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Abstract 25 

Elaborate traits evolve via intense selective pressure, overpowering ecological 26 
constraints. Hindwing tails that thwart bat attack have repeatedly originated in moon moths 27 
(Saturniidae), with longer tails having greater anti-predator effect. Here, we take a 28 
macroevolutionary approach to evaluate the evolutionary balance between predation pressure 29 
and possible limiting environmental factors on tail elongation. To trace the evolution of tail 30 
length across time and space, we inferred a time-calibrated phylogeny of the entirely tailed moth 31 
group (Actias + Argema) and performed ancestral state reconstruction and biogeographical 32 
analyses. We generated metrics of predation via estimates of bat abundance from nearly 200 33 
custom-built species distribution models and environmental metrics via estimates of bioclimatic 34 
variables associated with individual moth observations. To access community science data, we 35 
developed a novel method for measuring wing lengths from un-scaled photos. Integrating these 36 
data into phylogenetically-informed mixed models, we find a positive association between bat 37 
predation pressure and moth tail length and body size, and a negative association between 38 
environmental factors and these morphological traits. Regions with more insectivorous bats and 39 
more consistent temperatures tend to host longer-tailed moths. Our study provides insight into 40 
tradeoffs between biotic selective pressures and abiotic constraints that shape elaborate traits 41 
across the tree-of-life.  42 
 43 
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MAIN TEXT 44 

 45 

1. Introduction 46 

Elaborate traits (complex, conspicuous derivations of pre-existing traits that serve a novel 47 

function [1]) provide a lens through which we can investigate opposing evolutionary pressures, 48 

as they are most likely to have emerged via strong selection. From the Narwal’s tusk [2] to the 49 

peacock’s train [3] to the porcupine’s quills [4], elaborate traits often play a role in high-stakes 50 

inter or intraspecific interactions – either to win potential mates or to evade potential predators. 51 

Due to their complexity and conspicuousness, these traits are commonly assumed to come with 52 

tradeoffs [5]. In some cases, tradeoffs have been empirically shown [6] but in many systems they 53 

can be hard to measure [7,8]. Frequently, when attempting to uncover tradeoffs, tests focus on 54 

short-term “acute tradeoffs” (i.e., increased energy expenditure, reduced maneuverability, etc. 55 

[5]). It can also be difficult to estimate these acute costs, given that traits evolve as integrated 56 

components of an animal’s biology and thus commonly occur in tandem with cost-reducing 57 

characteristics [9]. As a result, longer-term tradeoffs are usually the more relevant constraining 58 

force on trait elaboration [5]. Here, we use macroevolutionary analyses to investigate the relative 59 

roles of biotic and abiotic factors on the evolution of an elaborate wing trait in moths. 60 

Moths in the family Saturniidae typically live for only a week as adults, during which 61 

time they do not feed and must locate mates at night to reproduce [10] while avoiding 62 

echolocating bats. At least five saturniid lineages have independently evolved hindwing tails 63 

with twisted and cupped ends [11]. Live bat-moth battles have revealed that these tails function 64 

as an anti-bat strategy. Experimental alteration, as well as natural variation of tail length in the 65 

luna moth (Actias luna) and the African moon moth (Argema mimosae), showed that as tail 66 
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length increases, moth escape success also increases [11,12]. Compared with individuals whose 67 

tails were removed, those with tails got away >25% more from bat attack, despite there being no 68 

measurable difference in moth flight kinematics between treatments [12]. Tails therefore 69 

represent a powerful countermeasure to a nearly ubiquitous nocturnal selective force [13] and 70 

their success is highlighted by their repeated convergence across the saturniid family tree [12].  71 

Studies on alternative pressures of hindwing tails have thus far been unable to uncover 72 

another driver or acute tradeoff. Mating trials using the luna moth have found no evidence that 73 

tails are used in mate selection [1]. Experimental studies with tailed and non-tailed luna moth 74 

models and diurnally foraging birds indicated that tails do not increase roosting moth 75 

conspicuousness to these predators, nor do they protect the moth by breaking search image [14]. 76 

These wing appendages also do not seem to be either a hindrance or an asset to evasive flight 77 

maneuvers based on in-battle kinematic analysis [12].  78 

Tails may instead be limited by longer-term tradeoffs. In general, Lepidoptera wings 79 

grow proportionally with body size and both attributes are influenced by nutrition [15,16]. The 80 

longer amount of time a lepidopteran can stay in its larval form acquiring resources, the larger its 81 

body and traits are likely to be. Developmental studies testing tradeoffs between appendages in 82 

larval and pupal butterflies also indicate that growing and shaping wings has resource allocation 83 

costs [17,18]. An evo-devo study with the sphingid moth (the sister family to saturniids [19,20]) 84 

Manduca sexta showed that an increase in body size comes with a compensatory increase in 85 

development time or growth rate for wings to achieve appropriate allometric scaling [21]. Thus, 86 

seasonality is expected to lead to a broad pattern where adult lepidopteran body size and 87 

associated traits are smaller in more seasonally variable environments (generally higher latitude 88 

regions) and larger in more consistent (lower latitude) environments with longer growing seasons 89 
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[22–26]. Insects therefore do not seem to conform to the same ecogeographic laws that has been 90 

ascribed to endotherms. That is, body size does not necessarily increase at higher latitudes 91 

(Bergmann’s Law) [24,27,28], nor do appendages (wings) appear to shorten at higher latitudes 92 

(Allen’s Law) [29]. Instead, body size and wing lengths are likely governed by other 93 

physiological forces. In the case of elaborate wing structures, it may be that the energetics of 94 

building extra wing material for a tail is a limiting factor for moths living in more seasonally 95 

variable environments with shorter growing seasons.  96 

To test the macroevolutionary pressures that have shaped the elaborate hindwing tail trait, 97 

we focused our analyses to an entirely tailed clade of Saturniidae: Actias + Argema. This group 98 

is primarily distributed across Asia, from present-day Russia to Indonesia, and Africa [30], thus 99 

covering a broad range of habitat with many environmental conditions and exhibiting an array of 100 

hindwing tail lengths. We hypothesized that across their distribution and evolutionary history, 101 

large insectivorous bats have exerted a positive selective force on saturniid hindwing tails, but 102 

that elongation has been constrained by abiotic environmental factors. We further hypothesized 103 

that the association between bat predation pressure and moth body size has not been as strong as 104 

the association between bats and hindwing tail length, but that body size has been similarly 105 

susceptible to environmental constraints.  106 

To test these hypotheses, we first built a well-sampled, time-calibrated phylogeny of the 107 

tailed moon moth clade (Actias + allies) and used this tree to trace the evolution of hindwing 108 

tails. In order to access the greatest possible number of observations, we employed a novel trait 109 

measurement approach where we extracted wing lengths from both digital museum collections 110 

images and community science photos on iNaturalist, using the moth’s antenna as a substitute 111 

scale bar, and verified this method using scaled museum images. We propose this approach for 112 
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future researchers to use as a solution for the lack of scale bar in lepidopteran community science 113 

photos. To parse hindwing length trends from changes in overall size, we used moth forewing 114 

length as a proxy for body size [31,32]. We then investigated the effect of bat predation pressure 115 

