

1      **Title:**

2      **Stronger bat predation and weaker environmental constraints predict longer moth tails**

3      **Authors**

4      Juliette J. Rubin<sup>1,2\*</sup>, Caitlin J. Campbell<sup>2,3</sup>, Ana Paula S. Carvalho<sup>1</sup>, Ryan A. St.  
5      Laurent<sup>1,4</sup>, Gina I. Crespo,<sup>1</sup> Taylor L. Pierson<sup>1</sup>, Robert P. Guralnick<sup>5</sup>, Akito Y.  
6      Kawahara<sup>1,2</sup>

7      **Affiliations**

8      <sup>1</sup>McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History,  
9      Gainesville, FL, USA

10     <sup>2</sup>Department of Biology, University of Florida, Gainesville, FL, USA

11     <sup>3</sup>Bat Conservation International, Austin, TX, USA

12     <sup>4</sup>Department of Entomology, Smithsonian Institute, National Museum of Natural History,  
13     Washington, DC, USA

14     <sup>5</sup>Florida Museum of Natural History, University of Florida, Gainesville, FL, USA

15     \*Now at: Smithsonian Tropical Research Institute, Gamboa, Panama

16     **Keywords:** Elaborate traits, predator-prey, Saturniidae, insectivorous bats, biogeography

17      **Abstract**

18      Elaborate traits evolve via intense selective pressure, overpowering ecological  
19      constraints. Hindwing tails that thwart bat attack have repeatedly originated in moon moths  
20      (Saturniidae), with longer tails having greater anti-predator effect. Here, we take a  
21      macroevolutionary approach to evaluate the evolutionary balance between predation pressure  
22      and possible limiting environmental factors on tail elongation. To trace the evolution of tail  
23      length across time and space, we inferred a time-calibrated phylogeny of the entirely tailed moth  
24      group (*Actias* + *Argema*) and performed ancestral state reconstruction and biogeographical  
25      analyses. We generated metrics of predation via estimates of bat abundance from nearly 200  
26      custom-built species distribution models and environmental metrics via estimates of bioclimatic  
27      variables associated with individual moth observations. To access community science data, we  
28      developed a novel method for measuring wing lengths from un-scaled photos. Integrating these  
29      data into phylogenetically-informed mixed models, we find a positive association between bat  
30      predation pressure and moth tail length and body size, and a negative association between  
31      environmental factors and these morphological traits. Regions with more insectivorous bats and  
32      more consistent temperatures tend to host longer-tailed moths. Our study provides insight into  
33      tradeoffs between biotic selective pressures and abiotic constraints that shape elaborate traits  
34      across the tree-of-life.

44 **MAIN TEXT**

45

46 **1. Introduction**

47 Elaborate traits (complex, conspicuous derivations of pre-existing traits that serve a novel  
48 function [1]) provide a lens through which we can investigate opposing evolutionary pressures,  
49 as they are most likely to have emerged via strong selection. From the Narwal's tusk [2] to the  
50 peacock's train [3] to the porcupine's quills [4], elaborate traits often play a role in high-stakes  
51 inter or intraspecific interactions – either to win potential mates or to evade potential predators.  
52 Due to their complexity and conspicuousness, these traits are commonly assumed to come with  
53 tradeoffs [5]. In some cases, tradeoffs have been empirically shown [6] but in many systems they  
54 can be hard to measure [7,8]. Frequently, when attempting to uncover tradeoffs, tests focus on  
55 short-term “acute tradeoffs” (i.e., increased energy expenditure, reduced maneuverability, etc.  
56 [5]). It can also be difficult to estimate these acute costs, given that traits evolve as integrated  
57 components of an animal's biology and thus commonly occur in tandem with cost-reducing  
58 characteristics [9]. As a result, longer-term tradeoffs are usually the more relevant constraining  
59 force on trait elaboration [5]. Here, we use macroevolutionary analyses to investigate the relative  
60 roles of biotic and abiotic factors on the evolution of an elaborate wing trait in moths.

61 Moths in the family Saturniidae typically live for only a week as adults, during which  
62 time they do not feed and must locate mates at night to reproduce [10] while avoiding  
63 echolocating bats. At least five saturniid lineages have independently evolved hindwing tails  
64 with twisted and cupped ends [11]. Live bat-moth battles have revealed that these tails function  
65 as an anti-bat strategy. Experimental alteration, as well as natural variation of tail length in the  
66 luna moth (*Actias luna*) and the African moon moth (*Argema mimosae*), showed that as tail

67 length increases, moth escape success also increases [11,12]. Compared with individuals whose  
68 tails were removed, those with tails got away >25% more from bat attack, despite there being no  
69 measurable difference in moth flight kinematics between treatments [12]. Tails therefore  
70 represent a powerful countermeasure to a nearly ubiquitous nocturnal selective force [13] and  
71 their success is highlighted by their repeated convergence across the saturniid family tree [12].

72 Studies on alternative pressures of hindwing tails have thus far been unable to uncover  
73 another driver or acute tradeoff. Mating trials using the luna moth have found no evidence that  
74 tails are used in mate selection [1]. Experimental studies with tailed and non-tailed luna moth  
75 models and diurnally foraging birds indicated that tails do not increase roosting moth  
76 conspicuousness to these predators, nor do they protect the moth by breaking search image [14].  
77 These wing appendages also do not seem to be either a hindrance or an asset to evasive flight  
78 maneuvers based on in-battle kinematic analysis [12].

79 Tails may instead be limited by longer-term tradeoffs. In general, Lepidoptera wings  
80 grow proportionally with body size and both attributes are influenced by nutrition [15,16]. The  
81 longer amount of time a lepidopteran can stay in its larval form acquiring resources, the larger its  
82 body and traits are likely to be. Developmental studies testing tradeoffs between appendages in  
83 larval and pupal butterflies also indicate that growing and shaping wings has resource allocation  
84 costs [17,18]. An evo-devo study with the sphingid moth (the sister family to saturniids [19,20])  
85 *Manduca sexta* showed that an increase in body size comes with a compensatory increase in  
86 development time or growth rate for wings to achieve appropriate allometric scaling [21]. Thus,  
87 seasonality is expected to lead to a broad pattern where adult lepidopteran body size and  
88 associated traits are smaller in more seasonally variable environments (generally higher latitude  
89 regions) and larger in more consistent (lower latitude) environments with longer growing seasons

90 [22–26]. Insects therefore do not seem to conform to the same ecogeographic laws that has been  
91 ascribed to endotherms. That is, body size does not necessarily increase at higher latitudes  
92 (Bergmann’s Law) [24,27,28], nor do appendages (wings) appear to shorten at higher latitudes  
93 (Allen’s Law) [29]. Instead, body size and wing lengths are likely governed by other  
94 physiological forces. In the case of elaborate wing structures, it may be that the energetics of  
95 building extra wing material for a tail is a limiting factor for moths living in more seasonally  
96 variable environments with shorter growing seasons.

97 To test the macroevolutionary pressures that have shaped the elaborate hindwing tail trait,  
98 we focused our analyses to an entirely tailed clade of Saturniidae: *Actias* + *Argema*. This group  
99 is primarily distributed across Asia, from present-day Russia to Indonesia, and Africa [30], thus  
100 covering a broad range of habitat with many environmental conditions and exhibiting an array of  
101 hindwing tail lengths. We hypothesized that across their distribution and evolutionary history,  
102 large insectivorous bats have exerted a positive selective force on saturniid hindwing tails, but  
103 that elongation has been constrained by abiotic environmental factors. We further hypothesized  
104 that the association between bat predation pressure and moth body size has not been as strong as  
105 the association between bats and hindwing tail length, but that body size has been similarly  
106 susceptible to environmental constraints.

107 To test these hypotheses, we first built a well-sampled, time-calibrated phylogeny of the  
108 tailed moon moth clade (*Actias* + allies) and used this tree to trace the evolution of hindwing  
109 tails. In order to access the greatest possible number of observations, we employed a novel trait  
110 measurement approach where we extracted wing lengths from both digital museum collections  
111 images and community science photos on iNaturalist, using the moth’s antenna as a substitute  
112 scale bar, and verified this method using scaled museum images. We propose this approach for

113 future researchers to use as a solution for the lack of scale bar in lepidopteran community science  
114 photos. To parse hindwing length trends from changes in overall size, we used moth forewing  
115 length as a proxy for body size [31,32]. We then investigated the effect of bat predation pressure  
116 (inferred abundance of sufficiently large insectivorous bat species) and environmental factors  
117 (mean annual temperature, average seasonal temperature variation, length of growing season,  
118 mean annual precipitation, and latitude) on our wing lengths of interest using phylogenetically-  
119 informed regressions. We predicted that in general, moth species whose distributions overlapped  
120 areas with greater insectivorous bat predation pressure would have longer tails than species  
121 inhabiting less bat-rich areas. We also predicted that this trend would be curtailed in regions with  
122 high seasonal temperature variability and thus more limited host plant growing season lengths.  
123 While we expected body size to follow similar patterns, we predicted the relationship between  
124 bat predation and size would be less pronounced. Our biologically-informed macroevolutionary  
125 approach provides a useful framework for scientists to examine the environmental and biological  
126 pressures driving trait elaboration across diverse taxa.

127

## 128 **2. Materials and methods**

129

### 130 **(a) Taxon sampling and DNA extraction**

131 To reconstruct a well-sampled phylogeny of *Actias*, we used a combination of previously  
132 published data (7 ingroup species) [12] and newly sampled specimens from the McGuire Center  
133 of Lepidoptera and Biodiversity at the Florida Museum of Natural History (MGCL), Gainesville  
134 FL, USA (14 ingroup species; see Dataset S1 on Dryad for more details). We note that three of  
135 our newly sequenced specimens were from species that had previously been sequenced and  
136 published in [12] (*A. gnoma*, *A. selene*, *A. sinensis*). For the purposes of this study, we chose to

137 sequence three new specimens, as the previous specimens did not have detailed enough locality  
138 data to include in our dataset. Our outgroup species were selected for their use as secondary  
139 calibration points in our phylogeny and came from sequences published in Kawahara et al. [20],  
140 as this analysis is the most comprehensive, fossil-calibrated phylogeny of Lepidoptera to date.  
141 We extracted DNA from both frozen, papered specimens (i.e., stored in an envelope in a -80  
142 freezer since collection) and dried, pinned specimens (i.e., traditional museum preservation  
143 method) using an OmniPrep Genomic DNA Extraction Kit (G-Biosciences, St. Louis, MO) and  
144 evaluated DNA quality using agarose gel electrophoresis and quantity using Qubit 2.0  
145 fluorometer (ThermoFisher Scientific). We sent our extracts to RAPiD Genomics (Gainesville,  
146 FL, USA) for library preparation, hybridization enrichment and sequencing using an Illumina  
147 HiSeq 2500 (PE100).

148 We analyzed our dataset using the Anchored Hybrid Enrichment (AHE) pipeline of  
149 Breinholt et al. [33]. We direct readers to this paper for detailed methods, but in brief, this  
150 pipeline uses an iterative probe-baited assembly process to clean raw reads and return an aligned  
151 set of orthologs for each locus in the probe kit. Because saturniids are in the superfamily  
152 Bombycoidea, we used the Bom1 probe kit (895 total loci) with *Bombyx mori* as our reference  
153 taxon [19]. We focused our analyses to coding regions (exons) and used MAFFT to align our  
154 sequences. We removed all loci that had <50% taxon coverage, leading to a total data set of 535  
155 nuclear loci (40% of possible loci). To ensure that each locus was in the correct frame and did  
156 not contain any spurious nucleotides, we visualized each file in AliView [34] and made any  
157 necessary manual edits. To assemble our supermatrices, we used FASconCAT-G v1.02 [35].  
158 Cleaned probe regions and supermatrices can be found on Dryad.

