

1 **Full genome sequencing of dozens of new DNA viruses found in Spanish**

2 **bat faeces**

3

4

5 Jaime Buigues^a, Adrià Viñals^b, Raquel Martínez-Recio^a, Juan S. Monrós^b, Rafael

6 Sanjuán^{a,c#}, José M. Cuevas^{a,c#}

7

8

9

10 ^aInstitute for Integrative Systems Biology (I2SysBio), Universitat de València and

11 Consejo Superior de Investigaciones Científicas, València, Spain

12 ²Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València,

13 València, Spain

14 ³Department of Genetics, Universitat de València, València, Spain.

15

16 #Corresponding author: cuevast@uv.es

17

18 Running title: Full DNA virus genomes in Spanish bat faeces

19 5045 words in the main text, 132 words in the summary, 9 figures and 5 supplementary

20 tables.

21 Footnote page:

22

23 Competing interests: The authors declare no competing interests.

24

1 ABSTRACT

2 Bats are natural hosts of multiple viruses, many of which have clear zoonotic potential.
3 The search for emerging viruses has been aided by the implementation of metagenomic
4 tools, which have also enabled the detection of unprecedented viral diversity. Currently,
5 this search is mainly focused on RNA viruses, which are largely over-represented in
6 databases. To compensate for this research bias, we analyzed fecal samples from 189
7 Spanish bats belonging to 22 different species using viral metagenomics. This allowed us
8 to identify 50 complete or near-complete viral genomes belonging to the families
9 *Adenoviridae*, *Circoviridae*, *Genomoviridae*, *Papillomaviridae*, *Parvoviridae*,
10 *Polyomaviridae* and *Smacoviridae*. Of these, 28 could constitute new species, doubling
11 the number of viruses currently described in Europe. These findings open the door to a
12 more thorough analysis of bat DNA viruses and their zoonotic potential.
13

14 IMPORTANCE

15 Metagenomics has become a fundamental tool to characterize the global virosphere,
16 allowing us to understand the existing viral diversity and its ecological implications, but
17 also to identify new and emerging viruses. RNA viruses have a higher zoonotic potential,
18 but this risk is also present for some DNA virus families. In our study, we have analyzed
19 the DNA fraction of faecal samples from 22 Spanish bat species, identifying 50 complete
20 or near-complete genomes of different viral families with zoonotic potential. This
21 doubles the number of genomes currently described in Europe. Metagenomic data often
22 produce partial genomes that can be difficult to analyse. Our work, however, has
23 characterised a large number of complete genomes, thus facilitating their taxonomic
24 classification and enabling different analyses to be carried out to evaluate their zoonotic
25 potential. For example, recombination studies are relevant, since this phenomenon
26 could play a major role in cross-species transmission.
27

28 **Keywords:** Bat viruses, DNA viruses, Metagenomics, Viral emergence, Viromics, Zoonotic
29 viruses.

1 INTRODUCTION

2 Bats are the largest mammalian order after rodents, with around 1400 species
3 distributed worldwide (1,2), and play an important role as pollinators, pest controllers,
4 seed dispersers, and reforesters (3). However, they are also a natural reservoir for a wide
5 variety of viruses. Indeed, some bat RNA viruses are at the origin of zoonotic diseases
6 (4,5). Moreover, viruses may directly threaten bat populations, which can have
7 important implications for ecosystem management (6,7). Bat-specific features may
8 explain their propensity to carry viruses. For example, it has been suggested that
9 evolution of metabolic mechanisms involved in flight capacity triggered pleiotropic
10 effects related to pathogen immunity, thus increasing the susceptibility of bats to be
11 asymptomatic carriers of viruses (8). Also, bats can form extremely large and densely
12 populated colonies that tend to favour high rates of viral transmission (9). In this context,
13 bat shelter disturbances may also increase contacts with humans or domestic animals,
14 leading to an increased zoonotic risk. This threat has prompted the implementation of
15 bat monitoring programs in several countries (10).

16 Numerous animal viruses have been discovered using metagenomics. These
17 studies have significantly increased our knowledge of the global virosphere (11), and
18 have enabled the identification of new and emerging viruses in various clinical and
19 environmental samples (11,12). As of September 2023, the bat-associated virus
20 database (i.e. DBatVir) included over 19,000 sequences, half of which originated from
21 Asia, followed by Africa, with European origin samples representing less than 10%. In
22 addition to this bias, most of the described bat viruses are RNA viruses, mainly
23 coronaviruses, which account for more than half of the known sequences, while only
24 10% are DNA viruses. This over-representation of RNA viruses in databases is a
25 consequence of their increased zoonotic potential (13), which has intensified efforts in
26 their discovery over DNA viruses. Finally, the vast majority of viral sequences deposited
27 in DBatVir are partial, usually from the viral polymerase or capsid genes, with full
28 genome sequences being the exception.

29 Spain hosts over thirty bat species and stands out as one of the European
30 countries with the highest number of described bat viruses, mainly RNA viruses.
31 Specifically, DBatVir reports 298 viral sequences from Spain belonging to families
32 *Rhabdoviridae*, *Adenoviridae*, *Coronaviridae*, *Herpesviridae*, *Papillomaviridae*,
33 *Filoviridae* and *Picornaviridae*. These families include potentially zoonotic viruses such
34 as lyssaviruses (14) and other rhabdoviruses (15), coronaviruses (16), herpesviruses (17),
35 and a distant relative of ebolaviruses (18). In contrast, only four and 28 complete
36 genomes of bat DNA viruses have been reported in Spain and Europe, respectively. To
37 help correct this bias, we have used metagenomics to characterize the DNA virus fraction
38 present in fecal samples from 189 bats, belonging to 22 species captured in different
39 regions of Spain. Overall, the assembly of the viral reads obtained has enabled the
40 recovery of 50 complete or nearly complete viral genomes belonging to the families
41 *Adenoviridae*, *Circoviridae*, *Genomoviridae*, *Papillomaviridae*, *Parvoviridae*,
42 *Polyomaviridae* and *Smacoviridae*, 28 of which represent novel DNA virus species.

43 MATERIALS AND METHODS

44 Study area and sample collection

1 Nylon mist nets and a harp trap (Austbat) were used to capture bats from different
2 habitats that were abundant. Each captured animal was identified to species level, sexed,
3 measured, weighed and briefly placed in cotton bags to recover fresh fecal samples.
4 Fecal samples were obtained from 189 bats captured in seven Spanish regions
5 (Cantabria, Castellón, Lugo, Murcia, Salamanca, Teruel, and Valencia; **Figure 1**) from May
6 to October 2022. Of the 22 bat species 18, 3, and one belonged to the *Vespertilionidae*,
7 *Rhinolophidae*, and *Molossidae* families, respectively. Samples from each individual
8 were pooled in tubes containing 500 µL of 1X phosphate-buffered saline (PBS), kept cold
9 initially, and then at -20 °C until they were transported to the laboratory and stored at -
10 80 °C for further processing.

11 **Sample processing and DNA extraction**

12 A fraction of the samples from each of the 189 individuals was combined into a total of
13 25 pools, each containing between one and 15 samples from the same bat species
14 (**Supplementary Table S1**). Fecal samples from each pool were homogenized in a
15 Precellys Evolution tissue homogenizer (Bertin) in 2 mL tubes with 1.4 mm ceramic
16 beads, adding 1 volume of 1X PBS to obtain a final volume of 1.5 mL. Homogenization
17 consisted of 3 cycles of 30 s at 6500 rpm, with a 10 sec pause between cycles.
18 Homogenates were centrifuged in two rounds at 20,000 g for 3 min at 4 °C. Supernatants
19 were transferred to new tubes and filtered using Minisart cellulose acetate syringe filters
20 with a 1.2 µm pore size (Sartorius). The filtrate was transferred to ultra-clean 2 mL tubes
21 and 280 µL were collected for nucleic acid extraction using the QIAamp Viral RNA mini
22 kit (Qiagen). The extract was eluted in a final volume of 40 µL and stored at -80 °C.

23 **Sequencing and viral sequence detection**

24 Extracted nucleic acids were used for library preparation using the Nextera XT DNA
25 library preparation kit with 15 amplification cycles (Illumina) and subjected to paired-
26 end sequencing in a NextSeq 550 device with the read length of 150 bp at each end.
27 Reads were deduplicated, quality filtered with a quality trimming threshold of 20, and
28 those reads below 70 nucleotides in length were removed using fastp v0.23.2 (19). De
29 novo sequence assembly was performed using SPAdes v3.15.4 (20) with the meta option,
30 and MEGAHIT v1.2.9 (21) using default parameters. The contigs assembled with either
31 method were clustered to remove replicates or small replicates of larger contigs using
32 CD-HIT v4.8.1 (22). Contigs shorter than 1000 nucleotides were removed. The resulting
33 clustered sequences were then taxonomically classified using Kaiju v1.9.0 (23) with the
34 subset of NCBI nr protein database containing archaea, bacteria and viruses,
35 downloaded on June 6, 2023. All clustered sequences were also analyzed using
36 Virsorter2 v2.2.4 (24) to detect viral contigs. In addition, viral contigs identified with
37 Virsorter2 were analyzed with CheckV v1.0.1 (25) using the CheckV database v1.5 to
38 further assess their quality. Finally, contigs corresponding to phages and those that could
39 not be classified into a known viral family were discarded. The remaining contigs were
40 selected based on their size, completeness, and the ability of the assigned virus family
41 to infect vertebrates. In addition, all contigs related to the *Smacoviridae* and
42 *Genomoviridae* families were also selected, as their ability to infect vertebrate cells has
43 not been fully ruled out (26,27).

44 **General phylogenetic analysis**

1 Sequences similar to each contig of interest were searched using DIAMOND v2.0.15.153
2 (28) with the blastp option and the NCBI nr database downloaded on June 7, 2023. For
3 each contig, the 100 closest sequences obtained from DIAMOND were retrieved and
4 checked for association with vertebrate-infecting viruses, while protein domains were
5 annotated using Interproscan v5.63-95.0 (29) with the Pfam database v35.0. Open
6 reading frames (ORFs) were predicted using ORFfinder
7 (<https://www.ncbi.nlm.nih.gov/orffinder>). For those sequences assigned to viruses with
8 the potential to infect vertebrates, a multiple sequence alignment was obtained using
9 Clustal Omega v1.2.3 (30) or MAFFT v7.490 (31), depending on whether the alignment
10 was amino acid or nucleotide based, respectively. Phylogenetic analyses were performed
11 using IQ-TREE v2.0.3 (32), and model selection was done using the built-in ModelFinder
12 feature (33). Branch support was estimated with 1000 ultra-fast bootstrapping replicates
13 (34) and 1000 bootstrap replicates for the SH-like approximate likelihood ratio test.
14 Coverage statistics for the viral contigs were calculated by remapping the trimmed and
15 filtered reads to their associated contigs using Bowtie2 v2.2.5 (35). Where indicated,
16 pairwise sequence identities were calculated with the Sequence Demarcation Toolkit
17 (SDT) v1.2 (36), using MAFFT for sequence alignment. In addition, viral contigs were
18 compared to NCBI databases using BLAST (37) to obtain identity values and refine
19 annotations.

