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Abstract 27 

Gene expression levels can vary substantially across cells, even in a seemingly homogeneous 28 

cell population. Identifying the relationships between genetic variation and gene expression is 29 

critical for understanding the mechanisms of genome regulation. However, the genetic control 30 

of gene expression variability among the cells within individuals has yet to be extensively 31 

examined. This is primarily due to the statistical challenges, such as the need for sufficiently 32 

powered cohorts and adjusting mean-variance dependence. Here, we introduce MEOTIVE 33 

(Mapping genetic Effects On inTra-Individual Variability of gene Expression), a novel 34 

statistical framework to identify genetic effects on the gene expression variability (sc-veQTL) 35 

accounting for the mean-variance dependence. Using single-cell RNA-seq data of 1.2 million 36 

peripheral blood mononuclear cells from 980 human donors, we identified 14 - 3,488 genes 37 

with significant sc-veQTLs (study-wide q-value < 0.05) across different blood cell types, 2,103 38 

of which were shared across more than one cell type. We further detected 55 SNP-gene pairs 39 

(in 34 unique genes) by directly linking genetic variations with gene expression dispersion (sc-40 

deQTL) regardless of mean-variance dependence, and these genes were enriched in biological 41 

processes relevant to immune response and viral infection. An example is rs1131017 42 

(p<9.08x10-52), a sc-veQTL in the 5'UTR of RPS26, which shows a ubiquitous dispersion effect 43 

across cell types, with higher dispersion levels associated with lower auto-immune disease risk, 44 

including rheumatoid arthritis and type 1 diabetes. Another example is LYZ, which is associated 45 

with antibacterial activity against bacterial species and was only detected with a monocyte-46 

specific deQTL (rs1384) located at the 3’ UTR region (p=1.48x10-11) and replicated in an 47 

independent cohort. Our results demonstrate an efficient and robust statistical method to 48 

identify genetic effects on gene expression variability and how these associations and their 49 

involved pathways confer auto-immune disease risk. This analytical framework provides a new 50 

approach to unravelling the genetic regulation of gene expression at the single-cell resolution, 51 

advancing our understanding of complex biological processes.  52 
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Introduction 53 

Dissecting the genetic control of gene expression is necessary to understand the biological 54 

mechanisms of genome regulation. With the development of single-cell sequencing technology, 55 

many studies have sought to identify how genetic effects underlying gene expression act at the 56 

level of individual cells. These single-cell expression Quantitative Trait Loci (sc-eQTL) have 57 

revealed that the genetic effects underlying mean differences in gene expression between 58 

individuals are frequently cell-type specific1-7. These sc-eQTL analyses are based on the model 59 

assumption that allelic alternatives have an additive effect on the mean expression levels of 60 

RNA amongst genotype groups. They are typically tested using linear regression between an 61 

SNP’s genotype and the mean gene expression levels among a population. Variance QTL 62 

(vQTL) are different from eQTL in that genotypes are associated with the variation of the 63 

phenotype (Figure 1A). They have been studied for complex human traits such as body mass 64 

index (BMI)8-12, bone marrow density (BMD)13, vitamin D14, glycemic traits15, and serum 65 

cardiometabolic biomarkers16. However, only a few studies17-20 have investigated the 66 

characteristics of variance eQTL (veQTL), i.e., the eQTL that affects the gene expression 67 

variation in each genotype group. They have identified inter-individual veQTLs (genetic 68 

effects on variance across individual expression levels) and linked them to G x G effects, such 69 

as cis-epistatic interactions18 and interaction with a second gene’s expression level19. They can 70 

also be caused by gene-environment (G x E) interaction effects. Most of these analyses are 71 

based on a variance test, examining the phenotypic variability among genotype groups, such 72 

as Levene’s21 and Brown-Forsythe tests22.  73 

 74 

An under-investigated phenomenon is intra-individual veQTL – the relationship between 75 

genetic variants and gene expression variability within an individual. This type of eQTL is 76 

defined as the genetic variants that affect gene expression variability across cells within an 77 

individual between different genotype groups (Figure 1A). Such variability in a population of 78 

cells (or within a pre-defined cell type) contains the information of cell-to-cell heterogeneity. 79 

It may arise from genetic regulation, immune response, cell cycle, cell state, and/or the 80 

stochasticity of cellular gene expression. One of the few empirical studies to tackle this 81 

question tested for intra-veQTLs (veQTLs hereafter for brevity unless otherwise specified) in 82 

sc-RNA-seq data from 5,447 induced Pluripotent Stem Cells (iPSCs) collected across 53 83 

individuals. They identified five study-wide significant sc-veQTL, but demonstrated that the 84 

differences in variance were induced just by statistical dependence rather than true biological 85 
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effects23. As the authors identified, sample size and number of cells limited the discovery of 86 

sc-veQTL.  87 

 88 

Intra-individual variation is particularly interesting because cell-to-cell heterogeneity in the 89 

gene expression (especially in immune cells) within an individual might result from important 90 

functional consequences, i.e., genetic regulatory mechanism on gene expression during 91 

development and homeostasis, as well as a potential response to therapies, and pathological 92 

development (such as tumour growth). For example, a recent study24, collecting peripheral 93 

blood mononuclear cells (PBMCs) from asthma patients, has linked sc-veQTL to the 94 

transcriptional response to immune stimuli and glucocorticoids. In addition, intra-individual 95 

variation could be a potential indicator for the G x E interaction with cellular traits such as the 96 

cell cycle and cell state at the single-cell level. 97 

 98 

Several challenges are key to identifying sc-veQTLs and understanding their characteristics. 99 

First, we need to accurately estimate the intra-individual variance from the scRNA-seq data, 100 

where expression counts across cells are typically assumed to follow either Poisson, negative 101 

binomial (NB), or zero-inflated negative binomial (ZINB) distribution, especially when the 102 

number of cells per sample is low. Second, we need to account for the mean-variance 103 

relationship as they are mathematically correlated under those aforementioned models. For 104 

example, assuming the gene expression level of a gene across cells follows a negative binomial 105 

distribution, the variance (𝜎!) can be estimated such that 𝜎! = 𝜇 + 𝜇! ∗ 𝜃, where 𝜇 is the mean 106 

and 𝜃 is the dispersion of the distribution. In this scenario, sc-veQTLs could be primarily 107 

induced by differences in the mean expression levels between individuals of different genotype 108 

groups. Third, the selection of appropriate statistical tests for detecting sc-veQTLs is uncertain. 109 

This may depend on the distributions of intra-individual variance/dispersion estimates across 110 

the cohort, and such distributions are likely to vary between genes and cell types. 111 

 112 

Here, we introduce MEOTIVE (Mapping genetic Effects On inTra-Individual Variability of 113 

gene Expression), a novel statistical framework to identify the relationship between genetic 114 

variants and within-individual variability in the expression levels of a gene at single-cell 115 

resolution. Leveraging data from the OneK1K cohort6, comprising genotype and scRNA-seq 116 

data from 1.27 million PBMCs collected across 980 individuals, we test genetic variants’ role 117 

on the variance of intra-individual gene expression at the population level while accounting for 118 

the mean-variance relationship (Figure 1B). Considering the statistical challenges, we decide 119 
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to use two methods in parallel to identify the sc-veQTL that are not induced by mean effect 120 

(ME): (1) a model-free strategy to detect those significant sc-veQTLs that do not show 121 

significant results in the sc-eQTL association analysis and (2) a model-based strategy to first 122 

estimate the intra-individual dispersion parameter (𝜃) of the expression and then perform the 123 

dispersion-eQTL (sc-deQTL) association analysis. We also investigate how sc-deQTLs show 124 

heterogeneity underlying different cell states and seek potential biological explanations for 125 

them. Overall, we provide a statistical framework to identify single-cell variance eQTL and 126 

reveal novel mechanisms of how genetic variants affect gene expression variability at the 127 

single-cell level. 128 

 129 
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 130 

  131 

Figure 1 The illustration of variance eQTL and overview of the study design.  132 

