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Abstract

Elaborate traits evolve via intense selective pressure, overpowering ecological
constraints. Hindwing tails that thwart bat attack have repeatedly originated in moon moths
(Saturniidae), with longer tails having greater anti-predator effect. Here, we take a
macroevolutionary approach to evaluate the evolutionary balance between predation pressure
and possible limiting environmental factors on tail elongation. To trace the evolution of tail
length across time and space, we inferred a time-calibrated phylogeny of the entirely tailed moth
group (Actias + Argema) and performed ancestral state reconstruction and biogeographical
analyses. We generated metrics of predation via estimates of bat abundance from nearly 200
custom-built species distribution models and environmental metrics via estimates of bioclimatic
variables associated with individual moth observations. To access community science data, we
developed anovel method for measuring wing lengths from un-scaled photos. Integrating these
datainto phylogenetically-informed mixed models, we find a positive association between bat
predation pressure and moth tail length and body size, and a negative association between
environmental factors and these morphological traits. Regions with more insectivorous bats and
more consistent temperatures tend to host longer-tailed moths. Our study provides insight into
tradeoffs between biotic selective pressures and abiotic constraints that shape elaborate traits
across the tree-of -life.
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MAIN TEXT

1. Introduction

Elaborate traits (complex, conspicuous derivations of pre-existing traits that serve a novel
function [1]) provide alens through which we can investigate opposing evolutionary pressures,
asthey are most likely to have emerged via strong selection. From the Narwal’ s tusk [2] to the
peacock’ s train [3] to the porcupine s quills [4], elaborate traits often play arole in high-stakes
inter or intraspecific interactions — either to win potential mates or to evade potential predators.
Due to their complexity and conspicuousness, these traits are commonly assumed to come with
tradeoffs [5]. In some cases, tradeoffs have been empirically shown [6] but in many systems they
can be hard to measure [7,8]. Frequently, when attempting to uncover tradeoffs, tests focus on
short-term “acute tradeoffs’ (i.e., increased energy expenditure, reduced maneuverability, etc.
[5]). It can aso be difficult to estimate these acute costs, given that traits evolve as integrated
components of an animal’s biology and thus commonly occur in tandem with cost-reducing
characteristics [9]. As aresult, longer-term tradeoffs are usually the more relevant constraining
force on trait elaboration [5]. Here, we use macroevolutionary analyses to investigate the relative
roles of biotic and abiotic factors on the evolution of an elaborate wing trait in moths.

Moths in the family Saturniidae typically live for only aweek as adults, during which
time they do not feed and must locate mates at night to reproduce [ 10] while avoiding
echolocating bats. At least five saturniid lineages have independently evolved hindwing tails
with twisted and cupped ends [11]. Live bat-moth battles have revealed that these tails function
as an anti-bat strategy. Experimental ateration, as well as natural variation of tail length in the

luna moth (Actias luna) and the African moon moth (Argema mimosae), showed that astail


https://doi.org/10.1101/2024.05.05.590753
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.05.590753; this version posted December 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

86

87

88

89

available under aCC-BY-NC-ND 4.0 International license.

length increases, moth escape success also increases [11,12]. Compared with individuals whose
tails were removed, those with tails got away >25% more from bat attack, despite there being no
measurable difference in moth flight kinematics between treatments [12]. Tails therefore
represent a powerful countermeasure to a nearly ubiquitous nocturnal selective force [13] and
their successis highlighted by their repeated convergence across the saturniid family tree [12].

Studies on aternative pressures of hindwing tails have thus far been unable to uncover
another driver or acute tradeoff. Mating trials using the luna moth have found no evidence that
tails are used in mate selection [1]. Experimental studies with tailed and non-tailed luna moth
models and diurnally foraging birds indicated that tails do not increase roosting moth
conspi cuousness to these predators, nor do they protect the moth by breaking search image [14].
These wing appendages also do not seem to be either a hindrance or an asset to evasive flight
maneuvers based on in-battle kinematic analysis [12].

Tails may instead be limited by longer-term tradeoffs. In general, Lepidoptera wings
grow proportionally with body size and both attributes are influenced by nutrition [15,16]. The
longer amount of time a lepidopteran can stay in itslarval form acquiring resources, the larger its
body and traits are likely to be. Developmental studies testing tradeoffs between appendagesin
larval and pupal butterflies also indicate that growing and shaping wings has resource allocation
costs[17,18]. An evo-devo study with the sphingid moth (the sister family to saturniids [19,20])
Manduca sexta showed that an increase in body size comes with a compensatory increase in
devel opment time or growth rate for wings to achieve appropriate allometric scaling [21]. Thus,
seasonality is expected to lead to a broad pattern where adult |epidopteran body size and
associated traits are smaller in more seasonally variable environments (generally higher latitude

regions) and larger in more consistent (lower latitude) environments with longer growing seasons
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90 [22-26]. Insects therefore do not seem to conform to the same ecogeographic laws that has been

91 ascribed to endotherms. That is, body size does not necessarily increase at higher latitudes

92  (Bergmann'sLaw) [24,27,28], nor do appendages (wings) appear to shorten at higher latitudes

93 (Allen’sLaw) [29]. Instead, body size and wing lengths are likely governed by other

94  physiological forces. In the case of eaborate wing structures, it may be that the energetics of

95  building extrawing material for atail isalimiting factor for mothsliving in more seasonally

96 variable environments with shorter growing seasons.

