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Abstract

We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine
learning-enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven
neural networks. ML-QSAR models were developed using molecular fingerprint descriptors and the Ran-
dom Forest algorithm to explore the chemical spaces of Chalcones inhibitors against diverse disease proper-
ties, including antifungal, anti-inflammatory, anticancer, antimicrobial, and antiviral effects. We generated

and validated robust machine learning-based bioactivity prediction models ((https://ashspred.streamlit.app/)

for the top genes. These models underwent ROC and applicability domain analysis, followed by molecular
docking studies to elucidate the molecular mechanisms of the molecules. Through comprehensive neural
network analysis, crucial genes such as AKT1, HSP90A1, SRC, and STAT3 were identified. The PubChem
fingerprint-based model revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, Pub-
chemFP633 for HSP90, and PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to
bioactivity across targets. Notably, chalcone derivatives demonstrated significant bioactivity against target
genes, with compound RAL displaying a predictive plCs value of 5.76 against HSP90A and strong binding
affinities across other targets. Compounds RAS5 to RA7 also exhibited high binding affinity scores compara-
ble to or exceeding existing drugs. These findings emphasize the importance of knowledge-based neural
network-based research for developing effective drugs against diverse disease properties. These interactions
warrant further in vitro and in vivo investigations to elucidate their potential in rational drug design. The pre-
sented models provide valuable insights for inhibitor design and hold promise for drug development. Future
research will prioritize investigating these molecules for mycobacterium tuberculosis, enhancing the com-

prehension of effectiveness in addressing infectious diseases.
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1. Introduction

Chalcones, a specialized subclass within the flavonoid family of organic compounds, exhibit a unique struc-
tural arrangement, characterized by three aromatic rings (A, B, and C) linked through an o, p-unsaturated
carbonyl system(Ferrer et al., 2008; K. Sahu et al., 2012). This distinctive arrangement not only defines their
chemical identity but also plays a pivotal role in their diverse biological activities. These naturally occurring
compounds, found in various plant species, have piqued the interest of the medicinal chemistry community

due to their multifaceted biological actions(Mahapatra et al., 2015).

Structurally, chalcones are composed of three aromatic rings, known as rings A, B, and C. The linkage be-
tween the B and C rings through a conjugated double bond system, particularly an o, f-unsaturated carbonyl
group, is a defining feature of these compounds(Naik et al., 2020). As members of the flavonoid family,
chalcones are essentially plant-derived polyphenolic compounds. Research has highlighted their broad spec-
trum of cytoprotective and regulatory functions, which are deemed crucial in managing various diseases. A
key factor in leveraging chalcones for human use is a thorough understanding of their activity and potential
toxicity. The structural conformation of chalcones not only imparts them with specific properties but also
contributes to their wide range of biological activities. These include potential roles in reducing inflamma-
tion and combating cancer, malaria, mycobacterium tuberculosis, and microbial infections(Dhaliwal et al.,
2022; Lawrence, 2009; Sivakumar et al., 2007; Ventura et al., 2015). The growing interest in their anti-

mycobacterial capabilities further indicates their potential to develop new treatments for infectious diseases.

The pharmacophoric characteristics of chalcones, which are linked to their chemical composition, are crucial
in their use for various health-related applications. The a, B-unsaturated carbonyl group of chalcones is a key
feature that facilitates their interactions with biomolecules. As a Michael acceptor, it enables nucleophilic
additions with cellular targets like enzymes and receptors, influencing various biological processes such as

enzyme inhibition and modulation of signal transduction pathways. The lipophilic nature of chalcones, due
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to the two aromatic rings (A and C), aids in their interaction with hydrophobic pockets of target proteins,
affecting their binding affinity and specificity. Furthermore, the presence of conjugated double bonds be-
tween the B and C rings contributes to the absorption of visible light, making chalcones colourful com-
pounds. This aspect also affects their electronic properties and stability. The carbonyl group in the a, -
unsaturated system acts as an electron-withdrawing group, enhancing the reactivity of the double bond and
facilitating further interactions with cellular nucleophiles(Mphahlele, 2021; Thapa et al., 2021; Zainuri et al.,
2023).

Chalcones with specific substitutions on their aromatic rings have shown significant biological effects. For
instance, chalcones with a trifluoromethyl group in ring B and a 3,4,5-trimethoxy substitution in ring A have
displayed strong antiproliferative effects against various cancer cells(Karthikeyan et al., 2014; Thapa et al.,
2023). Chalcone derivatives with specific substitutions have also shown notable antifungal activity against
yeast strains. The antibacterial potential of chalcones varies with the hydrophobic nature of the alkyl chain,
indicating that compounds with a medium level of hydrophobicity exhibit potent antibacterial activity. Fur-
thermore, chalcones with trimethoxy substituents and a monofluoro substitution on the B ring have demon-
strated enhanced inhibitory activity. The study of chalcones has also extended to their anti-inflammatory ef-
ficacy. The presence of electron-withdrawing groups (EWGS) in chalcones has been linked to enhanced anti-
inflammatory activity. The specific position of the substitution on the phenyl ring A also influences this ac-
tivity. Chalcone derivatives containing halogens, like fluoride or chloride, have shown significant potential
in this regard(Burmaoglu et al., 2017; Goss et al., 1975; Kotra et al., 2010). In the context of anti-
hyperglycemic activity, chalcones with specific substitutions have exhibited notable effects. For example,
chalcones with chloro, bromo, iodo, and hydroxy substitutions at certain positions on the A-ring have shown
high anti-hyperglycemic activity. Alkyl substitutions on the benzene ring have also improved these effects.
The potential of chalcones in treating tuberculosis has become a recent focus of interest. Certain chalcones
have demonstrated efficacy against Mycobacterium tuberculosis and other related species, making them
promising candidates for new drug development, especially for severe TB cases (Chiaradia et al., 2012;
Mishra & Jana, 2023; Rozmer & Perjési, 2014).

The study employed a three-step approach to explore chalcone-based small molecules and their interactions
with biological systems. The first phase involved using knowledge-based neural networks in a polypharma-
cology analysis. This allowed us to identify crucial biological processes and genes affected by these com-
pounds, offering a broad view of their impact on different biological pathways. After that, we utilized the
same knowledge-based neural networks to predict the bioactivity (measured as plCsy values) of the chal-
cones derivatives against the identified genes. The study utilizes a Random Forest machine learning algo-
rithm to create ML-QSAR models. This sophisticated machine learning tool enhances the precision of pre-
dictions by integrating domain-specific knowledge into the algorithmic learning process. In the final stage,
molecular docking studies were conducted to elucidate the structure-function relationships and molecular

mechanisms of the chalcones. This provided valuable insights into how these molecules interact with spe-
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cific genes and biological processes, uncovering potential mechanisms of action. In future efforts, the aim
will be to expand the research focus on studying the efficacy of these molecules specifically for tuberculosis
treatment. This will involve further exploration of their interactions with Mycobacterium tuberculosis and
understanding their potential mechanisms of action in combating tuberculosis infections. Additionally, we
plan to conduct safety studies of chalcones using the zebrafish larval model and perform in vitro and in vivo
studies using M. marinum and zebrafish to validate the safety and effectiveness of chalcone derivatives as
potential anti-tuberculosis agents (Aspatwar et al., 2017, 2018; Aspatwar, Hammaren, et al., 2019;

Aspatwar, Kairys, et al., 2019).
2. Methodsand materials

2.1.Data Set Collection
Figure 1 illustrates the chemical structures of the chalcone-based compounds synthesized in the labora-
tory(Acharjee et al., 2018; Sengupta et al., 2017).
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Fig. 1. Structural Diagrams of Chalcone-based Derivatives (RA1-RA10).
2.2.ADME Prediction and Drug Likeliness

To understand the pharmacodynamics of the compounds, it is essential to have a grasp of their physico-
chemical properties and pharmacokinetic profile, which includes Absorption, Distribution, Metabolism, and
Excretion (ADME). We utilized the SMILES data of the compounds and inputted it into the SwissADME
server (https://www.swissadme.ch) to evaluate various physicochemical properties. These properties encom-
pass lipophilicity (iLOGP, XLOGP3, WLOGP, MLOGP, SILICOS-IT, Log PO/w, molar refractivity, topo-
logical polar surface area, number of hydrogen bond donors/acceptors), water solubility (Log S - ESOL, Ali,

SILICOS-IT), drug-likeness rules (Lipinski, Ghose, Veber, Egan, Muegge), and Medicinal Chemistry
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(PAINS, Brenk, Lead-likeness, Synthetic accessibility) of the selected compounds(Daina et al., 2017).
Moreover, we also acquired important pharmacokinetic parameters for the compounds, such as gastrointes-
tinal (Gl) absorption, blood-brain barrier (BBB) permeation, P-gp substrate status, cytochrome-P enzymes
inhibition, and skin permeation (logKp), as reported(Pathak et al., 2017). These data provide valuable in-

sights into the behavior and potential of these compounds as pharmacological agents.
2.3. ldentification of protein targets

The molecular targets of the compounds were determined using the Swiss Target Prediction server
(https://www.swisstargetprediction.ch). This server assesses macromolecular targets by comparing 2D and
3D similarities in the active substance library(Pathak et al., 2017). To identify targets associated with dis-
eases, relevant information was retrieved from the Human Gene Database (GeneCards,

http://www.genecards.org)(Stelzer et al., 2016) and the Online Mendelian Inheritance in Man (OMIM,

http://www.ncbi.nlm.nih.gov/omim) database(Amberger & Hamosh, 2017). The Ven Plot Diagram method
was also employed to identify common genes between the compounds and breast cancer. These combined
approaches provided valuable insights into potential molecular targets of the compounds and their relevance

to different target genes.
2.4. Construction of protein-protein interaction

The research involved importing the shared targets of compounds and the disease into the STRING database

(https://string-db.org/)(Szklarczyk et al., 2021) to construct protein-protein interactions (PPI) within Homo

sapien. Solid circles represent genes in the resulting PPl network, and the enclosed structures represent the
corresponding proteins. The genes are interconnected by lines of various colors, indicating the biological
processes between the proteins. The researchers utilized the Cytoscape plug-in (v3.8.0) and CytoHubba
(http://www.cytoscape.org/) to visualize the interaction network among targets and compounds. In this net-
work, nodes represent compounds and targets, while edges represent interactions between compounds and
target(Shannon et al., 2003).

2.5.Gene Ontology (GO) Analysis

FunRich 3.1.3 was utilized for functional enrichment analysis of gene ontology, encompassing biological
pathways (BPA), cellular components (CC), and biological processes (BPR)(Fonseka et al., 2021). More-
over, the researchers employed the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to iden-
tify pathways associated with breast cancer among the selected targets. A p-value lower than 0.05 was con-

sidered statistically significant and indicative of the relevance of the gene ontology analysis.