(A) Illustrative plot to explain the bulk eQTL/veQTL and single-cell eQTL/veQTL. In bulk-133 

level analysis, each dot indicates the gene expression count for one individual. In single-cell 134 

level analysis, each dot indicates the pseudobulk mean/variance expression for one individual 135 

in a specific cell type.  (B) The analytical pipeline of MEOTIVE framework identifying genetic 136 

variants that affect intra-individual gene expression variability. 137 

  138 
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Results 139 

 140 

To understand the relationship between genetic loci and intra-individual variation in single-141 

cell gene expression, we began by exploring the estimation of data parameters and their 142 

relationship in sc-eQTL models. This is important due to: (1) previously identified 143 

relationships between estimates such as mean and variance25-27, and (2) the potential impact of 144 

differences in the distribution of a gene’s expression levels, with genes varying between zero-145 

inflated negative binomial through to Gaussian distributions. 146 

 147 

The relationship between mean and intra-individual variance effects  148 

Identifying genetic effects on variance is attractive as they can be interpreted easily. However, 149 

as previously described, the mean difference between individuals can be correlated with intra-150 

individual variance effects23. Nevertheless, variance effects can exist independently, with the 151 

most likely explanation that they are ‘true’ genetic effects arising from genotype by genotype 152 

(GxG) or genotype by environment (GxE) interactions. Using TensorQTL28, we tested for 153 

intra-individual sc-veQTL per cell type, adjusting for sex, age, and latent variables (Methods). 154 

In total, we identified 4,642 significant (q-value < 0.05) vGenes across all 14 cell types (10,527 155 

unique SNP-gene pairs), ranging from 14 to 3,488 for each cell type. As expected, the intra-156 

individual mean estimates are highly correlated with variance estimates for all cell types 157 

(Figure 2A), and the correlation is highly dependent on the mean estimates and proportion of 158 

cells with zero expression (Figure 2B-C). Testing for the overlap with mean eQTL effects, we 159 

observe 94.5% of vGenes also have mean effects (eGenes), and conversely, 60.4% of eGenes 160 

also have a variance effect (Table 1 and Figure 2D). The results suggest a small number of sc-161 

veQTL may have variance-only effects and are worth further investigation. We evaluated the 162 

effect size, significant level, and TSS distance between vGenes with or without mean effects 163 

and the comparison showed the latter group is merely above the significant threshold (q-value 164 

= 0.05), suggesting this group of signals are more likely to be random noises due to arbitrary 165 

threshold (Supplementary Figures 1-3 and Methods). The number of vGenes identified per 166 

cell type is a function of the sample size (𝜌(" = 0.93) and average number of cells per donor 167 

(𝜌(" = 0.98) (Figure 2E-F), an observation also seen with eGenes (Table 1). Furthermore, sc-168 

veQTL and sc-eQTL allelic effects are highly correlated (𝜌(" = 0.942~0.991), confirming the 169 

relationship between mean and variance effects (Figure 3 and Supplementary Figure 4). 170 

Finally, for the vGenes that are also eGenes, all the top veQTLs have the same direction of 171 
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allelic effect, with RPS15A the only exception, but the mean effect of the top veQTL 172 

(rs7193785) is not significant (nominal p-value = 0.335). These results confirm the strong 173 

correlation between the intra-individual mean and variance (Figure 2A and Supplementary 174 

Figures 5), verifying that mean veQTLs can explain most effects.  175 

 176 

One explanation is that variance effects occur in addition to mean effects, i.e., the variance 177 

effects are greater than those expected under the mean-variance relationship. To investigate 178 

this, we tested for genetic effects on the residuals from the regression of the variance on the 179 

mean per gene (Methods). We identified 307 genes (q-value < 0.05) with at least one 180 

significant residual-eQTL (Supplementary Table 1). However, only seven genes overlap with 181 

the vGenes without mean effects. This lack of overlap validates that testing or such residual-182 

eQTL is not valid for identifying true veQTL. Previous studies have attempted other 183 

parameterisations to test for genetic effects on intra-individual gene expression variance, 184 

including variance-to-mean ratio (VMR, also known as Fano factor) and coefficient of 185 

variation (CV)23. However, these two metrics are highly dependent on the intra-individual 186 

mean differences (Supplementary Figures 6-7). Another way to adjust the mean-variance 187 

relationship is to fit the mean as a covariate when detecting the veQTL per gene29. However, 188 

this strategy is expected to be valid only when the mean and variance follow a linear 189 

relationship; otherwise, the residuals may have a spurious quadratic relationship with the mean. 190 

A recent study30 proposed using a single polynomial regression to remove mean-variance 191 

dependence, but it might nonetheless ignore the genuine biological relationship between mean 192 

and dispersion since it forces the residuals to be independent of the mean. Morgan et al.31 used 193 

local polynomial fit between the squared CV (i.e., CV2) and mean across individuals and tried 194 

to identify variability protein-QTLs. Another relevant study27 estimates a latent gene-specific 195 

residual dispersion parameter by fitting a global trend between mean and over-dispersion 196 

estimates for all genes, but this was for differential variability testing between two groups of 197 

cells and the method was based on the strong assumption that genes with similar expression 198 

level are more likely to have similar dispersion level. 199 

 200 

MEOTIVE: direct estimation of dispersion identifies independent genetic effects in intra-201 

individual single-cell expression variability  202 

To solve the problems associated with the mean-variance relationship, we developed 203 

MEOTIVE, a framework that tests for allelic effects on intra-individual expression dispersion 204 

levels and demonstrates that effects are independent from mean effects. MEOTIVE starts with 205 
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directly estimating the dispersion parameter (𝜃) for each gene’s intra-individual expression 206 

distribution using a Cox-Reid adjusted Maximum Likelihood Estimation (CR-MLE) method32 207 

(Methods and Supplementary Figure 8). We subsequently test the genotypes of cis-SNPs (< 208 

1Mb) for association with the intra-individual dispersion for each gene per cell type, accounting 209 

for the accuracy of parameter estimation (Methods). In total, we identified 55 significant (q-210 

value < 0.05) deQTL-dGene pairs across 34 unique dGenes (Table 2, Figure 3 and 211 

Supplementary Figure 9). Most (78%) of the deQTLs have an opposite direction of allelic 212 

effect to their corresponding veQTL (Supplementary Table 2). This is because the 213 

distribution type of gene expression count per genotype group varies. For example, when the 214 

expression level is low for a specific genotype group, the distribution of the count data is more 215 

left-skewed driving the dispersion to be higher. For heterozygous individuals, the distribution 216 

approaches Gaussian, thus the dispersion becomes much smaller, and so on for individuals 217 

with alternative homozygous alleles (see example of RPS26 below, Figure 4). This feature 218 

results in a negative relationship between intra-individual variance and intra-individual 219 

dispersion for many genes with significant veQTLs and deQTLs.  220 

 221 

We subsequently evaluated the degree of cell-type specificity of the 34 dGenes. Of these, 222 

67.6% (23) have evidence of an allelic effect in just one cell type. Of the remaining 11 dGenes, 223 

there are five genes with sc-deQTL in two cell types, four genes with sc-deQTL in three cell 224 

types, and two genes with sc-deQTL in five cell types respectively (Figure 3 and Table 2). 225 

Notably, two genes (IL32 and RPS26) had significant deQTLs in five cell types (Table 2). For 226 

example, in both naïve and effective CD4 and CD8 cells, we identified rs1554999 as the top 227 

deQTL for IL32. The A allele shows an increasing effect on the dispersion level of this gene. 228 

On average, individuals carrying each copy of the A allele of rs1554999 have an increase of 229 

0.25 in the dispersion level of mRNA transcript molecules across cells. The top deQTL in the 230 

NK cell is a different SNP, rs45499297, but in LD with rs1554999 (R2 = 0.056, D’ = 1). The 231 

rs1554999 is located in the 5’ UTR region of IL32, and was previously reported to be strongly 232 

associated with methylation level at three CpG sites in CD4+ T cells33. While most dGenes 233 

were also vGenes, there was minimal overlap with residual genes (Supplementary Table 3), 234 

providing further supporting evidence that the intra-individual residuals capture different 235 

sources of variation from the intra-individual dispersion.   236 

 237 

Functional annotations of deQTLs and dGenes 238 
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To understand the functional characteristics of deQTLs and dGenes, we first used 239 

ANNOVAR34  to perform variant annotation for the top deQTLs and subsequently tested for 240 

dGenes overlap with GWAS loci (Methods). Most deQTLs are in the intergenic or intronic 241 

regions, implying they affect intra-individual variation via regulatory mechanisms. This 242 

observation aligns with those made for single-cell mean-effect eQTLs. The majority of dGenes 243 