20 **Family-specific phylogenetic analyses**

21 For papillomaviruses, the Papillomavirus Episteme website (<https://pave.niaid.nih.gov>)
22 (38) was initially consulted using the L1 Taxonomy Tool Analysis, which performs a
23 pairwise alignment with the papillomavirus sequences available in this database. Then,
24 the E1, E2, L2 and L1 nucleotide sequences from 206 representative papillomaviruses,
25 assigned to the TaxId 151340, were downloaded from NCBI, concatenated, and aligned
26 with MAFFT, using the GTR+F+I+G4 model to construct a maximum likelihood (ML) tree.
27 In addition, to carry out the coevolution analysis, the associated host phylogeny was
28 downloaded from TimeTree (www.timetree.org) (39).

29 For the phylogenetic analysis of viral contigs identified as polyomaviruses, large
30 tumor antigen (LTAg) amino acid sequences were aligned with Clustal Omega and
31 ambiguous regions in the alignment were trimmed with trimAl v1.2rev59 (40) using the
32 *gappyout* parameter. For the *Parvoviridae* family, the analysis was done using the
33 complete NS1 amino acid sequence and 126 members of the *Parvovirinae* subfamily
34 (41). Sequences were aligned using Clustal Omega and the ML tree was computed using
35 LG+F+I+G4 as the amino acid substitution model with 1000 ultrafast bootstrap
36 replicates. For the family *Adenoviridae*, the analysis was performed using the Hexon and
37 DNA-dependent DNA polymerase sequences. Sequences were aligned using Clustal
38 Omega and the ML tree was computed using LG+F+I+G4 as the amino acid substitution
39 model with 1000 ultrafast bootstrap replicates. For the Cressdnnaviricota phylum (i.e.
40 *Circoviridae*, *Smacoviridae*, and *Genomoviridae* families), the amino acid sequence of
41 the replication-associated protein (i.e. Rep) was used following previous work
42 (27,42,43). For *Genomoviridae* and *Smacoviridae* families, Rep alignments were also
43 trimmed using the *gappyout* option from trimAl. In addition, to perform genome-wide
44 pairwise analyses, all genomic sequences were first reoriented, optimizing the position
45 of the putative origin of replication (*ori*) using MARS (44).

1 **Amplification of viral sequences by PCR**

2 Those viruses identified as having a high probability of infecting bats, and not originating
3 from other sources such as diet, were analyzed by PCR. Thus, viruses assigned to the
4 *Smacoviridae* and *Genomoviridae* families were excluded from this analysis (26,27). For
5 this purpose, specific primers were designed to amplify a small region of about 500 bp
6 for each virus of interest (**Supplementary Table S2**). Initially, nucleic acids were extracted
7 individually from each animal sample for the pools of interest using the QIAamp Viral
8 RNA mini kit (Qiagen), and DNA was eluted in 30 µL. Then, 1 µL was analyzed by PCR
9 using NZYtaq II Green Master Mix (NZYTech) and specific primers for each virus of
10 interest on all individual samples from the pool where it was detected. To assign which
11 samples were positive for each target virus and their geographical location, amplification
12 products were visualized by electrophoresis using a 1% agarose gel with Green Safe
13 Premium (NZYTech).

14 **RESULTS AND DISCUSSION**

15 We obtained feces from 189 bats belonging to 22 species. These samples were processed
16 in 25 pools, each pool containing exclusively samples belonging to the same species.
17 Illumina sequencing from DNA samples generated between 4.9 and 23 million raw reads
18 per pool (**Supplementary Table S3**). Quality-filtered reads were de novo assembled, and
19 the resulting contigs were analyzed to identify viral sequences. As a result, 35,607 viral
20 contigs over 1kb were obtained, of which 1053 were complete or nearly complete. Of
21 these metagenome-assembled viral genomes (MAVGs), we focused on 50 belonging to
22 five different families of vertebrate viruses (*Polyomaviridae*, *Papillomaviridae*,
23 *Adenoviridae*, *Parvoviridae*, and *Circoviridae*), as well as two little studied families
24 (*Smacoviridae* and *Genomoviridae*). These 50 MAVGs were identified in individuals from
25 11 different bat species (**Figure 2**). Eight of the MAVGs showed >85% sequence identity
26 with previously described viruses at >90% coverage, while 42 corresponded to potential
27 new viruses (**Supplementary Table S4**). The proposed names and accession numbers for
28 these MAVGs are shown in **Supplementary Table S4**. In each of the sections below, we
29 discuss whether these MAVGs can be considered new viral species according to the
30 criteria established for each viral family.

31 **Novel members of the family *Papillomaviridae***

32 Four MAVGs showed a genomic organization typical of papillomaviruses: MAVG3,
33 MAVG45, MAVG46, and MAVG49. These were detected in fecal samples from
34 *Barbastella barbastellus* (pool P8), *Pipistrellus kuhlii* (P20), *Rhinolophus ferrumequinum*
35 (P24), and *Plecotus austriacus* (P26), respectively (**Figure 2; Supplementary Table S4**).
36 All encoded four early genes (E6, E7, E2, and E1) and two late genes (L2, L1) located on
37 the same coding strand (6), with non-coding regions between L1 and E6 genes, and
38 between early and late genes. In addition, MAVG49 contained a small intergenic region
39 between the L1 and L2 genes.

40 To ascertain the precise geographic origin of each virus, we used sequence-
41 specific primers to test by PCR each individual sample from the pools containing these
42 four MAVGs (**Supplementary Tables S1, S2 and S4**). This showed that MAVG3 (identified
43 in pool P8) was present in three animals captured in Northern Spain (Begonte, Lugo),
44 whereas MAVG49 (pool P26) was detected in a single individual captured in a nearby

1 location (Outeiro de Rei, Lugo), and MAVG 45 (pool P20) was present in three animals
2 captured in Eastern Spain (Fontanars del Aforins, Valencia). Finally, MAVG46 was found
3 in pool P24, which only included two animals from Fuente Álamo (Murcia), so no further
4 analysis was required in this case. Despite the small number of animals sampled, these
5 results suggest that at least some of the papillomaviruses identified are widely
6 distributed in the populations tested.

7 Papillomavirus taxonomy is based on nucleotide sequence identity across the L1
8 gene (45). Two papillomaviruses belong to the same genus if they share more than 60%
9 sequence identity, whereas sequences that share >70% identity are considered viral
10 variants of the same species. MAVG3 and MAVG45 shared 71.3% and 77.4% sequence
11 identity, respectively, with *Eptesicus regulus* papillomavirus (Acc. MT766314.1), an
12 unclassified papillomavirus from Australian bats, and thus were variants of the same
13 species. We note that both MAVGs were detected in different bat species, also distinct
14 from the Australian variant, which reveals cross-species transmission. In addition, this is
15 the first time that variants of the genus including this species have been described
16 outside Australia. MAVG49 shared 73.6% sequence identity with *Eptesicus serotinus*
17 papillomavirus 1 and 3 (Acc. NC_038518.1 and KC858265.1, respectively), both isolated
18 from Spanish bats, and was therefore considered a new type of the same species. In this
19 case, although the geographical location is common, these viral variants have been
20 detected in different bat species, again showing cross-species transmission. This
21 demonstrates that at least bat papillomaviruses have the ability to infect
22 phylogenetically closely related hosts. Finally, MAVG46 was considered a new
23 papillomavirus species, since it showed 68.9% sequence identity with the closest
24 sequence, *Rhinolophus ferrumequinum* papillomavirus 1 (Acc. NC_038527), identified in
25 the same bat species.

26 A recent study has shown direct evidence of virus-host coevolution in a subclade
27 including several bat and other mammalian papillomaviruses (46). Since our MAVGs
28 were embedded in this subclade (global tree not shown), we decided to replicate this
29 previous analysis to test whether the observed cross-species transmission events could
30 compromise coevolution detection. To do so, the subclade of interest was selected from
31 the global papillomavirus tree, as previously described (46), and a tanglegram including
32 the obtained tree with the cytochrome B nucleotide sequences of the associated host
33 species was then used (**Figure 3**). The Wasserstein distance (46,47) between the host
34 and virus phylogenetic trees was 0.25 (two trees are topologically identical when the
35 Wasserstein distance is 0). In addition, we used the Procrustean Approach to
36 Cophylogeny (PACo) (48) to assess the congruence between the viral and host
37 phylogenies. The observed best-fit Procrustean superposition (3.78) lied outside the 95%
38 confidence interval of the ensemble of 1000 network randomizations in the null model.
39 These results confirm that, at the local level, co-speciation may be a determining factor
40 in the evolution of papillomaviruses, as previously shown (46). Globally, however, the
41 evolutionary history of papillomaviruses is more complex, with multiple polyphyletic
42 lineages infecting the same host, such as primates, rodents or dolphins (6). For example,
43 the clade grouping several genera of bat papillomaviruses also included a human
44 papillomavirus (human papillomavirus type 41; **Figure 3**). This suggests that other
45 evolutionary mechanisms, like intra-host divergence or niche adaptation, likely
46 contribute to the papillomavirus phylogenetic tree (49,50).

1 **Novel members of the family *Polyomaviridae***

2 Three polyomavirus genomes, MAVG25, MAVG34, and MAVG50, were detected in fecal
3 samples from *Myotis daubentonii* (pool P11), *Eptesicus serotinus* (pool P14), and
4 *Plecotus auritus* (pool P27), respectively (**Figure 2; Supplementary Table S4**). MAVG34
5 and MAVG50 showed a genome organization typical of polyomaviruses, presenting early
6 expressed regulatory genes (encoding LTag and small tumor antigen (STAg)) and late
7 expressed protein genes (VP1 and VP2) (51). MAVG25, however, has a slightly different
8 organization, as LTag and STAg protein domains are in the same ORF, whereas they are
9 usually found in different ORFs. As above, PCR was carried out for individual samples to
10 reveal precise geographical location of these viruses (**Supplementary Tables S1, S2, and**
11 **S4**). This showed that all were present in very close locations in Northwestern Spain.
12 Specifically, MAVG34 and MAVG50 were detected in two individual samples obtained
13 from Outeiro de Rei (Lugo) and pertaining to pools P14 and P27, respectively, while
14 MAVG25 was detected in two individual samples from pool P11 obtained at another
15 location from the same province (Rábade, Lugo; **Supplementary Table S1**).

16 According to the phylogenetic analysis of the LTag sequence (51,52), these three
17 MAVGs belong to the genus *Alphapolyomavirus*, and more specifically, they are located
18 within a monophyletic group characterized by the absence of the VP3 protein and a long
19 VP1 (53) (**Figure 4**). This group is also known as Merkel cell polyomavirus group or VP3-
20 less clade (53), and includes numerous viruses from bats, but also from many other
21 mammals, such as various primates, including humans. Since the three MAVGs showed
22 less than 85% sequence identity in LTag with other polyomaviruses, they represent new
23 species according to ICTV criteria. Specifically, MAVG25 showed a peak sequence identity
24 of 73.5% with *Myotis davidii* polyomavirus (Acc. LC426673.1), an unclassified
25 polyomavirus isolated from *Myotis davidii* in China. MAVG34 showed a maximum
26 sequence identity of 78.4% with an unclassified polyomavirus isolated from *Pipistrellus*
27 *pipistrellus* in China (Acc. LC426677.1). Finally, MAVG50 showed the highest sequence
28 identity (76.10%) with an unclassified bat polyomavirus isolated from *Tadarida*
29 *brasiliensis* in Brazil (Acc. NC_026015.1).