159

160

161 **(b) Phylogeny and estimation of divergence times**

162 We reconstructed phylogenies with maximum likelihood (ML) and Bayesian inference  
163 (BI) optimality criteria, in IQ-TREE v. 2.0.3 [36] and BEAST v. 1.10.4 [37], respectively (Figs.  
164 S1-3). We inferred our maximum likelihood tree using IQ-TREE with the following commands:  
165 for one tree we used the ‘MFP+MERGE’ model, which maximizes model fit by sequentially  
166 merging pairs of genes (Fig. S1). For best compatibility with BEAST, we also inferred an ML  
167 tree using ‘-m TESTMERGE’, which operates similarly to PartitionFinder [38], and then  
168 specified only BEAST-applicable models: JC69, TN93, K80, F81, HKY, SYM, TIM, TVM,  
169 TVMef, GTR. For both ML trees, we calculated support values using 1000 ultrafast bootstrap  
170 replicates via ‘-bb 1000’ and 1000 Shimodaira-Hasegawa approximate likelihood ratio test  
171 replicates via ‘-alrt 1000’. We used the ‘-bnni’ command, which reduces the likelihood of  
172 overestimating branch supports by employing a hill-climbing nearest neighbor interchange (NNI)  
173 technique [36] (Fig. S2). We also performed a multispecies coalescent analysis with ASTRAL-  
174 III (v. 5.7.5) [39], which infers a summary species tree from the individual loci files generated in  
175 the IQ-TREE analysis (Fig. S4). We used all the default settings for the Astral analysis and  
176 assessed branch support using local posterior probabilities where anything <0.95 is considered  
177 weak support. This tree did not conflict significantly with our ML tree and we focus our analyses  
178 to the ML and Bayesian trees.

179 To infer our BEAST trees, we used BEAUTI v.1.8.4 [37] to create our command file. To  
180 infer divergence times, we used four secondary calibration points from Kawahara et al. [20]:  
181 Lasiocampoidea/Bombycoidea + other leps (78.61 – 99.27 mya), Lasiocampoidea +  
182 Bombycoidea (74.15 – 94.4 mya), Sphingidae + Saturniidae (56.86 – 75.42 mya), Saturniidae

183 (33.82 – 51.24 mya), Saturniini (14.54 – 30.63 mya). We constrained these calibration nodes  
184 with uniform distributions to stay within the age ranges inferred by [20]. To take advantage of  
185 the flexibility that BEAST offers regarding branch evolution rate, we used an uncorrelated  
186 relaxed clock model and drew from the lognormal distribution at each branch [40]. For our  
187 nucleotide substitution rate models, we used the substitution model, base frequencies, and site  
188 heterogeneity models identified by ModelFinder in IQ-TREE for each partition (23 partitions).  
189 We used our phylogeny inferred by IQ-TREE as the starting tree (Fig. S1), with calibration  
190 nodes manually set within the bounds of their age ranges using Mesquite [41]. We built Bayesian  
191 trees with either a fixed tree topology, to constrain the tree to the topology of the maximum  
192 likelihood input, or a classic operator mix, to allow BEAST to infer topology. To compare  
193 different models of evolution, we used “path sampling/stepping-stone sampling” marginal  
194 likelihood estimates (MLE) to determine whether a Birth-Death (constant rate of speciation and  
195 extinction applied) or Yule (special case of Birth-Death where extinction is null) prior best fit  
196 our data (Table S1) [42]. We performed separate runs that varied by operator mix and tree priors  
197 for 200 million generations each, sampling every 20000. All analyses were performed on the  
198 University of Florida’s high-performance computing cluster, HiperGator2.

199

200 **(c) Ancestral range estimation**

201 To estimate ancestral ranges, we used the R package BioGeoBEARS [43] in RStudio (v.  
202 2022.12.0+353) to fit a dispersal-extinction-cladogenesis (DEC) model. Under the DEC model,  
203 region occupancy is allowed to change along branches for each species via range expansion or  
204 reduction. Region occupancy can change at nodes via region-specific speciation where either  
205 both daughter species inhabit a range, one daughter species inhabits a subset of the range and the

206 other inhabits the larger multi-area range, or the daughters split the ancestral range [44]. We used  
207 our BEAST maximum clade credibility tree and pruned outgroups to focus solely on species of  
208 interest and a few most closely related sister taxa. Our information about extant distributions of  
209 tailed moon moth species came from GBIF, iNaturalist (Research Grade only), and museum  
210 collection locality data, as well as expert input (Stefan Naumann and R.A.S.; see Supplementary  
211 Archive 4 on Dryad). Following Toussaint & Balke [45] and Lohman et al. [46], we defined  
212 seven regions based on biogeographical patterns and barriers (e.g., oceans, mountains): Africa  
213 (F), Americas (A), Europe (E), Philippines (H), Indomalaya + Greater Sunda Islands (M), East  
214 Palearctic (P), and Wallacea (W) (Figs. 1, S5). We built a dispersal multipliers matrix following  
215 Toussaint et al. [47]. According to this schema, probabilities of dispersal are penalized by the  
216 number of land masses that the animal must travel through to make it to another land mass or the  
217 size of the dividing body of water. For example, the dispersal probability from Wallacea to the  
218 Europe (Western Palearctic) is lower than from Wallacea to the Philippines (Tables S2-3, and  
219 see Supplementary Archive 3 on Dryad). This is a relatively young clade, and therefore has  
220 almost exclusively existed in a world of modern biogeographical configuration, however we did  
221 institute two time stratification layers to account for the closing of the Bering land bridge ~5 mya  
222 [48,49]. While there were subsequent re-emergences of a Beringa bridge, the crossing likely  
223 would have been too cold for saturniid moths to use during the glacial maximum [49,50]. Thus,  
224 our time strata were set as 20 – 5 mya and 5 – 0 mya, with the only difference between them  
225 being a higher dispersal multiplier from East Palearctic to North America in the older time  
226 stratum (Table S3). We conducted two separate analyses, one more permissive and one more  
227 restrictive. Our permissive analysis allowed a maximum of 4 possible range outcomes, with  
228 nonadjacent ranges disallowed. To limit the number of permutations, and given that extant

229 species exist in a maximum of two of our defined regions, our second analysis restricted possible  
230 range outcomes to 2 and defined the combination of regions that were possible (i.e., only  
231 adjacent regions).

232

233

234 **(d) Bat predation pressure**

235 We generated species distribution models (SDMs) for bats carefully selected to represent  
236 likely saturniid predators. Our selection process identified bats that are primarily insectivorous  
237 and of sufficient size to be common predators that would exert strong evolutionary pressure on  
238 the moths, avoiding those that might occasionally pursue insect prey under limited circumstances  
239 (e.g., frugivores that may opportunistically prey upon insects, such as Phyllostomids [51]). We  
240 first identified all bat families where  $\geq 50\%$  of genera are aerial insectivores (18 out of 20  
241 families) [52]. From these families we selected genera where  $\geq 50\%$  of species are sufficiently  
242 large ( $\geq 10\text{g}$  on average) aerial insectivores whose ranges overlap our moth species of interest (30  
243 out of 129 genera), and finally filtered the data set to just species that also followed this  
244 description (Dataset S2). We chose this size threshold based on observations of bat behavior in  
245 the lab [11,12] and the general scaling of bat size to size of prey items [53]. After filtering, 179  
246 species (59% of our initial target list) had sufficient occurrence records to reliably fit SDMs.

247 We leveraged an SDM-generation pipeline optimized for generating the distribution  
248 models of hundreds of species [54,55], customized to enhance performance for bats. First, we  
249 retrieved all bat occurrence records from the Global Biodiversity Information Facility  
250 (<https://www.gbif.org/>) and iDigBio (<https://www.idigbio.org>). We harmonized the taxonomy of  
251 records to the target species list using species definitions and synonyms from [52]. This

252 matching was done using a manually-generated synonyms list for each targeted species. Data  
253 were cleaned with the “CoordinateCleaner” R package [56] and vetted with two rounds of  
254 manual checks. For each species with occurrence records, we defined accessible areas using a  
255 dynamic alpha hull encompassing cleaned points and buffered by 200 km. Dynamic spatial  
256 thinning was conducted on points as in [55], with the total accessible area determining the degree  
257 and rigor of thinning; model outputs were further tuned with manual checks to remove additional  
258 spatial biases.

259 We selected model predictors based on other macroecological studies of bats [57–60]; for  
260 example, we used topological ruggedness and roughness as proxies for cave and carst roosting  
261 habitats used by bat species [57]. Initial models were fit using 15 candidate predictors from  
262 BioClim (BIO1–2,4–6,12–17 [61]), three topographic (elevation, roughness, and terrain  
263 ruggedness index [62]), and one from MODIS data (percent tree cover [63]). The initial  
264 candidate predictors were selected to reduce collinearity while representing biologically  
265 plausible factors related to bat ecology. We further reduced model collinearity by iteratively  
266 refitting MAXENT models using default settings until all variance inflation factors were below  
267 5. Using species-specific selected predictors, we quantitatively evaluated a suite of Maxent  
268 models with different tuning parameters to minimize model complexity and prevent overfitting  
269 using the R package ENMeval [64], using possible tuning parameters described in [55]. Final  
270 models (Table S4) were subject to an additional round of manual checks and adjusted or  
271 discarded if excessive commission or omission were apparent. We estimated species richness as  
272 the summed clog-log probability values from continuous surfaces, as recommended in [65]. To  
273 generate our estimates of bat abundance, we multiplied the clog-log probability SDM surface for  
274 each species by the population estimates provided in [66] and then divided by the sum of the

275 clog-log surface to estimate the number of individual bats of a species in each 4664 m x 4664 m  
276 grid cell. Population estimates were generated via a regression model that incorporates average  
277 body mass (log transformed and z-score normalized) and IUCN Red List category for the species  
278 [66]. We then summed each species-specific density surface to estimate total bat density at each  
279 relevant location, and finally report the bat density surface in areas that overlap the moth species  
280 of interest (Fig. 2). For both bat richness and abundance, we extracted values at each site  
281 associated with moth hindwing length measurements. Code used to generate bat SDMs can be  
282 found on the Zenodo repository.