(inferred abundance of sufficiently large insectivorous bat species) and environmental factors 116 

(mean annual temperature, average seasonal temperature variation, length of growing season, 117 

mean annual precipitation, and latitude) on our wing lengths of interest using phylogenetically-118 

informed regressions. We predicted that in general, moth species whose distributions overlapped 119 

areas with greater insectivorous bat predation pressure would have longer tails than species 120 

inhabiting less bat-rich areas. We also predicted that this trend would be curtailed in regions with 121 

high seasonal temperature variability and thus more limited host plant growing season lengths. 122 

While we expected body size to follow similar patterns, we predicted the relationship between 123 

bat predation and size would be less pronounced. Our biologically-informed macroevolutionary 124 

approach provides a useful framework for scientists to examine the environmental and biological 125 

pressures driving trait elaboration across diverse taxa. 126 

 127 

2. Materials and methods 128 

 129 

(a) Taxon sampling and DNA extraction 130 

To reconstruct a well-sampled phylogeny of Actias, we used a combination of previously 131 

published data (7 ingroup species) [12] and newly sampled specimens from the McGuire Center 132 

of Lepidoptera and Biodiversity at the Florida Museum of Natural History (MGCL), Gainesville 133 

FL, USA (14 ingroup species; see Dataset S1 on Dryad for more details). We note that three of 134 

our newly sequenced specimens were from species that had previously been sequenced and 135 

published in [12] (A. gnoma, A. selene, A. sinensis). For the purposes of this study, we chose to 136 
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sequence three new specimens, as the previous specimens did not have detailed enough locality 137 

data to include in our dataset. Our outgroup species were selected for their use as secondary 138 

calibration points in our phylogeny and came from sequences published in Kawahara et al. [20], 139 

as this analysis is the most comprehensive, fossil-calibrated phylogeny of Lepidoptera to date. 140 

We extracted DNA from both frozen, papered specimens (i.e., stored in an envelope in a -80 141 

freezer since collection) and dried, pinned specimens (i.e., traditional museum preservation 142 

method) using an OmniPrep Genomic DNA Extraction Kit (G-Biosciences, St. Louis, MO) and 143 

evaluated DNA quality using agarose gel electrophoresis and quantity using Qubit 2.0 144 

fluorometer (ThermoFisher Scientific). We sent our extracts to RAPiD Genomics (Gainesville, 145 

FL, USA) for library preparation, hybridization enrichment and sequencing using an Illumina 146 

HiSeq 2500 (PE100).  147 

We analyzed our dataset using the Anchored Hybrid Enrichment (AHE) pipeline of 148 

Breinholt et al. [33]. We direct readers to this paper for detailed methods, but in brief, this 149 

pipeline uses an iterative probe-baited assembly process to clean raw reads and return an aligned 150 

set of orthologs for each locus in the probe kit. Because saturniids are in the superfamily 151 

Bombycoidea, we used the Bom1 probe kit (895 total loci) with Bombyx mori as our reference 152 

taxon [19]. We focused our analyses to coding regions (exons) and used MAFFT to align our 153 

sequences. We removed all loci that had <50% taxon coverage, leading to a total data set of 535 154 

nuclear loci (40% of possible loci). To ensure that each locus was in the correct frame and did 155 

not contain any spurious nucleotides, we visualized each file in AliView [34] and made any 156 

necessary manual edits. To assemble our supermatrices, we used FASconCAT-G v1.02 [35]. 157 

Cleaned probe regions and supermatrices can be found on Dryad. 158 

 159 
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 160 

(b) Phylogeny and estimation of divergence times 161 

 We reconstructed phylogenies with maximum likelihood (ML) and Bayesian inference 162 

(BI) optimality criteria, in IQ-TREE v. 2.0.3 [36] and BEAST v. 1.10.4 [37], respectively (Figs. 163 

S1-3). We inferred our maximum likelihood tree using IQ-TREE with the following commands: 164 

for one tree we used the ‘MFP+MERGE’ model, which maximizes model fit by sequentially 165 

merging pairs of genes (Fig. S1). For best compatibility with BEAST, we also inferred an ML 166 

tree using ‘-m TESTMERGE’, which operates similarly to ParitionFinder [38], and then 167 

specified only BEAST-applicable models: JC69, TN93, K80, F81, HKY, SYM, TIM, TVM, 168 

TVMef, GTR. For both ML trees, we calculated support values using 1000 ultrafast bootstrap 169 

replicates via ‘-bb 1000’ and 1000 Shimodaira-Hasegawa approximate likelihood ratio test 170 

replicates via ‘-alrt 1000’. We used the ‘-bnni’ command, which reduces the likelihood of 171 

overestimating branch supports by employing a hill-climbing nearest neighbor interchange (NNI) 172 

technique [36] (Fig. S2). We also performed a multispecies coalescent analysis with ASTRAL-173 

III (v. 5.7.5) [39], which infers a summary species tree from the individual loci files generated in 174 

the IQ-TREE analysis (Fig. S4).  We used all the default settings for the Astral analysis and 175 

assessed branch support using local posterior probabilities where anything <0.95 is considered 176 

weak support. This tree did not conflict significantly with our ML tree and we focus our analyses 177 

to the ML and Bayesian trees. 178 

To infer our BEAST trees, we used BEAUTI v.1.8.4 [37] to create our command file. To 179 

infer divergence times, we used four secondary calibration points from Kawahara et al. [20]: 180 

Lasiocampoidea/Bombycoidea + other leps (78.61 – 99.27 mya), Lasiocampoidea + 181 