(31 out of 34) are reported to be associated with either inflammation, immune responses, or 244 

viral infections. An example is GNLY, which has significant sc-deQTL in NK, NKR, and CD8ET 245 

cells (Table 2). GNLY encodes a protein called granulysin, present in natural killer cells and 246 

cytotoxic T lymphocytes, and has been shown to have antimicrobial activity against 247 

tuberculosis through changes in cell membrane integrity and reducing the viability of the 248 

bacillus35,36. All of the sc-deQTLs for GNLY are located in intergenic regions. For example, 249 

the sc-deQTL for CD8ET (rs12151621[A/C]) is located in a CTCF binding site 250 

(ENSR00000291834), ~8.1kb downstream of GNLY. The A allele of this SNP has a decreasing 251 

effect on the dispersion of GNLY expression but an increasing effect on the mean expression, 252 

which means individuals with the CA or CC genotype will have lower mean expression but 253 

higher dispersion than the individuals with the AA genotype (Supplementary Figure 9). We 254 

hypothesise that the C allele leads to a higher binding affinity of CTCF, and the binding will 255 

repress the expression of GNLY.  The A allele has been reported to have an increasing effect 256 

on the protein levels37 and toxoplasma antibody IgG levels38 (p-value = 9.1 x 10-4, not genome-257 

wide significant given limited sample size = 557). This may suggest that individuals with an A 258 

allele tend to have higher levels of IgG antibodies against the toxoplasma parasite. The body 259 

will produce more GNLY proteins in the NK cells but less variability across cells, ensuring 260 

enough functional proteins to kill the microbes. A second example is seen in GZMH, which 261 

encodes a serine protease (granzyme H) and is constitutively expressed in CD8ET and NK cells. 262 

We identified a deQTL (rs11158812[G/A]) which only has a significant effect in NK cells (p-263 

value = 2.16 x 10-20, q-value = 8.43 x 10-13). The top deQTL is located at the intergenic region 264 

between GZMH and GZMB (no association between rs11158812 and GZMB in any cell type), 265 

a region that has only been reported to be associated with vitiligo39. The top GWAS hit 266 

(rs8192917) is a missense variant (Arg55Gln) of GZMB but not in LD with rs11158812 (R2 = 267 

1.2 x 10-3). Another example is IFITM2, which encodes interferon-induced transmembrane 268 

protein 2, an interferon-induced antiviral protein family member. This locus is not associated 269 

with human diseases but is highly associated with human blood cell traits40 such as granulocyte, 270 

neutrophil, and eosinophil counts. The top deQTL of IFTIM2 differs in three cell types, but for 271 

naïve CD4 (CD4NC) and CD8ET cells, the top deQTL is the same as the top eQTL and in linkage 272 
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disequilibrium (R2 = 0.11 and D’ = 0.69). For NK cells, the top deQTL (rs7117996) is located 273 

in the intergenic region and independent from the other two top deQTLs (R2 < 0.01), but its top 274 

eQTL (rs1059091, independent from rs7117996) is a missense variant for IFITM2. 275 

 276 

There are also dGenes whose top deQTL is located outside the intergenic region. For example, 277 

ITGB2 (integrin subunit beta 2) is a significant dGene in CD8ET (q-value = 7.81 x 10-5) and 278 

NK cells (q-value = 5.20 x 10-15). In a previous study, the top deQTL (rs760462[A1/A2]) 279 

located in intron 3 of ITGB2 was annotated as a splice acceptor variant41. LYZ encodes 280 

lysozyme, which has antibacterial activity against several bacterial species and is highly 281 

expressed in monocytes (Mono) and dendritic cells (DC). The top deQTL rs1384 is a 3’ UTR 282 

variant, and a recent study42 has suggested a monocyte-specific trans- action mediated by LYZ 283 

in this site. Fairfax et al43 have reported LYZ as a monocyte-specific master regulator and its 284 

monocyte-specific cis-eQTL (rs10784774, in complete LD with rs1384) is also a trans-eQTL 285 

to 62 genes. The G allele of rs10784774, as well as the T allele of rs1384, is associated with 286 

lower expression but higher dispersion level of LYZ in classical monocytes (Table 2), and also 287 

reported to be the increasing allele for neutrophil percentage of white cells40. 288 

 289 

Using the FUMA platform, we performed pathway enrichment analyses on the dGenes 290 

(Methods), and identified significant enrichment in three Hallmark gene sets: “Allograft 291 

Rejection”, “Interferon Gamma Response”, and “Interferon Alpha Response”. The KEGG 292 

pathway enrichment identified 12 significant pathways, with the top three “KEGG Viral 293 

Myocarditis”, “KEGG Ribosome”, and “KEGG Allograft Rejection”. However, after 294 

removing the five MHC genes, only “Allograft Rejection” remained significant in Hallmark 295 

gene sets and “KEGG Ribosome” in the KEGG pathway (Supplementary Table 4). We also 296 

performed an enrichment analysis of dGenes for GO biological process. The most enriched 297 

process is “Interspecies Interaction Between Organisms” and “Cytokine Mediated Signaling 298 

Pathway”, and “Viral Gene Expression”. Our results suggest that the dispersion effects on the 299 

gene expression across cells within individuals are enriched in the biological process of 300 

immune response and viral infection. This is consistent with the prior knowledge that the G x 301 

E effect could induce phenotypic variability, and thus the potential environment is worth 302 

further investigation. 303 

 304 

Trans-regulation of dGenes partially explained the dispersion difference 305 
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Next, we sought to explore potential genomic factors underlying deQTLs. Previous vQTL 306 

GWAS, testing for genetic effects on high-order trait variability between individuals, have 307 

often explored whether variance effects are caused by G x G or G x E effects. Intuitively, we 308 

hypothesise if the dispersion difference in gene expression could be explained by (1) G x G 309 

cis-epistasis, where multiple independent cis-SNPs affect the expression variability of the 310 

target gene; (2) G x G trans-epistasis, where trans-QTLs are regarded as an interaction effect 311 

for the target gene and influence the variability level via the trans-regulation. 312 

 313 

We compared the number of independent cis-QTLs for the 34 candidate dGenes to test if 314 

multiple cis-regulations could drive the dispersion difference. On average, each dGene has 2.36 315 

independent cis-eQTLs and 1.71 independent cis-veQTLs. The comparison also showed that 316 

no dGene has more independent cis-veQTLs than cis-eQTLs except for HNRNPH1 (but it is 317 

only 0 vs 1, so it is not a large difference). However, 14 dGenes have significant trans-deQTLs, 318 

among which there are also five dGenes (RPS18, SNHG7, GNLY, CCL3, and LGALS1) that do 319 

not have any trans- eQTL or veQTL (Supplementary Table 5). For example, rs78089025 320 

[A1/A2] (9:73039725) showed a genome-wide significant (p-value = 4.04 x 10-8) association 321 

with the dispersion levels of GNLY in NK cells but not with the mean or variance levels. This 322 

SNP is an intron variant for KLF9-DT, a divergent transcript of transcription factor KLF9. 323 

When fitting GNLY’s the trans-deQTL (rs78089025) and top cis-deQTL (rs3755007) in the 324 

same association model, the interaction term showed significant effects on the dispersion level 325 

(Pinteraction = 4.93 x 10-12), and a significant change in the main effect. Specifically, when only 326 

top cis-deQTL was fitted, the beta = -0.171, s.e. = 0.009, and when trans-deQTL was fitted in 327 

the interaction model, the beta = -0.484, s.e. = 0.046. These results imply that the deQTLs are 328 

not induced by the G X G effect from independent cis-SNPs but can be partially explained by 329 

the trans-SNP effects on the dGenes. 330 

 331 

Genetic control of variance heterogeneity underlying different contexts 332 

Since we show that trans-regulation could be a putative driving factor for deQTLs, we further 333 

asked if the G x E interaction between genetic effects and cellular state also affects intra-334 

individual dispersion. To test this, we inferred the cell state landscape for B cells and fitted the 335 

average cell state per individual as an interaction term in the deQTL association model 336 

(Methods). Only one significant interaction between genotype and cell state was identified for 337 

dGene RPS18 in BMEM cells (adjusted p-value = 4.66 x 10-3). One plausible explanation is that 338 
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the pseudotime was calculated based on highly variable genes, so the gene expression 339 

variability of the dGenes might not be well captured by this approach.  340 

 341 

We also tested if deQTL effects are associated with the interaction between genotype and sex 342 

or age. For genotype by age interaction, only HLA-B in naïve CD8 (CD8NC) cells and RP11-343 

1143G9.4 in classical monocyte (MonoC) cells showed significant associations 344 

(Supplementary Table 6). For genotype by sex interaction, only HLA-B showed significant 345 

interaction in effective CD4 (CD4ET) (rs34437781) and CD8NC cells (rs9394070). The 346 

rs34437781 was a significant deQTL in CD4ET cells (nominal p-value = 1.81 x 10-15, q-value 347 