97 To test the macroevolutionary pressures that have shaped the elaborate hindwing tail trait,

98  wefocused our analyses to an entirely tailed clade of Saturniidae: Actias+ Argema. This group

99 isprimarily distributed across Asia, from present-day Russiato Indonesia, and Africa[30], thus
100 covering abroad range of habitat with many environmental conditions and exhibiting an array of
101 hindwing tail lengths. We hypothesized that across their distribution and evolutionary history,
102  largeinsectivorous bats have exerted a positive selective force on saturniid hindwing tails, but
103  that elongation has been constrained by abiotic environmental factors. We further hypothesi zed
104  that the association between bat predation pressure and moth body size has not been as strong as
105 the association between bats and hindwing tail length, but that body size has been similarly
106  susceptible to environmental constraints.
107 To test these hypotheses, we first built awell-sampled, time-calibrated phylogeny of the
108 tailed moon moth clade (Actias + allies) and used thistree to trace the evolution of hindwing
109 tails. In order to access the greatest possible number of observations, we employed a nove trait
110  measurement approach where we extracted wing lengths from both digital museum collections
111 images and community science photos on iNaturalist, using the moth’ s antenna as a substitute

112 scale bar, and verified this method using scaled museum images. We propose this approach for
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future researchers to use as a solution for the lack of scale bar in lepidopteran community science
photos. To parse hindwing length trends from changes in overall size, we used moth forewing
length as a proxy for body size [31,32]. We then investigated the effect of bat predation pressure
(inferred abundance of sufficiently large insectivorous bat species) and environmental factors
(mean annual temperature, average seasonal temperature variation, length of growing season,
mean annual precipitation, and latitude) on our wing lengths of interest using phylogenetically-
informed regressions. We predicted that in general, moth species whose distributions overlapped
areas with greater insectivorous bat predation pressure would have longer tails than species
inhabiting less bat-rich areas. We also predicted that this trend would be curtailed in regions with
high seasonal temperature variability and thus more limited host plant growing season lengths.
While we expected body size to follow similar patterns, we predicted the relationship between
bat predation and size would be less pronounced. Our biologically-informed macroevolutionary
approach provides a useful framework for scientists to examine the environmental and biological

pressures driving trait elaboration across diverse taxa.

2. Materialsand methods

() Taxon sampling and DNA extraction

To reconstruct a well-sampled phylogeny of Actias, we used a combination of previously
published data (7 ingroup species) [12] and newly sampled specimens from the McGuire Center
of Lepidopteraand Biodiversity at the Florida Museum of Natural History (MGCL), Gainesville
FL, USA (14 ingroup species; see Dataset S1 on Dryad for more details). We note that three of
our newly sequenced specimens were from species that had previously been sequenced and

published in [12] (A. gnoma, A. selene, A. sinendis). For the purposes of this study, we chose to
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sequence three new specimens, as the previous specimens did not have detailed enough locality
datato include in our dataset. Our outgroup species were selected for their use as secondary
calibration pointsin our phylogeny and came from sequences published in Kawahara et al. [20],
as this analysisisthe most comprehensive, fossil-calibrated phylogeny of Lepidopterato date.
We extracted DNA from both frozen, papered specimens (i.e., stored in an envelopein a-80
freezer since collection) and dried, pinned specimens (i.e., traditional museum preservation
method) using an OmniPrep Genomic DNA Extraction Kit (G-Biosciences, St. Louis, MO) and
evaluated DNA quality using agarose gel electrophoresis and quantity using Qubit 2.0
fluorometer (ThermoFisher Scientific). We sent our extractsto RAPID Genomics (Gainesville,
FL, USA) for library preparation, hybridization enrichment and sequencing using an Illumina
HiSeq 2500 (PE100).

We analyzed our dataset using the Anchored Hybrid Enrichment (AHE) pipeline of
Breinholt et al. [33]. We direct readers to this paper for detailed methods, but in brief, this
pipeline uses an iterative probe-baited assembly process to clean raw reads and return an aligned
set of orthologs for each locus in the probe kit. Because saturniids are in the superfamily
Bombycoidea, we used the Bom1 probe kit (895 total loci) with Bombyx mori as our reference
taxon [19]. We focused our analyses to coding regions (exons) and used MAFFT to align our
sequences. We removed al loci that had <50% taxon coverage, leading to atotal data set of 535
nuclear loci (40% of possible loci). To ensure that each locus was in the correct frame and did
not contain any spurious nucleotides, we visualized each filein AliView [34] and made any
necessary manual edits. To assemble our supermatrices, we used FASconCAT-G v1.02 [35].

Cleaned probe regions and supermatrices can be found on Dryad.
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(b) Phylogeny and estimation of divergencetimes

We reconstructed phylogenies with maximum likelihood (ML) and Bayesian inference
(BI) optimality criteria, in 1Q-TREE v. 2.0.3[36] and BEAST v. 1.10.4 [37], respectively (Figs.
S1-3). Weinferred our maximum likelihood tree using 1Q-TREE with the following commands:
for one tree we used the ‘MFP+MERGE’ model, which maximizes model fit by sequentially
merging pairs of genes (Fig. S1). For best compatibility with BEAST, we also inferred an ML
treeusing ‘-m TESTMERGE’, which operates similarly to ParitionFinder [38], and then
specified only BEAST-applicable models: JC69, TN93, K80, F81, HKY, SYM, TIM, TVM,
TVMef, GTR. For both ML trees, we calculated support values using 1000 ultrafast bootstrap
replicates via‘-bb 1000" and 1000 Shimodaira-Hasegawa approximate likelihood ratio test
replicates via ‘-alrt 1000°'. We used the *-bnni® command, which reduces the likelihood of
overestimating branch supports by employing a hill-climbing nearest neighbor interchange (NNI)
technique[36] (Fig. S2). We also performed a multispecies coal escent analysis with ASTRAL -
[l (v. 5.7.5) [39], which infers a summary species tree from the individual loci files generated in
the IQ-TREE analysis (Fig. $4). We used all the default settings for the Astral analysis and
assessed branch support using local posterior probabilities where anything <0.95 is considered
weak support. Thistree did not conflict significantly with our ML tree and we focus our analyses

to the ML and Bayesian trees.