Bombycoidea (74.15 – 94.4 mya), Sphinigdae + Saturniidae (56.86 – 75.42 mya), Saturniidae 182 
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(33.82 – 51.24 mya), Saturniini (14.54 – 30.63 mya). We constrained these calibration nodes 183 

with uniform distributions to stay within the age ranges inferred by [20].  To take advantage of 184 

the flexibility that BEAST offers regarding branch evolution rate, we used an uncorrelated 185 

relaxed clock model and drew from the lognormal distribution at each branch [40]. For our 186 

nucleotide substitution rate models, we used the substitution model, base frequencies, and site 187 

heterogeneity models identified by ModelFinder in IQ-TREE for each partition (23 partitions). 188 

We used our phylogeny inferred by IQ-TREE as the starting tree (Fig. S1), with calibration 189 

nodes manually set within the bounds of their age ranges using Mesquite [41]. We built Bayesian 190 

trees with either a fixed tree topology, to constrain the tree to the topology of the maximum 191 

likelihood input, or a classic operator mix, to allow BEAST to infer topology. To compare 192 

different models of evolution, we used “path sampling/stepping-stone sampling” marginal 193 

likelihood estimates (MLE) to determine whether a Birth-Death (constant rate of speciation and 194 

extinction applied) or Yule (special case of Birth-Death where extinction is null) prior best fit 195 

our data (Table S1) [42]. We performed separate runs that varied by operator mix and tree priors 196 

for 200 million generations each, sampling every 20000. All analyses were performed on the 197 

University of Florida’s high-performance computing cluster, HiperGator2.  198 

 199 

(c) Ancestral range estimation 200 

To estimate ancestral ranges, we used the R package BioGeoBEARS [43] in RStudio (v. 201 

2022.12.0+353) to fit a dispersal-extinction-cladogenesis (DEC) model. Under the DEC model, 202 

region occupancy is allowed to change along branches for each species via range expansion or 203 

reduction. Region occupancy can change at nodes via region-specific speciation where either 204 

both daughter species inhabit a range, one daughter species inhabits a subset of the range and the 205 
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other inhabits the larger multi-area range, or the daughters split the ancestral range [44]. We used 206 

our BEAST maximum clade credibility tree and pruned outgroups to focus solely on species of 207 

interest and a few most closely related sister taxa. Our information about extant distributions of 208 

tailed moon moth species came from GBIF, iNaturalist (Research Grade only), and museum 209 

collection locality data, as well as expert input (Stefan Naumann and R.A.S.; see Supplementary 210 

Archive 4 on Dryad). Following Toussaint & Balke [45] and Lohman et al. [46], we defined 211 

seven regions based on biogeographical patterns and barriers (e.g., oceans, mountains): Africa 212 

(F), Americas (A), Europe (E), Philippines (H), Indomalaya + Greater Sunda Islands (M), East 213 

Palearctic (P), and Wallacea (W) (Figs. 1, S5). We built a dispersal multipliers matrix following 214 

Toussaint et al. [47]. According to this schema, probabilities of dispersal are penalized by the 215 

number of land masses that the animal must travel through to make it to another land mass or the 216 

size of the dividing body of water. For example, the dispersal probability from Wallacea to the 217 

Europe (Western Palearctic) is lower than from Wallacea to the Philippines (Tables S2-3, and 218 

see Supplementary Archive 3 on Dryad). This is a relatively young clade, and therefore has 219 

almost exclusively existed in a world of modern biogeographical configuration, however we did 220 

institute two time stratification layers to account for the closing of the Bering land bridge ~5 mya 221 

[48,49]. While there were subsequent re-emergences of a Beringa bridge, the crossing likely 222 

would have been too cold for saturniid moths to use during the glacial maximum [49,50]. Thus, 223 

our time strata were set as 20 – 5 mya and 5 – 0 mya, with the only difference between them 224 

being a higher dispersal multiplier from East Palearctic to North America in the older time 225 

stratum (Table S3). We conducted two separate analyses, one more permissive and one more 226 

restrictive. Our permissive analysis allowed a maximum of 4 possible range outcomes, with 227 

nonadjacent ranges disallowed. To limit the number of permutations, and given that extant 228 
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species exist in a maximum of two of our defined regions, our second analysis restricted possible 229 

range outcomes to 2 and defined the combination of regions that were possible (i.e., only 230 

adjacent regions). 231 

 232 

 233 

(d) Bat predation pressure   234 

We generated species distribution models (SDMs) for bats carefully selected to represent 235 

likely saturniid predators. Our selection process identified bats that are primarily insectivorous 236 

and of sufficient size to be common predators that would exert strong evolutionary pressure on 237 

the moths, avoiding those that might occasionally pursue insect prey under limited circumstances 238 

(e.g., frugivores that may opportunistically prey upon insects, such as Phyllostomids [51]). We 239 

first identified all bat families where ≥ 50% of genera are aerial insectivores (18 out of 20 240 

families) [52]. From these families we selected genera where ≥ 50% of species are sufficiently 241 

large (≥10g on average) aerial insectivores whose ranges overlap our moth species of interest (30 242 

out of 129 genera), and finally filtered the data set to just species that also followed this 243 

description (Dataset S2). We chose this size threshold based on observations of bat behavior in 244 

the lab [11,12] and the general scaling of bat size to size of prey items [53]. After filtering, 179 245 

species (59% of our initial target list) had sufficient occurrence records to reliably fit SDMs.  246 

We leveraged an SDM-generation pipeline optimized for generating the distribution 247 

models of hundreds of species [54,55], customized to enhance performance for bats. First, we 248 

retrieved all bat occurrence records from the Global Biodiversity Information Facility 249 

(https://www.gbif.org/) and iDigBio (https://www.idigbio.org). We harmonized the taxonomy of 250 

records to the target species list using species definitions and synonyms from [52]. This 251 
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matching was done using a manually-generated synonyms list for each targeted species. Data 252 

were cleaned with the “CoordinateCleaner” R package [56] and vetted with two rounds of 253 

manual checks. For each species with occurrence records, we defined accessible areas using a 254 

dynamic alpha hull encompassing cleaned points and buffered by 200 km. Dynamic spatial 255 

thinning was conducted on points as in [55], with the total accessible area determining the degree 256 

and rigor of thinning; model outputs were further tuned with manual checks to remove additional 257 

spatial biases. 258 

We selected model predictors based on other macroecological studies of bats [57–60]; for 259 

example, we used topological ruggedness and roughness as proxies for cave and carst roosting 260 

habitats used by bat species [57]. Initial models were fit using 15 candidate predictors from 261 

