

1 **Theca cell mechanics and tissue pressure regulate mammalian ovarian
2 folliculogenesis**

3

4 Arikta Biswas¹, Yuting Lou¹, Boon Heng Ng¹, Kosei Tomida¹, Sukhada Darpe¹, Zihao Wu¹,
5 Thong Beng Lu², Isabelle Bonne^{2,3,4}, Chii Jou Chan^{1,5*}

6 ¹Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering
7 Drive 1, Singapore 117411, Singapore

8 ²Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of
9 Singapore, MD1, Tahir 10 Foundation Building, #B1-01, 12 Science Drive 2, Singapore
10 117549, Singapore

11 ³Department of Microbiology & Immunology, Immunology Translational Research
12 Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science
13 Drive 2, Block MD4, Level 3, Singapore 117545, Singapore

14 ⁴Life Sciences Institute, Immunology Programme, National University of Singapore, Centre
15 for Life Sciences, #03-06D, 28 Medical Drive, Singapore 117456, Singapore

16 ⁵Department of Biological Sciences, National University of Singapore, Block S3, #05-01, 16
17 Science Drive 4, Singapore 117558, Singapore

18 *Corresponding author (email - dbschii@nus.edu.sg)

19

20

21 **Summary**

22 The maturation of functional eggs within the ovaries is essential for successful reproduction
23 and organismal functions in mammals. Yet, despite its biological and clinical importance, the
24 underlying mechanisms regulating folliculogenesis remain enigmatic. Here, we report a novel
25 role of the surface-anchoring theca cells (TCs) in regulating follicle growth through mechanical
26 signalling. Direct mechanical measurements reveal that these TCs are highly contractile and
27 exert compressive stress to the follicular interior, potentially through active assembly of
28 fibronectin scaffold around the follicles. Abolishing TC contractility disrupts fibronectin
29 assembly, increases follicle size, and decreases intrafollicular pressure and viscosity. We

30 further reveal that the granulosa cells (GCs) within the follicles exhibit spatial patterns of YAP
31 signalling and proliferation, which appear to be decoupled. Transient manipulation of tissue
32 pressure through bulk follicle compression, laser ablation or pharmacological perturbation of
33 TC contractility leads to changes in GC YAP signalling, proliferation, and oocyte-GC
34 communications, while long term abrogation of TC contractility leads to impaired follicle
35 growth. Altogether, our study unveils the unique role of TC-mediated tissue pressure in
36 ensuring robust mammalian ovarian folliculogenesis.

37

38 **Keywords**

39 Folliculogenesis, mammalian reproduction, ovarian follicles, Theca cells, mechanical stress,
40 tissue pressure

41

42 **Introduction**

43 The maturation of functional oocytes within the ovarian follicles is undoubtedly one of the
44 most significant developmental events in reproductive biology. The growth of follicles, or
45 folliculogenesis, is essential for ensuring successful reproduction and regulating hormones for
46 female sexual characteristics and early pregnancy¹⁻⁴. Folliculogenesis begins with the
47 primordial follicle where a single oocyte is surrounded by a layer of granulosa cells (GCs) and
48 basement membrane (BM). Upon activation, they develop into primary follicles characterised
49 by the formation of columnar GCs, which surround the oocyte with a glycoprotein shell of zona
50 pellucida (ZP). The oocyte and the GCs maintain bi-directional communications through the
51 transzonal projections (TZPs). The follicles then develop into secondary follicles with the
52 formation of multi-layered GCs and an external layer of spindle-shaped theca cells (TCs). As
53 the follicles grow, a large fluid-filled lumen forms within the GC layers which ultimately leads
54 to follicle rupture and release of the oocyte, a process known as ovulation.

55 While past molecular genetics studies have identified genes that are critical for
56 folliculogenesis⁵⁻⁸, the underlying mechanisms regulating follicle growth remain enigmatic. In
57 recent years, new evidence has emerged showing that the ovary is a mechanically responsive
58 organ⁹ and that mechanical signalling can impact follicle dynamics and development¹⁰⁻¹². For
59 example, it has been reported that the fragmentation of ovaries can disrupt the Hippo signalling
60 pathway and promote follicle growth¹³⁻¹⁵, while mechanical stress imposed by the extracellular
61 matrix (ECM) play a role in regulating primordial follicle dormancy^{16,17}. Changes in ECM
62 stiffness during ovarian ageing has also been implicated in impaired oocyte quality¹⁸ and
63 anovulation¹⁹. Other evidence come from *ex vivo* studies showing that the growth of isolated

64 follicles is highly sensitive to the surrounding matrix stiffness²⁰. However, despite these
65 evidence, fundamental questions such as how mechanical forces are generated and transmitted
66 within the follicles, and how these mechanical signals orchestrate morphogenesis and oocyte
67 maturation, remain unclear.

68 A recent study revealed that the intra-follicular environment is characterised by distinct
69 mechanical properties of TCs and GCs²¹. The TCs are indispensable for folliculogenesis as
70 they are involved in the production of steroid hormones for ovulation^{4,22-25}. Abnormalities in
71 TC steroid secretion can lead to polycystic ovary syndrome²⁶⁻²⁸, a prominent cause of female
72 infertility^{29,30}, and hyperthecosis^{31,32}, a condition usually affecting postmenopausal women and
73 causing virilization³³. TCs have also been implicated in early menopause in reproductive-aged
74 women^{34,35}. Yet, apart from hormonal regulation, the structural and mechanical functions of
75 TCs remain largely unknown. In this study, we investigated the mechanical interactions
76 between TCs and granulosa cells during secondary follicle development. Using *in vitro* and *ex*
77 *vivo* approaches, combined with quantitative imaging, biophysical tools, and molecular
78 perturbations, we revealed the novel roles of contractile theca cells in exerting active
79 compressive stress to tune tissue pressure and mechanics, thereby regulating somatic cell
80 signalling and follicle growth.

81

82 **Results**

83 **Ovarian theca cells are highly contractile**

84 The surface cells in spherical tissues such as embryos and cell aggregates are often found to be
85 highly stretched and contractile^{36,37}. We thus hypothesised that the peripheral spindle-shaped
86 TCs may exert strong contractile forces around the ovarian follicles. We immuno-stained
87 ovarian tissue slices and isolated secondary follicles targeting phosphorylated myosin light
88 chain 2 (pMLC), which has been reported to be a good proxy for actomyosin contractility³⁶.
89 We found that the TCs express high amounts of pMLC compared to the minimal levels
90 observed in the GCs, both *in situ* (Figures 1A-B) and *ex vivo* (Figures 1C-D), suggesting that
91 the TCs are indeed contractile. Inhibition of actomyosin contractility with blebbistatin (Blebb)
92 led to a decrease in TCs' pMLC expression while hyperactivation of contractility with
93 lysophosphatidic acid (LPA) did not increase the TCs' pMLC expression further, both *in situ*
94 (Figures S1A-B) and *ex vivo* (Figures S1C-D). We also observed an increase in the pMLC
95 expression at TCs with increased follicle size (Figures 1B, right and 1D, right), suggesting that
96 the TC layers become more contractile as the secondary follicles develop. Though the oocyte
97 cortex expressed some levels of pMLC expressions, its intensity did not change upon

98 actomyosin perturbations (Figures S1D-E), suggesting that the impact of the drugs is mainly
99 specific to the outer contractile TCs.

100 We next measured the surface tension of TCs in the secondary follicles using atomic
101 force microscopy (AFM, Supplementary Methods). We found that the TCs exhibit an effective
102 surface tension of 0.51 ± 0.20 mN/m (Figure 1E), similar to that found for stretched cells in
103 living tissues³⁷. Follicles treated with Blebb and LPA showed a significant decrease and
104 increase in the measured TC surface tension, respectively (Figure 1E). This is consistent with
105 cell rounding or stretching associated with surface tension release or increase (Figures S1F-G).
106 We then isolated primary TCs from bulk ovaries^{38,39} to check if the high contractility is an
107 intrinsic feature of the TCs. Consistent with previous reports which show alkaline phosphatase
108 (ALP) positive staining on the TCs in pre-ovulatory follicles⁴⁰⁻⁴², we noted ALP expression at
109 the periphery of follicles in ovarian slices (Figure S2A). Isolated TCs expressed more ALP and
110 appeared more elongated and spread out on 2D substrates compared to the smaller and more
111 cuboidal GCs that are ALP-negative (Figures S2B-D). Using traction force microscopy, we
112 found that the TCs exert significantly higher traction stresses than the GCs (Figure 1F) which
113 is correlated with their spread area (Figure S2E), indicating they are indeed intrinsically more
114 contractile than the GCs.

115 Altogether, based on our findings *in situ*, *ex vivo* and *in vitro*, we conclude that the TCs
116 are highly contractile, which can potentially regulate follicle development through mechanical
117 signalling.

118

119 **Theca cells exert compressive stress to module follicle mechanics and pressure**

120 We hypothesized that the contractile TCs may exert compressive stress to regulate follicle size
121 and functions. To directly measure the compressive stress imposed by the TCs, we allowed
122 secondary follicles to attach to deformable gelatin beads and tracked the bead-follicle pairs for
123 two days by time-lapse imaging. We observed that the TCs migrated from the follicles to the
124 beads and uniformly enwrapped the beads within 12 hours. Using dextran-based osmotic
125 compression assay⁴³, we found that the beads have an average bulk modulus (a measure of
126 compressibility) of 19.4 ± 6.3 kPa (Figure 2A, Methods). This information, combined with the
127 tracking of changes in bead volume during TC enwrapping (Figure 2B, left), allowed us to
128 uniquely determine the compressive stress exerted by the TCs on the beads to be ~ 2 kPa. The
129 compressive stress decreased or increased significantly with Blebb or LPA treatment (Figure
130 2B, right), respectively, suggesting that the compressive stress originated from TC
131 contractility.

132 We next considered if perturbing TC contractility directly impacts follicle size. On
133 tracking every follicle, we observed that transient inhibition of contractility with Blebb (Figure
134 2C, left) or Y27632 (Figure 2C, right) for 30 mins led to an increase in follicle volume. A wash
135 out of both inhibitors over similar timescales led to a restoration of follicle volume, suggesting
136 that the volume regulation by TC-mediated contractility is fast, global and reversible. Using a
137 similar dextran-based compression assay, we determined the effective bulk modulus of
138 secondary follicles to be $\sim 27.5 \pm 13.4$ kPa (Figure 2D). This, together with the measured
139 volumetric strain of ~ 0.1 upon perturbation (Figure 2C), allowed us to infer the compressive
140 stress exerted by TCs on secondary follicles to be ~ 2.75 kPa, consistent with that measured
141 using the bead-follicle assay.

142 To investigate if changes in follicle volume by TC-mediated compressive stress affect
143 intrafollicular pressure and bulk mechanics, we performed AFM indentations on secondary
144 follicles under various perturbations, using large beads (Figures 3A). We found that while LPA
145 treatment did not change tissue elasticity (Figure 3B and Supplementary Information) and
146 effective pressure (Figure 3D) as compared to that of the controls, blebbistatin treatment led to
147 a significant decrease in both parameters. Furthermore, we observed a large hysteresis between
148 the approach and retraction curves in Blebb-treated follicles (Figure 3C), indicating that the
149 release of compressive stress from TC relaxation leads to increased stress dissipation and a
150 more fluid-like state. To confirm the change in follicle viscosity, we extracted the tissue
151 viscosity by fitting the AFM data to a Maxwellian viscoelasticity model (Star Methods and
152 Supplementary Information). Our results indeed revealed a decrease in follicle viscosity upon
153 Blebb treatment (Figure S3A).

154 To further validate the role of TC contractility on intrafollicular pressure, we performed
155 two-photon laser ablations by making a point cut at the follicle periphery, followed by tracking
156 of tissue outflow. Following ablation, we observed a rapid displacement of GCs towards the
157 ablation site (Figure 3E). By quantifying the GC flow near the cut region (local parallel
158 velocity, Methods) in various conditions, we observed a significant attenuation of GC flow
159 upon Blebb treatment while LPA led to increased GC outflow compared to the controls (Figure
160 3F). These data confirm that Blebb or LPA treatment led to reduced or increased intrafollicular
161 pressure, respectively. Finally, we found an increase in total interstitial gap area within the
162 Blebb-treated follicles (Figures 3G-H and S3B), suggesting that reduced tissue packing may
163 lead to the overall reduction in tissue elasticity and pressure while enhancing tissue fluidity.
164 By contrast, LPA led to only a slight further decrease in interstitial gap area, suggesting that
165 the follicles in their native state are already tightly packed and are not susceptible to further

166 compression, consistent with the lack of a change in follicle volume (Figure S3C) and
167 mechanics (Figure 3B-D).

168

169 **Theca cell contractility mediates fibronectin-scaffold assembly**

170 To gain structural insights on how forces are transmitted by the TCs, we immuno-stained for
171 adherens junctional proteins such as N-Cad and E-Cad (Figure 4A). In contrast to the GCs
172 which expressed these junctional markers, the TCs are devoid of these proteins, suggesting that
173 they are less epithelial in nature and resemble more mesenchymal and fibroblast-like cells.
174 Indeed, the theca layers expressed abundant fibronectin (FN) compared to the GCs (Figures
175 4B-C), and their expressions appeared to increase with follicle development (Figure 4C, right).
176 This pattern was preserved in isolated follicles as well (Figures 4D-E). Interestingly, while the
177 BM has been reported to be enriched with FN in past studies⁴⁴, we found the FN layer to be
178 physically separated from the collagen matrix at the BM, as shown by localisation studies
179 (Figure 4F). In addition, ultrastructural studies using Scanning Electron Microscopy (SEM)
180 revealed a distinct matrix-like layer separating the basal TCs from the BM (Figure 4G and
181 S4A). Since FN is not expressed in the primordial and primary follicle stages when the TCs
182 are absent^{44,45}, we hypothesized that the TCs might be actively secreting the FN which could
183 be a constituent of the matrix between the basal TCs and BM. Though the average thickness of
184 the matrix (456±152 nm) did not change with increased follicle size, we observed an increase
185 in the variability of the matrix thickness with follicle development (Figure S4A-C).

186 Following a recent finding that contractile cancer-associated fibroblasts (CAFs) can
187 produce fibronectin scaffolds around tumour cells for force transmission⁴⁶, we were curious if
188 perturbing TC contractility affects fibronectin expression in ovarian follicles. We observed that
189 blebbistatin treatment led to a significant reduction of FN expression at the TC layer *ex vivo*
190 and *in situ*, while LPA treatment led to increased FN expression *ex vivo* but not *in situ* (Figure
191 4H, S4D-E). Here, the short timescale (4 hr) for FN remodelling in response to pharmacological
192 perturbations may be due to the resemblance of follicular fibronectin to those found in fetal
193 development rather than that of the adult tissues⁴⁷. Conversely, treatment of follicles with
194 RGDS peptides to inhibit TC-adhesion to fibronectin did not impact FN or pMLC expressions
195 at the TCs (Figure S4F-H). Together, these data indicate that though actomyosin perturbations
196 could impact fibronectin scaffold around the follicles, TC-fibronectin coupling is not essential
197 for maintaining TC contractility and FN integrity.

198

199 **Granulosa cells show spatial patterns of proliferation and YAP signalling**

200 We next investigated if the signalling landscape within the follicles are sensitive to the
201 mechanical environment. Inspired by studies showing that cell proliferation could be tuned by
202 mechanical stress in cancer spheroids⁴⁸, we immuno-stained tissue slices and isolated follicles
203 with Ki67, a known cell proliferation marker. We observed that the GCs in contact with the
204 BM (basal GCs) were significantly less proliferative than the GCs surrounding the oocyte
205 (oocyte GCs) in both tissues (Figures 5A-B). A similar pattern of differential proliferation
206 between the basal- and oocyte GCs was also observed when follicles were labelled with EdU,
207 another proliferation marker (Figures S5A-B).

208 We also immuno-stained the secondary follicles with YAP, a transcriptional co-
209 activator that is known to be mechanosensitive⁴⁹ and is important for ovarian folliculogenesis¹⁴.
210 We found that the YAP nuclear-to-cytoplasmic (N/C) ratio for basal GCs was significantly
211 higher than that of the oocyte GCs (Figure 5C), raising the intriguing possibility of the presence
212 of a mechanical stress gradient within the follicle. Of note, we observed an anti-correlation
213 between YAP signalling and cell proliferation. To investigate this, we treated follicles with
214 verteporfin, which is known to inhibit YAP nuclear translocation and reduce cell
215 proliferation⁵⁰. While verteporfin led to an overall decrease in YAP expression for the GCs in
216 the follicles (Figure 5D, left), the differential pattern for Ki67 signalling remained unchanged
217 (Figure 5D, right). This suggests that the Hippo signalling pathway may not dictate GC
218 proliferation during ovarian follicle development.

219

220 **Transient mechanical stress impacts GC signalling and oocyte-GC communications**

221 Next, we investigated if perturbing compressive stress pressure via changing osmotic pressure,
222 TC contractility or BM stiffness could influence the proliferation and YAP signalling patterns
223 of the oocyte- and basal GCs. Focusing on the Ki67 signals, we observed that the proliferation
224 potential of basal GCs did not change upon all perturbations over a short timescale (~30 mins)
225 (Figures 6A-B). Transient increase in compressive stress via osmotic pressure (10 kPa) or
226 hypercontractility of TCs (LPA) led to a striking reduction of Ki67⁺ cells among the oocyte
227 GCs (Figures 6A-B). However, a transient release of compressive stress (tissue pressure) either
228 by contractility inhibition with Blebb or Y27632, or by BM degradation with collagenase
229 (Figure S6A) showed no impact on the proliferation of oocyte GCs. Using EdU pulse-chase
230 assays, we saw that the effect of the perturbations impacted the basal GCs more than the cells
231 towards the core. Increased mechanical stress over short timescale (chased for 30 mins)
232 reduced EdU proliferation as well (Figures S5A-B).

233 Transient mechanical perturbations have a more striking impact on YAP signalling of
234 GCs (Figures 6A and 6C). Osmotic compression (10 kPa) led to an increase in YAP
235 cytoplasmic localization in both basal- and oocyte GCs. However, enhancement of TC
236 contractility with LPA treatment appeared to increase the YAP N/C ratios. Stress relaxation by
237 Blebb, Y27632 or collagenase perturbations led to a significant increase in YAP nuclear
238 translocation. Though we observed no change in the YAP localization of GCs at the core of
239 the follicles on transient collagenase treatment, the impact on YAP nuclear translocation of
240 both basal- and oocyte GCs was more pronounced over longer treatment of 2 hours, although
241 proliferation was not affected (Figure S6B). pMLC expression at the TCs reduced upon BM
242 disruption, indicating a loss of TC contractility in collagenase-treated follicles (Figure S6C).
243 Next, we released the tissue pressure by laser ablation at the BM and found that the YAP N/C
244 ratios of GCs in these follicles were higher compared to the controls (Figures S6D-E).
245 Altogether, our results support that the modulation of intrafollicular pressure by physical
246 perturbations, BM degradation or altered TC contractility can all individually regulate intra-
247 follicular Hippo signalling pathway at short timescales (Figure S6F).

248 We then focussed on the impact of transient mechanical perturbations on transzonal
249 projections, which are filopodia-like structures connecting the oocyte GCs to the oocyte that
250 are essential for its growth⁵¹. We found that the number density of TZPs reduced significantly
251 upon osmotic compression, contractility inhibition and BM disruption (Figures 6D-E), which
252 is not correlated with the minimal change in the thickness of zona pellucida in these conditions
253 (Figure S5C). We also examined how the oocyte volume changes upon various perturbations
254 and observed that while osmotic compression led to a significant decrease in oocyte volume
255 (~10%), there was minimal impact of contractility perturbations and BM disruption on the
256 oocyte volume (Figure S5D).

257

258 **Mechanical stress is required for follicle growth**

259 To examine the functional consequence of TC contractility on follicle growth, we cultured
260 follicles within 3D alginate hydrogels for up to three days under various pharmacological
261 perturbations. By day 3, we observed that the average diameter of follicles under LPA
262 treatment was higher than that of the controls, particularly for follicles with initial size of less
263 than 150 μm (Figure 7A). While a small dosage of blebbistatin (5 μM) had no impact on follicle
264 growth (Figure S7A-C), a higher dosage of blebbistatin (20 μM) led to impaired follicle growth
265 by day 3, particularly for follicles with initial size larger than 150 μm (Figure 7A). A similar,
266 albeit less pronounced effect was seen in follicles treated with Y27632. Compared to the

267 controls where typically ~15% of the follicles showed follicle rupture and oocyte extrusion
268 during culture, such events were more frequently observed with LPA treatment (~30%) but
269 less with Blebb and Y-27632 treatment (< 5%) (Figure 7B) This suggests that follicle ruptures
270 could be a consequence of enhanced tissue pressure, as observed from the laser ablation studies
271 (Figure 3F).

