

1 **Negative Selection Allows DNA Mismatch Repair-Deficient Mouse Fibroblasts *In Vitro* to**
2 **Tolerate High Levels of Somatic Mutations**

3
4 Lei Zhang^{1,2,*}, Moonsook Lee³, Xiaoxiao Hao^{3,13}, Joseph Ehlert⁴, Zhongxuan Chi³, Bo Jin³,
5 Alexander Y. Maslov³, Albert-László Barabási^{4,5,6}, Jan H. J. Hoeijmakers^{7,8,9}, Winfried
6 Edelmann¹⁰, Jan Vijg^{3,11,*}, Xiao Dong^{1,12,*}

7
8 ¹Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN
9 55455, USA

10 ²Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota,
11 Minneapolis, MN 55455, USA

12 ³Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA

13 ⁴Network Science Institute, Northeastern University, Boston, MA, USA.

14 ⁵Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston,
15 MA, USA.

16 ⁶Department of Network and Data Science, Central European University, Budapest, Hungary.

17 ⁷Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The
18 Netherlands

19 ⁸University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute
20 for Genome Stability in Ageing and Disease, Cologne, Germany

21 ⁹Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands

22 ¹⁰Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA

23 ¹¹Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School
24 of Medicine, Shanghai, 200025, China

25 ¹²Department of Genetics, Cell Biology and Development, University of Minnesota,
26 Minneapolis, MN 55455, USA

27 ¹³Current affiliation: the Big Data Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen
28 University, Guangzhou, Guangdong 510123, China

29
30 *Correspondence to L.Z. (zhan8273@umn.edu), J.V. (jan.vijg@einsteinmed.edu), or X.D.
31 (dong0265@umn.edu)

32 Email addresses:

33 L.Z. zhan8273@umn.edu

34 M.L. moonsook.lee@einsteinmed.edu

35 X.H. haoxx3@mail.sysu.edu.cn

36 J.E. ehlert.j@northeastern.edu

37 Z.C. dorachi0930@gmail.com

38 B.J. jin.bo@einsteinmed.edu

39 A.Y.M. alex.maslov@einsteinmed.edu

40 A.L.B. barabasi@gmail.com

41 J.H.J.H. j.hoeijmakers@erasmusmc.nl

42 W.E. winfried.edelmann@einsteinmed.edu

43 J.V. jan.vijg@einsteinmed.edu

44 X.D. dong0265@umn.edu

45

46

1 **Summary**

2
3 Substantial numbers of somatic mutations have been found to accumulate with age in different
4 human tissues. Clonal cellular amplification of some of these mutations can cause cancer and
5 other diseases. However, it is as yet unclear if and to what extent an increased burden of random
6 mutations can affect cellular function without clonal amplification. We tested this in cell culture,
7 which avoids the limitation that an increased mutation burden *in vivo* typically leads to cancer.
8 We performed single-cell whole-genome sequencing of primary fibroblasts from DNA mismatch
9 repair (MMR) deficient *Msh2*^{-/-} mice and littermate control animals after long-term passaging.
10 Apart from analyzing somatic mutation burden we analyzed clonality, mutational signatures, and
11 hotspots in the genome, characterizing the complete landscape of somatic mutagenesis in normal
12 and MMR-deficient mouse primary fibroblasts during passaging. While growth rate of *Msh2*^{-/-}
13 fibroblasts was not significantly different from the controls, the number of *de novo* single-
14 nucleotide variants (SNVs) increased linearly up until at least 30,000 SNVs per cell, with the
15 frequency of small insertions and deletions (INDELs) plateauing in the *Msh2*^{-/-} fibroblasts to
16 about 10,000 INDELs per cell. We provide evidence for negative selection and large-scale
17 mutation-driven population changes, including significant clonal expansion of preexisting
18 mutations and widespread cell-strain-specific hotspots. Overall, our results provide evidence that
19 increased somatic mutation burden drives significant cell evolutionary changes in a dynamic cell
20 culture system without significant effects on growth. Since similar selection processes against
21 mutations preventing organ and tissue dysfunction during aging are difficult to envision, these
22 results suggest that increased somatic mutation burden can play a causal role in aging and
23 diseases other than cancer.

24
25 **Key words**

26 Aging, Mutation burden, Mutational signature, Single-cell whole-genome sequencing, DNA
27 mismatch repair deficiency

28
29 **Introduction**

30
31 Accumulation of somatic mutations has been proposed as a cause of aging and cancer since the
32 1950s (Failla, 1958; Szilard, 1959). DNA mutations occur spontaneously in every cell of an
33 organism due to errors during repair or replication of a damaged DNA template (Vijg and Dong,
34 2020). However, apart from the very small fraction of mutations that are clonally amplified, the
35 vast majority of mutations cannot be detected by bulk sequencing and require single-cell or
36 single-molecule approaches. Using accurate single-cell whole-genome sequencing (scWGS)
37 (Bohrson et al., 2019; Dong et al., 2017), somatic single-nucleotide variants (SNVs) have
38 recently been found to accumulate with age in every human tissue or cell type analyzed,
39 including lymphocytes (Zhang et al., 2019), hepatocytes (Brazhnik et al., 2020), epithelial cells
40 (Huang et al., 2022), neurons (Lodato et al., 2018; Miller et al., 2022), and cardiomyocytes
41 (Choudhury et al., 2022). Somatic SNV burden ranges from a few hundred to a few thousand
42 mutations depending on cell type and age. While confirming the original hypotheses of somatic
43 mutation accumulation with age, it remains unclear if an increased burden of somatic mutations,
44 in the absence of clonal amplification, has functional consequences for cells and tissues at old
45 age.

46

1 If mutation accumulation is indeed a cause of aging, one would expect an upper limit of
2 mutations that cells can tolerate. Here we tested this using primary fibroblasts from a DNA
3 mismatch repair (MMR)-deficient mouse model, i.e., *Msh2*^{-/-} mice. The *Msh2* (MutS homolog 2)
4 gene encodes a protein that dimerizes with *Msh6* and *Msh3* proteins to make MutS α and MutS β
5 mismatch repair complexes, respectively, and is critical for correcting base mismatches and
6 insertion or deletion mispairs during DNA replication (Li, 2008). Such mice are known to have
7 highly increased somatic mutation frequencies and a greatly increased risk of cancer (de Wind et
8 al., 1995; Hegan et al., 2006). The life span of a *Msh2*^{-/-} mouse, 50% of which die within 6
9 months (Lin et al., 2004) is significantly less than that of a wild-type mouse in captivity, which
10 typically lives to about 2-2.5 years, and the expression of *Msh2* is positively correlated with the
11 maximum life span across different rodent species (Lu et al., 2022). The MMR deficiency would
12 continually drive the generation of single-nucleotide variants (SNVs) and small insertions and
13 deletions (INDELs) during passaging of these cells, allowing us to test a possible limit of
14 tolerance *in vitro* (schematically depicted in **Fig. 1A**). The results show no such limit for SNVs
15 up until at least ~30,000 SNVs per cell, i.e. far exceeding the number of SNVs observed in most
16 tissues upon normal aging. INDEL accumulation, however, reached a limit at <500 and ~10,000
17 INDELs per cell in control and *Msh2*^{-/-} cells respectively. Our results also indicate a strong
18 negative selection against deleterious SNVs and INDELs, suggesting that somatic mutations can
19 adversely affect cell function *in vivo* where selection for a fitness advantage is rarely possible.
20

21 Results

22 Somatic mutation burden in *Msh2*^{-/-} mouse fibroblasts

23 Mice nullizygous for the *Msh2* gene, were generated and backcrossed into C57BL/6 as described
24 previously (Smits et al., 2000). Their genotypes were validated using Polymerase Chain Reaction
25 (PCR) of the DNA extracted from their tails (**Fig. S1**). Lung fibroblasts isolated from three
26 *Msh2*^{-/-} mice (4-5 months) and four wild-type mice, i.e., two wild-type littermates (4-5 months)
27 and two additional, non-littermate wild-type mice (C57BL/6, 6 months), were cultured for 25
28 passages up to a total of 62 population doublings (**Methods**). As shown in **Fig. 1B**, growth rates
29 of the three *Msh2*^{-/-} and four wild-type fibroblast strains are almost identical, with no
30 morphologic evidence for neoplastic transformation.
31

32 To quantitatively analyze somatic mutation burden, we performed single-cell whole genome
33 sequencing (scWGS) on 55 single cells at passages 5, 15, and 25 (denoted as P5, P15, and P25,
34 respectively) of the three *Msh2*^{-/-} cell strains and the two wild-type littermate cell strains (**Fig.**
35 **1A; Methods**). Of note, the Single-Cell Multiple Displacement Amplification (SCMDA) and
36 variant calling procedure (SCcaller) have been designed to avoid artificial mutations, previously
37 the major problem in somatic mutation analysis (Dong et al., 2017; Zhang et al., 2023). For each
38 cell strain, we also performed whole-genome sequencing of tail DNA from the same mice to
39 identify germline polymorphisms, which were filtered out in calling *de novo* somatic mutations
40 from the single cells. Depth of sequencing reached on average of 27.5x and 21.4x per sample for
41 single cells and bulk DNAs, respectively (**Table S1**), to ensure that mutations could be identified
42 accurately.
43