283

284 **(e) Hindwing tail trait acquisition**

285 To extract wing measurements and associate these measurements with the individual's  
286 coordinates, we gathered photographs from both natural history collections, including MGCL,  
287 American Museum of Natural History (AMNH), New York, NY, USA, and Stefan Naumann's  
288 collection, (Berlin, DE), and publicly sourced data repositories, including GBIF and iNaturalist  
289 (see Dryad for all photos). To scrape images and associated coordinates from these online  
290 repositories, we used the function *occ\_cite* in the R package "rgbif" [67] (see script on Dryad).  
291 While iNaturalist vastly increased our number of observations per species over museum  
292 specimens alone, photos on this site are unstandardized and most often are not associated with a  
293 scale bar. We therefore sought to find an alternative means of extracting a measurement of tail  
294 length. We determined that the most commonly visible components of the moth in these pictures  
295 were the forewings, hindwings, top-half of the thorax and antennae. In bat-moth interactions, the  
296 distance between the moth's body and tail tips are most predictive of escape success [12]. We  
297 therefore were most interested in absolute tail length for our analyses. As a result, our goal was

298 to find a component of the moth's body that was as agnostic to body size as possible, to be used  
299 as a relatively standardized scale bar. We found that antennae length, unlike thorax width, had a  
300 low correlation with FW length (body size) in these species (Fig. S6). To further standardize this  
301 metric, we found the mean antenna length for each species and divided the individual antenna  
302 measurements by their species average. We then divided the forewing and hindwing lengths of  
303 each individual by their adjusted antenna length. To verify that these adjusted wing lengths led to  
304 similar absolute wing measurements in both scaled (museum) and unscaled (iNaturalist) photos,  
305 we performed Wilcoxon ranked sum tests for the forewings and hindwings of all species (see  
306 Fig. S7 legend for results). We visualized the overlap (mean  $\pm$  SD) between adjusted wing length  
307 measurements from scaled photos and non-scaled photos and verified that both of these  
308 overlapped the "true" absolute wing measurements from scaled photos (Fig. S7). We further  
309 verified this approach by comparing true wing lengths from a subset of calibrated photos (with a  
310 scale bar) with their adjusted wing lengths (omitting the scale bar). That is, for this latter  
311 analysis, the comparison is between the exact same photos to test this method. Wilcoxon ranked  
312 sum tests again revealed no significant difference between true wing lengths (with a scale bar)  
313 and adjusted wing lengths (without a scale bar) (Table S5). While this approach leads to a slight  
314 underestimation of wing lengths for moths whose antenna are larger than their species mean, and  
315 a slight overestimation of wing lengths for moths whose antenna are shorter than their species  
316 mean, these differences are not statistically significant (Table S5) and the relationship between  
317 forewing and hindwing length within an individual remains quite consistent, as these wing  
318 lengths are relatively tightly correlated ( $r^2 = 0.60$ ). To ensure that our results for different species  
319 were not biased by the number of scaled or unscaled photos that were available for it, we used  
320 the adjusted wing length measurements for all of our analyses. All measurements were extracted

321 using imageJ v.1.53t [68], via the “segmented line” tool to get antenna length from top to  
322 junction with the head and the “straight line” tool to get wing and thorax width lengths.  
323 Hindwing length was from tip of the tail to junction with thorax and forewing length was from  
324 tip of the forewing to junction with thorax. Thorax width was measured as the width of the  
325 prothorax (Fig. S6). When possible, we took measurements from the right side of the moth’s  
326 body, however, we would use the left side when elements from the right were unavailable or  
327 were less planar than from the left. We used only male moths for all analyses, as they are better  
328 represented in both collections and community scientist repositories and likely face higher bat  
329 predation due to flying more to locate females [69]. We also made sure all measurements taken  
330 from publicly sourced images were of high-quality, and of relatively un-damaged specimens and  
331 that the camera was at a perpendicular angle to the animal, to prevent inaccurate measurements  
332 due to distortion.

333

334 **(f) Phylogenetically-informed trait analysis and ancestral state reconstruction**

335 To determine the strength of biotic and abiotic pressures on relative hindwing length, we  
336 used the function *pglmm* from the R package “phyr”, a mixed model approach to estimate  
337 evolutionary phenomena, accounting for phylogeny and spatial correlation [70]. We used  
338 adjusted hindwing length (HW length/(Antenna length/mean species antenna length))) as our  
339 response variable. To create our abiotic predictor variables, we extracted bioclimatic and  
340 growing period data for each moth occurrence in our dataset. Climatic variables came from the  
341 historical WorldClim dataset (2.5 arc-minute resolution, via the R package “raster”), which  
342 averages values between the years 1970-2000 (<https://www.worldclim.org/data/bioclim.html>).  
343 We extracted length of growing period (LGP) values from The Food and Agriculture

344 Organization Food Insecurity, Poverty and Environment Global GIS Database (UN FAO FGGD)  
345 [71] using ArcGIS Pro v.2.6.6 and found the median of each LGP range. The LGP is determined  
346 by soil temperature and available moisture, accounting for transpiration, for crop growth. From  
347 these various data sources, we had a total of six predictors of interest in our models: bat  
348 abundance (described above), mean annual temperature (°C; code from Worldclim: BIO1),  
349 seasonality (standard deviation of mean annual temperature\*100; BIO4), average annual  
350 precipitation (mm; BIO12), and median length of growing period (days). The phylogenetic  
351 covariation matrix and moth species were set as random effects in our models to account for  
352 relationships between the species and multiple occurrences per species. All variables were mean  
353 center scaled using the R function *scale* to make them comparable across highly varying units of  
354 measurement. To ensure that variables were not multicollinear (*vif* < 3 [72]), we used the *vif*  
355 function from the R package “car”. We ran a series of models with single or multiple predictors  
356 and used their DIC scores from the *pglmm* regression to determine best fit (Table S5 and in  
357 Supplementary Archive 1 on Dryad). While we felt it was important to include latitude in our  
358 models, due to its relevance in many other macroevolutionary studies, its posterior distribution  
359 was very broad, overlapped the zero line in all models, and it uniformly increased the DIC scores  
360 of our models. It did not change the relationships between our response variables and other  
361 parameters, however. We therefore maintain it in our models but do not discuss it as an  
362 important predictor (Fig. 3; and see code and outputs in Dryad).

363 We conducted comparative trait analyses and ancestral state reconstruction using the  
364 *ContMap* function and estimated phylogenetic signal using the *phylosig* function in the R  
365 “Phytools” package [73]. While we used only scaled museum specimens for this analysis, we  
366 generated the same metric that we used for ecological models to maintain consistency: HW

367 length/(Antenna length/mean species antenna length)). To determine whether the best-fitting  
368 evolutionary parameter underlying this trait evolution was Brownian motion (BM; random  
369 walk), Ornstein-Uhlenbeck (OU; adaptive peaks), or early burst (EB; rapid then slow  
370 morphological evolution), we used the R “Rphylopars” package [74]. We used SURFACE [75]  
371 in R to test for convergent trait regimes across the phylogeny (see code and outputs on Dryad).

372

373

374 **3. Results**

375 a) Phylogeny and estimation of divergence times

376 We built a 21-ingroup species AHE tree, including 14 newly sequenced specimens and  
377 seven previously sequenced specimens (see Dataset S2 for source and preservation type for each  
378 species). This represents about half of the total species in this group (40 species [76]), however,  
379 we accomplished broad sampling across the genus and the majority of missing species are in  
380 species complexes with those that we have represented in this tree. As with other phylogenetic  
381 studies of Saturniidae (e.g., 10, 11), we recovered a well-supported monophyletic group  
382 comprising *Argema* (*Actias* + *Graellsia*), sister to the Australian/Papua New Guinea clade  
383 *Syntherata* (*Opodiphthera* + *Neodiphthera*). Based on our log marginal likelihood comparisons  
384 (Table S1), we decided to use the Bayesian fixed tree with a Birth-Death model for all further  
385 analyses and interpretation (Fig. S3). We found that the *Actias* + allies diverged from these sister  
386 taxa ~22 mya (HPD: 17.01 – 28.26 mya) (Fig. 1). While *Graellsia* has been known to be nested  
387 within *Actias* [77], and this was confirmed in our study (divergence from the other *Actias* in its  
388 clade ~9 mya, HPD: 5.99 – 10.59 mya), we maintain the convention of using the *Graellsia*  
389 *isabellae* nomenclature. Within the *Actias* + allies ingroup, our tree largely agreed with the

390 typology of these previous, less densely sampled AHE trees, as well as a study that reconstructed  
391 a phylogeny based on 16 *Actias* + allies species based on molecules, morphology, and behavior  
392 [78].

393 We found that Brownian Motion was the best fitting evolutionary model underlying the  
394 hindwing trait. That is, the evolution of tail length can be best described by a random walk, in  
395 comparison to a model with adaptive peaks or an early burst model (see scripts on Dryad). In line  
396 with this result, we found significant phylogenetic signal in hindwing length (where greater  
397 phylogenetic signal is represented by a K value closer to 1; Blomberg's K=0.78, p= 0.002), and  
398 our SURFACE analysis [75] revealed only one hindwing length regime shift at the stem of  
399 *Argema* + *Actias* from the non-tailed sister taxa (Fig. S8). While we did not detect a signal of  
400 adaptive peaks in our dataset, our ancestral state reconstruction (ASR) analyses indicate that tails  
401 have repeatedly elongated in at least three separate lineages: *Argema mittrei* + *A. mimosae*, *A.*  
402 *chapae*, and *Actias maenas* + *A. philippinica* + *A. isis*. We also find evidence of tail length  
403 shortening in an equal number of lineages: *Graellsia isabellae*, *Actias neidhoeferi* + *A. felicis*,  
404 and *A. aliena* + *A. dulcinea* (Fig. 1). For comparative trait analyses using absolute hindwing  
405 length and absolute forewing length, see Figs. S9-10.

406

407 b) Ancestral range estimation

408 To examine whether biogeographical history could explain some of the variation in  
409 hindwing tail length, we used BioGeoBEARS [43] to estimate ancestral ranges. Our 4-area range  
410 analysis resulted in unlikely combinations of ranges (Fig. S5A) and thus interpret the 2-area  
411 range analysis moving forward (Figs. 1 and S5B). We inferred a 0.83 probability that  
412 Indomalaya is part of the ancestral range of the tailed moon moths (including *Argema* and *Actias*

413 species) and a 0.62 probability that Africa is in the ancestral range. Based on the inferred  
414 ancestral range of the common ancestor between *Actias* + allies and their closest sister taxa (0.76  
415 probability Australia), we think it likely that the ancestral *Actias* moved from Australia to  
416 Malaysia by ~15mya (HPD: 12.03 – 18.77 mya), after which point the *Actias* were extinct East  
417 of Lydekker's line. The lineage leading to *Argema* split off from the rest of *Actias* and made it to  
418 Africa by about 11mya (0.97 probability). *Actias* then diverged into a Palearctic group and an  
419 Indomalaya group by ~9.5mya (HPD: 6.07 – 11.45 mya). It appears that there was a second  
420 wave of *Actias* movement into the Palearctic region by about 5 mya, leading to the extant short-  
421 tail species *A. dulcinea*, *aliena*, and *gnoma*. The diversification of *Actias* species across Wallacea  
422 and the Philippines islands ~4 mya (HPD: 2.40 – 5.04 mya) likely originated from populations in  
423 Malaysia (0.91 probability). It is unclear how *Actias* arrived in the Philippines, as there is a  
424 roughly equal likelihood that they colonized this region via Wallacea or from the Indomalaya  
425 region. We also do not have strong inference as to the exact manner in which *Actias* colonized  
426 Northern America and Europe, but our analysis indicates that they did so from the Eastern  
427 Palearctic region, with lineages leading to *A. luna* and *truncatipennis* likely using the Bering  
428 Land Bridge (Figs. 1, S5).

429

430 c) Phylogenetically-informed linear mixed models

431 Our global phylogenetically-controlled linear regression model (pglmm) revealed that  
432 hindwing length exhibits a positive relationship with bat predation pressure (parameter estimate  
433 (PE) of bat abundance: 0.082, 95% credible interval (CI): 0.028 – 0.137) (Fig. 3A). We also  
434 found a positive association between median growing season period and hindwing tail length  
435 (PE: 0.082, CI: 0.034 – 0.132). The credible interval for mean annual precipitation overlapped

436 zero, but the probability that this parameter had a negative relationship with tail length was 0.94  
437 and thus we interpret this along with the other environmental variables (PE: -0.045, CI: -0.097 –  
438 0.007). Average annual temperature and annual seasonal temperature variation also displayed  
439 negative relationships with hindwing length, with seasonal temperature variation having the  
440 greatest effect size (PE seasonal temp variation: -0.126, CI: -0.236 to -0.070, PE avg temp: -  
441 0.100 CI: -0.166 to -0.039) (Fig. 3A). We found that this global model performed better than a  
442 null model (which only accounts for phylogenetic relationships) and a model that contained all  
443 abiotic variables and excluded bat abundance, and performed slightly worse than an interaction  
444 model between bat abundance and seasonal temperature variation (DIC full model: 350, DIC  
445 null: 373, DIC no bats: 357, DIC interaction: 346). When we include the interaction, we find the  
446 same relationships between our parameters and hindwing tail length as in our global model.  
447 Under this framework, the bat parameter crosses the zero line, however there is still a 0.91  
448 probability that bat abundance has a positive relationship with hindwing tail length (Fig. 3B). We  
449 found that while phylogenetic relationships alone explain much of the variance in hindwing  
450 length ( $r^2 = 0.87$ ), the global model explained more ( $r^2 = 0.89$ ). Additionally, removing bat  
451 abundance from the model decreased the explanatory power of the model by ~2% and including  
452 the interaction term increased explanatory power by ~1%, compared to the global model  
453 ( $r2\_pred$  [79]; see code and outputs on Dryad). Breaking the dataset down by moth species also  
454 demonstrated that hindwing length was positively correlated with bat abundance in almost all  
455 species and was negatively correlated with seasonal temperature variation in almost all species  
456 (Fig. S11; see Table S6 for model structures).

