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Abstract

Gene expression levels can vary substantially across cells, even in a seemingly homogeneous
cell population. Identifying the relationships between genetic variation and gene expression is
critical for understanding the mechanisms of genome regulation. However, the genetic control
of gene expression variability among the cells within individuals has yet to be extensively
examined. This is primarily due to the statistical challenges, such as the need for sufficiently
powered cohorts and adjusting mean-variance dependence. Here, we introduce MEOTIVE
(Mapping genetic Effects On inTra-Individual Variability of gene Expression), a novel
statistical framework to identify genetic effects on the gene expression variability (sc-veQTL)
accounting for the mean-variance dependence. Using single-cell RNA-seq data of 1.2 million
peripheral blood mononuclear cells from 980 human donors, we identified 14 - 3,488 genes
with significant sc-veQTLs (study-wide g-value < 0.05) across different blood cell types, 2,103
of which were shared across more than one cell type. We further detected 55 SNP-gene pairs
(in 34 unique genes) by directly linking genetic variations with gene expression dispersion (sc-
deQTL) regardless of mean-variance dependence, and these genes were enriched in biological
processes relevant to immune response and viral infection. An example is rs1131017
(p<9.08x107?), a sc-veQTL in the 5'UTR of RPS26, which shows a ubiquitous dispersion effect
across cell types, with higher dispersion levels associated with lower auto-immune disease risk,
including rheumatoid arthritis and type 1 diabetes. Another example is LYZ, which is associated
with antibacterial activity against bacterial species and was only detected with a monocyte-
specific deQTL (rs1384) located at the 3> UTR region (p=1.48x10!") and replicated in an
independent cohort. Our results demonstrate an efficient and robust statistical method to
identify genetic effects on gene expression variability and how these associations and their
involved pathways confer auto-immune disease risk. This analytical framework provides a new
approach to unravelling the genetic regulation of gene expression at the single-cell resolution,

advancing our understanding of complex biological processes.
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Introduction

Dissecting the genetic control of gene expression is necessary to understand the biological
mechanisms of genome regulation. With the development of single-cell sequencing technology,
many studies have sought to identify how genetic effects underlying gene expression act at the
level of individual cells. These single-cell expression Quantitative Trait Loci (sc-eQTL) have
revealed that the genetic effects underlying mean differences in gene expression between
individuals are frequently cell-type specific!”’. These sc-eQTL analyses are based on the model
assumption that allelic alternatives have an additive effect on the mean expression levels of
RNA amongst genotype groups. They are typically tested using linear regression between an
SNP’s genotype and the mean gene expression levels among a population. Variance QTL
(vQTL) are different from eQTL in that genotypes are associated with the variation of the
phenotype (Figure 1A). They have been studied for complex human traits such as body mass
index (BMI)*!2, bone marrow density (BMD)!?, vitamin D'4, glycemic traits!®, and serum
cardiometabolic biomarkers'®. However, only a few studies!”?° have investigated the
characteristics of variance eQTL (veQTL), i.e., the eQTL that affects the gene expression
variation in each genotype group. They have identified inter-individual veQTLs (genetic
effects on variance across individual expression levels) and linked them to G x G effects, such
as cis-epistatic interactions'® and interaction with a second gene’s expression level'®. They can
also be caused by gene-environment (G x E) interaction effects. Most of these analyses are
based on a variance test, examining the phenotypic variability among genotype groups, such

as Levene’s?! and Brown-Forsythe tests?2.

An under-investigated phenomenon is intra-individual veQTL — the relationship between
genetic variants and gene expression variability within an individual. This type of eQTL is
defined as the genetic variants that affect gene expression variability across cells within an
individual between different genotype groups (Figure 1A). Such variability in a population of
cells (or within a pre-defined cell type) contains the information of cell-to-cell heterogeneity.
It may arise from genetic regulation, immune response, cell cycle, cell state, and/or the
stochasticity of cellular gene expression. One of the few empirical studies to tackle this
question tested for intra-veQTLs (veQTLs hereafter for brevity unless otherwise specified) in
sc-RNA-seq data from 5,447 induced Pluripotent Stem Cells (iPSCs) collected across 53
individuals. They identified five study-wide significant sc-veQTL, but demonstrated that the

differences in variance were induced just by statistical dependence rather than true biological
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86  effects®>. As the authors identified, sample size and number of cells limited the discovery of

87  sc-veQTL.

88

89 Intra-individual variation is particularly interesting because cell-to-cell heterogeneity in the

90  gene expression (especially in immune cells) within an individual might result from important

91 functional consequences, i.e., genetic regulatory mechanism on gene expression during

92  development and homeostasis, as well as a potential response to therapies, and pathological

93  development (such as tumour growth). For example, a recent study?, collecting peripheral

94  blood mononuclear cells (PBMCs) from asthma patients, has linked sc-veQTL to the

95  transcriptional response to immune stimuli and glucocorticoids. In addition, intra-individual

96  variation could be a potential indicator for the G x E interaction with cellular traits such as the

97  cell cycle and cell state at the single-cell level.

98

99  Several challenges are key to identifying sc-veQTLs and understanding their characteristics.
100  First, we need to accurately estimate the intra-individual variance from the scRNA-seq data,
101  where expression counts across cells are typically assumed to follow either Poisson, negative
102 binomial (NB), or zero-inflated negative binomial (ZINB) distribution, especially when the
103 number of cells per sample is low. Second, we need to account for the mean-variance
104  relationship as they are mathematically correlated under those aforementioned models. For
105 example, assuming the gene expression level of a gene across cells follows a negative binomial
106  distribution, the variance (62) can be estimated such that 62 = u + u? * 6, where u is the mean
107  and 8 is the dispersion of the distribution. In this scenario, sc-veQTLs could be primarily
108  induced by differences in the mean expression levels between individuals of different genotype
109  groups. Third, the selection of appropriate statistical tests for detecting sc-veQTLs is uncertain.
110 This may depend on the distributions of intra-individual variance/dispersion estimates across
111 the cohort, and such distributions are likely to vary between genes and cell types.
112
113 Here, we introduce MEOTIVE (Mapping genetic Effects On inTra-Individual Variability of
114  gene Expression), a novel statistical framework to identify the relationship between genetic
115  variants and within-individual variability in the expression levels of a gene at single-cell
116  resolution. Leveraging data from the OneK 1K cohort®, comprising genotype and scRNA-seq
117  data from 1.27 million PBMCs collected across 980 individuals, we test genetic variants’ role
118  on the variance of intra-individual gene expression at the population level while accounting for

119  the mean-variance relationship (Figure 1B). Considering the statistical challenges, we decide


https://doi.org/10.1101/2024.05.05.592598
http://creativecommons.org/licenses/by-nd/4.0/

120
121
122
123
124
125
126
127
128
129

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.05.592598; this version posted May 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

to use two methods in parallel to identify the sc-veQTL that are not induced by mean effect
(ME): (1) a model-free strategy to detect those significant sc-veQTLs that do not show
significant results in the sc-eQTL association analysis and (2) a model-based strategy to first
estimate the intra-individual dispersion parameter () of the expression and then perform the
dispersion-eQTL (sc-deQTL) association analysis. We also investigate how sc-deQTLs show
heterogeneity underlying different cell states and seek potential biological explanations for
them. Overall, we provide a statistical framework to identify single-cell variance eQTL and
reveal novel mechanisms of how genetic variants affect gene expression variability at the

single-cell level.
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132 Figure 1 The illustration of variance eQTL and overview of the study design.

133 (A) Illustrative plot to explain the bulk eQTL/veQTL and single-cell eQTL/veQTL. In bulk-
134  level analysis, each dot indicates the gene expression count for one individual. In single-cell
135 level analysis, each dot indicates the pseudobulk mean/variance expression for one individual
136  inaspecific cell type. (B) The analytical pipeline of MEOTIVE framework identifying genetic
137  variants that affect intra-individual gene expression variability.