30 Infections of different species of horseshoe bats by the same polyomavirus have
31 been described (54), providing evidence that short-range host-switching of
32 polyomaviruses is possible in some cases. Thus, the reported new polyomaviruses are
33 unlikely to be able to infect human cells, but their characterization may help elucidate
34 the evolutionary history of polyomaviruses and clarify the conditions for important host-
35 switching events.

36 **Novel members of the family *Parvoviridae***

37 Two parvovirus genomes, MAVG43 and MAVG48 were detected in fecal samples from
38 *Pipistrellus kuhlii* (pool P19) and *Rhinolophus ferrumequinum* (P24), respectively (**Figure**
39 **2; Supplementary Table S4**). Both MAVGs showed the typical parvovirus genome
40 organization, encoding the nonstructural protein 1 (NS1), and a single capsid protein (VP)
41 (55). PCR using NS1-specific primers (**Supplementary Tables S1, S2, and S4**) led to
42 detection of MAVG43 in a single sample from pool P19 collected in Eastern Spain
43 (Fontanar dels Aforins). MAVG48 was detected in a pool containing only two individuals
44 captured in the same location (Fuente Álamo, Murcia) and hence no PCR was done to
45 identify the virus in individual samples.

1 Parvovirus species are defined using an 85% identity threshold for the NS1 amino
2 acid sequence (41). MAVG43 belongs to genus *Protoparvovirus* within the *Parvovirinae*
3 subfamily (**Figure 5**), but BLASTp analysis of its NS1 sequence against protoparvoviruses
4 only showed a peak sequence identity of 44.3% and a coverage of 86% with
5 Protoparvovirus carnivoran1 (Acc. MT815972.1). Consequently, MAVG43 is a new
6 protoparvovirus species. MAVG48 was assigned to genus *Dependoparvovirus* (**Figure 5**),
7 also included in the *Parvovirinae* subfamily, and showed a maximum sequence identity
8 of 98.4% with Adeno-associated virus Croatia cul1_12 (Acc. QHY93489.1) in the NS1
9 protein sequence. Therefore, MAVG48 is a very close variant of a virus described in
10 another European country, but it should be noted that this is the first time that a
11 dependoparvovirus is detected in Spanish bat populations.

12 Both *Protoparvovirus* and *Dependoparvovirus* genera contain viruses from
13 different mammals, such as bats, rodents and primates. Within the genus
14 *Dependoparvovirus*, there are adeno-associated viruses that infect humans but are
15 considered as non-pathogenic (56). Furthermore, human-associated protoparvoviruses
16 have been detected in recent years, mostly in metagenomic fecal studies. Some of these
17 protoparvoviruses have been found in individuals with gastrointestinal disease (57).
18 Parvoviruses have undergone species jumps and also exhibit high levels of genome
19 variation, similar to RNA viruses (58). The new protoparvovirus described here,
20 *Pipistrellus kuhlii* parvovirus, was associated with a bat species that lives in close
21 proximity to humans and their pets. This close contact is a risk factor for zoonotic
22 infections, given that protoparvovirus host-switching events are believed to involve cats,
23 dogs, and raccoons (58,59).

24 **Novel members of the family *Adenoviridae***

25 Two adenovirus genomes, MAVG44 and MAVG47, were detected in pooled fecal samples
26 from *Pipistrellus kuhlii* (pool P20) and *Rhinolophus ferrumequinum* (P24), respectively
27 (**Figure 2; Supplementary Table S4**). Both viruses belonged to the genus *Mastadenovirus*
28 (**Figure 6**) and showed the typical genome organization of this group. MAVG44 had a GC
29 content of 55%, in the range described for mastadenoviruses (60), and presented
30 inverted terminal repeats (ITR) of 32 bp at both ends of the genome and 22 ORFs with
31 putative coding sequences. As expected for the E3 region of non-primate
32 mastadenoviruses, which is usually much simpler and shorter (61), MAVG44 showed a
33 putative E3 region including a single ORF of 3671 nt. Although no protein domains were
34 detected in this ORF, a BLASTp search showed 30% sequence identity and 90% coverage
35 with the E3L protein of an Australian bat mastadenovirus (Acc. QGX41974.1). PCR
36 analysis showed that MAVG44 was present in three individuals from pool P20 sampled
37 at the same location (Fontanar dels Aforins; **Supplementary Tables S1, S2, and S4**).
38 MAVG47 was found in a pool of two samples from the same location (Fuente Álamo,
39 Murcia), so no PCR testing was done in this case. This genome had a GC content of 45.7%,
40 and presented ITRs of 58 bp at both ends of the genome and 22 ORFs with putative
41 coding sequences. MAVG47 showed a single ORF for E3, which contained
42 immunoglobulin domains (IPR007110) and exhibited 30.7% amino acid sequence
43 identity and 97% coverage with the E3L protein of bat mastadenovirus WIV9 (Acc.
44 YP_009246364.1).

1 Taxonomic classification of mastadenoviruses is usually done using a non-
2 structural protein, such as DNA polymerase, and a structural protein (e.g. hexon protein)
3 (62). ML trees for two different proteins showed that MAVG44 and MAVG47 clustered
4 with non-primate adenoviruses (**Figure 6**). Species definition is a complex task in
5 mastadenoviruses, as it depends on several factors, such as phylogenetic distance,
6 genome organization, or host range, among others. In any case, for MAVG44, a BLASTp
7 search of the DNA polymerase and hexon amino acid sequences showed a maximum
8 sequence identity of 76.6% and 83%, respectively, with a mastadenovirus found in
9 *Chalinolobus gouldii*, an Australian bat (Acc. QGX41974.1). MAVG47 showed a peak
10 sequence identity of 81.6% and 82.9% for the DNA polymerase and hexon sequences,
11 respectively, with bat mastadenovirus WIV10 (Acc. YP_009246389.1), a member of the
12 bat mastadenovirus C species isolated from *Rhinolophus sinicus* in China.

13 Adenoviruses are believed to be highly abundant in European bats (63), but
14 additional sequencing efforts would be needed to achieve a more genome-wide
15 characterization of these viruses. In this study, we have identified two complete
16 genomes. However, due to the large genome size of adenoviruses, metagenomic studies
17 typically yield partial sequences (63,64). Previous work based on partial hexon
18 sequences has suggested that cross-species transmission may have occurred between
19 human and bat hosts (65). Obtaining complete genomes may help to address this more
20 thoroughly and to identify the origins of recombination events that could play a major
21 role in cross-species transmission (66).

22 Novel members of the family *Circoviridae*

23 Eight circovirus MAVGs were detected in four pooled fecal samples from *Barbastella*
24 *barbastellus* (P8; MAVG4 and MAVG5), *Myotis mystacinus* (P9; MAVG10, MAVG11, and
25 MAVG12), *Myotis capaccinii* (P13; MAVG31 and MAVG32), and *Eptesicus serotinus* (P14;
26 MAVG35; **Figure 2**; **Supplementary Table S4**). All MAVGs included two bidirectional
27 major (>600 nt) ORFs encoding the Rep and capsid (Cp) proteins, and genomes sizes
28 ranged between 1.73 and 2.17 kb, the expected size for a circovirus genome (67). In
29 addition, the conserved nona-nucleotide motif marking the *ori* was detected in the
30 intergenic region located between the 5' ends of both ORFs. PCR analysis showed that
31 MAVG4, MAVG10, MAVG11, and MAVG12 were present in only one individual, in all
32 cases at different locations in the province of Lugo (**Supplementary Tables S1, S2, and**
33 **S4**). MAVG5 was detected in four individuals, three from Lugo and one from Salamanca.
34 In addition, MAVG31 was present in five individuals, one from Lugo and four from
35 Murcia. Finally, MAG32 and MAVG35 were detected in three individuals each, sampled
36 from Murcia and Lugo, respectively.

37 The family *Circoviridae* includes two genera, and taxa assignment to each genus
38 is based on the location of the *ori*, which is found on the Rep or CP coding strand for the
39 genera *Circovirus* and *Cyclovirus*, respectively. Using this criterion together with Rep
40 phylogenetic analysis, five MAVGs were assigned to the *Cyclovirus* genus and three to
41 the *Circovirus* genus (**Figure 7**). Given that the species demarcation threshold is 80%
42 genome-wide nucleotide sequence identity (67), the three MAVGs assigned to *Circovirus*
43 genus could be considered new species. Concerning cycloviruses, MAVG10 and MAVG12
44 showed a genome-wide maximum sequence identity of 92.1 and 98.9% with
45 cycloviruses isolated from chicken feces (Acc. MN379598.1 and NC_040639.1,

1 respectively), whereas MAVG31 presented an 82.2% with a human associated
2 cyclovirus (Acc. MZ201305.1).

3 The zoonotic potential of members of the family *Circoviridae* remains unknown.
4 Most of the functional information available about this family comes from the study of
5 a few members of the genus *Circovirus*, mainly porcine circoviruses (68) and beak and
6 feather disease virus (69). In the case of the genus *Cyclovirus*, however, which has no
7 cultured representatives, very little is known about its infectivity, transmission or host
8 range. Hence, the identification by metagenomics of members of this family in bat feces
9 does not allow us to ascertain whether these are true bat viruses, particularly for
10 cycloviruses.

11 **Novel members of the family *Smacoviridae***

12 Seven MAVGs belonging to this family were detected in two pooled fecal samples from
13 *Myotis mystacinus* (P9; MAVG13, MAVG14, MAVG15, MAVG16, MAVG17, and MAVG18),
14 and *Eptesicus serotinus* (P14; MAVG36; **Figure 2; Supplementary Table S4**). All MAVGs
15 contained two ORFs encoding the Rep and capsid proteins in an ambisense orientation,
16 and genomes sizes ranged between 2.4 and 2.9 kb, as expected for a smacovirus genome
17 (70). In addition, all MAVGs also showed the *ori* nonanucleotide motif described in the
18 *Smacoviridae* family and two intergenic regions (42), except MAVG15, which only
19 presented one. The genus demarcation threshold for this family is 40% Rep amino acid
20 sequence identity (42). Accordingly, all MAVGs belonged to the genus *Porprismacovirus*,
21 except MAVG36, which was assigned to the genus *Inpeasmacovirus* (**Figure 8**). According
22 to the 77% genome-wide pairwise sequence identity criterion used for delimitating
23 species (70), all MAVGs corresponded to new species, although the high sequence
24 identity shared by MAVG14 and MAVG16 (80.7%) grouped them as members of the
25 same species.

26 The biology of smacoviruses is largely unknown, as they have not been cultured
27 to date and have simply been associated with animals, insects, and even archaea (26,70).
28 Most of the members of this family have been detected in metagenomic studies of
29 animal fecal samples (70), with a few being detected in domestic animal serum and
30 tracheal swab samples (71,72). Therefore, it has not been possible to assign a specific
31 host and it is not known whether these viruses can be pathogenic for mammals or
32 vertebrates.

