difficile* infection. *Nat Commun*
834 14:7737.

835 38. Karasawa T, Ikoma S, Yamakawa K, Nakamura S. 1995. A defined growth medium
836 for *Clostridium difficile*. *Microbiol Read Engl* 141 (Pt 2):371–375.

837 39. Aguirre AM, Yalcinkaya N, Wu Q, Swennes A, Tessier ME, Roberts P, Miyajima
838 F, Savidge T, Sorg JA. 2021. Bile acid-independent protection against
839 *Clostridioides difficile* infection. *PLoS Pathog* 17:e1010015.

840 40. Girinathan BP, DiBenedetto N, Worley JN, Peltier J, Arrieta-Ortiz ML, Immanuel
841 SRC, Lavin R, Delaney ML, Cummins CK, Hoffman M, Luo Y, Gonzalez-Escalona

842 N, Allard M, Onderdonk AB, Gerber GK, Sonenshein AL, Baliga NS, Dupuy B,
843 Bry L. 2021. In vivo commensal control of *Clostridioides difficile* virulence. *Cell*
844 *Host Microbe* 29:1693-1708.e7.

845 41. Hammond GA, Johnson JL. 1995. The toxigenic element of *Clostridium difficile*
846 strain VPI 10463. *Microb Pathog* 19:203–213.

847 42. Nagaro KJ, Phillips ST, Cheknis AK, Sambol SP, Zukowski WE, Johnson S,
848 Gerding DN. 2013. Nontoxigenic *Clostridium difficile* Protects Hamsters against
849 Challenge with Historic and Epidemic Strains of Toxigenic BI/NAP1/027 C.
850 *difficile*. *Antimicrob Agents Chemother* 57:5266–5270.

851 43. Borriello SP, Barclay FE. 1985. Protection of hamsters against *Clostridium difficile*
852 ileocaecitis by prior colonisation with non-pathogenic strains. *J Med Microbiol*
853 19:339–350.

854 44. Wilson KH, Sheagren JN. 1983. Antagonism of Toxigenic *Clostridium difficile* by
855 Nontoxigenic *C. difficile*. *J Infect Dis* 147:733–736.

856 45. Pruss KM, Enam F, Battaglioli E, DeFeo M, Diaz OR, Higginbottom SK, Fischer
857 CR, Hryckowian AJ, Van Treuren W, Dodd D, Kashyap P, Sonnenburg JL. 2022.
858 Oxidative ornithine metabolism supports non-inflammatory *C. difficile* colonization.
859 1. *Nat Metab* 4:19–28.

860 46. Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young
861 VB. 2015. Dynamics and Establishment of *Clostridium difficile* Infection in the
862 Murine Gastrointestinal Tract. *Infect Immun* 83:934–941.

863 47. Trzilova D, Warren MAH, Gadda NC, Williams CL, Tamayo R. Flagellum and
864 toxin phase variation impacts intestinal colonization and disease development in a
865 mouse model of *Clostridioides difficile* infection. Gut Microbes 14:2038854.

866 48. Keith JW, Dong Q, Sorbara MT, Becattini S, Sia JK, Gjonbalaj M, Seok R, Leiner
867 IM, Littmann ER, Pamer EG. 2020. Impact of Antibiotic-Resistant Bacteria on
868 Immune Activation and *Clostridioides difficile* Infection in the Mouse Intestine.
869 Infect Immun 88:e00362-19.

870 49. Fletcher JR, Pike CM, Parsons RJ, Rivera AJ, Foley MH, McLaren MR,
871 Montgomery SA, Theriot CM. 2021. *Clostridioides difficile* exploits toxin-mediated
872 inflammation to alter the host nutritional landscape and exclude competitors from
873 the gut microbiota. Nat Commun 12:462.

874 50. Oliveira RA, Ng KM, Correia MB, Cabral V, Shi H, Sonnenburg JL, Huang KC,
875 Xavier KB. 2020. *Klebsiella michiganensis* transmission enhances resistance to
876 *Enterobacteriaceae* gut invasion by nutrition competition. Nat Microbiol 5:630–
877 641.