44

45

1 From the scWGS data on the 5 cell strains, we identified a total of 192,933 *de novo* mutations,
2 including 147,955 SNVs and 44,978 INDELs, which was sufficient for analyzing mutation
3 burden, spectrum, and distribution across the genome, especially for the *Msh2*^{-/-} strains because
4 of their high mutation frequencies (below). After correcting for sensitivity of variant calling and
5 genome coverage (**Table S2**), we found that, as expected, *Msh2*^{-/-} cells had a significantly higher
6 SNV burden than wild type cells across all passages ($P=0.0158$, linear mixed effects model, two-
7 sided). In wild type cells SNV burden increased with passage number in fibroblasts from
8 $1,632 \pm 646$ per cell (avg. \pm s.d.; P5) to $3,382 \pm 984$ per cell (P25) in the wild type cells ($P=0.0003$,
9 linear mixed effects model, two-sided), i.e., a 2-fold increase (**Figs. 1C and S2A**), which
10 correspond to a mutation rate of $\sim 6.5 \times 10^{-9}$ per bp per mitosis, almost the same as we estimated
11 earlier for mouse primary fibroblasts (8.1×10^{-9} per bp per mitosis) (Milholland *et al.*, 2017). In
12 the *Msh2*^{-/-} cells SNV burden increased from $7,475 \pm 2,902$ per cell (P5) to $35,456 \pm 16,142$ per cell
13 (P25) ($P < 2.2 \times 10^{-16}$, linear mixed effects model, two-sided), i.e., a 4.7-fold increase. There was
14 no sign of a plateau between P5 and P25, not even in the *Msh2*^{-/-} cells after acquiring tens of
15 thousands of SNVs per cell. At P5, SNV burden in *Msh2*^{-/-} cells was more than 4-fold higher than
16 in the same cells from its littermate controls. Since we did not compare cells at different stages of
17 embryonic development, we do not know how many more somatic mutations were present in the
18 *Msh2*^{-/-} mice from embryogenesis to early adulthood as compared to control mice, but it is safe to
19 say that the original estimates based on reporter genes have been seriously overstated, i.e., 35-
20 550 mutations per 10^{-5} bp, corresponding to $1-15 \times 10^6$ mutations per cell) (Hegan *et al.*, 2006).

21
22 INDELs showed a different pattern of accumulation during passaging than SNVs (**Figs. 1D and**
23 **S2B**). As expected, *Msh2*^{-/-} cells had a significantly higher INDEL burden than the wild type
24 cells across all passages ($P=0.0012$, linear mixed effects model, two-sided). However, INDEL
25 burden during passaging only increased by 1.6-fold in the *Msh2*^{-/-} cells between P5 and P15
26 ($6,514 \pm 1,119$ and $10,502 \pm 2,563$ INDELs per *Msh2*^{-/-} cell for P5 and P15, respectively;
27 $P=0.0004$, linear mixed effects model, two-sided), but not between P15 and P25 ($10,502 \pm 2,563$
28 and $11,472 \pm 3,808$ INDELs per *Msh2*^{-/-} cells for P15 and P25 separately; $P=0.4572$, linear mixed
29 effects model, two-sided). In cells from the littermate controls, no significant increase was
30 observed during passaging (344 ± 51 and 454 ± 216 INDELs per cell for P5 and P25 separately;
31 $P=0.1913$, linear mixed effects model, two-sided). These results indicate that INDEL tolerance
32 reaches an upper limit in both wild type and *Msh2*^{-/-} cells, but earlier in the control cells, possibly
33 because most INDELs due to *Msh2*^{-/-} are located in mononucleotide repeat sequences (see
34 INDEL signature analysis below). Overall, these results indicate that the observed high numbers
35 of SNVs or INDELs do not adversely affect growth rate of primary fibroblasts.

36
37 Selection against damaging mutations
38
39 These results appear to suggest that increased burden of somatic mutations per se, i.e., without
40 clonal amplification, do not cause cellular degeneration and death. Indeed, somatic mutation
41 burden in tissues of aged humans or mice of the types of mutations analyzed here, never reach
42 levels as observed in the MMR-deficient cells (Ren *et al.*, 2022). However, while during *in vivo*
43 aging selection against mutations that affect cellular function is difficult to envision, primary
44 fibroblasts expanded *in vitro* offer an immediate mechanism of avoiding adverse somatic
45 mutations by selection against mutations causing growth inhibition. Also, INDELs are generally
46 more damaging than SNVs, many of which are synonymous and have no impact at all. To

1 address the different impact of INDELs and SNVs in *Msh2*^{-/-} and control cells during passaging
2 we performed three comparisons as follows.
3

4 First, to test if the selection against INDELs is significantly stronger than the selection against
5 SNVs, we calculated the ratio of INDEL burden to SNV burden for each single cell. As shown in
6 **Fig. 2A**, INDEL-to-SNV ratio decreases significantly in fibroblasts of both genotypes: from
7 0.24±0.12 (P5) to 0.13±0.03 (P25) in the wild type cells ($P=0.0223$, linear mixed effects model,
8 two-sided), i.e., a 1.8-fold decrease; and from 0.97±0.29 (P5) to 0.34±0.12 per cell (P25) in the
9 *Msh2*^{-/-} cells ($P<2.2\times10^{-16}$, linear mixed effects model, two-sided), i.e., a 2.8-fold decrease.
10 These results indicate negative selection against INDELs during passaging in cells of both
11 genotypes.
12

13 Second, to evaluate possible negative selection for both INDELs and SNVs, we utilized phyloP
14 scores (Pollard et al., 2010; Siepel et al., 2005), with a positive score indicating conservation,
15 i.e., slower evolution than expected, and a negative score indicating acceleration, i.e., faster
16 evolution than expected. We obtained phyloP scores for all bases of the mouse reference genome
17 from the UCSC genome browser (Lee et al., 2022). We then defined mutations at evolutionarily
18 conserved sites as those with a phyloP score >0 , its original P value <0.05 , and percentile of the
19 phyloP score of the mutated site as compared to the phyloP scores of its ± 500 flanking
20 bases $>95\%$ (which is to avoid a potential difference in genome coverage). Mutations at
21 evolutionarily accelerated sites were defined by a phyloP score <0 , its original P value <0.05 ,
22 and percentile of the phyloP score of the mutated site as compared to the phyloP scores of its
23 ± 500 flanking bases $<5\%$.
24

25 For both SNVs and INDELs in both wild-type and *Msh2*^{-/-} cells, the fraction of mutations at an
26 evolutionarily conserved site was substantially lower than that at an accelerated site (**Fig. 2B**).
27 However, compared to mutations randomly sampled from the genome, we found that the
28 fractions of SNVs at both conserved and accelerated sites were as expected by chance alone,
29 while the fractions of INDELs were substantially different from the random sampling. A
30 significantly smaller fraction of INDELs ($1.2\%\pm1.3\%$) was observed at a conserved site than
31 SNVs ($2.9\%\pm0.8\%$; $P=3.3\times10^{-8}$, paired Wilcoxon signed-rank tests, two-sided) or expected
32 based on chance alone. By contrast, a greater fraction of INDELs was found at an accelerated
33 site than SNVs ($6.6\%\pm4.0\%$ and $4.0\%\pm0.9\%$ for INDELs and SNVs respectively; $P=2.0\times10^{-5}$,
34 paired Wilcoxon signed-rank tests, two-sided) or as expected by chance alone. Of note, in 77%
35 of wild type cells we did not observe any INDELs at a conserved site. During passaging, no
36 significant change was observed between SNVs and INDELs at accelerated and conserved sites
37 in cells of the two genotypes (linear mixed effects models, two-sided; **Figs. S3A-D**) with two
38 exceptions: a marginal increase of INDELs at conserved sites in *Msh2*^{-/-} cells ($P=0.0455$, i.e., no
39 longer significant if adjusting for multiple testing; **Fig. S3C**); and a significant decrease of SNVs
40 at accelerated sites in *Msh2*^{-/-} cells ($P=0.0011$; **Fig. S3B**). Overall, these results indicate negative
41 selection at evolutionarily conserved sites for INDELs during passaging, but not for SNVs.
42

43 Finally, we performed bulk RNA sequencing of each fibroblast cell strain to determine genes that
44 are transcriptionally active (**Methods**). Using mutation annotation by ANNOVAR (Wang et al.,
45 2010; Yang and Wang, 2015), we then analyzed mutations that alter protein coding sequences of
46 transcriptionally active genes (**Table S3**). We calculated the ratio of nonsynonymous to

1 synonymous SNVs in the two genotypes during passaging and found that this ratio remains
2 approximately the same and shows no significant difference from the ratios expected by chance
3 alone (**Figs. 3A-B**), suggesting a lack of negative selection. However, significantly less
4 frameshifting INDELS than expected by chance alone were found in these cells during passaging
5 (0.05 ± 0.21 per cell and 3.7 ± 2.6 per cell for wild type and $Msh2^{-/-}$ cells separately), as well as
6 significantly less stop-gain SNVs (0.14 ± 0.47 per cell and 1.0 ± 1.5 per cell for separately), or
7 stop-loss SNVs (0 ± 0 per cell and 0.03 ± 0.17 per cell for wild type and $Msh2^{-/-}$ cells separately)
8 (**Figs. 3 C, D, F, G, I & J**). This is in keeping with our previous observations that in human B
9 cells from aged human subjects on average less than one loss-of-function mutation (including
10 stop-gain, stop-loss, and splicing alteration) per cell was observed (Zhang *et al.*, 2019). The
11 absence of MMR in the $Msh2^{-/-}$ cells rules out preferential protection of actively transcribed
12 genes (Huang and Li, 2018) as a mechanism to explain the observed lower rates of deleterious
13 mutations. Yet, pre-replication, transcription-coupled repair (TCR) of DNA damage could still
14 explain these results, at least in part (Georgakopoulos-Soares *et al.*, 2020). To test whether the
15 reduced observed-to-expected ratios of loss-of-function mutations are due to negative selection
16 or increased DNA repair activity, we estimated the ratio of each type of loss-of-function mutation
17 to synonymous mutations and compared the ratios to those expected by chance alone. As shown
18 in **Figs. 3 E, H & K**, most of the ratios are significantly smaller than expected by chance alone,
19 indicating that the limited numbers of loss-of-function mutations are a result of negative
20 selection, and not due to increased DNA repair in transcribed regions.
21