2.6.Machine L earning Assisted QSAR Study

2.6.1. Data Callection and Pre-Processing

The panda’s library efficiently manipulates structured data, including data frames. The

chembl_webresource client library is designed to access the extensive ChEMBL database, particularly for
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bioactive molecules and biological activities related to genes AKT1, SRC, HSP90A, and STAT3. From the
ChEMBL database, a collection of inhibitors was obtained: 4170 for AKT1, 5172 for SRC, 1369 for
HSP90A, and 1437 for STAT3, along with their corresponding ICso values. Biological activity (ICsp) of
molecules is categorized as active (below 1000 nM), intermediate (1000-10000 nM), or inactive (above
10000 nM). Exploratory data analysis or chemical space analysis was conducted to traverse the chemical
landscape of inhibitory compounds using Lipinski's rule of five descriptors: Molecular weight, ALogP, hy-

drogen bond donor, and hydrogen bond acceptor.
Machine L earning-Based QSAR Modeling Process

All modeling processes are done using the python programming language in Google Colab, facilitated by the

Scikitlearn package (version 1.0.2).
2.6.2. Molecular Fingerprints Calculation

PubChem fingerprints provided by the PaDEL package (PaDELpy-0.1.13) were used for modelling(Yap,
2011). The fingerprint set contains 881 binary representations of the chemical structural fragments used by
PubChem. The parameter for the PaDEL package is set to detect aromaticity: true; standardize nitrogen:

true; standardize tautomers: true; threads = 2; remove salt: true; log = true; fingerprints = true.
2.6.3. Feature Selection

Features with variance lower than 0.1 and features demonstrating high correlation (>0.95) were removed. As
a result of AKTL1, after feature selection of the 881 features, there are 213 lefts after removing low-variance
features and high correlation features. As a result of SRC, after feature selection of the 881 features, there
are 241 lefts after removing low-variance features and high-correlation features. As a result of HSP90A, af-
ter feature selection of the 881 features, there are 253 lefts after the removal of low-variance features and
high correlation features. As a result of STAT3, after the feature selection of the 881 features, there are 262

lefts after removing low-variance features and high-correlation features.
2.6.4. QSAR Modd Construction

For all four models, the ratio of the training set and testing set is set to 80:20. Using the Kennington Stone
algorithm, the final best AKT1, SRC, HSP90A, and STAT3 inhibitor from the ChEMBL dataset was used to
divide the dataset into training and test sets with an 80:20 split ratio
(DTClab.Https: //Dtclab.Webs.ConvSoftware-Tool s,

Github.Https.//Github.Com/Dataprofessor/Code/ Tree/Master/Python; Padel .Http: //\Wimw. Yapcwsoft. Com/D d/Padel
escriptor/). A user-defined variance cut-off value was employed to retrieve significant descriptors from the
ChEMBL dataset, and constant descriptors with identical or nearly identical values for all compounds were
eliminated. Similarly, inter-correlated descriptors were identified and processed according to the inter-

correlation coefficient cut-off value specified by the user.

2.6.5. Development and Validation of Random Forest based QSAR models
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The datasets from ChEMBL (AKT1, SRC, HSP90A, and STAT3) were employed in the creation of Random
Forest (RF)-based machine learning models using Weka
Software(Weka. Https: //Mww.Cs.Waikato.Ac.NzZ/MI/Weka/). RF, a supervised machine learning technique,
encompasses a collective ensemble of predictors that is fundamentally derived from decision trees. Training
of RF is carried out using the Bagging or Bootstrap aggregation technique. Additionally, the RF algorithm
attempts to tackle the issue of overfitting commonly associated with decision trees. Subsequently, a correla-
tion coefficient (R2) comparison between the training and test datasets was utilized to validate the Quantita-
tive Structure-Activity Relationship (QSAR) models. The most valuable features were identified through the
application of the RF Regressor algorithms for the RF models, which were then depicted in Variance Impor-
tance Plots (VIP). A graphical comparison of experimental versus predicted values for each QSAR model
was conducted using the matplotlib Python package(Github. Https://Github.ComyVappiah/Machine-
Learning-Tutorials).

Furthermore, the construction of receiver operating characteristics (ROC) graphs for both QSAR models
was carried out with a pre-existing Python script designed for multi-class model classification. The Receiver
Operating Characteristic (ROC) acts as a graphical instrument for assessing the performance of classifiers
and evaluating the effectiveness of classification-based Quantitative Structure-Activity Relationship (QSAR)
models by leveraging the features derived from the confusion matrix. It provides a two-dimensional depic-
tion (0 to 1) of the true positive (TP) rate contrasted against the false positive (FP) rate(Pedregosa et al.,
2012). The area under the curve (AUC) was formulated as a quantitative metric to provide a competitive
evaluation of ROC analysis. The AUC of a ROC plot stands as a reliable proxy for a discriminant model's
performance, with its value ranging from zero (total misclassification) to one (perfect classification).
Moreover, the applicability domain (AD) of both QSAR models was assessed through the bounding box
technique of principal component analysis (PCA). This requires a PCA examination of the scores plot to
compare the molecules' chemical space from the training and test sets(Sahigara et al., 2012). The AD was
ascertained using the PCA function from the sklearn—decomposition module of the scikit-learn machine
learning toolkit in Python(Scikit-Learn. Https://Github.ComyScikit-Learn/Scikit-Learn.Git.).

2.7.Molecular Docking

A molecular docking approach was employed to evaluate the inhibitory potential of chalcone derivatives
across various activities, including antibacterial, anticancer, antidiabetes, anti-inflammation, and antifungal
effects. The protein structures pertinent to the investigation, namely AKT1 (PDB ID: 4EJN)(Ashwell et al.,
2012), SRC (PDB ID: 201Q)(Seeliger et al., 2007), HSP90A (PDB ID: 300I)(Patel et al., 2013), and STAT3
(PDB ID: 6NJS)(Bai et al., 2019), were sourced from the Protein Data Bank in PDB format. Active sites
within each protein structure were pre-delineated to facilitate docking by constructing grid boxes around the
co-crystallized ligand. The AutoDock Tools software(Trott & Olson, 2010) was then employed to prepare
the protein molecules. This process involved rectifying missing residues, eliminating water molecules, add-

ing polar hydrogens, and applying Kollman charges. The resulting protein structures were saved in pgbqt
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format. Ligand molecules' 2D structures underwent conversion to 3D structures using the MMFF94 force
field within the AutoDock Vina software. These transformed ligand structures were saved and converted to
pdbqt format utilizing the Open Babel GUI. In the final step, a Perl script, in conjunction with Perl software,
facilitated the docking of all ligand molecules against the protein structures. The resulting binding affinities
or docking scores for each ligand molecule and respective target receptor were quantified in kcal/mol units.
To glean insights into the molecular interactions, Pymol and Discovery Studio Visualizer were employed,

enabling an in-depth exploration of ligand binding interactions with the most favorably binding proteins.

2.8.Molecular Dynamic
To explore the stability of the most promising molecule in biological conditions, we carried out molecular
dynamics (MD) simulations. These simulations are essential for understanding how the molecule behaves in
a solvent environment. We set up the simulation in an orthorhombic box with dimensions of 12 A on each
side, using the buffer size method to optimize the volume of the box. The simulations were conducted using
the TIP3P water model and the OPLS3e force field by Schrodinger Inc., which are standards for simulating
proteins and ions. Sodium chloride was added to the system at a concentration of 0.15M to mimic physio-
logical conditions, with sodium (Na+) and chloride (CI-) ions. The simulations ran for 100 nanoseconds us-
ing the Desmond Molecular Dynamics module, producing around 1000 snapshots of the system's behavior.
These were performed under the NPT ensemble, maintaining a constant temperature of 300 K and a pressure

of 1 bar, ensuring the system was equilibrated before the simulations began.

3. Results
3.1.ADME Prediction and Drug Likeliness

ADME detection is crucial in drug discovery and development. Analyzing structural and physicochemical
characteristics helps identify compounds with favorable pharmacokinetic profiles and drug-like features,
minimizing drug-drug interactions and experimental failures. SwissADME databases provide efficient mod-

els to predict compound properties, aiding in drug development decision-making.

The physicochemical properties, pharmacokinetic profile, and medicinal characteristics of the selected com-
pounds are depicted in Table 1. See Supplementary file S1 for more information on Table 1. All combina-
tions shared an identical bioavailability score of 0.55, indicating moderate bioavailability. None of the com-
pounds exhibited any PAINS alerts, suggesting a lack of common structural motifs associated with assay
interference. Most compounds showed inhibitory activity against various cytochrome P450 (CYP) enzymes,
potentially affecting drug metabolism and interactions. However, all compounds were predicted as non-
substrates of P-glycoprotein (Pgp), reducing the risk of drug-drug interactions mediated by this efflux trans-
porter. All compounds demonstrated high gastrointestinal (Gl) absorption, indicating efficient absorption in
the gastrointestinal tract. However, none of the compounds were predicted to permeate the blood-brain bar-
rier (BBB).
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All compounds adhered to Lipinski's Rule of Five, suggesting favorable drug-like properties concerning ab-
sorption and distribution. However, based on the Silicos-IT class, most compounds were classified as poorly
soluble, with Compound RA8 being moderately soluble. Compound RAA4 displayed the highest molar re-
fractivity (130.94), suggesting its potential for intermolecular interactions and polarizability. On the other
hand, Compound RA8 had the lowest molar refractivity (86.05). Regarding the topological polar surface
area, Compound RA4 exhibited the highest value (95.12 A2), while Compound RA5 displayed the lowest

value (58.2 A2). These properties influence a compound's solubility and permeability characteristics.
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ounds RA1-RA10.
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C24H22N04 C25H24N205 C26H26N206 C22H16CI2N202 C23H18CIoN203 C22H15CI3N20; CieHual
402.44 432.47 462.49 411.28 441.31 445.73 282.

4 5 6 2 3 2 1

2 2 2 2 2 2 2
117.95 124.45 130.94 114.99 121.48 120 86.(
76.66 85.89 95.12 58.2 67.43 58.2 87.2
Poorly soluble Poorly soluble Poorly soluble  Poorly soluble Poorly soluble Poorly soluble M:glirt
High High High High High High Hig
No No No No No No Nc

No No No Yes Yes Yes NCc
Yes No No Yes Yes Yes Ye
Yes Yes Yes Yes Yes Yes Ye
Yes Yes Yes Yes Yes Yes Ye
Yes Yes Yes No No No Nc
Yes Yes No Yes Yes Yes Ye

0 0 0 1 1 1 0
0.55 0.55 0.55 0.55 0.55 0.55 0.5

0 0 0 0 0 0 0



https://doi.org/10.1101/2024.05.05.592581
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.05.592581; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3.2.Compound and disease targets

We obtained compound targets from the Swiss target prediction server and marks associated with four dis-
eases from the Human gene and OMIM databases (See Supplementary file, s1). The Venn diagram demon-
strates the intersection of 346 targets related to bacterial diseases, 346 targets associated with inflammation,
364 targets linked to cancer, 349 targets relevant to diabetes, and 220 targets about fungal diseases. These
intersections represent the common gene targets shared between compounds and the specified diseases (see
Fig. 2.).

genes Genes

Bacterial Inflammation

Diabetes

Genes Genes

Cancer Fungal

Fig. 2. Overlapping targets between the potential compound’s targets and disease-related genes using Ven

Plot Diagram.
3.3. PPl Network analysis

The PPI network was constructed using the STRING database, explicitly focusing on targets from Homo
sapiens. This research compares five biological networks: bacterial, cancer, diabetes, fungal, and inflamma-
tion. The networks were constructed using data from the STRING database and visualized in Cytoscape af-
ter importing the data in a .tsv format(Lopes et al., 2010). For each network, the number of nodes and edges
was recorded: bacterial network (345 nodes, 4342 edges), cancer network (363 nodes, 4555 edges), diabetes
network (348 nodes, 4412 edges), fungal network (220 nodes, 2814 edges), and inflammation network (345
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Key network properties were calculated and analyzed for each network. These properties included the aver-
age local clustering coefficient, PPI enrichment p-value, and average node degree. The bacterial network had
an average local clustering coefficient of 0.458, a PPI enrichment p-value of p<1.0e-16, an average node de-
gree of 25.2, and an Average Shortest Path Length of 2.46. Similarly, the cancer network had an average lo-
cal clustering coefficient of 0.459, a PPI enrichment p-value of p<1.0e-16, an average node degree of 25.1,
and an Average Shortest Path Length of 2.48. The diabetes network had an average local clustering coeffi-
cient of 0.462, a PPI enrichment p-value of p<1.0e-16, an average node degree of 25.4, and an Average
Shortest Path Length of 2.46. The fungal network had an average local clustering coefficient of 0.52, a PPI
enrichment p-value of p<1.0e-16, an average node degree of 25.6, and an Average Shortest Path Length of
2.26. The inflammation network had an average local clustering coefficient of 0.457, a PPI enrichment p-

value of p<1.0e-16, an average node degree of 25.8, and an Average Shortest Path Length of 2.44.

Furthermore, the networks' structural characteristics were analyzed, including the network diameter and ra-
dius. The bacterial, cancer, and inflammation networks had a diameter of 6 units and a radius of 3 units.