878 51. Eberl C, Weiss AS, Jochum LM, Durai Raj AC, Ring D, Hussain S, Herp S, Meng
879 C, Kleigrew K, Gigl M, Basic M, Stecher B. 2021. *E. coli* enhance colonization
880 resistance against *Salmonella* Typhimurium by competing for galactitol, a context-
881 dependent limiting carbon source. Cell Host Microbe 29:1680-1692.e7.

882 52. Osbelt L, Wende M, Almási É, Derksen E, Muthukumarasamy U, Lesker TR,
883 Galvez EJC, Pils MC, Schalk E, Chhatwal P, Färber J, Neumann-Schaal M, Fischer

884 T, Schlüter D, Strowig T. 2021. *Klebsiella oxytoca* causes colonization resistance
885 against multidrug-resistant *K. pneumoniae* in the gut via cooperative carbohydrate
886 competition. *Cell Host Microbe* 29:1663-1679.e7.

887 53. Rohlffing AE, Eckenroth BE, Forster ER, Kevorkian Y, Donnelly ML, Puebla HB de
888 la, Doublié S, Shen A. 2019. The CspC pseudoprotease regulates germination of
889 *Clostridioides difficile* spores in response to multiple environmental signals. *PLOS*
890 *Genet* 15:e1008224.

891 54. Haak BW, Littmann ER, Chaubard J-L, Pickard AJ, Fontana E, Adhi F, Gyaltshen
892 Y, Ling L, Morjaria SM, Peled JU, van den Brink MR, Geyer AI, Cross JR, Pamer
893 EG, Taur Y. 2018. Impact of gut colonization with butyrate-producing microbiota
894 on respiratory viral infection following allo-HCT. *Blood* 131:2978–2986.

895

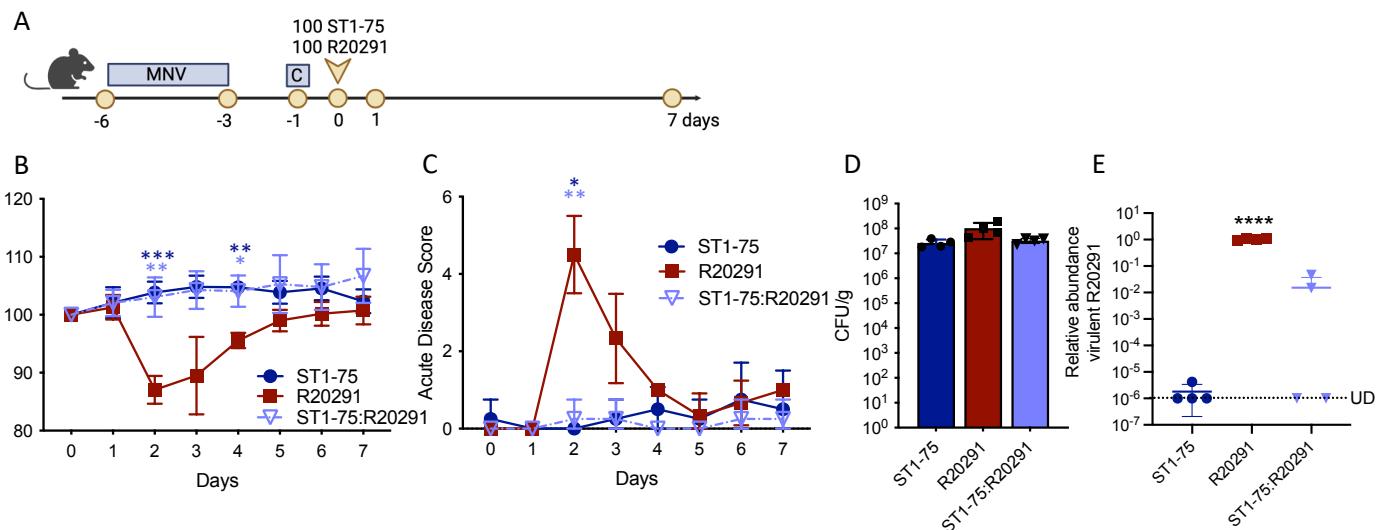
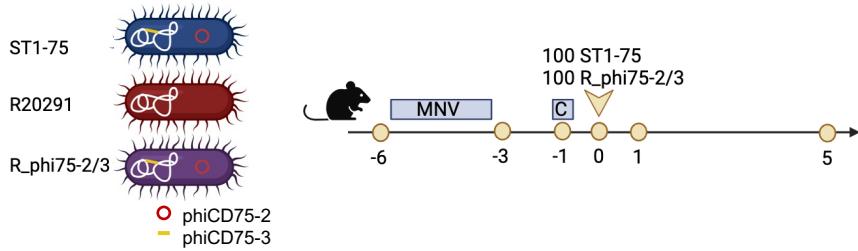
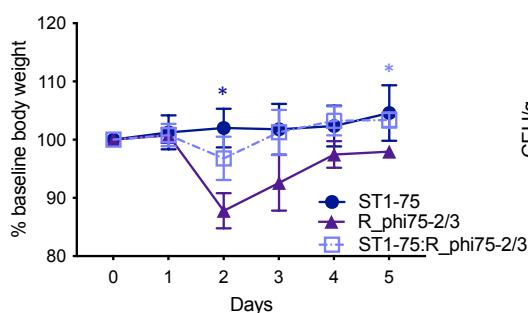
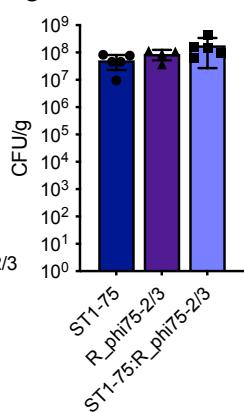