272 As the follicle growth kinetics appeared to depend on the initial size (Figure 7A), we
273 sought to develop an integrative approach to combine the growth kinetics of all follicles of
274 arbitrary sizes into a master curve, thus allowing quantitative comparison of follicle growth in
275 various conditions. By plotting the follicle growth rate per day versus its size (Figure 7C), we
276 found that the follicle growth is characterised by two phases: an initial pre-maturation phase
277 where the growth rate increased linearly with its size, followed by the maturation phase ($D >$
278 180 μm) where the grow rates reach a terminal value. While LPA-treated follicles showed no
279 difference in their maturation growth rates from the controls, follicles treated with contractility
280 inhibitors showed attenuated growth at the maturation phase (Figure 7D), further confirming
281 that reduced compressive stress leads to impaired follicle growth.

282 Reduced growth rates of follicles may be attributed to a decrease in cell proliferation or
283 increased apoptosis. To this end, we stained post-cultured follicles for cleaved caspase3 (CC3),
284 an indicator for apoptosis, and phospho-histone H3 (pHH3), a marker for mitosis. Intriguingly,
285 we observed no difference in the number of apoptotic or mitotic GCs in control follicles and
286 Blebb- and LPA-treated samples (Figures 7E-F and S7D), though cell death was significantly
287 reduced when cultured in LPA. We also found no difference in the number of GCs at telophase
288 in the three conditions (Figures S7E), suggesting that Blebb treatment did not cause deleterious
289 effects such as delayed cytokinesis. Overall, our data revealed that an optimal amount of TC-
290 mediated compressive stress is required for 3D follicle growth (Figure 7G).

291

292 **DISCUSSION**

293 In the past decades, we have made significant progress in understanding the roles of oocyte-
294 granulosa cell signalling pathways^{52,53}, ECM and stroma^{54,55} in ovarian biology. However, the
295 origin and functions of the theca cells that make up the periphery of preantral follicles remain
296 poorly understood. While it has long been proposed that the theca externa may exert contractile
297 forces to aid ovulation^{56,57}, existing studies on TCs remain largely limited to their steroidogenic
298 functions^{4,22-25} with little examination on their potential mechanical roles. This is highly
299 pertinent given the recent evidence that mechanical cues in the follicle microenvironment can
300 regulate diverse follicle functions, from activation to growth and ovulation^{12,14,16,20}. In this

301 study, using a combination of biophysical, bioengineering, and molecular approaches, we
302 characterised the detailed TC mechanics and unravelled its integral role in exerting
303 compressive stress to regulate intrafollicular pressure, granulosa cell signalling and follicle
304 growth (Figure 7G).

305 We found that the TCs of murine secondary follicles are highly contractile, with values
306 of surface tension similar to those reported for highly stretched surface cells in living tissues³⁷.
307 The intrinsic contractile nature of TCs, in contrast to the GCs, corroborates with recent optical
308 elastography study showing that the TC shell possesses distinct mechanical stiffness compared
309 to the GCs²¹, potentially acting as a mechanical cage to protect the oocyte from excessive
310 deformation. We found that the TCs appear to be fibroblast-like cells that are devoid of
311 adherens junction proteins and are capable of secreting FN networks in a contractility-
312 dependent manner. This resembles a recent finding that contractile CAFs can form a
313 fibronectin-rich capsule around tumour cells and exert compressive stress to trigger
314 mechanotransduction in tumors⁴⁶. The increase in the variability of FN-matrix thickness
315 (Figure S4C) could be due to the differentiation of basal TCs into theca interna that undergoes
316 vascularisation^{22,58-61}. Interestingly, FN assembly has been shown to be mechanosensitive to
317 tissue strain, as in the case of blastocoel expansion during early *Xenopus* development⁶².
318 Whether follicle growth in turn generates tissue strain on TCs to trigger mechanosensing and
319 FN assembly is unclear and constitutes an exciting topic for future research.

320 We demonstrate, using multiple biophysical tools, that transient abolishment of TC
321 contractility leads to increased follicle size and concomitant decrease in tissue elasticity,
322 viscosity, and effective pressure, which correlate with less frequent follicle rupture events in
323 3D culture. The effect is less pronounced in the case of hyperactivation of TC contractility
324 using LPA, suggesting that follicles in their native state are close to a maximally compact state
325 that render them less susceptible to further compression. We also report, for the first time, the
326 presence of spatial patterns of YAP signalling and proliferation within ovarian follicles (Figure
327 5). Contrary to what has been reported in *in vitro* studies⁶³, we observed an anti-correlation
328 between YAP signalling and Ki67, which indicates that Ki67 signalling does not act
329 downstream of YAP in ovarian follicles. The origin of the spatial patterns in GC signalling is
330 unclear, and we propose that this could be due to direct biochemical or mechanical signalling
331 from the BM or oocyte, or the presence of a mechanical stress gradient within the follicles. Cell
332 shape control may be another factor, given that the basal GCs appear highly packed and
333 columnar while the oocyte GCs appear spherical.

334 While abolishing TC contractility did not impact the GC proliferation as much, these
335 perturbations significantly increased nuclear YAP localization of GCs, potentially due to the
336 disruption of GC contacts with reduced tissue pressure and follicle swelling⁶⁴⁻⁶⁶. While we
337 cannot rule out the direct impact of contractility perturbations on GC YAP signalling, our
338 findings that both laser ablation and BM degradation (collagenase) lead to enhanced YAP
339 nuclear transport of the GCs at short timescales demonstrate that GCs' YAP signalling respond
340 directly to intrafollicular pressure. It is worth noting that in *Drosophila*, collagenase has been
341 reported to lower collagen IV contents in the BM⁶⁷, thereby lowering the BM stiffness and
342 pressure in *Drosophila* ovarian follicles⁶⁸. In our study, we observed a similar reduction in
343 tissue pressure with collagenase, potentially due to the combined effect of reduced BM stiffness
344 and decreased TC contractility.

345 The use of dextran to compress tissues has been widely used in spheroids and organ
346 development^{48,69}. With this approach, we successfully determined the effective bulk modulus
347 of follicles to be ~25 kPa, which translates to an apparent shear modulus of less than 10 kPa,
348 assuming the follicle's Poisson ratio ranges between 0.2 and 0.45, values that are typically
349 found in tissues. This is consistent with the observation that follicles *in situ* are often found to
350 be deformed by the neighbouring follicles or stroma where the ECM stiffness was reported to
351 be in the range of kPa¹⁸. Importantly, we found that global compression of follicles leads to
352 cytoplasmic YAP localization and reduced proliferation of GCs, similar to what has been
353 reported for cancer cell spheroids⁷⁰. Here, we propose that the increase in tissue packing may
354 promote GC interactions to activate contact inhibition signals of proliferation⁷¹.

355 The striking decrease in TZP number density upon perturbation of TC contractility and
356 BM integrity suggests that a release of tissue pressure directly disrupts the oocyte-GC
357 communications that is essential for oocyte maturation⁵¹. The negligible impact of actomyosin
358 perturbation or BM disassembly on oocyte size (Figure S5D) indicates that the oocytes in their
359 native state do not experience significant compression. In contrast, global compression by
360 dextran does incur a transient decrease in oocyte size, suggesting that the oocytes are
361 compressible, potentially through dynamic fluid exchange with the surrounding oocyte GCs
362 through gap junctions such as Connexin 37^{72,73}.

363 In this work, we introduce a new approach to quantify follicle growth based on growth
364 rate analysis (Figure 7C). This enables us to uncover an initial size-dependent growth rate
365 followed by a terminal growth rate at maturation phase once the follicles grow past a critical
366 size of 180 μ m. This is in marked contrast to cancer spheroids which exhibit a constant growth
367 rate independent of its size (logistic growth)⁴⁸. We found a strong impact of reduced TC

368 contractility on follicle growth at maturation phase which is not due to a difference in the
369 number of cells undergoing apoptosis, mitosis, or telophase. One possibility is that reduced TC
370 contractility and tissue pressure may alter the interphase cell cycle length, tissue packing or
371 cell division pattern that affect the follicle growth rates. Future live imaging studies on
372 intrafollicular dynamics will help to shed light on the interplay between tissue pressure and
373 growth, and reveal the origin of non-exponential, size-dependent follicle growth during early
374 secondary follicle development.

375 Over the years, there has been growing evidence that 3D compressive stresses modulate
376 tissue dynamics and fate specification in mammalian organ development^{69,74}, tumour cell
377 progression^{46,75} and spheroid growth⁴⁸. Our data echo these findings and provide concrete
378 evidence that compressive stress can regulate intrafollicular signalling and follicle growth in
379 early female reproductive processes. Based on our preliminary observation that TCs from aged
380 ovaries generally express little pMLC in follicles compared to those from the young ones
381 (Figure 7H), we speculate that mis-regulated TC mechanics and intrafollicular pressure might
382 contribute to age-associated decline in oocyte quality and anovulation during infertility⁷⁶. Our
383 work therefore provides a new conceptual framework in understanding reproductive biology
384 and ageing, with potential clinical implications in assisted reproductive technology.

385

386 **Limitations of the study**

387 One limitation of our study is that the global pharmacological perturbations may incur non-
388 specific effects on the GCs and oocytes, although we have shown that the GCs and oocyte
389 cortex express minimal (or a change of) amount of pMLC expression, respectively (Figure
390 S1D-E). Future work using targeted genetic perturbation may further elucidate the specific
391 functions of TC mechanics during ovarian follicle development. Our study does not determine
392 the exact molecular mechanisms underlying the changes in TZPs and follicle growth upon
393 mechanical stress perturbation. We propose that gap junction dynamics in GCs and oocyte-GC
394 interface might be involved in mechanical signalling. A complete understanding of follicle
395 mechanics and oocyte mechanotransduction would require mapping out the intra-follicle
396 mechanical stress distribution, which may benefit from the potential use of 3D force sensors⁷⁹
397 and stress inference^{80,81}.

398

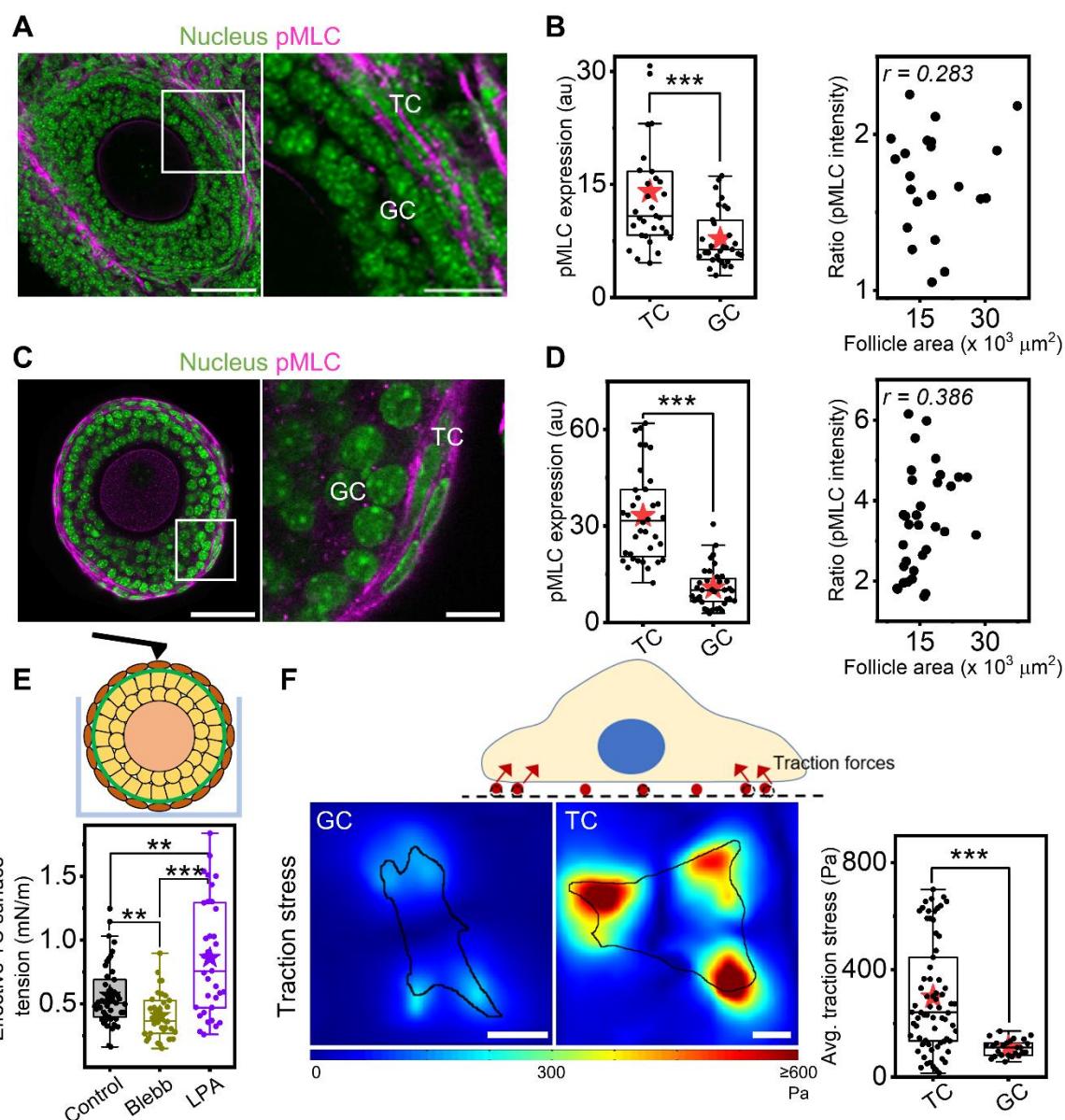
399 **Acknowledgements**

400 We thank Apoorva Shivankar for preliminary experiments on tissue staining in aged mouse
401 ovaries. We are grateful to Brenda Nai Mui Hoon and Chwee Teck Lim for training and usage

402 of atomic force microscopy; Teng Xiang and Yusuke Toyama for training and usage of laser
403 ablation experiments; Xianbin Yong and Cheng Kuang Huang for assistance in traction force
404 microscopy, and the lab of Krystyn Van Vliet for providing the gelatin beads. We thank Jacques
405 Prost for discussions on interpreting AFM data. The Chan lab is supported by the Ministry of
406 Education under the Research Centres of Excellence programme through the Mechanobiology
407 Institute and the Department of Biological Sciences at the National University of Singapore,
408 the Ministry of Education Tier2 grant (T2EP30222-0026) and the Bia-Echo Asia Centre for
409 Female Reproductive Longevity and Equality (ACRLE) at the National University of
410 Singapore. C.J.C. acknowledges the support of the Singaporean Teaching and Academic
411 Research Talent Inauguration Grant (START). We thank Raymond Rodgers, Tetsuya Hiraiwa,
412 and Yuchen Long for providing valuable feedback on our manuscript.

413

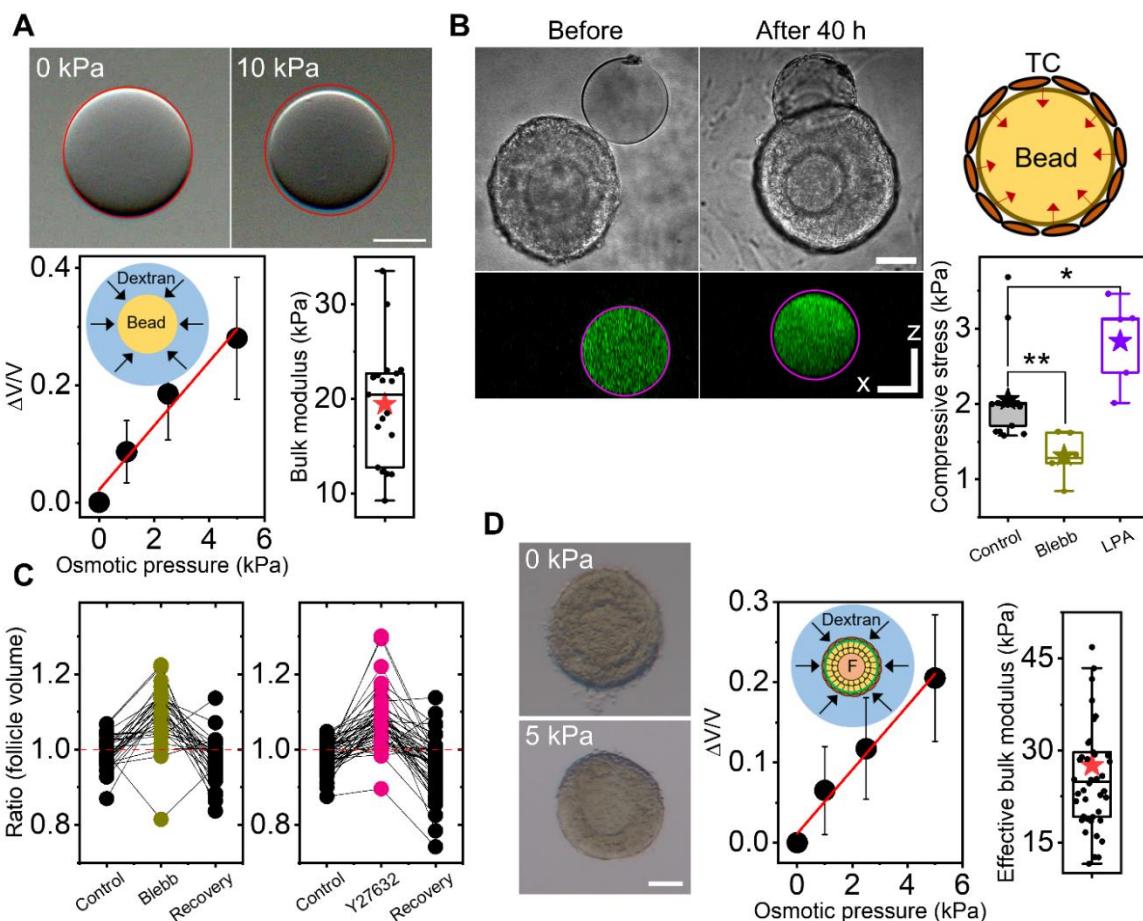
414 **Author contributions**


415 Project Conceptualization and Design: A.B., C.J.C.; Experiments: A.B., B.H.N., Z.W. S.D.,
416 T.B.L., K.T., C.J.C.; Data Analysis, Quantification and Statistical Analysis: A.B., Y.L., C.J.C.,
417 Writing: A.B., C.J.C.; Data Interpretation: A.B., Y.L., I.B., C.J.C.; Supervision: C.J.C.