BioClim (BIO1–2,4–6,12–17 [61]), three topographic (elevation, roughness, and terrain 262 

ruggedness index [62]), and one from MODIS data (percent tree cover [63]). The initial 263 

candidate predictors were selected to reduce collinearity while representing biologically 264 

plausible factors related to bat ecology. We further reduced model collinearity by iteratively 265 

refitting MAXENT models using default settings until all variance inflation factors were below 266 

5. Using species-specific selected predictors, we quantitatively evaluated a suite of Maxent 267 

models with different tuning parameters to minimize model complexity and prevent overfitting 268 

using the R package ENMeval [64], using possible tuning parameters described in [55]. Final 269 

models (Table S4) were subject to an additional round of manual checks and adjusted or 270 

discarded if excessive commission or omission were apparent. We estimated species richness as 271 

the summed clog-log probability values from continuous surfaces, as recommended in [65]. To 272 

generate our estimates of bat abundance, we multiplied the clog-log probability SDM surface for 273 

each species by the population estimates provided in [66] and then divided by the sum of the 274 
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clog-log surface to estimate the number of individual bats of a species in each 4664 m x 4664 m 275 

grid cell. Population estimates were generated via a regression model that incorporates average 276 

body mass (log transformed and z-score normalized) and IUCN Red List category for the species 277 

[66]. We then summed each species-specific density surface to estimate total bat density at each 278 

relevant location, and finally report the bat density surface in areas that overlap the moth species 279 

of interest (Fig. 2). For both bat richness and abundance, we extracted values at each site 280 

associated with moth hindwing length measurements. Code used to generate bat SDMs can be 281 

found on the Zenodo repository. 282 

 283 

(e) Hindwing tail trait acquisition 284 

 To extract wing measurements and associate these measurements with the individual’s 285 

coordinates, we gathered photographs from both natural history collections, including MGCL, 286 

American Museum of Natural History (AMNH), New York, NY, USA, and Stefan Naumann’s 287 

collection, (Berlin, DE), and publicly sourced data repositories, including GBIF and iNaturalist 288 

(see Dryad for all photos). To scrape images and associated coordinates from these online 289 

repositories, we used the function occ_cite in the R package “rgbif” [67] (see script on Dryad). 290 

While iNaturalist vastly increased our number of observations per species over museum 291 

specimens alone, photos on this site are unstandardized and most often are not associated with a 292 

scale bar. We therefore sought to find an alternative means of extracting a measurement of tail 293 

length. We determined that the most commonly visible components of the moth in these pictures 294 

were the forewings, hindwings, top-half of the thorax and antennae. In bat-moth interactions, the 295 

distance between the moth’s body and tail tips are most predictive of escape success [12]. We 296 

therefore were most interested in absolute tail length for our analyses. As a result, our goal was 297 
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to find a component of the moth’s body that was as agnostic to body size as possible, to be used 298 

as a relatively standardized scale bar. We found that antennae length, unlike thorax width, had a 299 

low correlation with FW length (body size) in these species (Fig. S6). To further standardize this 300 

metric, we found the mean antenna length for each species and divided the individual antenna 301 

measurements by their species average. We then divided the forewing and hindwing lengths of 302 

each individual by their adjusted antenna length. To verify that these adjusted wing lengths led to 303 

similar absolute wing measurements in both scaled (museum) and unscaled (iNaturalist) photos, 304 

we performed Wilcoxon ranked sum tests for the forewings and hindwings of all species (see 305 

Fig. S7 legend for results). We visualized the overlap (mean ± SD) between adjusted wing length 306 

measurements from scaled photos and non-scaled photos and verified that both of these 307 

overlapped the “true” absolute wing measurements from scaled photos (Fig. S7). We further 308 

verified this approach by comparing true wing lengths from a subset of calibrated photos (with a 309 

scale bar) with their adjusted wing lengths (omitting the scale bar). That is, for this latter 310 

analysis, the comparison is between the exact same photos to test this method. Wilcoxon ranked 311 

sum tests again revealed no significant difference between true wing lengths (with a scale bar) 312 

and adjusted wing lengths (without a scale bar) (Table S5). While this approach leads to a slight 313 

underestimation of wing lengths for moths whose antenna are larger than their species mean, and 314 

a slight overestimation of wing lengths for moths whose antenna are shorter than their species 315 

mean, these differences are not statistically significant (Table S5) and the relationship between 316 

forewing and hindwing length within an individual remains quite consistent, as these wing 317 

lengths are relatively tightly correlated (r2 = 0.60). To ensure that our results for different species 318 

were not biased by the number of scaled or unscaled photos that were available for it, we used 319 

the adjusted wing length measurements for all of our analyses. All measurements were extracted 320 
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using imageJ v.1.53t [68], via the “segmented line” tool to get antenna length from top to 321 

junction with the head and the “straight line” tool to get wing and thorax width lengths. 322 

Hindwing length was from tip of the tail to junction with thorax and forewing length was from 323 

tip of the forewing to junction with thorax. Thorax width was measured as the width of the 324 

prothorax (Fig. S6). When possible, we took measurements from the right side of the moth’s 325 

body, however, we would use the left side when elements from the right were unavailable or 326 

were less planar than from the left. We used only male moths for all analyses, as they are better 327 

represented in both collections and community scientist repositories and likely face higher bat 328 

predation due to flying more to locate females [69]. We also made sure all measurements taken 329 

from publicly sourced images were of high-quality, and of relatively un-damaged specimens and 330 

that the camera was at a perpendicular angle to the animal, to prevent inaccurate measurements 331 

due to distortion. 332 

 333 

(f) Phylogenetically-informed trait analysis and ancestral state reconstruction 334 

To determine the strength of biotic and abiotic pressures on relative hindwing length, we 335 

used the function pglmm from the R package “phyr”, a mixed model approach to estimate 336 

evolutionary phenomena, accounting for phylogeny and spatial correlation [70]. We used 337 

adjusted hindwing length (HW length/(Antenna length/mean species antenna length))) as our 338 

response variable. To create our abiotic predictor variables, we extracted bioclimatic and 339 

growing period data for each moth occurrence in our dataset. Climatic variables came from the 340 

historical WorldClim dataset (2.5 arc-minute resolution, via the R package “raster”), which 341 

averages values between the years 1970-2000 (https://www.worldclim.org/data/bioclim.html). 342 

We extracted length of growing period (LGP) values from The Food and Agriculture 343 
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Organization Food Insecurity, Poverty and Environment Global GIS Database (UN FAO FGGD) 344 