Figure 1. Coinfection of avirulent ST1-75 with a virulent *C. difficile* strain prevents disease in antibiotic-treated mice.


A

B

C

D

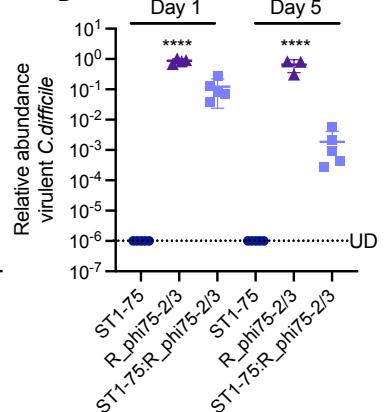


Figure 2. Protection by the avirulent ST1-75 isolate is not due to differences in lysogenic phages between strains.

A

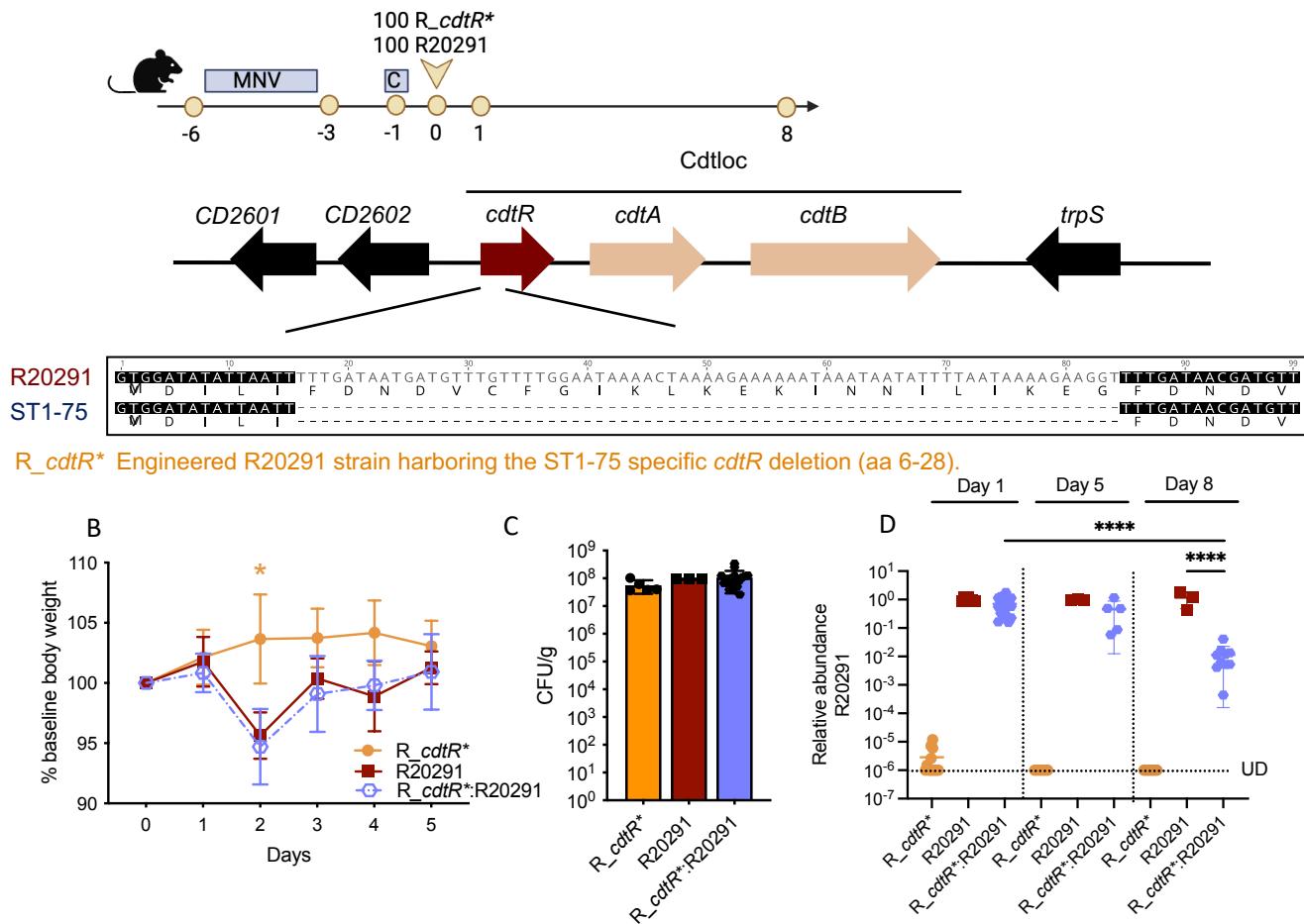


Figure 3 Coinfection with *R20291 cdtR** does not protect against disease, although it outcompetes the parental *R20291* strain.

