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Abstract 

We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine 

learning-enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven 

neural networks. ML-QSAR models were developed using molecular fingerprint descriptors and the Ran-

dom Forest algorithm to explore the chemical spaces of Chalcones inhibitors against diverse disease proper-

ties, including antifungal, anti-inflammatory, anticancer, antimicrobial, and antiviral effects. We generated 

and validated robust machine learning-based bioactivity prediction models ((https://ashspred.streamlit.app/) 

for the top genes. These models underwent ROC and applicability domain analysis, followed by molecular 

docking studies to elucidate the molecular mechanisms of the molecules. Through comprehensive neural 

network analysis, crucial genes such as AKT1, HSP90A1, SRC, and STAT3 were identified. The PubChem 

fingerprint-based model revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, Pub-

chemFP633 for HSP90, and PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to 

bioactivity across targets. Notably, chalcone derivatives demonstrated significant bioactivity against target 

genes, with compound RA1 displaying a predictive pIC50 value of 5.76 against HSP90A and strong binding 

affinities across other targets. Compounds RA5 to RA7 also exhibited high binding affinity scores compara-

ble to or exceeding existing drugs. These findings emphasize the importance of knowledge-based neural 

network-based research for developing effective drugs against diverse disease properties. These interactions 

warrant further in vitro and in vivo investigations to elucidate their potential in rational drug design. The pre-

sented models provide valuable insights for inhibitor design and hold promise for drug development. Future 

research will prioritize investigating these molecules for mycobacterium tuberculosis, enhancing the com-

prehension of effectiveness in addressing infectious diseases. 
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1. Introduction 

Chalcones, a specialized subclass within the flavonoid family of organic compounds, exhibit a unique struc-

tural arrangement, characterized by three aromatic rings (A, B, and C) linked through an α, β-unsaturated 

carbonyl system(Ferrer et al., 2008; K. Sahu et al., 2012). This distinctive arrangement not only defines their 

chemical identity but also plays a pivotal role in their diverse biological activities. These naturally occurring 

compounds, found in various plant species, have piqued the interest of the medicinal chemistry community 

due to their multifaceted biological actions(Mahapatra et al., 2015). 

Structurally, chalcones are composed of three aromatic rings, known as rings A, B, and C. The linkage be-

tween the B and C rings through a conjugated double bond system, particularly an α, β-unsaturated carbonyl 

group, is a defining feature of these compounds(Naik et al., 2020). As members of the flavonoid family, 

chalcones are essentially plant-derived polyphenolic compounds. Research has highlighted their broad spec-

trum of cytoprotective and regulatory functions, which are deemed crucial in managing various diseases. A 

key factor in leveraging chalcones for human use is a thorough understanding of their activity and potential 

toxicity. The structural conformation of chalcones not only imparts them with specific properties but also 

contributes to their wide range of biological activities. These include potential roles in reducing inflamma-

tion and combating cancer, malaria, mycobacterium tuberculosis, and microbial infections(Dhaliwal et al., 

2022; Lawrence, 2009; Sivakumar et al., 2007; Ventura et al., 2015). The growing interest in their anti-

mycobacterial capabilities further indicates their potential to develop new treatments for infectious diseases. 

The pharmacophoric characteristics of chalcones, which are linked to their chemical composition, are crucial 

in their use for various health-related applications. The α, β-unsaturated carbonyl group of chalcones is a key 

feature that facilitates their interactions with biomolecules. As a Michael acceptor, it enables nucleophilic 

additions with cellular targets like enzymes and receptors, influencing various biological processes such as 

enzyme inhibition and modulation of signal transduction pathways. The lipophilic nature of chalcones, due 
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to the two aromatic rings (A and C), aids in their interaction with hydrophobic pockets of target proteins, 

affecting their binding affinity and specificity. Furthermore, the presence of conjugated double bonds be-

tween the B and C rings contributes to the absorption of visible light, making chalcones colourful com-

pounds. This aspect also affects their electronic properties and stability. The carbonyl group in the α, β-

unsaturated system acts as an electron-withdrawing group, enhancing the reactivity of the double bond and 

facilitating further interactions with cellular nucleophiles(Mphahlele, 2021; Thapa et al., 2021; Zainuri et al., 

2023). 

Chalcones with specific substitutions on their aromatic rings have shown significant biological effects. For 

instance, chalcones with a trifluoromethyl group in ring B and a 3,4,5-trimethoxy substitution in ring A have 

displayed strong antiproliferative effects against various cancer cells(Karthikeyan et al., 2014; Thapa et al., 

2023). Chalcone derivatives with specific substitutions have also shown notable antifungal activity against 

yeast strains. The antibacterial potential of chalcones varies with the hydrophobic nature of the alkyl chain, 

indicating that compounds with a medium level of hydrophobicity exhibit potent antibacterial activity. Fur-

thermore, chalcones with trimethoxy substituents and a monofluoro substitution on the B ring have demon-

strated enhanced inhibitory activity. The study of chalcones has also extended to their anti-inflammatory ef-

ficacy. The presence of electron-withdrawing groups (EWGs) in chalcones has been linked to enhanced anti-

inflammatory activity. The specific position of the substitution on the phenyl ring A also influences this ac-

tivity. Chalcone derivatives containing halogens, like fluoride or chloride, have shown significant potential 

in this regard(Burmaoglu et al., 2017; Goss et al., 1975; Kotra et al., 2010). In the context of anti-

hyperglycemic activity, chalcones with specific substitutions have exhibited notable effects. For example, 

chalcones with chloro, bromo, iodo, and hydroxy substitutions at certain positions on the A-ring have shown 

high anti-hyperglycemic activity. Alkyl substitutions on the benzene ring have also improved these effects. 

The potential of chalcones in treating tuberculosis has become a recent focus of interest. Certain chalcones 

have demonstrated efficacy against Mycobacterium tuberculosis and other related species, making them 

promising candidates for new drug development, especially for severe TB cases (Chiaradia et al., 2012; 

Mishra & Jana, 2023; Rozmer & Perjési, 2014). 

The study employed a three-step approach to explore chalcone-based small molecules and their interactions 

with biological systems. The first phase involved using knowledge-based neural networks in a polypharma-

cology analysis. This allowed us to identify crucial biological processes and genes affected by these com-

pounds, offering a broad view of their impact on different biological pathways. After that, we utilized the 

same knowledge-based neural networks to predict the bioactivity (measured as pIC50 values) of the chal-

cones derivatives against the identified genes. The study utilizes a Random Forest machine learning algo-

rithm to create ML-QSAR models. This sophisticated machine learning tool enhances the precision of pre-

dictions by integrating domain-specific knowledge into the algorithmic learning process. In the final stage, 

molecular docking studies were conducted to elucidate the structure-function relationships and molecular 

mechanisms of the chalcones. This provided valuable insights into how these molecules interact with spe-
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cific genes and biological processes, uncovering potential mechanisms of action. In future efforts, the aim 

will be to expand the research focus on studying the efficacy of these molecules specifically for tuberculosis 

treatment. This will involve further exploration of their interactions with Mycobacterium tuberculosis and 

understanding their potential mechanisms of action in combating tuberculosis infections. Additionally, we 

plan to conduct safety studies of chalcones using the zebrafish larval model and perform in vitro and in vivo 

studies using M. marinum and zebrafish to validate the safety and effectiveness of chalcone derivatives as 

potential anti-tuberculosis agents (Aspatwar et al., 2017, 2018; Aspatwar, Hammaren, et al., 2019; 

Aspatwar, Kairys, et al., 2019). 

2. Methods and materials 
 

2.1.Data Set Collection 

Figure 1 illustrates the chemical structures of the chalcone-based compounds synthesized in the labora-

tory(Acharjee et al., 2018; Sengupta et al., 2017). 

 

Fig. 1. Structural Diagrams of Chalcone-based Derivatives (RA1-RA10). 

2.2.ADME Prediction and Drug Likeliness 

To understand the pharmacodynamics of the compounds, it is essential to have a grasp of their physico-

chemical properties and pharmacokinetic profile, which includes Absorption, Distribution, Metabolism, and 

Excretion (ADME). We utilized the SMILES data of the compounds and inputted it into the SwissADME 

server (https://www.swissadme.ch) to evaluate various physicochemical properties. These properties encom-

pass lipophilicity (iLOGP, XLOGP3, WLOGP, MLOGP, SILICOS-IT, Log P0/w, molar refractivity, topo-

logical polar surface area, number of hydrogen bond donors/acceptors), water solubility (Log S - ESOL, Ali, 

SILICOS-IT), drug-likeness rules (Lipinski, Ghose, Veber, Egan, Muegge), and Medicinal Chemistry 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.05.592581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.05.592581
http://creativecommons.org/licenses/by-nc-nd/4.0/


(PAINS, Brenk, Lead-likeness, Synthetic accessibility) of the selected compounds(Daina et al., 2017). 

Moreover, we also acquired important pharmacokinetic parameters for the compounds, such as gastrointes-

tinal (GI) absorption, blood-brain barrier (BBB) permeation, P-gp substrate status, cytochrome-P enzymes 

inhibition, and skin permeation (logKp), as reported(Pathak et al., 2017). These data provide valuable in-

sights into the behavior and potential of these compounds as pharmacological agents. 

2.3. Identification of protein targets 

The molecular targets of the compounds were determined using the Swiss Target Prediction server 

(https://www.swisstargetprediction.ch). This server assesses macromolecular targets by comparing 2D and 

3D similarities in the active substance library(Pathak et al., 2017). To identify targets associated with dis-

eases, relevant information was retrieved from the Human Gene Database (GeneCards, 

http://www.genecards.org)(Stelzer et al., 2016) and the Online Mendelian Inheritance in Man (OMIM, 

http://www.ncbi.nlm.nih.gov/omim) database(Amberger & Hamosh, 2017). The Ven Plot Diagram method 

was also employed to identify common genes between the compounds and breast cancer. These combined 

approaches provided valuable insights into potential molecular targets of the compounds and their relevance 

to different target genes. 

2.4. Construction of protein-protein interaction 

The research involved importing the shared targets of compounds and the disease into the STRING database 

(https://string-db.org/)(Szklarczyk et al., 2021) to construct protein-protein interactions (PPI) within Homo 

sapien. Solid circles represent genes in the resulting PPI network, and the enclosed structures represent the 

corresponding proteins. The genes are interconnected by lines of various colors, indicating the biological 

processes between the proteins. The researchers utilized the Cytoscape plug-in (v3.8.0) and CytoHubba 

(http://www.cytoscape.org/) to visualize the interaction network among targets and compounds. In this net-

work, nodes represent compounds and targets, while edges represent interactions between compounds and 

target(Shannon et al., 2003). 

2.5.Gene Ontology (GO) Analysis 

FunRich 3.1.3 was utilized for functional enrichment analysis of gene ontology, encompassing biological 

pathways (BPA), cellular components (CC), and biological processes (BPR)(Fonseka et al., 2021). More-

over, the researchers employed the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to iden-

tify pathways associated with breast cancer among the selected targets. A p-value lower than 0.05 was con-

sidered statistically significant and indicative of the relevance of the gene ontology analysis. 

2.6.Machine Learning Assisted QSAR Study 

2.6.1. Data Collection and Pre-Processing 

The panda’s library efficiently manipulates structured data, including data frames. The 

chembl_webresource_client library is designed to access the extensive ChEMBL database, particularly for 
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bioactive molecules and biological activities related to genes AKT1, SRC, HSP90A, and STAT3. From the 

ChEMBL database, a collection of inhibitors was obtained: 4170 for AKT1, 5172 for SRC, 1369 for 

HSP90A, and 1437 for STAT3, along with their corresponding IC50 values. Biological activity (IC50) of 

molecules is categorized as active (below 1000 nM), intermediate (1000-10000 nM), or inactive (above 

10000 nM). Exploratory data analysis or chemical space analysis was conducted to traverse the chemical 

landscape of inhibitory compounds using Lipinski's rule of five descriptors: Molecular weight, ALogP, hy-

drogen bond donor, and hydrogen bond acceptor. 