[71] using ArcGIS Pro v.2.6.6 and found the median of each LGP range. The LGP is determined 345 

by soil temperature and available moisture, accounting for transpiration, for crop growth. From 346 

these various data sources, we had a total of six predictors of interest in our models: bat 347 

abundance (described above), mean annual temperature (°C; code from Worldclim: BIO1), 348 

seasonality (standard deviation of mean annual temperature*100; BIO4), average annual 349 

precipitation (mm; BIO12), and median length of growing period (days). The phylogenetic 350 

covariation matrix and moth species were set as random effects in our models to account for 351 

relationships between the species and multiple occurrences per species. All variables were mean 352 

center scaled using the R function scale to make them comparable across highly varying units of 353 

measurement. To ensure that variables were not multicollinear (vif < 3 [72]), we used the vif 354 

function from the R package “car”. We ran a series of models with single or multiple predictors 355 

and used their DIC scores from the pglmm regression to determine best fit (Table S5 and in 356 

Supplementary Archive 1 on Dryad). While we felt it was important to include latitude in our 357 

models, due to its relevance in many other macroevolutionary studies, its posterior distribution 358 

was very broad, overlapped the zero line in all models, and it uniformly increased the DIC scores 359 

of our models. It did not change the relationships between our response variables and other 360 

parameters, however. We therefore maintain it in our models but do not discuss it as an 361 

important predictor (Fig. 3; and see code and outputs in Dryad).  362 

We conducted comparative trait analyses and ancestral state reconstruction using the 363 

ContMap function and estimated phylogenetic signal using the phylosig function in the R 364 

“Phytools” package [73]. While we used only scaled museum specimens for this analysis, we 365 

generated the same metric that we used for ecological models to maintain consistency: HW 366 
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length/(Antenna length/mean species antenna length)). To determine whether the best-fitting 367 

evolutionary parameter underlying this trait evolution was Brownian motion (BM; random 368 

walk), Ornstein-Uhlenbeck (OU; adaptive peaks), or early burst (EB; rapid then slow 369 

morphological evolution), we used the R “Rphylopars” package [74]. We used SURFACE [75] 370 

in R to test for convergent trait regimes across the phylogeny (see code and outputs on Dryad). 371 

 372 

 373 

3. Results 374 

a) Phylogeny and estimation of divergence times 375 

We built a 21-ingroup species AHE tree, including 14 newly sequenced specimens and 376 

seven previously sequenced specimens (see Dataset S2 for source and preservation type for each 377 

species). This represents about half of the total species in this group (40 species [76]), however, 378 

we accomplished broad sampling across the genus and the majority of missing species are in 379 

species complexes with those that we have represented in this tree. As with other phylogenetic 380 

studies of Saturniidae (e.g., 10, 11), we recovered a well-supported monophyletic group 381 

comprising Argema (Actias + Graellsia), sister to the Australian/Papua New Guinea clade 382 

Syntherata (Opodiphthera + Neodiphthera). Based on our log marginal likelihood comparisons 383 

(Table S1), we decided to use the Bayesian fixed tree with a Birth-Death model for all further 384 

analyses and interpretation (Fig. S3).  We found that the Actias + allies diverged from these sister 385 

taxa ~22 mya (HPD: 17.01 – 28.26 mya) (Fig. 1). While Graellsia has been known to be nested 386 

within Actias [77], and this was confirmed in our study (divergence from the other Actias in its 387 

clade ~9 mya, HPD: 5.99 – 10.59 mya), we maintain the convention of using the Graellsia 388 

isabellae nomenclature. Within the Actias + allies ingroup, our tree largely agreed with the 389 
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typology of these previous, less densely sampled AHE trees, as well as a study that reconstructed 390 

a phylogeny based on 16 Actias + allies species based on molecules, morphology, and behavior 391 

[78].  392 

We found that Brownian Motion was the best fitting evolutionary model underlying the 393 

hindwing trait. That is, the evolution of tail length can be best described by a random walk, in 394 

comparison to a model with adaptive peaks or an early burst model (see scripts on Dryad). In line 395 

with this result, we found significant phylogenetic signal in hindwing length (where greater 396 

phylogenetic signal is represented by a K value closer to 1; Blomberg’s K=0.78, p= 0.002), and 397 

our SURFACE analysis [75] revealed only one hindwing length regime shift at the stem of 398 

Argema + Actias from the non-tailed sister taxa (Fig. S8). While we did not detect a signal of 399 

adaptive peaks in our dataset, our ancestral state reconstruction (ASR) analyses indicate that tails 400 

have repeatedly elongated in at least three separate lineages: Argema mittrei + A. mimosae, A. 401 

chapae, and Actias maenas + A. philippinica + A. isis. We also find evidence of tail length 402 

shortening in an equal number of lineages: Graellsia isabellae, Actias neidhoeferi + A. felicis, 403 

and A. aliena + A. dulcinea (Fig. 1). For comparative trait analyses using absolute hindwing 404 

length and absolute forewing length, see Figs. S9-10. 405 

 406 

b) Ancestral range estimation 407 

To examine whether biogeographical history could explain some of the variation in 408 

hindwing tail length, we used BioGeoBEARS [43] to estimate ancestral ranges. Our 4-area range 409 

analysis resulted in unlikely combinations of ranges (Fig. S5A) and thus interpret the 2-area 410 

range analysis moving forward (Figs. 1 and S5B). We inferred a 0.83 probability that 411 

Indomalaya is part of the ancestral range of the tailed moon moths (including Argema and Actias 412 
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species) and a 0.62 probability that Africa is in the ancestral range. Based on the inferred 413 

ancestral range of the common ancestor between Actias + allies and their closest sister taxa (0.76 414 

probability Australia), we think it likely that the ancestral Actias moved from Australia to 415 

Malaysia by ~15mya (HPD: 12.03 – 18.77 mya), after which point the Actias were extinct East 416 

of Lydekker’s line. The lineage leading to Argema split off from the rest of Actias and made it to 417 

Africa by about 11mya (0.97 probability). Actias then diverged into a Palearctic group and an 418 

Indomalaya group by ~9.5mya (HPD: 6.07 – 11.45 mya). It appears that there was a second 419 

wave of Actias movement into the Palearctic region by about 5 mya, leading to the extant short-420 

tail species A. dulcinea, aliena, and gnoma. The diversification of Actias species across Wallacea 421 

and the Philippines islands ~4 mya (HPD: 2.40 – 5.04 mya) likely originated from populations in 422 