22 Each $Msh2^{-/-}$ cell strain acquires common and unique mutational signatures during passaging

23

24 As shown in studies of human cancers, mutational spectra and signatures suggest specific factors
25 that drive mutagenesis, e.g., oxidative damage, radiation (Alexandrov *et al.*, 2020; Alexandrov *et*
26 *al.*, 2013). However, connection between mutation signatures and causal factors are often derived
27 computationally. In this study, we had an opportunity to test if passaging and DNA mismatch
28 repair deficiency indeed causes the mutational signatures inferred from human cancers.
29

30 First, we compared SNV spectra between the cell strains. As expected, $Msh2^{-/-}$ cells are
31 substantially different from wild-type cells with more C>T and T>C mutations (**Fig. S4A**).
32 However, we noticed substantial variation between the three $Msh2^{-/-}$ cell strains: the Msh2A cell
33 strain acquired more T>C mutations, the Msh2C cell strain acquired more C>T mutations, and
34 the Msh2B cell strain was in between (**Fig. 4A**). Of note, their unique mutational spectra became
35 more obvious during passaging (**Fig. S4B**).
36

37 Then, we performed SNV signature analyses in two ways, both using the “MutationalPatterns”
38 package of R (Blokzijl *et al.*, 2018). First, we performed *de novo* signature extraction, and
39 identified three signatures (**Fig. 4B**). Using a cosine correlation cutoff at 0.85 with known
40 mutational signatures of human cancers reported in the COSMIC database (Alexandrov *et al.*,
41 2020), we labeled the three signatures as SBS-A (no similar cancer signature was found), SBS26-
42 like (positively correlated with the COSMIC Single Base Substitution signature #26), and
43 SBS44-like signatures. The SBS26-like signature dominates mutations in the Msh2A cell strain
44 and its fraction out of all mutations increases with passaging, while the SBS44-like signature is
45 more dominant in the Msh2C cell strain (**Fig. 4C**). Of note, both SBS26 and SBS44 signatures in
46 tumors have been suggested to be the result of DNA mismatch repair deficiency (Alexandrov *et*

1 *al.*, 2020). The SBS-A signature, which was not reported in the COSMIC database, contributes to
2 most mutations in the wild type cells (**Fig. 4C**) and is likely a result of replication errors.
3 However, SBS-A (characterized by N_{TT}GT or N_{CT} mutations; **Fig. 4B**) is very different
4 from the SBS1 signature (characterized by N_{CG}NTG mutations (Alexandrov *et al.*, 2020)) in
5 human tumors, which has been associated with cell division.

6
7 Second, we refitted COSMIC signatures to the mutations that we observed. When doing that we
8 found another DNA mismatch repair signature, i.e., SBS21, in the *Msh2*^{-/-} cell strains, but the
9 differences between the *Msh2*^{-/-} cell strains remained (**Fig. S5**). Together, despite confirming that
10 MMR deficiency can indeed cause the corresponding signatures found in human cancers, these
11 results indicate that a single factor, i.e., *Msh2*-deficiency, can result in different mutational
12 signatures.

13
14 For INDELs, we also performed signature extraction, and identified two signatures: an ID2-like
15 signature (positively correlated with the COSMIC small Insertion and Deletion signature #2),
16 which is characterized as a single-base T deletion in repetitive T sequences, and another new
17 signature, termed IDA, which does not correlate with a COSMIC signature (**Fig. S6A**). IDA was
18 mostly found in our wild-type control cells (**Fig. S6B**) and is characterized by either insertion or
19 deletion at repeat regions of multiple homopolymers or repeat units. The ID2-like signature,
20 mostly single base deletions in a long homopolymer of thymines, was predominantly found in
21 our *Msh2*^{-/-} cell strains (**Fig. S6B**). The ID2 signature in human cancers is suggested to be caused
22 by slippage during DNA replication of the template DNA strand and is often found in DNA
23 mismatch repair deficient tumors (Alexandrov *et al.*, 2020). Of note, in the COSMIC database,
24 another INDEL signature, ID7, characterized by 1-bp deletions at homopolymers of both
25 cytosines and thymine and suggested to be a result of MMR deficiency in humans, was not
26 observed here.

27 28 Hotspots and overlap of mutations

29
30 We then tested for mutational hotspots (for SNVs and INDELs together) in the mouse genome by
31 using the “ClusteredMutations” package in R (Lora, 2016). A substantial number of mutational
32 hotspots were observed in both WT and *Msh2*^{-/-} fibroblasts, but significantly more in the latter
33 (**Fig. 5A**). Surprisingly, mutational hotspots were so obvious, even in wild-type cells, that we
34 could identify them for each individual cell, while in our previous study of human lymphocytes
35 we had to pool mutations observed in tens of cells to discover significant mutational hotspots
36 (Zhang *et al.*, 2019). We then used a rainfall plot to visualize the distribution of the mutational
37 hotspots across the genome. Again, different cell strains showed substantially different patterns
38 (**Fig. 5B**). The *Msh2A* strain continuously gained additional mutational hotspots at the end of
39 chromosome 17, while in the *Msh2B* cell strain, which showed the highest number of mutational
40 hotspots, these spread across the entire reference genome during passaging. Two “super-
41 hotspots” are worth noticing. One is at chr17:86,631,535-90,041,858 bp, found exclusively in the
42 *Msh2A* cell strain. Interestingly, *Msh2* and *Msh6* genes locate in this region along with over 20
43 other genes, but all mutations in the hotspots at this region locate at intergenic sequences. The
44 other super-hotspot was found at chr1:170,941,871-170,943,280 bp and was observed in four of
45 the five cell strains (two WT and two *Msh2*^{-/-}), but not in the *Msh2A* strain. This region is
46 entirely intergenic and is part of a LTR repeat element.

1
2 Why would each *Msh2*^{-/-} cell strain develop its own unique pattern of mutational hotspots? It is
3 possible that substantial clonal expansion occurred during passaging, and each cell strain was
4 eventually dominated by different clones. To test this, we calculated for each cell in each cell
5 strain (of both WT and *Msh2*^{-/-}) the ratio of (a) the mutations overlapping with mutations in other
6 cells of the same passage and cell strain to (b) the mutations found to overlap in all cells of all
7 cell strains. A higher ratio indicates more clonal expansion. As shown in **Figs. 5C and S7**, ratios
8 increase dramatically during passaging in cell strains of both genotypes: from 6.0 ± 6.6 (P5) to
9 27.3 ± 22.1 (P25) in wild type cells ($P=0.0192$, linear mixed effects model, two-sided); and from
10 1.7 ± 1.9 (P5) to 71.9 ± 58.7 (P25) in *Msh2*^{-/-} cells ($P < 2.2 \times 10^{-16}$, linear mixed effects model, two-
11 sided). Although the difference between cells of the two genotypes was not statistically
12 significant ($P=0.3967$, linear mixed effects model, two-sided), likely due to large cell-to-cell
13 variations, the increase in *Msh2*^{-/-} cells is substantially higher (a 42-fold increase from P5 to P25)
14 than in the wild type cells (a 4.6-fold increase). These results confirm the occurrence of
15 substantial clonal expansion during passaging in cells of both genotypes, with different cell
16 strains taken over by different clones. This process is a likely cause of the different mutational
17 signatures and hotspots observed in different cell strains. These results also suggest strong
18 positive selection of specific cell lineages in the different cell strains, which is frequently
19 observed in tumor cells (Martincorena et al., 2017).

20

21 Discussion

22

23 With the emergence of advanced high-throughput sequencing methods, including high-accuracy
24 single-cell and single-molecule methods, increased insights are now being obtained in somatic
25 rather than germline mutations as a possible cause of human genetic disease and aging (Mustjoki
26 and Young, 2021; Vijg and Dong, 2020). Mutation frequency in somatic cells and tissues
27 appeared to be 1-2 orders of magnitude higher than germline mutation frequency (Milholland *et*
28 *al.*, 2017). This is in keeping with the disposable soma theory of aging, which states that
29 reproduction is prioritized over somatic maintenance (Kirkwood, 1977). This idea is in line with
30 the observed correlation of somatic maintenance and species-specific life span (Hart and Setlow,
31 1974). Indeed, we and others recently showed that somatic mutation rate is inversely correlated
32 with species-specific life span (Cagan et al., 2022; Zhang et al., 2021).

33

34 Recent findings that somatic mutation burden increases with age in different human tissues (Ren
35 *et al.*, 2022) supports a possible causal role of somatic mutations in the aging process. Indeed,
36 clonally amplified somatic mutations, which are relatively easy to detect by high-depth
37 sequencing, have now been shown to be a cause of a large number of human diseases other than
38 cancer (Erickson, 2010; Mustjoki and Young, 2021). However, what remains unclear is if
39 increased somatic mutation burden per se can cause cellular degeneration and death. In this
40 respect, a key question is if random somatic mutations can rise to a level high enough to infringe
41 on the integrity of the gene regulatory pathways that provide function to the specialized somatic
42 cells in the human body. Here we present mutation accumulation data for a simplified cell culture
43 model in the form of mouse primary fibroblasts with mutations continuously generated through a
44 defect in DNA mismatch repair.