Machine Learning-Based QSAR Modeling Process 

All modeling processes are done using the python programming language in Google Colab, facilitated by the 

Scikitlearn package (version 1.0.2). 

2.6.2. Molecular Fingerprints Calculation  

PubChem fingerprints provided by the PaDEL package (PaDELpy-0.1.13) were used for modelling(Yap, 

2011). The fingerprint set contains 881 binary representations of the chemical structural fragments used by 

PubChem. The parameter for the PaDEL package is set to detect aromaticity: true; standardize nitrogen: 

true; standardize tautomers: true; threads = 2; remove salt: true; log = true; fingerprints = true. 

2.6.3. Feature Selection 

Features with variance lower than 0.1 and features demonstrating high correlation (>0.95) were removed. As 

a result of AKT1, after feature selection of the 881 features, there are 213 lefts after removing low-variance 

features and high correlation features. As a result of SRC, after feature selection of the 881 features, there 

are 241 lefts after removing low-variance features and high-correlation features. As a result of HSP90A, af-

ter feature selection of the 881 features, there are 253 lefts after the removal of low-variance features and 

high correlation features. As a result of STAT3, after the feature selection of the 881 features, there are 262 

lefts after removing low-variance features and high-correlation features. 

2.6.4. QSAR Model Construction 

For all four models, the ratio of the training set and testing set is set to 80:20. Using the Kennington Stone 

algorithm, the final best AKT1, SRC, HSP90A, and STAT3 inhibitor from the ChEMBL dataset was used to 

divide the dataset into training and test sets with an 80:20 split ratio 

(DTClab.Https://Dtclab.Webs.Com/Software-Tools; 

Github.Https://Github.Com/Dataprofessor/Code/Tree/Master/Python;Padel.Http://Www.Yapcwsoft.Com/Dd/Padel 

escriptor/). A user-defined variance cut-off value was employed to retrieve significant descriptors from the 

ChEMBL dataset, and constant descriptors with identical or nearly identical values for all compounds were 

eliminated. Similarly, inter-correlated descriptors were identified and processed according to the inter-

correlation coefficient cut-off value specified by the user. 

2.6.5. Development and Validation of Random Forest based QSAR models 
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The datasets from ChEMBL (AKT1, SRC, HSP90A, and STAT3) were employed in the creation of Random 

Forest (RF)-based machine learning models using Weka 

Software(Weka.Https://Www.Cs.Waikato.Ac.Nz/Ml/Weka/). RF, a supervised machine learning technique, 

encompasses a collective ensemble of predictors that is fundamentally derived from decision trees. Training 

of RF is carried out using the Bagging or Bootstrap aggregation technique. Additionally, the RF algorithm 

attempts to tackle the issue of overfitting commonly associated with decision trees. Subsequently, a correla-

tion coefficient (R2) comparison between the training and test datasets was utilized to validate the Quantita-

tive Structure-Activity Relationship (QSAR) models. The most valuable features were identified through the 

application of the RF Regressor algorithms for the RF models, which were then depicted in Variance Impor-

tance Plots (VIP). A graphical comparison of experimental versus predicted values for each QSAR model 

was conducted using the matplotlib Python package(Github. Https://Github.Com/Vappiah/Machine-

Learning-Tutorials). 

Furthermore, the construction of receiver operating characteristics (ROC) graphs for both QSAR models 

was carried out with a pre-existing Python script designed for multi-class model classification. The Receiver 

Operating Characteristic (ROC) acts as a graphical instrument for assessing the performance of classifiers 

and evaluating the effectiveness of classification-based Quantitative Structure-Activity Relationship (QSAR) 

models by leveraging the features derived from the confusion matrix. It provides a two-dimensional depic-

tion (0 to 1) of the true positive (TP) rate contrasted against the false positive (FP) rate(Pedregosa et al., 

2012). The area under the curve (AUC) was formulated as a quantitative metric to provide a competitive 

evaluation of ROC analysis. The AUC of a ROC plot stands as a reliable proxy for a discriminant model's 

performance, with its value ranging from zero (total misclassification) to one (perfect classification). 

Moreover, the applicability domain (AD) of both QSAR models was assessed through the bounding box 

technique of principal component analysis (PCA). This requires a PCA examination of the scores plot to 

compare the molecules' chemical space from the training and test sets(Sahigara et al., 2012). The AD was 

ascertained using the PCA function from the sklearn—decomposition module of the scikit-learn machine 

learning toolkit in Python(Scikit-Learn. Https://Github.Com/Scikit-Learn/Scikit-Learn.Git.). 

 

2.7.Molecular Docking 

A molecular docking approach was employed to evaluate the inhibitory potential of chalcone derivatives 

across various activities, including antibacterial, anticancer, antidiabetes, anti-inflammation, and antifungal 

effects. The protein structures pertinent to the investigation, namely AKT1 (PDB ID: 4EJN)(Ashwell et al., 

2012), SRC (PDB ID: 2OIQ)(Seeliger et al., 2007), HSP90A (PDB ID: 3O0I)(Patel et al., 2013), and STAT3 

(PDB ID: 6NJS)(Bai et al., 2019), were sourced from the Protein Data Bank in PDB format. Active sites 

within each protein structure were pre-delineated to facilitate docking by constructing grid boxes around the 

co-crystallized ligand. The AutoDock Tools software(Trott & Olson, 2010) was then employed to prepare 

the protein molecules. This process involved rectifying missing residues, eliminating water molecules, add-

ing polar hydrogens, and applying Kollman charges. The resulting protein structures were saved in pqbqt 
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format. Ligand molecules' 2D structures underwent conversion to 3D structures using the MMFF94 force 

field within the AutoDock Vina software. These transformed ligand structures were saved and converted to 

pdbqt format utilizing the Open Babel GUI. In the final step, a Perl script, in conjunction with Perl software, 

facilitated the docking of all ligand molecules against the protein structures. The resulting binding affinities 

or docking scores for each ligand molecule and respective target receptor were quantified in kcal/mol units. 

To glean insights into the molecular interactions, Pymol and Discovery Studio Visualizer were employed, 

enabling an in-depth exploration of ligand binding interactions with the most favorably binding proteins. 

2.8.Molecular Dynamic 

To explore the stability of the most promising molecule in biological conditions, we carried out molecular 

dynamics (MD) simulations. These simulations are essential for understanding how the molecule behaves in 

a solvent environment. We set up the simulation in an orthorhombic box with dimensions of 12 Å on each 

side, using the buffer size method to optimize the volume of the box. The simulations were conducted using 

the TIP3P water model and the OPLS3e force field by Schrodinger Inc., which are standards for simulating 

proteins and ions. Sodium chloride was added to the system at a concentration of 0.15M to mimic physio-

logical conditions, with sodium (Na+) and chloride (Cl-) ions. The simulations ran for 100 nanoseconds us-

ing the Desmond Molecular Dynamics module, producing around 1000 snapshots of the system's behavior. 

These were performed under the NPT ensemble, maintaining a constant temperature of 300 K and a pressure 

of 1 bar, ensuring the system was equilibrated before the simulations began. 

 

3. Results 

3.1.ADME Prediction and Drug Likeliness 

ADME detection is crucial in drug discovery and development. Analyzing structural and physicochemical 

characteristics helps identify compounds with favorable pharmacokinetic profiles and drug-like features, 

minimizing drug-drug interactions and experimental failures. SwissADME databases provide efficient mod-

els to predict compound properties, aiding in drug development decision-making.  

The physicochemical properties, pharmacokinetic profile, and medicinal characteristics of the selected com-

pounds are depicted in Table 1. See Supplementary file S1 for more information on Table 1. All combina-

tions shared an identical bioavailability score of 0.55, indicating moderate bioavailability. None of the com-

pounds exhibited any PAINS alerts, suggesting a lack of common structural motifs associated with assay 

interference. Most compounds showed inhibitory activity against various cytochrome P450 (CYP) enzymes, 

potentially affecting drug metabolism and interactions. However, all compounds were predicted as non-

substrates of P-glycoprotein (Pgp), reducing the risk of drug-drug interactions mediated by this efflux trans-

porter. All compounds demonstrated high gastrointestinal (GI) absorption, indicating efficient absorption in 

the gastrointestinal tract. However, none of the compounds were predicted to permeate the blood-brain bar-

rier (BBB). 
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All compounds adhered to Lipinski's Rule of Five, suggesting favorable drug-like properties concerning ab-

sorption and distribution. However, based on the Silicos-IT class, most compounds were classified as poorly 

soluble, with Compound RA8 being moderately soluble. Compound RA4 displayed the highest molar re-

fractivity (130.94), suggesting its potential for intermolecular interactions and polarizability. On the other 

hand, Compound RA8 had the lowest molar refractivity (86.05). Regarding the topological polar surface 

area, Compound RA4 exhibited the highest value (95.12 Å²), while Compound RA5 displayed the lowest 

value (58.2 Å²). These properties influence a compound's solubility and permeability characteristics.  
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pounds RA1-RA10. 

RA2 RA3 RA4 RA5 RA6 RA7 RA8

C24H22N2O4 C25H24N2O5 C26H26N2O6 C22H16Cl2N2O2 C23H18Cl2N2O3 C22H15Cl3N2O2 C16H14N
402.44 432.47 462.49 411.28 441.31 445.73 282.3

4 5 6 2 3 2 1 
2 2 2 2 2 2 2 

117.95 124.45 130.94 114.99 121.48 120 86.0
76.66 85.89 95.12 58.2 67.43 58.2 87.2

Poorly soluble Poorly soluble Poorly soluble Poorly soluble Poorly soluble Poorly soluble 
Modera

solub
High High High High High High High
No No No No No No No
No No No Yes Yes Yes No
Yes No No Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes No No No No
Yes Yes No Yes Yes Yes Yes

0 0 0 1 1 1 0 
0.55 0.55 0.55 0.55 0.55 0.55 0.55

0 0 0 0 0 0 0 
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3.2.Compound and disease targets 

We obtained compound targets from the Swiss target prediction server and marks associated with four 

eases from the Human gene and OMIM databases (See Supplementary file, s1). The Venn diagram dem

strates the intersection of 346 targets related to bacterial diseases, 346 targets associated with inflammat

364 targets linked to cancer, 349 targets relevant to diabetes, and 220 targets about fungal diseases. Th

intersections represent the common gene targets shared between compounds and the specified diseases 

Fig. 2.). 

                                                                       

              

Fig. 2. Overlapping targets between the potential compound’s targets and disease-related genes using 

Plot Diagram. 

3.3. PPI Network analysis 

The PPI network was constructed using the STRING database, explicitly focusing on targets from Ho

sapiens. This research compares five biological networks: bacterial, cancer, diabetes, fungal, and inflam

tion. The networks were constructed using data from the STRING database and visualized in Cytoscape

ter importing the data in a .tsv format(Lopes et al., 2010). For each network, the number of nodes and ed

was recorded: bacterial network (345 nodes, 4342 edges), cancer network (363 nodes, 4555 edges), diab

network (348 nodes, 4412 edges), fungal network (220 nodes, 2814 edges), and inflammation network (
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Key network properties were calculated and analyzed for each network. These properties included the aver-

age local clustering coefficient, PPI enrichment p-value, and average node degree. The bacterial network had 

an average local clustering coefficient of 0.458, a PPI enrichment p-value of p<1.0e-16, an average node de-

gree of 25.2, and an Average Shortest Path Length of 2.46. Similarly, the cancer network had an average lo-

cal clustering coefficient of 0.459, a PPI enrichment p-value of p<1.0e-16, an average node degree of 25.1, 

and an Average Shortest Path Length of 2.48. The diabetes network had an average local clustering coeffi-

cient of 0.462, a PPI enrichment p-value of p<1.0e-16, an average node degree of 25.4, and an Average 

Shortest Path Length of 2.46. The fungal network had an average local clustering coefficient of 0.52, a PPI 

enrichment p-value of p<1.0e-16, an average node degree of 25.6, and an Average Shortest Path Length of 

2.26. The inflammation network had an average local clustering coefficient of 0.457, a PPI enrichment p-

value of p<1.0e-16, an average node degree of 25.8, and an Average Shortest Path Length of 2.44. 