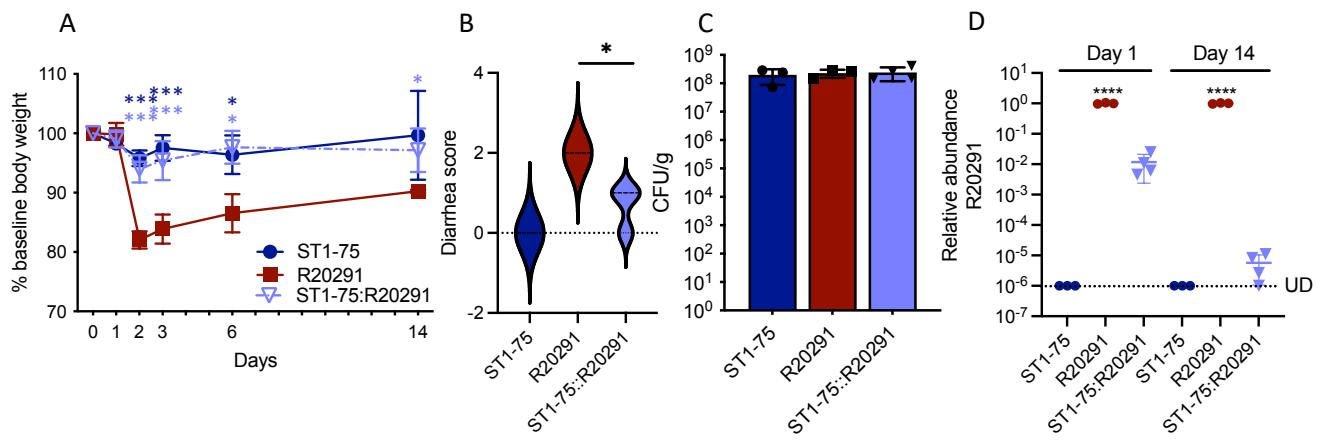


Figure 4 Protection by ST1-75 against virulent infection is independent of the microbiome.