= 9.61 x 10-6). rs9394070, which is in strong linkage disequilibrium (LD) with rs34437781 (R2 348 

= 0.886, D' = 0.949), is a significant deQTL for HLA-B in CD8 naïve cells and top deQTL in 349 

CD4 naïve cells. Still, when fitting the genotype by sex interaction term in the model, the 350 

genotype itself became insignificant (genotype p-value = 5.74 x 10-3, interaction p-value = 5.43 351 

x 10-8). The interaction is mainly induced by only females with the TT genotype (4/980), where 352 

their intra-individual mean estimates are the lowest among 980 individuals but the dispersion 353 

estimates are relatively higher (Supplementary Figure 9). After removing the four individuals 354 

with the TT genotype, the interaction term was no longer significant (interaction p-value = 355 

0.029). Similarly, the beta of the deQTL when performing association test in separate sex group 356 

are not significantly different (p-value = 0.165). These results indicate that neither sex nor age 357 

is the main driving factor of the genetic effects on the dispersion level across cells. 358 

 359 

Association between dispersion eQTL and immune phenotypes 360 

To understand the relationship between sc-deQTL and disease risk, we tested for the overlap 361 

between sc-deQTL loci and public GWAS associations in GWAScatalog (Methods). The most 362 

frequent traits include blood protein levels, asthma, eosinophil counts, type 1 diabetes, Crohn’s 363 

disease, height, and rheumatoid arthritis. Combined with the FUMA enrichment results above, 364 

it further suggests that the intra-individual dispersion effects are enriched in the genetic 365 

association with auto-immune and infectious diseases. 366 

  367 

Highlighting RPS26 as an example, carrying copies of the G allele for rs1131017[G/C] has an 368 

increasing effect on the intra-individual dispersion (Figure 4). This SNP was tested against our 369 

association analysis's dispersion level of 53 cis-genes but was only significant for RPS26, with 370 

shared allelic effects across five cell types (innate B cell, naïve/effective CD4, and 371 

naïve/effective CD8). This locus has previously been reported to be strongly associated with 372 
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auto-immune diseases, including type 1 diabetes44, asthma45, vitiligo46 and rheumatoid 373 

arthritis47. The top SNPs are not the same one but all are in strong LD with each other (R2 > 374 

0.8). Furthermore, the C allele of rs1131017 was consistently shown to have an increasing 375 

effect on these auto-immune disease risks, which suggests that the lower dispersion of intra-376 

individual expression of RPS26 is associated with higher auto-immune disease risk. When we 377 

directly estimate the dispersion of the unique molecular identifier (UMI) count distribution 378 

(after SCTranformation) across all cells in each genotype group (using CD4NC cells as the 379 

example), the CC genotype group shows a much larger over-dispersion (𝜃2 = 0.843) than the 380 

CG or GG group (𝜃2 = 0.046	and	0.051 ) (Figure 4G). So, we further dissect the count 381 

distribution for each individual. We observe that the UMI count distribution for individuals in 382 

the CC genotype group mostly follows a negative binomial distribution, while the UMI count 383 

distributions for CG and GG individuals follow a Poisson distribution. This suggests that even 384 

for the same gene, genetic effects could impact the distribution type across the cells within an 385 

individual. 386 

 387 

The top SNP for RPS26’s deQTL is located in the gene’s 5’UTR region, the binding site for 388 

six transcription factors (RBM39, TCF7, LEF1, KLF6, CD74 and MAF)48. We hypothesized 389 

that if these transcription factors (TFs) regulate the expression level of RPS26 via binding to 390 

this site, rs1131017 should be detected as a co-expression eQTL between RPS26 and these TFs 391 

in our data. To evaluate this, we calculated the co-expression between each TF and RPS26 392 

within each cell type and ran a co-eQTL association analysis (Methods). For all 84 (6 x 14 cell 393 

types) tests, we identified 40 significant co-eQTLs (FDR < 0.05) (Figure 5). The most frequent 394 

(11/14) co-deQTL is between RPS26 and CD74. Interestingly, the allelic effect in T cells is in 395 

the opposite direction to those in B cells and monocytes (Figure 5A). These results indicate 396 

that the potential regulation of CD74 on RPS26 via promoter binding is cell-type specific. In 397 

CD4NC cells, all six transcription factors have significant co-eQTL estimates, and TCF7 and 398 

LEF1 showed the opposite direction of the co-expression to the other four TFs (Figure 5B). 399 

Interestingly, the effect size of the co-eQTL is generally larger in the naïve CD4 and CD8 cells 400 

compared to the effective cells, and it is not driven by the difference number of cells between 401 

naïve and effective cell types. For CD4 cells, all six transcription factor genes showed 402 

significantly (p-adjust < 0.05) larger co-deQTL effect size in the naïve cell type. This 403 

relationship is also observed for KLF6, CD74, and MAF in CD8 T cells. These results indicate 404 
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that the effect of rs1131017 on the co-expression level between RPS26 and the transcription 405 

factors is impacted by an immune response. 406 

 407 

Replication of sc-deQTL in independent cohort 408 

We attempted to replicate our identified sc-deQTL in an independent cohort from Perez et al.49 409 

Out of 34 dGenes we identified in OneK1K, we replicated 6 genes (LYZ, HLA-DQA1, RPS26, 410 

CD52, GNLY, and CTSW) with significant deQTL (FDR < 0.05). Given the different SNP 411 

panels and cell type annotations between the two cohorts, only two genes (rs596002-CTSW in 412 

CD8 with FDR = 0.026; and LYZ-rs1384 in monocyte with FDR = 3.23E-10) have the exactly 413 

the same deQTL in the same cell type. For the most significant example of rs1131017-RPS26, 414 

we only detected significant deQTL association in classical monocyte (pnominal = 4.97E-07, 415 

FDR = 07.62E-3). The association did not pass the multiple correction (pnominal = 2.43E-06, 416 

FDR = 0.436), but the association patterns were very consistent between OneK1K and Perez 417 

et al (Supplementary Figure 10) and the correlation of the test statistics -log10(pnominal) 418 

between two datasets is very high (Pearson’s cor = 0.894). Thus, we speculated that the 419 

insignificant replication is mainly due to the limited power given the tiny sample size of the 420 

replication cohort. 421 

 422 

Discussion 423 

In this study, we present MEOTIVE, a robust framework to identify genetic variations 424 

associated with intra-individual variability in gene expression single-cell level. MEOTIVE 425 

addressed the issue associated with the mean-variance relationship, exacerbated by the non-426 

gaussian distributions of scRNA-seq data. By applying MEOTIVE to data from the OneK1K 427 

cohort, it is the first study to identify intra-individual deQTLs at the population scale 428 

successfully. While most previous studies focused on the mean effects of the genetic variants 429 

on gene expression, the genetic effects on the variability and dispersion across cells within 430 

individuals are poorly understood and single-cell RNA-seq data provides a solution for 431 

dissecting the high-dimensional effect on genome regulation. In total, we identified 34 dGenes 432 

accounting for the mean-variance dependency and they were enriched in the biological 433 

pathways relevant to interferon response, interspecies interaction, allograft rejection and viral 434 

gene expression. These results suggest that the transcriptional variability at the single-cell level 435 

could arise due to immune and/or external stimulus50 and that variability is under genetic 436 

control. Although we only identified 55 deQTL-dGene pairs in the current study, given a larger 437 

sample size and number of cells per individual, we would expect to discover thousands of 438 
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genetic variants that affect the dispersion level of intra-individual gene expression. New 439 

analyses with larger datasets are set to uncover a fundamentally new avenue of genetic effects 440 

on human genome regulation. 441 

 442 

Herein, we also propose a new explanation for the “zero-inflated” model in single-cell RNA-443 

seq data. In the example of rs1131017-RPS26, it was noted that an observed zero-inflated 444 

negative binomial (ZINB) distribution across a population of cells results from a mixture of 445 

three genotype groups (CC, CG, GG) each showing a negative binomial distribution (Figure 446 

4G). In such cases, the so-called “structural” or “excessive” zeros are not generated from a 447 

separate biological process but from the genotype group with low abundance expression. This 448 

finding challenges the conventional understanding of the underlying model of scRNA-seq 449 

count data and necessitates the need to re-evaluate the previous zero-inflated negative binomial 450 

model.  451 

 452 

This study has several limitations. First, although it is the largest single-cell eQTL cohort, with 453 

data from 980 individuals, we are limited in statistical power to testing only SNPs with MAF 454 