45

1 The first conclusions that can be drawn based on our data is that somatic SNVs can accumulate
2 to levels at least 6 times as high as observed in human postmitotic tissues from aged subjects
3 (Brazhnik *et al.*, 2020; Lodato *et al.*, 2018). Our finding that these high numbers of random
4 mutations have no significant effects on growth rate seems to rule out a causal role of somatic
5 mutations in aging. However, in contrast to the situation during normal aging, cell culture
6 systems are subject to selection against deleterious mutations affecting growth. We found ample
7 evidence for such selection in all fibroblast strains studied, including the control, wildtype
8 strains. First, among SNVs we found significant negative selection against stop-loss and stop-
9 gain mutations. Second, while SNV burden never reached plateau levels up until a population
10 doubling level (PDL) of 50-60 (i.e., P25, **Fig. 1C**), INDEL burden did not increase in controls
11 and no longer increased after 20-30 PDL (i.e., P15) in the Msh2-deficient cells. These
12 observations are different from mutations in human tumors, in which positive selection has been
13 shown to outweigh negative selection (Martincorena *et al.*, 2017).

14
15 Of note, in mitotically active human B lymphocytes we previously found the rate of age-related
16 SNV accumulation in the about 10% functionally active part of the genome to be only half of the
17 genome-wide average (Zhang *et al.*, 2019). Yet, except for loss-of-function SNVs, which do not
18 increase with age in human lymphocytes, the number of potentially functional SNVs still
19 accumulated with age, even in subjects in their 80s- or 90s (Zhang *et al.*, 2019).

20
21 In addition to the evidence for direct selection against deleterious mutations, most notably
22 INDELS, we also found evidence for widespread mutational hotspots and significant clonal
23 expansion. Both differed between the cell strains studied, gradually leading to unique
24 populations in each strain. Together with direct selection against deleterious mutations, such
25 mutational evolution could be responsible for maintaining normal growth rate even after
26 acquiring tens of thousands of SNVs and almost 10,000 INDELS in the Msh2-deficient cells.
27

28 The fact that somatic mutations, either spontaneous or driven by the MMR defect, show such
29 dramatic evolutionary dynamism in culture, strongly suggests they have functional
30 consequences. If they would be completely neutral, none of these effects would be expected to
31 occur. However, with some possible exceptions (e.g., the lymphoid and intestinal systems) adult
32 tissues have limited options for negative selection since most are not mitotically active. While
33 the observation of clonally amplified mutations in virtually all tissues, most notably clonal
34 hematopoiesis (Jaiswal and Ebert, 2019), demonstrate positive selection for a growth or survival
35 advantage, we now show that negative selection may occur as well. In the absence of such
36 selection it is conceivable that random mutations at the levels observed in aged subjects will
37 gradually impair cellular function in somatic cells (Vijg and Dong, 2020).

38
39 At least one limitation of our current study should be mentioned, which is the driver of the high
40 level of somatic mutagenesis itself. MMR deficiency does not elevate all categories of mutations
41 equally and it can be argued that the most impactful mutations, including genome structural
42 variation, are not significantly elevated at all. Indeed, this could be one of the reasons of a lack of
43 premature aging in MMR-deficient mice or humans (Robinson *et al.*, 2021). Another reason
44 could simply be the lack of detailed analysis of premature aging in MMR-deficient mice or
45 humans, which usually die from cancer well before old age), which is not trivial (Franco *et al.*,
46 2022).

1
2 In summary, our present data uncover the comprehensive landscape of somatic mutations in
3 MMR-deficient mouse primary fibroblasts as compared to wildtype control cells passaged *in*
4 *vitro*. The results show that the MMR-deficient cell populations maintain high growth rates in
5 spite of an SNV burden of at least 30,000 mutations per cell, while INDEL burden reaches a
6 plateau of about 10,000 per cell. Further analysis showed extensive somatic evolution, including
7 negative selection to maintain growth rate, possibly by eliminating deleterious mutations. We
8 conclude that in the absence of such selection options, deleterious effects of accumulating
9 somatic mutations to the levels that have been observed *in vivo* is inevitable. Further research on
10 cell populations that can be directly interrogated for a functional relationship between somatic
11 mutation burden and specific cellular functions known to decline with age will provide a more
12 definitive test of a causal relationship between somatic mutations and aging.
13

14
15 **Data Availability**

16 Raw sequencing data will be submitted to the NCBI SRA database before the paper is accepted.
17

18 **Acknowledgements**

19 L.Z. is supported by the American Federation for Aging Research (the Sagol Network GerOmic
20 Award for Junior Faculty). J.V. is supported by NIH grants (P01 AG017242, P01 AG047200, P30
21 AG038072, U01 ES029519, U01 HL145560, and U19 AG056278). X.D. is supported by NIH
22 grants (R00 AG056656, U19 AG056278, P01 HL160476, and P01 AI172501) and the Fesler-
23 Lampert Chair for Aging Studies at the University of Minnesota.
24

25 **Competing Interests**

26 L.Z., M.L., A.Y.M., J.V., and X.D. are co-founders and shareholders of SingulOomics Corp. J.V.
27 and A.Y.M. are co-founders and shareholders of MutaGenTech Inc. Others declare no conflict of
28 interest.
29
30

31
32 **Materials and Methods**

33
34 Transgenic mice

35
36 Mice nullizygous for the *Msh2* gene, were generated and backcrossed into C57BL/6 as described
37 previously(Smits *et al.*, 2000). In this study, three *Msh2*^{-/-} mice (4-5 months) and two of their wild-
38 type littermates (4-5 months) were used. All procedures involving animals were approved by the
39 Institutional Animal Care and Use Committee (IACUC) of Albert Einstein College of Medicine
40 and performed in accordance with relevant guidelines and regulations.
41

42 Bulk DNA extraction and genotyping

43
44 We extracted genomic DNA from tail of each mouse using the DNeasy Blood & Tissue Kit (Qiagen)
45 following the manufacturer's specifications. The concentrations of DNA were quantified using the

1 Qubit High Sensitivity dsDNA Kit (Invitrogen Life Science) and the qualities of DNAs were
2 evaluated with 1% agarose gel electrophoresis.
3

4 We validated the genotypes of the mouse strains by PCR genotyping using the genomic DNA as
5 template. Each reaction contains 1 μ l of gDNA (10ng/ μ l), 1.5 μ l of 10x PCR buffer II (Roche), 1.5
6 μ l of MgCl₂ (25mM, Roche), 0.1 μ l of Taq Gold (5U/ μ l) and Primer A, B and C (The sequences
7 of Primers are listed in **Fig. S1**). The total reaction volume of PCR is 12.5 μ l. PCR conditions
8 were 94 °C for 5 min; and 40 cycles 94 °C for 45 s, 55 °C for 1 min and 72 °C for 1 min; and 72 °C
9 for 5 min. The PCR results were shown in the picture of 1% agarose gel electrophoresis (**Fig. S1**).
10

11 Lung fibroblast isolation and passaging

12 Primary lung fibroblasts were isolated following a cell isolation protocol adapted from Seluanov
13 *et al* (Seluanov *et al.*, 2010). In brief, mouse lung was minced and incubated in DMEM F-12
14 medium with 0.13 unit/ml Liberase Blendzyme 3 and 1x penicillin/streptomycin at 37°C for 40
15 min. Dissociated cells were washed, plated in cell culture dishes with complete DMEM F-12
16 medium, 15% FBS and cultured at 37°C, 5% CO₂, 3% O₂. When reaching confluence, cells were
17 split and replated in EMEM medium supplemented with 15% FBS and 100 units/ml penicillin and
18 streptomycin. Lung fibroblasts were purified by further passaging in the same medium.
19

20 From each subject, we passaged one cell strain. Cells from each cell strain were cultured and
21 passaged in two 10cm-plate with EMEM supplemented with 15% FBS and 100 units/ml penicillin
22 and streptomycin. The initial cell number was 0.5 or 1 million for each plate each passage. We
23 counted cell numbers during passaging applying the Cellometer Auto T4 cell counter (Nexcelom),
24 calculated cell population doublings based on the cell number of each cell strain and plotted the
25 cell proliferation curve.
26

27 Single-cell isolation, whole-genome amplification, library preparation and sequencing

28 Single lung fibroblasts were isolated using the CellRaft AIR system (Cell Microsystems) according
29 to the manufacturer's instructions. Isolated single fibroblasts in 2.5 μ l PBS were frozen
30 immediately on dry ice and kept at -80°C until amplification.
31

32 The isolated single fibroblasts were amplified using SCMDA as described(Dong *et al.*, 2017). The
33 amplicons were subjected to quality control using a locus dropout test(Milholland *et al.*, 2017). Of
34 those passing the quality control, three amplicons per mouse were subjected to library preparation
35 and sequencing with 150-bp paired-end reads on an Illumina HiSeq X Ten sequencer (Novogene,
36 Inc). Bulk DNAs extracted from tails of the same mice were sequenced without amplification and
37 used for filtering out germline polymorphisms during variant calling as described(Dong *et al.*,
38 2017).
39

40 Sequence alignment and mutation calling

41 Raw sequence reads were subject to quality control using FastQC
42 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), adaptor- and quality-trimmed
43 using Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and
44

1 aligned to reference genome mouse mm10 using bwa mem (Li and Durbin, 2009). PCR duplicates
2 were removed using samtools (Li et al., 2009). The aligned reads were then INDEL-realigned and
3 base-pair score quality recalibrated using GATK (McKenna et al., 2010). SNVs and INDELS
4 observed in a cell but not presented in the corresponding bulk DNA of the tail were called by
5 comparing the aligned sequences of the cell to the bulk using SCcaller (version 2.0) (Zhang *et al.*,
6 2023): (i) from genomic regions covered with a minimum depth of 20x in both the cell and the
7 bulk; (ii) with default parameters for SNVs; and (iii) requiring a variant calling quality ≥ 30 for
8 INDELS. Mutation burden per cell were estimated based on the number of observed mutations
9 adjusting coverage of the genome and variant calling sensitivity. For variant calling sensitivity in
10 humans, we previously used the fraction of germline heterozygous mutations observed in the
11 single cell, but the number of germline mutations is very limited in inbred mice. So instead, we
12 used consistent values of sensitivity estimated from the scWGS data of fibroblasts of multiple 4-
13 way-across mice and other rodent species as reported previously (**Table S2**) (Zhang *et al.*, 2021).