33 **Novel members of the family *Genomoviridae***

34 We detected 24 MAVGs belonging to *Genomoviridae* family in seven pooled fecal
35 samples from seven bat species (**Figure 2; Supplementary Table S4**). Genome sizes
36 ranged between 2.02 and 2.36 kb, as expected for genomoviruses (73). MAVGs showed
37 one or two ORFs encoding the Rep and one ORF encoding the capsid protein, except for
38 MAG9, which had two. In accordance with the genus demarcation criterion, which is
39 based on Rep amino acid sequence phylogeny, 10, 9, and 5 MAVGs were assigned to the
40 genera *Gemycircularvirus*, *Gemykolovirus*, and *Gemykrogvirus*, respectively (**Figure 9**).
41 The species delimitation threshold is a 78% pairwise sequence identity genome-wide
42 (27). Accordingly, 12 new species were identified, some of which included more than
43 one MAVG (**Figure 9; Supplementary Table S5**). MAVG19, MAVG21, MAVG27, and

1 MAVG39, showed >99% genome sequence identity with other genomoviruses
2 previously described (**Supplementary Table S4**).

3 The first known genomovirus was isolated from the plant pathogenic fungus
4 *Sclerotinia sclerotiorum* (73). Since then, more than 400 complete genomes have been
5 described in metagenomic studies, and 10 genera have been defined (27). Members of
6 this family have been found in insects, plants, fungi, and vertebrates (including humans),
7 and the true extent of their host range remains unknown, as does their involvement in
8 a pathogenic role.

9 CONCLUSIONS

10 The starting point for the study of viral emergence is the characterisation of wildlife di-
11 versity. This has prioritized tropical regions, where land-use alterations, high wildlife di-
12 versity, and bush meat consumption are believed to increase disease emergence risk
13 (74). It should be noted, though, that some emerging viral diseases have not originated
14 in tropical areas (75,76). Wildlife biodiversity is lower in Europe, which implies a lower
15 zoonotic potential, but also suffers from a serious problem of destruction and transfor-
16 mation of different habitats, particularly in Spain, which promotes closer contacts be-
17 tween humans and wild mammals. Indeed, animal-to-human viral transmission events
18 regularly occur in Europe (77). It is therefore necessary to undertake studies to charac-
19 terise wildlife diversity in this region, and to develop local viral surveillance programs,
20 which will improve our ability to respond to potential outbreaks. For this purpose, bats,
21 due to their high potential to harbour zoonotic viruses, are the primary action target.

22 RNA viruses have a higher zoonotic potential than DNA viruses (78). However,
23 this risk is also present for some DNA virus families, where there are examples of viruses
24 with zoonotic potential and which represent a threat to both animal populations and
25 public health. Our study design was not intended to draw epidemiological conclusions,
26 but primarily to reflect the existing diversity of DNA viruses in Spanish bats. However, it
27 should be noted that, despite the small sample size, half of the viruses analyzed by PCR
28 were present in more than one individual, suggesting that these infections were not
29 exceptional but could be characterised by high population prevalence. In addition, our
30 results also point to the need to study DNA viruses to better understand key aspects,
31 such as transmission dynamics or host range. This will allow us to discern their true
32 zoonotic potential and to establish surveillance strategies, as is currently being
33 considered for RNA viruses.

34 Acknowledgments

35 This research was financially supported by grant PID2020-118602RB-I00 from the
36 Spanish Ministerio de Ciencia e Innovación (MICINN) and cofinanced by FEDER funds,
37 and grant CIAICO/2022/110 from the Conselleria de Educación, Universidades y Empleo
38 (Generalitat Valenciana).

39 Data availability

40 The raw sequence reads were deposited in the Sequence Read Archive of GenBank
41 under accession numbers SRR27912327-51. The MAVGs described in this study, which
42 corresponded to complete or nearly complete genomes, were deposited in Genbank
43 under accession numbers PP410048-97 (**Supplementary Table S4**).

1 **References**

2. Bolatti EM, Zorec TM, Montani ME, Hošnjak L, Chouhy D, Viarengo G, et al. A Preliminary Study of the Virome of the South American Free-Tailed Bats (*Tadarida brasiliensis*) and Identification of Two Novel Mammalian Viruses. *Viruses*. 2020;12(4):422.
6. Van Brussel K, Mahar JE, Ortiz-Baez AS, Carrai M, Spielman D, Boardman WSJ, et al. Faecal virome of the Australian grey-headed flying fox from urban/suburban environments contains novel coronaviruses, retroviruses and sapoviruses. *Virology*. 2022;576:42–51.
10. Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. Ecosystem services provided by bats. *Ann N Y Acad Sci*. 2011;1223(1):1–38.
12. Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. *ISME J*. 2016;10(3):609–20.
16. Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Bat-borne virus diversity, spillover and emergence. *Nat Rev Microbiol*. 2020;18(8):461–71.
18. García-Pérez R, Ibáñez C, Godínez JM, Aréchiga N, Garin I, Pérez-Suárez G, et al. Novel papillomaviruses in free-ranging Iberian bats: No virus-host co-evolution, no strict host specificity, and hints for recombination. *Genome Biol Evol*. 2014;6(1):94–104.
22. Bolatti EM, Viarengo G, Zorec TM, Cerri A, Montani ME, Hosnjak L, et al. Viral Metagenomic Data Analyses of Five New World Bat Species from Argentina: Identification of 35 Novel DNA Viruses. *Microorganisms*. 2022;10(2).
26. Brook CE, Dobson AP. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. *Trends Microbiol*. 2015;23(3):172–80.
28. Serra-Cobo J, López-Roig M. Bats and Emerging Infections: An Ecological and Virological Puzzle. *Adv Exp Med Biol*. 2016;972:35–48.
30. Calisher CH, Childs JE, Field HE, Holmes K V., Schountz T. Bats: Important Reservoir Hosts of Emerging Viruses. *Clin Microbiol Rev*. 2006;19(3):531–45.
33. Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, et al. Virus taxonomy in the age of metagenomics. *Nat Rev Microbiol*. 2017;15(3):161–8.
36. Zhang YZ, Shi M, Holmes EC. Using Metagenomics to Characterize an Expanding Virosphere. *Cell*. 2018;172(6):1168–72.
38. Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. *ILAR J*. 2017;58(3):343–58.
41. Ceballos NA, Morón SV, Berciano JM, Nicolás O, López CA, Juste J, et al. Novel Lyssavirus in Bat, Spain. *Emerg Infect Dis*. 2013;19(5):793–5.
43. Aznar-Lopez C, Vazquez-Moron S, Marston DA, Juste J, Ibáñez C, Berciano JM, et al. Detection of rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats. *Journal of General Virology*. 2013;94(1):69–75.

- 1 16. Falcón A, Vázquez-Morón S, Casas I, Aznar C, Ruiz G, Pozo F, et al.
- 2 Detection of alpha and betacoronaviruses in multiple Iberian bat species.
- 3 Arch Virol. 2011;156(10):1883–90.
- 4 17. Pozo F, Juste J, Vázquez-Morón S, Aznar-López C, Ibáñez C, Garin I, et al.
- 5 Identification of Novel Betaherpesviruses in Iberian Bats Reveals Parallel
- 6 Evolution. PLoS One. 2016;11(12):e0169153.
- 7 18. Negredo A, Palacios G, Vázquez-Morón S, González F, Dopazo H, Molero F,
- 8 et al. Discovery of an Ebolavirus-Like Filovirus in Europe. PLoS Pathog.
- 9 2011;7(10):e1002304.
- 10 19. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ
- 11 preprocessor. Bioinformatics. 2018;34(17):i884–90.
- 12 20. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: A new
- 13 versatile metagenomic assembler. Genome Res. 2017;27(5):824–34.
- 14 21. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-
- 15 node solution for large and complex metagenomics assembly via succinct
- 16 de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.
- 17 22. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large
- 18 sets of protein or nucleotide sequences. Bioinformatics.
- 19 2006;22(13):1658–9.
- 20 23. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for
- 21 metagenomics with Kaiju. Nat Commun. 2016;7:11257.
- 22 24. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO,
- 23 et al. VirSorter2: a multi-classifier, expert-guided approach to detect
- 24 diverse DNA and RNA viruses. Microbiome. 2021;9(1):37.
- 25 25. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC.
- 26 CheckV assesses the quality and completeness of metagenome-
- 27 assembled viral genomes. Nat Biotechnol. 2021;39(5):578–85.
- 28 26. Díez-Villaseñor C, Rodriguez-Valera F. CRISPR analysis suggests that small
- 29 circular single-stranded DNA smacoviruses infect Archaea instead of
- 30 humans. Nat Commun. 2019;10(1):294.
- 31 27. Varsani A, Krupovic M. Family Genomoviridae: 2021 taxonomy update.
- 32 Arch Virol. 2021;166(10):2911–26.
- 33 28. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
- 34 DIAMOND. Nat Methods. 2015;12(1):59–60.
- 35 29. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan
- 36 5: genome-scale protein function classification. Bioinformatics.
- 37 2014;30(9):1236–40.
- 38 30. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable
- 39 generation of high-quality protein multiple sequence alignments using
- 40 Clustal Omega. Mol Syst Biol. 2011;7(1):539.
- 41 31. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software
- 42 Version 7: Improvements in Performance and Usability. Mol Biol Evol.
- 43 2013;30(4):772–80.
- 44 32. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von
- 45 Haeseler A, et al. IQ-TREE 2: New Models and Efficient Methods for
- 46 Phylogenetic Inference in the Genomic Era. Mol Biol Evol.
- 47 2020;37(5):1530–4.

1 33. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS.
2 ModelFinder: fast model selection for accurate phylogenetic estimates.
3 Nat Methods. 2017;14(6):587–9.
4 34. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2:
5 Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol.
6 2018;35(2):518–22.
7 35. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
8 Methods. 2012;9(4):357–9.
9 36. Muhire BM, Varsani A, Martin DP. SDT: A Virus Classification Tool Based on
10 Pairwise Sequence Alignment and Identity Calculation. PLoS One.
11 2014;9(9):e108277.
12 37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
13 search tool. J Mol Biol. 1990;215(3):403–10.
14 38. Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D, Liou D, et al. The
15 Papillomavirus Episteme: a major update to the papillomavirus sequence
16 database. Nucleic Acids Res. 2017;45(D1):D499–506.
17 39. Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: A Resource for
18 Timelines, Timetrees, and Divergence Times. Mol Biol Evol.
19 2017;34(7):1812–9.
20 40. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for
21 automated alignment trimming in large-scale phylogenetic analyses.
22 Bioinformatics. 2009;25(15):1972–3.
23 41. Pénzes JJ, Söderlund-Venermo M, Canuti M, Eis-Hünger AM, Hughes J,
24 Cotmore SF, et al. Reorganizing the family Parvoviridae: a revised
25 taxonomy independent of the canonical approach based on host
26 association. Arch Virol. 2020;165(9):2133–46.
27 42. Varsani A, Krupovic M. Smacoviridae: a new family of animal-associated
28 single-stranded DNA viruses. Arch Virol. 2018;163(7):2005–15.
29 43. Rosario K, Breitbart M, Harrach B, Segalés J, Delwart E, Biagini P, et al.
30 Revisiting the taxonomy of the family Circoviridae: establishment of the
31 genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol.
32 2017;162(5):1447–63.
33 44. Ayad LAK, Pissis SP. MARS: improving multiple circular sequence
34 alignment using refined sequences. BMC Genomics. 2017;18(1):86.
35 45. Van Doorslaer K, Chen Z, Bernard HU, Chan PKS, DeSalle R, Dillner J, et al.
36 ICTV Virus Taxonomy Profile: Papillomaviridae. Journal of General
37 Virology. 2018;99(8):989–90.
38 46. King K, Larsen BB, Gryseels S, Richet C, Kraberger S, Jackson R, et al.
39 Coevolutionary Analysis Implicates Toll-Like Receptor 9 in Papillomavirus
40 Restriction. mBio. 2022;13(2):e0005422.
41 47. Lewitus E, Morlon H. Characterizing and Comparing Phylogenies from
42 their Laplacian Spectrum. Syst Biol. 2016;65(3):495–507.
43 48. Balbuena JA, Míguez-Lozano R, Blasco-Costa I. PACo: A Novel Procrustes
44 Application to Cophylogenetic Analysis. PLoS One. 2013;8(4):e61048.
45 49. Van Doorslaer K. Evolution of the papillomaviridae. Virology. 2013;445(1–
46 2):11–20.