138
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139  Results

140

141  To understand the relationship between genetic loci and intra-individual variation in single-
142 cell gene expression, we began by exploring the estimation of data parameters and their
143 relationship in sc-eQTL models. This is important due to: (1) previously identified
144  relationships between estimates such as mean and variance?>?’, and (2) the potential impact of
145  differences in the distribution of a gene’s expression levels, with genes varying between zero-
146  inflated negative binomial through to Gaussian distributions.

147

148  The relationship between mean and intra-individual variance effects

149  Identifying genetic effects on variance is attractive as they can be interpreted easily. However,
150  as previously described, the mean difference between individuals can be correlated with intra-
151  individual variance effects®®. Nevertheless, variance effects can exist independently, with the
152  most likely explanation that they are ‘true’ genetic effects arising from genotype by genotype
153 (GxG) or genotype by environment (GXE) interactions. Using TensorQTL?3, we tested for
154  intra-individual sc-veQTL per cell type, adjusting for sex, age, and latent variables (Methods).
155 Intotal, we identified 4,642 significant (g-value < 0.05) vGenes across all 14 cell types (10,527
156  unique SNP-gene pairs), ranging from 14 to 3,488 for each cell type. As expected, the intra-
157  individual mean estimates are highly correlated with variance estimates for all cell types
158  (Figure 2A), and the correlation is highly dependent on the mean estimates and proportion of
159  cells with zero expression (Figure 2B-C). Testing for the overlap with mean eQTL effects, we
160  observe 94.5% of vGenes also have mean effects (eGenes), and conversely, 60.4% of eGenes
161  also have a variance effect (Table 1 and Figure 2D). The results suggest a small number of sc-
162 veQTL may have variance-only effects and are worth further investigation. We evaluated the
163  effect size, significant level, and TSS distance between vGenes with or without mean effects
164  and the comparison showed the latter group is merely above the significant threshold (g-value
165 =0.05), suggesting this group of signals are more likely to be random noises due to arbitrary
166  threshold (Supplementary Figures 1-3 and Methods). The number of vGenes identified per
167  cell type is a function of the sample size (p, = 0.93) and average number of cells per donor
168 (ps = 0.98) (Figure 2E-F), an observation also seen with eGenes (Table 1). Furthermore, sc-
169  veQTL and sc-eQTL allelic effects are highly correlated (o3 = 0.942~0.991), confirming the
170  relationship between mean and variance effects (Figure 3 and Supplementary Figure 4).

171  Finally, for the vGenes that are also eGenes, all the top veQTLs have the same direction of
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172 allelic effect, with RPSI5A4 the only exception, but the mean effect of the top veQTL
173 (rs7193785) is not significant (nominal p-value = 0.335). These results confirm the strong
174  correlation between the intra-individual mean and variance (Figure 2A and Supplementary
175  Figures 5), verifying that mean veQTLs can explain most effects.

176

177  One explanation is that variance effects occur in addition to mean effects, i.e., the variance
178  effects are greater than those expected under the mean-variance relationship. To investigate
179  this, we tested for genetic effects on the residuals from the regression of the variance on the
180 mean per gene (Methods). We identified 307 genes (g-value < 0.05) with at least one
181  significant residual-eQTL (Supplementary Table 1). However, only seven genes overlap with
182  the vGenes without mean effects. This lack of overlap validates that testing or such residual-
183  eQTL is not valid for identifying true veQTL. Previous studies have attempted other
184  parameterisations to test for genetic effects on intra-individual gene expression variance,
185 including variance-to-mean ratio (VMR, also known as Fano factor) and coefficient of
186  variation (CV)?. However, these two metrics are highly dependent on the intra-individual
187  mean differences (Supplementary Figures 6-7). Another way to adjust the mean-variance
188  relationship is to fit the mean as a covariate when detecting the veQTL per gene®. However,
189  this strategy is expected to be valid only when the mean and variance follow a linear
190  relationship; otherwise, the residuals may have a spurious quadratic relationship with the mean.
191 A recent study*® proposed using a single polynomial regression to remove mean-variance
192 dependence, but it might nonetheless ignore the genuine biological relationship between mean
193 and dispersion since it forces the residuals to be independent of the mean. Morgan et al.3! used
194 local polynomial fit between the squared CV (i.e., CV?) and mean across individuals and tried
195  to identify variability protein-QTLs. Another relevant study?’ estimates a latent gene-specific
196  residual dispersion parameter by fitting a global trend between mean and over-dispersion
197  estimates for all genes, but this was for differential variability testing between two groups of
198  cells and the method was based on the strong assumption that genes with similar expression
199  level are more likely to have similar dispersion level.

200

201  MEOTIVE: direct estimation of dispersion identifies independent genetic effects in intra-
202  individual single-cell expression variability

203  To solve the problems associated with the mean-variance relationship, we developed
204 MEOTIVE, a framework that tests for allelic effects on intra-individual expression dispersion

205 levels and demonstrates that effects are independent from mean effects. MEOTIVE starts with
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206  directly estimating the dispersion parameter (6) for each gene’s intra-individual expression
207  distribution using a Cox-Reid adjusted Maximum Likelihood Estimation (CR-MLE) method??
208  (Methods and Supplementary Figure 8). We subsequently test the genotypes of cis-SNPs (<
209  1Mb) for association with the intra-individual dispersion for each gene per cell type, accounting
210  for the accuracy of parameter estimation (Methods). In total, we identified 55 significant (g-
211 value < 0.05) deQTL-dGene pairs across 34 unique dGenes (Table 2, Figure 3 and
212 Supplementary Figure 9). Most (78%) of the deQTLs have an opposite direction of allelic
213  effect to their corresponding veQTL (Supplementary Table 2). This is because the
214  distribution type of gene expression count per genotype group varies. For example, when the
215  expression level is low for a specific genotype group, the distribution of the count data is more
216  left-skewed driving the dispersion to be higher. For heterozygous individuals, the distribution
217  approaches Gaussian, thus the dispersion becomes much smaller, and so on for individuals
218  with alternative homozygous alleles (see example of RPS26 below, Figure 4). This feature
219  results in a negative relationship between intra-individual variance and intra-individual
220  dispersion for many genes with significant veQTLs and deQTLs.

221

222 We subsequently evaluated the degree of cell-type specificity of the 34 dGenes. Of these,
223 67.6% (23) have evidence of an allelic effect in just one cell type. Of the remaining 11 dGenes,
224 there are five genes with sc-deQTL in two cell types, four genes with sc-deQTL in three cell
225  types, and two genes with sc-deQTL in five cell types respectively (Figure 3 and Table 2).
226  Notably, two genes (/L32 and RPS26) had significant deQTLs in five cell types (Table 2). For
227  example, in both naive and effective CD4 and CDS cells, we identified rs1554999 as the top
228  deQTL for /L32. The A allele shows an increasing effect on the dispersion level of this gene.
229  On average, individuals carrying each copy of the A allele of 151554999 have an increase of
230  0.25 in the dispersion level of mRNA transcript molecules across cells. The top deQTL in the
231  NK cell is a different SNP, rs45499297, but in LD with rs1554999 (R?> = 0.056, D’ = 1). The
232 151554999 is located in the 5° UTR region of /L32, and was previously reported to be strongly
233 associated with methylation level at three CpG sites in CD4+ T cells*>. While most dGenes
234  were also vGenes, there was minimal overlap with residual genes (Supplementary Table 3),
235 providing further supporting evidence that the intra-individual residuals capture different
236  sources of variation from the intra-individual dispersion.