Furthermore, the networks' structural characteristics were analyzed, including the network diameter and ra-

dius. The bacterial, cancer, and inflammation networks had a diameter of 6 units and a radius of 3 units. 

Diabetes and cancer networks had a diameter of 6 units and a radius of 4 units. 

Fig. 3A and 3B display the compound-target interactions that were constructed using Cytoscape. The top 10 

targets were subjected to network analysis, and the degree of freedom for each target was reported in Table 

2 and Fig. 3B. Among the ten genes shared across the five diseases, AKT1, SRC1, HSP90AA, and STAT3 

exhibited strong associations in all five diseases. These four genes were selected based on their degree 

scores, ranging between 91 and 148. In each disease, AKT1, SRC1, HSP90AA, and STAT3 displayed the 

highest degrees, surpassing 110, except for fungal disease, where their degrees were above 90. Notably, 

AKT1 demonstrated prominent significance by securing the first rank in bacterial, inflammation, and cancer 

networks, with 148, 149, and 149 scores, respectively. In the fungal and diabetes networks, AKT1 remained 

highly significant, achieving the first rank with scores of 119 and 148, respectively. AKT1, a ser-

ine/threonine kinase, is intricately involved in diverse cellular processes such as cell survival, proliferation, 

and metabolism(Schiliro & Firestein, 2021). In bacterial infections, AKT1 signaling has been associated 

with the modulation of host immune responses and pathogen invasion mechanisms. In cancer, AKT1 dys-

regulation is frequently seen, leading to tumor growth and reduced responsiveness to conventional treatment 

methods. Additionally, AKT1's critical role in glucose metabolism and insulin signaling makes it an attrac-

tive target in diabetes management. AKT1 signaling modulates antifungal immune responses, and its inhibi-

tion has shown potential in enhancing the host's ability to combat fungal infections(Fayard et al., 2010). 

SRC, a non-receptor tyrosine kinase, plays a pivotal role in signal transduction pathways that govern cell 

growth, motility, and invasion. In bacterial infections, SRC has been linked to host cell invasion and the in-

tracellular survival of pathogen(Siddiqui et al., 2012). In the realm of cancer, SRC is frequently overex-

pressed, promoting tumor progression and metastasis. Furthermore, SRC participates in insulin signaling 

and glucose metabolism, making it relevant to diabetes research. Additionally, SRC activation is involved in 

inflammation-related processes, contributing to the pathogenesis of various diseases(S. T. Liu et al., 2014). 
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SRC, a key cellular motility and adhesion regulator, contributes to fungal invasion and dissemination. Tar-

geting SRC using specific inhibitors may impede fungal spread and improve treatment outcomes. 

HSP90AA1, a heat shock protein, is a molecular chaperone that plays a pivotal role in protein folding and 

stability. In bacterial infections, HSP90AA1 facilitates bacterial virulence by promoting the stability of bac-

terial effectors. 

Within the cancer domain, HSP90AA1 acts as a critical chaperone for oncoproteins and proteins associated 

with drug resistance(Backe et al., 2020). Its implication in insulin resistance and β-cell dysfunction high-

lights its relevance in diabetes research. Moreover, HSP90AA1 is involved in inflammatory responses across 

various diseases. HSP90AA1 functions as a chaperone for fungal proteins, essential for fungal survival and 

virulence. Disrupting HSP90AA1's function has been explored as a strategy to weaken fungal pathogens. 

STAT3, a transcription factor, is essential in cell survival, proliferation, and immune responses(Yu et al., 

2009). STAT3 signaling modulates the host's inflammatory and immune responses to bacterial invasion in 

bacterial infections. STAT3 activation promotes tumor growth and immune evasion in the context of cancer. 

In diabetes research, STAT3 influences insulin signaling and pancreatic β-cell function. STAT3 mediates in-

flammation-related processes, impacting disease pathogenesis. STAT3 plays a vital role in orchestrating im-

mune responses during fungal infections, and inhibiting its activity might enhance the host's antifungal de-

fense mechanisms(Y. C. Liu et al., 2019; Vella et al., 2023). The analysis of protein ranking across diverse 

biological networks offers valuable insights into the relative significance of AKT1, SRC, HSP90AA1, and 

STAT3 in various cellular processes and disease contexts. The consistently high rankings of these proteins 

suggest their crucial roles in cellular regulation, signal transduction, and disease development. Based on the 

Cytohubba analysis, all synthesized compounds exhibited the highest score, indicating their interactions with 

the maximum number of identified elements in all five diseases, achieving a score of 100. Previous research 

has highlighted the potential of chalcone-based novel phenyl ureas as effective antihyperglycemic agents 

with a likely PPAR gamma agonistic action. 

Table 2. Degree of freedom of top 10 gene and their scores. 

Gene 
name/Diseases AKT1 SRC HSP90AA1 STAT3 MAPK3 MTOR HIF1A MAPK1 PIK3CA MDM2 

Bacterial 148 119 117 109 104 92 89 89 86 77 

Inflammation 149 122 120 111 103 96 91 88 88 77 

Cancer 149 122 121 111 105 96 92 90 88 77 

Fungal 119 91 99 92 82 81 76 73 71 69 

Diabetes 148 118 119 110 105 96 90 90 85 77 
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Figure 3A. Interactions of gene targets in four diseases (Bacterial, Cancer, Diabetes, and Fungal) were visu-

alized using Cytoscape and Network Analysis. 
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Figure 3A (Conti..). Interactions of gene targets in four diseases (Inflammation) were visualized using 

toscape and Network Analysis. 

 

ng Cy-
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Figure 3B. Top 10 Gene Target Interactions in Four Diseases Visualized through Cytoscape and Analyzed 

Using Network Analysis.
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3.4. Gene Ontology 

We performed a functional enrichment analysis using the FunRich software on the top 10 targets selected 

based on their degree. However, the degree of gene targets has different ranks; all targets, diabetes, inflam-

mation, fungal, bacterial, and cancer, have almost the same 10 ten degrees of genes identified. Based on the 

data analysis of target genes, all diseases have the same cellular component, biological pathway, and proc-

ess.  Fig. 4 illustrates the top 10 Biological Pathway Annotations, Cellular Component Annotations, and 

Biological Process Annotations. Among the top 10 biological pathways identified, the following pathways 

were found: NGF signaling via TRKA from the plasma membrane 80%, Signaling by EGFR 70%, Signaling 

by FGFR 70%, ErbB2/ErbB3 signaling events 60%, Signaling by PDGF 70%, Downstream signal transduc-

tion 70%, Signalling by NGF 80%, Signaling by SCF-KIT 70%, VEGFR1 specific signals 60%, IL2-

mediated signaling events 80%. 

The scientific literature has extensively discussed that these pathways are involved in diabetes, inflamma-

tion, fungal, bacterial, and cancer development. Nerve Growth Factor (NGF) is a neurotrophic factor in-

volved in neurons' development, survival, and function. Enriching genes in this pathway suggests their po-

tential roles in mediating NGF signaling through its receptor TRKA (NTRK1). SRC, STAT3, and MAPK1, 

in particular, are known to be involved in neuronal signaling and synaptic plasticity, and they may play im-

portant roles in the downstream events of NGF-TRKA signaling(Chao, 2003). Interleukin-2 (IL-2) is a cyto-

kine central to regulating immune responses. Enriching genes in this pathway suggests their potential roles 

in mediating IL-2 signaling events. SRC and STAT3 are known to be involved in immune cell signaling and 

activation. 

In cancer, IL-2 has been used as an immunotherapy to stimulate the immune system's anti-tumor response, 

and SRC and STAT3 may be involved in the downstream effects of IL-2-mediated immune 

activation(Rosenberg & Restifo, 2015). EGFR signaling is closely linked to various types of cancers, includ-

ing lung cancer, breast cancer, colorectal cancer, and head and neck cancer. Dysregulation of EGFR, such as 

overexpression or activating mutations, can lead to uncontrolled cell proliferation, invasion, and metastasis 

in these malignancies(Lemmon & Schlessinger, 2010). EGFR signaling, while not a central factor in the de-

velopment of diabetes, may impact certain cellular responses associated with complications of the disease, 

such as diabetic retinopathy. Similarly, while EGFR signaling doesn't directly correlate with bacterial or 

fungal infections, it might indirectly affect the immune responses to these infections. This is possible due to 

the expression of EGFR in diverse immune cells and tissues, suggesting its involvement in modulating host 

responses to various health challenges. FGFR (Fibroblast Growth Factor Receptor) is another family of re-

ceptor tyrosine kinases involved in cell proliferation, migration, and differentiation. Fibroblast growth fac-

tors (FGFs) binding to FGFR leads to receptor dimerization and activation of downstream signaling path-

ways. 
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FGFR signaling is critical in development, tissue repair, and angiogenesis. Aberrant FGFR signaling has 

been implicated in various cancers and developmental disorder(Turner & Grose, 2010). FGFR signaling, 

while not directly involved in bacterial or fungal infections nor a primary contributor to diabetes develop-

ment, may have a role in inflammation. However, its explicit involvement in inflammation-associated dis-

eases warrants further study. VEGFR1 signaling plays a crucial role in angiogenesis, forming new blood 

vessels. It is expressed in tumor cells and various immune cells, making it relevant to several diseases, in-

cluding cancer, inflammation, diabetes, and vascular diseases. In cancer, particularly colorectal and breast 

cancer, VEGFR1 signaling contributes to tumor angiogenesis and growth. High levels of VEGFR1 expres-

sion are associated with poor prognosis in these cancers. As a result, targeting VEGFR1-specific signals is 

being investigated as a potential strategy for cancer treatment. In inflammatory diseases like rheumatoid ar-

thritis and inflammatory bowel disease, VEGFR1-mediated signals play a role in recruiting immune cells 

and promoting angiogenesis to facilitate tissue repair. Consequently, interventions focused on regulating 

VEGFR1 are under investigation to manage the progression of diabetic retinopathy. VEGFR1 signaling also 

affects the progression of various vascular diseases, such as atherosclerosis and vascular malformations. It 

can modulate angiogenesis within atherosclerotic plaques and contribute to abnormal vessel development in 

vascular malformations(Bollenbecker et al., 2023; Shibuya, 2011). 