> 5%. Sarkar et al.23 predicted that it needs 4,000 individuals to achieve 80% to detect the 455 

deQTLs. The number of cells per individual per cell type is also an important limitation because 456 

several cell types only have 100 to 200 effective samples. Second, the accuracy of dispersion 457 

estimation is mainly affected by the mean and number of cells per individual. From our 458 

simulations, we observe that given 500 cells, we need a mean > 0.3 to have an accurate estimate 459 

for dispersion. Should we have 5,000 cells per individual for a certain cell type, the filtering 460 

threshold for the mean expression can go down to 0.1, which can rescue more genes for 461 

association testing (from 3% to 10%). Assuming the largest group is CD4NC cells, the minimum 462 

requirement for the number of cells of single-cell RNA-seq data would be ~10,000 per 463 

individual. Even in such cases, the rare cell types such as plasma or dendritic cells would still 464 

only have 70 to 100 cells per individual. Third, the high sparsity in the 10X data is one of the 465 

reasons preventing us from better understanding the underlying model of scRNA-seq data. A 466 

recent study51 demonstrated that lower sequencing depth would make the observed data more 467 

similar to Poisson distribution even if the true model is over-dispersed. Since ~50% intra-468 

individual mean is 0 for our data obtained using 10X v2 kit, processing samples with a higher 469 

capture rate will benefit the estimation of the true underlying distribution of scRNA-seq data. 470 

 471 
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In summary, we identified genetic effects on the within-individual gene expression variability 472 

while accounting for the mean-variance dependence in the scRNA-seq data of human PBMCs. 473 

The MEOTIVE statistical framework we present here can be implemented on any single-cell 474 

RNA-seq dataset with genotype information to identify genetic variations that influence intra-475 

individual variability of gene expression. As cohort sample sizes increase (e.g., TenK10K), 476 

ongoing analyses will continue to reveal novel genetic mechanisms underlying inter-individual 477 

variability and cell-to-cell heterogeneity. 478 

 479 

Online Methods 480 

The OneK1K cohort 481 

The OneK1K cohort is a collection of genotype and single-cell gene expression data for 982 482 

individuals of Northern European ancestry. Each individual was genotyped and imputed with 483 

759,993 SNPs against the HRC panel52. There are 1,267,758 peripheral blood mononuclear 484 

cells (PBMCs) with gene expression data after demultiplexing and doublets removal. Identical 485 

to the cell type classification in Yazar et al.6, we predicted the OneK1K cohort into 14 cell 486 

types based on the scPred method53 (Table 1). During a sensitivity test of latent variables54, 487 

we identified two outlier samples (one due to a low number of cells and the other due to 488 

extremely imbalanced cell composition). We excluded them from all the analyses in this study. 489 

Thus, the final sample size we retained in this study is 980.  490 

 491 

Strategy of estimating genetic effects on intra-individual expression variability 492 

To accurately estimate the mean and variance of intra-individual gene expression, we applied 493 

several steps to exclude potential confounding factors in the single-cell RNA-seq data. First, 494 

the count matrix was pre-processed by Seurat using sctransform algorithm55 to remove the 495 

technical confounders such as sequencing depth and batch effects. Second, all cells were 496 

classified into 14 different cell types by a semi-supervised method (scPred53), and individuals 497 

with less than five cells in each cell type were excluded to avoid biased estimation for intra-498 

individual mean and variance driven by outliers. Third, genes expressed in less than 10% of 499 

individuals or the intra-individual mean across the cohort less than 0.001 were also excluded 500 

(Methods). After the quality control, the median number of cells per individual ranges from 7 501 

(plasma cells) to 461 (CD4NC cells), and the number of individuals and genes also varies across 502 

different cell types (Table 1). 503 

 504 
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We first used the moment estimate of the intra-individual mean and variance per gene and 505 

generated two M * N matrices for each cell type (Methods), where M is the number of genes 506 

and N is the number of individuals for each cell type.  507 

The moment estimates of mean and variance for gene 𝑘  of individual 𝑖  across cell 𝑗 , are 508 

denoted as the following: 509 

𝜇#$ =
1
𝑛#
=𝑥#%$

&!

%'(

 510 

 511 

𝜎#$! =
1

𝑛# − 1
=(𝑥#%$ − 𝜇#$)!
&!

%'(

 512 

 513 

where 𝑛# indicates the number of cells for individual 𝑖. We also calculated the proportion of 514 

zero expression within an individual (𝜋)) and detected a strong negative relationship between 515 

the 𝜋) and 𝜇 (Supplementary Figure 11). 516 

 517 

For single-cell RNA-seq data, the intra-individual mean and variance are correlated since a 518 

large proportion of them follow non-normal distributions such as Poisson, NB or ZINB 519 

distributions23,51. In our OneK1K data set, Spearman's correlation coefficients between intra-520 

individual mean and variance across individuals per gene were extremely high. For example, 521 

~94.6% of genes showed 𝜌(" > 0.8  and ~75.2% showed 𝜌(" > 0.99  (Figure 2A and 522 

Supplementary Note 1). On the other hand, the correlation estimates were strongly dependent 523 

on the mean expression level in a negative trend (Figure 2B and Supplementary Figure 2), 524 

and so did the proportion of non-expression individuals per gene (Figure 2C and 525 

Supplementary Figure 11). Given such a strong mean-variance dependency, we predict that 526 

the significant veQTLs could be primarily explained by the effects of the mean difference. To 527 

better understand the characteristics of vGenes and its relationship with eGenes, we compared 528 

the vGenes with or without the ME on several aspects. First, the vGenes without ME showed 529 

significantly larger q-values than those with ME in all cell types, but most of the q-values were 530 

just clustered around 0.05 (Supplementary Figure 3). Second, the effect sizes of the veQTLs 531 

without ME were much smaller than those with ME in five cell types (CD4NC, CD4ET, CD8NC, 532 

CD8ET, and NK), with 1.54~3.94 fold smaller for the median effect size (Supplementary 533 

Figure 4). Third, we tested if the veQTLs without ME were closer to the TSS location than 534 

those with ME. The results showed that the TSS distance of eQTLs is not significantly different 535 
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from veQTLs (Supplementary Figure 5, Welch Two Sample t-test, p-value = 0.91) and 536 

veQTLs without ME are uniformly distributed based on the TSS distance. Thus, alternative 537 

ways to rule out the mean effects are needed when estimating the genetic effects on the 538 

variability of intra-individual gene expression. We also estimated the relationship between the 539 

mean and other metrics, including the variance-mean-ratio (VMR) and coefficient of variation 540 

(CV). These two metrics are also highly correlated with the intra-individual mean 541 

(Supplementary Figures 6-7). Previous study has used them as the dispersion indicator in the 542 

eQTL data set23. However, since most of the mean of gene expression in single-cell RNA-seq 543 

data is very close to 0, the VMR or CV could approach large numbers and are sensitive to even 544 

tiny changes when the mean expression is low. Thus, VMR and CV are not suitable for the 545 

dispersion indicator in the single-cell data sets. 546 

 547 

The TensorQTL for SNP-gene association analysis 548 

To understand how genetic variations between individuals affect the variance of intra-549 

individual gene expression, we performed association analysis using TensorQTL28 for each 550 

cell type. We first filtered out those genes with expression in less than 10% of individuals or 551 

extremely low inter-individual abundance (𝜇 < 0.001). The intra-individual mean, variance, 552 

and dispersion were log(x+1) transformed and then z-score normalized per gene to avoid 553 

extreme outliers. The residual expression matrix was just z-score normalized per gene. The 554 

sex, age, first 6 principal components (PCs), and first 10 PEER factors56 were fitted as 555 

covariates in the model. The PCs are calculated by PLINK57 based on the genotype 556 

information. The PEER factors are derived based on the intra-individual mean of gene 557 

expression matrix for each cell type to capture the latent variables. We chose 10 PEER factors 558 

to be fitted in the association model by a sensitivity analysis and a local greedy method to 559 

balance the discovery power and overfitting54. The number of remaining individuals, genes, 560 

and median number of cells per individual for each cell type are presented in Table 1. In the 561 

cis-QTL analysis, we only retained ~4.2 million SNPs located within ± 1Mb cis-region from 562 

the centre of the gene body and with a minor allele frequency (MAF) larger than 0.05. After 563 

obtaining the nominal p-values for every SNP-gene pair, a beta-approximation permutation 564 

was applied to correct the p-values and 10,000 times of permutations were conducted for each 565 

gene. The most significant SNP for each gene (top cis- eQTL or veQTL) was further corrected 566 

and the permuted p-value was converted to a q-value to control the false positive per 567 

chromosome58. An SNP-gene association with q-value < 0.05 was deemed significant.  568 