237

238  Functional annotations of deQTLs and dGenes
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239  To understand the functional characteristics of deQTLs and dGenes, we first used
240  ANNOVAR* to perform variant annotation for the top deQTLs and subsequently tested for
241  dGenes overlap with GWAS loci (Methods). Most deQTLs are in the intergenic or intronic
242  regions, implying they affect intra-individual variation via regulatory mechanisms. This
243  observation aligns with those made for single-cell mean-effect eQTLs. The majority of dGenes
244 (31 out of 34) are reported to be associated with either inflammation, immune responses, or
245  viral infections. An example is GNLY, which has significant sc-deQTL in NK, NKg, and CD8gr
246  cells (Table 2). GNLY encodes a protein called granulysin, present in natural killer cells and
247  cytotoxic T lymphocytes, and has been shown to have antimicrobial activity against
248  tuberculosis through changes in cell membrane integrity and reducing the viability of the
249  bacillus®-=¢, All of the sc-deQTLs for GNLY are located in intergenic regions. For example,
250 the sc-deQTL for CD8gr (rs12151621[A/C]) is located in a CTCF binding site
251  (ENSR00000291834), ~8.1kb downstream of GNLY. The A allele of this SNP has a decreasing
252  effect on the dispersion of GNLY expression but an increasing effect on the mean expression,
253  which means individuals with the CA or CC genotype will have lower mean expression but
254  higher dispersion than the individuals with the AA genotype (Supplementary Figure 9). We
255  hypothesise that the C allele leads to a higher binding affinity of CTCF, and the binding will
256  repress the expression of GNLY. The A allele has been reported to have an increasing effect
257  on the protein levels®” and toxoplasma antibody IgG levels*® (p-value =9.1 x 104, not genome-
258  wide significant given limited sample size = 557). This may suggest that individuals with an A
259 allele tend to have higher levels of IgG antibodies against the toxoplasma parasite. The body
260  will produce more GNLY proteins in the NK cells but less variability across cells, ensuring
261  enough functional proteins to kill the microbes. A second example is seen in GZMH, which
262  encodes a serine protease (granzyme H) and is constitutively expressed in CD8gr and NK cells.
263  We identified a deQTL (rs11158812[G/A]) which only has a significant effect in NK cells (p-
264 value =2.16 x 10?°, g-value = 8.43 x 10°!%). The top deQTL is located at the intergenic region
265  between GZMH and GZMB (no association between rs11158812 and GZMB in any cell type),
266  a region that has only been reported to be associated with vitiligo®*. The top GWAS hit
267  (rs8192917) is a missense variant (Arg55Gln) of GZMB but not in LD with rs11158812 (R?> =
268 1.2 x 107). Another example is IFITM2, which encodes interferon-induced transmembrane
269  protein 2, an interferon-induced antiviral protein family member. This locus is not associated
270  with human diseases but is highly associated with human blood cell traits*’ such as granulocyte,
271  neutrophil, and eosinophil counts. The top deQTL of /FTIM?2 differs in three cell types, but for
272 naive CD4 (CD4nc) and CD8gr cells, the top deQTL is the same as the top eQTL and in linkage

10
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273 disequilibrium (R? = 0.11 and D’ = 0.69). For NK cells, the top deQTL (rs7117996) is located
274 inthe intergenic region and independent from the other two top deQTLs (R* < 0.01), but its top
275  eQTL (rs1059091, independent from rs7117996) is a missense variant for IFITM?2.

276

277  There are also dGenes whose top deQTL is located outside the intergenic region. For example,
278  ITGB2 (integrin subunit beta 2) is a significant dGene in CD8gr (g-value = 7.81 x 10) and
279  NK cells (g-value = 5.20 x 1075). In a previous study, the top deQTL (rs760462[A1/A2])
280 located in intron 3 of ITGB2 was annotated as a splice acceptor variant*!. LYZ encodes
281  lysozyme, which has antibacterial activity against several bacterial species and is highly
282  expressed in monocytes (Mono) and dendritic cells (DC). The top deQTL rs1384 is a 3° UTR
283  variant, and a recent study*? has suggested a monocyte-specific trans- action mediated by LYZ
284  in this site. Fairfax et al*} have reported LYZ as a monocyte-specific master regulator and its
285  monocyte-specific cis-eQTL (rs10784774, in complete LD with rs1384) is also a trans-eQTL
286  to 62 genes. The G allele of rs10784774, as well as the T allele of rs1384, is associated with
287  lower expression but higher dispersion level of LYZ in classical monocytes (Table 2), and also
288  reported to be the increasing allele for neutrophil percentage of white cells*.

289

290 Using the FUMA platform, we performed pathway enrichment analyses on the dGenes
291  (Methods), and identified significant enrichment in three Hallmark gene sets: “Allograft
292  Rejection”, “Interferon Gamma Response”, and “Interferon Alpha Response”. The KEGG
293  pathway enrichment identified 12 significant pathways, with the top three “KEGG Viral
294  Myocarditis”, “KEGG Ribosome”, and “KEGG Allograft Rejection”. However, after
295  removing the five MHC genes, only “Allograft Rejection” remained significant in Hallmark
296  gene sets and “KEGG Ribosome” in the KEGG pathway (Supplementary Table 4). We also
297  performed an enrichment analysis of dGenes for GO biological process. The most enriched
298  process is “Interspecies Interaction Between Organisms” and “Cytokine Mediated Signaling
299  Pathway”, and “Viral Gene Expression”. Our results suggest that the dispersion effects on the
300  gene expression across cells within individuals are enriched in the biological process of
301  immune response and viral infection. This is consistent with the prior knowledge that the G x
302  E effect could induce phenotypic variability, and thus the potential environment is worth
303  further investigation.

304

305  Trans-regulation of dGenes partially explained the dispersion difference
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306  Next, we sought to explore potential genomic factors underlying deQTLs. Previous vQTL
307 GWAS, testing for genetic effects on high-order trait variability between individuals, have
308  often explored whether variance effects are caused by G x G or G x E effects. Intuitively, we
309  hypothesise if the dispersion difference in gene expression could be explained by (1) G x G
310  cis-epistasis, where multiple independent cis-SNPs affect the expression variability of the
311  target gene; (2) G x G trans-epistasis, where trans-QTLs are regarded as an interaction effect
312 for the target gene and influence the variability level via the trans-regulation.

313

314  We compared the number of independent cis-QTLs for the 34 candidate dGenes to test if
315  multiple cis-regulations could drive the dispersion difference. On average, each dGene has 2.36
316  independent cis-eQTLs and 1.71 independent cis-veQTLs. The comparison also showed that
317  no dGene has more independent cis-veQTLs than cis-eQTLs except for HNRNPH1 (but it is
318 onlyOvs 1,soitisnota large difference). However, 14 dGenes have significant trans-deQTLs,
319  among which there are also five dGenes (RPSI8, SNHG7, GNLY, CCL3, and LGALS]I) that do
320 not have any trans- eQTL or veQTL (Supplementary Table 5). For example, rs78089025
321  [A1/A2] (9:73039725) showed a genome-wide significant (p-value = 4.04 x 10®) association
322 with the dispersion levels of GNLY in NK cells but not with the mean or variance levels. This
323  SNP is an intron variant for KLF9-DT, a divergent transcript of transcription factor KLF9.
324  When fitting GNLY’s the trans-deQTL (rs78089025) and top cis-deQTL (rs3755007) in the
325  same association model, the interaction term showed significant effects on the dispersion level
326  (Pinteraction = 4.93 x 107!2), and a significant change in the main effect. Specifically, when only
327  top cis-deQTL was fitted, the beta = -0.171, s.e. = 0.009, and when trans-deQTL was fitted in
328  the interaction model, the beta = -0.484, s.e. = 0.046. These results imply that the deQTLs are
329  not induced by the G X G effect from independent cis-SNPs but can be partially explained by
330  the trans-SNP effects on the dGenes.

331

332 Genetic control of variance heterogeneity underlying different contexts

333 Since we show that frans-regulation could be a putative driving factor for deQTLs, we further
334  asked if the G x E interaction between genetic effects and cellular state also affects intra-
335 individual dispersion. To test this, we inferred the cell state landscape for B cells and fitted the
336  average cell state per individual as an interaction term in the deQTL association model
337  (Methods). Only one significant interaction between genotype and cell state was identified for

338  dGene RPSI8 in Bumewm cells (adjusted p-value = 4.66 x 10-*). One plausible explanation is that
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339  the pseudotime was calculated based on highly variable genes, so the gene expression
340  variability of the dGenes might not be well captured by this approach.