Diabetes and cancer networks had a diameter of 6 units and a radius of 4 units.

Fig. 3A and 3B display the compound-target interactions that were constructed using Cytoscape. The top 10
targets were subjected to network analysis, and the degree of freedom for each target was reported in Table
2 and Fig. 3B. Among the ten genes shared across the five diseases, AKT1, SRC1, HSP90AA, and STAT3
exhibited strong associations in all five diseases. These four genes were selected based on their degree
scores, ranging between 91 and 148. In each disease, AKT1, SRC1, HSP90AA, and STAT3 displayed the
highest degrees, surpassing 110, except for fungal disease, where their degrees were above 90. Notably,
AKT1 demonstrated prominent significance by securing the first rank in bacterial, inflammation, and cancer
networks, with 148, 149, and 149 scores, respectively. In the fungal and diabetes networks, AKT1 remained
highly significant, achieving the first rank with scores of 119 and 148, respectively. AKT1, a ser-
ine/threonine kinase, is intricately involved in diverse cellular processes such as cell survival, proliferation,
and metabolism(Schiliro & Firestein, 2021). In bacterial infections, AKT1 signaling has been associated
with the modulation of host immune responses and pathogen invasion mechanisms. In cancer, AKT1 dys-
regulation is frequently seen, leading to tumor growth and reduced responsiveness to conventional treatment
methods. Additionally, AKT1's critical role in glucose metabolism and insulin signaling makes it an attrac-
tive target in diabetes management. AKT1 signaling modulates antifungal immune responses, and its inhibi-

tion has shown potential in enhancing the host's ability to combat fungal infections(Fayard et al., 2010).

SRC, a non-receptor tyrosine kinase, plays a pivotal role in signal transduction pathways that govern cell
growth, motility, and invasion. In bacterial infections, SRC has been linked to host cell invasion and the in-
tracellular survival of pathogen(Siddiqui et al., 2012). In the realm of cancer, SRC is frequently overex-
pressed, promoting tumor progression and metastasis. Furthermore, SRC participates in insulin signaling
and glucose metabolism, making it relevant to diabetes research. Additionally, SRC activation is involved in

inflammation-related processes, contributing to the pathogenesis of various diseases(S. T. Liu et al., 2014).
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SRC, a key cellular motility and adhesion regulator, contributes to fungal invasion and dissemination. Tar-
geting SRC using specific inhibitors may impede fungal spread and improve treatment outcomes.
HSP90AAL, a heat shock protein, is a molecular chaperone that plays a pivotal role in protein folding and
stability. In bacterial infections, HSP90AAL1 facilitates bacterial virulence by promoting the stability of bac-

terial effectors.

Within the cancer domain, HSP9OAAL acts as a critical chaperone for oncoproteins and proteins associated
with drug resistance(Backe et al., 2020). Its implication in insulin resistance and B-cell dysfunction high-
lights its relevance in diabetes research. Moreover, HSP90AAL is involved in inflammatory responses across
various diseases. HSP90OAAL functions as a chaperone for fungal proteins, essential for fungal survival and
virulence. Disrupting HSP90AA1's function has been explored as a strategy to weaken fungal pathogens.
STATS3, a transcription factor, is essential in cell survival, proliferation, and immune responses(Yu et al.,
2009). STATS3 signaling modulates the host's inflammatory and immune responses to bacterial invasion in
bacterial infections. STAT3 activation promotes tumor growth and immune evasion in the context of cancer.
In diabetes research, STAT3 influences insulin signaling and pancreatic -cell function. STAT3 mediates in-
flammation-related processes, impacting disease pathogenesis. STAT3 plays a vital role in orchestrating im-
mune responses during fungal infections, and inhibiting its activity might enhance the host's antifungal de-
fense mechanisms(Y. C. Liu et al., 2019; Vella et al., 2023). The analysis of protein ranking across diverse
biological networks offers valuable insights into the relative significance of AKT1, SRC, HSP90AA1, and
STAT3 in various cellular processes and disease contexts. The consistently high rankings of these proteins
suggest their crucial roles in cellular regulation, signal transduction, and disease development. Based on the
Cytohubba analysis, all synthesized compounds exhibited the highest score, indicating their interactions with
the maximum number of identified elements in all five diseases, achieving a score of 100. Previous research
has highlighted the potential of chalcone-based novel phenyl ureas as effective antihyperglycemic agents

with a likely PPAR gamma agonistic action.

Table 2. Degree of freedom of top 10 gene and their scores.

Gene

) AKT1 SRC HSP90AA1l STAT3 MAPK3 MTOR HIFIA MAPK1 PIK3CA MDM2
name/Diseases

Bacterial 148 119 117 109 104 92 89 89 86 77
Inflammation 149 122 120 111 103 96 91 88 88 77
Cancer 149 122 121 111 105 96 92 90 88 77
Fungal 119 91 99 92 82 81 76 73 71 69

Diabetes 148 118 119 110 105 96 90 90 85 77
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Gene target: Diabetes Gene target: Fungal

Figure 3A. Interactions of gene targets in four diseases (Bacterial, Cancer, Diabetes, and Fungal) were visu-

alized using Cytoscape and Network Analysis.
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Figure 3A (Conti..). Interactions of gene targets in four diseases (Inflammation) were visualized using Cy-

toscape and Network Analysis.
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Gene Associated with Inflammation

Figure 3B. Top 10 Gene Target Interactions in Four Diseases Visualized through Cytoscape and Analyzed

Using Network Analysis.
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3.4. Gene Ontology

We performed a functional enrichment analysis using the FunRich software on the top 10 targets selected
based on their degree. However, the degree of gene targets has different ranks; all targets, diabetes, inflam-
mation, fungal, bacterial, and cancer, have almost the same 10 ten degrees of genes identified. Based on the
data analysis of target genes, all diseases have the same cellular component, biological pathway, and proc-
ess. Fig. 4 illustrates the top 10 Biological Pathway Annotations, Cellular Component Annotations, and
Biological Process Annotations. Among the top 10 biological pathways identified, the following pathways
were found: NGF signaling via TRKA from the plasma membrane 80%, Signaling by EGFR 70%, Signaling
by FGFR 70%, ErbB2/ErbB3 signaling events 60%, Signaling by PDGF 70%, Downstream signal transduc-
tion 70%, Signalling by NGF 80%, Signaling by SCF-KIT 70%, VEGFR1 specific signals 60%, IL2-

mediated signaling events 80%.

The scientific literature has extensively discussed that these pathways are involved in diabetes, inflamma-
tion, fungal, bacterial, and cancer development. Nerve Growth Factor (NGF) is a neurotrophic factor in-
volved in neurons' development, survival, and function. Enriching genes in this pathway suggests their po-
tential roles in mediating NGF signaling through its receptor TRKA (NTRK1). SRC, STAT3, and MAPK1,
in particular, are known to be involved in neuronal signaling and synaptic plasticity, and they may play im-
portant roles in the downstream events of NGF-TRKA signaling(Chao, 2003). Interleukin-2 (IL-2) is a cyto-
kine central to regulating immune responses. Enriching genes in this pathway suggests their potential roles
in mediating IL-2 signaling events. SRC and STAT3 are known to be involved in immune cell signaling and

activation.

In cancer, IL-2 has been used as an immunotherapy to stimulate the immune system's anti-tumor response,
and SRC and STAT3 may be involved in the downstream effects of IL-2-mediated immune
activation(Rosenberg & Restifo, 2015). EGFR signaling is closely linked to various types of cancers, includ-
ing lung cancer, breast cancer, colorectal cancer, and head and neck cancer. Dysregulation of EGFR, such as
overexpression or activating mutations, can lead to uncontrolled cell proliferation, invasion, and metastasis
in these malignancies(Lemmon & Schlessinger, 2010). EGFR signaling, while not a central factor in the de-
velopment of diabetes, may impact certain cellular responses associated with complications of the disease,
such as diabetic retinopathy. Similarly, while EGFR signaling doesn't directly correlate with bacterial or
fungal infections, it might indirectly affect the immune responses to these infections. This is possible due to
the expression of EGFR in diverse immune cells and tissues, suggesting its involvement in modulating host
responses to various health challenges. FGFR (Fibroblast Growth Factor Receptor) is another family of re-
ceptor tyrosine kinases involved in cell proliferation, migration, and differentiation. Fibroblast growth fac-
tors (FGFs) binding to FGFR leads to receptor dimerization and activation of downstream signaling path-

ways.
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FGFR signaling is critical in development, tissue repair, and angiogenesis. Aberrant FGFR signaling has
been implicated in various cancers and developmental disorder(Turner & Grose, 2010). FGFR signaling,
while not directly involved in bacterial or fungal infections nor a primary contributor to diabetes develop-
ment, may have a role in inflammation. However, its explicit involvement in inflammation-associated dis-
eases warrants further study. VEGFR1 signaling plays a crucial role in angiogenesis, forming new blood
vessels. It is expressed in tumor cells and various immune cells, making it relevant to several diseases, in-
cluding cancer, inflammation, diabetes, and vascular diseases. In cancer, particularly colorectal and breast
cancer, VEGFRL signaling contributes to tumor angiogenesis and growth. High levels of VEGFR1 expres-
sion are associated with poor prognosis in these cancers. As a result, targeting VEGFR1-specific signals is
being investigated as a potential strategy for cancer treatment. In inflammatory diseases like rheumatoid ar-
thritis and inflammatory bowel disease, VEGFR1-mediated signals play a role in recruiting immune cells
and promoting angiogenesis to facilitate tissue repair. Consequently, interventions focused on regulating
VEGFRL1 are under investigation to manage the progression of diabetic retinopathy. VEGFRL1 signaling also
affects the progression of various vascular diseases, such as atherosclerosis and vascular malformations. It
can modulate angiogenesis within atherosclerotic plaques and contribute to abnormal vessel development in

vascular malformations(Bollenbecker et al., 2023; Shibuya, 2011).

PDGF (Platelet-Derived Growth Factor) is a growth factor in cell proliferation and wound healing. It signals
through two receptor tyrosine kinases, PDGFRa and PDGFRf. Upon ligand binding, PDGF receptors un-
dergo autophosphorylation and activate downstream signaling pathways, including the PI3K-AKT and
MAPK pathways. PDGF signaling is important in tissue repair, angiogenesis, and development. Aberrant
PDGEF signaling has been implicated in cancer and fibrotic diseases(Heldin & Lennartsson, 2013). While not
directly associated with fungal infections, PDGF signaling may be involved in regulating inflammation and
tissue repair. Additionally, it may hold relevance for diabetic complications, including nephropathy and reti-
nopathy. The downstream Signal Transduction pathway involves the transmission of signals from activated
cell surface receptors (such as EGFR, FGFR, and PDGFR) to intracellular effectors. Downstream signal
transduction pathways include MAPK/ERK, PI3K-AKT, and JAK-STAT. These pathways regulate gene ex-
pression and modulate cellular responses, such as proliferation, survival, and differentiation. Dysregulation
of downstream signal transduction can lead to various diseases, including cancer and inflammatory disor-
ders(Shen et al., 2020). ErbB2 (HER2) and ErbB3 (HER3) are members of the EGFR family of receptor ty-
rosine kinases. They form heterodimers and activate downstream signaling pathways upon ligand binding or
through other mechanisms. ErbB2 does not bind a specific ligand but can enhance signaling by forming het-
erodimers with other ErbB family members. ErbB2/ErbB3 signaling plays crucial roles in the cell prolifera-
tion, survival, and metastasis of various cancers. Abnormal ErbB2 (HER?2) expression is closely linked with
aggressive forms of breast cancer, and targeted treatments focusing on ErbB2 have demonstrated clinical
effectiveness (Hynes & Lane, 2005). SCF (Stem Cell Factor) and KIT (KIT proto-oncogene) are involved in

hematopoiesis, melanogenesis, and cell survival. The binding of SCF to its receptor KIT activates down-
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stream signaling events. KIT signaling is crucial for stem cell development and hematopoiesis—aberrant

KIT signaling(Lennartsson & Ronnstrand, 2012).