14

15 Bulk RNA sequencing and data analysis

16

17 For each cell strain of different passages, total RNA was extracted using RNeasy Micro Kit
18 (Qiagen) according to the manufacturer's specification. The concentrations of RNA were
19 quantified with Qubit RNA HS Assay Kit (Invitrogen Life Science) and the qualities of RNA were
20 evaluated using bioanalyzer with Agilent RNA 6000 Pico Kit (Agilent Technologies). The
21 qualified RNA samples ($\text{RIN} \geq 7.0$, $\text{OD260/280} > 2.0$, $\text{concentration} \geq 20 \text{ ng}/\mu\text{l}$ and $\text{volume} \geq 20 \mu\text{l}$)
22 were submitted to Novogene for library preparation and sequencing. The insert size of double-
23 strand cDNA library is 250-300bp. The libraries of the RNA samples were sequenced on the
24 Illumina Novaseq 6000, with 2×150 bp paired-end reads. The average sequencing amount of raw
25 data of each library is 9.24 G bp.

26

27 Raw sequence reads were subject to quality control using FastQC
28 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), adaptor- and quality-trimmed
29 using Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and
30 aligned to reference transcriptome of mouse mm10 using STAR(Dobin et al., 2013). Gene
31 expression levels were quantified using RSEM(Li and Dewey, 2011). Expressed protein coding
32 genes were determined as those with an average transcript per million (TPM) value ≥ 1 across all
33 samples.

34

35 **Figure Legends**

36

37 **Figure 1. Study design, cell growth, and mutation burden.**

38 (A) A schematic illustration of the study design. We isolated lung fibroblasts of Msh2-/- and wild-
39 type mice, and cultured them for 25 passages. De novo mutations in fibroblasts in passages 5, 15,
40 and 25 of the cell strains obtained from different animal subjects were analyzed using single-cell
41 whole-genome sequencing and compared to bulk whole-genome sequencing of the tails of the
42 corresponding animals. (B) Cell growth during passaging. Error bars present s.d. (C) SNV burden
43 and (D) INDEL burden per cell on log scales. Each data point presents a cell. *P* values were
44 estimated using linear mixed effects models, two-sided using the "nlme" package of R. Boxplot
45 elements are defined as follows: center line indicates median, box limits indicate upper and lower
46 quartiles, and whiskers indicate $1.5 \times$ interquartile range.

1
2 **Figure 2. Selection pressures against INDELs.**
3 (A) The ratio of the number of INDELs to the number of SNVs per cell. (B) The fractions of
4 mutations (SNVs and INDELs combined) at evolutionarily conserved and accelerated sites out of
5 total mutations per cell. The fractions of SNVs and INDELs at conserved and accelerated sites by
6 chance alone were estimated based on randomly generated mutations using SigProfilerSimulator
7 (Bergstrom et al., 2020) – we randomly generated the same number of SNVs and INDELs as the
8 observed numbers with also the same mutation signature, performed the same analysis of their
9 conservation scores, and repeated the above two steps 2,000 times to reach stable estimations.
10 Because there is no difference between the values of SNVs and INDELs expected by chance alone,
11 we merged into two single values as indicated by the two dashed lines (for conserved and
12 accelerated sites separately). Boxplot elements are defined as: center line indicates median, box
13 limits indicate upper and lower quartiles, and whiskers indicate 1.5× interquartile range.
14

15 **Figure 3. Selection pressures against damaging mutations.**
16 (A) The ratio of the number of nonsynonymous mutations to synonymous mutations. We added 1
17 to the denominator values to avoid potential 0. (C, F & I) The numbers of frameshifting, stop-gain,
18 and stop-loss mutations per cell. (D, G & J) The numbers of observed frameshifting, stop-gain,
19 and stop-loss mutations vs. their corresponding numbers expected by chance alone (in log2-
20 transformed ratios). (B, E, H & K) The observed ratios of the numbers of nonsynonymous,
21 frameshifting, stop-gain, and stop-loss mutations to the numbers of synonymous mutations vs their
22 corresponding ratios expected by chance alone. To estimate the number of mutations expected by
23 chance alone, we first used SigProfilerSimulator (Bergstrom et al., 2020) to randomly generate the
24 same number of SNVs and INDELs as the observed numbers with also the same mutation signature,
25 then annotated the artificial mutations with ANNOVAR (Yang and Wang, 2015) to determine the
26 number of mutations in each functional category, and finally repeated the above two steps 2,000
27 times to reach stable estimations. Each dot presents a cell. *P* values in A, B, C, D, F, & H were
28 estimated using linear mixed effects models, two-sided. In E, G, & I, “ns”, “*”, “**”, and “***”
29 represents *P* values >0.05 , <0.05 , <0.01 , and <0.001 , separately, which were estimated using
30 binomial tests, two sided. Boxplot elements are defined as: center line indicates median, box limits
31 indicate upper and lower quartiles, and whiskers indicate 1.5× interquartile range.
32

33 **Figure 4. SNV spectra and signatures.**
34 (A) SNV spectra of each cell strain. Error bars present s.d. (B) Three SNV signatures of the
35 fibroblasts identified by *de novo* signature extraction using the “MutationalPatterns” package of
36 R(Blokzijl et al., 2018). (C) Contribution of each SNV signature to the total SNVs per cell.
37

38 **Figure 5. Mutational hotspots and overlap.**
39 (A) The number of mutational hotspots (SNV and INDELs combined) per cell. (B) The ratio of
40 the number of overlapping mutations among cells of the same passage and same cell strain (i.e.,
41 animal) to the number of overlapping mutations among all cells of all strain. We added 1 to the
42 denominator values to avoid potential 0. Each data point presents a cell. *P* values were estimated
43 using linear mixed effects models, two-sided. Boxplot elements are defined as follows: center line
44 indicates median, box limits indicate upper and lower quartiles, and whiskers indicate 1.5×
45 interquartile range. (C) A rainfall plot of the distribution of mutational hotspots across the genome.

1 The plot was generated using the “karyoplotR” package of R(Gel and Serra, 2017). Each data
2 point presents a mutational hotspot observed within a single cell.
3

4 **Figure S1. PCR genotyping.**

5 The genotypes of each mouse were validated using two pairs of primers, comprising three primers
6 in total, with their sequences presented in this figure. Primer A was designed to align with the
7 intron preceding exon 7 of the *Msh2* gene, while primer C was situated in exon 7. Primer B was
8 positioned in the PGK poly A cassette of the neomycin cassette, replacing an internal fragment that
9 contains most of *Msh2* exon 7. In wild-type mice, the A/C primer pair was used, resulting in an
10 amplified PCR product of 189 bp. The wild-type group consisted of two C57BL/6 mice (shown in
11 the two left lanes) and two wild-type littermates of the *Msh2*^{-/-} mouse, E(wt) and F(wt) (shown in
12 the two right lanes). For *Msh2*^{-/-} mice, the A/B primer pair was used, producing a PCR product of
13 300 bp. The gel image of the *Msh2*^{-/-} group displayed PCR results from three mice, Msh2A, Msh2B,
14 and Msh2C (from left to right).
15

16 **Figure S2. Mutation burden in linear scale.**

17 (A) SNV burden and (B) INDEL burden per cell in linear scale. Each data point presents a cell. *P*
18 values were estimated using linear mixed effects models, two-sided. Boxplot elements are defined
19 as follows: center line indicates median, box limits indicate upper and lower quartiles, and
20 whiskers indicate 1.5× interquartile range.
21

22 **Figure S3. Mutation burden at evolutionarily conserved and active sites during passaging.**

23 The fractions of SNVs at evolutionarily (A) conserved and (B) accelerated sites out of total
24 mutations per cell. The fractions of INDELs at evolutionarily (C) conserved and (D) accelerated
25 sites out of total mutations per cell. Each data point presents a cell. *P* values were estimated using
26 linear mixed effects models, two-sided. Boxplot elements are defined as: center line indicates
27 median, box limits indicate upper and lower quartiles, and whiskers indicate 1.5× interquartile
28 range.
29

30 **Figure S4. SNV spectra.**

31 (A) SNV spectra of cell strains of the two genotypes combined. (B) SNV spectra of each passage
32 in each cell strain separately. Error bars present s.d.
33

34 **Figure S5. SNV signature refitted from COSMIC signatures.**

35 Each data point presents a cell. Only the COSMIC signatures estimated to contribute to at least
36 one SNV were plotted. The analysis was performed using the “MutationalPatterns” package of R
37 (Blokzijl *et al.*, 2018).
38

39 **Figure S6. INDEL signatures.**

40 (A) Two INDEL signatures of the fibroblasts identified by *de novo* signature extraction using the
41 “MutationalPatterns” package of R (Blokzijl *et al.*, 2018). (B) Contribution of each INDEL
42 signature to the total INDELs per cell.
43

44 **Figure S7. Mutational overlap per cell.**

45 Number of overlapping mutations among cells of the same passage and same cell strain (i.e.,
46 animal) to the number of overlapping mutations among cells of all cell strains. Each data point

1 presents a cell. P values were estimated using linear mixed effects models, two-sided. Boxplot
2 elements are defined as follows: center line indicates median, box limits indicate upper and lower
3 quartiles, and whiskers indicate $1.5 \times$ interquartile range.
4

1 **References**

2 Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Tian Ng, A.W., Wu, Y., Boot, A.,
3 Covington, K.R., Gordenin, D.A., Bergstrom, E.N., et al. (2020). The repertoire of mutational
4 signatures in human cancer. *Nature* 578, 94-101. 10.1038/s41586-020-1943-3.