341

342 We also tested if deQTL effects are associated with the interaction between genotype and sex
343 or age. For genotype by age interaction, only HLA-B in naive CD8 (CD8xc) cells and RP11-
344  1143G9.4 in classical monocyte (Monoc) cells showed significant associations
345  (Supplementary Table 6). For genotype by sex interaction, only HLA-B showed significant
346  interaction in effective CD4 (CD4gr) (rs34437781) and CD8nc cells (rs9394070). The
347  rs34437781 was a significant deQTL in CD4gr cells (nominal p-value = 1.81 x 1071°, g-value
348  =9.61x109).rs9394070, which is in strong linkage disequilibrium (LD) with rs34437781 (R?
349  =0.886, D'=0.949), is a significant deQTL for HLA-B in CD8 naive cells and top deQTL in
350  CD4 naive cells. Still, when fitting the genotype by sex interaction term in the model, the
351  genotype itself became insignificant (genotype p-value = 5.74 x 1073, interaction p-value = 5.43
352 x 10%). The interaction is mainly induced by only females with the TT genotype (4/980), where
353  their intra-individual mean estimates are the lowest among 980 individuals but the dispersion
354  estimates are relatively higher (Supplementary Figure 9). After removing the four individuals
355  with the TT genotype, the interaction term was no longer significant (interaction p-value =
356  0.029). Similarly, the beta of the deQTL when performing association test in separate sex group
357  are not significantly different (p-value = 0.165). These results indicate that neither sex nor age
358 is the main driving factor of the genetic effects on the dispersion level across cells.

359

360  Association between dispersion eQTL and immune phenotypes

361  To understand the relationship between sc-deQTL and disease risk, we tested for the overlap
362  between sc-deQTL loci and public GWAS associations in GWAScatalog (Methods). The most
363  frequent traits include blood protein levels, asthma, eosinophil counts, type 1 diabetes, Crohn’s
364  disease, height, and rheumatoid arthritis. Combined with the FUMA enrichment results above,
365 it further suggests that the intra-individual dispersion effects are enriched in the genetic
366  association with auto-immune and infectious diseases.

367

368  Highlighting RPS26 as an example, carrying copies of the G allele for rs1131017[G/C] has an
369 increasing effect on the intra-individual dispersion (Figure 4). This SNP was tested against our
370  association analysis's dispersion level of 53 cis-genes but was only significant for RPS26, with
371  shared allelic effects across five cell types (innate B cell, naive/effective CD4, and

372 naive/effective CD8). This locus has previously been reported to be strongly associated with
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373  auto-immune diseases, including type 1 diabetes*, asthma®, vitiligo*® and rheumatoid
374  arthritis*’. The top SNPs are not the same one but all are in strong LD with each other (R? >
375  0.8). Furthermore, the C allele of rs1131017 was consistently shown to have an increasing
376  effect on these auto-immune disease risks, which suggests that the lower dispersion of intra-
377  individual expression of RPS26 is associated with higher auto-immune disease risk. When we
378  directly estimate the dispersion of the unique molecular identifier (UMI) count distribution
379  (after SCTranformation) across all cells in each genotype group (using CD4nc cells as the
80  example), the CC genotype group shows a much larger over-dispersion (6 = 0.843) than the
81 CG or GG group (A = 0.046 and 0.051) (Figure 4G). So, we further dissect the count
382  distribution for each individual. We observe that the UMI count distribution for individuals in
383  the CC genotype group mostly follows a negative binomial distribution, while the UMI count
384  distributions for CG and GG individuals follow a Poisson distribution. This suggests that even
385  for the same gene, genetic effects could impact the distribution type across the cells within an
386  individual.
387
388  The top SNP for RPS26’s deQTL is located in the gene’s 5’UTR region, the binding site for
389  six transcription factors (RBM39, TCF7, LEF1, KLF6, CD74 and MAF)*. We hypothesized
390 that if these transcription factors (TFs) regulate the expression level of RPS26 via binding to
391  thissite, rs1131017 should be detected as a co-expression eQTL between RPS26 and these TFs
392 in our data. To evaluate this, we calculated the co-expression between each TF and RPS26
393  within each cell type and ran a co-eQTL association analysis (Methods). For all 84 (6 x 14 cell
394  types) tests, we identified 40 significant co-eQTLs (FDR < 0.05) (Figure 5). The most frequent
395  (11/14) co-deQTL is between RPS26 and CD74. Interestingly, the allelic effect in T cells is in
396  the opposite direction to those in B cells and monocytes (Figure SA). These results indicate
397  that the potential regulation of CD74 on RPS26 via promoter binding is cell-type specific. In
398  CD4nc cells, all six transcription factors have significant co-eQTL estimates, and 7CF7 and
399  LEFI showed the opposite direction of the co-expression to the other four TFs (Figure 5B).
400 Interestingly, the effect size of the co-eQTL is generally larger in the naive CD4 and CDS cells
401  compared to the effective cells, and it is not driven by the difference number of cells between
402 naive and effective cell types. For CD4 cells, all six transcription factor genes showed
403  significantly (p-adjust < 0.05) larger co-deQTL effect size in the naive cell type. This
404  relationship is also observed for KLF6, CD74, and MAF in CD8 T cells. These results indicate
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405  that the effect of rs1131017 on the co-expression level between RPS26 and the transcription
406  factors is impacted by an immune response.

407

408  Replication of sc-deQTL in independent cohort

409  We attempted to replicate our identified sc-deQTL in an independent cohort from Perez et al.*
410  Out of 34 dGenes we identified in OneK 1K, we replicated 6 genes (LYZ, HLA-DQAI, RPS26,
411  CD52, GNLY, and CTSW) with significant deQTL (FDR < 0.05). Given the different SNP
412 panels and cell type annotations between the two cohorts, only two genes (rs596002-CTSW in
413  CDS8 with FDR = 0.026; and LYZ-rs1384 in monocyte with FDR = 3.23E-10) have the exactly
414 the same deQTL in the same cell type. For the most significant example of rs1131017-RPS26,
415  we only detected significant deQTL association in classical monocyte (Pnominat = 4.97E-07,
416  FDR = 07.62E-3). The association did not pass the multiple correction (pnominal = 2.43E-06,
417  FDR = 0.436), but the association patterns were very consistent between OneK 1K and Perez
418 et al (Supplementary Figure 10) and the correlation of the test statistics -10g10(pPnominal)
419  between two datasets is very high (Pearson’s cor = 0.894). Thus, we speculated that the
420  insignificant replication is mainly due to the limited power given the tiny sample size of the
421  replication cohort.

422

423 Discussion

424  In this study, we present MEOTIVE, a robust framework to identify genetic variations
425  associated with intra-individual variability in gene expression single-cell level. MEOTIVE
426  addressed the issue associated with the mean-variance relationship, exacerbated by the non-
427  gaussian distributions of scRNA-seq data. By applying MEOTIVE to data from the OneK1K
428  cohort, it is the first study to identify intra-individual deQTLs at the population scale
429  successfully. While most previous studies focused on the mean effects of the genetic variants
430  on gene expression, the genetic effects on the variability and dispersion across cells within
431  individuals are poorly understood and single-cell RNA-seq data provides a solution for
432  dissecting the high-dimensional effect on genome regulation. In total, we identified 34 dGenes
433 accounting for the mean-variance dependency and they were enriched in the biological
434  pathways relevant to interferon response, interspecies interaction, allograft rejection and viral
435  gene expression. These results suggest that the transcriptional variability at the single-cell level
436  could arise due to immune and/or external stimulus®® and that variability is under genetic
437  control. Although we only identified 55 deQTL-dGene pairs in the current study, given a larger

438  sample size and number of cells per individual, we would expect to discover thousands of
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439  genetic variants that affect the dispersion level of intra-individual gene expression. New
440  analyses with larger datasets are set to uncover a fundamentally new avenue of genetic effects
441  on human genome regulation.

442

443  Herein, we also propose a new explanation for the “zero-inflated” model in single-cell RNA-
444  seq data. In the example of rs1131017-RPS26, it was noted that an observed zero-inflated
445  negative binomial (ZINB) distribution across a population of cells results from a mixture of
446  three genotype groups (CC, CG, GG) each showing a negative binomial distribution (Figure
447  4G). In such cases, the so-called “structural” or “excessive” zeros are not generated from a
448  separate biological process but from the genotype group with low abundance expression. This
449  finding challenges the conventional understanding of the underlying model of scRNA-seq
450  count data and necessitates the need to re-evaluate the previous zero-inflated negative binomial
451  model.