 569 
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The estimation of dispersion in gene expression distribution 570 

We adopted two methods to generate the estimates for dispersion for the intra-individual gene 571 

expression.  572 

First, we used a straightforward method and regressed out the intra-mean from the intra-573 

variance and used the residuals as the dispersion indicator;  574 

Second, we assume all the intra-individual gene expression follows a negative binomial (NB) 575 

distribution. Let: 576 

 577 

• 𝑥#%$  be the number of molecules for individual 𝑖, cell 𝑗, gene 𝑘 after accounting for 578 

confounders and size factor 579 

• 𝜇#$ be the mean of expression of gene 𝑘 in individual 𝑖 580 

• 𝜃#$ be the dispersion of expression of gene 𝑘 in individual 𝑖 581 

 582 

Then we assume, 583 

𝑥#%$~𝑁𝐵(∙; 𝜇#$ , 𝜃#$) 584 

 585 

The likelihood function for the intra-individual distribution of each gene is 586 

 587 

𝐿(𝑟, 𝑝; 𝑥(, 𝑥!, … , 𝑥&) =N
Γ(𝑥% + 𝑟)
𝑥%! Γ(r)

(1 − 𝑝)*"(𝑝)+
&

%'(

 588 

 589 

We need to estimate the r and p, where 𝜇 = ,+
(-,

 and 𝜎! = ,+
((-,)#

. Alternative parameterization 590 

is to use theta (𝜃 = 1/𝑟) as the dispersion parameter. We used the “glmGamPoi” R package 591 

which implements the Cox-Reid adjusted MLE59  method to estimate the dispersion parameter 592 

based on the SCTranformed count data. Then we generated an intra-individual dispersion 593 

matrix for each cell type.  594 

 595 

When checking the preliminary results (326 deQTLs with q-value < 0.05), however, we found 596 

that for many genes, the CR-MLE estimates were highly inflated, especially for those with low 597 

abundance or individuals with a small number of cells (Supplementary Figure 12). This is 598 

because when the mean of an NB distribution is low, the likelihood curve will be very flat, thus 599 

making it extremely difficult for the optimisation algorithm to search for the maxima. This 600 

scenario became even worse in the single-cell RNA-seq data since less than 10% of the genes 601 
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have an intra-individual mean higher than 0.1, and around half of the intra-individual 602 

expression is 0 (Supplementary Figure 2). Although the CR-MLE method partially mitigates 603 

the problem using a penalised log-likelihood60, we still saw inflated dispersion estimates in 604 

many genes from the real data (Supplementary Figure 12). To avoid false discovery of 605 

deQTLs and the spurious relationship between dispersion and mean, we simulated CR-MLE 606 

dispersion estimates given different mean, dispersion, and sample sizes (Supplementary Note 607 

2 and Supplementary Figures 13-14). We considered these parameters and adopted a data-608 

driven threshold of intra-individual mean expression to select significant signals for each cell 609 

type (Supplementary Table 7). For example, for CD4NC cells, we need genes to have mean 610 

expression > 0.3 so that > 90% times the estimates will fall within ±5% of the true dispersion 611 

parameter. Based on this filtering, we retained 64 deQTL-dGene pairs but still found that there 612 

is still moderate inflation in the dispersion estimates of some genes in certain genotype groups 613 

(see examples in Supplementary Figure 15). So, we further removed the genes if any of the 614 

genotype groups has a mean expression smaller than the threshold and ended up with 55 615 

significant (q-value < 0.05) deQTL-dGene pairs in 34 unique genes. 616 

 617 

We also tried to estimate the dispersion for gene 𝑘 of individual 𝑖 based on the methods of 618 

moments, such that 619 

 620 

𝜎#$! = 𝜇#$ + 𝜃#$ ∗ 𝜇#$!  621 

so, the dispersion can be estimated as, 622 

𝜃#$ =
𝜎#$! − 𝜇#$
𝜇#$!

 623 

From the equation, it is obvious that (i) when the variance and mean are very close to each 624 

other and the mean is not so small, the moment estimator will be close to 0; (ii) when the mean 625 

is 0, the moment estimator does not exist but for such case, we manually assign the dispersion 626 

level as 0; (iii) in real data, the moment estimator could be a negative number, but the scale 627 

would not be large (CR-MLE estimate will always be non-negative). More details of different 628 

dispersion indices and their special cases, when the mean is small, are discussed in 629 

Supplementary Note 3 and Supplementary Table 8. 630 

 631 

Functional annotation and gene sets enrichment analysis 632 

We used FUMA61 (v1.5.3) to perform functional annotation for the deQTLs and gene 633 

enrichment for the dGenes. The SNP functional annotation is done by the built-in 634 
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ANNOVAR34 in the platform. To test if the list of dGenes is overrepresented in certain 635 

biological functions, they are tested against the gene sets obtained from The Molecular 636 

Signatures Database (MSigDB). The Hallmark gene sets are from the MSigDB h collection 637 

(50 gene sets), the KEGG are from MSigDB c2 collection (186 gene sets) and GO biological 638 

processes from MSigDB c5 collection (7751 gene sets). The significant enrichment is defined 639 

at adjusted p-value ≤ 0.05. We also utilised FUMA platform to overlap the sc-deQTL with 640 

public GWAS associations in GWAScatalog (database update by 27/4/2023). There are 553 641 

matched associations in 233 studies.  642 

 643 

The G x G epistasis analysis to identify driving factors for deQTL 644 

We performed two complementary analyses to investigate whether G x G and G x E effects 645 

could be the potential driving factors for deQTLs. To identify multiple independent cis- signals 646 

for the same gene, we sought to map conditionally independent cis- eQTLs and veQTLs using 647 

a stepwise regression procedure28. For the trans-QTL analysis (both for intra- mean and 648 

variance), we tested all the SNPs located > 1Mb away from the gene body centre and matched 649 

the results with 64 candidate deQTL-dGenes pairs in each cell type. Significant trans-QTL is 650 

defined at nominal p-value < 5 x 10-8. We further fit the genotype of those trans-veQTLs in 651 

the cis-veQTL or cis-deQTL association model to see if the estimates will be significantly 652 

changed.   653 

 654 

Pseudotime trajectory of intra-individual variance and interaction tests 655 

To understand the context-dependent effect of the prioritised deQTLs on the cell state, we 656 

estimated the pseudotime of each cell in inferred B cells (BIN + BMEM). We used SCTransform55 657 

to calculate the scaled expression Pearson residuals using the top 500 highly variable genes 658 

and fitted the percentage of mitochondrial expression and experimental pools as covariates. 659 

After transformation, we calculate the principal components (PCs) of the expression matrix 660 

and constructed the UMAP using the first 30 PCs by RunUMAP() function built in Seurat. We 661 

then used PHATE62 to estimate the quantitative indicator of cell state (i.e., pseudotime) in a 662 

two-dimensional space for each cell. For each individual, we computed the mean pseudotime 663 

across all cells and created a mean pseudotime trait. Then the mean pseudotime is tested as an 664 

interaction term (G x E) in the QTL association model (for mean, variance, and dispersion 665 

separately) in TensorQTL software. The sex or age was also tested for the interaction effect. 666 

The nominal p-value is first corrected by multiple testing based on the effective number of 667 
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independent variants in the cis-window, and then converted to Benjamini-Hochberg adjusted 668 

p-value for each chromosome. 669 

 670 

Identifying co-eQTLs for RPS26 and its transcription factors 671 

We subset the SCTransformed count matrix for RPS26 and six transcription factors per cell 672 

type, and calculate the Spearman’s correlation between RPS26 and each of the TF gene across 673 

cells within each individual. For each TF gene, we have a co-expression estimate for every 674 

individual as the phenotype and run a linear regression of the co-expression phenotype on the 675 

genotype of rs1131017. The nominal p-values are then converted to Benjamini Hochberg FDR 676 

and the test with FDR < 0.05 will be deemed as significant co-eQTL. 677 

 678 

Replication in an independent cohort of non-European ancestry 679 

To replicate our findings of sc-deQTLs in OneK1K of European (EUR) ancestry, we utilised 680 

another single-cell cohort from Perez et al.49 . We conducted sc-deQTL mapping for the 681 

individuals of East Asian (EAS) ancestry (97 individuals including 75 healthy controls and 22 682 

lupus patients). The single-cell gene expression was processed in the protocols we used for 683 