1 50. Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, et al.
2 The Ancient Evolutionary History of Polyomaviruses. *PLoS Pathog.*
3 2016;12(4):e1005574.

4 51. Moens U, Calvignac-Spencer S, Lauber C, Ramqvist T, Feltkamp MCW,
5 Daugherty MD, et al. ICTV Virus Taxonomy Profile: Polyomaviridae.
6 *Journal of General Virology.* 2017;98(6):1159–60.

7 52. Ehlers B, Anoh AE, Salem N Ben, Broll S, Couacy-Hymann E, Fischer D, et
8 al. Novel polyomaviruses in mammals from multiple orders and
9 reassessment of polyomavirus evolution and taxonomy. *Viruses.*
10 2019;11(10):930.

11 53. Schowalter RM, Buck CB. The Merkel Cell Polyomavirus Minor Capsid
12 Protein. *PLoS Pathog.* 2013;9(8):e1003558.

13 54. Carr M, Gonzalez G, Sasaki M, Dool SE, Ito K, Ishii A, et al. Identification of
14 the same polyomavirus species in different African horseshoe bat species
15 is indicative of short-range host-switching events. *Journal of General*
16 *Virology.* 2017;98(11):2771–85.

17 55. Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger
18 AM, Hughes J, et al. ICTV Virus Taxonomy Profile: Parvoviridae. *Journal of*
19 *General Virology.* 2019;100(3):367–8.

20 56. Sant'Anna TB, Araujo NM. Adeno-associated virus infection and its impact
21 in human health: an overview. *Virol J.* 2022;19(1):173.

22 57. Väisänen E, Fu Y, Hedman K, Söderlund-Venermo M. Human
23 Protoparvoviruses. *Viruses.* 2017;9(11):354.

24 58. Flanagan ML, Parrish CR, Cobey S, Glass GE, Bush RM, Leighton TJ.
25 Anticipating the Species Jump: Surveillance for Emerging Viral Threats.
26 *Zoonoses Public Health.* 2012;59(3):155–63.

27 59. Carrino M, Tassoni L, Campaloto M, Cavicchio L, Mion M, Corrò M, et al.
28 Molecular Investigation of Recent Canine Parvovirus-2 (CPV-2) in Italy
29 Revealed Distinct Clustering. *Viruses.* 2022;14(5):917.

30 60. Benkő M, Aoki K, Arnberg N, Davison AJ, Echavarría M, Hess M, et al. ICTV
31 Virus Taxonomy Profile: Adenoviridae 2022. *Journal of General Virology.*
32 2022;103(3):001721.

33 61. Davison AJ, Benkő M, Harrach B. Genetic content and evolution of
34 adenoviruses. *Journal of General Virology.* 2003;84(11):2895–908.

35 62. Kang J, Ismail AM, Dehghan S, Rajaiya J, Allard MW, Lim HC, et al.
36 Genomics-based re-examination of the taxonomy and phylogeny of
37 human and simian Mastadenoviruses : an evolving whole genomes
38 approach, revealing putative zoonosis, anthropoponosis, and
39 amphizoonosis. *Cladistics.* 2020;36(4):358–73.

40 63. Wu Z, Lu L, Du J, Yang L, Ren X, Liu B, et al. Comparative analysis of rodent
41 and small mammal viromes to better understand the wildlife origin of
42 emerging infectious diseases. *Microbiome.* 2018;6(1):178.

43 64. Geldenhuys M, Mortlock M, Weyer J, Bezuidt O, Seemark ECJ, Kearney T,
44 et al. A metagenomic viral discovery approach identifies potential
45 zoonotic and novel mammalian viruses in *Neoromicia* bats within South
46 Africa. *PLoS One.* 2018;13(3):e0194527.

1 65. Borkenhagen LK, Fieldhouse JK, Seto D, Gray GC. Are adenoviruses
2 zoonotic? A systematic review of the evidence. *Emerg Microbes Infect.*
3 2019;8(1):1679–87.

4 66. Kremer EJ. What is the risk of a deadly adenovirus pandemic? *PLoS*
5 *Pathog.* 2021;17(9):e1009814.

6 67. Breitbart M, Delwart E, Rosario K, Segalés J, Varsani A. ICTV Virus
7 Taxonomy Profile: Circoviridae. *Journal of General Virology.*
8 2017;98(8):1997–8.

9 68. Niu G, Chen S, Li X, Zhang L, Ren L. Advances in Crosstalk between Porcine
10 Circoviruses and Host. *Viruses.* 2022;14(7):1419.

11 69. Raidal SR, Sarker S, Peters A. Review of psittacine beak and feather
12 disease and its effect on Australian endangered species. *Aust Vet J.*
13 2015;93(12):466–70.

14 70. Krupovic M, Varsani A. A 2021 taxonomy update for the family
15 Smacoviridae. *Arch Virol.* 2021;166(11):3245–53.

16 71. Wang H, Li S, Mahmood A, Yang S, Wang X, Shen Q, et al. Plasma virome
17 of cattle from forest region revealed diverse small circular ssDNA viral
18 genomes. *Virol J.* 2018;15(1):11.

19 72. Tochetto C, Muterle Varela AP, Alves de Lima D, Loiko MR, Mengue
20 Scheffer C, Pinto Paim W, et al. Viral DNA genomes in sera of farrowing
21 sows with or without stillbirths. *PLoS One.* 2020;15(3):e0230714.

22 73. Varsani A, Krupovic M. Sequence-based taxonomic framework for the
23 classification of uncultured single-stranded DNA viruses of the family
24 Genomoviridae. *Virus Evol.* 2017;3(1):vew037.

25 74. Allen T, Murray KA, Zambrana-Torrel C, Morse SS, Rondinini C, Di Marco
26 M, et al. Global hotspots and correlates of emerging zoonotic diseases.
27 *Nat Commun.* 2017;8(1):1124.

28 75. Han HJ, Yu H, Yu XJ. Evidence for zoonotic origins of Middle East
29 respiratory syndrome coronavirus. *J Gen Virol.* 2016;97(2):274–80.

30 76. Gibbs AJ, Armstrong JS, Downie JC. From where did the 2009 “swine-
31 origin” influenza A virus (H1N1) emerge? *Virol J.* 2009;6:207.

32 77. Kallio-Kokko H, Uzcategui N, Vapalahti O, Vaheri A. Viral zoonoses in
33 Europe. *FEMS Microbiol Rev.* 2005;29(5):1051–77.

34 78. Olival KJ, Hosseini PR, Zambrana-Torrel C, Ross N, Bogich TL, Daszak P.
35 Host and viral traits predict zoonotic spillover from mammals. *Nature.*
36 2017;546(7660):646–50.

37

38

39

40

41

42

43

1 **Figure 1.** Sampling points throughout Spain. The number of individuals captured in each
2 area is indicated in parentheses.
3

4 **Figure 2.** Distribution of MAVGs per bat species/pool. Viral families are shown in
5 different colours.
6

7 **Figure 3.** Optimized tanglegram between a papillomavirus subclade of the ML tree
8 obtained from concatenated E1, E2, L2, and L1 nucleotide sequences (46), and
9 associated host species. The host species tree was downloaded from www.timetree.org.
10 The newly described viruses are highlighted in red boxes. Bootstrap values are shown at
11 nodes. Both trees are rooted at midpoint.
12

13 **Figure 4.** ML tree of the family *Polyomaviridae* using 135 RefSeq LTag amino acid
14 sequences (NCBI TaxId: 151341). Taxonomic groups are collapsed by genus. Only taxa
15 belonging to the genus *Alphapolyomavirus* are explicitly indicated, and the group known
16 as VP3-less clade is highlighted in blue. Taxa are denoted by Genbank protein accession
17 number and virus name, and novel viruses are labelled in red. Phylogenetic analysis was
18 done using substitution model LG+F+I+G4. SH-aLRT and bootstrap values higher than 80
19 and 95, respectively, are indicated with red circles. The tree is rooted at midpoint. The
20 scale bar indicates the evolutionary distance in amino acid substitutions per site.
21

22 **Figure 5.** ML tree of the Parvovirinae subfamily using 126 NS1 amino acid sequences.
23 Taxonomic groups are collapsed by genus except for *Dependoparvovirus* and
24 *Protoparvovirus* genera. Taxa are denoted by Genbank protein accession number and
25 virus name, and novel viruses are labelled in red. Phylogenetic analysis was done using
26 substitution model LG+F+I+G4. SH-aLRT and bootstrap values higher than 80 and 95,
27 respectively, are indicated with red circles. The tree is rooted at midpoint. The scale bar
28 indicates the evolutionary distance in amino acid substitutions per site.
29

30 **Figure 6.** ML trees of the *Adenoviridae* family using DNA polymerase (A) and hexon (B)
31 amino acid sequences from 73 representative members. Taxonomic groups are collapsed
32 by genus, except for the genus *Mastadenovirus*. Taxa are denoted by Genbank protein
33 accession number and virus name, and novel viruses are labelled in red. Phylogenetic
34 analyses were done using substitution model LG+F+I+G4. SH-aLRT and bootstrap values
35 higher than 80 and 95, respectively, are indicated with red circles. The tree is rooted at
36 midpoint. The scale bar indicates the evolutionary distance in amino acid substitutions
37 per site.
38

39 **Figure 7.** ML tree of the *Circoviridae* family based on Rep amino acid sequence. Taxa are
40 denoted by Genbank accession number and virus name, and viruses found in this study
41 are indicated in red, while new species are indicated by an asterisk. Sequences were
42 downloaded from the ICTV Circoviridae data resources, (27 November 2023). In
43 addition, 3 RefSeq sequences (NC_076479, NC_040639.1 and BBI18985.1) were added
44 to illustrate its similarity with novel MAVGs. Phylogenetic analysis was done using
45 substitution model LG+F+R6. SH-aLRT and bootstrap values higher than 80 and 95,
46 respectively, are indicated with red circles. The tree is rooted to define monophyletic

1 groups of each family genus. The scale bar indicates the evolutionary distance in amino
2 acid substitutions per site.