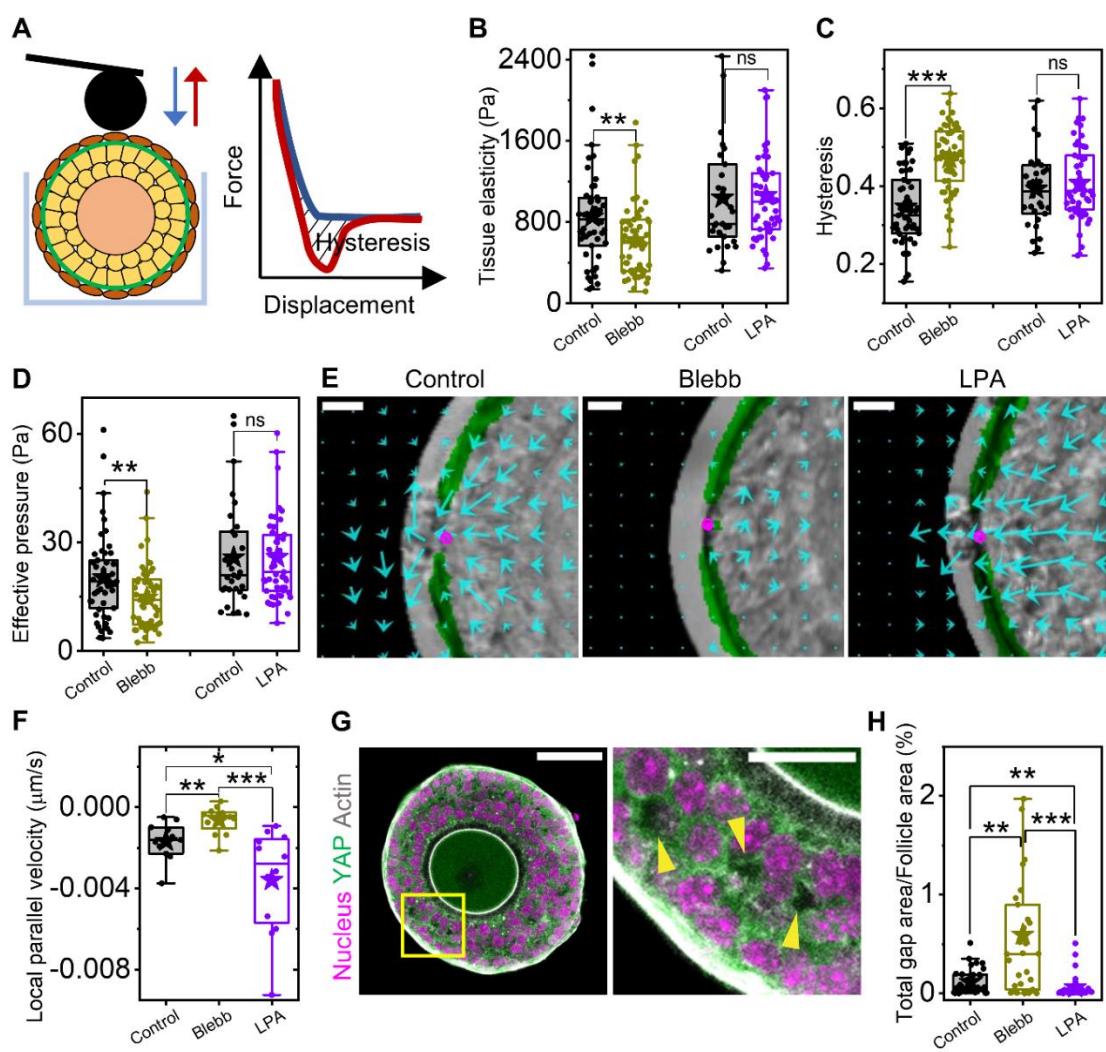
418

419 **Declaration of interests**

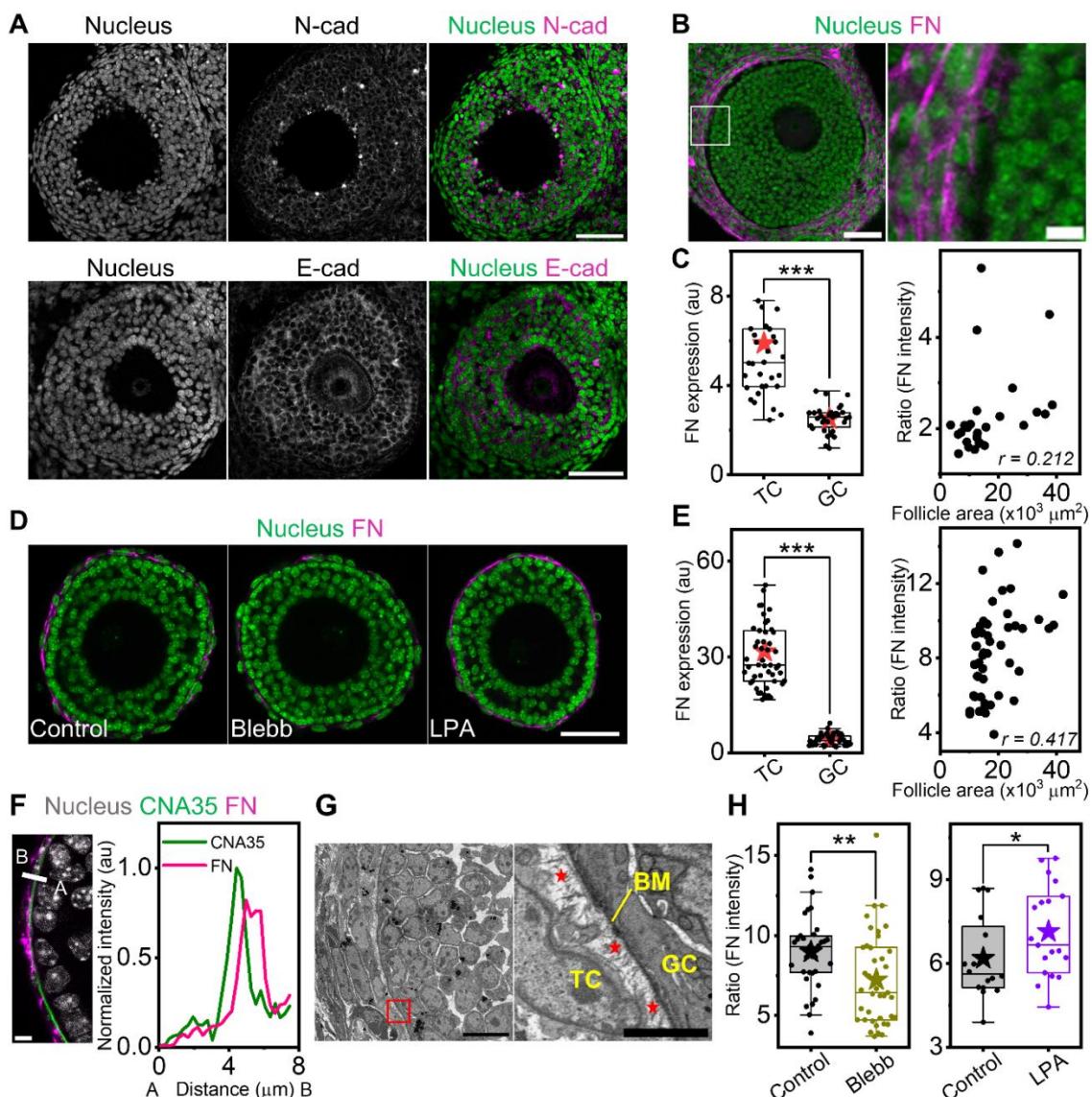
420 The authors declare no competing interests.


421

422
423 **Figure 1: Ovarian theca cells are highly contractile.** A) Left: Representative image of an
424 ovarian tissue slice labelled with DAPI (nucleus, green) and immuno-stained with
425 phosphorylated-myosin light chain (pMLC, magenta). Scale bar: 50 μ m. Right: inset shows the
426 zoomed-in region marked in white. Scale bar: 20 μ m. B) Left: Boxplots of pMLC intensities
427 in TCs and GCs *in situ*. Right: Scatter plot of pMLC intensity ratios as a function of follicle
428 size. N = 2, n = 31 follicles. C) Left: Representative image of an isolated secondary follicle
429 labelled with DAPI (green) and immuno-stained with pMLC (magenta). Scale bar: 50 μ m.
430 Right: inset shows the zoomed-in region marked in white. Scale bar: 10 μ m. D) Left: Boxplots of pMLC
431 intensities in TCs and GCs *ex vivo*. Right: Scatter plot of pMLC intensity ratios as a
432 function of follicle size. N = 3, n = 36 follicles. E) Top: Schematic of AFM-based indentation
433 on a follicle in a microwell to measure TC surface tension. Bottom: Boxplots of effective TC
434 surface tension in control, Blebb, and LPA-treated samples. N = 3, n = 45 (control), 35 (Blebb,

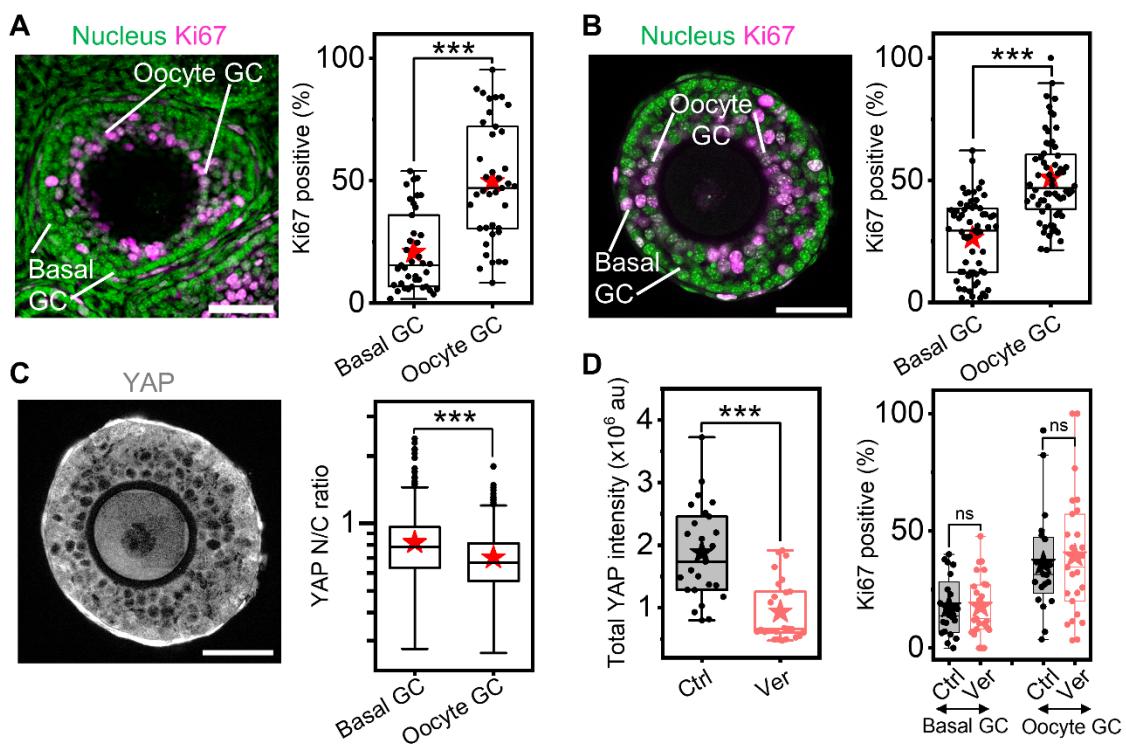

435 LPA) follicles. F) Top: Schematic of traction force microscopy. Bottom left: Representative
436 traction stress maps for isolated GCs and TCs *in vitro*. Outline of the cells are marked in black.
437 Scale bar: 10 μ m. Bottom right: Boxplot of average traction stress (per cluster) for TCs and
438 GCs. N = 25 cells, n = 78 clusters. Significance was determined by Mann-Whitney U test. **
439 p < 0.01; *** p < 0.001.

440



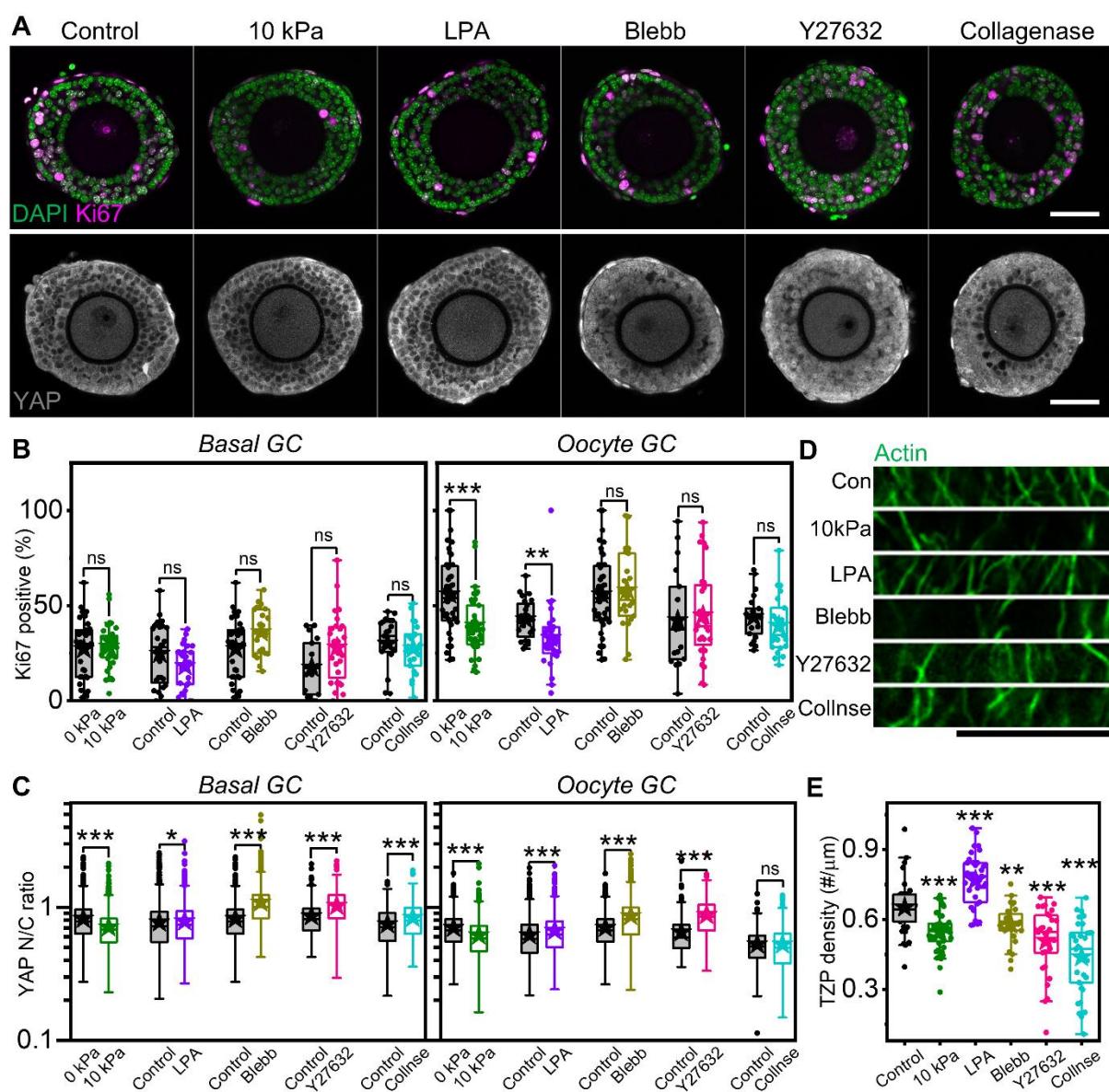
441

Figure 2: Theca cells generate compressive stress to regulate follicle size. a) Top:
442 Representative images of a bead under different osmotic stress. The outline of the initial bead
443 boundary is marked in red. Scale bar: 50 μ m. Bottom left: Plot of average relative change of
444 bead volume against osmotic stress (black symbols) and the linear fit (red line). Bottom right:
445 Boxplot of measured bulk modulus of beads. $N = 2, n = 20$ beads. B) Left: Representative
446 images of a bead before and after TC enwrapping – brightfield (top) and orthogonal view
447 (bottom). The outline of the initial bead boundary is marked in magenta. Scale bar: 50 μ m.
448 Right: Boxplots of compressive stress measured in control, Blebb, and LPA-treated TCs. $N >$
449 2, $n = 6-17$ bead-follicle pairs. C) Boxplots of follicle volume change upon perturbations of
450 contractility (left: Blebb; right: Y27632) and washout (recovery). $N = 3, n = 41$ (Blebb), 57
451 (Y27632) follicles. D) Left: Representative images of a secondary follicle under different
452 osmotic pressure. Scale bar: 50 μ m. Mid: Plot of average relative change in follicle volume
453 against osmotic stress (black symbols) and the linear fit (red line). Right: Boxplot of measured
454 bulk modulus of secondary follicles. $N = 2, n = 42$ follicles. Error bars in A) and D) represent
455 standard deviation. Significance was determined by Mann-Whitney U test in (B). * $p < 0.05$.
456 ** $p < 0.01$.


459
460 **Figure 3: Compressive stress modulates follicle mechanical properties.** (A-D) Schematic of
461 AFM approach to measure follicle mechanical properties from the approach (blue) and
462 retraction curve (red) (A), showing how this yields the effective follicle elasticity (B),
463 hysteresis (C), and effective pressure (D) in various conditions. N = 5, n = 51 (control), 55
464 (Blebb); N = 2, n = 31 (control), 51 (LPA) follicles. E) Zoomed-in representative displacement
465 vector maps overlaid on CNA35 (green) marked follicles (brightfield) in control, Blebb, and
466 LPA treatments; ablation site is marked by magenta circles. Scale bar: 20 μm . F) Boxplots of
467 local parallel velocity in the three conditions. N = 4, n = 11-12 follicles each. G) Left:
468 Representative image of an isolated follicle labelled with DAPI (nucleus, magenta), Phalloidin
469 (actin, grey), and immuno-stained with YAP (green). Scale bar: 50 μm . Right: Zoomed-in
470 image of the yellow box marked on the left. Yellow arrowheads demarcate interstitial gaps.
471 Scale bar: 20 μm . H) Boxplots of the ratios of total interstitial gaps to follicle area for follicles
472 in various conditions. N = 3, n = 34 (control), 31 (Blebb), 32 (LPA) follicles. Significance was
473 determined by Mann-Whitney U test. ns: p > 0.05; * p < 0.05. ** p < 0.01; *** p < 0.001

475
476 **Figure 4: Theca cell contractility regulates fibronectin scaffold formation.** A)
477 Representative images of ovarian slices immuno-stained with N-cad (top) or E-cad (bottom)
478 junctions. Scale bar: 50 μm . B) Left: Representative image of an ovarian slice labelled with
479 DAPI (green) and immuno-stained with FN (magenta). Scale bar: 50 μm . Right: Zoomed-in
480 region of the marked white box. Scale bar: 5 μm . C) Left: Boxplots of FN intensity in TCs and
481 GCs *in situ*. Right: Plot of TC FN expression against follicle size. N = 2, n = 32 follicles. D)
482 Representative images of isolated secondary follicles labelled with DAPI (green) and immuno-
483 stained with FN (magenta) in various conditions. Scale bar: 50 μm . E) Left: Boxplots of FN
484 intensity in TCs and GCs within control follicles *ex vivo*. Right: Plot of TC FN expression
485 against follicle size. N = 4, n = 50 follicles. F) Left: Zoomed-in section of a follicle 18mmune-
486 stained with FN (magenta) and stained with DAPI (grey) and CNA35 (green). Scale bar: 10
487 μm . Right: Plot of intensity profile for the line scan marked in white (left image) shows a
488 physical separation of FN and collagen at the BM site. G) Left: Representative SEM image of

489 a section of a follicle. Right: Zoomed-in section of the red box marked on left. Red asterisks
490 indicate the fibronectin-rich matrix between the BM and the basal TCs. Scale bars: 10 and 2
491 μm respectively. H) Boxplots of normalised FN intensity of TCs under Blebb (left) and LPA
492 (right) treatments. N = 3; n = 33 (control), 39 (Blebb). N = 2; 16 (control), 20 (LPA) follicles.
493 Significance was determined by Mann-Whitney U test. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.


494

495

496 **Figure 5: Granulosa cells show differential proliferation and YAP signalling within the**
497 **follicle.** A) Left: Representative image showing an ovarian slice labelled with DAPI (green)
498 and 20mmune-stained with Ki67 (magenta). Scale bar: 50 μ m. Right: Boxplots for percentage
499 of Ki67⁺ basal and oocyte GCs within secondary follicles *in situ*. N = 3, n = 39 follicles. B)
500 Left: Representative image showing an isolated secondary follicle stained with DAPI (green)
501 and Ki67 (magenta). Right: Boxplots for percentage of Ki67⁺ basal and oocyte GCs *ex vivo*. C)
502 Left: Representative image of the same follicle in (B) immuno-stained with YAP. Right:
503 Boxplots of YAP N/C ratios (log scale) in basal and oocyte GCs *ex vivo*. N = 4, n = 67 follicles.
504 Scale bar: 50 μ m. D) Left: Boxplots of total YAP intensity in control and verteporfin-treated
505 isolated follicles. Right: Boxplots for percentage of Ki67⁺ basal and oocyte GCs *ex vivo* in
506 control and verteporfin conditions. N = 2, n = 25 (control), 27 (verteporfin) follicles.
507 Significance was determined by Mann-Whitney U test. ns: p > 0.05; *** p < 0.001.