457 The global pglmm analysis on forewing length (a proxy for body size [31,80]) showed  
458 similar relationships with all parameters (PE bat abundance: 0.149, CI: 0.065 – 0.233, PE LGP:

459 0.106, CI: 0.028 – 0.183, PE precipitation: -0.136, CI: -0.219 – -0.053, PE avg temp: -0.1184,  
460 CI: -0.216 – -0.021, PE seas temp: -0.101, CI: -0.271 – -0.069) (Fig. 3C). Again, the model  
461 containing all parameters was a better fit than the null (DIC full model: 789, DIC null model:  
462 808) and also had a better fit than the interaction model or the model without the bat abundance  
463 parameter included (DIC interaction model: 791, DIC no bats: 799). For body size, the  
464 interaction between bat abundance and seasonal temperature variation is not significant (Fig 3D).  
465 Overall, the predictors explained less of the variance in body size ( $r^2=0.72$ ) than hindwing  
466 length. See code and outputs on Dryad.

467

#### 468 4. Discussion

469 Combining species observations from iNaturalist and museum collections, a densely  
470 sampled *Actias* phylogeny (Fig. 1), and a comprehensive set of species distribution maps  
471 (SDMs) for 179 insectivorous bat species (Fig. 2), we investigated the relationship between  
472 hindwing tail length and biotic and abiotic drivers in the entirely tailed *Actias* + allies clade of  
473 Saturniidae (Fig 3). Our phylogeny captures 21 out of the approximately 40 *Actias* species and  
474 covers all major lineages, with only some species from known species complexes missing. To  
475 understand the evolutionary dynamics of this group, we estimated divergence times and used this  
476 dated phylogeny to infer species ancestral ranges. *Argema* + *Actias* diverged from their non-  
477 tailed sister taxa ~20 mya and *Argema* and *Actias* diverged ~15 mya, most likely when the  
478 lineage leading to *Argema* moved to Africa and the rest of *Actias* spread from the Indomalaya  
479 region (Fig. 2). Subsequently, *Actias* moved throughout the Eastern Palearctic (~10 mya) and  
480 from Malaysia into the Indo-Australian archipelago (~4mya). It is unclear when the European  
481 *Actias* (*Graellsia* [*Actias*] *isabellae*) and the North American *Actias* (*A. luna* and *truncatipennis*)

482 colonized these regions respectively, although our analyses indicate that they both diverged from  
483 the rest of *Actias* ~9 mya and sometime later become established in these areas (Fig. 1). Over the  
484 course of this time, the climate [81] and land masses were similar to current-day conditions,  
485 aside from movements of the Indo-Australian archipelago that continued until ~5 mya (before  
486 *Actias* were present in this region) [46] and the closure of the Bering land bridge, which may  
487 have facilitated the movement of *Actias* to the North American continent [82,83]. The relatively  
488 young age of this clade is therefore one of the strengths of this study, as present-day patterns can  
489 be more reliably used to infer historic dynamics. Similarly, predation pressure has likely been  
490 relatively consistent throughout the evolution of *Actias*. Based on fossil evidence [84,85] and  
491 biogeographical reconstructions [84,86–89], large insectivorous bats had already become  
492 globally spread by this time (~15 mya). Moreover, current dated bat phylogenies indicate that  
493 many extant lineages diversified 10-15 mya [85,90]. This rise in bat diversity and widespread  
494 prevalence of these predators could have made hindwing protrusions more profitable, as the  
495 night sky filled with more echolocators exploiting a greater depth of the prey community [91].

496 To estimate the effective pressure of bat predation, we built species distribution models  
497 (SDMs) for sufficiently large (10g or more) insectivorous bats and estimated abundance from  
498 these models (see Methods and Results sections for more details). We note that different bat  
499 species may exert differing predatory pressures on saturniid moths based on the specifics of their  
500 echolocation strategy or feeding guild [92], but given the large-scale nature of our data set and  
501 the generally similar diets of these aerial insectivores, we have considered insectivorous bats as a  
502 pooled group for the purposes of this study. To pit bat pressure against environmental factors  
503 (see Fig 3. for a list of predictors), we extracted values for these biotic and abiotic variables from  
504 hundreds of moth observations that we gathered from museum and community science

505 specimens. Previous lab work has shown that tailed moths with ~4cm difference in distance from  
506 body to tail tip can have a 25% increase in escape success from bats (Rubin et al. 2018). We  
507 therefore developed a method to extract a measure of absolute hindwing length from all moth  
508 photos, including those without a scale bar, which we believe will be helpful to future scientists  
509 interested in similar endeavors.

510 Analyzing these macroevolutionary data in a phylogenetically-informed linear mixed  
511 model framework provides evidence that bat predation pressure has likely exerted a selective  
512 force on the length of hindwing tails, while seasonal temperature variation has exerted a  
513 counterbalancing constraint on hindwing length (Fig. 3A). Moths with long tails are therefore  
514 less likely to be found in areas with fewer bats and more temperature fluctuation across the year.  
515 This result is supported by the positive association between the length of growing period and  
516 hindwing tail length. In essence, areas with longer periods of high plant productivity and more  
517 consistent temperature regimes appear to be more permissive of the evolution of long hindwing  
518 tails than areas with more restrictive seasons. Although weaker than the seasonality parameters,  
519 we found a negative association between hindwing length and average annual temperature and  
520 precipitation, indicating an opposite trend from Allen's rule for endotherms, where appendages  
521 are expected to elongate in hotter, drier environments (as in [93]). This aligns with previous  
522 work indicating that Lepidoptera wings are not used for heat venting [94]. We did not find an  
523 effect of latitude in any of our models, indicating that the underlying drivers of wing trait  
524 evolution in this group are more complex than general latitudinal gradients. Additionally, while  
525 previous studies have found latitude to be an important correlate of bat diversity [95], others  
526 have found that it is not the most informative predictor, especially in the case of insectivores  
527 [96–98]. In congruence with this, we found relatively weak associations between insectivorous

528 bat abundance and any of our climactic variables in the context of our global models (vif scores  
529 < 3; see code and outputs in Dryad). We did find an interaction effect between bat abundance  
530 and seasonal temperature variation in relation to tail length, however, indicating that bats and  
531 seasonality have their own relationship that influences tail length. That is, areas with less  
532 seasonal variability tend to host more bats as well as longer tailed moths (and vice versa, see Fig.  
533 S12 for an illustration of this interaction). From this interaction model, we also find that both  
534 seasonal temperature variation and bat abundance have their own appreciable effect on hindwing  
535 tail length. While the bat posterior distribution overlaps the zero line, there is a 0.91 probability  
536 that bat abundance is positively associated with moth tail length (Fig. 3B). Together, our  
537 analyses indicate that tails are locked in evolutionary tension between abiotic constraints and  
538 biotic pressure.

539 Contrary to our predictions, body size (forewing length) demonstrated an almost identical  
540 positive association with bat abundance as hindwing length (Fig. 3C, D). This could be because  
541 wing/body sizes are tightly integrated such that long hindwing tails require, or are made possible  
542 by, larger body sizes. This does not seem to be a ubiquitous rule in saturniids, as previous work  
543 in the subfamily Arsenurinae found an inverse relationship between hindwing length and body  
544 size (using forewing length as a proxy) [31]. However, arsenurine tails have a different structure  
545 than those of the Saturniinae (the subfamily containing *Actias*), in that they often protrude off the  
546 distal hindwing veins, rather than proximate ones [99]. We therefore think it is quite likely that  
547 these two subfamilies have different relationships between body size and hindwing tail length. In  
548 our clade of interest hindwing length scales with forewing length ( $R^2 = 0.60$ ) and thus most  
549 likely body size. Rather than simply being a necessary precursor for long hindwing tails,  
550 however, body size may be an anti-bat trait in itself. Bats seem to target prey relative to their

551 own size, such that smaller bats eat smaller insects and larger bats are the main predators of large  
552 moths and beetles [100,101]. Whether this is due to handling, gape size, or echolocation  
553 limitations is still debated [53,102–104]. We found that the positive association between bat  
554 abundance and forewing length is complemented by a positive association between length of  
555 growing period and forewing length, again indicating that longer periods of forage availability  
556 allows for longer periods of larval feeding and larger adult body sizes [15]. These effects were to  
557 some extent countered by a negative association with precipitation. This may indicate a  
558 limitation on body size in regions with more rainfall, perhaps due to hampered foraging or  
559 increased larval mortality during bouts of heavy rain [105]. However, precipitation parameters  
560 from Worldclim should be considered with caution, especially from tropical regions with fewer  
561 climactic field data collection stations [106].

562 In addition to its use in our statistical models, comparative trait analyses revealed  
563 multiple origins of tail elongation but only one adaptive peak at the stem of the long-tailed moon  
564 moth clade, comprising all tailed species. This may be a result of the relatively limited number of  
565 species in this group and the strong phylogenetic signal underlying the tail trait. That is, while  
566 hindwing length varies considerably among these species, all species in this clade have tails,  
567 possibly making it more difficult to find the valleys between the morphological peaks [75,107].  
568 Our results are congruent with a prior study that inferred a similar adaptive peak regime in  
569 *Argema* + *Actias* that was convergently repeated across the entire saturniid tree [12]. The  
570 multiple elongation and shrinkage events across our phylogeny indicates that the tail is a labile  
571 trait that could have become enhanced under conditions of high enough echolocating predator  
572 pressure and permissive environmental conditions, and that could relatively easily regress under  
573 more restrictive conditions. Previous research into the morphological lability of the fore- and

574 hindwings of tailed swallowtail butterflies (Papilionidae), found similarly elevated hindwing  
575 shape diversity [108]. Lepidopteran wing shape variation is likely driven by different biological  
576 pressures on the two sets of wings, where forewings are essential for flight, while hindwings are  
577 helpful for maneuverability, but not entirely necessary [109–111]. Further, experimental  
578 evidence indicates that rather than being purely flight-driven, hindwings can play an important  
579 role in deflecting predators both during the day (in butterflies) [112] and night (in moths)  
580 [11,12].

581         While there are risks to making assumptions about past predator and prey dynamics  
582 based on extant forms, interactions, or distributions [113], the relative consistency of  
583 environmental conditions and bat presence strengthens our inferential power. Additionally, while  
584 our bat abundance estimates come with necessary assumptions and levels of uncertainty (e.g.,  
585 species distribution models of extant species can be uncertain for species that are difficult to  
586 “observe”, as is the case with some insectivorous bats [114,115] and the population estimates  
587 were built from a global mammal dataset which could only provide coarse estimates [66]), we  
588 are ultimately interested in relative, rather than absolute, predator abundance. In general, species  
589 richness – the backbone upon which we built our abundance estimates – remains stable when  
590 ecological limits (most driven by climactic variables) are similar [116–118]. Thus, while extant  
591 bat distributions may not directly mirror historical ones, moths were clearly under intense  
592 selection pressure by echolocating bats in these regions.