3

4 **Figure 8.** ML tree of the family *Smacoviridae* based on 215 Rep amino acid sequences.
5 Taxonomic groups are collapsed by genus, except for *Porprismacovirus* genus, and some
6 non-illustrative clades within this genus. Taxa are denoted by Genbank accession
7 number and virus name, and novel viruses are labelled in red. Phylogenetic analysis was
8 done using substitution model LG+F+I+G4. SH-aLRT and bootstrap values higher than 80
9 and 95, respectively, are indicated with red circles. The tree is rooted at midpoint. The
10 scale bar indicates the evolutionary distance in amino acid substitutions per site.

11

12 **Figure 9.** ML tree of the family *Genomoviridae* based on 94 representative amino acid
13 sequences of Rep gene. Taxonomic groups are collapsed by genus, except for those
14 genera where new viruses are identified. Taxa are denoted by Genbank accession
15 number and virus name, and novel viruses are labelled in red, indicating with an asterisk
16 those that are defined as new species. When a new species includes more than one
17 novel MAVG (see **Supplementary Table S5**), only one is indicated with an asterisk.
18 Phylogenetic analysis was done using substitution model LG+F+I+G4. SH-aLRT and
19 bootstrap values higher than 80 and 95, respectively, are indicated with red circles. The
20 tree is rooted at midpoint. The scale bar indicates the evolutionary distance in amino
21 acid substitutions per site.

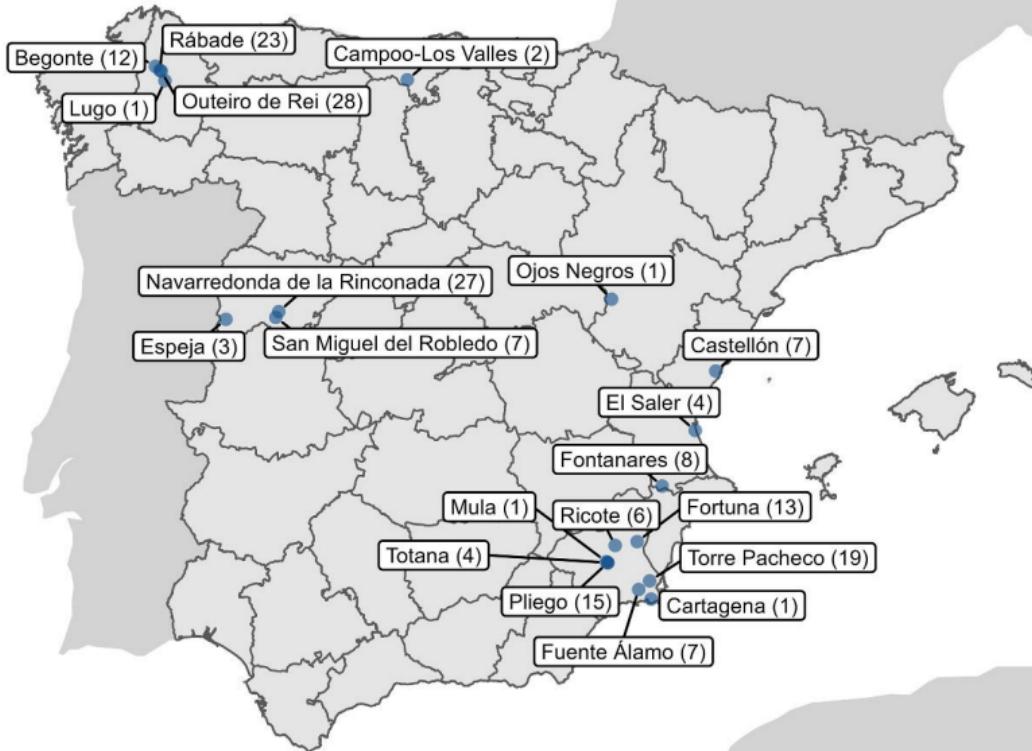
1 **Supplementary Table S1. Bat species, collection sites and pool distributions.**

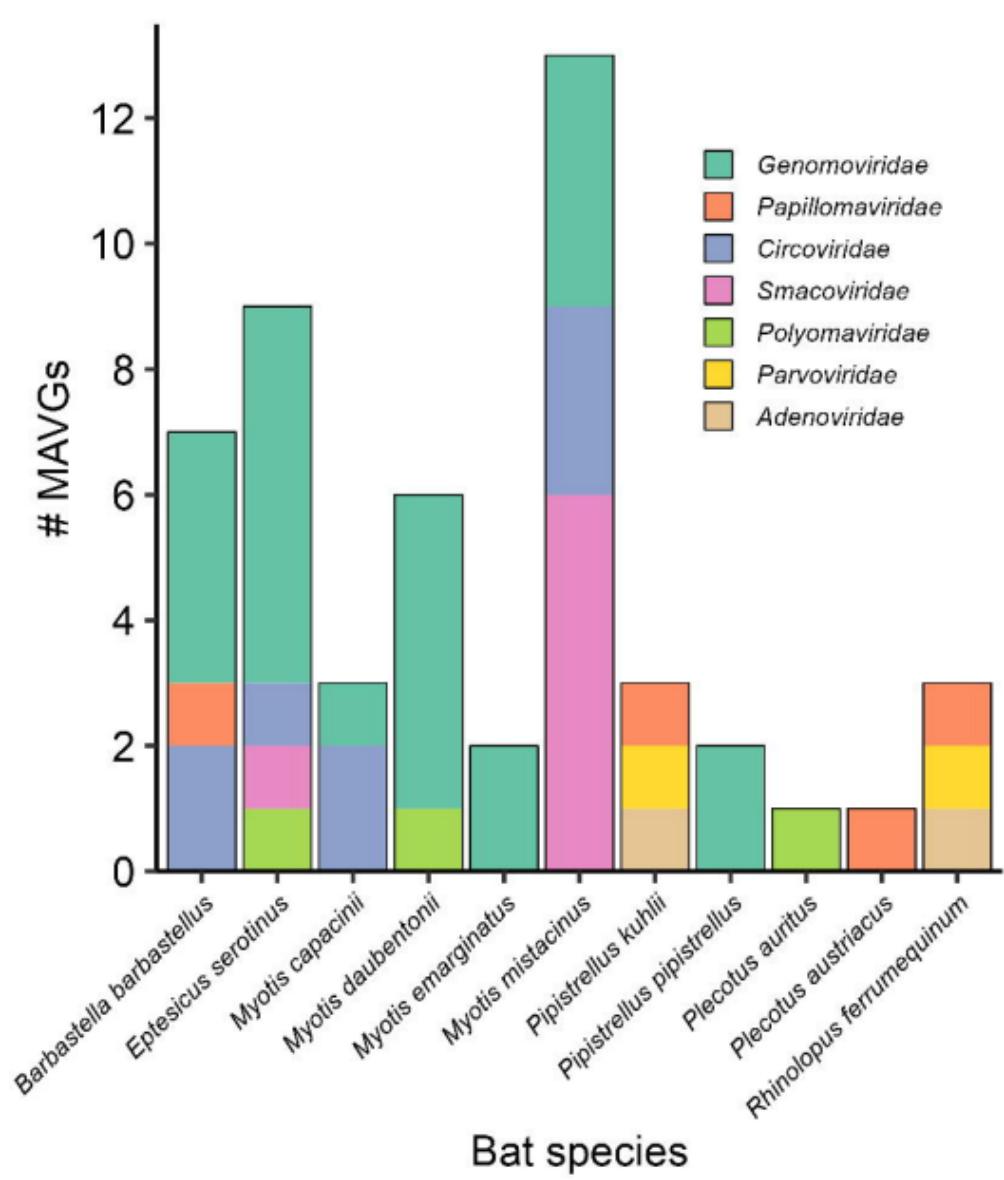
2

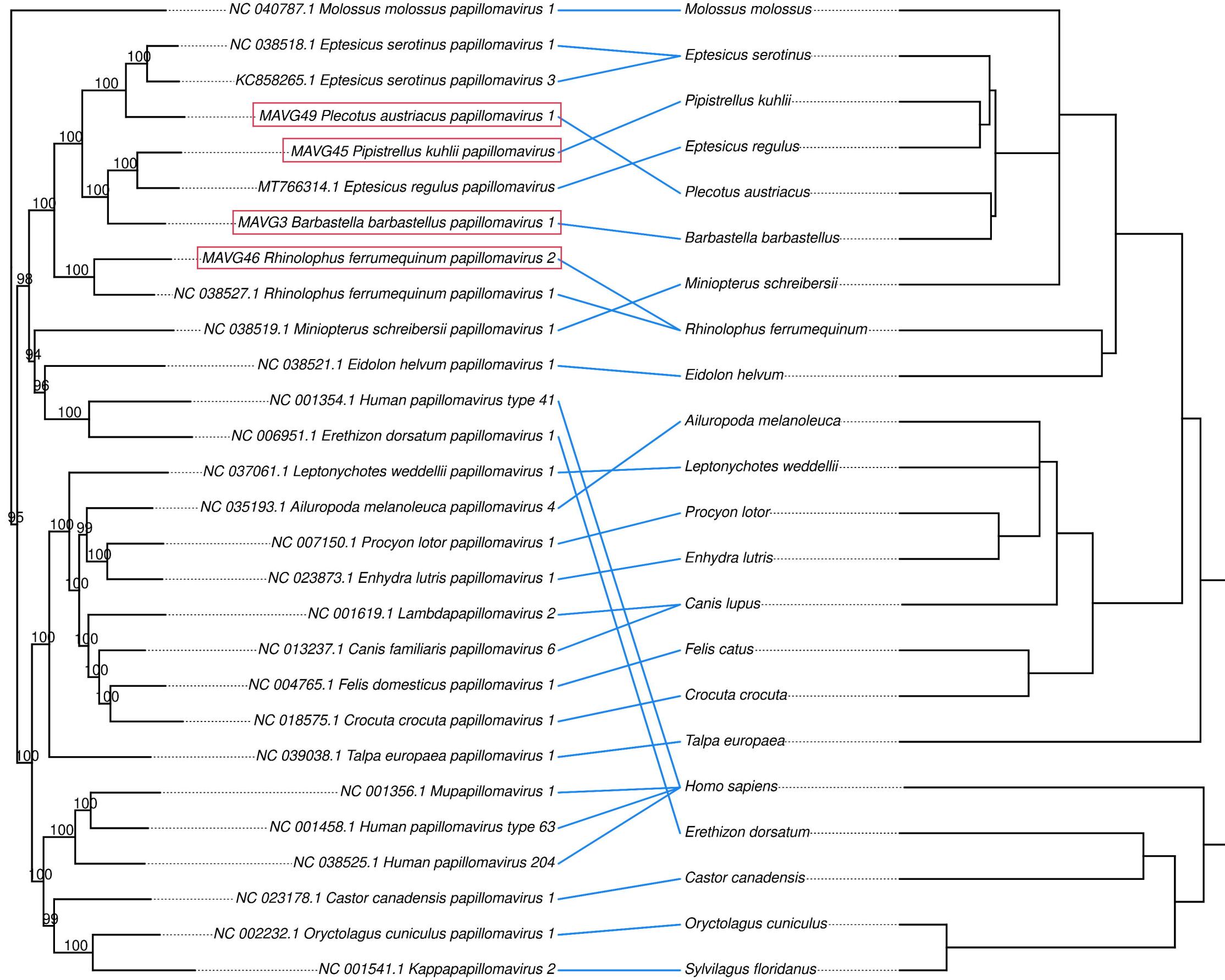
3 **Supplementary Table S2. Primers used for viral sample confirmation by PCR.**