508
509

510

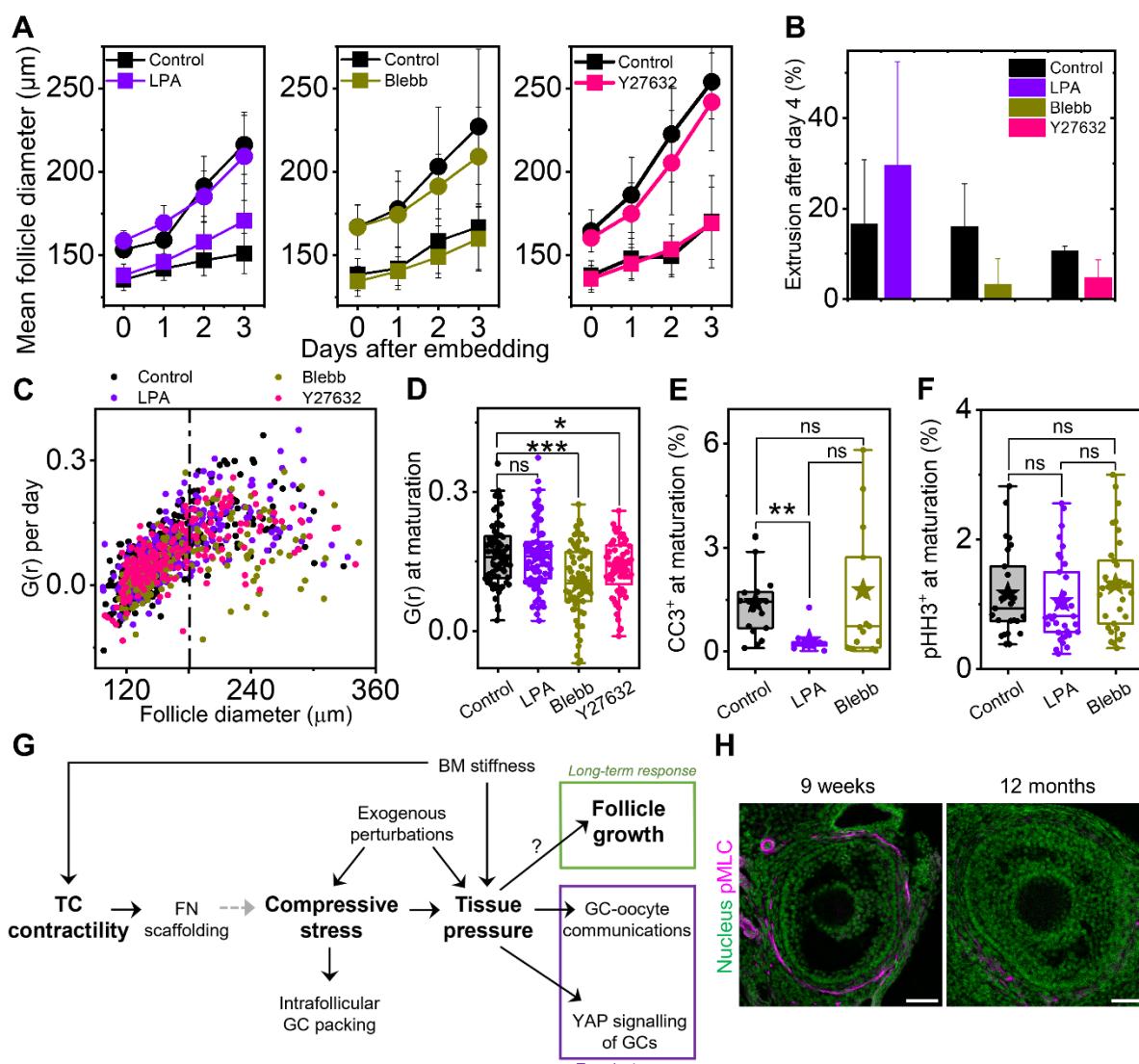
511 **Figure 6: Transient perturbation of mechanical stress impacts granulosa cell signalling and**
 512 **oocyte GC communications.** A) Representative images of follicles stained with DAPI and

513 immunolabelled with Ki67 (top), and immunolabelled with YAP (bottom) upon transient

514 perturbation of mechanical stress. Scale bar: 50 μ m. B) Boxplots for percentage of Ki67⁺ basal

515 and oocyte GCs in various perturbations. C) Boxplots of YAP N/C ratios (log scale) in basal

516 and oocyte GCs in various perturbations. N = 3, n = 28 (control), 38 (10 kPa), 29 (LPA), 26


517 (Blebb), 38 (Y27632), 23 (Collnse) follicles. D) Representative images of actin transzonal

518 projections between the oocyte and oocyte GCs for follicles in various perturbations, with

519 corresponding boxplots of TZP number density shown in (E). Scale bar: 10 μ m. N = 3, n = 25

520 (control), 48 (10 kPa), 30 (LPA), 28 (Blebb), 35 (Y27632), 32 (Collnse) follicles. Significance

521 was determined by Mann-Whitney U test. ns: p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

522

523 **Figure 7: Attenuation of TC contractility leads to reduced follicle growth.** A) Plot of follicle
 524 diameters in controls and various contractility perturbations. $N = 3-5$, $n = 172$ (control), 86
 525 (LPA), 89 (Blebb), 81 (Y27632) follicles. Error bars represent standard deviation. Square and
 526 circle symbols represent follicles with diameters smaller and larger than 150 μm respectively.
 527 B) Percentage of extrusion events upon contractility perturbation. Bars represent mean of
 528 ruptures in an experiment and error bars represent standard deviation. C) Scatter plot of growth
 529 rates per day as a function of follicle size in different conditions. Dashed line marks the
 530 transition to maturation phase. D) Boxplots of maturation growth rates for follicles in different
 531 conditions. $n = 72$ (control), 86 (LPA), 65 (Blebb), 64 (Y27632) follicles. E) Boxplots of
 532 CCL3 $^+$ GCs in matured follicles cultured in different conditions. $N = 2$, $n = 25$ (control), 28
 533 (LPA), 32 (Blebb) follicles. F) Boxplots of pHH3 $^+$ GCs in matured follicles after culture in
 534 different conditions. $N = 2$, $n = 38$ (control), 43 (LPA), 42 (Blebb) follicles. G) Schematic
 535 showing changes in follicle pressure through extrinsic mechanical perturbations or contractile

536 TCs can impact GC mechanical signalling, oocyte-GC communications, and long-term follicle
537 growth. H) Representative images of follicles immune-stained with DAPI (nucleus, green) and
538 pMLC (magenta) in young (9 weeks) and aged (12 months) ovaries. Significance was
539 determined by Mann-Whitney U test. ns: $p > 0.05$; * $p < 0.05$; *** $p < 0.001$.

540

541 **EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**

542 **Animals**

543 Mice were group housed in individually ventilated cages with access to water and food under
544 a 12-hr light/12-hr dark cycle. Mouse rooms were maintained at 18-25 °C and 30-70% relative
545 humidity. C57BL/6NTac female mice, aged P25 – P28, were euthanized by carbon dioxide
546 asphyxiation followed by cervical dislocation. ICR female mice, aged 9 weeks and 12 months,
547 was used for preliminary experiments reported in Figure 7F. Ovaries were then dissected from
548 the mice and transferred to an isolation buffer consisting of Leibovitz's L15 medium (Thermo
549 Fisher) supplemented with 3 mg/ml Bovine Serum Albumin (BSA, Sigma). All mice care and
550 use were approved by the Institutional Animal Care and Use Committee (IACUC) at the
551 National University of Singapore.

552 **METHOD DETAILS**

553 **Pharmacological treatments**

554 Blebbistatin (Selleck) was used at 5 µM or 20 µM and Y-27632 (Merck) was used at 20 µM to
555 inhibit cell contractility. LPA (Sigma) was used at 20 µM to enhance cell contractility. Large
556 dextran molecules (2 MDa, Sigma) were dissolved in growth medium in varying concentrations
557 to generate varying osmotic pressures⁸². 0.2 mg/mL collagenase was used to disrupt the BM.
558 RGDS (Abcam) was used at 40 µM for to inhibit TC-FN adhesion. Transient perturbations
559 were done for 30 mins; perturbations to check changes in pMLC/FN expression was done for
560 2-4 hours. Verteporfin (Sigma) was used at 5 µM for 6 hours to inhibit YAP signalling.

561 **3D follicle culture**

562 Follicles were mechanically isolated from dissected ovaries under the stereomicroscope
563 attached to thermal plate using tweezers in IB at 37 °C. Growth medium, consisting of MEM-
564 α GlutaMAX (Thermo Fisher) supplemented with 10% Fetal Bovine Serum (FBS, Thermo
565 Fisher), 1% Penicillin-Streptomycin (Thermo Fisher), 1xInsulin-Transferrin-Selenium
566 (Thermo Fisher), and 50 mIU/ml follicle stimulating hormone (Sigma) was prepared.
567 Individual follicles were transferred to each well in a 96-well non-treated plate and cultured in
568 growth medium at 37 °C, 5% CO₂, 95% humidity overnight.

569 1% alginate (Sigma) was prepared in phosphate buffer saline (PBS, Gibco) and mixed with
570 growth medium in a 1:1 ratio. Follicles were mouth-pipetted to the 0.5% alginate solution, and

571 hydrogels were formed by pipetting each follicle-alginate mix into the crosslinking medium
572 for ~2 mins. The crosslinker consisted of 50 mM calcium chloride (Sigma) and 140 mM sodium
573 chloride (1st BASE). Once encapsulated, each gel was placed in 100 μ L growth medium inside
574 individual wells of Ultra-Low Attachment 96-well plate (Corning). For long term cultures, half
575 the volume of the growth medium was changed in each well every two days. The follicles were
576 removed from the alginate hydrogels after four days using 10 IU/mL alginate lyase (Sigma) at
577 37 °C for 10-15 mins.

578 **Bead-follicle assays**

579 Follicles were placed in the follicle medium filled with red or green cytoplasmic membrane
580 dye (Cellbrite) for 1-2 hours to label the outer theca cells. They were then washed thrice before
581 being transferred to 200- μ l droplets of follicle medium filled with the gelatin beads (kind gifts
582 from Krystyn van Vliet's lab) in a 35 mm glass-bottom dish (Cellvis) covered with mineral oil
583 (Sigma). The beads and follicles are manipulated to position them in contact and cultured in an
584 incubator with a humidified atmosphere supplemented with 5% CO₂ at 37 °C for up to 2 hours.
585 Time-lapse imaging for bead-follicle fusion was performed on a Zeiss LSM 710 confocal
586 microscope with an onstage incubator using 40 \times /NA 1.2 W Corr objective and Zen 2012 LSM
587 software with 488 nm and 633 nm lasers. Image stacks were acquired at 90 mins intervals with
588 4 μ m z-steps. For bead-follicle experiments performed in the presence of blebbistatin, the
589 follicle medium (volume increased to 400 μ l) was not covered with mineral oil.

590 **Tissue sectioning**

591 Ovaries were fixed in 4% paraformaldehyde (PFA, Santa Cruz Biotechnology) at room
592 temperature (RT) for an hour. The fixed ovaries were washed in washing buffer (WB, 1% BSA
593 in 1X PBS) thrice before being embedded into 4% low-melting point agarose (Thermo Fisher).
594 The embedded tissue was sliced into 100 μ m thick tissue sections using a vibratome (Leica) in
595 PBS at 0.05 mm/s speed and 1 mm amplitude.

596 **Immunofluorescence staining**

597 Isolated follicles were fixed in 4% PFA at RT for 30 mins and washed with WB thrice before
598 immunostaining. Fixed samples were incubated in blocking-permeabilizing solution (3% BSA
599 and 0.03% Triton X-100) at RT for 2-4 hrs, followed by incubation at 4 °C in primary
600 antibodies diluted in the blocking solution overnight. The tissues were washed 5 times in WB
601 and incubated in secondary antibodies diluted in the washing buffer for 4 hrs at RT. They were

602 washed thrice in WB before mounting. The ovarian slices were mounted into ProLong Gold
603 antifade mountant (Thermo Fisher) and left to cure overnight at RT, whereas isolated follicles
604 were mounted into SlowFade Gold antifade mountant (Thermo Fisher) prior to imaging.

605 Primary antibodies used were rabbit anti-phospho myosin light chain 2 (Ser19) (Cell Signaling
606 Technology, 1:100), rabbit anti-fibronectin (Abcam, 1:100), rabbit anti-Ki67 (Cell Signaling
607 Technology, 1:100), rabbit anti-phospho histone H3 (Cell Signaling Technology, 1:100), rabbit
608 anti-cleaved caspase 3 (Abcam, 1:100), and mouse anti-YAP (Abnova, 1:100). Alexa Fluor
609 488 labelled anti-mouse (Invitrogen, 1:500) and Alexa Fluor 546 labelled anti-rabbit
610 (Invitrogen, 1:500) was used as secondary antibodies. DNA was stained with DAPI (Sigma, 2
611 µg/mL) and F-actin was stained with either Alexa Flour 488-labelled phalloidin (Invitrogen,
612 1:1000) or Alexa Flour 633-labelled phalloidin (Invitrogen, 1:300).

613 All fixed samples were imaged with Nikon A1Rsi confocal microscope with NIS Elements.
614 Isolated follicles were imaged using Apo 40×/1.25 WI λS DIC N2 objective at 4 µm z-slices.
615 Tissue slices were imaged with Plan Apo VC 20×/0.75 DIC N2 and stitched with 10% overlap
616 using lasers 405 nm, 488 nm, 561 nm, 640 nm.

617 **EdU incorporation assay**

618 Follicles were incubated with 50 µM EdU (EdU Staining Proliferation Kit, abcam) for 2 hours
619 under optimal growth conditions. They were washed with WB and grown under different
620 conditions for 30 mins. The samples were fixed and permeabilized. The EdU reaction solution
621 was prepared as per the manufacturer's specifications. The follicles were incubated in the
622 reaction solution for 2 hours at RT in the dark. They were washed and incubated with DAPI
623 for 2 hours at RT in the dark before being washed and then mounted for imaging.

624 **Atomic force microscopy**

625 ***Sample preparation and setup for single cell and follicle indentation***

626 Wafer for the PDMS microwells was designed by the lab. PDMS and cross linker were mixed
627 in 10:1 ratio and degassed before transferring to the wafer. The PDMS mixture was degassed
628 again and cured at 80°C for two hours. The PDMS mould was removed and trimmed into
629 working size. To fabricate the microwells, PDMS mixture was transferred onto the glass
630 bottom dish (WPI FD35) and the trimmed PDMS mould was placed inverted on top and cured
631 at 80°C for two hours. The mould was then removed and the PDMS microwells were used for
632 AFM. The microwells were filled with growth medium and left in the 37 °C incubator for at

633 least 30 mins. Freshly isolated follicles were transferred to medium and left to stabilize under
634 optimal growth conditions before being indented.

635 The NanoWizard 4 BioScience (JPK Instruments AG) mounted on an inverted microscope
636 (Olympus IX81) with a 10x objective was used. Polydimethylsiloxane (PDMS) microwells
637 with 100 μm , 130 μm , 150 μm diameters at 50 μm spacing and 80 μm depth were fabricated
638 to house the follicles during AFM experiments.

639 A pyramidal tip on Bruker MLCT-D cantilever (0.03 N/m spring constant) was used to measure
640 effective TC surface tension. A polystyrene particle (45 μm) on silicon nitride cantilever
641 (Novascan Technologies, 0.35 N/m spring constant) was used to measure bulk tissue
642 mechanics. Measurements were conducted with a constant speed of 5 $\mu\text{m/s}$, with a loading
643 force of 10 nN (tip) or 15 nN (bead) in a 10 μm by 10 μm area. Both sensitivity and spring
644 constant were calibrated using contact-based approach prior to each experiment. Follicle
645 diameters and effective tip radius were determined from the brightfield images.

646 **Primary cell isolation**

647 Primary ovarian cells were isolated based on protocols adapted from Tingen et al.³⁸. In brief,
648 freshly isolated ovaries were poked in IB by a needle under the stereomicroscope to release the
649 GCs till intact follicles were no longer observed. This solution was centrifuged at 94g for 5
650 mins. The pellet was washed twice and resuspended in McCoy's 5A medium (Gibco)
651 supplemented with 5% FBS and 1% Penicillin-Streptomycin to yield primary GCs.

652 A digestion buffer comprising of 0.05 mg/mL activated DNase I (DNase I with HBSS in a 1:1
653 ratio, Merck), 10 mg/mL Collagenase (Thermo Fisher) and 40% Medium 199 (Gibco) was
654 freshly made. The remaining tissue fragment after mechanical disruption containing theca cells
655 (and stromal cells) was washed and transferred to the digestion buffer (200 μL per ovary). This
656 was incubated at 37 °C for 1 hr mixing gently every 15 mins using a pipette. Once completely
657 dissolved, the solution was centrifuged at 94g for 5 mins. The pellet was washed and
658 resuspended in supplemented McCoy's medium. Cells were then seeded onto 6-well plates in
659 the growth medium and incubated at 37 °C, 5% CO₂ and 95% humidity for at least a day before
660 further experiments.

661 **Traction force microscopy (TFM)**

662 a) Preparation of TFM substrates

663 Glass coverslips were cleaned with 2% Hellmanex III, washed with water, and blow dried with
664 nitrogen before silanization. They were incubated in the silanization solution, 2%
665 trimethoxysilyl propyl methacrylate (TMPOMA, Sigma) and 1% glacial acetic acid in absolute
666 ethanol for 10 mins, rinsed with ethanol, blow dried with nitrogen, and incubated at 120 °C for
667 an hour.

668 An aliquot of 3 μ l of 100 nm fluorescent microspheres (F8810, Invitrogen) was added to 10 ml
669 of milliQ water and sonicated for 10 mins. The bead solution was filtered by a 0.22 μ m syringe
670 filter (Sartorius) into 500 μ L of 500 mM MES buffer (pH 6.0). A master polyacrylamide
671 solution was made by mixing 200 μ L of 40% polyacrylamide solution (Biorad), 200 μ L of 2%
672 bis-acrylamide solution (Biorad), 1.5 μ L TEMED (Sigma), and 582.5 μ L of the bead solution.
673 16 μ L of 10% ammonium persulphate (Biorad) was added to the master mix, and 100 μ L
674 droplets were dispensed on a clean parafilm strip. The silanized coverslips were gently placed
675 on the gel droplets such that the gel covered the whole glass area, and the polyacrylamide was
676 allowed to gel for 30 mins. The coverslips with the gel were removed from the parafilm by
677 floating water at the bottom of the gel and placed gel side facing upwards in PBS at 4 °C
678 overnight after washing with 1X PBS thrice.

679 The gel was soaked in 0.1 M HEPES (1st BASE, pH 7.4) for 30 mins. A 0.02 mg/mL solution
680 of sulfosuccinimidyl 6-(4'-azido-2'-nitrophenylamino) hexanoate (sulfo-SANPAH, 803332,
681 Sigma) was prepared in anhydrous DMSO. 1 μ L of this sulfo-SANPAH solution was added to
682 20 μ L of 0.1 M HEPES (pH 7.4). This solution was added to the polyacrylamide gel surface
683 after discarding the HEPES that was soaking the gel. Mechanical agitation by a silicone block
684 was done to ensure that sulfo-SANPAH was distributed uniformly. The gels were UV treated
685 in the UV-KB9 (KLOE, France) at 8% power for 5 mins, and washed twice in 0.1 M HEPES
686 (pH 7.4). The process was repeated with a fresh solution of sulfo-SANPAH. The gels were
687 washed twice with 0.1 M HEPES (pH 7.4) and once with 1X PBS.

688 A 100 μ g/mL solution of collagen I (Sigma) was prepared in 1 X PBS. 250 μ L of this solution
689 was added to the gel and incubated in the dark for 2 hours at room temperature with intermittent
690 mixing with a pipette to avoid clumping. The gels were washed thrice with 1 X PBS and stored
691 in PBS before seeding of cells.

692 b) TFM setup

693 A spinning disk-confocal microscope with a Yokogawa CSU-W1 scanner unit (Yokogawa
694 Electric, Japan), an iLAS laser launcher (Gataca Systems, France), and a sCMOS Camera

695 (Prime 95B 22 mm, Teledyne Photometrics, USA) attached to a Nikon Ti2-E was used. Images
696 were acquired by a 40x water immersion objective (CFI Apo LWD 40XWI λS N.A. 1.15,
697 Nikon) at z-steps of 0.275 μm with the help of MetaMorph advanced acquisition software
698 (Molecular Devices, USA). Coverslips with the polyacrylamide gels were placed in stainless
699 steel cell culture vessels and 500 μL of supplemented McCoy's cell culture medium was added.
700 Custom-made lids were used to control temperature, CO_2 , and humidity while imaging. A z-
701 stack of the fluorescent labelled beads was captured when the cells were adhered to the gel. 1%
702 sodium dodecyl sulfate was prepared in the supplemented culture medium and 100 μL of this
703 was added to the gel. A second z-stack of the beads was acquired with the same settings after
704 30 mins.