To infer our BEAST trees, we used BEAUTI v.1.8.4 [37] to create our command file. To
infer divergence times, we used four secondary calibration points from Kawahara et al. [20]:
Lasiocampoidea/Bombycoidea + other leps (78.61 — 99.27 mya), Lasiocampoidea +

Bombycoidea (74.15 — 94.4 mya), Sphinigdae + Saturniidae (56.86 — 75.42 mya), Saturniidae
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(33.82 —51.24 mya), Saturniini (14.54 — 30.63 mya). We constrained these calibration nodes
with uniform distributions to stay within the age ranges inferred by [20]. To take advantage of
the flexibility that BEAST offers regarding branch evolution rate, we used an uncorrel ated
relaxed clock model and drew from the lognormal distribution at each branch [40]. For our
nucleotide substitution rate models, we used the substitution model, base frequencies, and site
heterogeneity models identified by Model Finder in 1Q-TREE for each partition (23 partitions).
We used our phylogeny inferred by 1Q-TREE asthe starting tree (Fig. S1), with calibration
nodes manually set within the bounds of their age ranges using Mesquite [41]. We built Bayesian
trees with either afixed tree topology, to constrain the tree to the topology of the maximum
likelihood input, or a classic operator mix, to allow BEAST to infer topology. To compare
different models of evolution, we used “path sampling/stepping-stone sampling” marginal
likelihood estimates (MLE) to determine whether a Birth-Death (constant rate of speciation and
extinction applied) or Y ule (special case of Birth-Death where extinction isnull) prior best fit
our data (Table S1) [42]. We performed separate runs that varied by operator mix and tree priors
for 200 million generations each, sampling every 20000. All analyses were performed on the

University of Florida's high-performance computing cluster, HiperGator2.

(c) Ancestral range estimation

To estimate ancestral ranges, we used the R package BioGeoBEARS [43] in RStudio (v.
2022.12.0+353) to fit a dispersal-extinction-cladogenesis (DEC) model. Under the DEC modd,
region occupancy is allowed to change along branches for each species via range expansion or
reduction. Region occupancy can change at nodes via region-specific speciation where either

both daughter species inhabit arange, one daughter species inhabits a subset of the range and the
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other inhabits the larger multi-area range, or the daughters split the ancestral range [44]. We used
our BEAST maximum clade credibility tree and pruned outgroups to focus solely on species of
interest and a few most closely related sister taxa. Our information about extant distributions of
tailed moon moth species came from GBIF, iNaturalist (Research Grade only), and museum
collection locality data, as well as expert input (Stefan Naumann and R.A.S.; see Supplementary
Archive 4 on Dryad). Following Toussaint & Balke [45] and Lohman et al. [46], we defined
seven regions based on biogeographical patterns and barriers (e.g., oceans, mountains): Africa
(F), Americas (A), Europe (E), Philippines (H), Indomalaya + Greater Sunda Islands (M), East
Palearctic (P), and Wallacea (W) (Figs. 1, S5). We built adispersal multipliers matrix following
Toussaint et al. [47]. According to this schema, probabilities of dispersal are penalized by the
number of land masses that the animal must travel through to make it to another land mass or the
size of the dividing body of water. For example, the dispersal probability from Wallacea to the
Europe (Western Palearctic) is lower than from Wallacea to the Philippines (Tables S2-3, and
see Supplementary Archive 3 on Dryad). Thisis arelatively young clade, and therefore has
almost exclusively existed in aworld of modern biogeographical configuration, however we did
institute two time stratification layers to account for the closing of the Bering land bridge ~5 mya
[48,49]. While there were subsequent re-emergences of a Beringa bridge, the crossing likely
would have been too cold for saturniid moths to use during the glacial maximum [49,50]. Thus,
our time strata were set as 20 — 5 mya and 5 — 0 mya, with the only difference between them
being a higher dispersal multiplier from East Palearctic to North Americain the older time
stratum (Table S3). We conducted two separate analyses, one more permissive and one more
restrictive. Our permissive analysis allowed a maximum of 4 possible range outcomes, with

nonadjacent ranges disallowed. To limit the number of permutations, and given that extant


https://doi.org/10.1101/2024.05.05.590753
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.05.590753; this version posted December 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

available under aCC-BY-NC-ND 4.0 International license.

species exist in amaximum of two of our defined regions, our second analysis restricted possible
range outcomes to 2 and defined the combination of regions that were possible (i.e., only

adjacent regions).

(d) Bat predation pressure

We generated species distribution models (SDMs) for bats carefully selected to represent
likely saturniid predators. Our selection process identified bats that are primarily insectivorous
and of sufficient size to be common predators that would exert strong evolutionary pressure on
the moths, avoiding those that might occasionally pursue insect prey under limited circumstances
(e.g., frugivores that may opportunigtically prey upon insects, such as Phyllostomids [51]). We
first identified all bat families where > 50% of genera are aerial insectivores (18 out of 20
families) [52]. From these families we selected genera where > 50% of species are sufficiently
large (>10g on average) aerial insectivores whose ranges overlap our moth species of interest (30
out of 129 genera), and finally filtered the data set to just species that also followed this
description (Dataset S2). We chose this size threshold based on observations of bat behavior in
thelab[11,12] and the general scaling of bat size to size of prey items [53]. After filtering, 179
species (59% of our initial target list) had sufficient occurrence records to reliably fit SDMs.

We leveraged an SDM-generation pipeline optimized for generating the distribution
models of hundreds of species[54,55], customized to enhance performance for bats. First, we
retrieved all bat occurrence records from the Global Biodiversity Information Facility

(https://www.gbif.org/) and iDigBio (https://www.idigbio.org). We harmonized the taxonomy of

records to the target species list using species definitions and synonyms from [52]. This

10
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matching was done using a manually-generated synonyms list for each targeted species. Data
were cleaned with the “ CoordinateCleaner” R package [56] and vetted with two rounds of
manual checks. For each species with occurrence records, we defined accessible areas using a
dynamic alpha hull encompassing cleaned points and buffered by 200 km. Dynamic spatial
thinning was conducted on points asin [55], with the total accessible area determining the degree
and rigor of thinning; model outputs were further tuned with manual checks to remove additional
spatial biases.