593         In sum, results from this study, in conjunction with previous behavioral work [11,12]  
594 provide synergistic compelling evidence that predation pressure is associated with the elongation  
595 of hindwing tails in moon moths. Considering the absence of alternative selective forces (i.e.,  
596 reproduction [1] or diurnal predation [14]) and the clear efficacy of short tails to increase escape

597 success [12], we postulate that bat predation pressure drove the origins of the hindwing tail in  
598 Saturniidae. Hindwing tails with twisted and cupped ends have emerged five independent times  
599 across Saturniidae, three times in the Saturniinae (tribes: Saturniini, Attacini, Urotini/Bunaeini),  
600 once within the Arsenurinae [11,12,31], and once in Cercophaninae [19,119,120]. Phylogenetic  
601 inertia and the seemingly easily modifiable unit of wing imaginal discs in developing  
602 Lepidoptera [121] likely played a role in the evolution of tails. Contrary to the tail-elongating  
603 force of predation pressure, the elaboration of this trait appears to be limited by environmental  
604 factors. Indeed, the constraint of these abiotic variables may at times supersede the positive  
605 driver of predation. While developmental studies are needed to uncover the mechanism by which  
606 environment constrains tail enhancement (i.e., building a tail may require more nutritional  
607 resources and a longer growing season than building a more simplified hindwing), the negative  
608 association that we found between climatic variables, and the positive association with longer  
609 growing periods, provides evidence for an environmentally-mediated long-term cost of these  
610 appendages. A similar relationship was previously found between bright butterfly coloration,  
611 climatic variables, and bird diversity, indicating that trait elaboration of multiple kinds is likely  
612 limited by environmental factors [122]. Here, our study adds an important macroevolutionary  
613 lens to previous experimental predator-prey work. Uniting these two levels of information  
614 provides important advancement to our understanding of complex evolutionary dynamics and  
615 opens new lines of inquiry for future research [123]. Additional studies at an intermediate scale,  
616 testing the relationship between microhabitat, bat predation, and hindwing tails, could also reveal  
617 important detail about these dynamics. We emphasize the strength of multi-scale investigation  
618 for illuminating the relative pressures of competing eco-evolutionary forces that have shaped the  
619 origin and diversification of elaborate traits across taxonomic systems.

620 **Acknowledgments**

621  
622 Our sincere gratitude goes to Emily Ellis, who guided JJR in bioinformatics. David Plotkin  
623 helped with trouble-shooting phylogenetic and BioGeoBEARS analyses. Christian Couch and  
624 Amanda Markee contributed to DNA extraction and sequencing. Hailey Dansby collected photos  
625 of museum specimens. We appreciate David Grimaldi and Suzanne Green for help with AMNH  
626 specimen photos, as well as Stefan Naumann for providing *Actias felicis* photos and data.  
627 Sequenced specimens were collected with the help of several researchers, including Wayne Hsu,  
628 Charlie Mitter, and Richard Peigler. We thank José Miguel Ponciano for encouraging JJR to  
629 explore simulations at the start of this project, Emma Podietz for her help with ArcGIS, Sean  
630 Severud for help with figure design, and Michael Belitz for his support on species richness  
631 estimation.

632  
633 **Funding:**

634  
635 We thank the National Science Foundation for supporting this work: NSF DEB 1557007, NSF  
636 IOS 1920895, 1920936. JJR was supported by the UF Biology Graduate Student Fellowship and  
637 the SSB GIAR, CJC was supported by a UF Biodiversity Institute Fellowship and a Threadgill  
638 Dissertation Fellowship.

639

640

641

642

643

644

645

646

647

648

649

650

651

## 652 References

- 654 1. Rubin JJ, Kawahara AY. 2023 Sexual selection does not drive hindwing tail elaboration in a moon moth,  
655 *Actias luna*. *Behavioral Ecology* **34**, 488–494. (doi:10.1093/beheco/arad019)
- 656 2. Graham ZA, Garde E, Heide-Jørgensen MP, Palaoro A V. 2020 The longer the better: Evidence that narwhal  
657 tusks are sexually selected. *Biol Lett* **16**, 1–5. (doi:10.1098/rsbl.2019.0950)
- 658 3. Petrie M, Tim H, Carolyn S. 1991 Peahens prefer peacocks with elaborate trains. *Anim Behav* **41**, 323–331.  
659 (doi:10.1016/S0003-3472(05)80484-1)
- 660 4. Crofts SB, Stankowich T. 2021 Stabbing spines: A review of the biomechanics and evolution of defensive  
661 spines. *Integr Comp Biol* **61**, 655–667. (doi:10.1093/icb/icab099)
- 662 5. Garland T, Downs CJ, Ives AR. 2022 Trade-offs (And constraints) in organismal biology. *Physiological and*  
663 *Biochemical Zoology* **95**, 82–112. (doi:10.1086/717897)
- 664 6. Basolo AL, Alcaraz G. 2003 The turn of the sword: Length increases male swimming costs in swordtails.  
665 *Proceedings of the Royal Society B: Biological Sciences* **270**, 1631–1636. (doi:10.1098/rspb.2003.2388)
- 666 7. Somjee U. 2021 Positive allometry of sexually selected traits: Do metabolic maintenance costs play an  
667 important role? *BioEssays* **43**, 1–13. (doi:10.1002/bies.202000183)
- 668 8. Thavarajah NK, Tickle PG, Nudds RL, Codd JR. 2016 The peacock train does not handicap cursorial  
669 locomotor performance. *Sci Rep* **6**, 1–6. (doi:10.1038/srep36512)
- 670 9. Møller AP. 1996 The cost of secondary sexual characters and the evolution of cost-reducing traits. *Ibis* **138**,  
671 112–119. (doi:10.1111/j.1474-919X.1996.tb04317.x)
- 672 10. Scoble MJ. 1992 *The Lepidoptera. Form, function and diversity*. Oxford: Oxford University Press.
- 673 11. Barber JR, Leavell BC, Keener AL, Breinholt JW, Chadwell BA, McClure CJW, Hill GM, Kawahara AY.  
674 2015 Moth tails divert bat attack: Evolution of acoustic deflection. *Proceedings of the National Academy of*  
675 *Sciences* **112**, 2812–2816. (doi:10.1073/pnas.1421926112)
- 676 12. Rubin JJ, Hamilton CA, McClure CJW, Chadwell BA, Kawahara AY, Barber JR. 2018 The evolution of  
677 anti-bat sensory illusions in moths. *Sci Adv* **4**, 1–10. (doi:10.1126/sciadv.aar7428)
- 678 13. Proches S. 2005 The world's biogeographical regions: Cluster analyses based on bat distributions. *J*  
679 *Biogeogr* **32**, 607–614. (doi:10.1111/j.1365-2699.2004.01186.x)
- 680 14. Rubin JJ, Martin NW, Sieving KE, Kawahara AY. 2023 Testing bird-driven diurnal trade-offs of the moon  
681 moth's anti-bat tail. *Biol Lett* **19**, 1–5. (doi:10.1098/rsbl.2022.0428)
- 682 15. Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. 2014 The developmental control  
683 of size in insects. *Wiley Interdiscip Rev Dev Biol* **3**, 113–134. (doi:10.1002/wdev.124)
- 684 16. McKenna KZ, Tao D, Nijhout HF. 2019 Exploring the role of insulin signaling in relative growth: A case  
685 study on wing-body scaling in Lepidoptera. *Integr Comp Biol* **59**, 1324–1337. (doi:10.1093/icb/icz080)
- 686 17. Nijhout HF, Emlen DJ. 1998 Competition among body parts in the development and evolution of insect  
687 morphology. *Proc Natl Acad Sci U S A* **95**, 3685–3689. (doi:10.1073/pnas.95.7.3685)
- 688 18. Macdonald WP, Martin A, Reed RD. 2010 Butterfly wings shaped by a molecular cookie cutter:  
689 Evolutionary radiation of lepidopteran wing shapes associated with a derived Cut/wingless wing margin  
690 boundary system. *Evol Dev* **12**, 296–304. (doi:10.1111/j.1525-142X.2010.00415.x)
- 691 19. Hamilton CA, St Laurent RA, Dexter K, Kitching IJ, Breinholt JW, Zwick A, Timmermans MJTN, Barber  
692 JR, Kawahara AY. 2019 Phylogenomics resolves major relationships and reveals significant diversification  
693 rate shifts in the evolution of silk moths and relatives. *BMC Evol Biol* **19**, 1–13. (doi:10.1186/s12862-019-  
694 1505-1)
- 695 20. Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA. 2019 Phylogenomics reveals the  
696 evolutionary timing and pattern of butterflies and moths. *PNAS* , 1–7. (doi:10.1073/pnas.1907847116)
- 697 21. Tobler A, Nijhout HF. 2010 Developmental constraints on the evolution of wing-body allometry in  
698 *Manduca sexta*. *Evol Dev* **12**, 592–600. (doi:10.1111/j.1525-142X.2010.00444.x)
- 699 22. Mousseau TA. 1997 Ectotherms follow the converse to Bergmann's rule. *51*, 630–632.  
700 (doi:10.2307/2411138)
- 701 23. Dmitriew CM. 2011 The evolution of growth trajectories: What limits growth rate? *Biological Reviews* **86**,  
702 97–116. (doi:10.1111/j.1469-185X.2010.00136.x)
- 703 24. Lehnert MS, Scriber JM, Gerard PD, Emmel TC. 2012 The 'converse to Bergmann's rule' in tiger  
704 swallowtail butterflies: boundaries of species and subspecies wing traits are independent of thermal and  
705 host-plant induction. *American Entomologist* **53**, 156–165.

706 25. Plaistow SJ, Tsuchida K, Tsubaki Y, Setsuda K. 2005 The effect of a seasonal time constraint on  
707 development time, body size, condition, and morph determination in the horned beetle *Allomyrina*  
708 *dichotoma* L. (Coleoptera: Scarabaeidae). *Ecol Entomol* **30**, 692–699. (doi:10.1111/j.0307-  
709 6946.2005.00740.x)

710 26. Beerli N, Bärtschi F, Ballesteros-Mejia L, Kitching IJ, Beck J. 2019 How has the environment shaped  
711 geographical patterns of insect body sizes? A test of hypotheses using sphingid moths. *J Biogeogr* **46**, 1687–  
712 1698. (doi:10.1111/jbi.13583)

713 27. Brehm G, Zeuss D, Colwell RK. 2019 Moth body size increases with elevation along a complete tropical  
714 elevational gradient for two hyperdiverse clades. *Ecography* **42**, 632–642. (doi:10.1111/ecog.03917)

715 28. Svensson EI, Gómez-Llano M, Waller JT. 2022 Out of the tropics: Macroevolutionary size trends in an old  
716 insect order are shaped by temperature and predators. *J Biogeogr* , 1–14. (doi:10.1111/jbi.14544)

717 29. Shelomi M, Zeuss D. 2017 Bergmann's and Allen's rules in native European and Mediterranean  
718 Phasmatodea. *Front Ecol Evol* **5**, 1–13. (doi:10.3389/fevo.2017.00025)

719 30. D'Abrrera B. 1995 *Saturniidae Mundi*. Antiquariat Goecke & Evers.