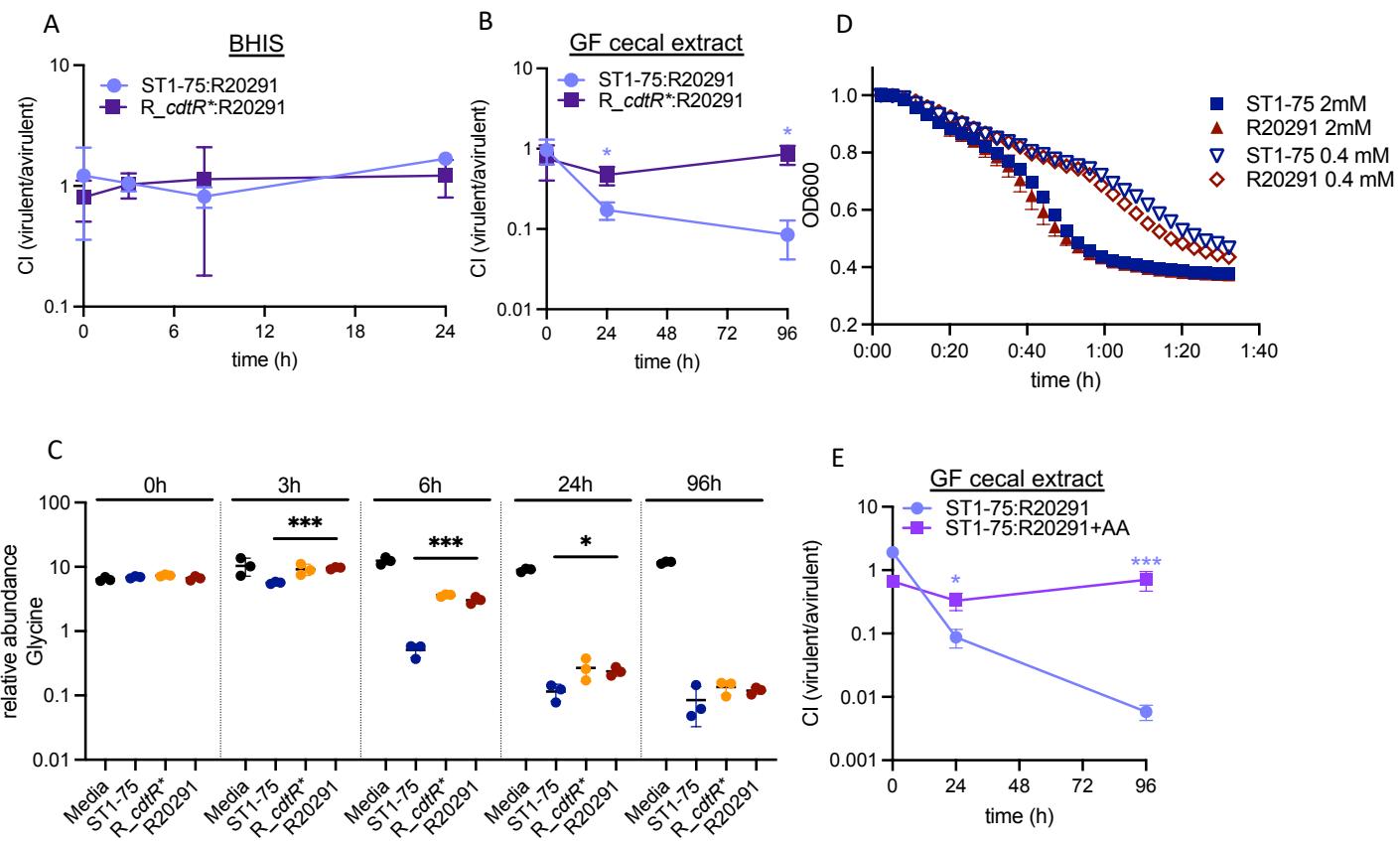


Figure 5 ST1-75 protection is attributable to faster amino acids depletion in nutrient-limited environment.