452

453  This study has several limitations. First, although it is the largest single-cell eQTL cohort, with
454  data from 980 individuals, we are limited in statistical power to testing only SNPs with MAF
455 > 5%. Sarkar et al.?® predicted that it needs 4,000 individuals to achieve 80% to detect the
456  deQTLs. The number of cells per individual per cell type is also an important limitation because
457  several cell types only have 100 to 200 effective samples. Second, the accuracy of dispersion
458  estimation is mainly affected by the mean and number of cells per individual. From our
459  simulations, we observe that given 500 cells, we need a mean > (.3 to have an accurate estimate
460  for dispersion. Should we have 5,000 cells per individual for a certain cell type, the filtering
461  threshold for the mean expression can go down to 0.1, which can rescue more genes for
462  association testing (from 3% to 10%). Assuming the largest group is CD4nc cells, the minimum
463  requirement for the number of cells of single-cell RNA-seq data would be ~10,000 per
464  individual. Even in such cases, the rare cell types such as plasma or dendritic cells would still
465  only have 70 to 100 cells per individual. Third, the high sparsity in the 10X data is one of the
466  reasons preventing us from better understanding the underlying model of scRNA-seq data. A
467  recent study®' demonstrated that lower sequencing depth would make the observed data more
468  similar to Poisson distribution even if the true model is over-dispersed. Since ~50% intra-
469  individual mean is O for our data obtained using 10X v2 kit, processing samples with a higher
470  capture rate will benefit the estimation of the true underlying distribution of sScRNA-seq data.

471
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472  In summary, we identified genetic effects on the within-individual gene expression variability
473 while accounting for the mean-variance dependence in the scRNA-seq data of human PBMCs.
474  The MEOTIVE statistical framework we present here can be implemented on any single-cell
475  RNA-seq dataset with genotype information to identify genetic variations that influence intra-
476  individual variability of gene expression. As cohort sample sizes increase (e.g., TenK10K),
477  ongoing analyses will continue to reveal novel genetic mechanisms underlying inter-individual
478  variability and cell-to-cell heterogeneity.

479

480  Online Methods

481  The OneKI1K cohort

482  The OneKIK cohort is a collection of genotype and single-cell gene expression data for 982
483  individuals of Northern European ancestry. Each individual was genotyped and imputed with
484 759,993 SNPs against the HRC panel®2. There are 1,267,758 peripheral blood mononuclear
485  cells (PBMCs) with gene expression data after demultiplexing and doublets removal. Identical
486  to the cell type classification in Yazar ef al.%, we predicted the OneK1K cohort into 14 cell
487  types based on the scPred method® (Table 1). During a sensitivity test of latent variables,
488  we identified two outlier samples (one due to a low number of cells and the other due to
489  extremely imbalanced cell composition). We excluded them from all the analyses in this study.
490  Thus, the final sample size we retained in this study is 980.

491

492  Strategy of estimating genetic effects on intra-individual expression variability

493  To accurately estimate the mean and variance of intra-individual gene expression, we applied
494  several steps to exclude potential confounding factors in the single-cell RNA-seq data. First,
495  the count matrix was pre-processed by Seurat using sctransform algorithm® to remove the
496  technical confounders such as sequencing depth and batch effects. Second, all cells were
497  classified into 14 different cell types by a semi-supervised method (scPred>?), and individuals
498  with less than five cells in each cell type were excluded to avoid biased estimation for intra-
499  individual mean and variance driven by outliers. Third, genes expressed in less than 10% of
500  individuals or the intra-individual mean across the cohort less than 0.001 were also excluded
501  (Methods). After the quality control, the median number of cells per individual ranges from 7
502  (plasma cells) to 461 (CD4nc cells), and the number of individuals and genes also varies across
503  different cell types (Table 1).

504
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505  We first used the moment estimate of the intra-individual mean and variance per gene and
506  generated two M * N matrices for each cell type (Methods), where M is the number of genes
507 and N is the number of individuals for each cell type.

508 The moment estimates of mean and variance for gene k of individual i across cell j, are

509  denoted as the following:

n;
1
510 Hik :n_izxijk
j=1
511
ni
2 1 2
512 Oiy = n—1 Z(xijk — Uik)
j=1
513
514  where n; indicates the number of cells for individual i. We also calculated the proportion of
515  zero expression within an individual (m) and detected a strong negative relationship between
516  the my and u (Supplementary Figure 11).

517

518  For single-cell RNA-seq data, the intra-individual mean and variance are correlated since a
519 large proportion of them follow non-normal distributions such as Poisson, NB or ZINB
520  distributions*=!, In our OneK 1K data set, Spearman's correlation coefficients between intra-
521  individual mean and variance across individuals per gene were extremely high. For example,
F22 ~94.6% of genes showed pg > 0.8 and ~75.2% showed pg; > 0.99 (Figure 2A and
523  Supplementary Note 1). On the other hand, the correlation estimates were strongly dependent
524 on the mean expression level in a negative trend (Figure 2B and Supplementary Figure 2),
525 and so did the proportion of non-expression individuals per gene (Figure 2C and
526  Supplementary Figure 11). Given such a strong mean-variance dependency, we predict that
527  the significant veQTLs could be primarily explained by the effects of the mean difference. To
528  better understand the characteristics of vGenes and its relationship with eGenes, we compared
529  the vGenes with or without the ME on several aspects. First, the vGenes without ME showed
530 significantly larger g-values than those with ME in all cell types, but most of the g-values were
531  just clustered around 0.05 (Supplementary Figure 3). Second, the effect sizes of the veQTLs
532 without ME were much smaller than those with ME in five cell types (CD4~c, CD4gt, CD8nc,
533  CD8&gr, and NK), with 1.54~3.94 fold smaller for the median effect size (Supplementary
534  Figure 4). Third, we tested if the veQTLs without ME were closer to the TSS location than
535  those with ME. The results showed that the TSS distance of eQTLs is not significantly different
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536  from veQTLs (Supplementary Figure 5, Welch Two Sample t-test, p-value = 0.91) and
537  veQTLs without ME are uniformly distributed based on the TSS distance. Thus, alternative
538  ways to rule out the mean effects are needed when estimating the genetic effects on the
539  variability of intra-individual gene expression. We also estimated the relationship between the
540  mean and other metrics, including the variance-mean-ratio (VMR) and coefficient of variation
541 (CV). These two metrics are also highly correlated with the intra-individual mean
542 (Supplementary Figures 6-7). Previous study has used them as the dispersion indicator in the
543  eQTL data set®>. However, since most of the mean of gene expression in single-cell RNA-seq
544  datais very close to 0, the VMR or CV could approach large numbers and are sensitive to even
545  tiny changes when the mean expression is low. Thus, VMR and CV are not suitable for the
546  dispersion indicator in the single-cell data sets.

547

548  The TensorQTL for SNP-gene association analysis

549  To understand how genetic variations between individuals affect the variance of intra-
550 individual gene expression, we performed association analysis using TensorQTL?® for each
551  cell type. We first filtered out those genes with expression in less than 10% of individuals or
552  extremely low inter-individual abundance (¢ < 0.001). The intra-individual mean, variance,
553  and dispersion were log(x+1) transformed and then z-score normalized per gene to avoid
554  extreme outliers. The residual expression matrix was just z-score normalized per gene. The
555  sex, age, first 6 principal components (PCs), and first 10 PEER factors®® were fitted as
556  covariates in the model. The PCs are calculated by PLINK®’ based on the genotype
557  information. The PEER factors are derived based on the intra-individual mean of gene
558  expression matrix for each cell type to capture the latent variables. We chose 10 PEER factors
559  to be fitted in the association model by a sensitivity analysis and a local greedy method to
560  balance the discovery power and overfitting®*. The number of remaining individuals, genes,
561  and median number of cells per individual for each cell type are presented in Table 1. In the
562  cis-QTL analysis, we only retained ~4.2 million SNPs located within + 1Mb cis-region from
563  the centre of the gene body and with a minor allele frequency (MAF) larger than 0.05. After
564  obtaining the nominal p-values for every SNP-gene pair, a beta-approximation permutation
565  was applied to correct the p-values and 10,000 times of permutations were conducted for each
566  gene. The most significant SNP for each gene (top cis- eQTL or veQTL) was further corrected
567 and the permuted p-value was converted to a g-value to control the false positive per
568  chromosome’®. An SNP-gene association with g-value < 0.05 was deemed significant.

