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Abstract  

Next-generation pathogenicity predictors are designed to identify pathogenic mutations in genetic 

disorders but are increasingly used to detect driver mutations in cancer. Despite this, their 

suitability for cancer is not fully established. Here we have assessed the effectiveness of next-

generation pathogenicity predictors when applied to cancer by using a comprehensive 

experimental benchmark of cancer driver and neutral mutations. Our findings indicate that state-

of-the-art methods AlphaMissense and VARITY demonstrate commendable performance despite 

generally underperforming compared to cancer-specific methods. This is notable considering that 

these methods do not explicitly incorporate cancer-specific information in their training and have 

made concerted efforts to prevent data leakage from the human-curated training and test sets. 

Nevertheless, it should be mentioned that a significant limitation of using pathogenicity predictors 

for cancer arises from their inability to detect cancer potential driver mutations specific for a 

particular cancer type. 
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Many mutations contribute, or increase susceptibility, to various diseases, including cancer. Most 

of these mutations remain unannotated, and those that are characterized, tend to be 

disproportionately associated with certain protein groups1. It has been noticed that pathogenic 

missense mutations (resulting in changes of amino acids) are enriched at specific functional protein 

sites which has inspired the development of methods that try to decipher the functional effects of 

mutations on proteins. Various computational methods have been offered to rank mutations with 

respect to their pathogenic impacts2, and American College of Medical Genetics has recommended 

including several evidences from prediction tools to provide assessment of variants to be 

pathogenic or benign3. 

The power of the new-generation pathogenicity predictors stands from the relatively large training 

data sets and the strength of machine learning models. These models are trained to learn high-

order dependencies from protein structures and evolutionary constraints between amino acids 

using multiple sequence alignment of homologous proteins. In addition, the new generation 

pathogenicity prediction methods try to break the vicious circle of circularity and prevent the 

leakage of incorrectly annotated labels. They also leverage high statistical power by using the 

multitude of mutations observed in the human or primate population as benign and non-observed 

mutations as pathogenic.  

Here we evaluate the two state-of-the-art representative methods of this group: VARITY4 and 

AlphaMissense5. VARITY specifically focuses on the annotation of rare variants and excludes any 

features derived from previous predictions. As to AlphaMissense model, it is pre-trained using 

AlphaFold architecture and uses labels assigned based on the minor allele frequency (MAF). Low 

frequency variants are treated as pathogenic, whereas benign variants are those having relatively 

high MAF in human and primate populations. VARITY and AlphaMissense utilize a diverse range 

of features such as residue co-evolution, structural constraints, evolutionary conservation, allele 

frequencies, among others.  

Even though pathogenicity predictors primarily aim to predict pathogenic mutations in genetic 

diseases, these methods are routinely applied to detect somatic missense driver mutations in cancer 

patients. However, the logic of pathogenicity predictions is different from the cancer driver 

mutation detection. A pathogenic variant refers to a change in the DNA molecule that causes a 

malfunction of a protein leading to disease. In contrast, a cancer somatic driver mutation is a DNA 

alteration that actually confers a selective growth advantage to cancer somatic cells, thereby 

directly contributing to the development and progression of cancers. Furthermore, the underlying 

principle of classification of pathogenic variants differs from that for detecting cancer driver 

mutations. In the case of cancer driver mutation detection, the prediction framework is focused on 

distinguishing a few mutations which drive cancer development from a multitude of passenger 

mutations which do not lead to tumor growth in the same cancer patient and the same cancer type. 

On the other hand, pathogenic variants have a broader scope related to various diseases and are 

not necessarily cancer specific. These distinctions raise a question of whether the modern 

pathogenicity prediction methods can be effectively used in cancer studies to identify driver 

mutations.  
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Here we have evaluated the capability of AlphaMissense and VARITY for detecting cancer driver 

mutations. We then compared their performance to three representative non-ensemble methods 

that have been specifically designed to distinguish driver from passenger mutations in cancer: 

MutaGene6,7 FATHMM-cancer8, CHASMplus9. All these methods were chosen because they 

outperformed other approaches in recent studies10,11.  