5 Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A., Behjati, S., Biankin, A.V.,
6 Bignell, G.R., Bolli, N., Borg, A., Børresen-Dale, A.L., et al. (2013). Signatures of mutational
7 processes in human cancer. *Nature* 500, 415-421. 10.1038/nature12477.

8 Bergstrom, E.N., Barnes, M., Martincorena, I., and Alexandrov, L.B. (2020). Generating realistic
9 null hypothesis of cancer mutational landscapes using SigProfilerSimulator. *BMC
10 Bioinformatics* 21, 438. 10.1186/s12859-020-03772-3.

11 Blokzijl, F., Janssen, R., van Boxtel, R., and Cuppen, E. (2018). MutationalPatterns:
12 comprehensive genome-wide analysis of mutational processes. *Genome Med* 10, 33.
13 10.1186/s13073-018-0539-0.

14 Bohrson, C.L., Barton, A.R., Lodato, M.A., Rodin, R.E., Luquette, L.J., Viswanadham, V.V.,
15 Gulhan, D.C., Cortés-Ciriano, I., Sherman, M.A., Kwon, M., et al. (2019). Linked-read analysis
16 identifies mutations in single-cell DNA-sequencing data. *Nat Genet* 51, 749-754.
17 10.1038/s41588-019-0366-2.

18 Brazhnik, K., Sun, S., Alani, O., Kinkhabwala, M., Wolkoff, A.W., Maslov, A.Y., Dong, X., and
19 Vijg, J. (2020). Single-cell analysis reveals different age-related somatic mutation profiles
20 between stem and differentiated cells in human liver. *Sci Adv* 6, eaax2659.
21 10.1126/sciadv.aax2659.

22 Cagan, A., Baez-Ortega, A., Brzozowska, N., Abascal, F., Coorens, T.H.H., Sanders, M.A.,
23 Lawson, A.R.J., Harvey, L.M.R., Bhosle, S., Jones, D., et al. (2022). Somatic mutation rates
24 scale with lifespan across mammals. *Nature*. 10.1038/s41586-022-04618-z.

25 Choudhury, S., Huang, A.Y., Kim, J., Zhou, Z., Morillo, K., Maury, E.A., Tsai, J.W., Miller,
26 M.B., Lodato, M.A., Araten, S., et al. (2022). Somatic mutations in single human
27 cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. *Nat
28 Aging* 2, 714-725. 10.1038/s43587-022-00261-5.

29 de Wind, N., Dekker, M., Berns, A., Radman, M., and te Riele, H. (1995). Inactivation of the
30 mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance,
31 hyperrecombination, and predisposition to cancer. *Cell* 82, 321-330. 10.1016/0092-
32 8674(95)90319-4.

33 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M.,
34 and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15-21.
35 10.1093/bioinformatics/bts635.

36 Dong, X., Zhang, L., Milholland, B., Lee, M., Maslov, A.Y., Wang, T., and Vijg, J. (2017).
37 Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. *Nat
38 Methods* 14, 491-493. 10.1038/nmeth.4227.

1 Erickson, R.P. (2010). Somatic gene mutation and human disease other than cancer: an update.
2 *Mutat Res* 705, 96-106. 10.1016/j.mrrev.2010.04.002.

3 Failla, G. (1958). The aging process and cancerogenesis. *Ann N Y Acad Sci* 71, 1124-1140.
4 10.1111/j.1749-6632.1958.tb46828.x.

5 Franco, I., Revêchon, G., and Eriksson, M. (2022). Challenges of proving a causal role of
6 somatic mutations in the aging process. *Aging Cell* 21, e13613. 10.1111/acel.13613.

7 Gel, B., and Serra, E. (2017). karyoplotR: an R/Bioconductor package to plot customizable
8 genomes displaying arbitrary data. *Bioinformatics* 33, 3088-3090.
9 10.1093/bioinformatics/btx346.

10 Georgakopoulos-Soares, I., Koh, G., Momen, S.E., Jiricny, J., Hemberg, M., and Nik-Zainal, S.
11 (2020). Transcription-coupled repair and mismatch repair contribute towards preserving genome
12 integrity at mononucleotide repeat tracts. *Nat Commun* 11, 1980. 10.1038/s41467-020-15901-w.

13 Hart, R.W., and Setlow, R.B. (1974). Correlation between deoxyribonucleic acid excision-repair
14 and life-span in a number of mammalian species. *Proceedings of the National Academy of
15 Sciences of the United States of America* 71, 2169-2173.

16 Hegan, D.C., Narayanan, L., Jirik, F.R., Edelmann, W., Liskay, R.M., and Glazer, P.M. (2006).
17 Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2,
18 Mlh1, Msh2, Msh3 and Msh6. *Carcinogenesis* 27, 2402-2408. 10.1093/carcin/bgl079.

19 Huang, Y., and Li, G.M. (2018). DNA mismatch repair preferentially safeguards actively
20 transcribed genes. *DNA Repair (Amst)* 71, 82-86. 10.1016/j.dnarep.2018.08.010.

21 Huang, Z., Sun, S., Lee, M., Maslov, A.Y., Shi, M., Waldman, S., Marsh, A., Siddiqui, T., Dong,
22 X., Peter, Y., et al. (2022). Single-cell analysis of somatic mutations in human bronchial
23 epithelial cells in relation to aging and smoking. *Nat Genet* 54, 492-498. 10.1038/s41588-022-
24 01035-w.

25 Jaiswal, S., and Ebert, B.L. (2019). Clonal hematopoiesis in human aging and disease. *Science*
26 366. 10.1126/science.aan4673.

27 Kirkwood, T.B. (1977). Evolution of ageing. *Nature* 270, 301-304. 10.1038/270301a0.

28 Lee, B.T., Barber, G.P., Benet-Pagès, A., Casper, J., Clawson, H., Diekhans, M., Fischer, C.,
29 Gonzalez, J.N., Hinrichs, A.S., Lee, C.M., et al. (2022). The UCSC Genome Browser database:
30 2022 update. *Nucleic Acids Res* 50, D1115-d1122. 10.1093/nar/gkab959.

31 Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data
32 with or without a reference genome. *BMC Bioinformatics* 12, 323. 10.1186/1471-2105-12-323.

33 Li, G.M. (2008). Mechanisms and functions of DNA mismatch repair. *Cell Res* 18, 85-98.
34 10.1038/cr.2007.115.

1 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
2 transform. *Bioinformatics* 25, 1754-1760. 10.1093/bioinformatics/btp324.

3 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
4 Durbin, R., and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map
5 format and SAMtools. *Bioinformatics* (Oxford, England) 25, 2078-2079.
6 10.1093/bioinformatics/btp352.

7 Lin, D.P., Wang, Y., Scherer, S.J., Clark, A.B., Yang, K., Avdievich, E., Jin, B., Werling, U.,
8 Parris, T., Kurihara, N., et al. (2004). An Msh2 point mutation uncouples DNA mismatch repair
9 and apoptosis. *Cancer Res* 64, 517-522. 10.1158/0008-5472.can-03-2957.

10 Lodato, M.A., Rodin, R.E., Bohrson, C.L., Coulter, M.E., Barton, A.R., Kwon, M., Sherman,
11 M.A., Vitzthum, C.M., Luquette, L.J., Yandava, C.N., et al. (2018). Aging and neurodegeneration
12 are associated with increased mutations in single human neurons. *Science* 359, 555-559.
13 10.1126/science.aoa4426.

14 Lora, D. (2016). ClusteredMutations: Location and visualization of clustered somatic mutations.

15 Lu, J.Y., Simon, M., Zhao, Y., Ablaeva, J., Corson, N., Choi, Y., Yamada, K.Y.H., Schork, N.J.,
16 Hood, W.R., Hill, G.E., et al. (2022). Comparative transcriptomics reveals circadian and
17 pluripotency networks as two pillars of longevity regulation. *Cell Metab* 34, 836-856.e835.
18 10.1016/j.cmet.2022.04.011.

19 Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J., Haase, K., Van Loo, P., Davies, H.,
20 Stratton, M.R., and Campbell, P.J. (2017). Universal Patterns of Selection in Cancer and Somatic
21 Tissues. *Cell* 171, 1029-1041.e1021. 10.1016/j.cell.2017.09.042.

22 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella,
23 K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M.A. (2010). The Genome Analysis
24 Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome
25 Res* 20, 1297-1303. 10.1101/gr.107524.110.