PDGF (Platelet-Derived Growth Factor) is a growth factor in cell proliferation and wound healing. It signals 

through two receptor tyrosine kinases, PDGFRα and PDGFRβ. Upon ligand binding, PDGF receptors un-

dergo autophosphorylation and activate downstream signaling pathways, including the PI3K-AKT and 

MAPK pathways. PDGF signaling is important in tissue repair, angiogenesis, and development. Aberrant 

PDGF signaling has been implicated in cancer and fibrotic diseases(Heldin & Lennartsson, 2013). While not 

directly associated with fungal infections, PDGF signaling may be involved in regulating inflammation and 

tissue repair. Additionally, it may hold relevance for diabetic complications, including nephropathy and reti-

nopathy. The downstream Signal Transduction pathway involves the transmission of signals from activated 

cell surface receptors (such as EGFR, FGFR, and PDGFR) to intracellular effectors. Downstream signal 

transduction pathways include MAPK/ERK, PI3K-AKT, and JAK-STAT. These pathways regulate gene ex-

pression and modulate cellular responses, such as proliferation, survival, and differentiation. Dysregulation 

of downstream signal transduction can lead to various diseases, including cancer and inflammatory disor-

ders(Shen et al., 2020). ErbB2 (HER2) and ErbB3 (HER3) are members of the EGFR family of receptor ty-

rosine kinases. They form heterodimers and activate downstream signaling pathways upon ligand binding or 

through other mechanisms. ErbB2 does not bind a specific ligand but can enhance signaling by forming het-

erodimers with other ErbB family members. ErbB2/ErbB3 signaling plays crucial roles in the cell prolifera-

tion, survival, and metastasis of various cancers. Abnormal ErbB2 (HER2) expression is closely linked with 

aggressive forms of breast cancer, and targeted treatments focusing on ErbB2 have demonstrated clinical 

effectiveness (Hynes & Lane, 2005). SCF (Stem Cell Factor) and KIT (KIT proto-oncogene) are involved in 

hematopoiesis, melanogenesis, and cell survival. The binding of SCF to its receptor KIT activates down-
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stream signaling events. KIT signaling is crucial for stem cell development and hematopoiesis—aberrant 

KIT signaling(Lennartsson & Rönnstrand, 2012). 

The proteins SRC, HSP90AA1, STAT3, MAPK3, MTOR, HIF1A, MAPK1, PIK3CA, and MDM2 are in-

volved in several important biological pathways that have relevance to various diseases, including cancer, 

diabetes, inflammation, and other disorders. These proteins are crucial in signal transduction, growth regula-

tion, immune responses, and cellular metabolism. When these pathways and proteins become dysregulated, 

they can contribute to the development and progression of diseases. In cancer, these proteins often promote 

cell growth, survival, and metastasis. Dysregulation of these pathways can lead to uncontrolled cell prolif-

eration and tumor formation. For example, the MAPK pathway (involving proteins like MAPK1 and 

MAPK3) is frequently altered in cancer, leading to excessive cell division and tumor growth. In diabetes, 

proteins like MTOR and PIK3CA are involved in insulin signaling and glucose metabolism. Dysfunctional 

signaling in these pathways can affect insulin sensitivity and glucose regulation, contributing to diabetes and 

its complications. In inflammation, proteins like STAT3 and HIF1A are key players in immune responses 

and inflammation regulation. Aberrant activation of these proteins can lead to chronic inflammation associ-

ated with various inflammatory diseases. 

The gene ontology analysis uncovers critical biological processes associated with the top five targets for dis-

eases, including diabetes, inflammation, fungal, bacterial, and cancer. Notable processes include signal 

transduction (60%), protein metabolism (20%), cell communication (40%), energy pathways (10%), and 

regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism (20%) (See Fig. 4). These in-

sights are invaluable, shedding light on the molecular mechanisms driving disease development and progres-

sion. Additionally, identified cellular components associated with the top ten disease targets reveal where 

these elements predominantly exist within cells. These locations include the phosphoinositide 3-kinase com-

plex (10%), TORC1 and TORC2 (10%), the nucleus (90%), nucleoplasm (40%), endomembrane system 

(10%), the nucleolus (50%), the TORC2 complex (10%), the cytoplasm (90%), microtubules, and the cyto-

sol (80%) (See Fig. 4). Understanding the cellular location of these targets provides crucial insights into 

their functional roles in specific diseases, allowing for more targeted and precise intervention strategies. 
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Fig. 4. Gene ontology analysis: Cellular components, biological processes, and biological pathway. 

3.5. KEGG pathway 

In the present research, the examined compounds showcased distinctive impacts on conditions such as c

cer, diabetes, and inflammation. These substances showed promising effects on ovarian neoplastic c

through their interaction with the MAPK signaling pathways, particularly focusing on the ERK element 

the MAPK receptors(Dhillon et al., 2007). This observation is harmonious with the well-established func

of MAPK receptors in fostering tumor proliferation and survival. The compounds also impacted the mT

signaling pathway, targeting elements such as PK13, AKT1, and mTOR receptors, which are crucial for 

proliferation and survival(Saxton & Sabatini, 2017). Similarly, these compounds affected the JAK-ST

signaling pathway, explicitly targeting components like STAT3 receptors(O’Shea et al., 2015). The c

pounds influenced the MAPK signaling pathway by activating components via the EGFR receptors. Reg

ing the HIF1 alpha signaling pathway, the compounds' role is noteworthy. RTKs activate HIF1 alpha, so

targeting them, the compounds could potentially deregulate their activity. 

The PI3K-AKT signaling pathway is a crucial intracellular signaling pathway implicated in multiple cell

functions, such as cell growth, proliferation, angiogenesis, and survival. It is activated by various type

cellular stimuli or toxic insults(Manning & Toker, 2017; Porta et al., 2014). The PI3K-AKT pathway is c

tral to insulin signaling. When insulin binds to its receptor, it triggers the activation of PI3K, leading to
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activation of AKT. AKT subsequently stimulates glucose uptake by promoting the translocation of the glu-

cose transporter GLUT4 to the cell membrane. This pathway's alteration can lead to insulin resistance, a key 

factor in developing type 2 diabetes. Dysregulation in PI3K/AKT signaling has been associated with diabetic 

complications, including nephropathy and retinopathy(Oeckinghaus & Ghosh, 2009; Sadikot et al., 2005) 

(See Fig. 5A). In inflammation disease, the activation of the NF-κB pathway, including the resultant upregu-

lation of BCL-XL and c-Myb, can contribute to inflammation(Lawrence, 2009; Reece et al., 2022). This 

pathway plays a critical role in cell cycle regulation and is heavily involved in cancer pathogenesis due to its 

influence on cell proliferation and apoptosis.  In the MAPK signaling pathway context, the PI3K-AKT 

pathway can influence cell proliferation and angiogenesis, mainly through the ERK component. The PI3K-

AKT pathway's interaction with the mTOR, JAK/STAT3, chemokine, and Toll-like receptor signaling path-

ways allows for a complex network of regulation and cross-talk, further expanding its role in various cellular 

processes. Pathogen-associated molecular patterns (PAMPs) can directly influence TLR2/4 and activate the 

small GTPase Rac1. This activation triggers the PI3K, producing PIP3, a crucial second messenger in the 

PI3K-AKT pathway. PIP3 then stimulates the kinase AKT1, which is critical for cell survival, primarily 

through its influence on the MDM2 gene. Furthermore, the chaperone protein Hsp90 also activates AKT1, 

adding another level of regulation to this pathway. This complexity contributes to the range of cellular proc-

esses the PI3K-AKT pathway influences, reinforcing its importance in understanding disease pathogenesis, 

particularly in cancer and inflammatory conditions(Oeckinghaus & Ghosh, 2009; Porta et al., 2014; Sadikot 

et al., 2005). 
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Fig. 5A. KEGG Pathway Analysis of the Top 10 Targets, with Special Emphasis on PI3K-AKT signaling 

pathway. 

The pathway "Proteoglycans in cancer" (KEGG:05205) has a higher negative p-value of 11.70, making it the 

most significant path in the dataset. Proteoglycans are a group of glycosylated proteins mainly present in the 

extracellular matrix. They play crucial roles in many biological processes, including cell proliferation, mi-

gration, and angiogenesis, all of which are integral to cancer development and progression (See Fig. 5B and 

6)(Ahrens et al., 2020). Several genes from data, such as AKT1, SRC, STAT3, MAPK3, and PIK3CA, are 

implicated in this pathway, indicating a potential role in cancer-related processes. The "Thyroid hormone 

signaling pathway" (KEGG:04919) is the second most significant pathway, with a negative p-value of 11.31. 

The thyroid hormone signaling pathway regulates metabolism, growth, and development. It involves several 

critical genes from the data set, including SRC, AKT1, and PIK3CA. Dysregulation in this pathway may 

lead to various disorders, ranging from developmental issues to metabolic diseases and certain cancers(Y. C. 

Liu et al., 2019). The pathway "EGFR tyrosine kinase inhibitor resistance" (KEGG:01521) also shows high 

significance with a negative p-value of 10.36. EGFR, a key receptor tyrosine kinase, regulates cellular ac-

tivities, including proliferation and survival (See Fig. 6). EGFR mutations often result in over-activated 

EGFR pathways, causing uncontrolled cell growth, which is common in various cancers like NSCLC. EGFR 

tyrosine kinase inhibitors (TKIs) can hinder tumor growth by inhibiting EGFR's tyrosine kinase activity. 
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However, resistance to these drugs often develops through mechanisms like secondary EGFR mutation

changes in other growth factor receptors. Key genes in data, such as EGFR, AKT1, PIK3CA, ERBB2, M

and FGFR1, can contribute to EGFR TKI resistance, either by direct alterations in EGFR or by influenc

related signaling pathways(Ji et al., 2013). Specific genes, like AKT1, MAPK3, MAPK1, PIK3CA, etc.,

pear frequently across many routes. These genes could be essential nodes in biological networks and se

as potential targets for broad-spectrum treatments. 

Fig. 5B. KEGG Pathway Analysis of the Top 10 Targets, with Special Emphasis on Proteoglycans in canc
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Fig. 6. The analysis of KEGG pathways, along with their corresponding Predictive p-values and the ge

they interact with. 
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3.6.Machine learning QSAR analysis 

3.6.1. Exploratory Data Analysis 

In AKT1 gene data, After data pre-processing and curation and the elimination of missing values, 2876 

compounds were selected for study. Then, all 2876 compounds were subjected to exploratory data analysis. 

The exploratory data analysis of a dataset of compounds revealed a greater proportion of active compounds 

than inactive ones. In addition, it was discovered that the pIC50 values of active compounds ranged from 6 to 

10, whereas those of inactive compounds ranged from 3.30 to 5. The Mann−Whitney U test was performed 

to evaluate the statistical significance between active and inactive groups of compounds. After the U test, all 

of the five properties have statistical significance. Inactive molecules generally have slightly smaller MW 

and fewer NumHDonors than active group molecules. Active molecules tend to have larger pIC50, MW, and 

NumHAcceptors values. LogP values remain identical between active and inactive molecules (See Fig. 7). 

In SRC gene data, after data pre-processing and curation and the elimination of missing values, 3177 com-

pounds were selected for study. Then, all 3177 compounds were subjected to exploratory data analysis. The 

exploratory data analysis of a dataset of compounds revealed a greater proportion of active compounds than 

inactive ones. In addition, it was discovered that the pIC50 values of active compounds ranged from 6 to 

10.45, whereas those of inactive compounds ranged from 1 to 5. The Mann−Whitney U test was performed 

to evaluate the statistical significance between active and inactive groups of compounds. After the U test, all 

of the five properties have statistical significance. Inactive molecules typically possess slightly elevated 

LogP values compared to active group molecules. Active molecules exhibit higher pIC50 values than those in 

the inactive group. However, the values for MW, NumHDonors, and NumHAcceptors remain nearly indis-

tinguishable between active and inactive molecules (See Fig. 7). 

In HSP90A gene data, after data pre-processing and curation and the elimination of missing values, 1009 

compounds were selected for study. Then, all 1009 compounds were subjected to exploratory data analysis. 