The proteins SRC, HSP90AAL, STAT3, MAPK3, MTOR, HIF1A, MAPK1, PIK3CA, and MDM2 are in-
volved in several important biological pathways that have relevance to various diseases, including cancer,
diabetes, inflammation, and other disorders. These proteins are crucial in signal transduction, growth regula-
tion, immune responses, and cellular metabolism. When these pathways and proteins become dysregulated,
they can contribute to the development and progression of diseases. In cancer, these proteins often promote
cell growth, survival, and metastasis. Dysregulation of these pathways can lead to uncontrolled cell prolif-
eration and tumor formation. For example, the MAPK pathway (involving proteins like MAPK1 and
MAPKA3) is frequently altered in cancer, leading to excessive cell division and tumor growth. In diabetes,
proteins like MTOR and PIK3CA are involved in insulin signaling and glucose metabolism. Dysfunctional
signaling in these pathways can affect insulin sensitivity and glucose regulation, contributing to diabetes and
its complications. In inflammation, proteins like STAT3 and HIF1A are key players in immune responses
and inflammation regulation. Aberrant activation of these proteins can lead to chronic inflammation associ-

ated with various inflammatory diseases.

The gene ontology analysis uncovers critical biological processes associated with the top five targets for dis-
eases, including diabetes, inflammation, fungal, bacterial, and cancer. Notable processes include signal
transduction (60%), protein metabolism (20%), cell communication (40%), energy pathways (10%), and
regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism (20%) (See Fig. 4). These in-
sights are invaluable, shedding light on the molecular mechanisms driving disease development and progres-
sion. Additionally, identified cellular components associated with the top ten disease targets reveal where
these elements predominantly exist within cells. These locations include the phosphoinositide 3-kinase com-
plex (10%), TORC1 and TORC2 (10%), the nucleus (90%), nucleoplasm (40%), endomembrane system
(10%), the nucleolus (50%), the TORC2 complex (10%), the cytoplasm (90%), microtubules, and the cyto-
sol (80%) (See Fig. 4). Understanding the cellular location of these targets provides crucial insights into

their functional roles in specific diseases, allowing for more targeted and precise intervention strategies.
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Fig. 4. Gene ontology analysis: Cellular components, biological processes, and biological pathway.

3.5, KEGG pathway

In the present research, the examined compounds showcased distinctive impacts on conditions such as can-
cer, diabetes, and inflammation. These substances showed promising effects on ovarian neoplastic cells
through their interaction with the MAPK signaling pathways, particularly focusing on the ERK element and
the MAPK receptors(Dhillon et al., 2007). This observation is harmonious with the well-established function
of MAPK receptors in fostering tumor proliferation and survival. The compounds also impacted the mTOR
signaling pathway, targeting elements such as PK13, AKT1, and mTOR receptors, which are crucial for cell
proliferation and survival(Saxton & Sabatini, 2017). Similarly, these compounds affected the JAK-STAT
signaling pathway, explicitly targeting components like STAT3 receptors(O’Shea et al., 2015). The com-
pounds influenced the MAPK signaling pathway by activating components via the EGFR receptors. Regard-
ing the HIF1 alpha signaling pathway, the compounds' role is noteworthy. RTKs activate HIF1 alpha, so by

targeting them, the compounds could potentially deregulate their activity.

The PI3K-AKT signaling pathway is a crucial intracellular signaling pathway implicated in multiple cellular
functions, such as cell growth, proliferation, angiogenesis, and survival. It is activated by various types of
cellular stimuli or toxic insults(Manning & Toker, 2017; Porta et al., 2014). The PI3K-AKT pathway is cen-
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activation of AKT. AKT subsequently stimulates glucose uptake by promoting the translocation of the glu-
cose transporter GLUTA4 to the cell membrane. This pathway's alteration can lead to insulin resistance, a key
factor in developing type 2 diabetes. Dysregulation in PI3K/AKT signaling has been associated with diabetic
complications, including nephropathy and retinopathy(Oeckinghaus & Ghosh, 2009; Sadikot et al., 2005)
(See Fig. 5A). In inflammation disease, the activation of the NF-xB pathway, including the resultant upregu-
lation of BCL-XL and c-Myb, can contribute to inflammation(Lawrence, 2009; Reece et al., 2022). This
pathway plays a critical role in cell cycle regulation and is heavily involved in cancer pathogenesis due to its
influence on cell proliferation and apoptosis. In the MAPK signaling pathway context, the PI3K-AKT
pathway can influence cell proliferation and angiogenesis, mainly through the ERK component. The PI3K-
AKT pathway's interaction with the mTOR, JAK/STAT3, chemokine, and Toll-like receptor signaling path-
ways allows for a complex network of regulation and cross-talk, further expanding its role in various cellular
processes. Pathogen-associated molecular patterns (PAMPS) can directly influence TLR2/4 and activate the
small GTPase Racl. This activation triggers the PI3K, producing PIP3, a crucial second messenger in the
PI3K-AKT pathway. PIP3 then stimulates the kinase AKT1, which is critical for cell survival, primarily
through its influence on the MDM2 gene. Furthermore, the chaperone protein Hsp90 also activates AKT1,
adding another level of regulation to this pathway. This complexity contributes to the range of cellular proc-
esses the PI3K-AKT pathway influences, reinforcing its importance in understanding disease pathogenesis,
particularly in cancer and inflammatory conditions(Oeckinghaus & Ghosh, 2009; Porta et al., 2014; Sadikot
etal., 2005).
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Fig. 5A. KEGG Pathway Analysis of the Top 10 Targets, with Special Emphasis on PI3K-AKT signaling
pathway.

The pathway "Proteoglycans in cancer" (KEGG:05205) has a higher negative p-value of 11.70, making it the
most significant path in the dataset. Proteoglycans are a group of glycosylated proteins mainly present in the
extracellular matrix. They play crucial roles in many biological processes, including cell proliferation, mi-
gration, and angiogenesis, all of which are integral to cancer development and progression (See Fig. 5B and
6)(Ahrens et al., 2020). Several genes from data, such as AKT1, SRC, STAT3, MAPK3, and PIK3CA, are
implicated in this pathway, indicating a potential role in cancer-related processes. The "Thyroid hormone
signaling pathway" (KEGG:04919) is the second most significant pathway, with a negative p-value of 11.31.
The thyroid hormone signaling pathway regulates metabolism, growth, and development. It involves several
critical genes from the data set, including SRC, AKT1, and PIK3CA. Dysregulation in this pathway may
lead to various disorders, ranging from developmental issues to metabolic diseases and certain cancers(Y. C.
Liu et al., 2019). The pathway "EGFR tyrosine kinase inhibitor resistance” (KEGG:01521) also shows high
significance with a negative p-value of 10.36. EGFR, a key receptor tyrosine kinase, regulates cellular ac-
tivities, including proliferation and survival (See Fig. 6). EGFR mutations often result in over-activated
EGFR pathways, causing uncontrolled cell growth, which is common in various cancers like NSCLC. EGFR

tyrosine kinase inhibitors (TKIs) can hinder tumor growth by inhibiting EGFR's tyrosine kinase activity.
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However, resistance to these drugs often develops through mechanisms like secondary EGFR mutations or
changes in other growth factor receptors. Key genes in data, such as EGFR, AKT1, PIK3CA, ERBB2, MET,
and FGFR1, can contribute to EGFR TKI resistance, either by direct alterations in EGFR or by influencing
related signaling pathways(Ji et al., 2013). Specific genes, like AKT1, MAPK3, MAPK1, PIK3CA, etc., ap-
pear frequently across many routes. These genes could be essential nodes in biological networks and serve

as potential targets for broad-spectrum treatments.

FROTEOGLYCAME IN CANCER

‘Heparss sulfsie prairaglycass (P Ga)

u . s 3 = (3]
o | Ml.l-"].'ngm.hl‘ ] T S . I _“_ ________
: [ O = N SEPT—
T = Cytacheltin actibicnr . B T I | Y s
v cotat T
el growy 7 -
v 1 Jossee i
/ ) i i s
f/ ,-_’?_-lﬁ L R E i 3 - g
/ — i (i T {550 Jours) e
ér F:hn " e 3 ':-f‘:‘fatxh'l-rul e - e
; HAAEL T Cprem artaton » Cillmigns i (sio ]
_________ Cell magratiea F sigraling puly!
B ‘L\—.“‘”—’j p L8 B 'ﬁ - =
- "\-\. Pmbfmtan ad seral
i T+ Rt ¥ » Comrc i e s e e
\\\ £ sy WAPE o ,;-.L.' )
Wat m "
\“-. Ay / [ ——————————- y e - B Sty IEDQ- ------ o Vi )—I ———————————— L T i
T | L Jors)
\ ISP}
|\ \‘ \‘L_J‘< _u_,m—.{_'_lr\!ﬂm—nmm——*‘sm scmbhon e ctition
A\
\ '\ it s ol v
\ oy S e M7y o R T - A - - Stnasfhe ot
[ i (e Pb; i P
(R L gnthuny J * B_E, ERM fiemi Focal sdbweion
t \LpiRa i I w0 STV = 2 ey o] ( - }
ll". g s e ez +{ hcan [T p— e
&Hlﬁﬂ;,”m}.ﬂwné'\n = Cyhalulet Cell adbensica -Zl-v-uluwxmamlzr:hi n
Ty .
'|I ﬂ Tl T — N
H '—i b ] f- e Celigmh )
b S ‘- vo—" e P el N
".uf)\\ |] 0y IK;\'.' * [kl O lI}—-; e
{ Tt §-* o —w[main| e Cellgre \ l ] {Ficr )= e 1
1 bk [ =-==I7 sl 5ot |-+ PrCa —a[mE } o
| T T Gillmigion r P e
e e * Irmglre
Fk FhE
] .
(TR 'y

?'- - il

(Pazematic cances colla)
f = v Todosomm [ -r'—lp
E "U +lcnsie » EGFR dgnnian - Oreth mpgmicn Y 1
i o, ’Q_L'_rl = Prokfenionad ened
e e EOER G eprtticn » HEY g
[ el o) (ol
/ qE lvo D
- ] ) = - Sl
ey U (TOF e g T =1 (eat2} ! ",
1] [ Al e 1 TET url_l]h:a. '~ .
] e _w[PoCDE { f
ecci s T L = ¥ e ,—I—I] 1 i
LEd ¥ sguling ] Coan ™ —a T T R T . i I
I = e e TR
t I} izl ! i - Prokfeaston wxd panival
J“\ [t T %o = |0 B Wit Frizzled] o gt ) T »[Fun - +1w
Y YA | e H e *
y T - B +{7EaF il [ee) * GFCI. Hh depaditica
A : [EERE] 1 =Y oot wgngeaess /;‘P— ] e
Y VAT cigmabng 1 :
\ 1 ! VECE pmalng [
o-m( ——._‘__}_________ﬂ_.. ® _ [mm] (o I ir]""i T apat
SMD - od ignal
= Matrne botnd
h
— \[iEm]—FEE
bt el - I ]
Kratan mifaie pratraghras (KSFG) framd 1 migratien, prabfesvtan o senmed
-3
(Doae tamct oo L) /’{ SHP.1

]
g o otk 1}

. L Mo .
] . e |t b ————— ition ol angiograsi
] e e e e
3 + o I Fedecaz}iizray
C 1 ~=- o
E;; ('C"":“Nr‘"ﬁju e > st spgaion w | ———— \ .
. ity 1/ elt magmaica,
o i} B e [Gamaz]} = b - b i s,
LIS L ! sl peresabelaty
| * Snbdeicn of ool adwsicn [zEcEs }—=frrom: ”( ]:Ilmw ]__J

Data an KEGG graph
Rendered by Pathview

Fig. 5B. KEGG Pathway Analysis of the Top 10 Targets, with Special Emphasis on Proteoglycans in cancer.
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3.6.Machinelearning QSAR analysis
3.6.1. Exploratory Data Analysis

In AKT1 gene data, After data pre-processing and curation and the elimination of missing values, 2876
compounds were selected for study. Then, all 2876 compounds were subjected to exploratory data analysis.
The exploratory data analysis of a dataset of compounds revealed a greater proportion of active compounds
than inactive ones. In addition, it was discovered that the pICsy values of active compounds ranged from 6 to
10, whereas those of inactive compounds ranged from 3.30 to 5. The Mann-Whitney U test was performed
to evaluate the statistical significance between active and inactive groups of compounds. After the U test, all
of the five properties have statistical significance. Inactive molecules generally have slightly smaller MW
and fewer NumHDonors than active group molecules. Active molecules tend to have larger pICso, MW, and
NumHAcceptors values. LogP values remain identical between active and inactive molecules (See Fig. 7).
In SRC gene data, after data pre-processing and curation and the elimination of missing values, 3177 com-
pounds were selected for study. Then, all 3177 compounds were subjected to exploratory data analysis. The
exploratory data analysis of a dataset of compounds revealed a greater proportion of active compounds than
inactive ones. In addition, it was discovered that the pICs values of active compounds ranged from 6 to
10.45, whereas those of inactive compounds ranged from 1 to 5. The Mann—-Whitney U test was performed
to evaluate the statistical significance between active and inactive groups of compounds. After the U test, all
of the five properties have statistical significance. Inactive molecules typically possess slightly elevated
LogP values compared to active group molecules. Active molecules exhibit higher pICsy values than those in
the inactive group. However, the values for MW, NumHDonors, and NumHAcceptors remain nearly indis-
tinguishable between active and inactive molecules (See Fig. 7).