705 **Scanning electron microscopy (SEM)**

706 Ovaries were fixed with 2% PFA and 3% glutaraldehyde (GA) overnight at 4 °C. They were
707 washed thrice with PBS for 5 mins each. Samples were incubated in 1% osmium tetroxide
708 (OsO_4) with 1.5% potassium ferrocyanide in PBS for 1 hour on ice and then washed thrice
709 with distilled water for 5 mins each. The samples were then placed into 1% thiocarbohydrazide
710 (TCh) in distilled water for 20 mins at room temperature and washed thrice with distilled water
711 for 5 mins each. The samples were then placed into 1% OsO_4 in distilled water for 30 mins at
712 room temperature and washed thrice with distilled water for 5 mins each. They were next
713 incubated with 1% uranyl acetate (UA) in distilled water overnight at 4 °C and washed thrice
714 with distilled water for 5 mins each. 0.02 M lead nitrate and 0.03 M aspartic acid were mixed,
715 and pH was adjusted to 5.5. The samples were kept in lead aspartate solution for 30 min at 60
716 °C in the oven, and again washed thrice with distilled water for 5 mins each. Tissues were
717 dehydrated with ethanol, increasing gradually from 25%, 50%, 75%, 95% and 100%, with 10
718 mins in each solution on ice before washing with acetone twice for 10 mins each on ice. For
719 resin infiltration, the samples were placed in 1:1 acetone-araldite resin mixture for 30 mins and
720 then 1:6 mixture overnight. They were then transferred to pure araldite for 1 hour in a 45 °C
721 oven. This was done thrice before they were transferred into embedding mould with pure
722 araldite and cured for 24 hours in a 60 °C oven.

723 The embedded samples were then sectioned using Diatome diamond knife with the Leica UC6
724 ultramicrotome and 100 nm ultrathin sections were collected onto silicon wafers. SEM Imaging
725 was done with ThermoFisher FEI Quanta 650 FEG-SEM where large area montage scans were

726 acquired with MAPS 2.1 software using the backscatter mode (vCD detector) at 5 kV, 5 mm
727 working distance (WD).

728 **Laser ablation**

729 Follicles were stained with EGFP-CNA35 at 8 μ M for 2 hours in follicle growth medium to
730 label the BM. Laser ablation experiment was performed on a NikonA1R Multiphoton laser
731 scanning confocal microscope with an Apo 40x/ NA 1.25 WI λ S DIC N2 objective lens. UV
732 laser with 355 nm, 300 ps pulse duration and 1 kHz repetition rate (PowerChip PNV-0150-
733 100, team photonics) was irradiated to the BM in the follicle equatorial plane for 5 secs at 300
734 nW laser power at the back aperture. For YAP experiments, the follicles were fixed within 2-
735 5 mins after ablation. For velocity calculation, transmitted light (TD) and EGFP channel images
736 were obtained every 2 secs for 10 mins.

737 **QUANTIFICATION AND STATISTICAL ANALYSIS**

738 **Quantification of basal TC-BM matrix thickness**

739 Line-scans (~1.5 μ m) were drawn perpendicular to the matrix between the basal TCs and BM
740 in the SEM images, spaced 20 μ m away from each other. Plot profiles were plotted; and the x-
741 coordinates of the start and end of the “bright” matrix was noted from each intensity profile.
742 The width of each profile was calculated by subtracting the x-values and averaged over all
743 widths obtained from all line-scans in a follicle.

744 **Quantification of pMLC and FN expression**

745 Using FIJI, the z-plane where the oocyte diameter was the largest in the entire image stack was
746 selected. A polygonal selection tool on the phalloidin stained actin channel was used to mark
747 the TC layer and the GC layers in follicles. The selection was overlaid on the pMLC/FN
748 channel, and the mean intensity of the selection was measured. A 60 x 60 pixels area was
749 demarcated in the same z-plane in the background of the image using the rectangle selection
750 tool and the mean intensity of this area was measured. The ratio of the mean intensity of the
751 signal to that of the background was termed as pMLC or FN expression. The ratio of the TC to
752 GC mean intensity was termed as ratio (pMLC or FN intensity).

753 A segmented line tool was used to mark the oocyte cortex. The selection was overlaid on the
754 pMLC channel, and the mean intensity was measured. By dividing this value by the mean
755 intensity of the background, the ratio (pMLC intensity) at the oocyte cortex was computed.

756 **Quantification of AFM-based indentation**

757 The details of AFM-based analyses are explained in Supplementary Information.

758 a) Analysis of effective TC surface tension and effective follicle pressure

759 There is a linear regime of force-displacement relationship for indentation depth within 100-
760 700 nm. The linear coefficient, here, is related to the hydrostatic pressure exerting at this
761 shell^{83,84} (details in Supplementary Material Sec. 1.a). Assuming a material homogeneity at the
762 scale of follicle size, this pressure could be regarded as an effective hydrostatic pressure of
763 follicle, and its surface tension (mostly contributed by theca cells) was then inferred from
764 Laplace law as $\sigma_\infty = PR_f/2$, where R_f is the follicle radius.

765 b) Analysis of tissue elasticity and hysteresis

766 For indentation depth within 1~5 μ m, which is much smaller than the of probing bead and
767 follicle radius, we used a Maxwellian viscoelasticity model to extract the pure elastic parts of
768 approach and retraction curves. The pure elastic force-indentation curve was then fitted by
769 simple Hertz model for a bead tip. Hysteresis was calculated as the area under the curve
770 between approach and retraction plots.

771 **Quantification of local parallel velocity**

772 PIV analyses were implemented onto the time-lapse images obtained after laser ablation using
773 openPIV in Python. The range of local area around the ablation point was determined by the
774 GC layer thickness. The velocity of GC cells flowing away from the follicle centre was
775 quantified as the mean velocity in this local range projected along the direction pointing from
776 ablation point to the follicle centre.

777 **Quantification of bulk moduli for follicles and beads**

778 A polygonal selection was drawn on the edge of the follicle/bead using FIJI. The Fit Ellipse
779 option was used to measure the major (a) and minor (b) axes of the selection. Volume of the
780 selection was calculated by $V = \frac{4}{3}\pi \frac{ab^2}{8}$. The difference (ΔV) between the initial and final
781 volume was computed for every osmotic pressure and the ratio of the difference to the initial
782 volume at each osmotic pressure was plotted with the corresponding osmotic pressure ($\Delta P =$
783 $k \frac{\Delta V}{V}$), where k is the bulk modulus. Curves with negative data points were removed and the
784 average curve was generated. The linear part of the average plot, between 0 to 5 kPa, was fitted

785 to a straight line with the intercept fixed at 0. The slope was measured; the inverse of the slope
786 was calculated and termed as bulk modulus.

787 **Quantification of TC compressive stress**

788 The z-plane of the image stack (captured at $t = 0$ hr) with the maximum bead diameter was
789 determined. A maximum intensity projection was obtained from 5 slices (the max. bead
790 diameter z-plane, 2 slices before and 2 slices after that). The outline of the bead was
791 demarcated, and the volume of the bead is measured. The same was done for the image stack
792 at $t = 40$ hours, and the change in volume between these two timepoints was calculated. The
793 compressive stress was then computed by multiplying the relative volumetric change of the
794 beads to its bulk modulus.

795 **Quantification of traction stress**

796 Images of the same cells with and without beads (after SDS washing) were stacked to create
797 an image pair using FIJI. An ImageJ plugin, Align Slice, was used to align for any drift away
798 from the cell boundary. The cell boundary was noted from the corresponding brightfield image.
799 The bead displacement field and magnitude were calculated using the PIV plugin using the
800 same iteration scheme (128/256 for 1st pass, 64/128 for 2nd pass, and 32/64 for 3rd pass). The
801 threshold, or the cross-correlation coefficient was set at 0.60. The traction stress field and
802 magnitude were computed by the FTTC plugin using 32 kPa as the stiffness, 0.5 as the Poisson
803 ratio, and 9×10^{-11} as the regularization factor. The stress fields were read out as images in FIJI;
804 the cell brightfield images were used to outline the boundary of the cells and stress clusters
805 within each cell were identified by overlaying the cell ROI using Particle Analysis plugin. The
806 cluster ROIs were then overlaid on the stress magnitude images; average and maximum stress
807 from each cluster was then measured.

808 **Quantification of follicle volume upon transient perturbations**

809 Freshly isolated follicles (one in each well) were placed in growth medium, and images of each
810 follicle were immediately captured. They were incubated at 37 °C for 30 mins and images of
811 each were acquired again. They were then transferred to medium containing Blebb/Y-27632
812 and images were captured. The follicles were imaged again after 30 mins and transferred to
813 normal growth medium. Images were taken instantly and then after incubating for 30 mins at
814 37 °C. Each follicle, thus, could be tracked over six images. Follicle volume was calculated as

815 mentioned in the previous section. The ratio between follicle volume at $t = 30$ hr and $t = 0$ hr
816 for each condition (control, treatment, recovery) was termed as ratio (Follicle volume).

817 **Quantification of GC proliferation and YAP signalling**

818 The z-plane of the image stack (isolated follicles and tissue slices) with the maximum oocyte
819 diameter was determined in FIJI. The number of DAPI-stained nuclei and Ki67-labelled nuclei
820 in this layer was counted separately. The ratio between the Ki67+/DAPI+ was calculated, and
821 the value was termed Ki67 positive. The same approach was taken for the EdU proliferation
822 analysis.

823 Nuclei and cytoplasm of each GC were identified using the DAPI and DAPI/Phalloidin overlay
824 respectively. A 2x2 pixels selection was drawn each on the nucleus and its corresponding
825 cytoplasm. These selections were overlaid on the YAP channel and the mean intensity was
826 measured for each selection. The ratio of the nuclear to cytoplasmic selections for each cell
827 was calculated and plotted.

828 **Quantification of number of Transzonal projections (TZP)**

829 The z-plane of the image stack with the maximum oocyte diameter was determined. The
830 intensity of the background of the sample was measured at this plane. A segmented line was
831 drawn on the zona pellucida surrounding the oocyte using the Line ROI tool in FIJI. The length
832 of this line was measured. The intensity of the actin-labelled image was plotted as a function
833 of the length of the line using Plot Profile in FIJI. The data was used to count the number of
834 peaks above the background value using Origin2021b. The ratio of the number of peaks to the
835 length of the line was termed as number density.

836 **Quantification of interstitial gap within follicles**

837 A pixel was detected as interstitial if its intensity was below the background noise level in all
838 three channels of DAPI, Actin and YAP. A cluster of connected interstitial pixels was
839 recognized as one interstitial gap. Each cluster has an area of A and perimeter length of P , the
840 shape of each cluster is quantified as the ratio, which is 1 for a sphere and larger than one for
841 an elongated shape. All algorithms were developed with OpenCV in python.

842 **Quantification of GC number**

843 Cell nuclei segmentation was performed on the DAPI channel using a Birch clustering
844 algorithm. Pixels close to one cluster seed was identified as one cell. Image processing codes

845 were implemented by Python. Birch algorithm was implemented through the scikit-learn
846 module. A heurist parameter-tuning method was applied to the algorithm without assigning a
847 cluster number to search for the optimal cluster (cell) size that would minimizes the within-
848 cluster-sum (wss) score. Then, the algorithm was looped over a reasonable range of cluster no.
849 using this optimal cluster size to find the optimal cluster (cell) number that had the lowest wss
850 score. The number of clusters in CC3 and PHH3 channels (number of cells with positive signals)
851 are found by the same clustering algorithm with the optimal cluster size obtained in the DAPI
852 channel.

853 **Quantification of follicle growth**

854 Follicle diameters D were measured by length measurements tools in FIJI. Growth rate γ of
855 follicles was defined as the change of diameter dD over a period of time dt , normalized by the
856 diameter: $\gamma = \frac{dD(t)}{D(t)dt}$, which is equivalent to $d \ln D(t)/dt$ when dt is small. In practice, we
857 calculated the growth rate of a follicle with diameter D at time t from the discrete time evolution
858 as $(\ln(D(t)) - \ln(D(t - \Delta T))) / \Delta T$, where ΔT is the time interval between two consecutive
859 time points and ΔT is usually 1 day or 2 days. The growth rate for diameters $> 180 \mu\text{m}$ was used
860 to plot $G(r)$ at the maturation phase.

861 **Statistical analysis**

862 All graphs and statistical tests were created using Origin 2021b. N represents the number of
863 independent experiments and n represents the total number of follicles/tissues in the
864 representative data shown in figures. The data was tested for significance using Mann-Whitney
865 U test when ns: $p > 0.05$, *: $p < 0.05$, **: $p < 0.01$, and ***: $p < 0.001$.

866 **References**

- 867 1. McNatty, P., Heath, D.A., Lundy, T., Fidler, A.E., O'Connell, A., Smith, P., Groome, N., and Tisdall, D.J. (1999). Control of early ovarian follicular development. *J Reprod Fertil Suppl* 54, 3–16.
- 870 2. Montgomery, G.W., Galloway, S.M., Davis, G.H., and McNatty, K.P. (2001). Genes controlling ovulation rate in sheep. Preprint at Journals of Reproduction and Fertility Ltd, 10.1530/rep.0.1210843 10.1530/rep.0.1210843.
- 873 3. Barnett, K.R., Schilling, C., Greenfeld, C.R., Tomic, D., and Flaws, J.A. (2006). Ovarian follicle development and transgenic mouse models. *Hum Reprod Update* 12, 537–555. 10.1093/humupd/dml022.
- 876 4. Edson, M.A., Nagaraja, A.K., Matzuk, M.M., and Genetics, H. (2009). The Mammalian Ovary from Genesis to Revelation. *Endocr Rev* 30, 624–712. 10.1210/er.2009-0012.
- 878 5. Hertig, A.T., and Adams, E.C. (1967). Studies on the human oocyte and its follicle. I. Ultrastructural and histochemical observations on the primordial follicle stage. *J Cell Biol* 34, 647–675. 10.1083/JCB.34.2.647.
- 881 6. Choi, Y., and Rajkovic, A. (2006). Genetics of early mammalian folliculogenesis. *Cell Mol Life Sci* 63, 579–590. 10.1007/S00018-005-5394-7.
- 883 7. Mora, J.M., Fenwick, M.A., Castle, L., Baithun, M., Ryder, T.A., Mobberley, M., Carzaniga, R., Franks, S., and Hardy, K. (2012). Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. *Biol Reprod* 86. 10.1095/BIOLREPROD.111.096156.
- 887 8. França, M.M., and Mendonca, B.B. (2022). Genetics of ovarian insufficiency and defects of folliculogenesis. *Best Pract Res Clin Endocrinol Metab* 36. 10.1016/J.BEEM.2021.101594.
- 890 9. Pascoletti, G., Di Nardo, M., Fragomeni, G., Barbato, V., Capriglione, T., Gualtieri, R., Talevi, R., Catapano, G., and Zanetti, E.M. (2020). Dynamic Characterization of the Biomechanical Behaviour of Bovine Ovarian Cortical Tissue and Its Short-Term Effect on Ovarian Tissue and Follicles. *Materials* 2020, Vol. 13, Page 3759 13, 3759. 10.3390/MA13173759.
- 895 10. Shah, J.S., Sabouni, R., Cayton Vaught, K.C., Owen, C.M., Albertini, D.F., and Segars, J.H. (2018). Biomechanics and mechanical signaling in the ovary: a systematic review. *J Assist Reprod Genet* 35, 1135. 10.1007/S10815-018-1180-Y.
- 898 11. Sun, C., Yang, X., Wang, T., Cheng, M., and Han, Y. (2021). Ovarian Biomechanics: From Health to Disease. *Front Oncol* 11. 10.3389/FONC.2021.744257.
- 900 12. Biswas, A., Ng, B.H., Prabhakaran, V.S., and Chan, C.J. (2022). Squeezing the eggs to grow: The mechanobiology of mammalian folliculogenesis. *Front Cell Dev Biol* 10. 10.3389/FCELL.2022.1038107.
- 903 13. Cheng, Y., Feng, Y., Jansson, L., Sato, Y., Deguchi, M., Kawamura, K., and Hsueh, A.J. (2015). Actin polymerization-enhancing drugs promote ovarian follicle growth

905 mediated by the Hippo signaling effector YAP. *The FASEB Journal* 29, 2423.
906 10.1096/FJ.14-267856.

907 14. Kawamura, K., Cheng, Y., Suzuki, N., Deguchi, M., Sato, Y., Takaue, S., Ho, C.H.,
908 Kawamura, N., Tamura, M., Hashimoto, S., et al. (2013). Hippo signaling disruption
909 and Akt stimulation of ovarian follicles for infertility treatment. *Proc Natl Acad Sci U S*
910 *A* 110, 17474–17479. 10.1073/pnas.1312830110.

911 15. Borreguero-Muñoz, N., Fletcher, G.C., Aguilar-Aragon, M., Elbediwy, A., Vincent-
912 Mistiaen, Z.I., and Thompson, B.J. (2019). The Hippo pathway integrates PI3K–Akt
913 signals with mechanical and polarity cues to control tissue growth. *PLoS Biol* 17.
914 10.1371/JOURNAL.PBIO.3000509.

915 16. Nagamatsu, G., Shimamoto, S., Hamazaki, N., Nishimura, Y., and Hayashi, K. (2019).
916 Mechanical stress accompanied with nuclear rotation is involved in the dormant state of
917 mouse oocytes. *Sci Adv* 5. 10.1126/SCIAADV.AAV9960.

918 17. Nagamatsu, G. (2021). Regulation of primordial follicle formation, dormancy, and
919 activation in mice. *J Reprod Dev* 67, 189. 10.1262/JRD.2021-040.

920 18. Amargant, F., Manuel, S.L., Tu, Q., Parkes, W.S., Rivas, F., Zhou, L.T., Rowley, J.E.,
921 Villanueva, C.E., Hornick, J.E., Shekhawat, G.S., et al. (2020). Ovarian stiffness
922 increases with age in the mammalian ovary and depends on collagen and hyaluronan
923 matrices. *Aging Cell* 19, e13259. 10.1111/ACEL.13259.

924 19. Mara, J.N., Zhou, L.T., Larmore, M., Johnson, B., Ayiku, R., Amargant, F., Pritchard,
925 M.T., and Duncan, F.E. (2020). Ovulation and ovarian wound healing are impaired with
926 advanced reproductive age. *Aging* 12, 9686–9713. 10.18632/AGING.103237.

927 20. Hornick, J.E., Duncan, F.E., Shea, L.D., and Woodruff, T.K. (2012). Isolated primate
928 primordial follicles require a rigid physical environment to survive and grow in vitro.
929 *Hum Reprod* 27, 1801. 10.1093/HUMREP/DER468.

930 21. Chan, C.J., Bevilacqua, C., and Prevedel, R. (2021). Mechanical mapping of mammalian
931 follicle development using Brillouin microscopy. *Commun Biol* 4, 1133.
932 10.1038/s42003-021-02662-5.

933 22. Young, J.M., and McNeilly, A.S. (2010). Theca: the forgotten cell of the ovarian follicle.
934 *Reproduction* 140, 489–504. 10.1530/REP-10-0094.

935 23. Liu, X., Qiao, P., Jiang, A., Jiang, J., Han, H., Wang, L., and Ren, C. (2015). Paracrine
936 Regulation of Steroidogenesis in Theca Cells by Granulosa Cells Derived from Mouse
937 Preantral Follicles. *Biomed Res Int* 2015. 10.1155/2015/925691.

938 24. Knight, P.G., and Glister, C. (2019). Theca cells and the regulation of ovarian androgen
939 production. *Biosci Proc* 8, 295–310.

940 25. Roberts, A.J., and Skinner, M.K. (1990). Mesenchymal-epithelial cell interactions in the
941 ovary: estrogen-induced theca cell steroidogenesis. *Mol Cell Endocrinol* 72, R1–R5.
942 10.1016/0303-7207(90)90242-Z.

943 26. Stein, I.F., and Leventhal, M.L. (1935). Amenorrhea associated with bilateral polycystic
944 ovaries. *Am J Obstet Gynecol* 29, 181–191. 10.1016/S0002-9378(15)30642-6.

945 27. Wood, J.R., Ho, C.K.M., Nelson-Degrave, V.L., McAllister, J.M., and Strauss, J.F.
946 (2004). The molecular signature of polycystic ovary syndrome (PCOS) theca cells
947 defined by gene expression profiling. *J Reprod Immunol* 63, 51–60.
948 10.1016/J.JRI.2004.01.010.

949 28. Nelson, V.L., Legro, R.S., Strauss, J.F., and McAllister, J.M. (1999). Augmented
950 Androgen Production Is a Stable Steroidogenic Phenotype of Propagated Theca Cells
951 from Polycystic Ovaries. *Molecular Endocrinology* 13, 946–957.
952 10.1210/MEND.13.6.0311.