720 31. Hamilton CA, Winiger N, Rubin JJ, Breinholt J, Rougerie R, Kitching IJ, Barber JR, Kawahara AY. 2022  
721 Hidden phylogenomic signal helps elucidate Arsenurine silkworm phylogeny and the evolution of body size  
722 and wing shape trade-offs. *Syst Biol* **71**, 859–874. (doi:10.1093/sysbio/syab090)

723 32. Miller WE. 1977 Wing Measure as a size index in Lepidoptera: the family Olethreutidae. *Ann Entomol Soc  
724 Am* **70**, 253–256. (doi:10.1093/aesa/70.2.253)

725 33. Breinholt JW, Earl C, Lemmon AR, Moriarty Lemmon E, Xiao L, Kawahara AY. 2017 Resolving  
726 relationships among the megadiverse butterflies and moths with a novel pipeline for Anchored  
727 Phylogenomics. *Syst Biol* **0**, 1–16. (doi:10.1093/sysbio/syx048)

728 34. Larsson A. 2014 AliView: A fast and lightweight alignment viewer and editor for large datasets.  
729 *Bioinformatics* **30**, 3276–3278. (doi:10.1093/bioinformatics/btu531)

730 35. Kück P, Longo GC. 2014 FASconCAT-G: extensive functions for multiple sequence alignment preparations  
731 concerning phylogenetic studies. *Front Zool* **11**, 81. (doi:10.1186/s12983-014-0081-x)

732 36. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015 IQ-TREE: A fast and effective stochastic  
733 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**, 268–274.  
734 (doi:10.1093/molbev/msu300)

735 37. Drummond AJ, Rambaut A. 2007 BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evol  
736 Biol* **7**. (doi:10.1186/1471-2148-7-214)

737 38. Lanfear R, Calcott B, Ho SYW, Guindon S. 2012 PartitionFinder: Combined selection of partitioning  
738 schemes and substitution models for phylogenetic analyses. *UPB Scientific Bulletin, Series B: Chemistry  
739 and Materials Science* **29**, 1695–1701. (doi:10.1093/molbev/mss020)

740 39. Mirarab S, Warnow T. 2015 ASTRAL-II: Coalescent-based species tree estimation with many hundreds of  
741 taxa and thousands of genes. *Bioinformatics* **31**, i44–i52. (doi:10.1093/bioinformatics/btv234)

742 40. Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012 Bayesian phylogenetics with BEAUTi and the  
743 BEAST 1.7. *Mol Biol Evol* **29**, 1969–1973. (doi:10.1093/molbev/mss075)

744 41. Maddison W, Maddison D. 2022 Mesquite: A modular system for evolutionary analysis. Version 3.60.  
745 <http://www.mesquiteproject.org>.

746 42. Gernhard T. 2008 The conditioned reconstructed process. *J Theor Biol* **253**, 769–778.  
747 (doi:10.1016/j.jtbi.2008.04.005)

748 43. Matzke N. 2018 BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with  
749 R Scripts. *R Package, Version 1.1.1. 1*.

750 44. Matzke NJ. 2014 Model selection in historical biogeography reveals that founder-event speciation is a  
751 crucial process in island clades. *Syst Biol* **63**, 951–970. (doi:10.1093/sysbio/syu056)

752 45. Toussaint EFA, Balke M. 2016 Historical biogeography of Polyura butterflies in the oriental Palaeotropics:  
753 trans-archipelagic routes and South Pacific island hopping. *J Biogeogr* **43**, 1560–1572.  
754 (doi:10.1111/jbi.12741)

755 46. Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, Shih H-T, Carvalho GR, von Rintelen  
756 T. 2011 Biogeography of the Indo-Australian Archipelago. *Annu Rev Ecol Evol Syst* **42**, 205–226.  
757 (doi:10.1146/annurev-ecolsys-102710-145001)

758 47. Toussaint EFA *et al.* 2019 Out of the Orient: Post-Tethyan transoceanic and trans-Arabian routes fostered  
759 the spread of Baorini skippers in the Afrotropics. *Syst Entomol* **44**, 926–938. (doi:10.1111/syen.12365)

760 48. Gladenkov AY, Oleinik AE, Marinovich L, Barinov KB. 2002 A refined age for the earliest opening of  
761 Bering Strait. *Palaeogeogr Palaeoclimatol Palaeoecol* **183**, 321–328. (doi:10.1016/S0031-0182(02)00249-  
762 3)

763 49. Milne IR. 2006 Northern hemisphere plant disjunctions: A window on tertiary land bridges and climate  
764 change? *Ann Bot* **98**, 465–472. (doi:10.1093/aob/mcl148)

765 50. Condamine FL, Rolland J, Morlon H. 2013 Macroevolutionary perspectives to environmental change. *Ecol  
766 Lett* **16**, 72–85. (doi:10.1111/ele.12062)

767 51. Baker RJ, Bininda-Edmonds ORP, Mantilla-Meluk H, Porter CA, Van Den Bussche RA. 2012 Molecular  
768 time scale of diversification of feeding strategy and morphology in New World Leaf-Nosed Bats  
769 (Phyllostomidae): a phylogenetic perspective. In *Evolutionary history of bats: fossils, molecules, and  
770 morphology* (eds GF Gunnell, NB Simmons), pp. 385–409. New York: Cambridge University Press.

771 52. Simmons NB, Cirranello AL. In press. Bat species of the world: A taxonomic and geographic database,  
772 version 1.3. 2022.

773 53. Barclay RMR, Brigham RM. 1991 Prey detection, dietary niche breadth, and body size in bats: why are  
774 aerial insectivorous bats so small? *Am Nat* **137**, 693–703. (doi:10.1080/0305006790150101)

775 54. Folk RA, Siniscalchi CM, Doby J, Kates HR, Manchester SR, Soltis PS, Soltis DE, Guralnick RP, Belitz M.  
776 2023 Spatial phylogenetics of Fagales: Investigating the history of temperate forests. *BioRxiv*  
777 (doi:10.1101/2023.04.17.537249)

778 55. Abbott JC, Bota-Sierra CA, Guralnick R, Kalkman V, González-Soriano E, Novelo-Gutiérrez R, Bybee S,  
779 Ware J, Belitz MW. 2022 Diversity of Nearctic dragonflies and damselflies (Odonata). *Diversity* **14**, 1–18.  
780 (doi:10.3390/d14070575)

781 56. Zizka A *et al.* 2019 CoordinateCleaner: Standardized cleaning of occurrence records from biological  
782 collection databases. *Methods Ecol Evol* **10**, 744–751. (doi:10.1111/2041-210X.13152)

783 57. Herkt KMB, Barnikel G, Skidmore AK, Fahr J. 2016 A high-resolution model of bat diversity and  
784 endemism for continental Africa. *Ecol Model* **320**, 9–28. (doi:10.1016/j.ecolmodel.2015.09.009)

785 58. Smeraldo S *et al.* 2018 Ignoring seasonal changes in the ecological niche of non-migratory species may lead  
786 to biases in potential distribution models: lessons from bats. *Biodivers Conserv* **27**, 2425–2441.  
787 (doi:10.1007/s10531-018-1545-7)

788 59. Hayes MA, Cryan PM, Wunder MB. 2015 Seasonally-dynamic presence-only species distribution models  
789 for a cryptic migratory bat impacted by wind energy development. *PLoS One* **10**.  
790 (doi:10.1371/journal.pone.0132599)

791 60. McClure ML *et al.* 2021 A hybrid correlative-mechanistic approach for modeling winter distributions of  
792 North American bat species. *J Biogeogr* **48**, 2429–2444. (doi:10.1111/jbi.14130)

793 61. Fick SE, Hijmans RJ. 2017 WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas.  
794 *International Journal of Climatology* **37**, 4302–4315. (doi:10.1002/joc.5086)

795 62. Amatulli G, Domisch S, Tuanmu M-N, Parmentier B, Ranipeta A, Malczyk J, Jetz W. 2018 A suite of  
796 global, cross-scale topographic variables for environmental and biodiversity modeling. *Sci Data* **5**, 1–15.  
797 (doi:10.1038/sdata.2018.40)

798 63. Townsend J, DiMiceli C. 2015 MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global  
799 500m SIN Grid. *NASA LP DAAC*.

800 64. Kass JM *et al.* 2022 The global distribution of known and undiscovered ant biodiversity. *Sci. Adv.* **8**.

801 65. Calabrese JM, Certain G, Kraan C, Dormann CF. 2014 Stacking species distribution models and adjusting  
802 bias by linking them to macroecological models. *Global Ecology and Biogeography* **23**, 99–112.  
803 (doi:10.1111/geb.12102)

804 66. Greenspoon L *et al.* 2023 The global biomass of wild mammals. *Proc Natl Acad Sci U S A* **120**.  
805 (doi:10.1073/pnas.2204892120)

806 67. Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L, Ram K. 2023 rgbif: Interface to the  
807 Global Biodiversity Information Facility API. *R package version 3.3.7*.

808 68. Rasband WS. 2018 ImageJ.

809 69. Acharya L. 1995 Sex-biased predation on moths by insectivorous bats. *Anim Behav* **49**, 1461–1468.  
810 (doi:10.1016/0003-3472(95)90067-5)

811 70. Li D, Dinnage R, Nell LA, Helmus MR, Ives AR. 2020 phyr: An r package for phylogenetic species-  
812 distribution modelling in ecological communities. *Methods Ecol Evol* **11**, 1455–1463. (doi:10.1111/2041-  
813 210X.13471)

814 71. Fischer G, van Velthuizen H, Nachtergael F. 2000 Global Agro-Ecological Zones Assessment:  
815 Methodology and Results.

816 72. Zuur AF, Ieno EN, Elphick CS. 2010 A protocol for data exploration to avoid common statistical problems.  
817 *Methods Ecol Evol* **1**, 3–14. (doi:10.1111/j.2041-210x.2009.00001.x)

818 73. Revell LJ. 2012 phytools: An R package for phylogenetic comparative biology (and other things). *Methods*  
819 *Ecol Evol* **3**, 217–223. (doi:10.1111/j.2041-210X.2011.00169.x)

820 74. Goolsby EW, Bruggeman J, Ané C. 2017 Rphylopars: fast multivariate phylogenetic comparative methods  
821 for missing data and within-species variation. *Methods Ecol Evol* **8**, 22–27. (doi:10.1111/2041-210X.12612)

822 75. Ingram T, Mahler DL. 2013 SURFACE: Detecting convergent evolution from comparative data by fitting  
823 Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. *Methods Ecol Evol* **4**, 416–425.  
824 (doi:10.1111/2041-210X.12034)

825 76. Kitching I, Rougerie R, Zwick A, Hamilton C, St Laurent R, Naumann S, Ballesteros Mejia L, Kawahara A.  
826 2018 A global checklist of the Bombycoidea (Insecta: Lepidoptera). *Biodivers Data J* **6**, 1–13.  
827 (doi:10.3897/BDJ.6.e22236)

828 77. Nässig WA. 1991 Biological observations and taxonomic notes on *Actias isabellae* (Graells) (Lepidoptera,  
829 Saturniidae). *Nota lepidoptera* **14**, 131–143.

830 78. Ylla J, Peigler RS, Kawahara AY. 2005 Cladistic analysis of moon moths using morphology, molecules, and  
831 behaviour: *Actias* Leach, 1815; *Argema* Wallengren, 1858; *Graellsia* Grote, 1896 (Lepidoptera:  
832 Saturniidae). *SHILAP Revista de Lepidopterologia* **33**, 299–317.

833 79. Ives AR. 2019 R2s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs. *Syst Biol* **68**, 234–251.  
834 (doi:10.1093/sysbio/syy060)

835 80. Miller WE. 1997 Diversity and evolution of tongue length in hawkmoths (Sphingidae). *J Lepid Soc* **51**, 9–  
836 31.