In HSP90A gene data, after data pre-processing and curation and the elimination of missing values, 1009
compounds were selected for study. Then, all 2009 compounds were subjected to exploratory data analysis.
The exploratory data analysis of a dataset of compounds revealed a greater proportion of active compounds
than inactive ones. In addition, it was discovered that the pICsy values of active compounds ranged from 6 to
9.15, whereas those of inactive compounds ranged from 2.90 to 5. The Mann—-Whitney U test was per-
formed to evaluate the statistical significance between active and inactive groups of compounds. After the U
test, all of the five properties have statistical significance. Active molecules typically show slightly elevated
LogP and NumHAcceptors compared to inactive group molecules. They also tend to have higher values for
MW, pICso, and NumHDonors than inactive molecules (See Fig. 7). In STAT3 gene data, after data pre-
processing and curation and eliminating missing values, 640 compounds were selected for study. Then, all
640 compounds were subjected to exploratory data analysis. The exploratory data analysis of a dataset of
compounds revealed a greater proportion of active compounds than inactive ones. In addition, it was discov-
ered that the plCs, values of active compounds ranged from 6 to 8.07, whereas those of inactive compounds
ranged from 3 to 5. The Mann-Whitney U test was performed to evaluate the statistical significance be-
tween active and inactive groups of compounds. After the U test, all of the five properties have statistical

significance. Active molecules typically exhibit significantly higher plCsy values and a greater number of
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NumHAcceptors than molecules in the inactive group. The values for MW, LogP, and NumHAcceptors re-

main nearly unchanged between active and inactive compounds (See Fig. 7).
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Fig. 7. Exploratory data analysis for four genes, AKT1, SRC, HSP90A, and STAT3 inhibitors’ dataset from
the ChEMBL database.
3.6.2. Machinelearning QSAR mode predication

The dataset of compounds underwent descriptor calculation using PaDELPYy in the PaDEL software. Before
this, PubChem fingerprints were generated individually, resulting in 881 PubChem fingerprint attributes. For
developing a Random Forest-based QSAR model, Data pre-treatment GUI 1.2 was used to remove constant
descriptors based on correlation coefficient and variance scores. After excluding the shared biological activ-
ity attribute, the final list of attributes for PubChem fingerprints of AKT1, SRC, HSP90A, and STAT3 were
213, 241, 253, and 262, respectively. The Kennard Stone algorithm was employed for dataset division, and

the training and evaluation sets were split in an 80:20 ratio. During the training phase, QSAR models were
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and STAT3 (504 instances). In the subsequent testing phase, the models were evaluated using separate in-
stances: 531 for AKT1, 576 for SRC, 186 for HSP90A, and 120 for STAT3.To generate the intended QSAR
models, each descriptor dataset's training and test datasets were loaded into the machine learning software
WEKA. Information regarding the training set and testing of PubChem fingerprint and CHEMBL molecules

for each target gene can be found in Supplementary file s3.

WeKa's model analysis for the AKT gene shows strong predictive performance during training and testing,
as indicated by the high correlation coefficient of 0.9802 and 0.8083. The model's predictions of training are
relatively close to the actual values, with a mean absolute error of 0.2225 and a root mean squared error of
0.2937. The relative absolute error of 20.1691% suggests that the model's predictions deviate from the actual
values by around 20% on average. The root relative squared error of 21.3556% indicates the variability of
prediction errors. The mean absolute error and root mean squared error from test set data show 0.5868 and
0.7371, respectively. The relative absolute and root relative squared errors are around 58-59%. Cross-
validation results fall between the training and testing performance, with a correlation coefficient of 0.8634.
The mean absolute error and root mean squared error are 0.5299 and 0.702, respectively. The relative abso-
lute and root relative squared errors are approximately 48% and 51%, respectively. These results suggest that
the model generalizes reasonably well to new data. For the SRC gene, the QSAR model achieves a high cor-

relation coefficient of 0.9867 during training, similar to HSP90A.

The mean absolute error and root mean squared error are 0.2227 and 0.3, respectively. The relative absolute
and root relative squared errors are 14.8335% and 17.3816%, respectively. The model maintains strong per-
formance during testing, with a correlation coefficient of 0.9147. The mean absolute error and root mean
squared error are 0.5065 and 0.6198, respectively. The relative absolute and root relative squared errors are
around 36%, suggesting good generalization. Cross-validation results also show high predictive ability, with
a correlation coefficient of 0.8983. The mean absolute error and root mean squared error are 0.5677 and
0.7648, respectively. The relative absolute error and root relative squared error are approximately 37%, indi-
cating consistent and reliable performance. The model analysis for the HSP9OAA gene demonstrates high
predictive accuracy during training, with a correlation coefficient of 0.9867. The mean absolute error and
root mean squared error are 0.1403 and 0.1993, respectively. The relative absolute and root relative squared
errors are 16.1236% and 17.1802%, respectively. The model maintains strong performance during testing,
with a correlation coefficient of 0.9295. The mean absolute error and root mean squared error are 0.3371 and
0.4213, respectively. The relative absolute and root relative squared errors are around 37%, indicating good
generalization. Cross-validation results also show high predictive ability, with a correlation coefficient of
0.9011. The mean absolute error and root mean squared error are 0.3553 and 0.5073, respectively. The rela-
tive absolute error and root relative squared error are approximately 40%, suggesting consistent performance

across different folds.

For the STAT3 gene, the QSAR model achieves a high correlation coefficient of 0.9713 during training, in-

dicating predictive solid ability. The mean absolute and root mean squared errors are 0.1719 and 0.2541, re-
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spectively, implying accurate predictions. The relative absolute and root relative squared errors are 23.079%
and 27.1873%, respectively. However, on the test set, the model's performance slightly decreases, with a cor-
relation coefficient of 0.783. The mean absolute error and root mean squared error increase to 0.3219 and
0.4605, respectively. The relative absolute and root relative squared errors are around 59% and 70%, respec-
tively. Cross-validation results show a correlation coefficient of 0.7102, suggesting good performance com-
pared with training. The mean absolute error and root mean squared error are 0.4488 and 0.6589, respec-
tively. The relative absolute and root relative squared errors are approximately 60% and 70%, respectively.
The robustness of the QSAR models was inferred from the high correlation coefficients observed in both the
training and test sets, suggesting a high degree of reliability. Additionally, the outcomes of tenfold cross-
validation for each model demonstrated a notable level of satisfaction, further affirming the models' per-
formance (See Fig.8A).

To discern the pivotal molecular fingerprints and their respective contributions to bioactivity within QSAR
models, a comprehensive feature importance analysis was conducted. This investigation involved the utiliza-
tion of the Random Forest regressor algorithm to pinpoint the top ten molecular fingerprints for each QSAR
model. The Variance Importance Plots (VIP) were generated using the matplotlib package in Python, provid-
ing a visual representation of the significance of these fingerprints (See Fig.8B.). The most significant de-
scriptors in the Pubchem fingerprint-based model were identified as follows: PubchemFP521 (C:N-C-[#1])
in AKT1, PubchemFP180 (containing at least one saturated or aromatic nitrogen-containing ring of size 6) in
SRC, PubchemFP633 (N-C-C:C-C) in HSP90, and PubchemFP145 (including at least one saturated or aro-
matic nitrogen-containing ring of size 5) and PubchemFP338 (C(~C)(~C)(~H)(~N)) in STAT3. For the Pub-
Chem fingerprints-based model targeting the AKT1 gene, the VIP analysis highlighted PubchemFPs 143,
184, 186, 335, 338, 404, 521, 614, 696, and 707 as the most influential molecular fingerprints. Similarly, in
the context of the SRC gene, the VIP plot identified PubchemFPs 180, 181, 338, 391, 439, 590, 609, 682,
696, and 704 as the key contributors to bioactivity. Moving to the HSP90A gene, the VIP analysis under-
scored the significance of PubchemFPs 146, 181, 357, 380, 633, 672, 712, 737, 749, and 800. Lastly, within
the context of the STAT3 gene, PubchemFPs 1, 2, 21, 145, 146, 180, 181, 338, 685, and 712 were identified
as the critical molecular fingerprints. Based on feature selection, structural insights for the best descriptor-

containing compounds were investigated for both models individually (See Fig. 8B).

In the context of AKTL, specific analysis has revealed that clinical drugs 443654 (CHEMBL379300),
CHEMBL3899716, and CHEMBL3966806 exhibit consistent fingerprints associated with distinct molecular
features. These fingerprints include PUbchemFP143 (greater than or equal to 1, any ring size 5) and PUb-
chemFP521 (C:N-C-[#1]). Experimentally determined plCsy values for these compounds were 9.796, 10,
and 9.824, respectively. For SRC, guantitative structure-activity relationship (QSAR) data analysis was con-
ducted on the VIP plot. The FDA-approved drug DASATINIB (CHEMBL1421) and Chembl IDs
CHEMBL1241676 and CHEMBL196797 were observed to possess common PubChem fingerprints. These

fingerprints, specifically PubchemFPs 180 (greater than or equal to 1 saturated or aromatic nitrogen-
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containing ring size 6), 181 (greater than or equal to 1 saturated or aromatic heteroatom-containing ring size
6), and PubChem Fp696 (C-C-C-C-C-C-C-C), were reflected in experimental plCso values of 9.301, 9.921,
and 9.824. These findings suggest particular structural attributes contributing to the compound's bioactivity.
In the case of HSP90A, QSAR data analysis of the VIP plot revealed shared Pubchem fingerprint attributes
in FDA approved drugs REBLASTATIN (CHEMBL267792), B11B021 (CHEMBL467399), LUMINESPIB
(CHEMBL252164), and Chembl IDs CHEMBL2205798, CHEMBL4873718, and CHEMBL2205245 (see
Fig. 9.). The common characteristics include PubChem146 (greater than or equal to 1 saturated or aromatic
heteroatom-containing ring size 5), PubChem181 (greater than or equal to 1 saturated or aromatic heteroa-
tom-containing ring size 6), PubChem357 (C(~C)(:C)(:N)), and PubChem633 (N-C-C:C-C). The corre-
sponding experimental pICsy values are 8.30, 8.29, 8.10, 9.15, 9.14, and 9, reinforcing the structural attrib-

utes responsible for their bioactivity (Fig.9.).