We selected model predictors based on other macroecological studies of bats [57-60]; for
example, we used topological ruggedness and roughness as proxies for cave and carst roosting
habitats used by bat species [57]. Initial models were fit using 15 candidate predictors from
BioClim (B101-2,4-6,12-17 [61]), three topographic (el evation, roughness, and terrain
ruggedness index [62]), and one from MODIS data (percent tree cover [63]). Theinitia
candidate predictors were selected to reduce collinearity while representing biologically
plausible factors related to bat ecology. We further reduced model collinearity by iteratively
refitting MAXENT models using default settings until all variance inflation factors were below
5. Using species-specific selected predictors, we quantitatively evaluated a suite of Maxent
models with different tuning parameters to minimize model complexity and prevent overfitting
using the R package ENMeval [64], using possible tuning parameters described in [55]. Final
models (Table $4) were subject to an additional round of manual checks and adjusted or
discarded if excessive commission or omission were apparent. We estimated species richness as
the summed clog-log probability values from continuous surfaces, as recommended in [65]. To
generate our estimates of bat abundance, we multiplied the clog-log probability SDM surface for

each species by the population estimates provided in [66] and then divided by the sum of the

11
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275  clog-log surface to estimate the number of individual bats of a speciesin each 4664 m x 4664 m
276  grid cell. Population estimates were generated via a regression model that incorporates average
277 body mass (log transformed and z-score normalized) and IUCN Red List category for the species
278  [66]. We then summed each species-specific density surface to estimate total bat density at each
279  relevant location, and finally report the bat density surface in areas that overlap the moth species
280  of interest (Fig. 2). For both bat richness and abundance, we extracted values at each site

281  associated with moth hindwing length measurements. Code used to generate bat SDMs can be
282  found on the Zenodo repository.

283

284  (e) Hindwingtail trait acquisition

285 To extract wing measurements and associate these measurements with the individual’ s
286  coordinates, we gathered photographs from both natural history collections, including MGCL,
287  American Museum of Natural History (AMNH), New York, NY, USA, and Stefan Naumann's
288  collection, (Berlin, DE), and publicly sourced data repositories, including GBIF and iNaturalist
289  (seeDryad for all photos). To scrape images and associated coordinates from these online

290 repositories, we used the function occ_cite in the R package “rgbif” [67] (see script on Dryad).
291  WhileiNaturalist vastly increased our number of observations per species over museum

292  gpecimens alone, photos on this site are unstandardized and most often are not associated with a
293  scale bar. We therefore sought to find an alternative means of extracting a measurement of tail
294  length. We determined that the most commonly visible components of the moth in these pictures
295  weretheforewings, hindwings, top-half of the thorax and antennae. In bat-moth interactions, the
296  distance between the moth’s body and tail tips are most predictive of escape success[12]. We

297  therefore were most interested in absolute tail length for our analyses. As aresult, our goal was

12
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298 tofind acomponent of the moth’s body that was as agnostic to body size as possible, to be used
299 asardatively standardized scale bar. We found that antennae length, unlike thorax width, had a
300 low correlation with FW length (body size) in these species (Fig. S6). To further standardize this
301  metric, we found the mean antennalength for each species and divided the individual antenna
302 measurements by their species average. We then divided the forewing and hindwing lengths of
303 eachindividual by their adjusted antenna length. To verify that these adjusted wing lengths led to
304 similar absolute wing measurementsin both scaled (museum) and unscaled (iNaturalist) photos,
305  we performed Wilcoxon ranked sum tests for the forewings and hindwings of all species (see

306 Fig. S7 legend for results). We visualized the overlap (mean + SD) between adjusted wing length
307  measurements from scaled photos and non-scaled photos and verified that both of these

308 overlapped the “true” absolute wing measurements from scaled photos (Fig. S7). We further

309 verified this approach by comparing true wing lengths from a subset of calibrated photos (with a
310 scale bar) with their adjusted wing lengths (omitting the scale bar). That is, for thislatter

311  analysis, the comparison is between the exact same photos to test this method. Wilcoxon ranked
312 sumtests again revealed no significant difference between true wing lengths (with a scale bar)
313  and adjusted wing lengths (without a scale bar) (Table S5). While this approach leads to a slight
314  underestimation of wing lengths for moths whose antenna are larger than their species mean, and
315 adlight overestimation of wing lengths for moths whose antenna are shorter than their species
316  mean, these differences are not statistically significant (Table S5) and the relationship between
317  forewing and hindwing length within an individual remains quite consistent, as these wing

318 lengthsarerelatively tightly correlated (r* = 0.60). To ensure that our results for different species
319 werenot biased by the number of scaled or unscaled photos that were available for it, we used

320 theadjusted wing length measurements for all of our analyses. All measurements were extracted

13
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using imageJ v.1.53t [68], viathe “segmented line’ tool to get antennalength from top to
junction with the head and the “straight line” tool to get wing and thorax width lengths.
Hindwing length was from tip of thetail to junction with thorax and forewing length was from
tip of the forewing to junction with thorax. Thorax width was measured as the width of the
prothorax (Fig. S6). When possible, we took measurements from the right side of the moth’s
body, however, we would use the |eft side when elements from the right were unavailable or
were less planar than from the left. We used only male moths for all analyses, as they are better
represented in both collections and community scientist repositories and likely face higher bat
predation due to flying more to locate females [69]. We also made sure all measurements taken
from publicly sourced images were of high-quality, and of relatively un-damaged specimens and
that the camera was at a perpendicular angle to the animal, to prevent inaccurate measurements

dueto distortion.

(f) Phylogenetically-informed trait analysisand ancestral statereconstruction

To determine the strength of biotic and abiotic pressures on relative hindwing length, we
used the function pglmm from the R package “ phyr”, a mixed model approach to estimate
evolutionary phenomena, accounting for phylogeny and spatial correlation [70]. We used
adjusted hindwing length (HW length/(Antenna length/mean species antenna length))) as our
response variable. To create our abiotic predictor variables, we extracted bioclimatic and
growing period data for each moth occurrence in our dataset. Climatic variables came from the
historical WorldClim dataset (2.5 arc-minute resolution, viathe R package “raster”), which

averages values between the years 1970-2000 (https.//www.worldclim.org/data/bioclim.html).