26 Milholland, B., Dong, X., Zhang, L., Hao, X., Suh, Y., and Vijg, J. (2017). Differences between
27 germline and somatic mutation rates in humans and mice. *Nat Commun* 8, 15183.
28 10.1038/ncomms15183.

29 Miller, M.B., Huang, A.Y., Kim, J., Zhou, Z., Kirkham, S.L., Maury, E.A., Ziegenfuss, J.S.,
30 Reed, H.C., Neil, J.E., Rento, L., et al. (2022). Somatic genomic changes in single Alzheimer's
31 disease neurons. *Nature* 604, 714-722. 10.1038/s41586-022-04640-1.

32 Mustjoki, S., and Young, N.S. (2021). Somatic Mutations in "Benign" Disease. *N Engl J Med*
33 384, 2039-2052. 10.1056/NEJMra2101920.

34 Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R., and Siepel, A. (2010). Detection of nonneutral
35 substitution rates on mammalian phylogenies. *Genome Res* 20, 110-121. 10.1101/gr.097857.109.

1 Ren, P., Dong, X., and Vijg, J. (2022). Age-related somatic mutation burden in human tissues.
2 *Front Aging* 3, 1018119. 10.3389/fragi.2022.1018119.

3 Robinson, P.S., Coorens, T.H.H., Palles, C., Mitchell, E., Abascal, F., Olafsson, S., Lee, B.C.H.,
4 Lawson, A.R.J., Lee-Six, H., Moore, L., et al. (2021). Increased somatic mutation burdens in
5 normal human cells due to defective DNA polymerases. *Nat Genet* 53, 1434-1442.
6 10.1038/s41588-021-00930-y.

7 Seluanov, A., Vaidya, A., and Gorbunova, V. (2010). Establishing primary adult fibroblast
8 cultures from rodents. *J Vis Exp.* 10.3791/2033.

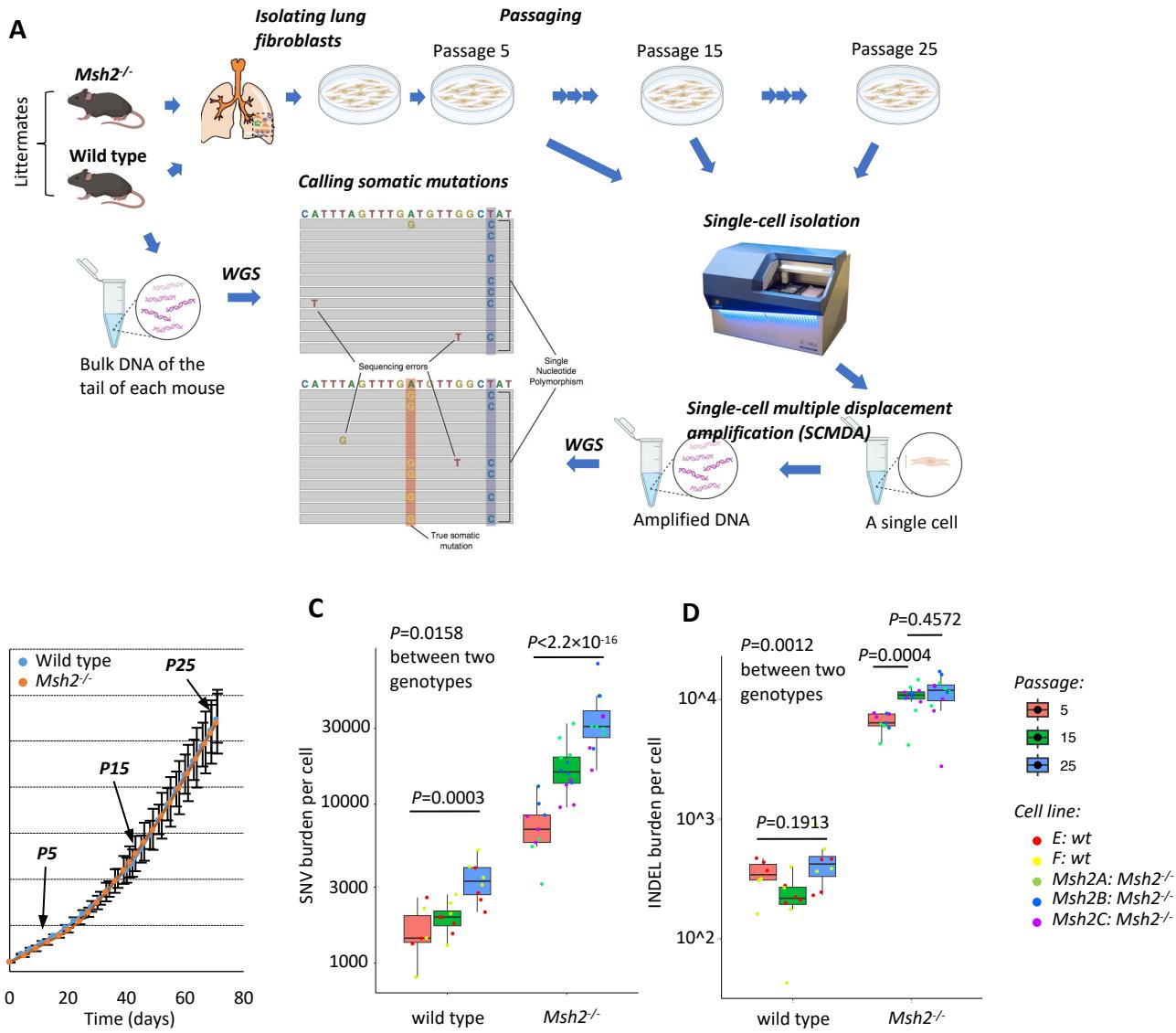
9 Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H.,
10 Spieth, J., Hillier, L.W., Richards, S., et al. (2005). Evolutionarily conserved elements in
11 vertebrate, insect, worm, and yeast genomes. *Genome Res* 15, 1034-1050. 10.1101/gr.3715005.

12 Smits, R., Hofland, N., Edelmann, W., Geugien, M., Jagmohan-Changur, S., Albuquerque, C.,
13 Breukel, C., Kucherlapati, R., Kielman, M.F., and Fodde, R. (2000). Somatic Apc mutations are
14 selected upon their capacity to inactivate the beta-catenin downregulating activity. *Genes,*
15 *chromosomes & cancer* 29, 229-239.

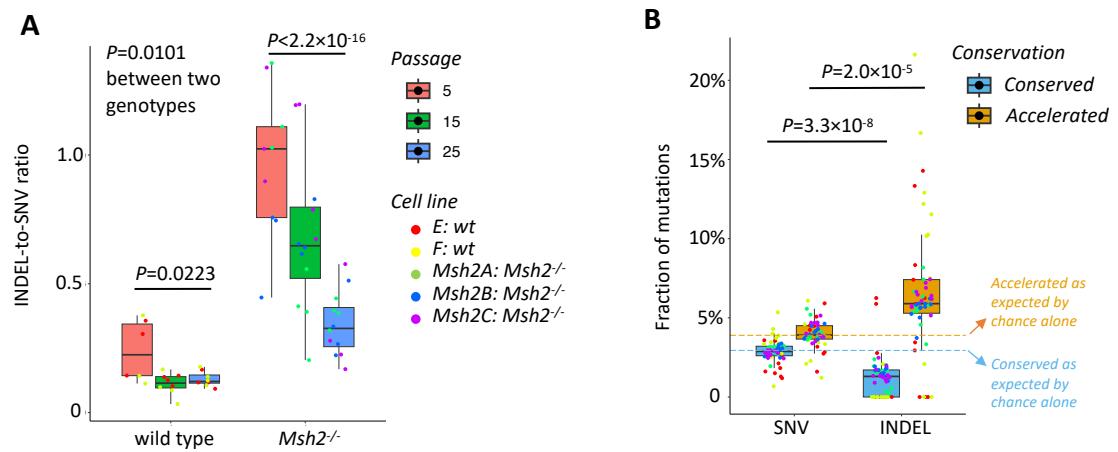
16 Szilard, L. (1959). ON THE NATURE OF THE AGING PROCESS. *Proc Natl Acad Sci U S A*
17 45, 30-45. 10.1073/pnas.45.1.30.

18 Vijg, J., and Dong, X. (2020). Pathogenic Mechanisms of Somatic Mutation and Genome
19 Mosaicism in Aging. *Cell* 182, 12-23. 10.1016/j.cell.2020.06.024.

20 Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic
21 variants from high-throughput sequencing data. *Nucleic Acids Res* 38, e164.
22 10.1093/nar/gkq603.