Lastly, in STAT3, a QSAR analysis of the VIP plot was performed for FDA-approved drug AZD-1480
(CHEMBL1231124) and Chembl IDs CHEMBL1368342, CHEMBL1407470 and CHEMBL4846365.
Shared PubChem fingerprints were identified, such as PubChem146 (greater than or equal to 1 saturated or
aromatic nitrogen-containing ring size 5), PubChem146 (greater than or equal to 1 saturated or aromatic het-
eroatom-containing ring size 5), PubChem181 (greater than or equal to 1 saturated or aromatic heteroatom-
containing ring size 6), PubChem357 (C(~C)(:C)(:N)), and PubChem633 (N-C-C:C-C). The experimental
pICso values were measured at 7.097, 8.071, 7.593, and 7.17, further elucidating the structural attributes that
contribute to the bioactivity of these compounds (Fig.9. and Table 3). Information regarding the training set
and testing of PubChem fingerprint and CHEMBL molecules for each target gene can be found in Supple-

mentary file s3.
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Fig.8. Scatter Plots of QSAR Models Utilizing Pubchem Fingerprint Descriptors for Training and Test Sets,
and VIP Plot Illustrating the Key Features of the QSAR Model Incorporating Pubchem Fingerprint Descrip-

tors against Four Genes.
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Table 3. Interpretation for the most significant PubChem and substructure fingerprints

Best Features Interpretation
PubchemFP1 >=8H
PubchemFP2 >=16 H
PubchemFP21 >=80
PubchemFP143 >=1anyringsize 5
PubchemFP145 >= 1 saturated or aromatic nitrogen-containing ring size 5
PubchemFP146 >= 1 saturated or aromatic heteroatom-containing ring size 5
PubchemFP180 >= 1 saturated or aromatic nitrogen-containing ring size 6
PubchemFP181 >= 1 saturated or aromatic heteroatom-containing ring size 6
PubchemFP184  >=1 unsaturated non-aromatic heteroatom-containing ring size 6
PubchemFP186 >= 2 saturated or aromatic carbon-only ring size 6
PubchemFP335 CC)(~CO)(~C)(~H)
PubchemFP338 C(~C)(~C)(~H)(~N)
PubchemFP357 C(~C)(:C)(:N)
PubchemFP380 C(~0)(~0)
PubchemFP391 N(~C)(~C)(~C)
PubchemFP404 N(:C)(:C)(:C)
PubchemFP439 C(-C)(-N)(=0O)
PubchemFP521 C:N-C-[#1]
PubchemFP590 C-C:C-O-[#1]
PubchemFP609 CI-C-C-N-C
PubchemFP614 C-C-0-C-C
PubchemFP633 N-C-C:C-C
PubchemFP672 O=C-C=C-[#1]
PubchemFP682 O-C-C-C-C-N
PubchemFP685 0O=C-C-C-C-N
PubchemFP696 C-C-C-Cc-c-c-Cc-C
PubchemFP704 O=C-C-C-C-C-C-C
PubchemFP707 O=C-C-C-C-C(N)-C
PubchemFP712 C-C(C)-C(C)-C
PubchemFP737 Cclcc(N)ceel
PubchemFP749 Nclcc(N)cccl
PubchemFP800 CC1CC(N)CcCc1

In the context of validation parameters, a comparative analysis was conducted to assess the chemical space
encompassed by the training and test sets. This evaluation involved the application of the PCA bounding box
method, aiming to determine the applicability domain of the molecular fingerprint datasets developed within
this study. The method's efficacy in detecting outliers within both the fingerprint models was examined. The
PCA analysis was executed during the training phase, encompassing the instances for AKT1 (2255 in-
stances), SRC (2481 instances), HSP90A (791 instances), and STAT3 (504 instances). Subsequently, in the
testing phase, distinct instances were employed for model evaluation, namely 531 for AKT1, 576 for SRC,
186 for HSP90A, and 120 for STAT3, utilizing the PubChem fingerprint dataset. The outcomes of this

analysis revealed that the chemical space spanned by the test set remained within the boundaries of the
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chemical space occupied by the training set. Consequently, it was determined that the developed fingerprint
datasets exhibited applicability domains encompassing the test set. Furthermore, an examination of the PCA
scores plot indicated a significant similarity in the relative chemical space occupied by compounds within

both the training and test sets, as depicted in Fig. 10.

The QSAR models were validated by applying Receiver Operating Characteristic (ROC) analysis, yielding
pertinent insights into the predictive performance of the four target genes. Specifically, for the AKT1 gene,
the computed Area Under the Curve (AUC) values were 0.99, 0.99, and 0.96 for active, inactive, and inter-
mediate molecules, respectively. Similarly, for the SRC gene, the ROC analysis yielded AUC values of 0.99,
1.00, and 0.93 for the respective molecular classes. The HSP90A gene demonstrated AUC values of 0.99,
0.99, and 0.89 for active, inactive, and intermediate molecules. In contrast, the validation of the QSAR
model for the STAT3 gene revealed AUC values of 0.98, 0.98, and 0.99 for the corresponding molecular
categories. These AUC values collectively underscore the commendable and dependable performance of the

QSAR models in accurately predicting molecular interactions (See Fig.10).
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Fig.10. Applicability domain assessed through PCA application and ROC plot generated for PubChem fin-

gerprint descriptor-implemented QSAR models, respectively.
3.7. Prediction of bioactivity of phytochemicals using gener ated machine lear ning models

Chalcone derivatives, identified via an intensive network pharmacology screening, were assessed for bioac-
tivity prediction using fingerprint-based machine learning models. Notably, RA1 displayed strong interac-
tions with Hsp90A, indicating potential as a potent inhibitor for this gene. Multi-target potential was evident
in several derivatives, including RA1, RA2, and RA10, highlighting their adaptability across various path-
ways. Compound RAL, with its notable plCsy value of 5.76 against Hsp90A, displays promising inhibitory
effects, indicating its potential for diverse applications. Additionally, RA1 exhibited substantial activity
against AKT1, SRC, and STAT3 (pICs,: 4.89, 4.36, and 5.09), showcasing multi-target capability. Com-
pound RA2 exhibited significant interactions with Hsp90A (pICso = 5.62) and STAT3 (plICso = 5.09), indi-
cating modulation potential (See Table 4). While interactions with AKT1 and SRC (pICso = 4.85 and 4.43)
were slightly lower, RA2's multi-target potential was evident. Compound RA3 showed meaningful interac-
tions with Hsp90A (pICso = 5.48) and STAT3 (plCso = 4.82), suggesting inhibitory effects. Interactions with
AKT1 and SRC (pICso = 4.81 and 4.5) contribute to its diverse bioactivity (See Table 4). Compound RA1
and RA2 consistently exhibited higher pIC50 values, indicating relatively stronger inhibition against most
target genes. In contrast, Compound RA10 displayed lower activity across all genes. Subsequently, the chal-
cone derivatives underwent molecular docking studies.

Table 4: Predicted bioactivity of chalcone derivatives using generated machine learning models.

Genes AKT1 SRC HSP90A STAT3
/ Chalcone deriva-
tives pICso
RA1 4.89 4.36 5.76 5.09
RA2 4.85 4.43 5.62 5.09
RA3 4.81 45 5.48 4.82
RA4 4.77 457 5.34 4.73
RAS5 473 4.64 5.2 459
RAG6 4.69 471 5.06 4.46
RA7 4.65 4.78 4.92 4.32
RAS8 461 4.85 4,78 419
RA9 457 4.92 4.64 4.05
RA10 4,53 4.99 45 3.92

3.8.Web Application Development

We developed a Python-based web application named ASHS-Pred, utilizing the Streamlit library. This appli-
cation leverages established molecular fingerprint-based models for AKT1, HSP90AAL, STAT3, and SRC
genes. In creating the web application, various Python libraries were employed, including scikit-learn, pan-

das, subprocess, os, base64, and pickle. ASHS-Pred operates by considering the SMILES representations of
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multiple molecules and their corresponding names or IDs provided by the user within a text file. Upon up-
loading this text file containing molecular information, the application conducts predictions for the loaded
molecules' inhibition activity (pICso) against the specified genes. The application employs established fin-
gerprint-based random forest models to calculate the pertinent molecular fingerprints for the loaded mole-
cules. Subsequently, the predicted activity is presented as plCso values, along with their respective molecule

names.

Users can download the activity values and molecule names in CSV format directly from the application.
The complete source code for ASHS-Pred is openly accessible on GitHub at the following URL:
https://github.com/RatulChemoinformatics/QSAR. To utilize the application, users are required to have the
Anaconda Navigator interface installed on their systems, along with Streamlit and other necessary package
dependencies. The installation process is detailed in the readme file available on the GitHub repository. Fol-
lowing these instructions, users can accurately predict molecular activity against the four target genes using
the ASHS-Pred application.

3.9.Molecular Docking

A molecular docking approach was employed to investigate the mechanisms underlying chalcone-based de-
rivatives' anti-inflammatory, antibacterial, anticancer, antidiabetic, and antifungal activities. The docking
was performed against four target proteins, namely AKT1, SRC, HSP90A, and STAT3. Additionally, a set of
ten chalcone derivatives and compounds with Chembl IDs were included in the study. The results of the
docking analysis revealed that compounds RA1 to RA7 exhibited superior binding affinities compared to
other compounds across the four target genes. Notably, chalcone derivatives RA1 to RA7 demonstrated
comparable binding affinities to the clinical drug A-443654 (dock score = -10.9 Kcal/mol) against the AKT1
gene. Among these derivatives, Compound RAG6 displayed exceptionally high binding affinity (dock score =
-10.7 Kcal/mol) towards the AKT1 target gene. Dasatinib, a known drug, exhibited significant binding affin-
ity against the SRC target gene with a docking score of -10.5 Kcal/mol (See Table 5).

Interestingly, Compound R5 showed an even better dock score of -10.7 Kcal/mol, surpassing the previously
mentioned drug. Furthermore, among the studied compounds, Compound RA5 demonstrated the strongest
affinity against HSP9OA with a docking score of -10.9 Kcal/mol, outperforming the FDA-approved drug
Luminespib, which achieved a docking score of -9.6 Kcal/mol. Compound R5 shows the highest docking
scores for SRC and HSP90A, suggesting its potential to interact with these target genes. Compound R6
demonstrates the highest docking score for AKT1, making it a potential candidate for targeting this gene.
The docking scores suggest that Luminespib has a notable affinity for HSP90A. The docking scores for
Dasatinib indicate a strong interaction with the SRC target gene. The docking scores point to a potential in-
teraction between CHEMBL4846365 and STAT3. The docking scores for A-443654 indicate a strong inter-
action with the AKT1 target gene.
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In the context of AKT1, the clinical drug A-443654 does not engage in hydrogen bonding interactions.
However, it establishes notable molecular interactions through pi-sigma interactions at GIn79 and Val270,
alongside pi-pi stacked formations at GIn79. Additionally, alkyl and pi-alkyl interaction formations manifest
at Lys268, Val270, and Trp80. In contrast, Compound R6 forms two hydrogen bonding interactions: one
with Asp292 involving the urea moiety's NH group, and another involving an oxygen atom and the methoxy
group with Arg86. A further interaction is observed with Tyr326 through van der Waals interactions. Nota-
bly, Compound R6 exhibits alkyl and pi-alkyl interaction formations at Leu264, Leu210, and Phe55. In con-
trast, a pi-stacked interaction occurs at Trp80 (See Fig.11.). For SRC, the drug Dasatinib does not establish
hydrogen bonding interactions. Nevertheless, it demonstrates molecular interactions, such as pi-sigma inter-
actions at Met314, along with alkyl and pi-alkyl interaction formations at Val377, Val323, Ala403, Leu393,
Phe405, Ala293, Val281, 11e336, and Lys295. Conversely, Compound R5 does not display hydrogen bonding
interactions but presents alkyl and pi-alkyl interactions at Val323, Ala403, Val313, His384, Val281, and pi-pi
stacked formation at Phe405 (See Fig.11.).