We extracted length of growing period (LGP) values from The Food and Agriculture

14
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Organization Food Insecurity, Poverty and Environment Global GIS Database (UN FAO FGGD)
[71] using ArcGIS Pro v.2.6.6 and found the median of each LGP range. The LGP is determined
by soil temperature and available moisture, accounting for transpiration, for crop growth. From
these various data sources, we had atotal of six predictors of interest in our models: bat
abundance (described above), mean annual temperature (°C; code from Worldclim: BIO1),
seasonality (standard deviation of mean annual temperature* 100; BI1O4), average annual
precipitation (mm; BIO12), and median length of growing period (days). The phylogenetic
covariation matrix and moth species were set as random effects in our models to account for
relationships between the species and multiple occurrences per species. All variables were mean
center scaled using the R function scale to make them comparable across highly varying units of
measurement. To ensure that variables were not multicollinear (vif < 3[72]), we used the vif
function from the R package “car”. We ran a series of models with single or multiple predictors
and used their DIC scores from the pglmm regression to determine best fit (Table S5 and in
Supplementary Archive 1 on Dryad). While we felt it was important to include latitude in our
models, dueto its relevance in many other macroevolutionary studies, its posterior distribution
was very broad, overlapped the zero linein all models, and it uniformly increased the DIC scores
of our models. It did not change the relationships between our response variables and other
parameters, however. We therefore maintain it in our models but do not discussit asan
important predictor (Fig. 3; and see code and outputsin Dryad).

We conducted comparative trait analyses and ancestral state reconstruction using the
ContMap function and estimated phylogenetic signal using the phylosig function in the R
“Phytools’ package [73]. While we used only scaled museum specimens for this analysis, we

generated the same metric that we used for ecological models to maintain consistency: HW
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367 length/(Antennalength/mean species antennalength)). To determine whether the best-fitting
368 evolutionary parameter underlying thistrait evolution was Brownian motion (BM; random

369  walk), Ornstein-Uhlenbeck (OU; adaptive peaks), or early burst (EB; rapid then slow

370 morphological evolution), we used the R “Rphylopars’ package [74]. We used SURFACE [75]
371 inRtotest for convergent trait regimes across the phylogeny (see code and outputs on Dryad).
372

373

374 3. Results

375  a) Phylogeny and estimation of divergence times

376 We built a 21-ingroup species AHE tree, including 14 newly sequenced specimens and
377  seven previously sequenced specimens (see Dataset S2 for source and preservation type for each
378  species). Thisrepresents about half of the total speciesin this group (40 species[76]), however,
379  we accomplished broad sampling across the genus and the majority of missing speciesarein
380  gpecies complexes with those that we have represented in thistree. As with other phylogenetic
381 studies of Saturniidae (e.g., 10, 11), we recovered a well-supported monophyletic group

382 comprising Argema (Actias + Graellsa), sister to the Australian/Papua New Guinea clade

383  Syntherata (Opodiphthera + Neodiphthera). Based on our log marginal likelihood comparisons
384 (Table S1), we decided to use the Bayesian fixed tree with a Birth-Death model for all further
385 analysesand interpretation (Fig. S3). We found that the Actias + allies diverged from these sister
386 taxa~22 mya(HPD: 17.01 —28.26 mya) (Fig. 1). While Graellsia has been known to be nested
387  within Actias[77], and this was confirmed in our study (divergence from the other Actiasin its
388 clade ~9 mya, HPD: 5.99 — 10.59 mya), we maintain the convention of using the Graellsia

389 isabellae nomenclature. Within the Actias + alliesingroup, our tree largely agreed with the
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typology of these previous, less densely sampled AHE trees, as well as a study that reconstructed
a phylogeny based on 16 Actias + allies species based on molecules, morphology, and behavior
[78].

We found that Brownian Motion was the best fitting evolutionary model underlying the
hindwing trait. That is, the evolution of tail length can be best described by a random walk, in
comparison to a model with adaptive peaks or an early burst model (see scripts on Dryad). In line
with this result, we found significant phylogenetic signal in hindwing length (where greater
phylogenetic signal is represented by a K value closer to 1; Blomberg’'s K=0.78, p= 0.002), and
our SURFACE analysis[75] revealed only one hindwing length regime shift at the stem of
Argema + Actias from the non-tailed sister taxa (Fig. S8). While we did not detect asignal of
adaptive peaks in our dataset, our ancestral state reconstruction (ASR) analyses indicate that tails
have repeatedly elongated in at least three separate lineages: Argema mittrel + A. mimosae, A.
chapae, and Actias maenas + A. philippinica + A. isis. We also find evidence of tail length
shortening in an equal number of lineages. Graellsa isabellae, Actias neidhoeferi + A. fdicis,
and A. aliena+ A. dulcinea (Fig. 1). For comparative trait analyses using absolute hindwing

length and absolute forewing length, see Figs. S9-10.

b) Ancestral range estimation

To examine whether biogeographical history could explain some of the variation in
hindwing tail length, we used BioGeoBEARS [43] to estimate ancestral ranges. Our 4-area range
analysis resulted in unlikely combinations of ranges (Fig. S5A) and thus interpret the 2-area
range analysis moving forward (Figs. 1 and S5B). We inferred a 0.83 probability that

Indomalaya is part of the ancestral range of the tailed moon moths (including Argema and Actias
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413  species) and a0.62 probability that Africaisin the ancestral range. Based on the inferred

414  ancestral range of the common ancestor between Actias + allies and their closest sister taxa (0.76
415  probability Australia), wethink it likely that the ancestral Actias moved from Australiato

416  Malaysiaby ~15mya (HPD: 12.03 — 18.77 mya), after which point the Actias were extinct East
417  of Lydekker’'sline. The lineage leading to Argema split off from the rest of Actias and madeit to
418  Africaby about 11mya (0.97 probahility). Actias then diverged into a Palearctic group and an
419  Indomalaya group by ~9.5mya (HPD: 6.07 — 11.45 mya). It appears that there was a second

420  wave of Actias movement into the Palearctic region by about 5 mya, leading to the extant short-
421  tail species A. dulcinea, aliena, and gnoma. The diversification of Actias species across Wallacea
422 and the Philippinesislands ~4 mya (HPD: 2.40 — 5.04 mya) likely originated from populationsin
423  Malaysia (0.91 probahility). It isunclear how Actias arrived in the Philippines, asthereisa