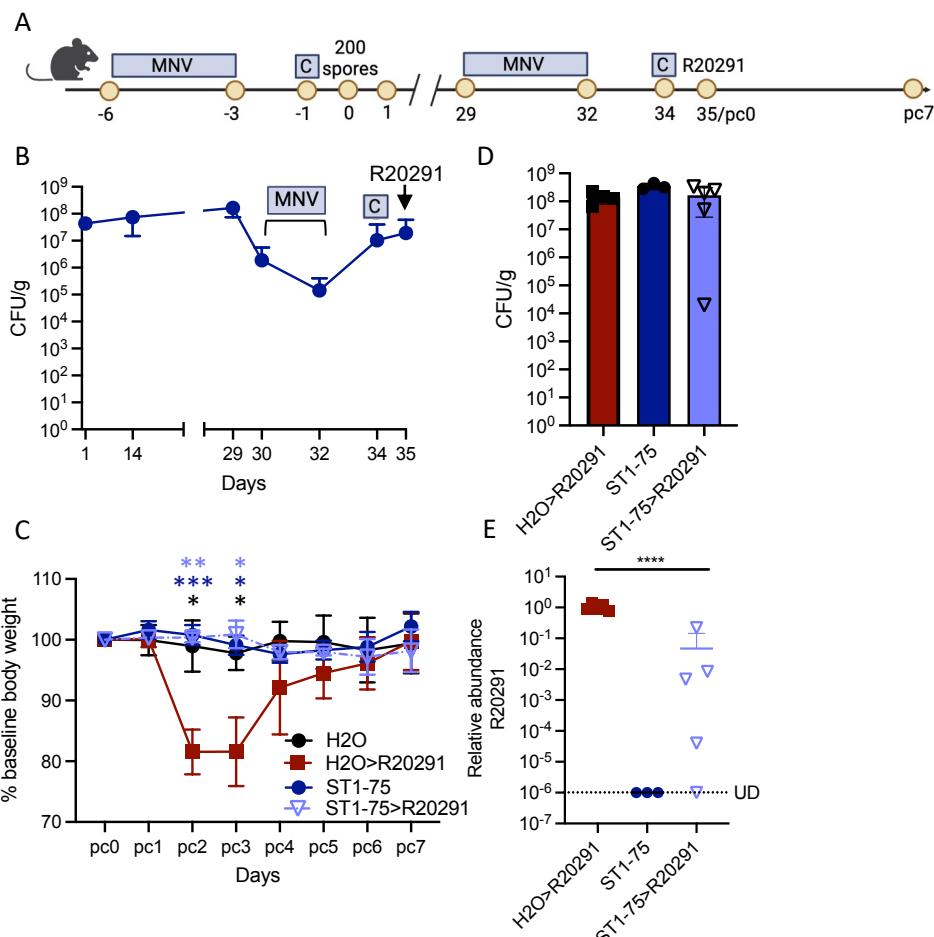


Figure 6. ST1-75 confers long-term protection via colonization resistance.