In the case of HSP90A, the drug Luminespib forms four hydrogen bonding interactions: the isoxazole ring's
nitrogen atom interacts with Phe138, while the carboxamide oxygen atom interacts with Asn51 and Phe138.
Another interaction arises between the oxygen atom of the 4-isopropylbenzene-1,3-diol moiety and Tyr139,
as well as Leul03. Further interactions include pi-sigma interactions at Trp162 and Phel38, pi-pi stacked
formations at Phe138, and alkyl and pi-alkyl interaction formations at Leul07. In contrast, Compound R5
does not engage in hydrogen bonding interactions. Still, it presents alkyl and pi-alkyl interactions at Ile26,
Ala55, and Lys58, along with pi-stacked interactions at Phe22 and Phel38, and a pi-sigma interaction at
Leul07 (See Fig.11.). Regarding STAT3, Regarding the STAT3 target gene, Compound RA3 exhibited re-
markable binding affinity with a docking score of -7.5 Kcal/mol compared to CHEMBL4846365 (-7.0
Kcal/mol) and the clinical drug AZD-1480 (-6.5 Kcal/mol). Compound RA3 displays the highest docking
score for STAT3, indicating its potential as a candidate for targeting this gene. Compound
CHEMBL4846365 forms two hydrogen bonding interactions: one with the methoxy-substituted benzene
ring's oxygen atom and GIn644 and another between the urea group's oxygen atom and Lys658. Further-
more, pi-sigma interactions occur at Val637, while pi-pi stacked formations manifest at Tyr640 and Tyr657.
Alkyl and pi-alkyl interaction formations are evident at 11e653 and Pro639. In contrast, Compound R3 estab-
lishes three hydrogen bonding interactions: the oxygen atom of the methoxy-substituted benzene ring inter-
acts with Arg609, while the second di-methoxy benzene-substituted ring interacts with GIn644, and the
urea's NH group interacts with Ser636. Moreover, alkyl and pi-alkyl interactions form at Tyr640 and Pro639
(SeeFig.11.).

Table 5. Binding affinity scores of all the chalcone derivatives against four distinct targets.

Compound Name Target Genes
AKT1 SRC HSP90A STAT3

Dock score (Kcal/mol)
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RAl -10.4 -9.8 -10.2 -7.4

RA2 -10.4 -10.2 -10.2 -7.0

RA3 -10.5 -10.2 -9.7 -71.5

RA4 -10.1 -10.1 -9.8 -7.3

RAS5 -10.6 -10.7 -10.9 -7.1

RAG6 -10.7 -10.6 -10.5 -7.4

RATY -10.5 -10.6 -10.5 -7.2

RAS8 -8.7 -8.3 -8.6 -6.1

RA9 -8.9 -8.2 -8.6 -6.2

RA10 -8.7 -8.5 -8.6 -6.2
A-443654 -10.9 - - -
CHEMBL3899716 -10.9 - - -
CHEMBL3966806 -10.8 - - -
CHEMBL1241676 - -8.7 - -
CHEMBL196797 - -10.2 - -
CHEMBL82085 - -9.5 - -
DASATINIB - -10.5 - -
BI11B021 - - -8.8 -
CHEMBL2205245 - - -9.3 -
CHEMBL2205798 - - -9.1 -
CHEMBL4873718 - - -9.7 -
LUMINESPIB - - -9.6 -
REBLASTATIN - - -7.6 -

AZD-1480 - - - -6.5

CHEMBL1368342 - - - -6.1

CHEMBL1407470 - - - -6.1

CHEMBL 4846365 - - - -7.0
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3.10. Molecular Dynamics Analysis

A comprehensive molecular dynamics simulation running 200 nanoseconds was conducted using Desmond
software to meticulously evaluate the formation of an optimal complex involving compounds RA3, RA5,
RA6, CHEMBL4846365, Dasatinib, Luminespib, A-443654, and the target protein. The analysis focused on
critical parameters such as root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), and

essential interactions between the protein and ligands.

The simulation results indicated that compound RA5 achieved a state of stability in terms of the RMSD val-
ues of the C-alpha atoms within the protein complex after the 10-nanosecond threshold, maintaining steady
values around 2.0 Angstroms in the SRC target and 1.5 Angstroms in HSP90AAL throughout the simulation.
For the SRC target, ligand RA5 exhibited an initial equilibration phase lasting approximately 20 nanosec-
onds, subsequently maintaining stability within the binding pocket up to the 200-nanosecond mark (Figure
12). The RMSD of the protein also fluctuated with the ligand and, after 175 ns, slightly decreased, mirroring
the initial running time from 25 ns to 172 ns. For the HSP90AAL target, ligand RA5 displayed the same sta-
ble profile, with an upward trend towards stability between 12 and 172 nanoseconds, showing steady RMSD
values around 1.5 Angstroms post the initial equilibration phase of 10 nanoseconds. After 175 ns, the ligand
showed smaller fluctuations until 200 ns with RMSD values around 1.7 Angstroms. Meanwhile, the protein
also showed less fluctuation throughout, remaining within 3.5 Angstroms from 25 to 172 ns, but after that, it
showed a conformational shift and slightly increased until 200 ns (Figure 12). Moreover, the RMSD of the
known drug Luminespib initially fluctuated until 120 ns after which it stabilized and remained stable from
130 to 200 ns against the HSP90AAL gene. Dasatinib shows that the RMSD of the protein backbone of all
the complexes stabilized at approximately 1.5 Angstrom before 100 ns of simulation and then from 125 to
150 ns it increased and became more fluctuated; however, after 150 ns, Dasatinib became stable throughout

the period against the SRC gene.

RMSF values for compound RA5 for both targets, SRC and HSP90AAL, highlighted significant fluctuations
primarily in the protein's loop and terminal regions, while lower RMSF values at the binding site indicated
stable interactions between the protein and ligands. Additionally, the secondary structural composition of the
protein was analysed. For compound RA5 against the HSP90AAL target, the structural elements, including
alpha-helices and beta-strands, constituted 46.35% of the protein's structure, thereby contributing to its
structural stability and functional efficacy. Specifically, helices and strands accounted for 25.51% and
20.84% of the total structure, respectively. In the case of SRC, these elements comprised 39.76% of the pro-

tein's structure, with helices and strands representing 26.34% and 13.42%, respectively (Figure 13).

The detailed analysis further explored the interactions between the ligands and the protein's amino acid resi-
dues, illustrated through a histogram plot in Figure 14. This plot clearly shows the different types of interac-
tions - hydrogen bonding (marked in green), water bridges (in blue), and hydrophobic interactions (in pur-
ple), highlighting their importance in the binding process. Compound RA5 exhibited four hydrogen bonds
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against HSP90AA1, particularly with amino acids Tyr139 (oxygen atom of the urea group with 91%),
Leul03 (two hydrogen bonds, NH atom of the urea group with 96% and 99%), and Phel138 (with a water
molecule, and those water molecules interact with the oxygen atom). A di-substituted chlorobenzene ring
interacted with Phel70 residue as a hydrophaobic interaction with 37%. On the other hand, Compound RA5
exhibited three hydrogen bonds against SRC, particularly with amino acids Asp404 (oxygen atom of the
urea group with 92%), Glu310 (two hydrogen bonds with two water molecules, and those water molecules
interact with the NH atom of the urea group with 37% and 41%). A di-substituted methoxy-containing ben-
zene ring interacted with Phe405 residue as a hydrophobic interaction with 53% (See Supplementary File).

Against the AKT1 gene, the clinical drug A-443654 demonstrated stability in RMSD values, reaching 2.8
Angstroms, higher than compound R6. Compound R6 maintained stability over time within 1.6 Angstroms,
while A-443654 showed more consistent stability after 70 ns up to 200 ns, exhibiting steady RMSD values
(Figure 12). RMSF values for both compounds highlighted significant fluctuations primarily in the protein's
loop and terminal regions, while lower RMSF values at the binding site indicated stable interactions between
the protein and ligands. Overall, both compound R6 and drug A-443654 displayed similar secondary struc-
tural composition in the protein, with structural elements, including alpha-helices and beta-strands, constitut-
ing 40.52% of the protein's structure. This composition contributes to its structural stability and functional
efficacy, with helices and strands accounting for 18.50% and 22.01% of the total structure, respectively. The
detailed analysis further explored the interactions between the ligands and the protein's amino acid residues,
as illustrated through a histogram plot in Figure 14. Compound R6 exhibited all hydrogen bonding with wa-
ter molecules, with 54% of interactions with GIn79 facilitated by the oxygen atom attached to the benzene
ring, and 36% and 30% of interactions with Asp274 and Tyr272, respectively, facilitated by the NH atom of
the urea group. Asn54 directly interacted with the oxygen atom of the urea group by 39% and connected
with water molecules by 37%, which in turn are connected with the oxygen atom. Arg273 and Trp84 were
linked with di-substituted chloro and methoxy-containing benzene rings through pi-cation and hydrophobic
interactions, at 64% and 43%, respectively. Conversely, drug A-443654 displayed only two hydrogen bond-
ing interactions: one from the NH group of the pyridine ring with Ser205 at 36% and the other with Asn53
from the NH group of the benzimidazole ring at 45% (See Supplementary File).

Against STAT3, as illustrated in Figure 12, the RMSD plot for compound CHEMBL4846365 shows the
protein and ligand RMSD over time. Initially, both protein and ligand RMSD values rise, typical as the sys-
tem equilibrates. After this period, the ligand RMSD stabilizes, indicating that the compound has found a
relatively stable conformation within the binding site. However, the protein RMSD continues to exhibit
some fluctuations, suggesting that while the ligand may be stable, the protein is still undergoing conforma-
tional changes, possibly adjusting to the ligand's presence or due to its dynamic nature. In the case of com-
pound R3, the RMSD plot depicts a change over time, maintaining stability in the binding pocket from 100
ns to 150 ns, with some conformational shifts observed around the 10 to 100 nanosecond range, followed by

stability from 125 to 150 ns (Figure 12). The protein's RMSD, while fluctuating, does not show a pro-
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nounced rise, implying a more rigid structure or less conformational change in response to ligand binding
compared to the complex with compound CHEMBL4846365. RMSF values, demonstrated in Figure 13,
exhibit significant fluctuations mainly in the protein's loop and terminal regions, with lower RMSF values at
the binding site suggesting stable interactions. The structural elements of compound R3, including alpha-
helices and beta-strands, constituted 57.15% of the protein's structure, contributing to its structural stability
and functional efficacy, with helices and strands accounting for 40.63% and 16.51%, respectively. In con-
trast, for CHEMBL4846365, these elements comprised 57.43% of the protein's structure, with helices and
strands representing 40.42% and 17.02%, respectively. Compound R3 exhibited one hydrogen bonding in-
teraction with the oxygen atom of the urea group by GIn543 at 33%. Conversely, compound
CHEMBL4846365 did not show any significant contribution to interaction with the STAT3 gene target. This
comprehensive interaction analysis underscores the specificity and diversity of ligand-protein interactions
and emphasizes the role of molecular dynamics simulations in uncovering intricate details of binding

mechanisms, invaluable in the rational design of therapeutics for optimizing ligand efficacy and specificity.
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Fig.14. Analysis of the 2D Histogram of Protein-Ligand Contact for the Hit Compounds Derived from Mo-

lecular Docking Studies Against the Target Gene via Molecular Dynamics (MD) Simulations.
Principal Component Analysis (PCA)