424 roughly equal likelihood that they colonized this region via Wallacea or from the Indomalaya
425  region. We also do not have strong inference as to the exact manner in which Actias colonized
426 Northern America and Europe, but our analysis indicates that they did so from the Eastern

427  Palearctic region, with lineages leading to A. luna and truncatipennis likely using the Bering

428 Land Bridge (Figs. 1, S5).

429

430 c) Phylogenetically-informed linear mixed models

431 Our global phylogenetically-controlled linear regression model (pglmm) revealed that
432 hindwing length exhibits a positive relationship with bat predation pressure (parameter estimate
433  (PE) of bat abundance: 0.082, 95% credible interval (Cl): 0.028 —0.137) (Fig. 3A). We also

434  found a positive association between median growing season period and hindwing tail length

435  (PE: 0.082, Cl: 0.034 — 0.132). The credible interval for mean annual precipitation overlapped
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zero, but the probability that this parameter had a negative relationship with tail length was 0.94
and thus we interpret this along with the other environmental variables (PE: -0.045, CI: -0.097 —
0.007). Average annual temperature and annual seasonal temperature variation also displayed
negative relationships with hindwing length, with seasonal temperature variation having the
greatest effect size (PE seasonal temp variation: -0.126, CI: -0.236 to -0.070, PE avg temp: -
0.100 CI: -0.166 to -0.039) (Fig. 3A). We found that this global model performed better than a
null model (which only accounts for phylogenetic relationships) and amode that contained all
abiotic variables and excluded bat abundance, and performed slightly worse than an interaction
model between bat abundance and seasonal temperature variation (DIC full model: 350, DIC
null: 373, DIC no bats: 357, DIC interaction: 346). When we include the interaction, we find the
same relationships between our parameters and hindwing tail length asin our global modedl.
Under this framework, the bat parameter crosses the zero line, however thereis still a0.91
probability that bat abundance has a positive relationship with hindwing tail length (Fig. 3B). We
found that while phylogenetic relationships alone explain much of the variance in hindwing
length (r?= 0.87), the global model explained more (r* = 0.89). Additionally, removing bat
abundance from the model decreased the explanatory power of the model by ~2% and including
the interaction term increased explanatory power by ~1%, compared to the global model
(r2_pred [79]; see code and outputs on Dryad). Breaking the dataset down by moth species also
demonstrated that hindwing length was positively correlated with bat abundance in ailmost all
species and was negatively correlated with seasonal temperature variation in almost all species
(Fig. S11; see Table S6 for model structures).

The global pgimm analysis on forewing length (a proxy for body size [31,80]) showed

similar relationships with all parameters (PE bat abundance: 0.149, CI: 0.065 — 0.233, PE LGP
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0.106, CI: 0.028 — 0.183, PE precipitation: -0.136, CI: -0.219 —-0.053, PE avg temp: -0.1184,
Cl: -0.216 — 0.021, PE seas temp: -0.101, CI; -0.271 — -0.069) (Fig. 3C). Again, the model
containing all parameters was a better fit than the null (DIC full model: 789, DIC null model:
808) and also had a better fit than the interaction model or the model without the bat abundance
parameter included (DIC interaction model: 791, DIC no bats. 799). For body size, the
interaction between bat abundance and seasonal temperature variation is not significant (Fig 3D).
Overall, the predictors explained less of the variance in body size (r*=0.72) than hindwing

length. See code and outputs on Dryad.

4. Discussion

Combining species observations from iNaturalist and museum collections, a densely
sampled Actias phylogeny (Fig. 1), and acomprehensive set of species distribution maps
(SDMs) for 179 insectivorous bat species (Fig. 2), we investigated the relationship between
hindwing tail length and biotic and abiotic driversin the entirely tailed Actias + alies clade of
Saturniidae (Fig 3). Our phylogeny captures 21 out of the approximately 40 Actias species and
covers all magjor lineages, with only some species from known species complexes missing. To
understand the evolutionary dynamics of this group, we estimated divergence times and used this
dated phylogeny to infer species ancestral ranges. Argema + Actias diverged from their non-
tailed sister taxa ~20 mya and Argema and Actias diverged ~15 mya, most likely when the
lineage leading to Argema moved to Africa and the rest of Actias spread from the Indomalaya
region (Fig. 2). Subsequently, Actias moved throughout the Eastern Palearctic (~10 mya) and
from Malaysiainto the Indo-Australian archipelago (~4mya). It is unclear when the European

Actias (Graellsia [ Actias] isabellae) and the North American Actias (A. luna and truncatipennis)
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482  colonized these regions respectively, although our analyses indicate that they both diverged from
483  therest of Actias~9 myaand sometime later become established in these areas (Fig. 1). Over the
484  course of thistime, the climate [81] and land masses were similar to current-day conditions,

485  aside from movements of the Indo-Australian archipelago that continued until ~5 mya (before
486  Actiaswere present in thisregion) [46] and the closure of the Bering land bridge, which may

487  havefacilitated the movement of Actiasto the North American continent [82,83]. The relatively
488  young age of this cladeistherefore one of the strengths of this study, as present-day patterns can
489  bemorereliably used to infer historic dynamics. Similarly, predation pressure has likely been
490 relatively consistent throughout the evolution of Actias. Based on fossil evidence [84,85] and
491  biogeographical reconstructions [84,86-89], large insectivorous bats had already become

492  globally spread by thistime (~15 mya). Moreover, current dated bat phylogenies indicate that
493  many extant lineages diversified 10-15 mya [85,90]. Thisrisein bat diversity and widespread
494  prevalence of these predators could have made hindwing protrusions more profitable, asthe

495  night sky filled with more echolocators exploiting a greater depth of the prey community [91].
496 To estimate the effective pressure of bat predation, we built species distribution models
497  (SDMs) for sufficiently large (10g or more) insectivorous bats and estimated abundance from
498  these models (see Methods and Results sections for more details). We note that different bat

499  species may exert differing predatory pressures on saturniid moths based on the specifics of their
500 echolocation strategy or feeding guild [92], but given the large-scale nature of our data set and
501 thegenerally similar diets of these aerial insectivores, we have considered insectivorous bats as a
502  pooled group for the purposes of this study. To pit bat pressure against environmental factors
503 (seeFig 3. for alist of predictors), we extracted values for these biotic and abiotic variables from

504  hundreds of moth observations that we gathered from museum and community science
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specimens. Previous lab work has shown that tailed moths with ~4cm difference in distance from
body to tail tip can have a 25% increase in escape success from bats (Rubin et al. 2018). We
therefore developed a method to extract a measure of absolute hindwing length from all moth
photos, including those without a scale bar, which we believe will be helpful to future scientists
interested in similar endeavors.