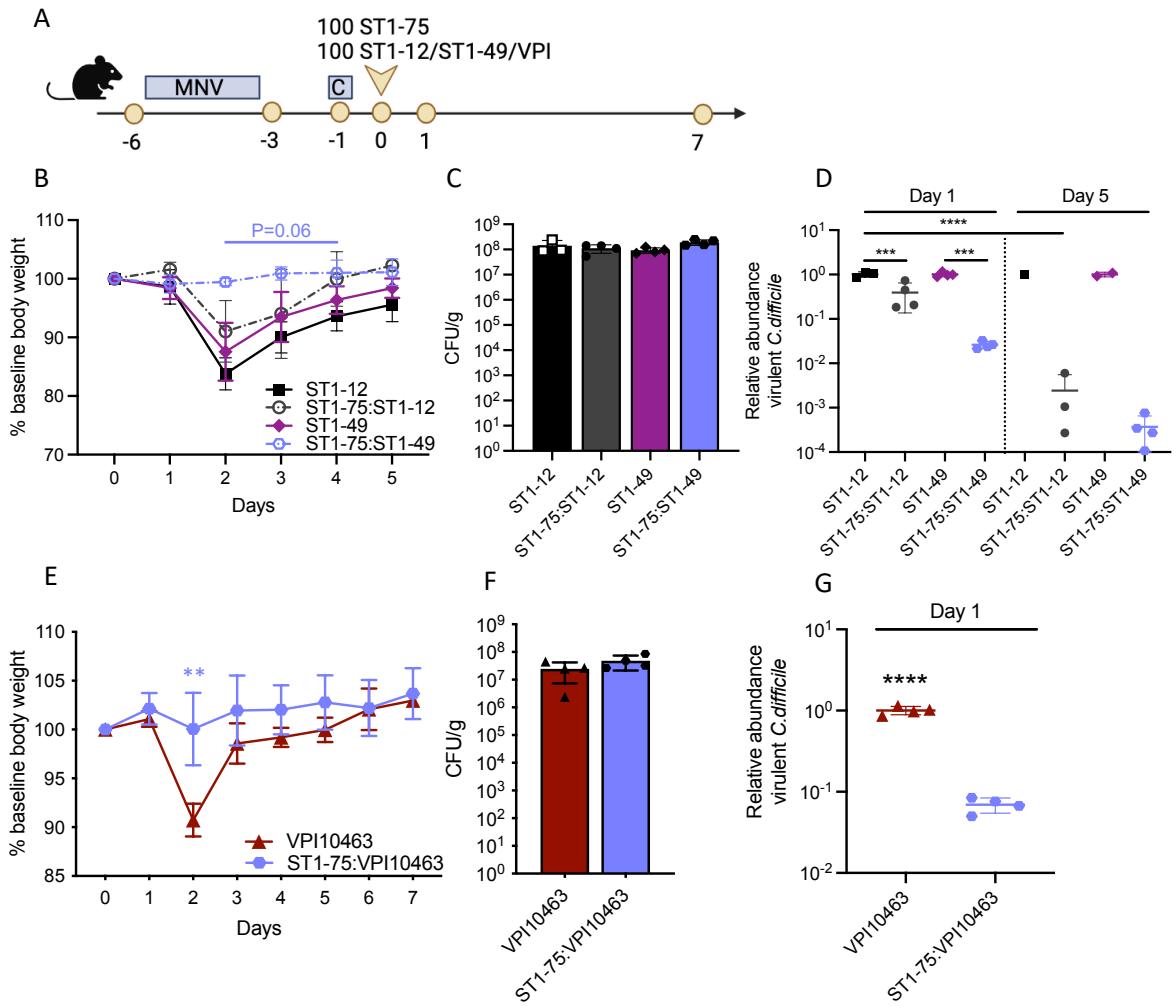


Figure 7. ST1-75 clears recent clinical ST1 isolates and the distantly related strain VPI10463.