569
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570  The estimation of dispersion in gene expression distribution

571  We adopted two methods to generate the estimates for dispersion for the intra-individual gene
572 expression.

573  First, we used a straightforward method and regressed out the intra-mean from the intra-
574  variance and used the residuals as the dispersion indicator;

575  Second, we assume all the intra-individual gene expression follows a negative binomial (NB)

576  distribution. Let:

577

578 ® Xx;j; be the number of molecules for individual i, cell j, gene k after accounting for
579 confounders and size factor

580 ® U be the mean of expression of gene k in individual i

581 e 0 be the dispersion of expression of gene k in individual i

582

583  Then we assume,

}584 Xijk~NB(; Wik, Oir)

585

586  The likelihood function for the intra-individual distribution of each gene is

587

n

I(xj +71) ,
588 L(r, 15 X1, X3y oy Xn) = 1_[— (1 - p) ()"
L 1 x;!T(r)
j=1
589
590  We need to estimate the » and p, where u = % and 02 = (1?;)2‘ Alternative parameterization

591  is to use theta (6 = 1/7) as the dispersion parameter. We used the “g/mGamPoi” R package
592 which implements the Cox-Reid adjusted MLE> method to estimate the dispersion parameter
593  based on the SCTranformed count data. Then we generated an intra-individual dispersion
594  matrix for each cell type.

595

596  When checking the preliminary results (326 deQTLs with g-value < 0.05), however, we found
597  that for many genes, the CR-MLE estimates were highly inflated, especially for those with low
598  abundance or individuals with a small number of cells (Supplementary Figure 12). This is
599  because when the mean of an NB distribution is low, the likelihood curve will be very flat, thus
600  making it extremely difficult for the optimisation algorithm to search for the maxima. This

601  scenario became even worse in the single-cell RNA-seq data since less than 10% of the genes
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602  have an intra-individual mean higher than 0.1, and around half of the intra-individual
603  expression is 0 (Supplementary Figure 2). Although the CR-MLE method partially mitigates
604  the problem using a penalised log-likelihood®®, we still saw inflated dispersion estimates in
605 many genes from the real data (Supplementary Figure 12). To avoid false discovery of
606  deQTLs and the spurious relationship between dispersion and mean, we simulated CR-MLE
607  dispersion estimates given different mean, dispersion, and sample sizes (Supplementary Note
608 2 and Supplementary Figures 13-14). We considered these parameters and adopted a data-
609  driven threshold of intra-individual mean expression to select significant signals for each cell
610  type (Supplementary Table 7). For example, for CD4nc cells, we need genes to have mean
611  expression > 0.3 so that > 90% times the estimates will fall within £5% of the true dispersion
612  parameter. Based on this filtering, we retained 64 deQTL-dGene pairs but still found that there
613 s still moderate inflation in the dispersion estimates of some genes in certain genotype groups
614  (see examples in Supplementary Figure 15). So, we further removed the genes if any of the
615  genotype groups has a mean expression smaller than the threshold and ended up with 55
616  significant (g-value < 0.05) deQTL-dGene pairs in 34 unique genes.

617

618  We also tried to estimate the dispersion for gene k of individual i based on the methods of

619  moments, such that

620
2 _ 2
’621 Offc = Mir + Oix * Uix
622  so, the dispersion can be estimated as,
o2 — u.
23 0, = lk—zﬂlk
Hik

624  From the equation, it is obvious that (i) when the variance and mean are very close to each
625  other and the mean is not so small, the moment estimator will be close to 0; (ii)) when the mean
626  is 0, the moment estimator does not exist but for such case, we manually assign the dispersion
627 level as 0; (ii1) in real data, the moment estimator could be a negative number, but the scale
628  would not be large (CR-MLE estimate will always be non-negative). More details of different
629  dispersion indices and their special cases, when the mean is small, are discussed in
630  Supplementary Note 3 and Supplementary Table 8.

631

632  Functional annotation and gene sets enrichment analysis

633  We used FUMA®' (v1.5.3) to perform functional annotation for the deQTLs and gene
634  enrichment for the dGenes. The SNP functional annotation is done by the built-in
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635 ANNOVAR?* in the platform. To test if the list of dGenes is overrepresented in certain
636  biological functions, they are tested against the gene sets obtained from The Molecular
637  Signatures Database (MSigDB). The Hallmark gene sets are from the MSigDB h collection
638 (50 gene sets), the KEGG are from MSigDB c2 collection (186 gene sets) and GO biological
639  processes from MSigDB c5 collection (7751 gene sets). The significant enrichment is defined
640  at adjusted p-value <0.05. We also utilised FUMA platform to overlap the sc-deQTL with
641  public GWAS associations in GWAScatalog (database update by 27/4/2023). There are 553
642  matched associations in 233 studies.

643

644  The G x G epistasis analysis to identify driving factors for deQTL

645  We performed two complementary analyses to investigate whether G x G and G x E effects
646  could be the potential driving factors for deQTLs. To identify multiple independent cis- signals
647  for the same gene, we sought to map conditionally independent cis- eQTLs and veQTLs using
648 a stepwise regression procedure?®. For the frans-QTL analysis (both for intra- mean and
649  variance), we tested all the SNPs located > 1Mb away from the gene body centre and matched
650  the results with 64 candidate deQTL-dGenes pairs in each cell type. Significant trans-QTL is
651  defined at nominal p-value < 5 x 108, We further fit the genotype of those frans-veQTLs in
652  the cis-veQTL or cis-deQTL association model to see if the estimates will be significantly
653  changed.

654

655  Pseudotime trajectory of intra-individual variance and interaction tests

656  To understand the context-dependent effect of the prioritised deQTLs on the cell state, we
657  estimated the pseudotime of each cell in inferred B cells (Bix + Bmem). We used SCTransform??
658  to calculate the scaled expression Pearson residuals using the top 500 highly variable genes
659 and fitted the percentage of mitochondrial expression and experimental pools as covariates.
660  After transformation, we calculate the principal components (PCs) of the expression matrix
661  and constructed the UMAP using the first 30 PCs by RunUMAP() function built in Seurat. We
662  then used PHATE®? to estimate the quantitative indicator of cell state (i.e., pseudotime) in a
663  two-dimensional space for each cell. For each individual, we computed the mean pseudotime
664  across all cells and created a mean pseudotime trait. Then the mean pseudotime is tested as an
665 interaction term (G x E) in the QTL association model (for mean, variance, and dispersion
666  separately) in TensorQTL software. The sex or age was also tested for the interaction effect.

667  The nominal p-value is first corrected by multiple testing based on the effective number of
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668  independent variants in the cis-window, and then converted to Benjamini-Hochberg adjusted
669  p-value for each chromosome.

670

671  Identifying co-eQTLs for RPS26 and its transcription factors

672  We subset the SCTransformed count matrix for RPS26 and six transcription factors per cell
673  type, and calculate the Spearman’s correlation between RPS26 and each of the TF gene across
674  cells within each individual. For each TF gene, we have a co-expression estimate for every
675  individual as the phenotype and run a linear regression of the co-expression phenotype on the
676  genotype of rs1131017. The nominal p-values are then converted to Benjamini Hochberg FDR
677  and the test with FDR < 0.05 will be deemed as significant co-eQTL.