Principal Component Analysis (PCA) provides a detailed view of the interaction dynamics between diverse
compounds and their target proteins throughout Molecular Dynamics (MD) simulations (Figure 15). This
technique captures key aspects of the compounds' stability and the range of their motion when bound to pro-
tein targets. In the case of Luminespib against the HSP9OAAL gene, the PCA plot shows data points tightly
grouped near the origin for both principal components. This clustering signifies a consistent interaction dy-
namic, with the compound maintaining a stable conformation throughout the simulation process. Con-
versely, Dasatinib displays a distinct pattern when bound to the SRC protein, with data points scattered more
widely along the principal component one (PC1) axis. This spread indicates a broader range of conforma-
tional states that Dasatinib may adopt during its interaction, implying a higher degree of flexibility and dy-
namic behavior in its binding conformations. RA5 presents an interesting case; when tested against both
HSP90AAL and SRC targets, there is a noticeable dispersal along the PC1 axis for each. This observation
suggests that RA5 can induce diverse conformational states within these protein complexes. Notably, when
bound to SRC, the spread along the principal component two (PC2) axis is relatively constrained, hinting

that while RA5 may exhibit a variety of shapes, these conformations likely change within a limited range
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Examining the interactions of RA6 and A-443654 with AKTL1 further expands our understanding. Both
compounds share a pattern of greater distribution along PC1 than PC2, which may allude to a significant
conformational diversity that unfolds along a particular dimension of the interaction. Compound A-443654
shows a pronounced distribution along PC2 as well, suggesting that it can move through an even more var-
ied range of conformations, possibly affecting different domains of the AKT1 protein. The interaction of
RA3 with STAT3 is characterized by the widest distribution, especially along PC1, indicating that RA3
might access a considerable array of conformational states (Figure 15). This wide range might represent
various modes of binding or a high degree of structural flexibility within the ligand when it is associated
with the protein. CHEMBL4846365 engagement with STAT3 is also depicted with substantial spread along
PC1, which is indicative of notable conformational dynamics. However, its moderate dispersal along PC2,
particularly when contrasted with RA3, suggests that the diversity of its conformational changes might be

less extreme across the entire structure of the complex.
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Fig. 15. Principal Component Analysis (PCA) of Hit Compounds in Protein-Ligand Complexes.
MMGBSA

The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) methods have been applied to cal-

culate the free energy of binding for a series of compounds against various gene targets, providing insights
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along with contributions from Coulombic, covalent, hydrogen bonding, lipophilic, packing, self-contact,
solvation, and van der Waals interaction. For compound A443654 targeting AKT1, the MM-GBSA binding
energy is notably high at -64.31 kcal/mol, with significant contributions from lipophilic interactions at -
22.74 kcal/mol and van der Waals forces at -59.68 kcal/mol. This suggests a substantial nonpolar interaction
component, complemented by Coulombic interactions at -11.06 kcal/mol. Similarly, CHEMBL4846365
against STAT3 shows a binding energy of -31.80 kcal/mol, with a relatively lower van der Waals contribu-
tion of -30.78 kcal/mol, indicating a slightly less hydrophobic interaction compared to A443654 with AKTL.
The lipophilic interactions for CHEMBL4846365 are also lower at -8.58 kcal/mol. Dasatinib's binding to
SRC is characterized by a binding energy of -83.46 kcal/mol, with a large negative contribution from lipo-
philic interactions at -29.06 kcal/mol and a significant van der Waals term at -73.20 kcal/mol, reflecting
strong hydrophobic and van der Waals interactions within the binding site. Luminespib shows a strong affin-
ity for HSP90AL with a binding energy of -85.86 kcal/mol. The notable lipophilic and van der Waals contri-
butions of -26.50 and -62.68 kcal/mol, respectively, highlight the compound's strong hydrophobic binding

character.

For RA3 against STAT3, the binding energy is -45.08 kcal/mol. This is paired with a hydrogen bond contri-
bution of -0.57 kcal/mol and a notable van der Waals term of -36.51 kcal/mol, indicating a good balance of
polar and nonpolar interactions. Compound RA5 targeting HSP90AL exhibits a particularly strong binding
energy of -96.26 kcal/mol, with the highest lipophilic contribution among the compounds at -34.71 kcal/mol
and a substantial van der Waals component at -66.31 kcal/mol, suggesting a potent interaction with the pro-
tein. RAG interacting with AKT1 has a binding energy of -66.30 kcal/mol. Its lipophilic and van der Waals
contributions are significant at -28.07 and -66.11 kcal/mol, respectively, indicative of favorable hydrophobic
interactions. Lastly, RA5 against SRC shows the most potent binding energy of -100.01 kcal/mol within this
dataset. The lipophilic term is extremely high at -38.98 kcal/mol, coupled with a large van der Waals contri-

bution of -75.37 kcal/mol, which could be reflective of a tight and efficient binding to the active site.
4. Discussion

The focus of our recent study was to identify key chalcone compounds and Chembl libraries aimed at AKTL,
SRC, HSP90A, and STAT3. These targets, by potentially inhibiting their metabolic pathways, were chosen
for their capacity to act against cancer, diabetes, fungal infections, inflammation, and bacterial infections.
This versatility makes chalcones a valuable candidate for drug development because they can target multiple
disease pathways. The approach to achieving this objective involved the integration of machine learning,
molecular mechanisms, and systems biology techniques. This approach involved structure-based high-
throughput screening of small molecule databases targeting these four genes, followed by pharmacokinetic
screening and docking. We also identified potential small molecule inhibitors that could block the binding
sites of these target gene pathways using machine learning-assisted Quantitative Structure-Activity Relation-
ship (QSAR) modeling and web-based affinity prediction. A multifaceted approach such as this demon-

strates the potential of integrated computational methodologies for advancing the discovery and develop-
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ment of drugs. Thorough exploratory data analysis (EDA) in the initial data analysis played a pivotal role in
shaping the subsequent phases of the research. We meticulously curated and preprocessed the dataset, un-
veiling significant distinctions between active and inactive compounds across various molecular properties.
The Mann-Whitney U test underscored the statistical significance of these differences, underscoring the po-

tential of chalcone derivatives as bioactive compounds.

Central to our investigation was the creation of Random Forest-based QSAR models for each target gene.
These models exhibited commendable predictive performance, characterized by high correlation coefficients
and acceptable error rates during training and testing. Significantly, the feature importance analysis uncov-
ered specific molecular descriptors crucial for predicting bioactivity, offering vital insights into the structural
determinants of chalcone derivatives' effectiveness. Extensive analysis uncovered a promising group of
compounds, particularly RA1 to RA7, which demonstrated exceptional bioactivity against the target genes.
For instance, compound RAL1 displayed a remarkable plCs, value of 5.76 against HSP90A, positioning it as
a standout candidate for further exploration. This correlation between compound structure and bioactivity
emphasizes the potential utility of chalcone derivatives in drug discovery. Molecular docking studies further
elucidated the binding interactions between chalcone derivatives and the target genes. Compounds RAS5,
RAG6, and RA7 exhibited significant binding affinities, equaling or exceeding those of existing drugs, indi-
cating their promise as potent compounds. The detailed analysis of these binding interactions reveals the
specific structural features responsible for bioactivity, aiding in a rational approach to drug design. For the
benefit of the scientific community, the fingerprint-based predictive models for the top genes AKT1, SRC,
HRSP90AA, and STAT3 were further deployed as the ASHS-Pred web-based application
(https://ashspred.streamlit.app/) and the source codes (https://github.com/RatulChemoinformatics/QSAR)
along with the data sets were made available on GitHub to encourage further extension or modification of
the web server. It is important to observe that as new experimental data on the individual gene inhibitors be-
come available, the predictive model proposed here could be continuously updated to increase its coverage
and accuracy. In molecular dynamic study, particularly highlighting compound RAS5's stability with SRC and
HSP90AAL targets. This stability, evidenced by consistent RMSD values, suggests potential therapeutic ef-
ficacy. Comparatively, the differences in RMSD and RMSF values between compounds, including A-
443654 and R6 against the AKT1 gene, underscore the unique interaction dynamics each compound exhibits
with its target. Furthermore, detailed analyses of secondary structures and ligand-protein interactions, such

as hydrogen bonding and hydrophobic contacts, offer a view of binding affinities and specificities.

Discussing the results of MMGBSA, the particularly high van der Waals and lipophilic interaction energies
observed for most compounds suggest that these compounds may have substantial hydrophobic contacts
within the binding sites of their respective targets, which is often a hallmark of drug-like molecules. For in-
stance, the compound RA5 against the SRC gene exhibited the most potent binding energy at -100.01
kcal/mol, marked by the highest lipophilic contribution at -38.98 kcal/mol among the dataset, underscoring

its strong affinity and specificity towards the target. This suggests that RAS5 could robustly occupy the hy-
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drophobic pockets within SRC, maximizing van der Waals contacts and potentially leading to high inhibi-
tory activity. Moreover, the compounds targeting HSP90AL, specifically Luminespib and RA5, demon-
strated high binding energies and substantial lipophilic contributions, indicating effective hydrophobic inter-
actions that could stabilize the inhibitor within the chaperone’s binding domain. These interactions, coupled
with the observed hydrogen bonds, are essential for a stable drug-protein complex, enhancing the efficacy of
the drug. In contrast, the lower binding energies seen with compounds like CHEMBL4846365 against
STAT3 suggest weaker interactions, which could be due to less optimal alignment within the binding pocket
or insufficient hydrophobic contact, potentially leading to reduced inhibitory activity. Comparing the PCA
plots collectively, it is evident that the conformational stability and flexibility of these compounds when in-
teracting with their respective targets vary. Compounds such as Luminespib exhibit a more constrained
range of motion, indicative of a stable interaction, while others like RA3 and CHEMBL4846365 demon-
strate significant conformational diversity, which might correlate with multiple binding modes or interac-
tions with the protein targets. These observations are critical for understanding the dynamic nature of pro-
tein-ligand interactions and can have implications in the optimization of these hit compounds for potential

therapeutic applications.

This study concisely demonstrates the significant potential of chalcone derivatives in targeting key genes,
with a focus on high-efficacy compounds RAL to RA7. It underscores the relevance of structural factors in
drug design and advocates for further experimental validation. Integrating machine learning and knowledge-
base neural network insights with molecular docking simulations, the research offers a promising direction
for developing treatments in anti-inflammation, antibacterial, anticancer, antidiabetic, antifungal and

antituberculosis areas, potentially addressing critical medical needs and advancing drug discovery.
5. Conclusion

We identified significant chalcone derivatives and ChEMBL libraries targeted at AKT1, SRC, HSP90A, and
STATS3. The ability of chalcones to target multiple disease pathways underscores their potential in drug de-
velopment. An integrated approach, combining machine learning, molecular mechanisms, and knowledge-
based neural network techniques, has advanced drug discovery. Notably, chalcone derivatives RAl to RA7
exhibited substantial bioactivity against key target genes, with RAL1 showing the most promising pICso
value, particularly against Hsp90A. Docking scores corroborated these findings, with RA1 displaying robust
binding affinities across all genes. Remarkably, compounds RA5, RA6, and RA7 exhibited docking scores
comparable to RA1, indicating similar potential. However, a decline in activity was observed from RA8 to
RA10, consistent with plCsg trends. Further reinforcing these findings, comprehensive molecular dynamics
simulations provided deeper insights into the dynamic interactions and stability of these compounds, particu-
larly RA5, with target proteins SRC and HSP90OAAL. The simulations of 200 nanoseconds highlighted the
compounds' stability and interaction dynamics, crucial for understanding their therapeutic potential high-
lighted the compounds' stability and interaction dynamics, crucial for understanding their therapeutic poten-

tial. The consistent RMSD values of compound RAS after the initial equilibration phase illustrate a stable
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interaction with the proteins, potentially contributing to its efficacy. This dynamic analysis enhances the in-
sights provided by static docking scores and bioactivity findings, giving a fuller understanding of how the
compounds interact with their target proteins. Compared to established drugs and ChEMBL compounds,
chalcone derivatives demonstrated promising results, with some outperforming known drugs in binding af-
finity. Specifically, compound RA5 exhibited exceptional binding affinity against HSP90A, surpassing Lu-
minespib, an FDA-approved drug. Compound RA3 exhibited significant binding to STATS3, highlighting the
potential of chalcone derivatives in a range of medical applications, evidenced by their encouraging binding
scores with crucial genes. Additional research into these derivatives, encompassing both in vitro and in vivo
studies, is necessary to confirm their effectiveness in treating diseases related to AKT1, HSP90AA, SRC,
and STATS3. Insights from machine learning models provide a robust foundation for future research in chal-

cone-based small molecule binding and drug discovery.
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