Analyzing these macroevolutionary data in a phylogenetically-informed linear mixed
model framework provides evidence that bat predation pressure has likely exerted a selective
force on the length of hindwing tails, while seasonal temperature variation has exerted a
counterbalancing constraint on hindwing length (Fig. 3A). Moths with long tails are therefore
less likely to be found in areas with fewer bats and more temperature fluctuation across the year.
Thisresult is supported by the positive association between the length of growing period and
hindwing tail length. In essence, areas with longer periods of high plant productivity and more
consistent temperature regimes appear to be more permissive of the evolution of long hindwing
tails than areas with more restrictive seasons. Although weaker than the seasonality parameters,
we found a negative association between hindwing length and average annual temperature and
precipitation, indicating an opposite trend from Allen’ s rule for endotherms, where appendages
are expected to elongate in hotter, drier environments (asin[93]). This aligns with previous
work indicating that Lepidopterawings are not used for heat venting [94]. We did not find an
effect of latitude in any of our models, indicating that the underlying drivers of wing trait
evolution in this group are more complex than general latitudinal gradients. Additionally, while
previous studies have found latitude to be an important correlate of bat diversity [95], others
have found that it is not the most informative predictor, especially in the case of insectivores

[96-98]. In congruence with this, we found relatively weak associations between insectivorous
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bat abundance and any of our climactic variables in the context of our globa models (vif scores
< 3; see code and outputs in Dryad). We did find an interaction effect between bat abundance
and seasonal temperature variation in relation to tail length, however, indicating that bats and
seasonality have their own relationship that influences tail length. That is, areas with less
seasonal variability tend to host more bats as well as longer tailed moths (and vice versa, see Fig.
S12 for anillustration of this interaction). From this interaction model, we also find that both
seasonal temperature variation and bat abundance have their own appreciable effect on hindwing
tail length. While the bat posterior distribution overlaps the zero line, thereis a 0.91 probability
that bat abundance is positively associated with moth tail length (Fig. 3B). Together, our
analyses indicate that tails are locked in evolutionary tension between abiotic constraints and
biotic pressure.

Contrary to our predictions, body size (forewing length) demonstrated an almost identical
positive association with bat abundance as hindwing length (Fig. 3C, D). This could be because
wing/body sizes are tightly integrated such that long hindwing tails require, or are made possible
by, larger body sizes. This does not seem to be a ubiquitous rule in saturniids, as previous work
in the subfamily Arsenurinae found an inverse relationship between hindwing length and body
size (using forewing length as a proxy) [31]. However, arsenurine tails have a different structure
than those of the Saturniinae (the subfamily containing Actias), in that they often protrude off the
distal hindwing veins, rather than proximate ones [99]. We therefore think it is quite likely that
these two subfamilies have different relationships between body size and hindwing tail length. In
our clade of interest hindwing length scales with forewing length (R? = 0.60) and thus most
likely body size. Rather than simply being a necessary precursor for long hindwing tails,

however, body size may be an anti-bat trait in itself. Bats seem to target prey relativeto their
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551  own size, such that smaller bats eat smaller insects and larger bats are the main predators of large
552  moths and beetles[100,101]. Whether thisis due to handling, gape size, or echolocation

553  limitationsis still debated [53,102—-104]. We found that the positive association between bat

554  abundance and forewing length is complemented by a positive association between length of

555  growing period and forewing length, again indicating that longer periods of forage availability
556  allowsfor longer periods of larval feeding and larger adult body sizes [15]. These effects were to
557  some extent countered by a negative association with precipitation. This may indicate a

558 limitation on body size in regions with more rainfall, perhaps due to hampered foraging or

559  increased larval mortality during bouts of heavy rain [105]. However, precipitation parameters
560  from Worldclim should be considered with caution, especially from tropical regions with fewer
561  climactic field data collection stations [106].

562 In addition to itsuse in our statistical models, comparative trait analyses revea ed

563  multiple origins of tail elongation but only one adaptive peak at the stem of the long-tailed moon
564  moth clade, comprising all tailed species. This may be aresult of the relatively limited number of
565  gpeciesin this group and the strong phylogenetic signal underlying the tail trait. That is, while
566  hindwing length varies considerably among these species, all speciesin this clade have tails,

567  possibly making it more difficult to find the valleys between the morphological peaks[75,107].
568  Our results are congruent with aprior study that inferred a similar adaptive peak regimein

569  Argema + Actiasthat was convergently repeated across the entire saturniid tree [12]. The

570  multiple elongation and shrinkage events across our phylogeny indicates that the tail isalabile
571  trait that could have become enhanced under conditions of high enough echolocating predator
572  pressure and permissive environmental conditions, and that could relatively easily regress under

573  more restrictive conditions. Previous research into the morphological lability of the fore- and
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hindwings of tailed swallowtail butterflies (Papillionidae), found similarly elevated hindwing
shape diversity [108]. Lepidopteran wing shape variation is likely driven by different biological
pressures on the two sets of wings, where forewings are essential for flight, while hindwings are
helpful for maneuverability, but not entirely necessary [109-111]. Further, experimental
evidence indicates that rather than being purely flight-driven, hindwings can play an important
role in deflecting predators both during the day (in butterflies) [112] and night (in moths)
[11,12].