To compare and evaluate the performance of these methods, we used a comprehensive cancer 

experimental benchmark from the previous seven experimental studies7,12 with “driver” and 

“passenger” labels assigned following7. We also ensured that mutations from the benchmark were 

observed in the TCGA pan-cancer dataset13. As a result, the benchmark comprised 1048 missense 

variants with 613 positive (driver) and 435 negative (passenger) cases from 51 human genes (Table 

S1). We found that the performance of the five tested methods varied, with auROC ranging from 

0.83 to 0.90 and Mathew’s correlation coefficient (MCC) varying from 0.55 to 0.68 (Figure 1A-

B, Table S2). The highest performance was achieved by CHASMplus among all methods. For 

comparison, frequencies of observed mutations in cancer patients, often used as a prediction score 

in clinical settings, resulted in the lowest MCC score of 0.51 and auROC of 0.79 (Table S2).   

However, it should be mentioned that some results can be affected by the data leakage from the 

training sets. For example, approximately 19% of mutations in our benchmark were present in the 

ClinVar database14, which was utilized as the training set in VARITY. Furthermore, CHASMplus 

was trained on the TCGA mutation data (all mutations in our benchmark overlapped with the 

TCGA mutations) with various criteria applied for defining positive and negative class labels, 

whereas FATHMM-cancer model also trained its weights using data on cancer-associated 

mutations. This type of data leakage from training to the benchmark dataset may cause the overfit 

of the model and the corresponding methods are shown with diagonal stripes.   

In general, the optimal performance of predictors is attained when the score distribution for 

positive cases is significantly shifted towards higher scores compared to negative cases.  As 

observed in Figure 1C, using AlphaMissense as an example, the score distribution for benign 

ClinVar mutations was shifted to the lower scores and showed a minimal overlap with the 

distribution for pathogenic mutations. However, the score distribution for cancer passenger 

mutations was broader and partially overlapped with the tail end of the score distribution for driver 

mutations. This indicates that some cancer passenger mutations could potentially be misclassified 

by the method. 

To further explore this issue, we have characterized mutations based on their occurrence frequency 

in cancer patients using the TCGA pan-cancer dataset (Figure 1D, Table S3). Our findings showed 

a consistent trend where recurrent mutations tended to have higher scores than non-recurrent ones 

across all five methods. Specifically, within the recurrent mutations class, driver mutations 

generally received higher scores than passenger mutations, as illustrated in Figure 1D. These 

observations suggest that all methods can effectively predict recurrent driver mutations. However, 

tools like AlphaMissense, VARITY, and FATHMM exhibited a second high-scoring peak within 

the score distributions for non-recurrent passenger mutations. This pattern indicates that these 

methods may be prone to falsely identifying some rare benign mutations as drivers. 
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Our findings indicate that the pathogenicity prediction methods, AlphaMissense and VARITY, 

demonstrate commendable performance despite generally underperforming compared to cancer-

specific methods. This is notable considering that these methods do not explicitly incorporate 

cancer-specific information in their training. Developers of AlphaMissense, in particular, made a 

concerted effort to prevent data leakage from the human-curated training and test sets by labeling 

pathogenicity based on the MAF values.  

Nevertheless, it should be mentioned that a significant limitation of using pathogenicity predictors 

for cancer arises from their inability to provide cancer type-specific predictions. This is critical 

because a mutation may act as a driver in one type of cancer but be a passenger in another. Overall, 

our evaluation underscores the potential for broader application of pathogenicity predictors in 

identifying cancer drivers, although this should be approached with caution. 

 

Materials and Methods 

Benchmark data set 

To evaluate and compare the performance of five methods, we utilized a comprehensive 

benchmark dataset obtained from the seven experimental studies12,15-20 

(https://github.com/Panchenko-Lab/Benchmark.git). The experimental evidence of impact of 

mutations included changes in enzymatic activity, response to ligand binding, impacts on 

downstream pathways, an ability to transform human or murine cells, tumor induction in vivo, or 

changes in the rates of progression-free or overall survival in pre-clinical models. The negative set 

mutations were those labeled as “neutral”, or without significant impacts on the normal protein 

functions or tumor formations.  

 

Mutation prediction methods 

Five established computational methods were used for comprehensive evaluation of performance: 

MutaGene6,7, FATHMM-cancer21, CHASMplus9, VARITY4  and AlphaMissense5. 