The exploratory data analysis of a dataset of compounds revealed a greater proportion of active compounds 

than inactive ones. In addition, it was discovered that the pIC50 values of active compounds ranged from 6 to 

9.15, whereas those of inactive compounds ranged from 2.90 to 5. The Mann−Whitney U test was per-

formed to evaluate the statistical significance between active and inactive groups of compounds. After the U 

test, all of the five properties have statistical significance. Active molecules typically show slightly elevated 

LogP and NumHAcceptors compared to inactive group molecules. They also tend to have higher values for 

MW, pIC50, and NumHDonors than inactive molecules (See Fig. 7). In STAT3 gene data, after data pre-

processing and curation and eliminating missing values, 640 compounds were selected for study. Then, all 

640 compounds were subjected to exploratory data analysis. The exploratory data analysis of a dataset of 

compounds revealed a greater proportion of active compounds than inactive ones. In addition, it was discov-

ered that the pIC50 values of active compounds ranged from 6 to 8.07, whereas those of inactive compounds 

ranged from 3 to 5. The Mann−Whitney U test was performed to evaluate the statistical significance be-

tween active and inactive groups of compounds. After the U test, all of the five properties have statistical 

significance. Active molecules typically exhibit significantly higher pIC50 values and a greater number of 
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NumHAcceptors than molecules in the inactive group. The values for MW, LogP, and NumHAcceptors

main nearly unchanged between active and inactive compounds (See Fig. 7). 

Fig. 7. Exploratory data analysis for four genes, AKT1, SRC, HSP90A, and STAT3 inhibitors’ dataset fro

the ChEMBL database. 

3.6.2. Machine learning QSAR model predication 

The dataset of compounds underwent descriptor calculation using PaDELPy in the PaDEL software. Be

this, PubChem fingerprints were generated individually, resulting in 881 PubChem fingerprint attributes. 

developing a Random Forest-based QSAR model, Data pre-treatment GUI 1.2 was used to remove cons

descriptors based on correlation coefficient and variance scores. After excluding the shared biological ac

ity attribute, the final list of attributes for PubChem fingerprints of AKT1, SRC, HSP90A, and STAT3 w

213, 241, 253, and 262, respectively. The Kennard Stone algorithm was employed for dataset division, 

the training and evaluation sets were split in an 80:20 ratio. During the training phase, QSAR models w

developed using specific gene sets: AKT1 (2255 instances), SRC (2481 instances), HSP90A (791 instanc
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and STAT3 (504 instances). In the subsequent testing phase, the models were evaluated using separate in-

stances: 531 for AKT1, 576 for SRC, 186 for HSP90A, and 120 for STAT3.To generate the intended QSAR 

models, each descriptor dataset's training and test datasets were loaded into the machine learning software 

WEKA. Information regarding the training set and testing of PubChem fingerprint and CHEMBL molecules 

for each target gene can be found in Supplementary file s3. 

WeKa's model analysis for the AKT gene shows strong predictive performance during training and testing, 

as indicated by the high correlation coefficient of 0.9802 and 0.8083. The model's predictions of training are 

relatively close to the actual values, with a mean absolute error of 0.2225 and a root mean squared error of 

0.2937. The relative absolute error of 20.1691% suggests that the model's predictions deviate from the actual 

values by around 20% on average. The root relative squared error of 21.3556% indicates the variability of 

prediction errors. The mean absolute error and root mean squared error from test set data show 0.5868 and 

0.7371, respectively. The relative absolute and root relative squared errors are around 58-59%. Cross-

validation results fall between the training and testing performance, with a correlation coefficient of 0.8634. 

The mean absolute error and root mean squared error are 0.5299 and 0.702, respectively. The relative abso-

lute and root relative squared errors are approximately 48% and 51%, respectively. These results suggest that 

the model generalizes reasonably well to new data. For the SRC gene, the QSAR model achieves a high cor-

relation coefficient of 0.9867 during training, similar to HSP90A. 

The mean absolute error and root mean squared error are 0.2227 and 0.3, respectively. The relative absolute 

and root relative squared errors are 14.8335% and 17.3816%, respectively. The model maintains strong per-

formance during testing, with a correlation coefficient of 0.9147. The mean absolute error and root mean 

squared error are 0.5065 and 0.6198, respectively. The relative absolute and root relative squared errors are 

around 36%, suggesting good generalization. Cross-validation results also show high predictive ability, with 

a correlation coefficient of 0.8983. The mean absolute error and root mean squared error are 0.5677 and 

0.7648, respectively. The relative absolute error and root relative squared error are approximately 37%, indi-

cating consistent and reliable performance. The model analysis for the HSP90AA gene demonstrates high 

predictive accuracy during training, with a correlation coefficient of 0.9867. The mean absolute error and 

root mean squared error are 0.1403 and 0.1993, respectively. The relative absolute and root relative squared 

errors are 16.1236% and 17.1802%, respectively. The model maintains strong performance during testing, 

with a correlation coefficient of 0.9295. The mean absolute error and root mean squared error are 0.3371 and 

0.4213, respectively. The relative absolute and root relative squared errors are around 37%, indicating good 

generalization. Cross-validation results also show high predictive ability, with a correlation coefficient of 

0.9011. The mean absolute error and root mean squared error are 0.3553 and 0.5073, respectively. The rela-

tive absolute error and root relative squared error are approximately 40%, suggesting consistent performance 

across different folds. 

For the STAT3 gene, the QSAR model achieves a high correlation coefficient of 0.9713 during training, in-

dicating predictive solid ability. The mean absolute and root mean squared errors are 0.1719 and 0.2541, re-
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spectively, implying accurate predictions. The relative absolute and root relative squared errors are 23.079% 

and 27.1873%, respectively. However, on the test set, the model's performance slightly decreases, with a cor-

relation coefficient of 0.783. The mean absolute error and root mean squared error increase to 0.3219 and 

0.4605, respectively. The relative absolute and root relative squared errors are around 59% and 70%, respec-

tively. Cross-validation results show a correlation coefficient of 0.7102, suggesting good performance com-

pared with training. The mean absolute error and root mean squared error are 0.4488 and 0.6589, respec-

tively. The relative absolute and root relative squared errors are approximately 60% and 70%, respectively. 

The robustness of the QSAR models was inferred from the high correlation coefficients observed in both the 

training and test sets, suggesting a high degree of reliability. Additionally, the outcomes of tenfold cross-

validation for each model demonstrated a notable level of satisfaction, further affirming the models' per-

formance (See Fig.8A). 

To discern the pivotal molecular fingerprints and their respective contributions to bioactivity within QSAR 

models, a comprehensive feature importance analysis was conducted. This investigation involved the utiliza-

tion of the Random Forest regressor algorithm to pinpoint the top ten molecular fingerprints for each QSAR 

model. The Variance Importance Plots (VIP) were generated using the matplotlib package in Python, provid-

ing a visual representation of the significance of these fingerprints (See Fig.8B.). The most significant de-

scriptors in the Pubchem fingerprint-based model were identified as follows: PubchemFP521 (C:N-C-[#1]) 

in AKT1, PubchemFP180 (containing at least one saturated or aromatic nitrogen-containing ring of size 6) in 

SRC, PubchemFP633 (N-C-C:C-C) in HSP90, and PubchemFP145 (including at least one saturated or aro-

matic nitrogen-containing ring of size 5) and PubchemFP338 (C(~C)(~C)(~H)(~N)) in STAT3. For the Pub-

Chem fingerprints-based model targeting the AKT1 gene, the VIP analysis highlighted PubchemFPs 143, 

184, 186, 335, 338, 404, 521, 614, 696, and 707 as the most influential molecular fingerprints. Similarly, in 

the context of the SRC gene, the VIP plot identified PubchemFPs 180, 181, 338, 391, 439, 590, 609, 682, 

696, and 704 as the key contributors to bioactivity. Moving to the HSP90A gene, the VIP analysis under-

scored the significance of PubchemFPs 146, 181, 357, 380, 633, 672, 712, 737, 749, and 800. Lastly, within 

the context of the STAT3 gene, PubchemFPs 1, 2, 21, 145, 146, 180, 181, 338, 685, and 712 were identified 

as the critical molecular fingerprints. Based on feature selection, structural insights for the best descriptor-

containing compounds were investigated for both models individually (See Fig. 8B).  

In the context of AKT1, specific analysis has revealed that clinical drugs 443654 (CHEMBL379300), 

CHEMBL3899716, and CHEMBL3966806 exhibit consistent fingerprints associated with distinct molecular 

features. These fingerprints include PUbchemFP143 (greater than or equal to 1, any ring size 5) and PUb-

chemFP521 (C:N-C-[#1]). Experimentally determined pIC50 values for these compounds were 9.796, 10, 

and 9.824, respectively. For SRC, quantitative structure-activity relationship (QSAR) data analysis was con-

ducted on the VIP plot. The FDA-approved drug DASATINIB (CHEMBL1421) and Chembl IDs 

CHEMBL1241676 and CHEMBL196797 were observed to possess common PubChem fingerprints. These 

fingerprints, specifically PubchemFPs 180 (greater than or equal to 1 saturated or aromatic nitrogen-
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containing ring size 6), 181 (greater than or equal to 1 saturated or aromatic heteroatom-containing ring size 

6), and PubChem Fp696 (C-C-C-C-C-C-C-C), were reflected in experimental pIC50 values of 9.301, 9.921, 

and 9.824. These findings suggest particular structural attributes contributing to the compound's bioactivity. 

In the case of HSP90A, QSAR data analysis of the VIP plot revealed shared Pubchem fingerprint attributes 

in FDA approved drugs REBLASTATIN (CHEMBL267792), BIIB021 (CHEMBL467399), LUMINESPIB 

(CHEMBL252164), and Chembl IDs CHEMBL2205798, CHEMBL4873718, and CHEMBL2205245 (see 

Fig. 9.). The common characteristics include PubChem146 (greater than or equal to 1 saturated or aromatic 

heteroatom-containing ring size 5), PubChem181 (greater than or equal to 1 saturated or aromatic heteroa-

tom-containing ring size 6), PubChem357 (C(~C)(:C)(:N)), and PubChem633 (N-C-C:C-C). The corre-

sponding experimental pIC50 values are 8.30, 8.29, 8.10, 9.15, 9.14, and 9, reinforcing the structural attrib-

utes responsible for their bioactivity (Fig.9.). 

Lastly, in STAT3, a QSAR analysis of the VIP plot was performed for FDA-approved drug AZD-1480 

(CHEMBL1231124) and Chembl IDs CHEMBL1368342, CHEMBL1407470 and CHEMBL4846365. 

Shared PubChem fingerprints were identified, such as PubChem146 (greater than or equal to 1 saturated or 

aromatic nitrogen-containing ring size 5), PubChem146 (greater than or equal to 1 saturated or aromatic het-

eroatom-containing ring size 5), PubChem181 (greater than or equal to 1 saturated or aromatic heteroatom-

containing ring size 6), PubChem357 (C(~C)(:C)(:N)), and PubChem633 (N-C-C:C-C). The experimental 

pIC50 values were measured at 7.097, 8.071, 7.593, and 7.17, further elucidating the structural attributes that 

contribute to the bioactivity of these compounds (Fig.9. and Table 3). Information regarding the training set 

and testing of PubChem fingerprint and CHEMBL molecules for each target gene can be found in Supple-

mentary file s3. 
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Fig.8. Scatter Plots of QSAR Models Utilizing Pubchem Fingerprint Descriptors for Training and Test S

and VIP Plot Illustrating the Key Features of the QSAR Model Incorporating Pubchem Fingerprint Desc

tors against Four Genes. 
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Fig.9. Identification of structural insights for PubChem Fingerprint Descriptors through analysis of top-

performing molecules. 
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Table 3. Interpretation for the most significant PubChem and substructure fingerprints 

Best Features Interpretation 
PubchemFP1 >= 8 H 
PubchemFP2 >= 16 H 
PubchemFP21 >= 8 O 