OneK1K. Intra-individual dispersion of gene expression was also estimated per gene per cell 684 

type. For the sc-deQTL mapping, covariates were adjusted in the association model including 685 

sex, age, batch, first 6 PCs, first 2 PEER factors, and lupus disease status. Given the difference 686 

in SNP panels between two datasets, we only investigate the 34 genes with significant sc-687 

deQTLs in OneK1K cohort in the replication cohort.  688 

 689 
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Table 1 Summary of eGene and vGene identified in 14 cell types  714 
 715 

Cell type N 
Median 

nr cells 

Nr 

genes 
eGene vGene overlap 

vGene 

with 

ME 

eGene 

with 

VE 

B_IN 975 69 12219 843 605 574 0.949 0.681 

B_MEM 970 40 11663 672 480 454 0.946 0.676 

CD4_NC 980 461 15433 4252 3488 3363 0.964 0.791 

CD4_ET 980 57 12040 986 692 655 0.947 0.664 

CD4_SOX4 295 8 8234 37 14 13 0.929 0.351 

CD8_NC 980 126 13508 1760 1263 1213 0.960 0.689 

CD8_ET 980 177 13798 1884 1369 1314 0.960 0.697 

CD8_S100B 959 29 11070 461 295 271 0.919 0.588 

DC 726 9 10149 228 127 118 0.929 0.518 

Mono_C 851 29 11620 517 319 305 0.956 0.590 

Mono_NC 690 16 10544 497 297 284 0.956 0.571 

NK_R 750 10 9224 179 105 98 0.933 0.547 

NK 980 143.5 13577 2099 1440 1360 0.944 0.648 

Plasma 253 7 8983 70 33 31 0.939 0.443 

 716 
Notes: N, sample size; Median nr cells, the median number of cells per individual; Nr genes, number 717 
of genes tested in the QTL analysis; eGene, number of significant eGene; vGene, number of significant 718 
vGene; overlap, the number of genes that are both eGene and vGene; vGene with ME, the proportion 719 
of vGene that are also eGene; eGene with VE, the proportion of eGene that are also vGene. 720 
  721 
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Table 2 Summary of the 39 dGenes identified in 14 cell types  

Gene Cell type CHR:BP rsID A1 A2 AF 
Dispersion Mean Variance 

b se pval qval b se pval b se pval 

S100A4 NK 1:153514241 rs7535476 C A 0.050 0.565 0.093 1.95E-09 2.21E-03 -0.283 0.090 1.63E-03 0.091 0.093 3.30E-01 

CDC42 
CD4_NC 

1:22426187 rs1534949 C A 
0.419 -0.363 0.030 1.09E-31 1.12E-22 0.247 0.017 2.99E-44 0.079 0.019 2.47E-05 

NK 0.419 -0.353 0.030 8.92E-30 9.34E-21 0.192 0.026 2.05E-13 -0.052 0.025 3.79E-02 

CD52 
CD4_NC 1:26616280 rs3924324 A G 0.177 -0.380 0.051 1.27E-13 7.70E-07 0.259 0.030 1.10E-17 -0.012 0.042 7.75E-01 

CD8_ET 1:26645806 rs11589222 C T 0.253 0.407 0.047 1.86E-17 3.75E-10 -0.231 0.040 1.15E-08 -0.008 0.043 8.44E-01 

GYPC CD4_NC 2:127516475 rs6732878 G C 0.283 -0.182 0.029 4.61E-10 2.80E-04 0.666 0.030 1.92E-90 0.668 0.040 8.52E-55 

GNLY 

CD8_ET 2:85934499 rs12151621 A C 0.223 -0.708 0.037 1.16E-68 1.42E-55 0.863 0.038 1.04E-90 0.674 0.047 3.61E-43 

NK_R 2:85916005 rs4832181 G A 0.353 0.338 0.054 5.17E-10 2.02E-02 -0.635 0.047 2.00E-37 -0.142 0.054 8.80E-03 

NK 2:85920249 rs3755007 G T 0.344 0.849 0.040 1.72E-81 9.68E-62 -0.942 0.036 5.92E-114 -0.588 0.040 3.51E-44 

SNHG8 CD4_NC 4:119204466 rs28517808 T C 0.474 -0.139 0.025 2.02E-08 2.00E-02 0.918 0.023 3.85E-206 1.037 0.028 6.08E-188 

FGFBP2 NK 4:15957763 rs4698429 G A 0.151 -0.270 0.046 7.74E-09 6.01E-03 0.390 0.041 2.00E-20 0.302 0.044 1.92E-11 

HNRNPH1 CD4_NC 5:178986632 rs7703730 C A 0.370 0.289 0.031 2.45E-19 7.95E-12 0.020 0.025 4.33E-01 0.103 0.024 1.51E-05 

RNASET2 CD4_NC 6:167370999 rs2769346 G A 0.467 -0.153 0.026 5.70E-09 1.74E-03 0.876 0.021 1.91E-217 0.967 0.029 3.26E-160 

HLA-A CD4_NC 6:29913266 rs1061156 T G 0.159 -0.491 0.065 6.78E-14 4.44E-07 0.135 0.039 5.62E-04 -0.156 0.046 7.98E-04 

HLA-C 

CD4_NC 6:31221914 rs9264219 C T 0.316 0.302 0.050 2.03E-09 1.64E-03 0.014 0.037 7.10E-01 0.167 0.042 6.92E-05 

CD8_NC 6:31321360 rs2844585 A G 0.172 0.441 0.081 5.72E-08 3.86E-02 -0.333 0.055 1.46E-09 -0.005 0.064 9.39E-01 

CD8_ET 6:31263051 rs2853926 G A 0.277 -0.370 0.056 4.69E-11 1.26E-03 -0.013 0.040 7.48E-01 -0.268 0.049 4.48E-08 

HLA-B 

CD4_NC 6:31366295 rs9394070 A C 0.066 1.077 0.084 7.64E-35 7.75E-15 -1.483 0.061 4.43E-103 -1.222 0.066 1.82E-65 

CD4_ET 6:31324955 rs34437781 T C 0.065 0.748 0.092 1.81E-15 9.61E-06 -1.460 0.066 4.40E-88 -1.074 0.079 3.03E-38 

CD8_NC 6:31327701 rs9378249 G T 0.067 0.896 0.087 7.06E-24 6.40E-13 -1.432 0.060 1.20E-98 -1.098 0.069 1.02E-50 

HLA-DQA1 B_MEM 6:32589326 rs9271503 A C 0.336 -0.321 0.052 7.47E-10 2.92E-03 0.047 0.037 1.97E-01 -0.165 0.047 4.28E-04 

RPS18 
B_IN 

6:33239869 rs17215231 T C 
0.070 0.494 0.077 2.40E-10 1.40E-03 -2.134 0.053 4.82E-208 -1.077 0.076 5.40E-42 

CD4_NC 0.070 0.394 0.070 2.16E-08 9.57E-03 -2.274 0.041 2.20E-301 -1.650 0.057 2.60E-132 

RPS10 CD8_NC 6:34372804 rs7775635 G A 0.078 0.382 0.071 1.01E-07 3.81E-02 0.997 0.042 3.43E-99 1.004 0.048 3.92E-81 
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LY6E NK 8:144075281 rs4424237 T C 0.474 0.232 0.030 1.97E-14 5.27E-08 -0.277 0.036 6.14E-14 -0.123 0.041 2.77E-03 

PTGDS NK 9:139848273 rs2271869 G A 0.438 -0.419 0.039 2.18E-25 1.07E-17 0.486 0.036 1.05E-37 0.452 0.037 1.07E-32 

ANXA1 CD4_NC 9:75769950 rs2795112 G C 0.113 -0.260 0.051 3.19E-07 4.54E-02 0.183 0.036 4.47E-07 0.100 0.042 1.64E-02 

IFITM2 

CD4_NC 11:303271 rs6598046 A T 0.248 -0.200 0.035 1.06E-08 2.25E-03 0.473 0.036 8.08E-37 0.379 0.037 2.71E-23 

CD8_ET 11:307539 rs111412325 A G 0.072 -0.460 0.065 2.25E-12 5.36E-06 0.463 0.070 4.59E-11 0.179 0.077 2.09E-02 

NK 11:349122 rs7117996 C T 0.294 -0.383 0.042 6.73E-19 1.12E-11 0.589 0.038 2.26E-48 0.370 0.043 2.62E-17 