Malaysia (0.91 probability). It is unclear how Actias arrived in the Philippines, as there is a 423 

roughly equal likelihood that they colonized this region via Wallacea or from the Indomalaya 424 

region. We also do not have strong inference as to the exact manner in which Actias colonized 425 

Northern America and Europe, but our analysis indicates that they did so from the Eastern 426 

Palearctic region, with lineages leading to A. luna and truncatipennis likely using the Bering 427 

Land Bridge (Figs. 1, S5).  428 

 429 

c) Phylogenetically-informed linear mixed models 430 

Our global phylogenetically-controlled linear regression model (pglmm) revealed that 431 

hindwing length exhibits a positive relationship with bat predation pressure (parameter estimate 432 

(PE) of bat abundance: 0.082, 95% credible interval (CI): 0.028 – 0.137) (Fig. 3A). We also 433 

found a positive association between median growing season period and hindwing tail length 434 

(PE: 0.082, CI: 0.034 – 0.132). The credible interval for mean annual precipitation overlapped 435 
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zero, but the probability that this parameter had a negative relationship with tail length was 0.94 436 

and thus we interpret this along with the other environmental variables (PE: -0.045, CI: -0.097 – 437 

0.007). Average annual temperature and annual seasonal temperature variation also displayed 438 

negative relationships with hindwing length, with seasonal temperature variation having the 439 

greatest effect size (PE seasonal temp variation: -0.126, CI: -0.236 to -0.070, PE avg temp: -440 

0.100 CI: -0.166 to -0.039) (Fig. 3A). We found that this global model performed better than a 441 

null model (which only accounts for phylogenetic relationships) and a model that contained all 442 

abiotic variables and excluded bat abundance, and performed slightly worse than an interaction 443 

model between bat abundance and seasonal temperature variation (DIC full model: 350, DIC 444 

null: 373, DIC no bats: 357, DIC interaction: 346). When we include the interaction, we find the 445 

same relationships between our parameters and hindwing tail length as in our global model. 446 

Under this framework, the bat parameter crosses the zero line, however there is still a 0.91 447 

probability that bat abundance has a positive relationship with hindwing tail length (Fig. 3B). We 448 

found that while phylogenetic relationships alone explain much of the variance in hindwing 449 

length (r2 = 0.87), the global model explained more (r2 = 0.89). Additionally, removing bat 450 

abundance from the model decreased the explanatory power of the model by ~2% and including 451 

the interaction term increased explanatory power by ~1%, compared to the global model 452 

(r2_pred [79]; see code and outputs on Dryad). Breaking the dataset down by moth species also 453 

demonstrated that hindwing length was positively correlated with bat abundance in almost all 454 

species and was negatively correlated with seasonal temperature variation in almost all species 455 

(Fig. S11; see Table S6 for model structures).  456 

The global pglmm analysis on forewing length (a proxy for body size [31,80]) showed 457 

similar relationships with all parameters (PE bat abundance: 0.149, CI: 0.065 – 0.233, PE LGP: 458 
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0.106, CI: 0.028 – 0.183, PE precipitation: -0.136, CI: -0.219 – -0.053, PE avg temp: -0.1184, 459 

CI: -0.216 – 0.021, PE seas temp: -0.101, CI: -0.271 – -0.069) (Fig. 3C). Again, the model 460 

containing all parameters was a better fit than the null (DIC full model: 789, DIC null model: 461 

808) and also had a better fit than the interaction model or the model without the bat abundance 462 

parameter included (DIC interaction model: 791, DIC no bats: 799). For body size, the 463 

interaction between bat abundance and seasonal temperature variation is not significant (Fig 3D). 464 

Overall, the predictors explained less of the variance in body size (r2=0.72) than hindwing 465 

length. See code and outputs on Dryad. 466 

 467 

4. Discussion  468 

Combining species observations from iNaturalist and museum collections, a densely 469 

sampled Actias phylogeny (Fig. 1), and a comprehensive set of species distribution maps 470 

(SDMs) for 179 insectivorous bat species (Fig. 2), we investigated the relationship between 471 

hindwing tail length and biotic and abiotic drivers in the entirely tailed Actias + allies clade of 472 

Saturniidae (Fig 3). Our phylogeny captures 21 out of the approximately 40 Actias species and 473 

covers all major lineages, with only some species from known species complexes missing. To 474 

understand the evolutionary dynamics of this group, we estimated divergence times and used this 475 

dated phylogeny to infer species ancestral ranges. Argema + Actias diverged from their non-476 

tailed sister taxa ~20 mya and Argema and Actias diverged ~15 mya, most likely when the 477 

lineage leading to Argema moved to Africa and the rest of Actias spread from the Indomalaya 478 

region (Fig. 2). Subsequently, Actias moved throughout the Eastern Palearctic (~10 mya) and 479 

from Malaysia into the Indo-Australian archipelago (~4mya). It is unclear when the European 480 

Actias (Graellsia [Actias] isabellae) and the North American Actias (A. luna and truncatipennis) 481 
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colonized these regions respectively, although our analyses indicate that they both diverged from 482 

the rest of Actias ~9 mya and sometime later become established in these areas (Fig. 1). Over the 483 

course of this time, the climate [81] and land masses were similar to current-day conditions, 484 

aside from movements of the Indo-Australian archipelago that continued until ~5 mya (before 485 

Actias were present in this region) [46] and the closure of the Bering land bridge, which may 486 

have facilitated the movement of Actias to the North American continent [82,83]. The relatively 487 

young age of this clade is therefore one of the strengths of this study, as present-day patterns can 488 

be more reliably used to infer historic dynamics. Similarly, predation pressure has likely been 489 

relatively consistent throughout the evolution of Actias. Based on fossil evidence [84,85] and 490 

biogeographical reconstructions [84,86–89], large insectivorous bats had already become 491 

globally spread by this time (~15 mya). Moreover, current dated bat phylogenies indicate that 492 

many extant lineages diversified 10-15 mya [85,90]. This rise in bat diversity and widespread 493 

prevalence of these predators could have made hindwing protrusions more profitable, as the 494 

night sky filled with more echolocators exploiting a greater depth of the prey community [91].  495 

To estimate the effective pressure of bat predation, we built species distribution models 496 

(SDMs) for sufficiently large (10g or more) insectivorous bats and estimated abundance from 497 

these models (see Methods and Results sections for more details). We note that different bat 498 

species may exert differing predatory pressures on saturniid moths based on the specifics of their 499 

echolocation strategy or feeding guild [92], but given the large-scale nature of our data set and 500 

the generally similar diets of these aerial insectivores, we have considered insectivorous bats as a 501 

pooled group for the purposes of this study. To pit bat pressure against environmental factors 502 