PubchemFP143 >= 1 any ring size 5 
PubchemFP145 >= 1 saturated or aromatic nitrogen-containing ring size 5 
PubchemFP146 >= 1 saturated or aromatic heteroatom-containing ring size 5 
PubchemFP180 >= 1 saturated or aromatic nitrogen-containing ring size 6  
PubchemFP181 >= 1 saturated or aromatic heteroatom-containing ring size 6 
PubchemFP184 >= 1 unsaturated non-aromatic heteroatom-containing ring size 6 
PubchemFP186 >= 2 saturated or aromatic carbon-only ring size 6  
PubchemFP335 C(~C)(~C)(~C)(~H) 
PubchemFP338 C(~C)(~C)(~H)(~N) 
PubchemFP357 C(~C)(:C)(:N) 
PubchemFP380 C(~O)(~O)  
PubchemFP391 N(~C)(~C)(~C) 
PubchemFP404 N(:C)(:C)(:C) 
PubchemFP439 C(-C)(-N)(=O)  
PubchemFP521 C:N-C-[#1]  
PubchemFP590 C-C:C-O-[#1]  
PubchemFP609 Cl-C-C-N-C 
PubchemFP614 C-C-O-C-C 
PubchemFP633 N-C-C:C-C 
PubchemFP672 O=C-C=C-[#1] 
PubchemFP682 O-C-C-C-C-N 
PubchemFP685 O=C-C-C-C-N 
PubchemFP696 C-C-C-C-C-C-C-C 
PubchemFP704 O=C-C-C-C-C-C-C  
PubchemFP707 O=C-C-C-C-C(N)-C 
PubchemFP712 C-C(C)-C(C)-C 
PubchemFP737 Cc1cc(N)ccc1 
PubchemFP749 Nc1cc(N)ccc1  
PubchemFP800 CC1CC(N)CCC1  

 

In the context of validation parameters, a comparative analysis was conducted to assess the chemical space 

encompassed by the training and test sets. This evaluation involved the application of the PCA bounding box 

method, aiming to determine the applicability domain of the molecular fingerprint datasets developed within 

this study. The method's efficacy in detecting outliers within both the fingerprint models was examined. The 

PCA analysis was executed during the training phase, encompassing the instances for AKT1 (2255 in-

stances), SRC (2481 instances), HSP90A (791 instances), and STAT3 (504 instances). Subsequently, in the 

testing phase, distinct instances were employed for model evaluation, namely 531 for AKT1, 576 for SRC, 

186 for HSP90A, and 120 for STAT3, utilizing the PubChem fingerprint dataset. The outcomes of this 

analysis revealed that the chemical space spanned by the test set remained within the boundaries of the 
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chemical space occupied by the training set. Consequently, it was determined that the developed fingerp

datasets exhibited applicability domains encompassing the test set. Furthermore, an examination of the P

scores plot indicated a significant similarity in the relative chemical space occupied by compounds wi

both the training and test sets, as depicted in Fig. 10.  

The QSAR models were validated by applying Receiver Operating Characteristic (ROC) analysis, yield

pertinent insights into the predictive performance of the four target genes. Specifically, for the AKT1 g

the computed Area Under the Curve (AUC) values were 0.99, 0.99, and 0.96 for active, inactive, and in

mediate molecules, respectively. Similarly, for the SRC gene, the ROC analysis yielded AUC values of 0

1.00, and 0.93 for the respective molecular classes. The HSP90A gene demonstrated AUC values of 0

0.99, and 0.89 for active, inactive, and intermediate molecules. In contrast, the validation of the QS

model for the STAT3 gene revealed AUC values of 0.98, 0.98, and 0.99 for the corresponding molec

categories. These AUC values collectively underscore the commendable and dependable performance of

QSAR models in accurately predicting molecular interactions (See Fig.10). 
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Fig.10. Applicability domain assessed through PCA application and ROC plot generated for PubChem fin-

gerprint descriptor-implemented QSAR models, respectively. 

3.7. Prediction of bioactivity of phytochemicals using generated machine learning models 

Chalcone derivatives, identified via an intensive network pharmacology screening, were assessed for bioac-

tivity prediction using fingerprint-based machine learning models. Notably, RA1 displayed strong interac-

tions with Hsp90A, indicating potential as a potent inhibitor for this gene. Multi-target potential was evident 

in several derivatives, including RA1, RA2, and RA10, highlighting their adaptability across various path-

ways. Compound RA1, with its notable pIC50 value of 5.76 against Hsp90A, displays promising inhibitory 

effects, indicating its potential for diverse applications. Additionally, RA1 exhibited substantial activity 

against AKT1, SRC, and STAT3 (pIC50: 4.89, 4.36, and 5.09), showcasing multi-target capability. Com-

pound RA2 exhibited significant interactions with Hsp90A (pIC50 = 5.62) and STAT3 (pIC50 = 5.09), indi-

cating modulation potential (See Table 4). While interactions with AKT1 and SRC (pIC50 = 4.85 and 4.43) 

were slightly lower, RA2's multi-target potential was evident. Compound RA3 showed meaningful interac-

tions with Hsp90A (pIC50 = 5.48) and STAT3 (pIC50 = 4.82), suggesting inhibitory effects. Interactions with 

AKT1 and SRC (pIC50 = 4.81 and 4.5) contribute to its diverse bioactivity (See Table 4). Compound RA1 

and RA2 consistently exhibited higher pIC50 values, indicating relatively stronger inhibition against most 

target genes. In contrast, Compound RA10 displayed lower activity across all genes. Subsequently, the chal-

cone derivatives underwent molecular docking studies. 

Table 4: Predicted bioactivity of chalcone derivatives using generated machine learning models. 

Genes 
/ Chalcone deriva-

tives 

AKT1 SRC HSP90A STAT3 

pIC50 

RA1 4.89 4.36 5.76 5.09 
RA2 4.85 4.43 5.62 5.09 
RA3 4.81 4.5 5.48 4.82 
RA4 4.77 4.57 5.34 4.73 
RA5 4.73 4.64 5.2 4.59 
RA6 4.69 4.71 5.06 4.46 
RA7 4.65 4.78 4.92 4.32 
RA8 4.61 4.85 4.78 4.19 
RA9 4.57 4.92 4.64 4.05 

RA10 4.53 4.99 4.5 3.92 
 

3.8.Web Application Development 

We developed a Python-based web application named ASHS-Pred, utilizing the Streamlit library. This appli-

cation leverages established molecular fingerprint-based models for AKT1, HSP90AA1, STAT3, and SRC 

genes. In creating the web application, various Python libraries were employed, including scikit-learn, pan-

das, subprocess, os, base64, and pickle. ASHS-Pred operates by considering the SMILES representations of 
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multiple molecules and their corresponding names or IDs provided by the user within a text file. Upon up-

loading this text file containing molecular information, the application conducts predictions for the loaded 

molecules' inhibition activity (pIC50) against the specified genes. The application employs established fin-

gerprint-based random forest models to calculate the pertinent molecular fingerprints for the loaded mole-

cules. Subsequently, the predicted activity is presented as pIC50 values, along with their respective molecule 

names. 

Users can download the activity values and molecule names in CSV format directly from the application. 

The complete source code for ASHS-Pred is openly accessible on GitHub at the following URL: 

https://github.com/RatulChemoinformatics/QSAR. To utilize the application, users are required to have the 

Anaconda Navigator interface installed on their systems, along with Streamlit and other necessary package 

dependencies. The installation process is detailed in the readme file available on the GitHub repository. Fol-

lowing these instructions, users can accurately predict molecular activity against the four target genes using 

the ASHS-Pred application. 

3.9.Molecular Docking 

A molecular docking approach was employed to investigate the mechanisms underlying chalcone-based de-

rivatives' anti-inflammatory, antibacterial, anticancer, antidiabetic, and antifungal activities. The docking 

was performed against four target proteins, namely AKT1, SRC, HSP90A, and STAT3. Additionally, a set of 

ten chalcone derivatives and compounds with Chembl IDs were included in the study. The results of the 

docking analysis revealed that compounds RA1 to RA7 exhibited superior binding affinities compared to 

other compounds across the four target genes. Notably, chalcone derivatives RA1 to RA7 demonstrated 

comparable binding affinities to the clinical drug A-443654 (dock score = -10.9 Kcal/mol) against the AKT1 

gene. Among these derivatives, Compound RA6 displayed exceptionally high binding affinity (dock score = 

-10.7 Kcal/mol) towards the AKT1 target gene. Dasatinib, a known drug, exhibited significant binding affin-

ity against the SRC target gene with a docking score of -10.5 Kcal/mol (See Table 5). 

Interestingly, Compound R5 showed an even better dock score of -10.7 Kcal/mol, surpassing the previously 

mentioned drug. Furthermore, among the studied compounds, Compound RA5 demonstrated the strongest 

affinity against HSP90A with a docking score of -10.9 Kcal/mol, outperforming the FDA-approved drug 

Luminespib, which achieved a docking score of -9.6 Kcal/mol. Compound R5 shows the highest docking 

scores for SRC and HSP90A, suggesting its potential to interact with these target genes. Compound R6 

demonstrates the highest docking score for AKT1, making it a potential candidate for targeting this gene. 

The docking scores suggest that Luminespib has a notable affinity for HSP90A. The docking scores for 

Dasatinib indicate a strong interaction with the SRC target gene. The docking scores point to a potential in-

teraction between CHEMBL4846365 and STAT3. The docking scores for A-443654 indicate a strong inter-

action with the AKT1 target gene. 
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In the context of AKT1, the clinical drug A-443654 does not engage in hydrogen bonding interactions. 

However, it establishes notable molecular interactions through pi-sigma interactions at Gln79 and Val270, 

alongside pi-pi stacked formations at Gln79. Additionally, alkyl and pi-alkyl interaction formations manifest 

at Lys268, Val270, and Trp80. In contrast, Compound R6 forms two hydrogen bonding interactions: one 

with Asp292 involving the urea moiety's NH group, and another involving an oxygen atom and the methoxy 

group with Arg86. A further interaction is observed with Tyr326 through van der Waals interactions. Nota-

bly, Compound R6 exhibits alkyl and pi-alkyl interaction formations at Leu264, Leu210, and Phe55. In con-

trast, a pi-stacked interaction occurs at Trp80 (See Fig.11.). For SRC, the drug Dasatinib does not establish 

hydrogen bonding interactions. Nevertheless, it demonstrates molecular interactions, such as pi-sigma inter-

actions at Met314, along with alkyl and pi-alkyl interaction formations at Val377, Val323, Ala403, Leu393, 

Phe405, Ala293, Val281, Ile336, and Lys295. Conversely, Compound R5 does not display hydrogen bonding 

interactions but presents alkyl and pi-alkyl interactions at Val323, Ala403, Val313, His384, Val281, and pi-pi 

stacked formation at Phe405 (See Fig.11.). 

In the case of HSP90A, the drug Luminespib forms four hydrogen bonding interactions: the isoxazole ring's 

nitrogen atom interacts with Phe138, while the carboxamide oxygen atom interacts with Asn51 and Phe138. 

Another interaction arises between the oxygen atom of the 4-isopropylbenzene-1,3-diol moiety and Tyr139, 

as well as Leu103. Further interactions include pi-sigma interactions at Trp162 and Phe138, pi-pi stacked 

formations at Phe138, and alkyl and pi-alkyl interaction formations at Leu107. In contrast, Compound R5 

does not engage in hydrogen bonding interactions. Still, it presents alkyl and pi-alkyl interactions at Ile26, 

Ala55, and Lys58, along with pi-stacked interactions at Phe22 and Phe138, and a pi-sigma interaction at 

Leu107 (See Fig.11.). Regarding STAT3, Regarding the STAT3 target gene, Compound RA3 exhibited re-

markable binding affinity with a docking score of -7.5 Kcal/mol compared to CHEMBL4846365 (-7.0 

Kcal/mol) and the clinical drug AZD-1480 (-6.5 Kcal/mol). Compound RA3 displays the highest docking 

score for STAT3, indicating its potential as a candidate for targeting this gene. Compound 

CHEMBL4846365 forms two hydrogen bonding interactions: one with the methoxy-substituted benzene 

ring's oxygen atom and Gln644 and another between the urea group's oxygen atom and Lys658. Further-

more, pi-sigma interactions occur at Val637, while pi-pi stacked formations manifest at Tyr640 and Tyr657. 