678

679  Replication in an independent cohort of non-European ancestry

680  To replicate our findings of sc-deQTLs in OneK 1K of European (EUR) ancestry, we utilised
681  another single-cell cohort from Perez et al.* . We conducted sc-deQTL mapping for the
682  individuals of East Asian (EAS) ancestry (97 individuals including 75 healthy controls and 22
683  lupus patients). The single-cell gene expression was processed in the protocols we used for
684  OneKI1K. Intra-individual dispersion of gene expression was also estimated per gene per cell
685  type. For the sc-deQTL mapping, covariates were adjusted in the association model including
686  sex, age, batch, first 6 PCs, first 2 PEER factors, and lupus disease status. Given the difference
687  in SNP panels between two datasets, we only investigate the 34 genes with significant sc-
688  deQTLs in OneK1K cohort in the replication cohort.

689

690
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714 Table 1 Summary of eGene and vGene identified in 14 cell types

715
vGene | eGene
Cell type N Median A eGene | vGene | overlap with with
nr cells | genes ME VE
B_IN 975 69 12219 843 605 574 0.949 0.681
B_MEM 970 40 11663 672 480 454 1 0.946 0.676
CD4_NC 980 461 15433 4252 3488 3363 0.964 0.791
CD4_ET 980 57 12040 986 692 655 | 0.947 0.664
CD4_SOX4 295 8 8234 37 14 13| 0.929 0.351
CD8_NC 980 126 13508 1760 1263 1213 1 0.960 0.689
CD8_ET 980 177 13798 1884 1369 1314 | 0.960 0.697
CD8_S100B 959 29 11070 461 295 271 0919 0.588
DC 726 9 10149 228 127 118 | 0.929 0.518
Mono_C 851 29 11620 517 319 305 | 0.956 0.590
Mono_NC 690 16 10544 497 297 284 0.956 0.571
NK R 750 10 9224 179 105 98 | 0.933 0.547
NK 980 143.5 13577 2099 1440 1360 | 0.944 0.648
Plasma 253 7 8983 70 33 31 0.939 0.443
716

717 Notes: N, sample size; Median nr cells, the median number of cells per individual; Nr genes, number
718  of genes tested in the QTL analysis; eGene, number of significant eGene; vGene, number of significant
719  vGene; overlap, the number of genes that are both eGene and vGene; vGene with ME, the proportion

720  of vGene that are also eGene; eGene with VE, the proportion of eGene that are also vGene.

721
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Table 2 Summary of the 39 dGenes identified in 14 cell types

Gene
S10044

CDC42

CD52

GYPC

GNLY

SNHGS
FGFBP2
HNRNPH]I
RNASET?
HLA-A

HLA-C

HLA-B

HLA-DQAI
RPSI8

RPSI0

Cell type

NK
CD4 NC
NK
CD4 NC
CDS8 ET
CD4 NC
CDS8 ET
NK R
NK
CD4 NC
NK
CD4 NC
CD4 NC
CD4 NC
CD4 NC
CD8_NC
CDS8 ET
CD4 NC
CD4 ET
CD8_NC
B_MEM
B_IN
CD4 NC
CD8_NC

CHR:BP

1:153514241

1:22426187

1:26616280
1:26645806
2:127516475
2:85934499
2:85916005
2:85920249
4:119204466
4:15957763
5:178986632
6:167370999
6:29913266
6:31221914
6:31321360
6:31263051
6:31366295
6:31324955
6:31327701
6:32589326

6:33239869

6:34372804

rsID

157535476

rs1534949

1s3924324
rs11589222
1s6732878
rs12151621
rs4832181
rs3755007
rs28517808
154698429
rs7703730
152769346
rs1061156
1s9264219
152844585
1s2853926
rs9394070
1s34437781
rs9378249
1s9271503

rs17215231

1s7775635

Al

> 4 > Q> 030008 0a0»>» 0> 0

ﬁ

A2

A

a1 a0 a0 3> > »>» 043 » 003 »

@}

>

AF

0.050
0.419
0.419
0.177
0.253
0.283
0.223
0.353
0.344
0.474
0.151
0.370
0.467
0.159
0.316
0.172
0.277
0.066
0.065
0.067
0.336
0.070
0.070
0.078

0.565
-0.363
-0.353
-0.380

0.407
-0.182
-0.708

0.338

0.849
-0.139
-0.270

0.289
-0.153
-0.491

0.302

0.441
-0.370

1.077

0.748

0.896
-0.321

0.494

0.394

0.382

Dispersion
se pval
0.093  1.95E-09
0.030  1.09E-31
0.030  8.92E-30
0.051 1.27E-13
0.047 1.86E-17
0.029 4.61E-10
0.037 1.16E-68
0.054 5.17E-10
0.040 1.72E-81
0.025  2.02E-08
0.046  7.74E-09
0.031 2.45E-19
0.026  5.70E-09
0.065 6.78E-14
0.050  2.03E-09
0.081 5.72E-08
0.056  4.69E-11
0.084  7.64E-35
0.092 1.81E-15
0.087  7.06E-24
0.052  7.47E-10
0.077  2.40E-10
0.070  2.16E-08
0.071  1.01E-07

qval
2.21E-03
1.12E-22
9.34E-21
7.70E-07
3.75E-10
2.80E-04
1.42E-55
2.02E-02
9.68E-62
2.00E-02
6.01E-03
7.95E-12
1.74E-03
4.44E-07
1.64E-03
3.86E-02
1.26E-03
7.75E-15
9.61E-06
6.40E-13
2.92E-03
1.40E-03
9.57E-03
3.81E-02

b
-0.283
0.247
0.192
0.259
-0.231
0.666
0.863
-0.635
-0.942
0.918
0.390
0.020
0.876
0.135
0.014
-0.333
-0.013
-1.483
-1.460
-1.432
0.047
-2.134
-2.274
0.997

Mean
se
0.090
0.017
0.026
0.030
0.040
0.030
0.038
0.047
0.036
0.023
0.041
0.025
0.021
0.039
0.037
0.055
0.040
0.061
0.066
0.060
0.037
0.053
0.041
0.042

pval
1.63E-03
2.99E-44
2.05E-13
1.10E-17
1.15E-08
1.92E-90
1.04E-90
2.00E-37
5.92E-114
3.85E-206
2.00E-20
4.33E-01
1.91E-217
5.62E-04
7.10E-01
1.46E-09
7.48E-01
4.43E-103
4.40E-88
1.20E-98
1.97E-01
4.82E-208
2.20E-301
3.43E-99

b
0.091
0.079
-0.052
-0.012
-0.008
0.668
0.674
-0.142
-0.588
1.037
0.302
0.103
0.967
-0.156
0.167
-0.005
-0.268
-1.222
-1.074
-1.098
-0.165
-1.077
-1.650
1.004

Variance
se pval

0.093  3.30E-01
0.019  2.47E-05
0.025  3.79E-02
0.042  7.75E-01
0.043  8.44E-01
0.040  8.52E-55
0.047 3.61E-43
0.054  8.80E-03
0.040 3.51E-44
0.028 6.08E-188
0.044  1.92E-11
0.024  1.51E-05
0.029  3.26E-160
0.046  7.98E-04
0.042  6.92E-05
0.064  9.39E-01
0.049  4.48E-08
0.066  1.82E-65
0.079  3.03E-38
0.069  1.02E-50
0.047 4.28E-04
0.076  5.40E-42
0.057 2.60E-132
0.048  3.92E-81

26


https://doi.org/10.1101/2024.05.05.592598
http://creativecommons.org/licenses/by-nd/4.0/

LY6E
PTGDS
ANXAI

IFITM2

Gene

CTSw

RPLP2

RPS26

LYZ

GZMH

1132

NK
NK
CD4 NC
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CDS8 ET
NK

Cell type

CD8_ET
NK
CD4 NC
B IN
CD4 NC
CD4 _ET
CD8 NC
CD8_ET
Mono_C
CD4 _ET
NK
NK
CD4 NC
CD4 _ET

8:144075281

9:139848273

9:75769950
11:303271
11:307539
11:349122

CHR:BP

11:65645354
11:65644027
11:802902

12:56435929

12:69747834
12:9623841

14:25083383
16:3115272

16:3115628

rs4424237
1s2271869
rs2795112
156598046
rs111412325
rs7117996

rsID

rs596002
rs583887
rs28360884

rs1131017

rs1384
rs10743738
rs11158812
rs45499297

rs1554999
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Al
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- Q@ 34 a » a
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@}
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@}