953 29. Melo, A.S., Ferriani, R.A., and Navarro, P.A. (2015). Treatment of infertility in women
954 with polycystic ovary syndrome: approach to clinical practice. *Clinics* 70, 765.
955 10.6061/CLINICS/2015(11)09.

956 30. Rodgers, R.J., Suturina, L., Lizneva, D., Davies, M.J., Hummitzsch, K., Irving-Rodgers,
957 H.F., and Robertson, S.A. (2019). Is polycystic ovary syndrome a 20th Century
958 phenomenon? *Med Hypotheses* 124, 31–34. 10.1016/j.mehy.2019.01.019.

959 31. Geist, S.H., and Gaines, J.A. (1942). Diffuse luteinization of the ovaries associated with
960 the masculinization syndrome. *Am J Obstet Gynecol* 43, 975–983. 10.1016/S0002-
961 9378(42)91019-6.

962 32. Culiner, A., and Shippel, S. (1949). VIRILISM AND THECA-CELL HYPERPLASIA
963 OF THE OVARY: A SYNDROME. *BJOG* 56, 439–445. 10.1111/j.1471-
964 0528.1949.tb07115.x.

965 33. Meczekalski, B., Szeliga, A., Maciejewska-Jeske, M., Podfigurna, A., Cornetti, P., Bala,
966 G., and Adashi, E.Y. (2021). Hyperthecosis: an underestimated nontumorous cause of
967 hyperandrogenism. *Gynecological Endocrinology* 37, 677–682.
968 10.1080/09513590.2021.1903419.

969 34. Hatzirodos, N., Irving-Rodgers, H.F., Hummitzsch, K., and Rodgers, R.J. (2014).
970 Transcriptome Profiling of the Theca Interna from Bovine Ovarian Follicles during
971 Atresia. *PLoS One* 9, 99706. 10.1371/journal.pone.0099706.

972 35. Rodgers, R.J., and Laven, J.S.E. (2020). Genetic relationships between early menopause
973 and the behaviour of theca interna during follicular atresia. Preprint at Oxford University
974 Press, 10.1093/humrep/deaa173 10.1093/humrep/deaa173.

975 36. Kogure, Y.S., Muraoka, H., Koizumi, W.C., Gelin-Alessi, R., Godard, B., Oka, K.,
976 Heisenberg, C.P., and Hotta, K. (2022). Admp regulates tail bending by controlling
977 ventral epidermal cell polarity via phosphorylated myosin localization in *Ciona*.
978 *Development (Cambridge)* 149. 10.1242/DEV.200215/VIDEO-4.

979 37. Chan, C.J., Costanzo, M., Ruiz-Herrero, T., Mönke, G., Petrie, R.J., Bergert, M., Diz-
980 Muñoz, A., Mahadevan, L., and Hiiragi, T. (2019). Hydraulic control of mammalian
981 embryo size and cell fate. *Nature* 2019 571:7763 571, 112–116. 10.1038/s41586-019-
982 1309-x.

983 38. Tingen, C.M., Kiesewetter, S.E., Jozefik, J., Thomas, C., Tagler, D., Shea, L., and
984 Woodruff, T.K. (2011). A macrophage and theca cell-enriched stromal cell population
985 influences growth and survival of immature murine follicles in vitro. *Reproduction* *141*,
986 809. 10.1530/REP-10-0483.

987 39. Tian, Y., Shen, W., Lai, Z., Shi, L., Yang, S., Ding, T., Wang, S., and Luo, A. (2015).
988 Isolation and identification of ovarian theca-interstitial cells and granulose cells of
989 immature female mice. *Cell Biol Int* *39*, 584–590. 10.1002/CBIN.10426.

990 40. Sangha, G.K., and Guraya, S.S. (1988). Histochemical changes in acid and alkaline
991 phosphatase activities in the growing follicles and corpora lutea of the rat ovary. *Acta
992 Morphol Neerl Scand* *26*, 43–49.

993 41. Chapeau, C., Engelhardt, H., King, G.J., and Etches, R.J. (1996). Alkaline phosphatase
994 activity in the theca of ovarian follicles of the hen throughout follicular development.
995 *Poult Sci* *75*, 1536–1545. 10.3382/PS.0751536.

996 42. Cortvriendt, R., Hu, Y., and Smitz, J. (1998). Recombinant luteinizing hormone as a
997 survival and differentiation factor increases oocyte maturation in recombinant follicle
998 stimulating hormone-supplemented mouse preantral follicle culture. *Human
999 Reproduction* *13*, 1292–1302. 10.1093/HUMREP/13.5.1292.

1000 43. He, C., Wei, X., Liang, T., Liu, M., Jiang, D., Zhuang, L., and Wang, P. (2021).
1001 Quantifying the Compressive Force of 3D Cardiac Tissues via Calculating the
1002 Volumetric Deformation of Built-In Elastic Gelatin Microspheres. *Adv Healthc Mater*
1003 *10*, 2001716. 10.1002/ADHM.202001716.

1004 44. Heeren, A.M., Van Iperen, L., Klootwijk, D.B., De Melo Bernardo, A., Roost, M.S.,
1005 Gomes Fernandes, M.M., Louwe, L.A., Hilders, C.G., Helmerhorst, F.M., Van Der
1006 Westerlaken, L.A.J., et al. (2015). Development of the follicular basement membrane
1007 during human gametogenesis and early folliculogenesis. *BMC Dev Biol* *15*.
1008 10.1186/s12861-015-0054-0.

1009 45. Akkoyunlu, G., Demir, R., and Üstünel, İ. (2003). Distribution patterns of TGF- α ,
1010 laminin and fibronectin and their relationship with folliculogenesis in rat ovary. *Acta
1011 Histochem* *105*, 295–301. 10.1078/0065-1281-00717.

1012 46. Barbazan, J., Pérez-González, C., Gómez-González, M., Dedenon, M., Richon, S.,
1013 Latorre, E., Serra, M., Mariani, P., Descroix, S., Sens, P., et al. (2023). Cancer-
1014 associated fibroblasts actively compress cancer cells and modulate
1015 mechanotransduction. *Nat Commun* *14*, 6966. 10.1038/s41467-023-42382-4.

1016 47. De Candia, L.M., and Rodgers, R.J. (1999). Characterization of the expression of the
1017 alternative splicing of the ED-A, ED-B and V regions of fibronectin mRNA in bovine
1018 ovarian follicles and corpora lutea. *Reprod Fertil Dev* *11*, 367–377. 10.1071/RD99087.

1019 48. Delarue, M., Montel, F., Vignjevic, D., Prost, J., Joanny, J.-F., and Cappello, G. (2014).
1020 Compressive Stress Inhibits Proliferation in Tumor Spheroids through a Volume
1021 Limitation. *Biophysj* *107*, 1821–1828. 10.1016/j.bpj.2014.08.031.

1022 49. Puts, R., Rikeit, P., Ruschke, K., Knaus, P., Schreivogel, S., and Raum, K. (2018).
1023 Functional regulation of YAP mechanosensitive transcriptional coactivator by Focused

1024 1025 Low-Intensity Pulsed Ultrasound (FLIPUS) enhances proliferation of murine
mesenchymal precursors. *PLoS One* 13. 10.1371/JOURNAL.PONE.0206041.

1026 50. Wang, C., Zhu, X., Feng, W., Yu, Y., Jeong, K., Guo, W., Lu, Y., and Mills, G.B. (2016).
1027 Verteporfin inhibits YAP function through up-regulating 14-3-3 σ sequestering YAP in
1028 the cytoplasm. *Am J Cancer Res* 6, 27.

1029 51. El-Hayek, S., Yang, Q., Abbassi, L., FitzHarris, G., and Clarke, H.J. (2018).
1030 MAMMALIAN OOCYTES LOCALLY REMODEL FOLLICULAR
1031 ARCHITECTURE TO PROVIDE THE FOUNDATION FOR GERM LINE-SOMA
1032 COMMUNICATION. *Curr Biol* 28, 1124. 10.1016/J.CUB.2018.02.039.

1033 52. R, D.L.F., and JJ, E. (2001). Transcriptional activity of the mouse oocyte genome:
1034 companion granulosa cells modulate transcription and chromatin remodeling. *Dev Biol*
1035 229, 224–236. 10.1006/DBIO.2000.9947.

1036 53. R, L., and DF, A. (2013). The road to maturation: somatic cell interaction and self-
1037 organization of the mammalian oocyte. *Nat Rev Mol Cell Biol* 14, 141–152.
1038 10.1038/NRM3531.

1039 54. Irving-Rodgers, H.F., and Rodgers, R.J. (2005). Extracellular matrix in ovarian
1040 follicular development and disease. *Cell Tissue Res* 322, 89–98. 10.1007/S00441-005-
1041 0042-Y/METRICS.

1042 55. Briley, S.M., Jasti, S., McCracken, J.M., Hornick, J.E., Fegley, B., Pritchard, M.T., and
1043 Duncan, F.E. (2016). Reproductive age-associated fibrosis in the stroma of the
1044 mammalian ovary. *Reproduction* 152, 245–260. 10.1530/REP-16-0129.

1045 56. Ko, C., Gieske, M.C., Al-Alem, L., Hahn, Y., Su, W., Gong, M.C., Iglarz, M., and Koo,
1046 Y. (2006). Endothelin-2 in Ovarian Follicle Rupture. *Endocrinology* 147, 1770–1779.
1047 10.1210/en.2005-1228.

1048 57. Espey, L.L. (1978). Ovarian contractility and its relationship to ovulation: A review.
1049 Preprint, 10.1095/biolreprod19.3.540 10.1095/biolreprod19.3.540.

1050 58. Wulff, C., Wilson, H., Wiegand, S.J., Rudge, J.S., and Fraser, H.M. (2002). Prevention
1051 of Thecal Angiogenesis, Antral Follicular Growth, and Ovulation in the Primate by
1052 Treatment with Vascular Endothelial Growth Factor Trap R1R2. *Endocrinology* 143,
1053 2797–2807. 10.1210/ENDO.143.7.8886.

1054 59. Taylor, P.D., Hillier, S.G., and Fraser, H.M. (2004). Effects of GnRH antagonist
1055 treatment on follicular development and angiogenesis in the primate ovary. *Journal of
1056 Endocrinology* 183, 1–17. 10.1677/JOE.1.05685.

1057 60. Fraser, H.M., Wilson, H., Morris, K.D., Swanston, I., and Wiegand, S.J. (2005).
1058 Vascular Endothelial Growth Factor Trap Suppresses Ovarian Function at All Stages of
1059 the Luteal Phase in the Macaque. *J Clin Endocrinol Metab* 90, 5811–5818.
1060 10.1210/JC.2005-1199.

1061 61. Fraser, H.M., and Duncan, W.C. (2009). SRB Reproduction, Fertility and Development
1062 Award Lecture 2008. Regulation and manipulation of angiogenesis in the ovary and
1063 endometrium. *Reprod Fertil Dev* 21, 377–392. 10.1071/RD08272.

1064 62. Winklbauer, R., and Stoltz, C. (1995). Fibronectin fibril growth in the extracellular
1065 matrix of the *Xenopus* embryo. *J Cell Sci* *108*, 1575–1586. 10.1242/JCS.108.4.1575.

1066 63. Ehmer, U., and Sage, J. (2016). Control of proliferation and cancer growth by the Hippo
1067 signaling pathway. *Molecular Cancer Research* *14*, 127–140. 10.1158/1541-7786.MCR-
1068 15-0305.

1069 64. Varelas, X., Samavarchi-Tehrani, P., Narimatsu, M., Weiss, A., Cockburn, K., Larsen,
1070 B.G., Rossant, J., and Wrana, J.L. (2010). The Crumbs Complex Couples Cell Density
1071 Sensing to Hippo-Dependent Control of the TGF- β -SMAD Pathway. *Developmental
1072 Cell* *19*, 831–844. 10.1016/j.devcel.2010.11.012.

1073 65. Furukawa, K.T., Yamashita, K., Sakurai, N., and Correspondence, S.O. (2017). The
1074 Epithelial Circumferential Actin Belt Regulates YAP/TAZ through Nucleocytoplasmic
1075 Shuttling of Merlin. *Cell Rep* *20*. 10.1016/j.celrep.2017.07.032.

1076 66. Cai, H., and Xu, Y. (2013). The role of LPA and YAP signaling in long-term migration
1077 of human ovarian cancer cells. *Cell Communication and Signaling* *11*, 1–13.
1078 10.1186/1478-811X-11-31/FIGURES/7.

1079 67. Töpfer, U., Santillán, K.Y.G., Fischer-Friedrich, E., and Dahmann, C. (2022). Distinct
1080 contributions of ECM proteins to basement membrane mechanical properties in
1081 *Drosophila*. *Development (Cambridge)* *149*. 10.1242/DEV.200456/275413.

1082 68. Lamiré, L.A., Milani, P., Runel, G., Kiss, A., Arias, L., Vergier, B., de Bossoreille, S.,
1083 Das, P., Cluet, D., Boudaoud, A., et al. (2020). Gradient in cytoplasmic pressure in
1084 germline cells controls overlying epithelial cell morphogenesis. *PLoS Biol* *18*,
1085 e3000940. 10.1371/JOURNAL.PBIO.3000940.

1086 69. Shroff, N.P., Xu, P., Kim, S., Shelton, E.R., Gross, B.J., Liu, Y., Gomez, C.O., Ye, Q.,
1087 Drennon, T.Y., Hu, J.K., et al. (2024). Proliferation-driven mechanical compression
1088 induces signalling centre formation during mammalian organ development. *Nature Cell
1089 Biology* *2024*, 1–11. 10.1038/S41556-024-01380-4.

1090 70. Dolega, M.E., Delarue, M., Ingremeau, F., Prost, J., Delon, A., and Cappello, G. (2017).
1091 Cell-like pressure sensors reveal increase of mechanical stress towards the core of
1092 multicellular spheroids under compression. *Nature Communications* *2017* *8*:1 8, 1–9.
1093 10.1038/ncomms14056.

1094 71. Dolega, M.E., Monnier, S., Brunel, B., Joanny, J.F., Recho, P., and Cappello, G. (2021).
1095 Extracellular matrix in multicellular aggregates acts as a pressure sensor controlling cell
1096 proliferation and motility. *Elife* *10*. 10.7554/ELIFE.63258.

1097 72. Ackert, C.L., Gittens, J.E.I., O'Brien, M.J., Eppig, J.J., and Kidder, G.M. (2001).
1098 Intercellular Communication via Connexin43 Gap Junctions Is Required for Ovarian
1099 Folliculogenesis in the Mouse. *Dev Biol* *233*, 258–270. 10.1006/DBIO.2001.0216.

1100 73. Simon, A.M., Goodenough, D.A., Li, E., and Paul, D.L. (1997). Female infertility in
1101 mice lacking connexin 37. *Nature* *1997* *385*:6616 385, 525–529. 10.1038/385525a0.

1102 74. Villeneuve, C., Hashmi, A., Ylivinkka, I., Lawson-Keister, E., Miroshnikova, Y.A.,
1103 Pérez-González, C., Myllymäki, S.M., Bertillot, F., Yadav, B., Zhang, T., et al. (2024).

1104 Mechanical forces across compartments coordinate cell shape and fate transitions to
1105 generate tissue architecture. *Nat Cell Biol* 26, 207–218. 10.1038/s41556-023-01332-4.

1106 75. Tse, J.M., Cheng, G., Tyrrell, J.A., Wilcox-Adelman, S.A., Boucher, Y., Jain, R.K., and
1107 Munn, L.L. (2012). Mechanical compression drives cancer cells toward invasive
1108 phenotype. *Proc Natl Acad Sci U S A* 109, 911–916. 10.1073/PNAS.1118910109/-
1109 /DCSUPPLEMENTAL.

1110 76. Umehara, T., Winstanley, Y.E., Andreas, E., Morimoto, A., Williams, E.J., Smith, K.M.,
1111 Carroll, J., Febbraio, M.A., Shimada, M., Russell, D.L., et al. (2022). Female
1112 reproductive life span is extended by targeted removal of fibrotic collagen from the
1113 mouse ovary. *Sci. Adv* 8, 4564.

1114 77. Irving-Rodgers, H.F., and Rodgers, R.J. (2000). Ultrastructure of the basal lamina of
1115 bovine ovarian follicles and its relationship to the membrana granulosa. *J Reprod Fertil*
1116 118, 221–228.

1117 78. Villeneuve, C., Hashmi, A., Ylivinkka, I., Lawson-Keister, E., Miroshnikova, Y.A.,
1118 Pérez-González, C., Myllymäki, S.M., Bertillot, F., Yadav, B., Zhang, T., et al. (2024).
1119 Mechanical forces across compartments coordinate cell shape and fate transitions to
1120 generate tissue architecture. *Nat Cell Biol* 26, 207–218. 10.1038/s41556-023-01332-4.

1121 79. Vian, A., Pochitaloff, M., Yen, S.-T., Kim, S., Pollock, J., Liu, Y., Sletten, E.M., and
1122 Campàs, O. (2023). In situ quantification of osmotic pressure within living embryonic
1123 tissues. *Nat Commun* 14, 7023. 10.1038/s41467-023-42024-9.

1124 80. Roffay, C., Chan, C.J., Guirao, B., Hiiragi, T., and Graner, F. (2021). Inferring cell
1125 junction tension and pressure from cell geometry. *Development* 148.
1126 10.1242/dev.192773.

1127 81. Ichbiah, S., Delbary, F., Mcdougall, A., Dumollard, R., and Turlier, H. (2023). Embryo
1128 mechanics cartography: inference of 3D force atlases from fluorescence microscopy.
1129 *Nature Methods* | 20, 1989–1999. 10.1038/s41592-023-02084-7.

1130 82. Monnier, S., Delarue, M., Brunel, B., Dolega, M.E., Delon, A., and Cappello, G. (2016).
1131 Effect of an osmotic stress on multicellular aggregates. *Methods* 94, 114–119.
1132 10.1016/J.YMETH.2015.07.009.

1133 83. Couturier, E., Vella, D., and Boudaoud, A. (2022). Compression of a pressurized
1134 spherical shell by a spherical or flat probe. *The European Physical Journal E* 2022 45:2
1135 45, 1–6. 10.1140/EPJE/S10189-022-00166-6.

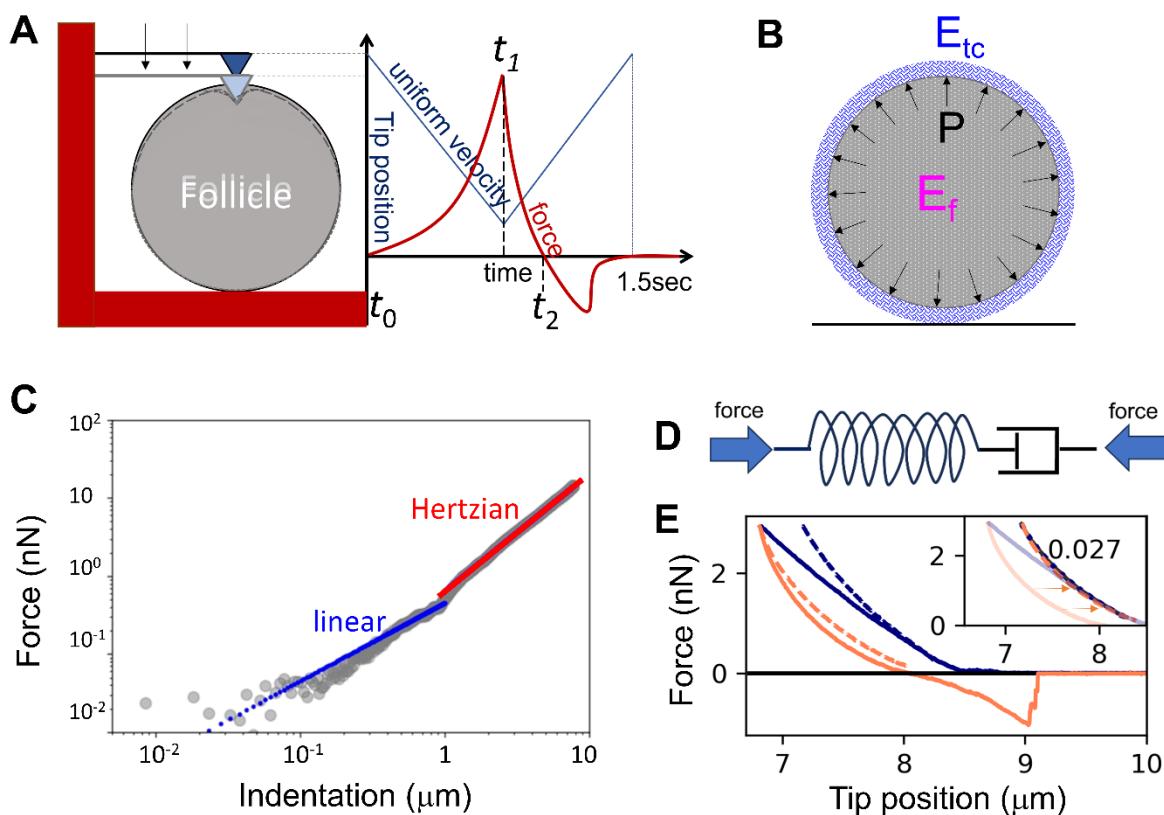
1136 84. Vella, D., Ajdari, A., Vaziri, A., and Boudaoud, A. (2012). The indentation of
1137 pressurized elastic shells: From polymeric capsules to yeast cells. *J R Soc Interface* 9,
1138 448–455. 10.1098/rsif.2011.0352.