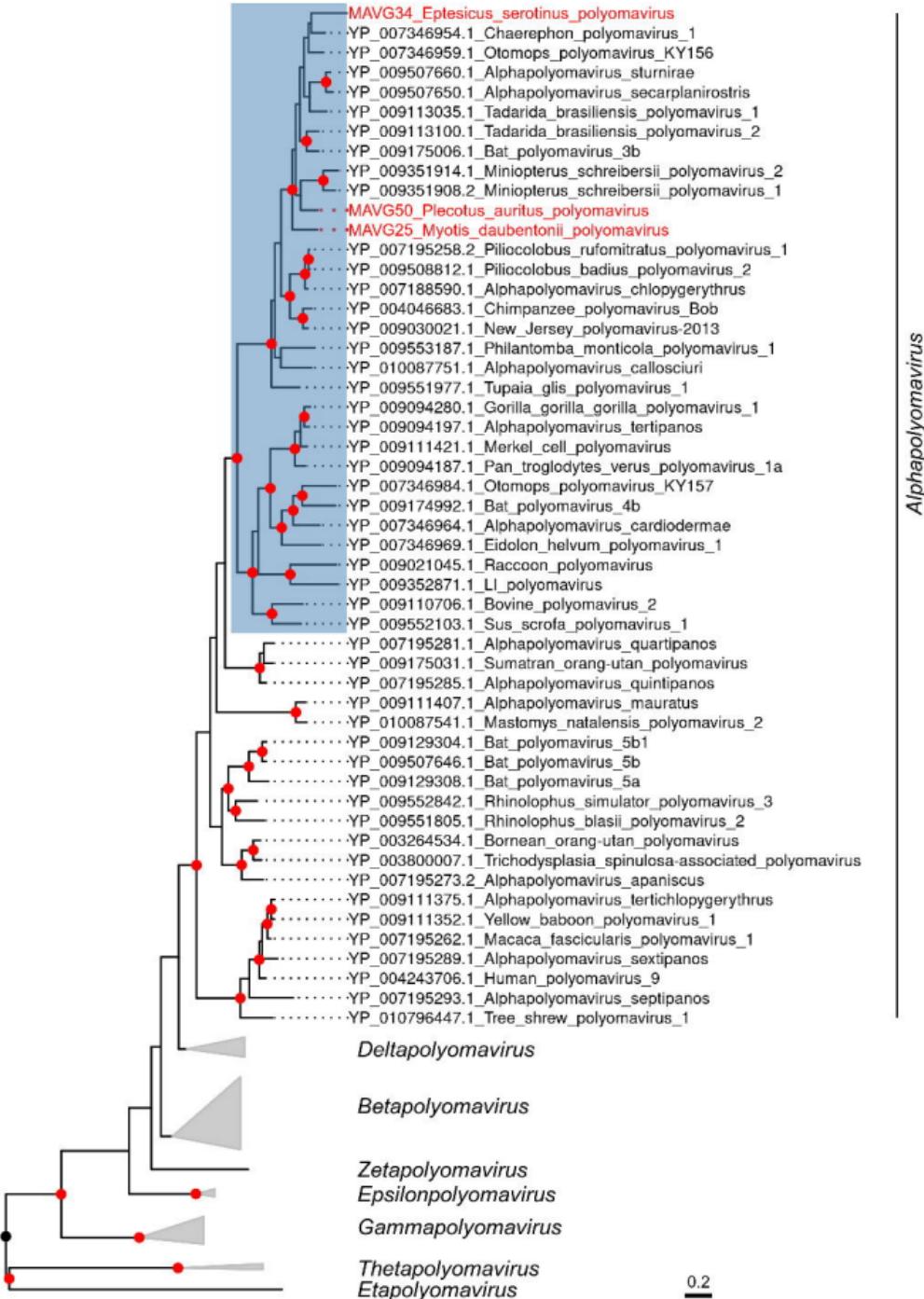
4

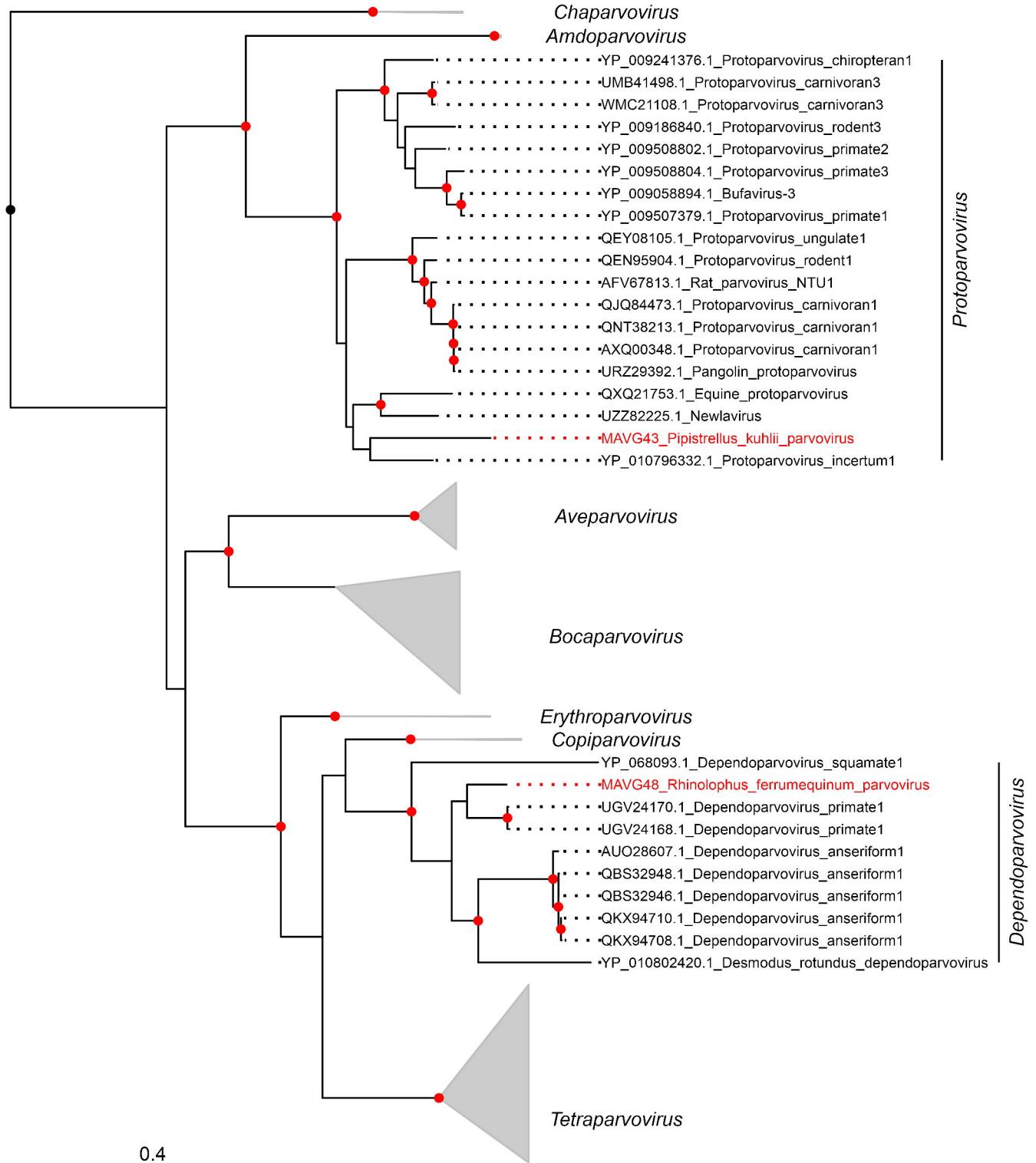
5 **Supplementary Table S3. Illumina reads and number of viral contigs obtained.**

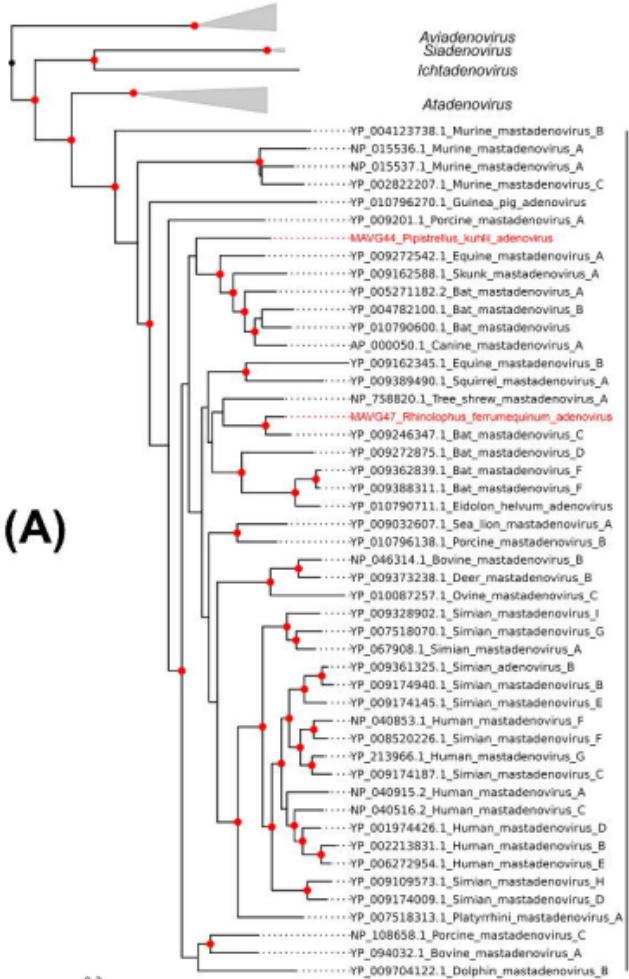
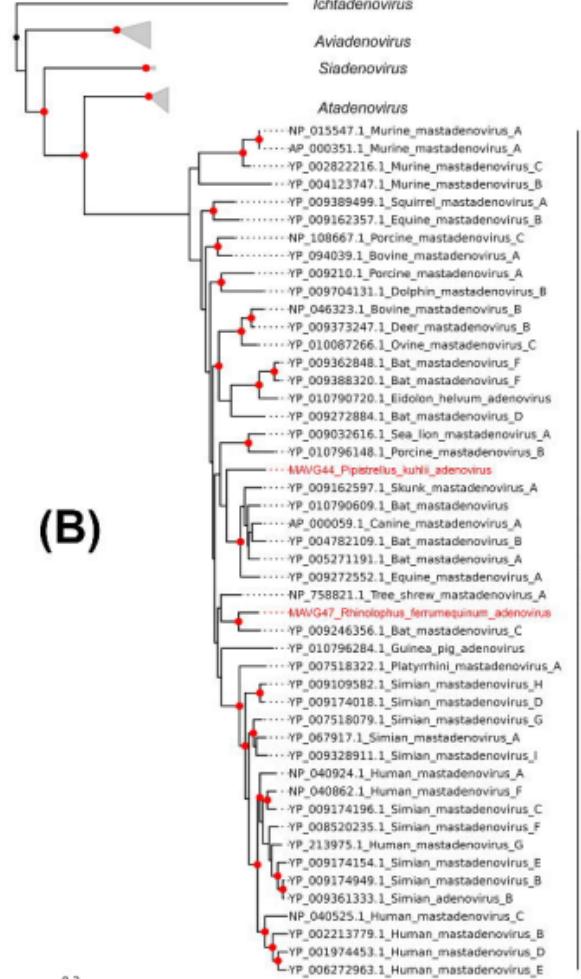