(see Fig 3. for a list of predictors), we extracted values for these biotic and abiotic variables from 503 

hundreds of moth observations that we gathered from museum and community science 504 
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specimens. Previous lab work has shown that tailed moths with ~4cm difference in distance from 505 

body to tail tip can have a 25% increase in escape success from bats (Rubin et al. 2018). We 506 

therefore developed a method to extract a measure of absolute hindwing length from all moth 507 

photos, including those without a scale bar, which we believe will be helpful to future scientists 508 

interested in similar endeavors.  509 

Analyzing these macroevolutionary data in a phylogenetically-informed linear mixed 510 

model framework provides evidence that bat predation pressure has likely exerted a selective 511 

force on the length of hindwing tails, while seasonal temperature variation has exerted a 512 

counterbalancing constraint on hindwing length (Fig. 3A). Moths with long tails are therefore 513 

less likely to be found in areas with fewer bats and more temperature fluctuation across the year. 514 

This result is supported by the positive association between the length of growing period and 515 

hindwing tail length. In essence, areas with longer periods of high plant productivity and more 516 

consistent temperature regimes appear to be more permissive of the evolution of long hindwing 517 

tails than areas with more restrictive seasons. Although weaker than the seasonality parameters, 518 

we found a negative association between hindwing length and average annual temperature and 519 

precipitation, indicating an opposite trend from Allen’s rule for endotherms, where appendages 520 

are expected to elongate in hotter, drier environments (as in [93]). This aligns with previous 521 

work indicating that Lepidoptera wings are not used for heat venting [94]. We did not find an 522 

effect of latitude in any of our models, indicating that the underlying drivers of wing trait 523 

evolution in this group are more complex than general latitudinal gradients. Additionally, while 524 

previous studies have found latitude to be an important correlate of bat diversity [95], others 525 

have found that it is not the most informative predictor, especially in the case of insectivores 526 

[96–98]. In congruence with this, we found relatively weak associations between insectivorous 527 
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bat abundance and any of our climactic variables in the context of our global models (vif scores 528 

< 3; see code and outputs in Dryad). We did find an interaction effect between bat abundance 529 

and seasonal temperature variation in relation to tail length, however, indicating that bats and 530 

seasonality have their own relationship that influences tail length. That is, areas with less 531 

seasonal variability tend to host more bats as well as longer tailed moths (and vice versa, see Fig. 532 

S12 for an illustration of this interaction). From this interaction model, we also find that both 533 

seasonal temperature variation and bat abundance have their own appreciable effect on hindwing 534 

tail length. While the bat posterior distribution overlaps the zero line, there is a 0.91 probability 535 

that bat abundance is positively associated with moth tail length (Fig. 3B). Together, our 536 

analyses indicate that tails are locked in evolutionary tension between abiotic constraints and 537 

biotic pressure. 538 

Contrary to our predictions, body size (forewing length) demonstrated an almost identical 539 

positive association with bat abundance as hindwing length (Fig. 3C, D). This could be because 540 

wing/body sizes are tightly integrated such that long hindwing tails require, or are made possible 541 

by, larger body sizes. This does not seem to be a ubiquitous rule in saturniids, as previous work 542 

in the subfamily Arsenurinae found an inverse relationship between hindwing length and body 543 

size (using forewing length as a proxy) [31]. However, arsenurine tails have a different structure 544 

than those of the Saturniinae (the subfamily containing Actias), in that they often protrude off the 545 

distal hindwing veins, rather than proximate ones [99]. We therefore think it is quite likely that 546 

these two subfamilies have different relationships between body size and hindwing tail length. In 547 

our clade of interest hindwing length scales with forewing length (R2 = 0.60) and thus most 548 

likely body size. Rather than simply being a necessary precursor for long hindwing tails, 549 

however, body size may be an anti-bat trait in itself. Bats seem to target prey relative to their 550 
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own size, such that smaller bats eat smaller insects and larger bats are the main predators of large 551 

moths and beetles [100,101]. Whether this is due to handling, gape size, or echolocation 552 

limitations is still debated [53,102–104]. We found that the positive association between bat 553 

abundance and forewing length is complemented by a positive association between length of 554 

growing period and forewing length, again indicating that longer periods of forage availability 555 

allows for longer periods of larval feeding and larger adult body sizes [15]. These effects were to 556 

some extent countered by a negative association with precipitation. This may indicate a 557 

limitation on body size in regions with more rainfall, perhaps due to hampered foraging or 558 

increased larval mortality during bouts of heavy rain [105]. However, precipitation parameters 559 

from Worldclim should be considered with caution, especially from tropical regions with fewer 560 

climactic field data collection stations [106].   561 

In addition to its use in our statistical models, comparative trait analyses revealed 562 

multiple origins of tail elongation but only one adaptive peak at the stem of the long-tailed moon 563 

moth clade, comprising all tailed species. This may be a result of the relatively limited number of 564 

species in this group and the strong phylogenetic signal underlying the tail trait. That is, while 565 

hindwing length varies considerably among these species, all species in this clade have tails, 566 

possibly making it more difficult to find the valleys between the morphological peaks [75,107]. 567 

Our results are congruent with a prior study that inferred a similar adaptive peak regime in 568 

Argema + Actias that was convergently repeated across the entire saturniid tree [12]. The 569 

multiple elongation and shrinkage events across our phylogeny indicates that the tail is a labile 570 

trait that could have become enhanced under conditions of high enough echolocating predator 571 

pressure and permissive environmental conditions, and that could relatively easily regress under 572 

more restrictive conditions. Previous research into the morphological lability of the fore- and 573 
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hindwings of tailed swallowtail butterflies (Papillionidae), found similarly elevated hindwing 574 

shape diversity [108]. Lepidopteran wing shape variation is likely driven by different biological 575 

pressures on the two sets of wings, where forewings are essential for flight, while hindwings are 576 

helpful for maneuverability, but not entirely necessary [109–111]. Further, experimental 577 

evidence indicates that rather than being purely flight-driven, hindwings can play an important 578 

role in deflecting predators both during the day (in butterflies) [112] and night (in moths) 579 

[11,12].  580 

While there are risks to making assumptions about past predator and prey dynamics 581 

based on extant forms, interactions, or distributions [113], the relative consistency of 582 

environmental conditions and bat presence strengthens our inferential power. Additionally, while 583 

our bat abundance estimates come with necessary assumptions and levels of uncertainty (e.g., 584 

species distribution models of extant species can be uncertain for species that are difficult to 585 