1139

1140

1 **Supplementary Information**

2


3 **Theca cell mechanics and tissue pressure regulate mammalian ovarian
4 folliculogenesis**

5

6 Arikta Biswas¹, Yuting Lou¹, Boon Heng Ng¹, Kosei Tomida¹, Sukhada Darpe¹, Zihao Wu¹,
7 Thong Beng Lu², Isabelle Bonne^{2,3,4}, Chii Jou Chan^{1,5*}

8 **Supplementary Methods**

9 AFM-based indentation analyses, a schematic illustration shown in Fig. IA.

10
11
12 *Figure I: Atomic Force Microscopy (AFM) and the time evolution of the tip position and measured*
13 *force from the cantilever. (A) The cantilever (example of a pyramidal tip is shown here) is moving with*
14 *uniform velocity downward until the force resisting the tip of cantilever reaches the pre-set maximum*
15 *force value or the tip position reaches the pre-set maximum range. The total time duration is about 1.5*
16 *second. (B) Model of follicle. (C) A typical two-regime force-indentation relationship with a bead tip*
17 *of radius 22.5 μm, where a linear regime at hundreds nm scale and a non-linear regime at micron scale*
18 *following Hertzian contact model were found. (D) Maxwellian model of viscoelasticity. The elastic*
19 *component (left) and a viscous dashpot (right) are connected in series, along which the elastic force*
20 *and the viscous force is balanced, while the total strain, which is characterized by the tip displacement,*
21 *is the summation of the contraction two components. (E) A typical approach (straight navy) and*
22 *retraction (straight orange) force-tip position curve generated from one AFM measurement. Dashed*
23 *curves are the inferred elastic part of the curves based on a Maxwellian model. Inset: the two inferred*
24 *elastic curves exhibit similar force-position profiles with a mean squared percentage difference 2.7%,*
25 *which is drastically reduced from the original difference ~28%.*

27 ***a) Analysis of follicle surface tension and pressure***

28 Let's assume the follicle is a pressurized elastic ball covered by an elastic shell of theca cells
 29 (Fig. IA-B) with a thickness h , elastic modulus E_{tc} , a homogeneous radius of curvature R_f and
 30 standard Poisson ratio ν_{tc} . Then deformation caused by a poke from a pyramid tip is composed
 31 mainly of the deformation at the tip side δ_{tip} and the deformation at the bottom side δ_{bot} . The
 32 force balance at each side reads $F_{ela}(\delta) + F_p(\delta) = F(\delta)$, where F_{ela} is the elastic force
 33 (including bulk compression and bending) that resists the external poke $F(\delta)$, and $F_p(\delta)$ is the
 34 force due to the hydrostatic pressure. As the elastic shell of theca cells is much thinner than its
 35 radius of curvature, a deformation δ smaller than the thickness of h renders the force linear to
 36 the deformation (Fig. IC), which could be explained by the theory for a compressed thin elastic
 37 shell^{1,2}. If the radius of contact area s_c is much smaller than the characteristic length scale of
 38 bending $l_b \sim (R_f h)^{0.5}$, the force $F = K_1 \delta$, where K_1 is the shell stiffness mainly contributed by
 39 shell bending; otherwise, if the radius of contact area s_c is comparable or larger than the bending
 40 length scale l_b , we estimate $F \sim K_2 \delta$, where K_2 is the shell stiffness contributed by geometric
 41 stretching of shell due to pressure with bending neglected.

42 In Fig. 1E, we probed the follicle depth up to 2~2.5 μm with a pyramid tip of 20 nm. At the
 43 top side, and the contact radius of the nanotip is far smaller than the bending length scale l_b ,
 44 which is on the micron scale, therefore, we have $F = K_1 \delta_{tip}$ at the tip side. At the bottom side,
 45 the contact radius $s_c \sim (2\delta R_f)^{0.5}$, close to l_b , therefore we have $F \sim K_2 \delta_{bot}$ at the bottom. Finally,
 46 we estimate the force F in relation to total indentation δ as $F = K\delta$, where the apparent stiffness
 47 K follows $1/K = 1/K_1 + 1/K_2$, for the δ in the linear regime.

48 The force balance equations for the shell in polar coordinates (also see^{1,2}) are:

$$49 B \nabla^4 \delta - \sigma_\infty \nabla^2 \delta + \frac{E_{tc} h}{R_f^2} \delta = -\frac{F}{2\pi} \frac{\delta(r)}{r}, \text{(tip)} \quad \text{Eq. Sa1}$$

$$50 \frac{F}{2\pi} = \frac{Pr^2}{2} + \sigma_\infty \left(\frac{d\delta}{dr} - \frac{r}{R} \right), (r \rightarrow \infty, \text{bottom}) \quad \text{Eq. Sa2}$$

51 where r is the horizontal distance of points on the shell to the central axis, B is the bending
 52 modulus of shell, $\sigma_\infty = PR_f/2$ is the natural shell surface stress (Laplace's Law holds where r
 53 is far from the central axis). We then obtain the shell stiffness K_1 from the Eq. Sa1 as

$$54 K_1 = \frac{\pi h^2 E_{tc}}{3(1-\nu^2)R_f} \frac{(\tilde{p}^2-1)^{1/2}}{\operatorname{arctanh}(\tilde{p}^{-2})^{1/2}}, \quad \text{Eq. Sa3}$$

55 where \tilde{p} is a dimensionless pressure

$$56 \quad \tilde{p} = \frac{PR_f^2}{E_{tc}h^2} \sqrt{3/4(1 - \nu_{tc}^2)}. \quad \text{Eq. Sa4}$$

57 For $\tilde{p} \gg 1$, $K \approx \frac{\pi h^2 E_{tc}}{3(1-\nu^2)R} \frac{\tilde{p}}{\log(2\tilde{p})}$, which depends both on the pressure and shell elasticity; for

58 $\tilde{p} \ll 1$, $K \approx \frac{2Eh^2}{3(1-\nu^2)R}$, not relative to pressure.

59 From Eq. Sa2, we obtain K_2 as

$$60 \quad K_2 = 2\pi PR_f, \quad \text{Eq. Sa5}$$

61 which merely depends on the pressure, regardless of the contact geometry. One can easily
62 find that K_1 is much smaller than K_2 , therefore the indentation is dominated by the
63 deformation at the tip side.

64 The apparent shell stiffness K is measured from the linear force-indentation regime δ from
65 100 nm to 700 nm. The elasticity E_{tc} is the apparent elasticity fitted using Sneddon model
66 (see methods below) for the nonlinear regime $\delta > 1 \mu\text{m}$ from the approach curve. Assuming
67 the elastic shell thickness $h = 2 \mu\text{m}$ and its Poisson ratio $\nu_{tc} \sim 0.45$, pressure was then obtained
68 at $\sim 20 \text{ Pa}$, which corresponds to a dimensionless pressure $\tilde{p} \sim 10 \gg 1$. This indicates that the
69 system is in the pressurized condition and therefore the value of pressure obtained is valid.
70 We then obtained the natural shell tension $\sigma_\infty = PR_f/2$, which is $\sim 0.55 \text{ mN/m}$ for control,
71 0.9 mN/m for LPA and 0.4 mN/m for Blebbistatin.

72 In Fig. 3A-D (main text), we probed follicles by a bead tip of radius $22.5 \mu\text{m}$. The contact
73 radius at both the tip and the bottom sides is close to the bending length. Neglecting the
74 bending term, the apparent shell stiffness $K \sim K_2/2$, from which we understand that
75 deformation from both sides contribute equally to the indentation. From Eq. Sa5, we fitted
76 the shell surface pressure, and they have similar values with the ones measure from a
77 pyramid tip.

78 ***b) Analysis of tissue viscoelasticity***

79 b.1 A Maxwellian viscoelasticity model

80 For indentation $\delta > 1 \mu\text{m}$, the force-indentation curves show superlinear powers (Fig. IC). This
81 is because the resisting force is contributed mainly by the viscoelastic bulk deformation of the
82 follicle surface materials (including the theca cells, basement membrane and basal granulosa

83 cells) and the linear contribution due to the hydrostatic pressure is negligible. To extract the
 84 viscoelasticity of these parts, we use a Maxwellian model of viscoelastic fluids (Fig. ID). The
 85 force F at the tip is balanced in the elastic part and viscous part in series; and the displacement
 86 δ is the summation of the elastic and viscous counterparts. Hence, the force measured by the
 87 tip F and tip displacement δ in approach and retraction processes in the positive force region
 88 are assumed to obey the following evolution over time t , respectively:

89 for $t_0 < t < t_1$ $\begin{cases} F_a(t) = F'_a(t) = \eta \dot{\delta}_a''(t), \\ \delta_a(t) = \delta'_a(t) + \delta_a''(t), \end{cases}$ Eq. Sb1
 Eq. Sb2

90 and

91 for $t_1 < t < t_2$ $\begin{cases} F_r(t) = F'_r(t) = \eta \dot{\delta}_r''(t), \\ \delta_r(t) = \delta'_r(t) - \delta_r''(t), \end{cases}$ Eq. Sb3
 Eq. Sb4

92 with boundary conditions $F_a(t_0) = F_r(t_2) = 0$, $F_a(t_1) = F_r(t_1)$, $\delta_a(t_0) = 0$, $\delta_a(t_1) =$
 93 $\delta_r(t_1)$.

94 The elastic force, denoted by F' , is related with the elastic displacement δ' using a Hertz model
 95 as $F' = \frac{4}{3} E^* \sqrt{R^* \delta'^3}$ (for bead tip), or a Sneddon model $F' = \frac{\pi}{2} E^* \tan(\alpha_{tip}) \delta'^2$ (for pyramid
 96 tip), where E^* and R^* are the effective elastic modulus and effective radius. Since the bead is
 97 relatively rigid, $E^* \approx E/(1 - \nu^2)$, where E_f is the follicle elasticity to be measured and ν is set
 98 as 0.45 the follicle's Poisson's ratio. The effective radius is calculated as $1/R^* = 1/R_f +$
 99 $1/R_b$, where R_f is the follicle radius and R_b the bead tip radius.

100 Substituting Eq. Sb1(or Sb3) into Eq. Sb2(or Sb4) gives us the elastic component displacement
 101 which can be related to force as

102 $\delta'_a(t) = \delta_a(t) - \frac{1}{\eta} \int_{t_0}^t F_a(\tau) d\tau$, for $t_0 < t < t_1$, Eq. Sb5

103 and $\delta'_r(t) = \delta_r(t) + \frac{1}{\eta} \int_{t_1}^t F_r(\tau) d\tau + \frac{1}{\eta} \int_{t_0}^{t_1} F_r(\tau) d\tau$, for $t_1 < t < t_2$. Eq. Sb6

104 The viscous force, $\eta \dot{\delta}''$, is assumed as linear to the shrinkage rate of the viscous damper $\dot{\delta}''$,
 105 with the viscosity coefficient η in the unit of Ns/m to be measured from the data. The
 106 displacement of the viscous components is calculated as $\delta''(t) = \int_{t_0}^t \dot{\delta}''(\tau) d\tau + \delta''_0$, where
 107 δ''_0 is zero for t_0 .

108 As $F(t_2) = 0$, the elastic component at t_2 also has zero displacement. From Eqs. Sb1-2, the
109 distance between the tip position $\delta_r(t_2)-\delta_a(t_0)$ is derived to be

110
$$-\frac{1}{\eta} \int_{t_0}^{t_2} F(t) dt.$$

111 From the data, we could directly measure $\delta_r(t_2)-\delta_a(t_0)$ and thus obtain the Maxwellian viscosity
112 of the system.

113 Substituting this viscosity into Eq. Sb5, we calculated the elastic component displacement in
114 relation to F_a and used the corresponding bulk models to fit the elasticity of the follicle E .

115 We can also substitute the viscosity value into Eq. Sb6 to obtain another corresponding elastic
116 component displacement in relation to F_r . A verification on this assumption of Maxwellian
117 viscoelasticity is to compare the two elastic force-displacement curves from Eq. 5 and Eq. 6.
118 Consequently, the two curves were sharing a similar profile (Fig. IE, dashed) with a mean
119 squared difference dropped from the original value of 28.1% to 2.7%, suggesting a good
120 performance of Maxwellian model.

121 Note that the indentation value in the elastic force-indentation curve is contributed by both the
122 tip and the bottom side. For the pyramid tip measuring mainly the theca cell layer elasticity

123
$$(1\mu\text{m} < \delta < 2\mu\text{m}), \delta_{tip}/\delta = \left(8\sqrt{\frac{R_f}{\delta_{bot}}}\right)^{0.5} / \left(\left(8\sqrt{\frac{R_f}{\delta_{bot}}}\right)^{0.5} + 1\right) \sim 0.84, \text{ i.e., deformation at the}$$

124 tip side contribute dominantly. For the bead tip measuring the thicker layer composed of theca
125 and basal granulosa cells ($1 < \delta < 5\mu\text{m}$), $\frac{\delta_{tip}}{\delta} = \frac{(R_f/R^*)^{\frac{1}{3}}}{\left((R_f/R^*)^{\frac{1}{3}} + 1\right)} \sim 0.55$, *i.e.*, deformation at both

126 sides contribute almost equally. After extracting the tip fraction of indentation, we finally fit
127 the elasticity from the pure elastic force-indentation curve at the tip side for the theca cell layer
128 (pyramid tip) and for the thicker tissue bulk (bead tip), respectively.

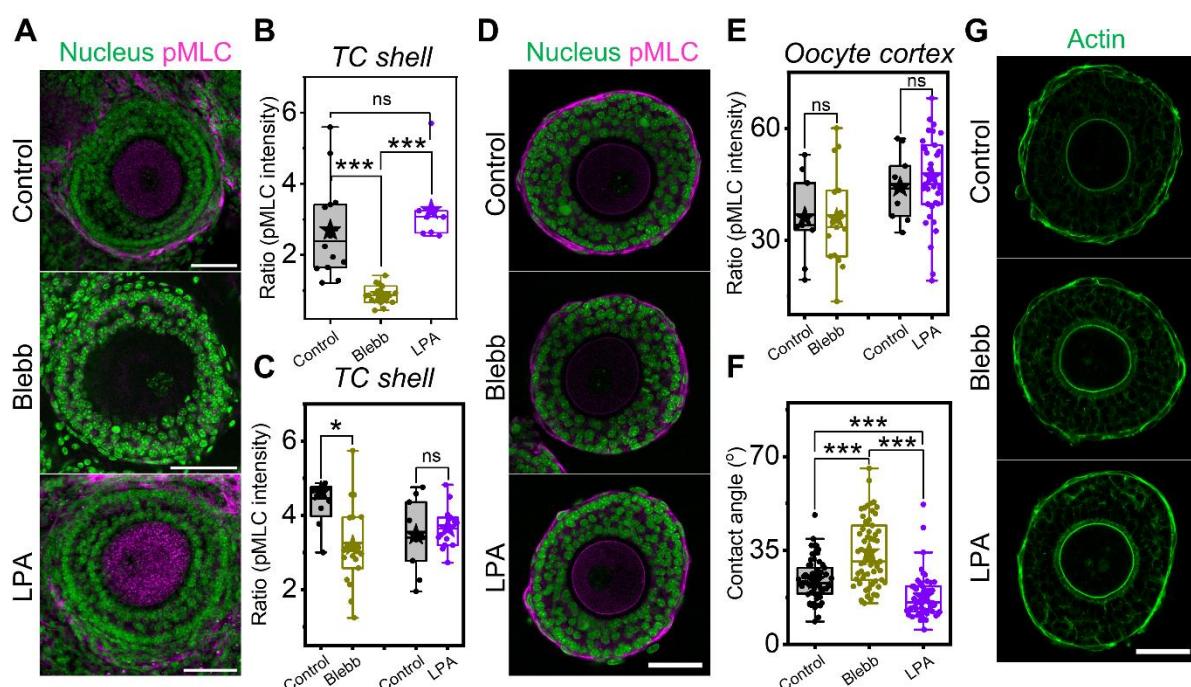
129

130 b.2 Hysteresis

131 The energy done by the tip to follicle during approach is $W_a = \int_0^{\delta_a(t_1)} F_a d\delta_a$, while the energy
132 released by the follicle during retraction $W_r = \int_{\delta_r(t_2)}^{\delta_r(t_1)} F_r d\delta_r$. Work loss is defined as the energy
133 dissipated over the whole loop of approach and retraction:

134 $\Delta W = W_a - W_r$ Eq. Sb7

135 The value of work loss can be directly measured from the approach and retraction curves of
136 force and tip positions.


137 The hysteresis mentioned in the main text is then calculated as $\Delta W/W_a$, which is the energy
138 lost in the whole indentation process normalized by the total work done in the approach phase.
139 As the elastic components do not dissipate energy during the processes, the work loss is merely
140 contributed by the viscous component of the system:

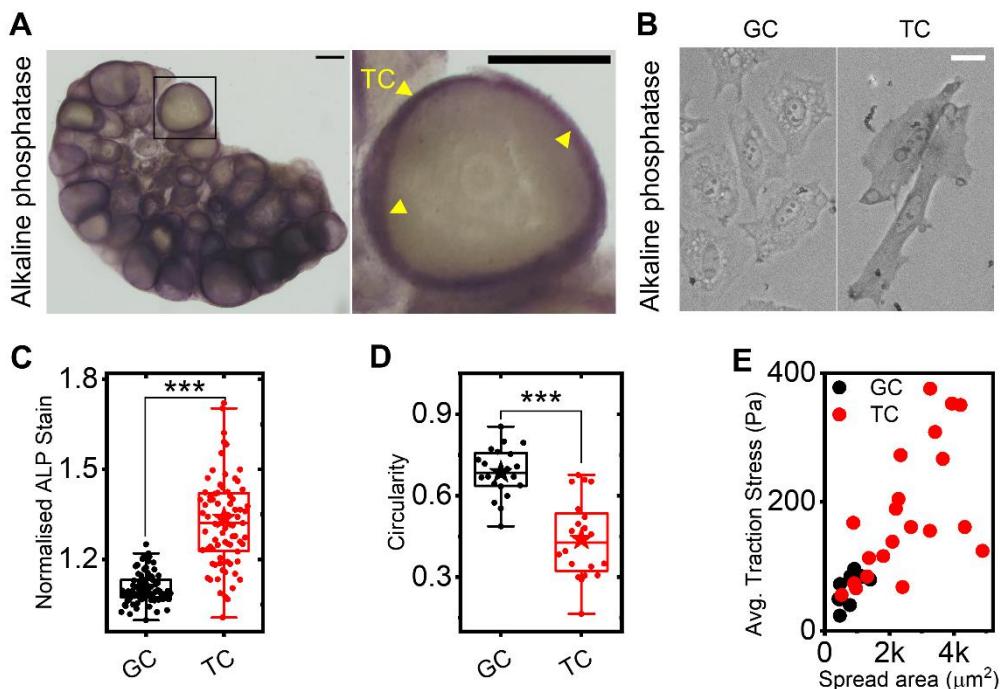
141
$$\Delta W = \int_{t_0}^{t_1} F_a(t) d\delta_a''(t) - \int_{t_2}^{t_1} F_r(t) d\delta_r''(t) = \frac{1}{\eta} \int_{t_0}^{t_1} F_a^2(t) dt - \frac{1}{\eta} \int_{t_2}^{t_1} F_r^2(t) dt$$

142 $= \frac{2}{\eta} \int_0^{F(t_1)} \Delta t(F) F dF,$

143 where $\Delta t(F) = t_2 - (t_r(F) + t_a(F))$ is related with the two times at the same value of F in
144 approach and retraction processes.