6

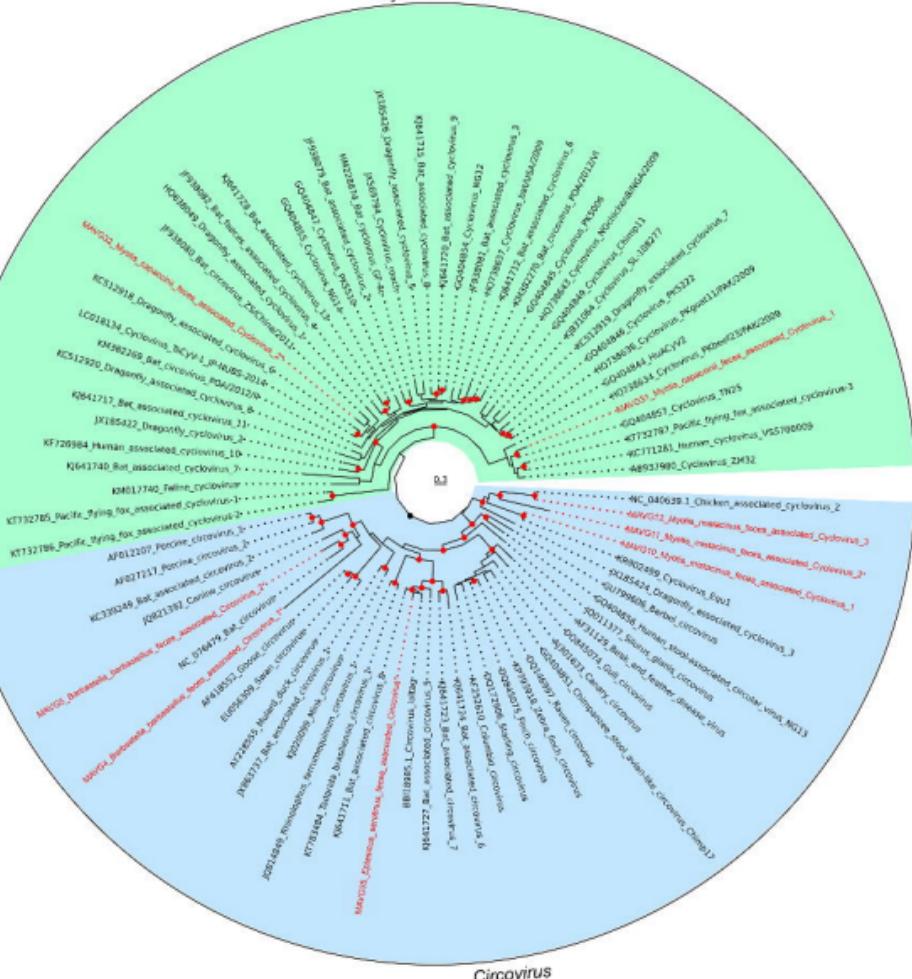

7 **Supplementary Table S4. Descriptions, accession numbers and proposed names for the**
8 **novel MAVGs.**

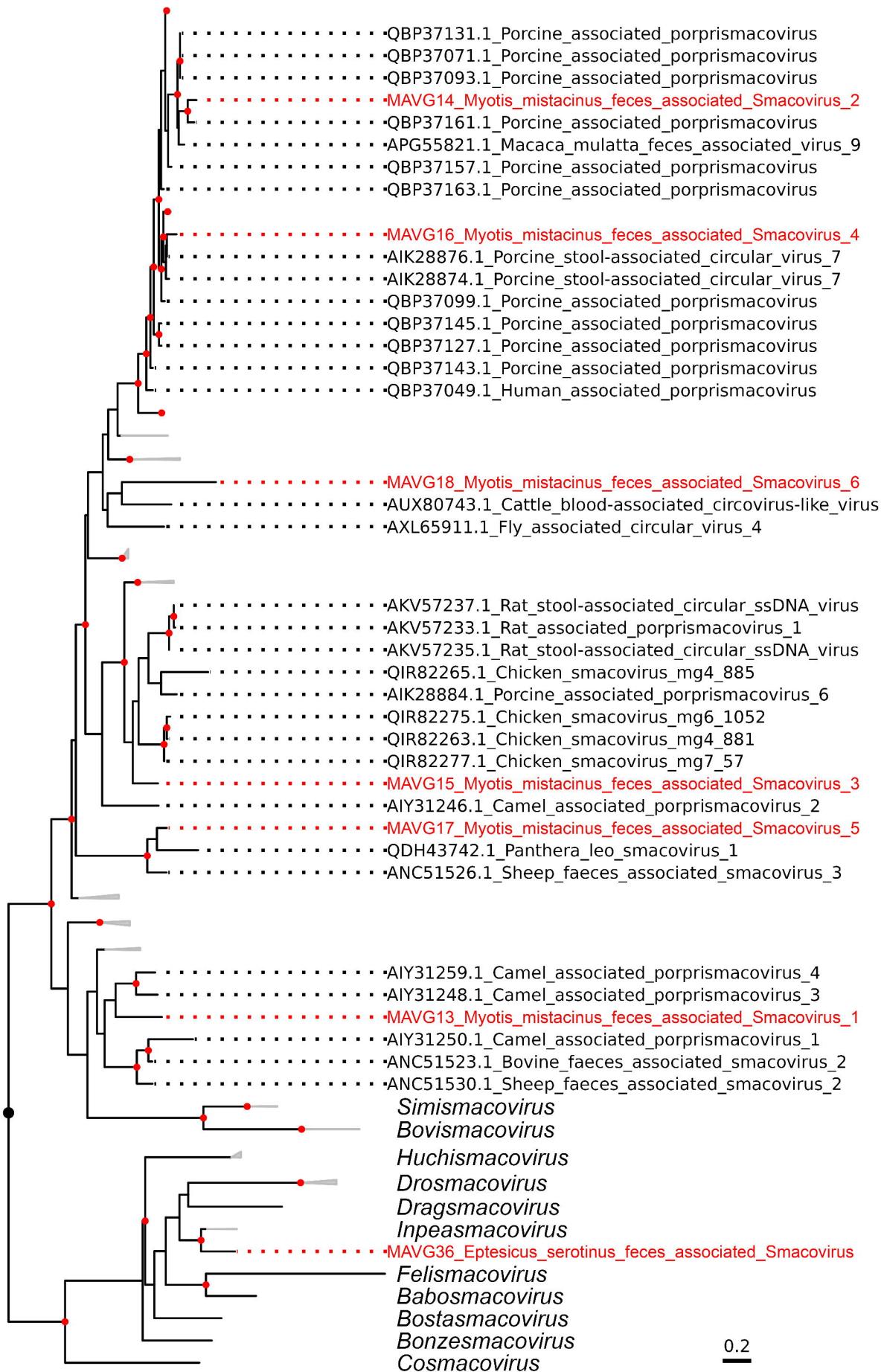

9

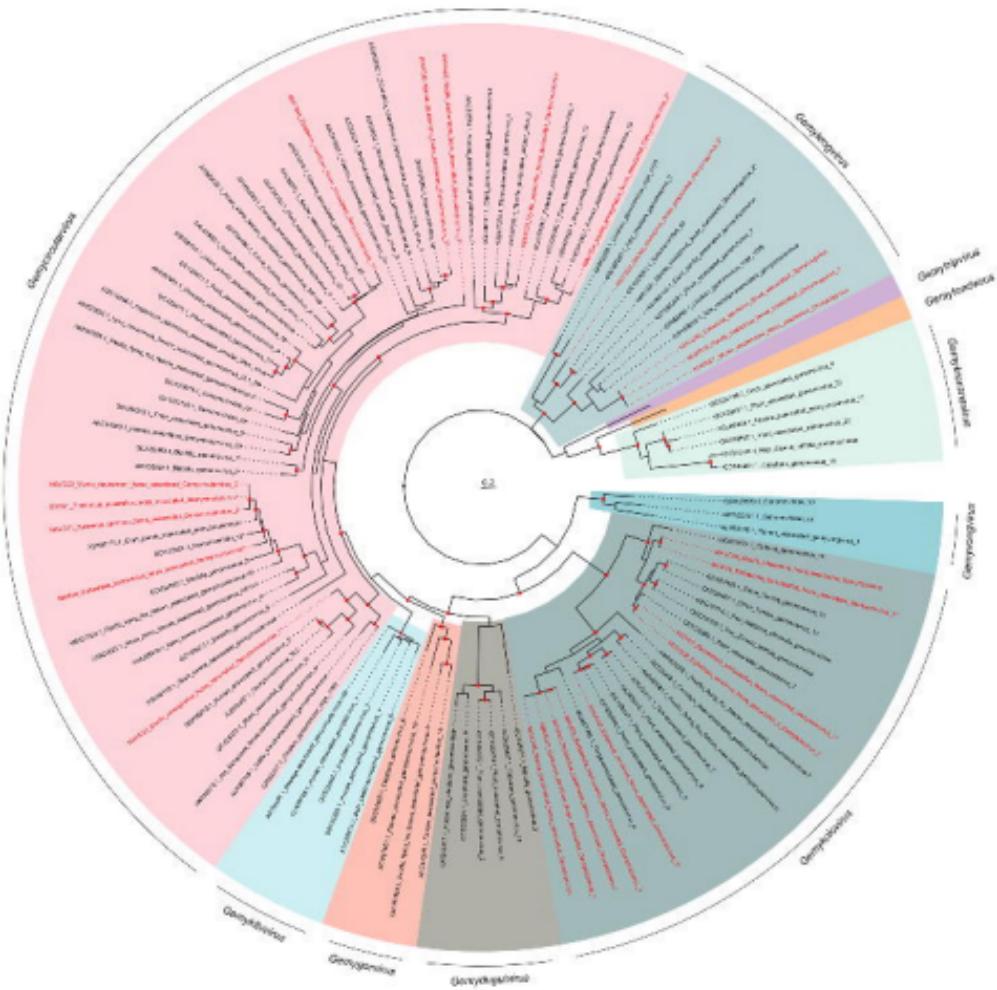

10 **Supplementary Table S5. Novel genomovirus species clusters.**


11






0.4

(A)**(B)**

Cyclovirus