MutaGene uses the DNA context-dependent probabilistic models to estimate the nucleotide or 

codon level mutability to adjust the mutational observed recurrence to produce cancer type specific 

driver predictions. FATHMM-cancer algorithm is an adaptation of the original Functional 

Analysis through Hidden Markov Models (FATHMM) framework, which incorporates adjusted 

'pathogenicity weights' for cancer-associated mutations. To calculate cancer-specific pathogenicity 

weights, FATHMM-cancer utilizes data on cancer-associated mutations from the CanProVar 

database22. The neutral polymorphisms are obtained from the UniProt database23. 

CHASMplus utilizes a random forest algorithm to predict driver mutations in cancer. This method 

incorporates a variety of features derived from genomic and protein data, such as evolutionary 

conservation, structural impacts, molecular function annotations, and gene-level covariates. The 

TCGA mutation dataset was used to establish training labels. The positive class labels for missense 

mutations were selected based on three criteria: 1) occurrence in a curated list of 125 pan-cancer 

driver genes24, 2) occurrence in genes identified as significantly mutated in a specific cancer type 
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according to MutSigCV25 and 3) occurrence in samples with relatively low mutation rate. The 

negative cases were the remaining missense mutations in the TCGA dataset. 

The VARITY method employs a version of the gradient boosted tree algorithm (XGBoost). To 

train the VARITY model, a core and “add-on” training sets were assembled. The core training set 

consisted of high-quality missense variants, obtained from the ClinVar database and specifically 

limited to rare variants. Add-on training sets contained variants that might have less reliable 

information for determining their labels as positive or negative. The “add-on” training variants 

were obtained from various databases such as gnomDB26, HGMD27 and others. The VARITY 

model utilized a various set of features, but those informed by variant pathogenicity annotation or 

protein identity were excluded to limit the circularity. 

AlphaMissense is known for the generation of a comprehensive database of predictions for all 

possible human single amino acid substitutions.  AlphaMissense is based on a machine-learning 

model derived from the protein structure prediction capabilities of AlphaFold28. To mitigate the 

bias inherent in human-curated annotations, AlphaMissense employs weak labels derived from the 

population variant frequency data in humans and primates. Utilizing an unsupervised method to 

analyze population frequency data, AlphaMissense also identifies evolutionary patterns and 

functional characteristics of proteins. This strategy contrasts with the use of clinical data, which 

often introduces biases due to the uneven distribution of variant occurrences across genes.  

Statistical analyses and performance evaluation 

The assessment of the prediction performance was done using auROC and the maximal Matthew's 

correlation coefficient (MCC). The auROC evaluates the performance of a classification model, 

quantifying its ability to distinguish positive and negative cases correctly across all possible 

thresholds within each algorithm independently. The statistically significant difference between 

models was assessed using the DeLong test29 (Table S4), with a p-value of < 0.05 indicating a 

significant difference. The maximal Matthew's correlation coefficient (MCC) provides a 

comprehensive measure of the quality of predictions, offering a balanced evaluation across various 

conditions.  
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Figure 1. Comparative analysis of pathogenicity and driver mutation prediction methods.  

Assessment of performance of the computational methods at classifying cancer mutations using A) Area Under the 

Receiver Operating Characteristic Curve (auROC), and B) Maximum Matthew’s correlation coefficient (MCC). The 

bar marked with diagonal stripes indicates methods which can be compromised by data leakage between training and 

validation sets. The differences in auROC scores between VARITY and MutaGene, as well as between FATHMM-

cancer and AlphaMissense, were not statistically significant based on the DeLong test. C) Distribution of the 

AlphaMissense pathogenicity scores for known driver (“Driver”), passenger (“Passenger”) mutations from the 

benchmark cancer dataset as well as for pathogenic (“Pathogenic”) and benign (“Benign”) mutations from the ClinVar 

dataset. The ClinVar dataset includes pathogenicity annotations for mutations related to various diseases and not 

limited to cancer. These annotations were obtained from either experimental validations or predictions. D) Distribution 

of the normalized prediction scores of five methods across three groups of mutations, each characterized by different 

mutation frequencies observed in cancer patients. The first group (“1”) contained 534 non-recurrent mutations, with 

35% of known driver mutations among them, the second group (“2-3”) contained mutations recurring in two or three 

cancer samples with 71% of known drivers among them. Lastly, the third group (“3+”) had 94% of drivers out of 

mutations recurring in more than three cancer samples. 
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