837 81. Steinthorsdottir M *et al.* 2021 The Miocene: The future of the past. *Paleoceanogr Paleoclimatol* **36**, 1–71.  
838 (doi:10.1029/2020PA004037)

839 82. Hundsdoerfer AK, Kitching IJ, Wink M. 2005 A molecular phylogeny of the hawkmoth genus *Hyles*  
840 (Lepidoptera: Sphingidae, Macroglossinae). *Mol Phylogenet Evol* **35**, 442–458.  
841 (doi:10.1016/j.ympev.2005.02.004)

842 83. Rubinoff D, Doorenweerd C. 2020 Systematics and biogeography reciprocally illuminate taxonomic  
843 revisions in the silkworm genus *Saturnia* (Lepidoptera: Saturniidae). *J Lepid Soc* **74**, 1–6.  
844 (doi:10.18473/lepi.74i1.a1)

845 84. Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ. 2005 A molecular phylogeny for  
846 bats illuminates biogeography and the fossil record. *Science* **307**, 580–584. (doi:10.1126/science.1105113)

847 85. Shi JJ, Rabosky DL. 2015 Speciation dynamics during the global radiation of extant bats. *Evolution* **69**,  
848 1528–1545. (doi:10.1111/evo.12681)

849 86. Ruedi M, Friedli-Weyeneth N, Teeling EC, Puechmaille SJ, Goodman SM. 2012 Biogeography of Old  
850 World emballonurine bats (Chiroptera: Emballonuridae) inferred with mitochondrial and nuclear DNA. *Mol*  
851 *Phylogenet Evol* **64**, 204–211. (doi:10.1016/j.ympev.2012.03.019)

852 87. Lamb JM *et al.* 2008 Phylogeography and predicted distribution of African-Arabian and Malagasy  
853 populations of giant mastiff bats, *Otomops* spp. (Chiroptera: Molossidae). *Acta Chiropt* **10**, 21–40.  
854 (doi:10.3161/150811008X331063)

855 88. HoráČek I, Fejfar O, Hulva P. 2006 A new genus of vespertilionid bat from Early Miocene of Jebel Zelten,  
856 Libya, with comments on *Scotophilus* and early history of vespertilionid bats (Chiroptera). *Lynx* **37**, 131–  
857 150.

858 89. Chornelia A, Hughes AC. 2022 The evolutionary history and ancestral biogeographic range estimation of  
859 old-world Rhinolophidae and Hipposideridae (Chiroptera). *BMC Ecol Evol* **22**. (doi:10.1186/s12862-022-  
860 02066-x)

861 90. Upham NS, Esselstyn JA, Jetz W. 2019 Inferring the mammal tree: Species-level sets of phylogenies for  
862 questions in ecology, evolution, and conservation. *PLoS Biol* **17**, e3000494.  
863 (doi:10.1371/journal.pbio.3000494)

864 91. Alberdi A *et al.* 2020 DNA metabarcoding and spatial modelling link diet diversification with distribution  
865 homogeneity in European bats. *Nat Commun* **11**, 1–8. (doi:10.1038/s41467-020-14961-2)

866 92. Denzinger A, Schnitzler HU. 2013 Bat guilds, a concept to classify the highly diverse foraging and  
867 echolocation behaviors of microchiropteran bats. *Front Physiol* **4**, 1–15. (doi:10.3389/fphys.2013.00164)

868 93. Alhajeri BH, Fourcade Y, Upham NS, Alhaddad H. 2020 A global test of Allen's rule in rodents. *Global*  
869 *Ecology and Biogeography* **29**, 2248–2260. (doi:10.1111/geb.13198)

870 94. Wasserthal LT. 1975 The role of butterfly wings in regulation of body temperature. *J Insect Physiol* **21**,  
871 1921–1930. (doi:10.1016/0022-1910(75)90224-3)

872 95. Kaufman DM, Willig MR. 1998 Latitudinal patterns of mammalian species richness in the New World: The  
873 effects of sampling method and faunal group. *J Biogeogr* **25**, 795–805. (doi:10.1046/j.1365-  
874 2699.1998.2540795.x)

875 96. Martins MA, Carvalho WD De, Dias D, Franca DDS, Oliveira MBD, Peracchi AL. 2015 Bat species  
876 richness (Mammalia, Chiroptera) along an elevational gradient in the Atlantic forest of southeastern Brazil.  
877 *Acta Chiropt* **17**, 401–409. (doi:10.3161/15081109ACC2015.17.2.016)

878 97. Bogoni JA, Carvalho-Rocha V, Ferraz KMPMB, Peres CA. 2021 Interacting elevational and latitudinal  
879 gradients determine bat diversity and distribution across the Neotropics. *Journal of Animal Ecology*.  
880 (doi:10.1111/1365-2656.13594)

881 98. Patten MA. 2004 Correlates of species richness in North American bat families. *J Biogeogr* **31**, 975–985.  
882 (doi:10.1111/j.1365-2699.2004.01087.x)

883 99. Zhong M, Hilla GM, Gomez JP, Plotkin D, Barber JR, Kawahara AY. 2016 Quantifying wing shape and  
884 size of saturniid moths with geometric morphometrics. *J Lepid Soc* **70**, 99–107. (doi:10.18473/lepi.70i2.a4)

885 100. Wray AK, Peery MZ, Jusino MA, Kochanski JM, Banik MT, Palmer JM, Lindner DL, Gratton C. 2021  
886 Predator preferences shape the diets of arthropodivorous bats more than quantitative local prey abundance.  
887 *Mol Ecol* **30**, 855–873. (doi:10.1111/mec.15769)

888 101. Jones G. 1990 Prey selection by the greater horseshoe bat (*Rhinolophus ferrumequinum*): Optimal foraging  
889 by echolocation? *Journal of Animal Ecology* **59**, 587–602.

890 102. Gonsalves L, Bicknell B, Law B, Webb C, Monamy V. 2013 Mosquito consumption by insectivorous bats:  
891 Does size matter? *PLoS One* **8**. (doi:10.1371/journal.pone.0077183)

892 103. Giacomini G, Herrel A, Chaverri G, Brown RP, Russo D, Scaravelli D, Meloro C. 2022 Functional  
893 correlates of skull shape in Chiroptera: feeding and echolocation adaptations. *Integr Zool* **17**, 430–442.  
894 (doi:10.1111/1749-4877.12564)

895 104. Bogdanowicz W, Fenton MB, Daleszczyk K. 1999 The relationships between echolocation calls,  
896 morphology and diet in insectivorous bats. *J Zool* **247**, 381–393. (doi:10.1111/j.1469-7998.1999.tb01001.x)

897 105. Kamata N, Igarashi Y. 1994 Influence of rainfall on feeding behavior, growth, and mortality of larvae of the  
898 beech caterpillar, *Quadricalcarifera punctatella* (Motschulsky) (Lep., Notodontidae). *Journal of Applied  
899 Entomology* **118**, 347–353. (doi:10.1111/j.1439-0418.1994.tb00810.x)

900 106. Soria-Auza RW, Kessler M, Bach K, Barajas-Barbosa PM, Lehnert M, Herzog SK, Böhner J. 2010 Impact  
901 of the quality of climate models for modelling species occurrences in countries with poor climatic  
902 documentation: a case study from Bolivia. *Ecol Model* **221**, 1221–1229.  
903 (doi:10.1016/j.ecolmodel.2010.01.004)

904 107. Graham CH, Storch D, Machac A. 2018 Phylogenetic scale in ecology and evolution. *Global Ecology and  
905 Biogeography* **27**, 175–187. (doi:10.1111/geb.12686)

906 108. Owens HL, Lewis DS, Condamine FL, Kawahara AY, Guralnick RP. 2020 Comparative phylogenetics of  
907 Papilio butterfly wing shape and size demonstrates independent hindwing and forewing evolution. *Syst Biol*  
908 **69**, 813–819. (doi:10.1093/sysbio/syaa029)

909 109. Jantzen B, Eisner T. 2008 Hindwings are unnecessary for flight but essential for execution of normal evasive  
910 flight in Lepidoptera. *Proc Natl Acad Sci U S A* **105**, 16636–40. (doi:10.1073/pnas.0807223105)

911 110. Stylman M, Penz CM, DeVries P. 2020 Large hind wings enhance gliding performance in ground effect in a  
912 Neotropical butterfly (Lepidoptera: Nymphalidae). *Ann Entomol Soc Am* **113**, 15–22.  
913 (doi:10.1093/aesa/saz042)

914 111. Le Roy C, Cornette R, Llaurens V, Debat V. 2019 Effects of natural wing damage on flight performance in  
915 Morpho butterflies: what can it tell us about wing shape evolution? *J Exp Biol* **222**, jeb204057.  
916 (doi:10.1242/jeb.204057)

917 112. Chotard A, Ledamoisel J, Decamps T, Herrel A, Chaine AS, Llaurens V, Debat V. 2022 Evidence of attack  
918 deflection suggests adaptive evolution of wing tails in butterflies. *Proceedings of the Royal Society B:  
919 Biological Sciences* **289**. (doi:10.1098/rspb.2022.0562)

920 113. Losos JB. 2011 Convergence, adaptation, and constraint. *Evolution* **65**, 1827–1840. (doi:10.1111/j.1558-  
921 5646.2011.01289.x)

922 114. Razgour O, Rebelo H, Di Febbraro M, Russo D. 2016 Painting maps with bats: species distribution  
923 modelling in bat research and conservation. *Hystrix* **27**, 1–8. (doi:10.4404/hystrix-27.1-11753)

924 115. Delgado-Jaramillo M, Aguiar LMS, Machado RB, Bernard E. 2020 Assessing the distribution of a species-  
925 rich group in a continental-sized megadiverse country: Bats in Brazil. *Divers Distrib* **26**, 632–643.  
926 (doi:10.1111/ddi.13043)

927 116. Rabosky DL, Hurlbert AH. 2015 Species richness at continental scales is dominated by ecological limits.  
928 *American Naturalist* **185**, 572–583. (doi:10.1086/680850)

929 117. Hawkins BA *et al.* 2012 Different evolutionary histories underlie congruent species richness gradients of  
930 birds and mammals. *J Biogeogr* **39**, 825–841. (doi:10.1111/j.1365-2699.2011.02655.x)

931 118. Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE. 2014 Assemblage time  
932 series reveal biodiversity change but not systematic loss. *Science (1979)* **344**, 296–299.  
933 (doi:10.1126/science.1248484)

934 119. Wolfe KL, Balcázar-Lara MA. 1994 Chile's *Cercophana venusta* and its immature stages (Lepidoptera:  
935 Cercophanidae). *Tropical Lepidoptera* **5**, 35–42.