0.474
0.438
0.113
0.248
0.072
0.294

AF

0.196
0.194
0.321
0.421
0.420
0.420
0.420
0.420
0.495
0.413
0.494
0.088
0.370
0.370

0.232
-0.419
-0.260
-0.200
-0.460
-0.383

0.671

0.552
0.216
-0.661
-0.930
-0.860
-0.933
-0.680
0.280
0.236
0.351

-0.619
0.847
0.533

0.030 1.97E-14
0.039  2.18E-25
0.051 3.19E-07
0.035  1.06E-08
0.065 2.25E-12
0.042  6.73E-19
Dispersion
se pval
0.038  1.68E-60
0.043  2.22E-35
0.035  7.20E-10
0.041  9.09E-52
0.034 1.70E-124
0.036  3.10E-97
0.034 6.40E-122
0.040  1.48E-56
0.041  1.48E-11
0.041  1.28E-08
0.037  2.16E-20
0.068  3.07E-19
0.039  4.44E-87
0.042 5.57E-34

5.27E-08
1.07E-17
4.54E-02
2.25E-03
5.36E-06
1.12E-11

qval
4.62E-45
6.10E-25
4.08E-04
9.27E-38
9.22E-101
4.62E-78
6.46E-100
1.56E-42
1.66E-04
5.61E-03
8.43E-13
3.03E-12
7.03E-71
8.43E-24

-0.277
0.486
0.183
0.473
0.463
0.589

-1.017
-0.816
0.601
1.333
1.346
1.340
1.345
1.355
-0.852
-0.153
-0.251
0.538
-0.536
-0.406

0.036
0.036
0.036
0.036
0.070
0.038

Mean
se
0.030
0.032
0.026
0.016
0.016
0.016
0.016
0.015
0.034
0.041
0.032
0.070
0.027
0.033

6.14E-14
1.05E-37
4.47E-07
8.08E-37
4.59E-11
2.26E-48

pval
7.63E-167
3.06E-110
1.22E-92
<1E-323
<1E-323
<1E-323
<1E-323
<1E-323
1.25E-101
1.72E-04
9.77E-15
4.32E-14
4.27E-73
3.03E-33

-0.123
0.452
0.100
0.379
0.179
0.370

-0.888
-0.631
0.523
1.150
1.202
1.146
1.182
1.250
-0.329
0.065
-0.112
0.340
-0.170
-0.047

0.041  2.77E-03
0.037 1.07E-32
0.042  1.64E-02
0.037 2.71E-23
0.077  2.09E-02
0.043  2.62E-17
Variance
se pval

0.041 3.43E-86
0.044  6.60E-43
0.032 4.58E-54
0.026 1.41E-234
0.024 3.61E-274
0.026 3.07E-228
0.025 6.56E-254
0.022 1.25E-310
0.046  2.52E-12
0.041  1.12E-01
0.034  9.82E-04
0.068  8.39E-07
0.030 1.31E-08
0.039  2.29E-01
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CCL3
CCL4
EIF54
FXYD5
RPS9
PPDPF

ITGB2

LGALSI

CD8_NC
CD8_ET
NK
CD8_ET
CD4 NC
CD4 NC
CD4 NC
NK
CD8_ET
NK
NK

17:34397258
17:34411105

17:7207964
19:35658380
19:54700668
20:62152519

21:46328099

22:38069305

1s854471
rs1634490
157503161
1512461097
1s34172242
1572629024

rs760462

1562236671

O 4 34 a Q »

0.370
0.370
0.317
0.220
0.412
0.276
0.395
0.145
0.164
0.164
0.340

0.555
0.375
0.279
-0.336
-0.619
-0.180
0.247
0.315
-0.257
-0.436
0.264

0.042
0.042
0.042
0.041
0.025
0.033
0.035
0.052
0.040
0.044
0.039

4.88E-37
3.83E-18
5.19E-11
4.45E-16
4.33E-104
6.79E-08
3.40E-12
1.79E-09
2.45E-10
5.69E-22
2.91E-11

4.30E-27
3.82E-10
9.79E-05
3.62E-09
3.32E-85
4.25E-02
2.10E-05
2.69E-03
7.81E-05
5.20E-15
1.07E-05

-0.312
-0.291
-0.185
0.286
1.153
0.158
-0.841
-1.088
0.906
1.083
-0.111

0.025
0.033
0.042
0.048
0.021
0.026
0.028
0.051
0.029
0.027
0.042

3.95E-34

5.00E-18

9.54E-06

3.30E-09
7.81E-304
1.44E-09
9.33E-140
1.51E-83

1.00E-145
5.00E-203
7.95E-03

-0.089
-0.043
-0.113
0.099
0.990
0.045
-0.530
-0.820
0.907
1.071
0.033

0.032
0.041
0.042
0.051
0.027
0.041
0.037
0.051
0.043
0.041
0.044

4.88E-03
2.85E-01
7.16E-03
5.23E-02
3.63E-189
2.71E-01
9.05E-42
1.70E-51
4.71E-80
4.36E-112
4.52E-01

Notes: The columns indicate cell type, gene name, SNP rsID, minor allele, major allele, minor allele frequency, beta/se/nomial p-value/q-value estimates for

deQTL, beta/se/nomial p-value for eQTL, and beta/se/nomial p-value for veQTL. A p-value of 1.95E-09 means 1.95 x 10
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Figure 2 The intra-individual mean-variance relationship and overlap between eGenes
and vGenes per cell type.

(A) The Spearman’s correlation estimates between the intra-individual mean and variance of
each gene. The colour of the violin plot denotes the corresponding cell type. The bottom 10%
correlation estimates are omitted. All violins have the same maximum width. (B) The
relationship between intra-individual mean and mean-variance correlation per gene in CD4
naive cells. (C) The relationship between intra-individual mean and proportion of no-
expression individuals per gene in CD4 naive cells. (D) The percentage of eGene, vGene, and
dGene in each cell type. (E) The relationship between sample size and number of vGenes. (F)
The relationship between median number of cells per individual and number of vGenes. Each

dot represents a cell type, and the colour of the dots corresponds to panel.
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line denotes the diagonal line of the coordinate panel. (B) An Upset plot for the number of
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dGenes in each cell type and the dGenes shared across cell types. The number of each

intersection was annotated as the number above the bar plot.
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Figure 4 The association between rs1131017 and RPS26 expression change in CD4 naive
cells.

(A-D) The violin plots of individual genotypes of SNP rs1131017 correspond to the intra-
individual mean, variance, residual, and dispersion of RPS26 expression in CD4 naive cells.

The x-axis indicates the genotype (coded as 0, 1, 2 indicating the number of G alleles carried).
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(E) Scatter plot of intra-individual mean against intra-individual variance of expression. (F)
Scatter plot of intra-individual mean against intra-individual dispersion of expression. The
dispersion was estimated by CR-MLE method. (G) The distribution of SCT transformed count
expression of RPS26 per cell. There are 463,496 cells, and each bar indicates the number of
cells with the corresponding count expression. The table included the mean and dispersion
estimates for the whole cohort and within each genotype group. The genotype group of CC
alleles have much higher intra-individual dispersion of RPS26 expression than the other two
groups. (H) The distribution of SCT transformed count expression for all 980 individuals in
CD4 NC cells separated by three genotype groups. The colour of each square denotes the
density of a certain count within a corresponding individual, and darker purple denotes higher

density.
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Figure 5. The putative regulatory mechanism of dispersion eQTL of RPS26. (A) The
beta effect estimates for co-eQTL between RPS26 and six transcription factors (TFs) in 14
cell types. Each point is an estimate coloured and grouped based on cell types, and the error
bar denotes the standard error of the estimate. Six TFs are annotated with different shapes.
The significant estimates (BH corrected FDR < 0.05) are strengthened by transparency of the
dot. (B) The violin plot for co-expression per genotype group in CD4nc cells. The y-axis
indicates the standardised the co-expression (measured by Spearman’s correlation across
cells per individual) between RPS26 and the TF gene. Four outlier dots were omitted for

illustrative purpose.
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