 

 

 

 

 

 

Gene Cell type CHR:BP rsID A1 A2 AF 
Dispersion Mean Variance 

b se pval qval b se pval b se pval 

CTSW 
CD8_ET 11:65645354 rs596002 A G 0.196 0.671 0.038 1.68E-60 4.62E-45 -1.017 0.030 7.63E-167 -0.888 0.041 3.43E-86 

NK 11:65644027 rs583887 T C 0.194 0.552 0.043 2.22E-35 6.10E-25 -0.816 0.032 3.06E-110 -0.631 0.044 6.60E-43 

RPLP2 CD4_NC 11:802902 rs28360884 T G 0.321 0.216 0.035 7.20E-10 4.08E-04 0.601 0.026 1.22E-92 0.523 0.032 4.58E-54 

RPS26 

B_IN 

12:56435929 rs1131017 C G 

0.421 -0.661 0.041 9.09E-52 9.27E-38 1.333 0.016 <1E-323 1.150 0.026 1.41E-234 

CD4_NC 0.420 -0.930 0.034 1.70E-124 9.22E-101 1.346 0.016 <1E-323 1.202 0.024 3.61E-274 

CD4_ET 0.420 -0.860 0.036 3.10E-97 4.62E-78 1.340 0.016 <1E-323 1.146 0.026 3.07E-228 

CD8_NC 0.420 -0.933 0.034 6.40E-122 6.46E-100 1.345 0.016 <1E-323 1.182 0.025 6.56E-254 

CD8_ET 0.420 -0.680 0.040 1.48E-56 1.56E-42 1.355 0.015 <1E-323 1.250 0.022 1.25E-310 

LYZ Mono_C 12:69747834 rs1384 T C 0.495 0.280 0.041 1.48E-11 1.66E-04 -0.852 0.034 1.25E-101 -0.329 0.046 2.52E-12 

KLRB1 CD4_ET 12:9623841 rs10743738 T G 0.413 0.236 0.041 1.28E-08 5.61E-03 -0.153 0.041 1.72E-04 0.065 0.041 1.12E-01 

GZMH NK 14:25083383 rs11158812 G A 0.494 0.351 0.037 2.16E-20 8.43E-13 -0.251 0.032 9.77E-15 -0.112 0.034 9.82E-04 

IL32 

NK 16:3115272 rs45499297 C T 0.088 -0.619 0.068 3.07E-19 3.03E-12 0.538 0.070 4.32E-14 0.340 0.068 8.39E-07 

CD4_NC 
16:3115628 rs1554999 A C 

0.370 0.847 0.039 4.44E-87 7.03E-71 -0.536 0.027 4.27E-73 -0.170 0.030 1.31E-08 

CD4_ET 0.370 0.533 0.042 5.57E-34 8.43E-24 -0.406 0.033 3.03E-33 -0.047 0.039 2.29E-01 
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CD8_NC 0.370 0.555 0.042 4.88E-37 4.30E-27 -0.312 0.025 3.95E-34 -0.089 0.032 4.88E-03 

CD8_ET 0.370 0.375 0.042 3.83E-18 3.82E-10 -0.291 0.033 5.00E-18 -0.043 0.041 2.85E-01 

CCL3 NK 17:34397258 rs854471 G A 0.317 0.279 0.042 5.19E-11 9.79E-05 -0.185 0.042 9.54E-06 -0.113 0.042 7.16E-03 

CCL4 CD8_ET 17:34411105 rs1634490 A G 0.220 -0.336 0.041 4.45E-16 3.62E-09 0.286 0.048 3.30E-09 0.099 0.051 5.23E-02 

EIF5A CD4_NC 17:7207964 rs7503161 A C 0.412 -0.619 0.025 4.33E-104 3.32E-85 1.153 0.021 7.81E-304 0.990 0.027 3.63E-189 

FXYD5 CD4_NC 19:35658380 rs12461097 G T 0.276 -0.180 0.033 6.79E-08 4.25E-02 0.158 0.026 1.44E-09 0.045 0.041 2.71E-01 

RPS9 CD4_NC 19:54700668 rs34172242 C T 0.395 0.247 0.035 3.40E-12 2.10E-05 -0.841 0.028 9.33E-140 -0.530 0.037 9.05E-42 

PPDPF NK 20:62152519 rs72629024 G C 0.145 0.315 0.052 1.79E-09 2.69E-03 -1.088 0.051 1.51E-83 -0.820 0.051 1.70E-51 

ITGB2 
CD8_ET 

21:46328099 rs760462 T C 
0.164 -0.257 0.040 2.45E-10 7.81E-05 0.906 0.029 1.00E-145 0.907 0.043 4.71E-80 

NK 0.164 -0.436 0.044 5.69E-22 5.20E-15 1.083 0.027 5.00E-203 1.071 0.041 4.36E-112 

LGALS1 NK 22:38069305 rs62236671 A G 0.340 0.264 0.039 2.91E-11 1.07E-05 -0.111 0.042 7.95E-03 0.033 0.044 4.52E-01 

 

Notes: The columns indicate cell type, gene name, SNP rsID, minor allele, major allele, minor allele frequency, beta/se/nomial p-value/q-value estimates for 

deQTL, beta/se/nomial p-value for eQTL, and beta/se/nomial p-value  for veQTL. A p-value of 1.95E-09 means 1.95 x 10-9.  
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Figure 2 The intra-individual mean-variance relationship and overlap between eGenes 

and vGenes per cell type.  

(A) The Spearman’s correlation estimates between the intra-individual mean and variance of 

each gene. The colour of the violin plot denotes the corresponding cell type. The bottom 10% 

correlation estimates are omitted. All violins have the same maximum width. (B) The 

relationship between intra-individual mean and mean-variance correlation per gene in CD4 

naïve cells. (C) The relationship between intra-individual mean and proportion of no-

expression individuals per gene in CD4 naïve cells. (D) The percentage of eGene, vGene, and 

dGene in each cell type. (E) The relationship between sample size and number of vGenes. (F) 

The relationship between median number of cells per individual and number of vGenes. Each 

dot represents a cell type, and the colour of the dots corresponds to panel.  
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Figure 3 Effect size comparison among the mean, variance, and dispersion eQTLs. (A) 

The x-axis and y-axis denote the beta estimate for eQTL and veQTL, respectively. Each dot 

indicates an SNP-gene pair test, and the dot’s colour indicates the cell type. The grey dashed 

line denotes the diagonal line of the coordinate panel. (B) An Upset plot for the number of 
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dGenes in each cell type and the dGenes shared across cell types. The number of each 

intersection was annotated as the number above the bar plot. 

 
Figure 4 The association between rs1131017 and RPS26 expression change in CD4 naïve 

cells.  

(A-D) The violin plots of individual genotypes of SNP rs1131017 correspond to the intra-

individual mean, variance, residual, and dispersion of RPS26 expression in CD4 naïve cells. 

The x-axis indicates the genotype (coded as 0, 1, 2 indicating the number of G alleles carried). 
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(E) Scatter plot of intra-individual mean against intra-individual variance of expression. (F) 

Scatter plot of intra-individual mean against intra-individual dispersion of expression. The 

dispersion was estimated by CR-MLE method. (G) The distribution of SCT transformed count 

expression of RPS26 per cell. There are 463,496 cells, and each bar indicates the number of 

cells with the corresponding count expression. The table included the mean and dispersion 

estimates for the whole cohort and within each genotype group. The genotype group of CC 

alleles have much higher intra-individual dispersion of RPS26 expression than the other two 

groups. (H) The distribution of SCT transformed count expression for all 980 individuals in 

CD4_NC cells separated by three genotype groups. The colour of each square denotes the 

density of a certain count within a corresponding individual, and darker purple denotes higher 

density. 
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Figure 5. The putative regulatory mechanism of dispersion eQTL of RPS26. (A) The 

beta effect estimates for co-eQTL between RPS26 and six transcription factors (TFs) in 14 

cell types. Each point is an estimate coloured and grouped based on cell types, and the error 

bar denotes the standard error of the estimate. Six TFs are annotated with different shapes. 

The significant estimates (BH corrected FDR < 0.05) are strengthened by transparency of the 

dot. (B) The violin plot for co-expression per genotype group in CD4NC cells. The y-axis 

indicates the standardised the co-expression (measured by Spearman’s correlation across 

cells per individual) between RPS26 and the TF gene. Four outlier dots were omitted for 

illustrative purpose. 
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