While there are risks to making assumptions about past predator and prey dynamics
based on extant forms, interactions, or distributions [113], the relative consistency of
environmental conditions and bat presence strengthens our inferential power. Additionally, while
our bat abundance estimates come with necessary assumptions and levels of uncertainty (e.g.,
species distribution models of extant species can be uncertain for species that are difficult to
“observe’, asis the case with some insectivorous bats[114,115] and the population estimates
were built from a global mammal dataset which could only provide coarse estimates [66]), we
are ultimately interested in relative, rather than absolute, predator abundance. In general, species
richness — the backbone upon which we built our abundance estimates — remains stable when
ecological limits (most driven by climactic variables) are similar [116-118]. Thus, while extant
bat distributions may not directly mirror historical ones, moths were clearly under intense
selection pressure by echolocating bats in these regions.

In sum, results from this study, in conjunction with previous behavioral work [11,12]
provide synergistic compelling evidence that predation pressure is associated with the elongation
of hindwing tails in moon moths. Considering the absence of alternative selective forces (i.e.,

reproduction [1] or diurnal predation [14]) and the clear efficacy of short tails to increase escape
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597  success|[12], we postulate that bat predation pressure drove the origins of the hindwing tail in
508  Saturniidae. Hindwing tails with twisted and cupped ends have emerged five independent times
509  across Saturniidae, three times in the Saturniinae (tribes: Saturniini, Attacini, Urotini/Bunaeini),
600  once within the Arsenurinae[11,12,31], and once in Cercophaninae [19,119,120]. Phylogenetic
601 inertiaand the seemingly easily modifiable unit of wing imaginal discsin developing

602 Lepidoptera[121] likely played arolein the evolution of tails. Contrary to the tail-elongating
603  force of predation pressure, the elaboration of thistrait appears to be limited by environmental
604 factors. Indeed, the congtraint of these abiotic variables may at times supersede the positive

605  driver of predation. While developmental studies are needed to uncover the mechanism by which
606  environment constrains tail enhancement (i.e., building atail may require more nutritional

607  resources and alonger growing season than building a more simplified hindwing), the negative
608  association that we found between climatic variables, and the positive association with longer
609  growing periods, provides evidence for an environmentally-mediated long-term cost of these
610 appendages. A similar relationship was previously found between bright butterfly coloration,

611 climatic variables, and bird diversity, indicating that trait elaboration of multiple kindsislikely
612  limited by environmental factors [122]. Here, our study adds an important macroevolutionary
613  lensto previous experimental predator-prey work. Uniting these two levels of information

614  providesimportant advancement to our understanding of complex evolutionary dynamics and
615  opens new lines of inquiry for future research [123]. Additional studies at an intermediate scale,
616  testing the relationship between microhabitat, bat predation, and hindwing tails, could also reveal
617  important detail about these dynamics. We emphasi ze the strength of multi-scale investigation
618  for illuminating the relative pressures of competing eco-evolutionary forces that have shaped the

619  origin and diversification of elaborate traits across taxonomic systems.
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Figure 1. A time-calibrated tree of tailed moon moths (Actias + Argema) showing the
inferred evolutionary and biogeographic history of long tails. Branches are colored by
adjusted hindwing length (HW length/(Antenna length/mean species antenna length))
from images with a scale bar, with bluer colors representing longer hindwing tails and
redder colors representing shorter tails. Median ages (in millions of years) were derived
from a BEAST tree built with a Birth-Death prior using nodal calibrations from
Kawahara et al. [20]. All support values from the starting maximum likelihood tree were
100/100, except at the node indicated by the asterisk, which was 80/100 (UFBoot/SH-
aLRT). Colored circles represent probabilities of inferred ancestral ranges from our
biogeographical (BioGeoBEARS) analysis, with colors reflecting the colored regions of

the map at |eft.
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1002 abundance estimates to only those areas that overlap with moth species of interest. Maoth
1003 half-silhouettes indicate the general region where the species occurs. White x marks
1004 indicate precise moth observation locations, taken from museum collections, GBIF, and
1005 iNaturalist. We extracted environmental variable values from WorldClim and length of
1006 growing season values from the UN FAO FGGD LGP map for each moth point. We used
1007 these parameters, as well as measurements from the associated moth photo and estimates
1008 of bat abundance at each point, to build our phylogenetically-informed models. Species
1009 names. 1) Actias luna, 2) A. truncatipennis, 3) A. [Graellsia] isabellae, 4) Argema
1010 mimosae, 5) Argema mittrei, 6) Actias selene, 7) A. parasinensis, 8) A. felicis, 9) A.
1011 rhodopneuma, 10) A. seitzi, 11) A. dulcinea, 12) A. dubernardi, 13) A. chapae, 14) A.
1012 sinenss, 15) A. maenas, 16) A. gnoma, 17) A. aliena, 18) A. ningpoana, 19) A.
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Figure 3. Tail length and body size in the tailed moon moth group are positively
related to bat predation pressure and constrained by environmental factors. We find
that insectivorous bat abundance is positively correlated with (a) hindwing tail length and
(c) body size (forewing length) in Actias + Argema (Saturniidae). Length of growing
period (LGP) is aso positively correlated. Average annual precipitation, average annual
temperature, and seasonality (standard deviation of temperature across the year) are
negatively correlated with both tail length and body size. Thus, areas with higher bat
abundance and longer periods of plant productivity are associated with longer tailed moth
species. When we include an interaction term between bat abundance and seasonal
temperature variation (bat:seasonality) for (b) tails and (d) body size, we find that some
of the power is removed from bats as a driver of tail length. Although this parameter
overlaps the zero line, there is till an ~0.90 probability that bats have a positive
relationship with tail length. Thisindicates that while bat abundance and seasonality have
their own relationship with each other, they both still have independent effects on moth
tails. Central tendency dots indicate parameter estimates and error bars are 95% credible
intervals from the best fit phylogenetically-informed linear regression analyses. All
predictor variables are mean center-scaled to make them comparable across units.
Adjusted hindwing and forewing lengths are wing length/(antenna length/mean species
antenna length).
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