“observe”, as is the case with some insectivorous bats [114,115] and the population estimates 586 

were built from a global mammal dataset which could only provide coarse estimates [66]), we 587 

are ultimately interested in relative, rather than absolute, predator abundance. In general, species 588 

richness – the backbone upon which we built our abundance estimates – remains stable when 589 

ecological limits (most driven by climactic variables) are similar [116–118]. Thus, while extant 590 

bat distributions may not directly mirror historical ones, moths were clearly under intense 591 

selection pressure by echolocating bats in these regions.  592 

In sum, results from this study, in conjunction with previous behavioral work [11,12] 593 

provide synergistic compelling evidence that predation pressure is associated with the elongation 594 

of hindwing tails in moon moths. Considering the absence of alternative selective forces (i.e., 595 

reproduction [1] or diurnal predation [14]) and the clear efficacy of short tails to increase escape 596 
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success [12], we postulate that bat predation pressure drove the origins of the hindwing tail in 597 

Saturniidae. Hindwing tails with twisted and cupped ends have emerged five independent times 598 

across Saturniidae, three times in the Saturniinae (tribes: Saturniini, Attacini, Urotini/Bunaeini), 599 

once within the Arsenurinae [11,12,31], and once in Cercophaninae [19,119,120]. Phylogenetic 600 

inertia and the seemingly easily modifiable unit of wing imaginal discs in developing 601 

Lepidoptera [121] likely played a role in the evolution of tails. Contrary to the tail-elongating 602 

force of predation pressure, the elaboration of this trait appears to be limited by environmental 603 

factors. Indeed, the constraint of these abiotic variables may at times supersede the positive 604 

driver of predation. While developmental studies are needed to uncover the mechanism by which 605 

environment constrains tail enhancement (i.e., building a tail may require more nutritional 606 

resources and a longer growing season than building a more simplified hindwing), the negative 607 

association that we found between climatic variables, and the positive association with longer 608 

growing periods, provides evidence for an environmentally-mediated long-term cost of these 609 

appendages. A similar relationship was previously found between bright butterfly coloration, 610 

climatic variables, and bird diversity, indicating that trait elaboration of multiple kinds is likely 611 

limited by environmental factors [122]. Here, our study adds an important macroevolutionary 612 

lens to previous experimental predator-prey work. Uniting these two levels of information 613 

provides important advancement to our understanding of complex evolutionary dynamics and 614 

opens new lines of inquiry for future research [123]. Additional studies at an intermediate scale, 615 

testing the relationship between microhabitat, bat predation, and hindwing tails, could also reveal 616 

important detail about these dynamics. We emphasize the strength of multi-scale investigation 617 

for illuminating the relative pressures of competing eco-evolutionary forces that have shaped the 618 

origin and diversification of elaborate traits across taxonomic systems. 619 
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Figures  976 
 977 
 978 
 979 

980 
 981 
Figure 1. A time-calibrated tree of tailed moon moths (Actias + Argema) showing the982 
inferred evolutionary and biogeographic history of long tails. Branches are colored by983 
adjusted hindwing length (HW length/(Antenna length/mean species antenna length))984 
from images with a scale bar, with bluer colors representing longer hindwing tails and985 
redder colors representing shorter tails. Median ages (in millions of years) were derived986 
from a BEAST tree built with a Birth-Death prior using nodal calibrations from987 
Kawahara et al. [20]. All support values from the starting maximum likelihood tree were988 
100/100, except at the node indicated by the asterisk, which was 80/100 (UFBoot/SH-989 
aLRT). Colored circles represent probabilities of inferred ancestral ranges from our990 
biogeographical (BioGeoBEARS) analysis, with colors reflecting the colored regions of991 
the map at left.  992 
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997 
 998 

 999 
Figure 2. World map, pseudo-colored by bat predation pressure (sufficiently large,1000 
insectivorous bat abundance). We limited the visualization of our spatially explicit bat1001 
abundance estimates to only those areas that overlap with moth species of interest. Moth1002 
half-silhouettes indicate the general region where the species occurs. White x marks1003 
indicate precise moth observation locations, taken from museum collections, GBIF, and1004 
iNaturalist. We extracted environmental variable values from WorldClim and length of1005 
growing season values from the UN FAO FGGD LGP map for each moth point. We used1006 
these parameters, as well as measurements from the associated moth photo and estimates1007 
of bat abundance at each point, to build our phylogenetically-informed models. Species1008 
names: 1) Actias luna, 2) A. truncatipennis, 3) A. [Graellsia] isabellae, 4) Argema1009 
mimosae, 5) Argema mittrei, 6) Actias selene, 7) A. parasinensis, 8) A. felicis, 9) A.1010 
rhodopneuma, 10) A. seitzi, 11) A. dulcinea, 12) A. dubernardi, 13) A. chapae, 14) A.1011 
sinensis, 15) A. maenas, 16) A. gnoma, 17) A. aliena, 18) A. ningpoana, 19) A.1012 
neidhoeferi, 20) A. philippinica, 21) A. isis. 1013 
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1023 
 1024 

Figure 3. Tail length and body size in the tailed moon moth group are positively1025 
related to bat predation pressure and constrained by environmental factors. We find1026 
that insectivorous bat abundance is positively correlated with (a) hindwing tail length and1027 
(c) body size (forewing length) in Actias + Argema (Saturniidae). Length of growing1028 
period (LGP) is also positively correlated. Average annual precipitation, average annual1029 
temperature, and seasonality (standard deviation of temperature across the year) are1030 
negatively correlated with both tail length and body size. Thus, areas with higher bat1031 
abundance and longer periods of plant productivity are associated with longer tailed moth1032 
species. When we include an interaction term between bat abundance and seasonal1033 
temperature variation (bat:seasonality) for (b) tails and (d) body size, we find that some1034 
of the power is removed from bats as a driver of tail length. Although this parameter1035 
overlaps the zero line, there is still an ~0.90 probability that bats have a positive1036 
relationship with tail length. This indicates that while bat abundance and seasonality have1037 
their own relationship with each other, they both still have independent effects on moth1038 
tails. Central tendency dots indicate parameter estimates and error bars are 95% credible1039 
intervals from the best fit phylogenetically-informed linear regression analyses. All1040 
predictor variables are mean center-scaled to make them comparable across units.1041 
Adjusted hindwing and forewing lengths are wing length/(antenna length/mean species1042 
antenna length).  1043 
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