Alkyl and pi-alkyl interaction formations are evident at Ile653 and Pro639. In contrast, Compound R3 estab-

lishes three hydrogen bonding interactions: the oxygen atom of the methoxy-substituted benzene ring inter-

acts with Arg609, while the second di-methoxy benzene-substituted ring interacts with Gln644, and the 

urea's NH group interacts with Ser636. Moreover, alkyl and pi-alkyl interactions form at Tyr640 and Pro639 

(See Fig.11.). 

Table 5. Binding affinity scores of all the chalcone derivatives against four distinct targets. 

Compound Name 
 
 

Target Genes 
AKT1 SRC HSP90A STAT3 

Dock score (Kcal/mol) 
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RA1 -10.4 -9.8 -10.2 -7.4 
RA2 -10.4 -10.2 -10.2 -7.0 
RA3 -10.5 -10.2 -9.7 -7.5 
RA4 -10.1 -10.1 -9.8 -7.3 
RA5 -10.6 -10.7 -10.9 -7.1 
RA6 -10.7 -10.6 -10.5 -7.4 
RA7 -10.5 -10.6 -10.5 -7.2 
RA8 -8.7 -8.3 -8.6 -6.1 
RA9 -8.9 -8.2 -8.6 -6.2 
RA10 -8.7 -8.5 -8.6 -6.2 

A-443654 -10.9 - - - 
CHEMBL3899716 -10.9 - - - 
CHEMBL3966806 -10.8 - - - 
CHEMBL1241676 - -8.7 - - 
CHEMBL196797 - -10.2 - - 
CHEMBL82085 - -9.5 - - 

DASATINIB - -10.5 - - 
BIIB021 - - -8.8 - 

CHEMBL2205245 - - -9.3 - 
CHEMBL2205798 - - -9.1 - 
CHEMBL4873718 - - -9.7 - 

LUMINESPIB - - -9.6 - 
REBLASTATIN - - -7.6 - 

AZD-1480 - - - -6.5 
CHEMBL1368342 - - - -6.1 
CHEMBL1407470 - - - -6.1 
CHEMBL4846365 - - - -7.0 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.05.592581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.05.592581
http://creativecommons.org/licenses/by-nc-nd/4.0/


      

Fig.11.  3D visualization of compound-protein interactions and 2D analysis for selected compounds (R

RA5, RA6, CHEMBL4846365, Dasatinib, Luminespib, A-443654) with the protein. 

 

 (RA3, 
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3.10. Molecular Dynamics Analysis 

A comprehensive molecular dynamics simulation running 200 nanoseconds was conducted using Desmond 

software to meticulously evaluate the formation of an optimal complex involving compounds RA3, RA5, 

RA6, CHEMBL4846365, Dasatinib, Luminespib, A-443654, and the target protein. The analysis focused on 

critical parameters such as root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and 

essential interactions between the protein and ligands. 

The simulation results indicated that compound RA5 achieved a state of stability in terms of the RMSD val-

ues of the C-alpha atoms within the protein complex after the 10-nanosecond threshold, maintaining steady 

values around 2.0 Angstroms in the SRC target and 1.5 Angstroms in HSP90AA1 throughout the simulation. 

For the SRC target, ligand RA5 exhibited an initial equilibration phase lasting approximately 20 nanosec-

onds, subsequently maintaining stability within the binding pocket up to the 200-nanosecond mark (Figure 

12). The RMSD of the protein also fluctuated with the ligand and, after 175 ns, slightly decreased, mirroring 

the initial running time from 25 ns to 172 ns. For the HSP90AA1 target, ligand RA5 displayed the same sta-

ble profile, with an upward trend towards stability between 12 and 172 nanoseconds, showing steady RMSD 

values around 1.5 Angstroms post the initial equilibration phase of 10 nanoseconds. After 175 ns, the ligand 

showed smaller fluctuations until 200 ns with RMSD values around 1.7 Angstroms. Meanwhile, the protein 

also showed less fluctuation throughout, remaining within 3.5 Angstroms from 25 to 172 ns, but after that, it 

showed a conformational shift and slightly increased until 200 ns (Figure 12). Moreover, the RMSD of the 

known drug Luminespib initially fluctuated until 120 ns after which it stabilized and remained stable from 

130 to 200 ns against the HSP90AA1 gene. Dasatinib shows that the RMSD of the protein backbone of all 

the complexes stabilized at approximately 1.5 Angstrom before 100 ns of simulation and then from 125 to 

150 ns it increased and became more fluctuated; however, after 150 ns, Dasatinib became stable throughout 

the period against the SRC gene. 

RMSF values for compound RA5 for both targets, SRC and HSP90AA1, highlighted significant fluctuations 

primarily in the protein's loop and terminal regions, while lower RMSF values at the binding site indicated 

stable interactions between the protein and ligands. Additionally, the secondary structural composition of the 

protein was analysed. For compound RA5 against the HSP90AA1 target, the structural elements, including 

alpha-helices and beta-strands, constituted 46.35% of the protein's structure, thereby contributing to its 

structural stability and functional efficacy. Specifically, helices and strands accounted for 25.51% and 

20.84% of the total structure, respectively. In the case of SRC, these elements comprised 39.76% of the pro-

tein's structure, with helices and strands representing 26.34% and 13.42%, respectively (Figure 13). 

The detailed analysis further explored the interactions between the ligands and the protein's amino acid resi-

dues, illustrated through a histogram plot in Figure 14. This plot clearly shows the different types of interac-

tions - hydrogen bonding (marked in green), water bridges (in blue), and hydrophobic interactions (in pur-

ple), highlighting their importance in the binding process. Compound RA5 exhibited four hydrogen bonds 
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against HSP90AA1, particularly with amino acids Tyr139 (oxygen atom of the urea group with 91%), 

Leu103 (two hydrogen bonds, NH atom of the urea group with 96% and 99%), and Phe138 (with a water 

molecule, and those water molecules interact with the oxygen atom). A di-substituted chlorobenzene ring 

interacted with Phe170 residue as a hydrophobic interaction with 37%. On the other hand, Compound RA5 

exhibited three hydrogen bonds against SRC, particularly with amino acids Asp404 (oxygen atom of the 

urea group with 92%), Glu310 (two hydrogen bonds with two water molecules, and those water molecules 

interact with the NH atom of the urea group with 37% and 41%). A di-substituted methoxy-containing ben-

zene ring interacted with Phe405 residue as a hydrophobic interaction with 53% (See Supplementary File). 

Against the AKT1 gene, the clinical drug A-443654 demonstrated stability in RMSD values, reaching 2.8 

Angstroms, higher than compound R6. Compound R6 maintained stability over time within 1.6 Angstroms, 

while A-443654 showed more consistent stability after 70 ns up to 200 ns, exhibiting steady RMSD values 

(Figure 12). RMSF values for both compounds highlighted significant fluctuations primarily in the protein's 

loop and terminal regions, while lower RMSF values at the binding site indicated stable interactions between 

the protein and ligands. Overall, both compound R6 and drug A-443654 displayed similar secondary struc-

tural composition in the protein, with structural elements, including alpha-helices and beta-strands, constitut-

ing 40.52% of the protein's structure. This composition contributes to its structural stability and functional 

efficacy, with helices and strands accounting for 18.50% and 22.01% of the total structure, respectively. The 

detailed analysis further explored the interactions between the ligands and the protein's amino acid residues, 

as illustrated through a histogram plot in Figure 14. Compound R6 exhibited all hydrogen bonding with wa-

ter molecules, with 54% of interactions with Gln79 facilitated by the oxygen atom attached to the benzene 

ring, and 36% and 30% of interactions with Asp274 and Tyr272, respectively, facilitated by the NH atom of 

the urea group. Asn54 directly interacted with the oxygen atom of the urea group by 39% and connected 

with water molecules by 37%, which in turn are connected with the oxygen atom. Arg273 and Trp84 were 

linked with di-substituted chloro and methoxy-containing benzene rings through pi-cation and hydrophobic 

interactions, at 64% and 43%, respectively. Conversely, drug A-443654 displayed only two hydrogen bond-

ing interactions: one from the NH group of the pyridine ring with Ser205 at 36% and the other with Asn53 

from the NH group of the benzimidazole ring at 45% (See Supplementary File). 

Against STAT3, as illustrated in Figure 12, the RMSD plot for compound CHEMBL4846365 shows the 

protein and ligand RMSD over time. Initially, both protein and ligand RMSD values rise, typical as the sys-

tem equilibrates. After this period, the ligand RMSD stabilizes, indicating that the compound has found a 

relatively stable conformation within the binding site. However, the protein RMSD continues to exhibit 

some fluctuations, suggesting that while the ligand may be stable, the protein is still undergoing conforma-

tional changes, possibly adjusting to the ligand's presence or due to its dynamic nature. In the case of com-

pound R3, the RMSD plot depicts a change over time, maintaining stability in the binding pocket from 100 

ns to 150 ns, with some conformational shifts observed around the 10 to 100 nanosecond range, followed by 

stability from 125 to 150 ns (Figure 12). The protein's RMSD, while fluctuating, does not show a pro-
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nounced rise, implying a more rigid structure or less conformational change in response to ligand bind

compared to the complex with compound CHEMBL4846365. RMSF values, demonstrated in Figure

exhibit significant fluctuations mainly in the protein's loop and terminal regions, with lower RMSF value

the binding site suggesting stable interactions. The structural elements of compound R3, including alp

helices and beta-strands, constituted 57.15% of the protein's structure, contributing to its structural stab

and functional efficacy, with helices and strands accounting for 40.63% and 16.51%, respectively. In c

trast, for CHEMBL4846365, these elements comprised 57.43% of the protein's structure, with helices 

strands representing 40.42% and 17.02%, respectively. Compound R3 exhibited one hydrogen bonding

teraction with the oxygen atom of the urea group by Gln543 at 33%. Conversely, compo

CHEMBL4846365 did not show any significant contribution to interaction with the STAT3 gene target. T

comprehensive interaction analysis underscores the specificity and diversity of ligand-protein interacti

and emphasizes the role of molecular dynamics simulations in uncovering intricate details of bind

mechanisms, invaluable in the rational design of therapeutics for optimizing ligand efficacy and specifici

 

Fig.12.  Analysis of the Root Mean Square Deviation (RMSD) of the hit compounds obtained from mole

lar docking studies against the target gene through Molecular Dynamics (MD) simulation.  
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Fig.13.  Analysis of the Root Mean Square Fluctuation (RMSF) of the hit compounds obtained from 

lecular docking studies against the target gene through Molecular Dynamics (MD) simulations. 
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Fig.14.  Analysis of the 2D Histogram of Protein-Ligand Contact for the Hit Compounds Derived from M

lecular Docking Studies Against the Target Gene via Molecular Dynamics (MD) Simulations. 

Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) provides a detailed view of the interaction dynamics between div

compounds and their target proteins throughout Molecular Dynamics (MD) simulations (Figure 15). T

technique captures key aspects of the compounds' stability and the range of their motion when bound to p

tein targets. In the case of Luminespib against the HSP90AA1 gene, the PCA plot shows data points tig

grouped near the origin for both principal components. This clustering signifies a consistent interaction

namic, with the compound maintaining a stable conformation throughout the simulation process. C

versely, Dasatinib displays a distinct pattern when bound to the SRC protein, with data points scattered m

widely along the principal component one (PC1) axis. This spread indicates a broader range of confor

tional states that Dasatinib may adopt during its interaction, implying a higher degree of flexibility and

namic behavior in its binding conformations. RA5 presents an interesting case; when tested against b

HSP90AA1 and SRC targets, there is a noticeable dispersal along the PC1 axis for each. This observa

suggests that RA5 can induce diverse conformational states within these protein complexes. Notably, w

bound to SRC, the spread along the principal component two (PC2) axis is relatively constrained, hin

that while RA5 may exhibit a variety of shapes, these conformations likely change within a limited ra

within the multidimensional conformational landscape. 
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Examining the interactions of RA6 and A-443654 with AKT1 further expands our understanding. B

compounds share a pattern of greater distribution along PC1 than PC2, which may allude to a signific

conformational diversity that unfolds along a particular dimension of the interaction. Compound A-443

shows a pronounced distribution along PC2 as well, suggesting that it can move through an even more 

ied range of conformations, possibly affecting different domains of the AKT1 protein. The interaction

RA3 with STAT3 is characterized by the widest distribution, especially along PC1, indicating that R

might access a considerable array of conformational states (Figure 15). This wide range might repre

various modes of binding or a high degree of structural flexibility within the ligand when it is associa

with the protein. CHEMBL4846365 engagement with STAT3 is also depicted with substantial spread al

PC1, which is indicative of notable conformational dynamics. However, its moderate dispersal along P

particularly when contrasted with RA3, suggests that the diversity of its conformational changes migh

less extreme across the entire structure of the complex. 

Fig. 15. Principal Component Analysis (PCA) of Hit Compounds in Protein-Ligand Complexes. 

MMGBSA 
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along with contributions from Coulombic, covalent, hydrogen bonding, lipophilic, packing, self-contact, 

solvation, and van der Waals interaction. For compound A443654 targeting AKT1, the MM-GBSA binding 

energy is notably high at -64.31 kcal/mol, with significant contributions from lipophilic interactions at -

22.74 kcal/mol and van der Waals forces at -59.68 kcal/mol. This suggests a substantial nonpolar interaction 

component, complemented by Coulombic interactions at -11.06 kcal/mol. Similarly, CHEMBL4846365 

against STAT3 shows a binding energy of -31.80 kcal/mol, with a relatively lower van der Waals contribu-

tion of -30.78 kcal/mol, indicating a slightly less hydrophobic interaction compared to A443654 with AKT1. 

The lipophilic interactions for CHEMBL4846365 are also lower at -8.58 kcal/mol. Dasatinib's binding to 

SRC is characterized by a binding energy of -83.46 kcal/mol, with a large negative contribution from lipo-

philic interactions at -29.06 kcal/mol and a significant van der Waals term at -73.20 kcal/mol, reflecting 

strong hydrophobic and van der Waals interactions within the binding site. Luminespib shows a strong affin-

ity for HSP90A1 with a binding energy of -85.86 kcal/mol. The notable lipophilic and van der Waals contri-

butions of -26.50 and -62.68 kcal/mol, respectively, highlight the compound's strong hydrophobic binding 

character. 

For RA3 against STAT3, the binding energy is -45.08 kcal/mol. This is paired with a hydrogen bond contri-

bution of -0.57 kcal/mol and a notable van der Waals term of -36.51 kcal/mol, indicating a good balance of 

polar and nonpolar interactions. Compound RA5 targeting HSP90A1 exhibits a particularly strong binding 

energy of -96.26 kcal/mol, with the highest lipophilic contribution among the compounds at -34.71 kcal/mol 

and a substantial van der Waals component at -66.31 kcal/mol, suggesting a potent interaction with the pro-

tein. RA6 interacting with AKT1 has a binding energy of -66.30 kcal/mol. Its lipophilic and van der Waals 

contributions are significant at -28.07 and -66.11 kcal/mol, respectively, indicative of favorable hydrophobic 

interactions. Lastly, RA5 against SRC shows the most potent binding energy of -100.01 kcal/mol within this 

dataset. The lipophilic term is extremely high at -38.98 kcal/mol, coupled with a large van der Waals contri-

bution of -75.37 kcal/mol, which could be reflective of a tight and efficient binding to the active site. 

4. Discussion 

The focus of our recent study was to identify key chalcone compounds and Chembl libraries aimed at AKT1, 

SRC, HSP90A, and STAT3. These targets, by potentially inhibiting their metabolic pathways, were chosen 

for their capacity to act against cancer, diabetes, fungal infections, inflammation, and bacterial infections. 

This versatility makes chalcones a valuable candidate for drug development because they can target multiple 

disease pathways. The approach to achieving this objective involved the integration of machine learning, 

molecular mechanisms, and systems biology techniques. This approach involved structure-based high-

throughput screening of small molecule databases targeting these four genes, followed by pharmacokinetic 

screening and docking. We also identified potential small molecule inhibitors that could block the binding 

sites of these target gene pathways using machine learning-assisted Quantitative Structure-Activity Relation-

ship (QSAR) modeling and web-based affinity prediction. A multifaceted approach such as this demon-

strates the potential of integrated computational methodologies for advancing the discovery and develop-
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ment of drugs. Thorough exploratory data analysis (EDA) in the initial data analysis played a pivotal role in 

shaping the subsequent phases of the research. We meticulously curated and preprocessed the dataset, un-

veiling significant distinctions between active and inactive compounds across various molecular properties. 

The Mann-Whitney U test underscored the statistical significance of these differences, underscoring the po-

tential of chalcone derivatives as bioactive compounds. 

Central to our investigation was the creation of Random Forest-based QSAR models for each target gene. 

These models exhibited commendable predictive performance, characterized by high correlation coefficients 

and acceptable error rates during training and testing. Significantly, the feature importance analysis uncov-

ered specific molecular descriptors crucial for predicting bioactivity, offering vital insights into the structural 

determinants of chalcone derivatives' effectiveness. Extensive analysis uncovered a promising group of 

compounds, particularly RA1 to RA7, which demonstrated exceptional bioactivity against the target genes. 

For instance, compound RA1 displayed a remarkable pIC50 value of 5.76 against HSP90A, positioning it as 

a standout candidate for further exploration. This correlation between compound structure and bioactivity 

emphasizes the potential utility of chalcone derivatives in drug discovery. Molecular docking studies further 

elucidated the binding interactions between chalcone derivatives and the target genes. Compounds RA5, 

RA6, and RA7 exhibited significant binding affinities, equaling or exceeding those of existing drugs, indi-

cating their promise as potent compounds. The detailed analysis of these binding interactions reveals the 

specific structural features responsible for bioactivity, aiding in a rational approach to drug design. For the 

benefit of the scientific community, the fingerprint-based predictive models for the top genes AKT1, SRC, 

HRSP90AA, and STAT3 were further deployed as the ASHS-Pred web-based application 

(https://ashspred.streamlit.app/) and the source codes (https://github.com/RatulChemoinformatics/QSAR) 

along with the data sets were made available on GitHub to encourage further extension or modification of 

the web server. It is important to observe that as new experimental data on the individual gene inhibitors be-

come available, the predictive model proposed here could be continuously updated to increase its coverage 

and accuracy. In molecular dynamic study, particularly highlighting compound RA5's stability with SRC and 

HSP90AA1 targets. This stability, evidenced by consistent RMSD values, suggests potential therapeutic ef-

ficacy. Comparatively, the differences in RMSD and RMSF values between compounds, including A-

443654 and R6 against the AKT1 gene, underscore the unique interaction dynamics each compound exhibits 

with its target. Furthermore, detailed analyses of secondary structures and ligand-protein interactions, such 

as hydrogen bonding and hydrophobic contacts, offer a view of binding affinities and specificities.  

Discussing the results of MMGBSA, the particularly high van der Waals and lipophilic interaction energies 

observed for most compounds suggest that these compounds may have substantial hydrophobic contacts 

within the binding sites of their respective targets, which is often a hallmark of drug-like molecules. For in-

stance, the compound RA5 against the SRC gene exhibited the most potent binding energy at -100.01 

kcal/mol, marked by the highest lipophilic contribution at -38.98 kcal/mol among the dataset, underscoring 

its strong affinity and specificity towards the target. This suggests that RA5 could robustly occupy the hy-
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drophobic pockets within SRC, maximizing van der Waals contacts and potentially leading to high inhibi-

tory activity. Moreover, the compounds targeting HSP90A1, specifically Luminespib and RA5, demon-

strated high binding energies and substantial lipophilic contributions, indicating effective hydrophobic inter-

actions that could stabilize the inhibitor within the chaperone's binding domain. These interactions, coupled 

with the observed hydrogen bonds, are essential for a stable drug-protein complex, enhancing the efficacy of 

the drug. In contrast, the lower binding energies seen with compounds like CHEMBL4846365 against 

STAT3 suggest weaker interactions, which could be due to less optimal alignment within the binding pocket 

or insufficient hydrophobic contact, potentially leading to reduced inhibitory activity. Comparing the PCA 

plots collectively, it is evident that the conformational stability and flexibility of these compounds when in-

teracting with their respective targets vary. Compounds such as Luminespib exhibit a more constrained 

range of motion, indicative of a stable interaction, while others like RA3 and CHEMBL4846365 demon-

strate significant conformational diversity, which might correlate with multiple binding modes or interac-

tions with the protein targets. These observations are critical for understanding the dynamic nature of pro-

tein-ligand interactions and can have implications in the optimization of these hit compounds for potential 

therapeutic applications. 

This study concisely demonstrates the significant potential of chalcone derivatives in targeting key genes, 

with a focus on high-efficacy compounds RA1 to RA7. It underscores the relevance of structural factors in 

drug design and advocates for further experimental validation. Integrating machine learning and knowledge-

base neural network insights with molecular docking simulations, the research offers a promising direction 

for developing treatments in anti-inflammation, antibacterial, anticancer, antidiabetic, antifungal and 

antituberculosis areas, potentially addressing critical medical needs and advancing drug discovery.  

5. Conclusion  

We identified significant chalcone derivatives and ChEMBL libraries targeted at AKT1, SRC, HSP90A, and 

STAT3. The ability of chalcones to target multiple disease pathways underscores their potential in drug de-

velopment. An integrated approach, combining machine learning, molecular mechanisms, and knowledge-

based neural network techniques, has advanced drug discovery. Notably, chalcone derivatives RA1 to RA7 

exhibited substantial bioactivity against key target genes, with RA1 showing the most promising pIC50 

value, particularly against Hsp90A. Docking scores corroborated these findings, with RA1 displaying robust 

binding affinities across all genes. Remarkably, compounds RA5, RA6, and RA7 exhibited docking scores 

comparable to RA1, indicating similar potential. However, a decline in activity was observed from RA8 to 

RA10, consistent with pIC50 trends. Further reinforcing these findings, comprehensive molecular dynamics 

simulations provided deeper insights into the dynamic interactions and stability of these compounds, particu-

larly RA5, with target proteins SRC and HSP90AA1. The simulations of 200 nanoseconds highlighted the 

compounds' stability and interaction dynamics, crucial for understanding their therapeutic potential high-

lighted the compounds' stability and interaction dynamics, crucial for understanding their therapeutic poten-

tial. The consistent RMSD values of compound RA5 after the initial equilibration phase illustrate a stable 
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interaction with the proteins, potentially contributing to its efficacy. This dynamic analysis enhances the in-

sights provided by static docking scores and bioactivity findings, giving a fuller understanding of how the 

compounds interact with their target proteins. Compared to established drugs and ChEMBL compounds, 

chalcone derivatives demonstrated promising results, with some outperforming known drugs in binding af-

finity. Specifically, compound RA5 exhibited exceptional binding affinity against HSP90A, surpassing Lu-

minespib, an FDA-approved drug. Compound RA3 exhibited significant binding to STAT3, highlighting the 

potential of chalcone derivatives in a range of medical applications, evidenced by their encouraging binding 

scores with crucial genes. Additional research into these derivatives, encompassing both in vitro and in vivo 

studies, is necessary to confirm their effectiveness in treating diseases related to AKT1, HSP90AA, SRC, 

and STAT3. Insights from machine learning models provide a robust foundation for future research in chal-

cone-based small molecule binding and drug discovery. 
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