145

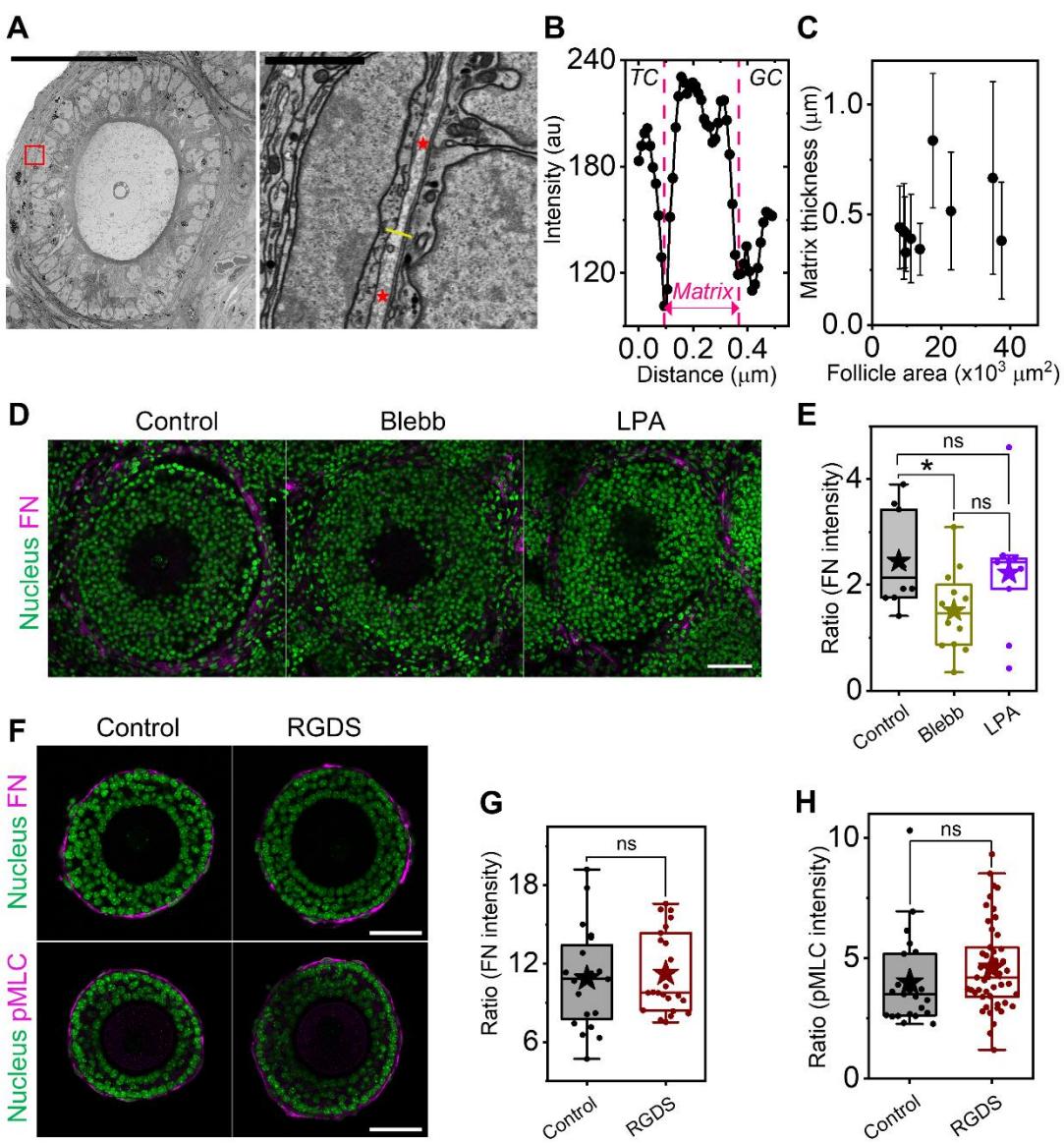
146 **Supplementary Figures**



147

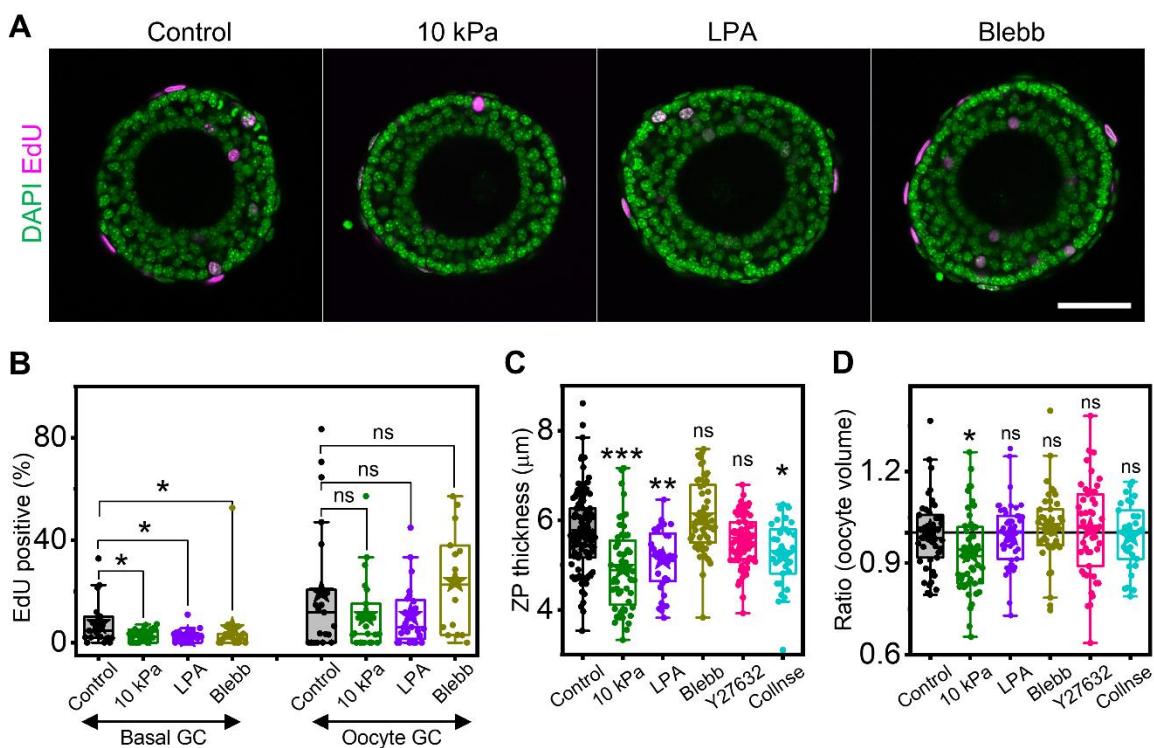
148 **Figure S1: Actomyosin perturbation impacts TC cortical tension but not the oocyte**
149 **cortical tension, related to Figure 1.** A) Representative images of tissue slices labelled with
150 DAPI (nucleus, green) and immuno-stained with pMLC (magenta) in control, Blebb, and LPA-
151 treated samples. Scale bar: 50 μ m. B) Boxplots of ratio (pMLC intensity) at TC shells in various
152 conditions in ovarian tissue slices (*in situ*). N = 2, n = 15 follicles. C) Boxplots of ratio (pMLC
153 intensity) at TC shells of isolated secondary follicles in various actomyosin perturbations. N =
154 2, n = 10-14 follicles each. D) Representative images of isolated follicles (*ex vivo*) in control,
155 Blebb, and LPA-treated samples stained with DAPI (nucleus, green) and immuno-stained with
156 pMLC (magenta). Scale bar: 50 μ m. E) Corresponding boxplots of ratio (pMLC intensity) at
157 oocyte cortex in various conditions. N = 2, n = 12-14 follicles each. F) Boxplots of contact
158 angle of TCs on follicles in various conditions. N = 2, n = 12-14 follicles each. G)
159 Representative images of isolated follicles stained with Phalloidin (actin, green) in various
160 conditions. Scale bar: 50 μ m. Significance was determined by Mann-Whitney U test. ns: p >
161 0.05; * p < 0.05; *** p < 0.001.

162


163

164
165 **Figure S2: Theca cell purity assessment, related to Figure 1.** A) Representative images of
166 alkaline phosphatase staining in ovaries (left) and a zoomed-in view of an outlined follicle
167 (right) showing preferential localisation at the TCs (yellow arrowheads). Scale bar: 200 μm .
168 B) Representative images of alkaline phosphatase staining on primary GCs and TCs cultured
169 *in vitro*. Scale bar: 20 μm . C) Boxplots of alkaline phosphatase intensity for GCs and TCs. D)
170 Boxplots of cell circularity for GCs and TCs. Circularity of 1.0 indicates perfect circular shape.
171 E) Scatter plot of average traction stress of TCs and GCs against their spread area. Significance
172 was determined by Mann-Whitney U test. *** p < 0.001.
173

174
175
176 **Figure S3: Enhanced TC contractility by LPA has minimal impact on follicle viscosity**
177 **and size, related to Figure 3. A)** Boxplot showing viscosity extracted from AFM indentations
178 in different conditions. N = 5, n = 51 (control), 55 (Blebb); N = 2, n = 31 (control), 51 (LPA)
179 follicles. B) Representative images of isolated follicles labelled with DAPI (nucleus, magenta),
180 Phalloidin (actin, grey), and immuno-stained with YAP (green) in control, Blebb, and LPA-
181 treated samples. Scale bar: 50 μ m. C) Boxplots of ratio (follicle volume) in control and LPA-
182 treated samples (30 mins). N = 2, n = 37 (control), 45 (LPA) follicles. Significance was
183 determined by Mann-Whitney U test. ns: p > 0.05; *** p < 0.001.
184



185

186 **Figure S4: Actomyosin perturbation impacts FN assembly, but disruption of FN-TC**
187 **coupling does not affect contractility, related to Figure 4.** A) Representative SEM images
188 of follicles in an ovarian slice (left, scale bar: 50 μ m) and respective zoomed-in sections (right,
189 scale bar: 2 μ m) of the red box. Red asterisks mark the matrix between BM and basal TCs. B)
190 Plot profile of the yellow line marked on A. The width of the matrix is marked in magenta. C)
191 Scatter plot of average matrix thickness against follicle area. Error bar represents standard
192 deviation. N = 12 follicles, n = 50 line-scans each. D) Representative images of tissue slices
193 labelled with DAPI (nucleus, green) and immuno-stained with FN (magenta) in control, Blebb,
194 and LPA-treated samples. Scale bar: 50 μ m. E) Corresponding boxplots of FN expression of
195 the TC shell in various conditions. N = 1, n = 8-10 follicles. F) Representative images of
196 isolated follicles in control and RGDS-treated samples stained with DAPI (nucleus, green) and

197 immuno-stained with FN (magenta, top) or pMLC (magenta, bottom). Scale bar: 50 μ m. G)
198 Corresponding boxplots of ratio (FN intensity) at the TC shell in the two conditions. N = 2, n
199 = 20 (control), 23 (RGDS) follicles. H) Corresponding boxplots of ratio (pMLC intensity) at
200 the TC shell in the two conditions. N = 2, n = 23 (control), 47 (RGDS) follicles. Significance
201 was determined by Mann-Whitney U test. ns: p > 0.05; * p < 0.05.

202

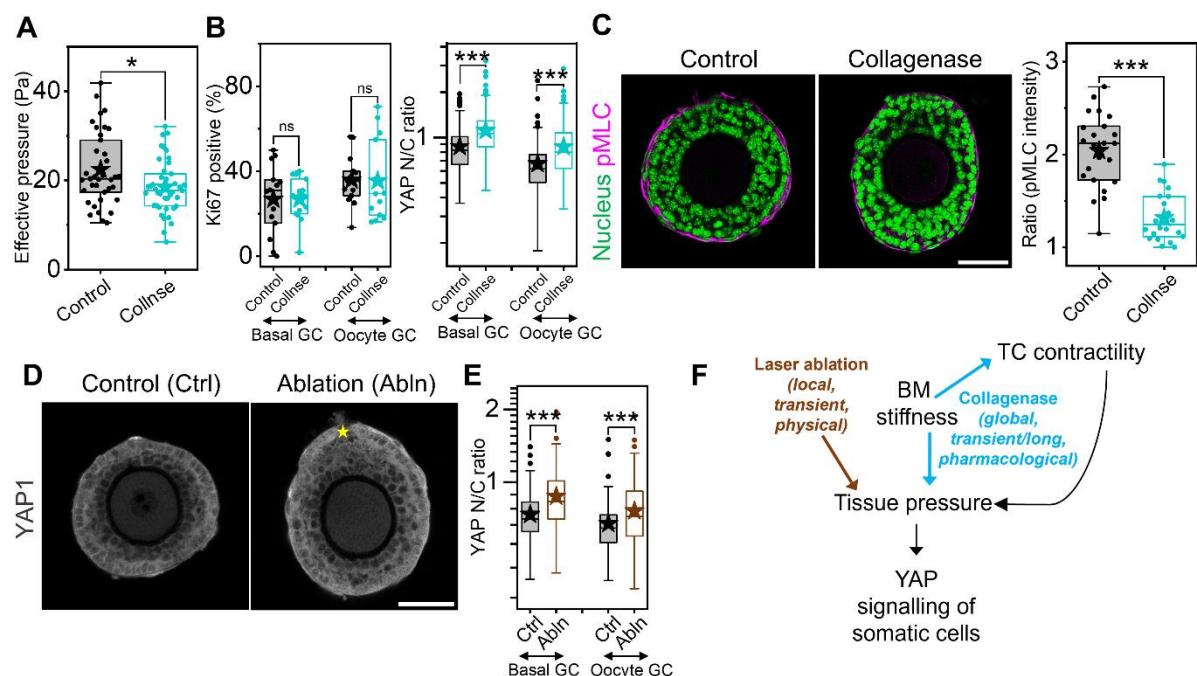
203

204 **Figure S5: Impact of transient mechanical perturbations on GC proliferation, ZP**
205 **thickness and oocyte volume, related to Figures 5-6.** A) Representative images of DAPI

206 (green) and EdU (magenta) stained isolated follicles in control, 10 kPa, LPA, and Blebb-treated

207 samples. Scale bar: 50 μ m. B) Corresponding boxplots of EdU-positive basal and oocyte GCs

208 under various mechanical perturbations. N = 2, n = 20 follicles. C) Boxplots of zona pellucida

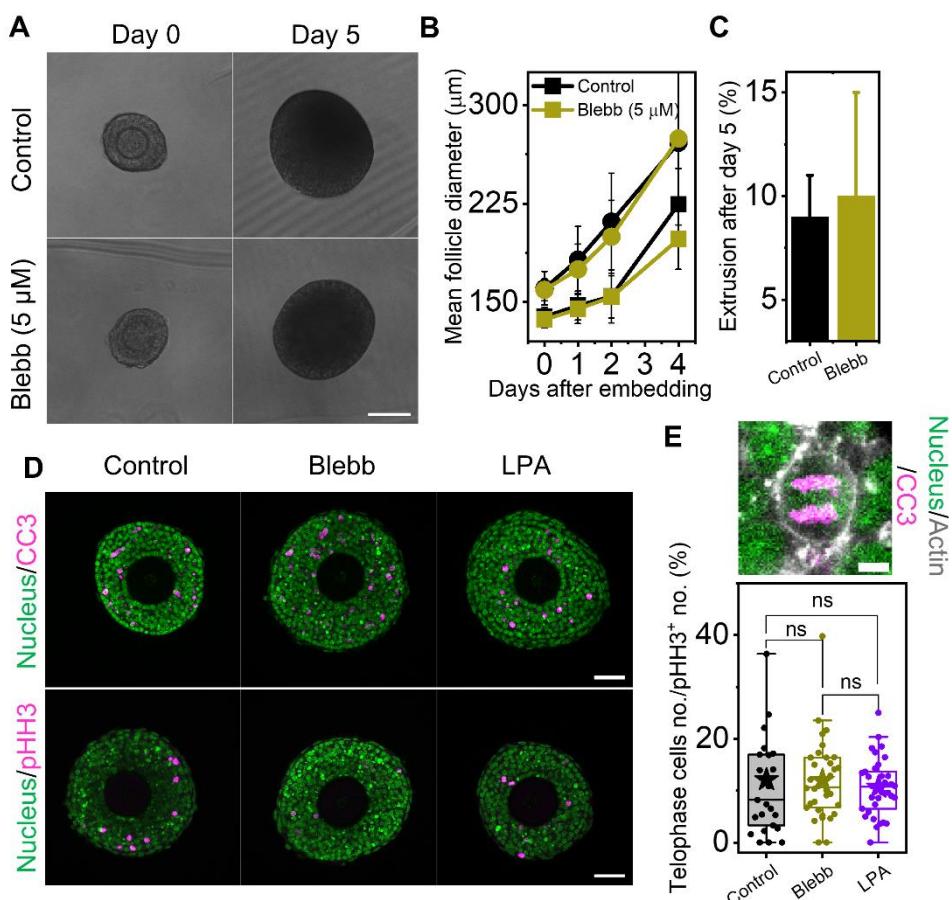

209 thickness under various mechanical perturbations. N = 4, n = 28-56 follicles in each condition.

210 D) Boxplots of ratio (oocyte volume) under various mechanical perturbations. N = 3, n = 20-

211 35 follicles in each condition. Significance was determined by Mann-Whitney U test. ns: p >

212 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

213



214

215 **Figure S6: Physical and pharmacological perturbation of tissue pressure affects YAP**
216 **signalling of granulosa cells, related to Figure 6.** A) Boxplots for effective pressure measured
217 by AFM in control and collagenase treated (0.2 mg/ml, 30 mins) follicles. N = 2, n = 37
218 (control), 43 (collagenase) follicles. B) Boxplots of Ki67⁺ percentage and YAP N/C ratios of
219 basal and oocyte GCs in control and collagenase-treated follicles (0.1 mg/ml, 2 hours). N = 2,
220 n = 18 follicles. C) Left: Representative images showing isolated secondary follicles stained
221 with DAPI (green) and immunolabelled with pMLC (magenta) in different conditions. Scale
222 bar: 50 μ m. Right: Boxplots for ratio (pMLC intensity) at TC shell in control and collagenase-
223 treated follicles (0.2 mg/ml, 30 mins). N = 2, n = 20 follicles. D) Representative images of
224 control and laser-ablated follicles immunolabelled with YAP (grey). Yellow asterisk marks the
225 point of ablation. Scale bar: 50 μ m. E) Boxplots of YAP N/C ratio of basal and oocyte GCs in
226 different conditions. N = 2, n = 18 (control), 35 (ablation) follicles. F) Schematic representing
227 how manipulation of tissue pressure affects YAP signalling of granulosa cells. Significance
228 was determined by Mann-Whitney U test. ns: p > 0.05; * p < 0.05; *** p < 0.001.

229

230

231

232 **Figure S7: Tissue pressure does not affect apoptosis, proliferation and cytokinesis of GCs**
233 **in 3D cultures, related to Figure 7.** A) Representative images of follicles in control and Blebb
234 (5 μ M) conditions at day 0 and day 5 of culture. Scale bar: 100 μ m. B) Plot of follicle diameters
235 in the two conditions. N = 3; n = 46 (control), 56 (Blebb) follicles. C) Percentage of extrusion
236 events in the two conditions. Bars represents the average rupture events within an experiment.
237 Error bars represent standard deviation. D) Representative images of 3D-cultured follicles in
238 control, Blebb (20 μ M), and LPA-treated conditions, labelled with DAPI (green) and immune-
239 stained with cleaved caspase 3 (CC3, top row) and phospho-histone H3 (pHH3, bottom row)
240 in magenta. Scale bar: 50 μ m. E) Top: Representative image showing a cell marked in DAPI
241 (nucleus, green), Phalloidin (actin, grey), and immune-stained with pHH3 (magenta) at
242 telophase in a control follicle. Scale bar: 5 μ m. Bottom: Boxplot of telophase cells normalised
243 against the total number of mitotic cells in control, Blebb, and LPA-treated conditions.
244 Significance was determined by Mann-Whitney U test. ns: p > 0.05.

245

246

247

248 **Supplementary References**

249 1. Couturier, E., Vella, D., and Boudaoud, A. (2022). Compression of a pressurized
250 spherical shell by a spherical or flat probe. *The European Physical Journal E* 2022 45:2
251 45, 1–6. 10.1140/EPJE/S10189-022-00166-6.

252 2. Vella, D., Ajdari, A., Vaziri, A., and Boudaoud, A. (2012). The indentation of
253 pressurized elastic shells: From polymeric capsules to yeast cells. *J R Soc Interface* 9,
254 448–455. 10.1098/rsif.2011.0352.

255