936 120. Aiello BR *et al.* 2021 Adaptive shifts underlie the divergence in wing morphology in bombycoid moths.  
937 *Proceedings of the Royal Society B: Biological Sciences* **288**, 20210677. (doi:10.1098/rspb.2021.0677)

938 121. Fisher CR, Wegrzyn JL, Jockusch EL. 2020 Co-option of wing-patterning genes underlies the evolution of  
939 the treehopper helmet. *Nat Ecol Evol* **4**, 250–260. (doi:10.1038/s41559-019-1054-4)

940 122. Dalrymple RL, Flores-Moreno H, Kemp DJ, White TE, Laffan SW, Hemmings FA, Hitchcock TD, Moles  
941 AT. 2018 Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. *Ecol  
942 Monogr* **88**, 204–224. (doi:10.1002/ecm.1287)

943 123. McCleery R *et al.* 2023 Uniting experiments and big data to advance ecology and conservation. *Trends Ecol  
944 Evol* , 1–10. (doi:10.1016/j.tree.2023.05.010)

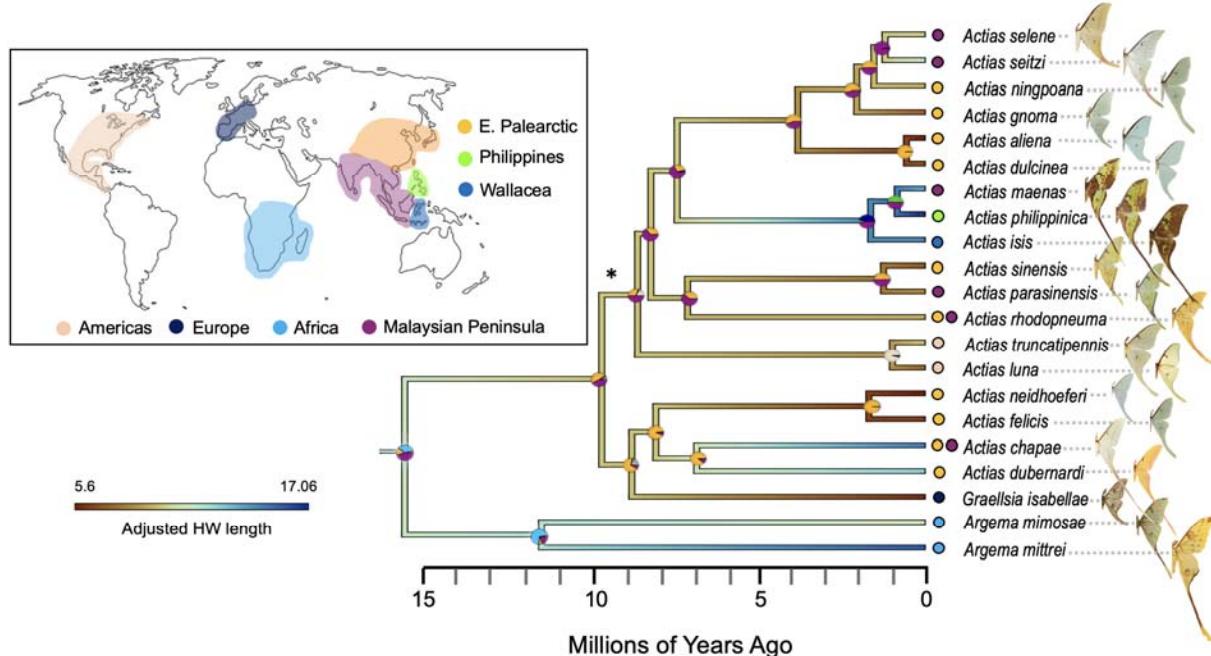
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975

976 **Figures**

977

978

979



980  
981

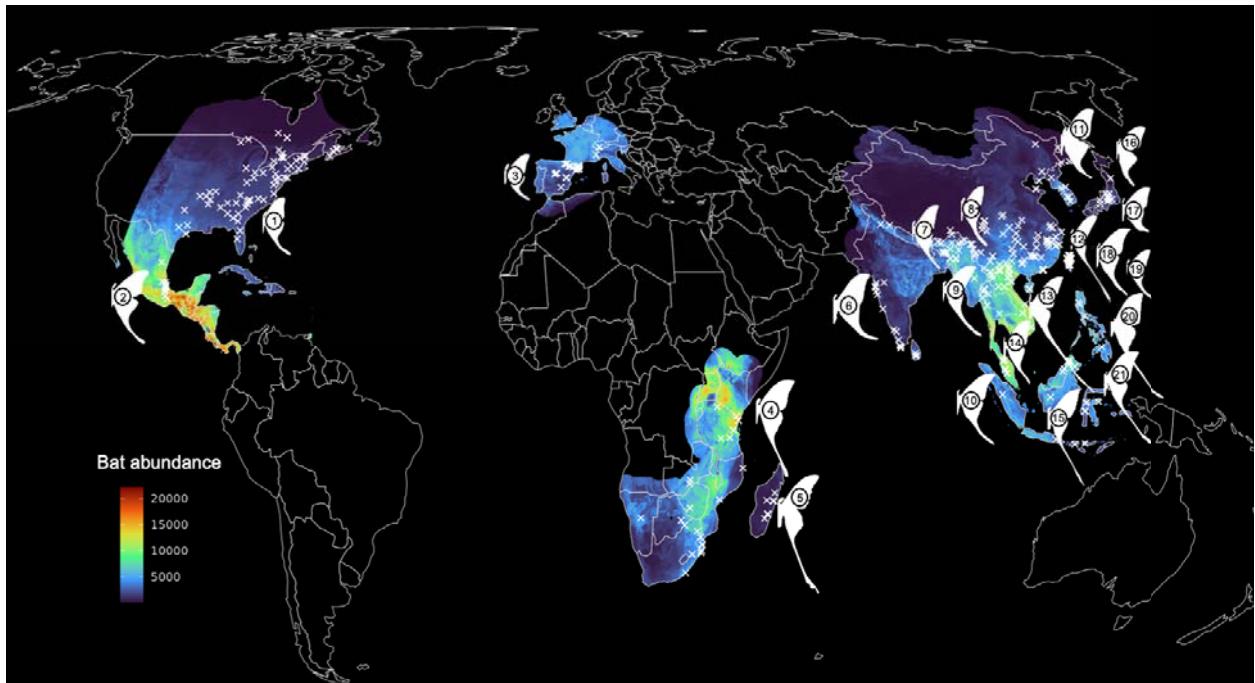
982 **Figure 1. A time-calibrated tree of tailed moon moths (*Actias* + *Argema*) showing the**  
983 **inferred evolutionary and biogeographic history of long tails.** Branches are colored by  
984 adjusted hindwing length (HW length/(Antenna length/mean species antenna length))  
985 from images with a scale bar, with bluer colors representing longer hindwing tails and  
986 redder colors representing shorter tails. Median ages (in millions of years) were derived  
987 from a BEAST tree built with a Birth-Death prior using nodal calibrations from  
988 Kawahara et al. [20]. All support values from the starting maximum likelihood tree were  
989 100/100, except at the node indicated by the asterisk, which was 80/100 (UFBoot/SH-  
990 aLRT). Colored circles represent probabilities of inferred ancestral ranges from our  
991 biogeographical (BioGeoBEARS) analysis, with colors reflecting the colored regions of  
992 the map at left.

993

994

995

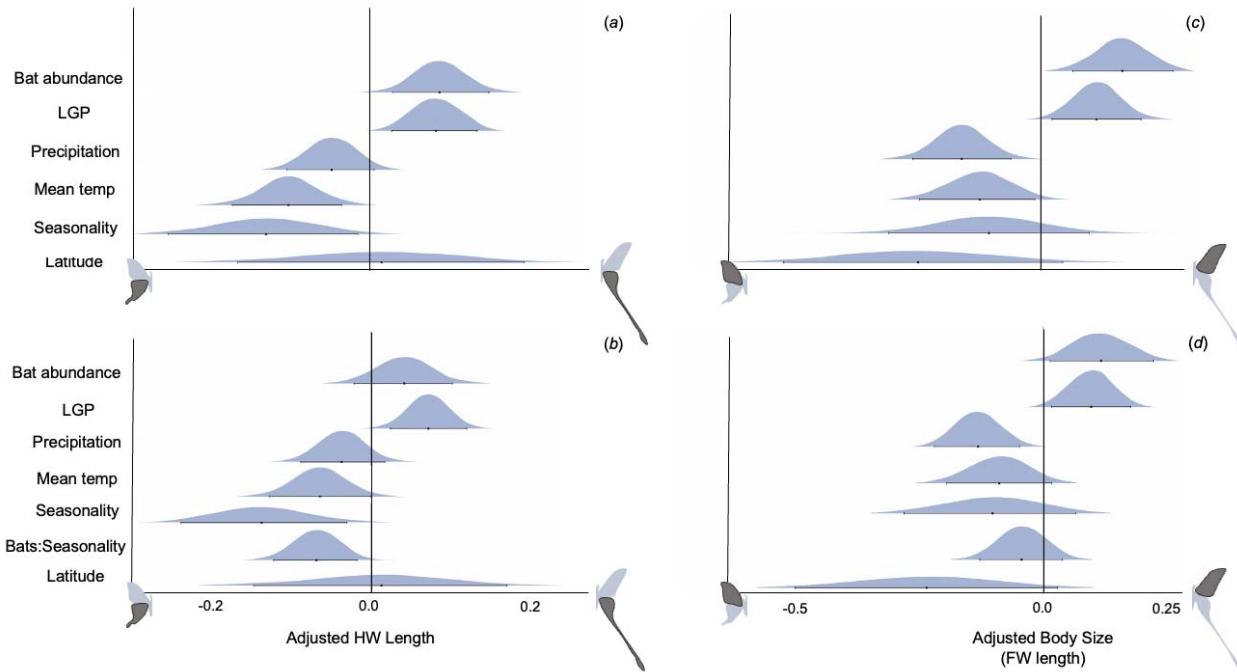
996



997  
998  
999

1000 **Figure 2. World map, pseudo-colored by bat predation pressure (sufficiently large, 1001 insectivorous bat abundance).** We limited the visualization of our spatially explicit bat 1002 abundance estimates to only those areas that overlap with moth species of interest. Moth 1003 half-silhouettes indicate the general region where the species occurs. White x marks 1004 indicate precise moth observation locations, taken from museum collections, GBIF, and 1005 iNaturalist. We extracted environmental variable values from WorldClim and length of 1006 growing season values from the UN FAO FGGD LGP map for each moth point. We used 1007 these parameters, as well as measurements from the associated moth photo and estimates 1008 of bat abundance at each point, to build our phylogenetically-informed models. Species 1009 names: 1) *Actias luna*, 2) *A. truncatipennis*, 3) *A. [Graellsia] isabellae*, 4) *Argema* 1010 *mimosae*, 5) *Argema mittrei*, 6) *Actias selene*, 7) *A. parasinensis*, 8) *A. felicis*, 9) *A.* 1011 *rhodopneuma*, 10) *A. seitzi*, 11) *A. dulcinea*, 12) *A. dubernardi*, 13) *A. chapae*, 14) *A.* 1012 *sinensis*, 15) *A. maenas*, 16) *A. gnoma*, 17) *A. aliena*, 18) *A. ningpoana*, 19) *A.* 1013 *neidhoeferi*, 20) *A. philippinica*, 21) *A. isis*.

1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022



1023  
1024  
1025 **Figure 3. Tail length and body size in the tailed moon moth group are positively**  
1026 **related to bat predation pressure and constrained by environmental factors.** We find  
1027 that insectivorous bat abundance is positively correlated with (a) hindwing tail length and  
1028 (c) body size (forewing length) in *Actias* + *Argema* (Saturniidae). Length of growing  
1029 period (LGP) is also positively correlated. Average annual precipitation, average annual  
1030 temperature, and seasonality (standard deviation of temperature across the year) are  
1031 negatively correlated with both tail length and body size. Thus, areas with higher bat  
1032 abundance and longer periods of plant productivity are associated with longer tailed moth  
1033 species. When we include an interaction term between bat abundance and seasonal  
1034 temperature variation (bat:seasonality) for (b) tails and (d) body size, we find that some  
1035 of the power is removed from bats as a driver of tail length. Although this parameter  
1036 overlaps the zero line, there is still an ~0.90 probability that bats have a positive  
1037 relationship with tail length. This indicates that while bat abundance and seasonality have  
1038 their own relationship with each other, they both still have independent effects on moth  
1039 tails. Central tendency dots indicate parameter estimates and error bars are 95% credible  
1040 intervals from the best fit phylogenetically-informed linear regression analyses. All  
1041 predictor variables are mean center-scaled to make them comparable across units.  
1042 Adjusted hindwing and forewing lengths are wing length/(antenna length/mean species  
1043 antenna length).  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051

1052