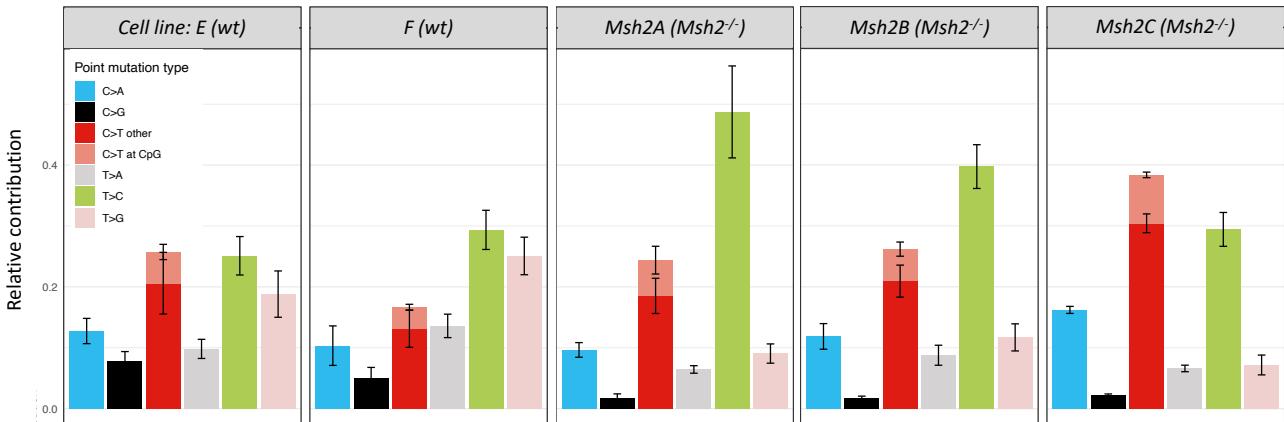
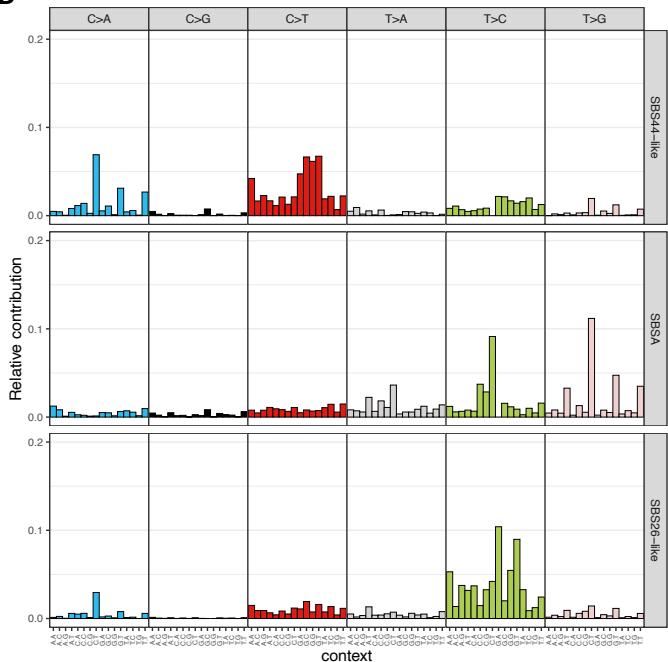
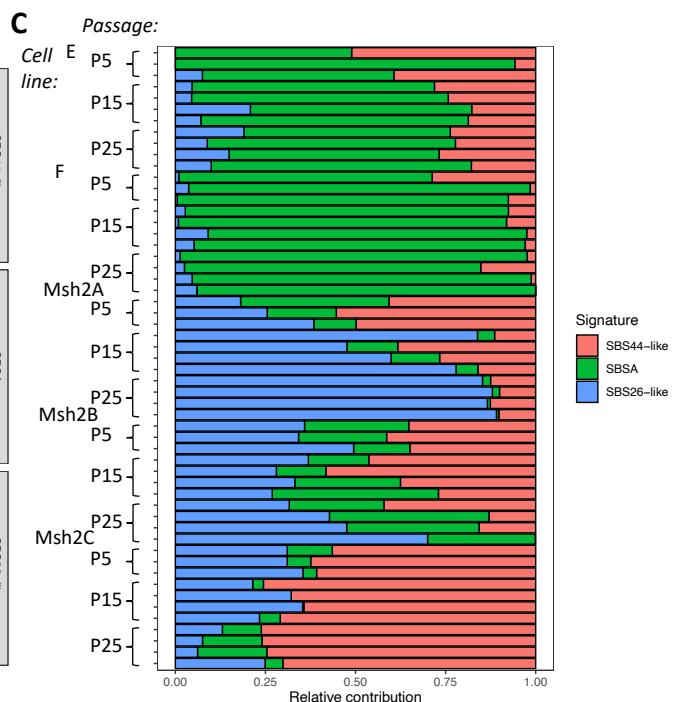

23 Yang, H., and Wang, K. (2015). Genomic variant annotation and prioritization with ANNOVAR
24 and wANNOVAR. *Nat Protoc* 10, 1556-1566. 10.1038/nprot.2015.105.

25 Zhang, L., Dong, X., Lee, M., Maslov, A.Y., Wang, T., and Vijg, J. (2019). Single-cell whole-
26 genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes
27 across the human lifespan. *Proc Natl Acad Sci U S A* 116, 9014-9019. 10.1073/pnas.1902510116.


28 Zhang, L., Dong, X., Tian, X., Lee, M., Ablaeva, J., Firsanov, D., Lee, S.G., Maslov, A.Y.,
29 Gladyshev, V.N., Seluanov, A., et al. (2021). Maintenance of genome sequence integrity in long-
30 and short-lived rodent species. *Sci Adv* 7, eabj3284. 10.1126/sciadv.abj3284.

31 Zhang, L., Lee, M., Maslov, A.Y., Montagna, C., Vijg, J., and Dong, X. (2023). Analyzing
32 somatic mutations by single-cell whole-genome sequencing. *Nat Protoc.* 10.1038/s41596-023-
33 00914-8.

34




Figure 1

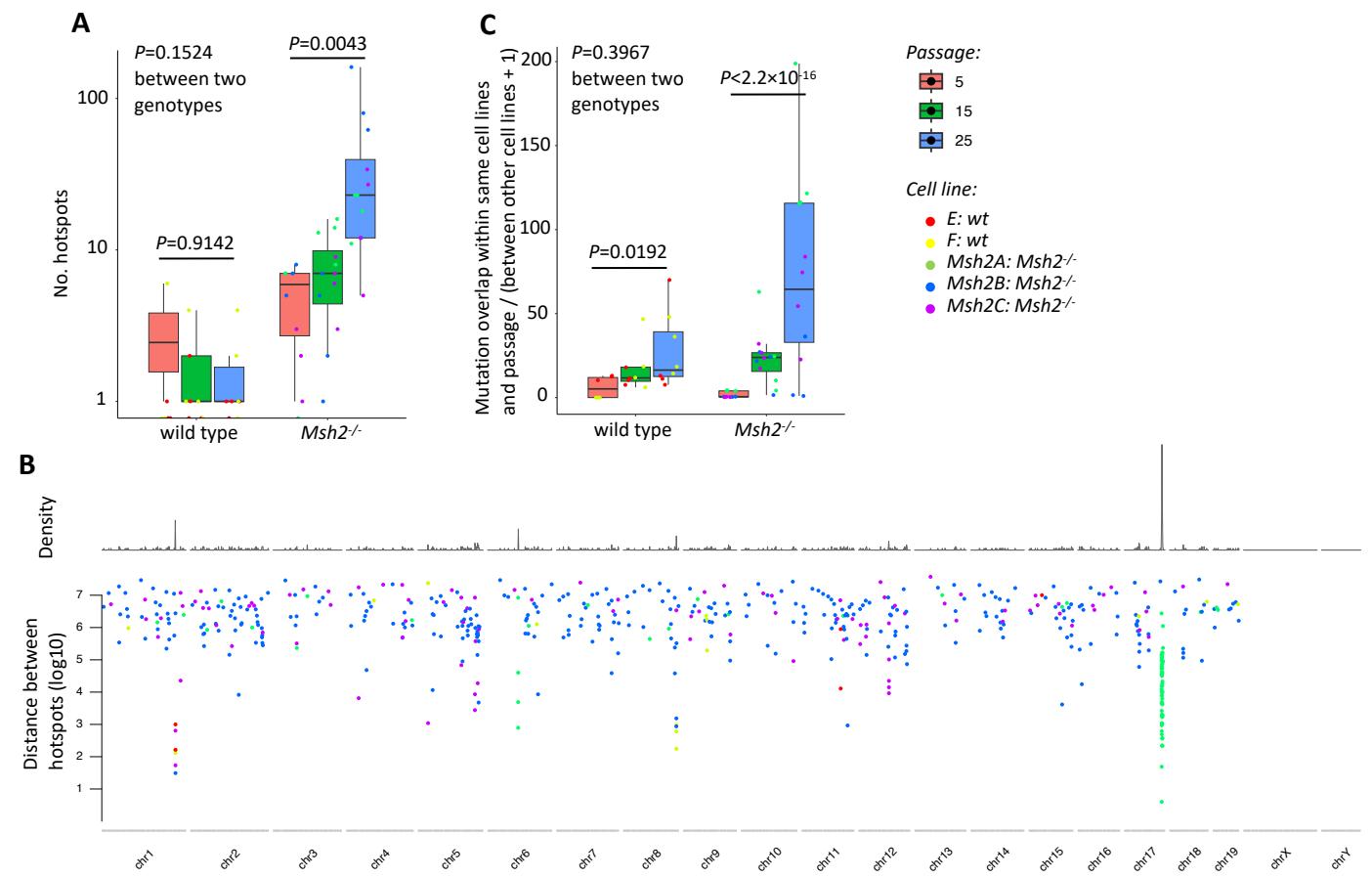


Figure 2

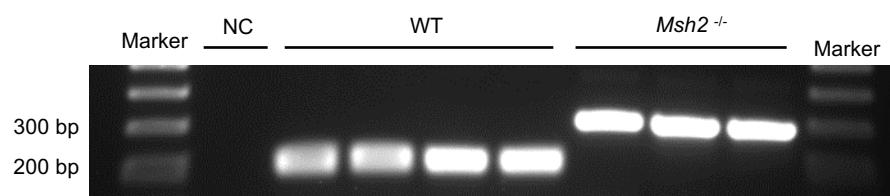
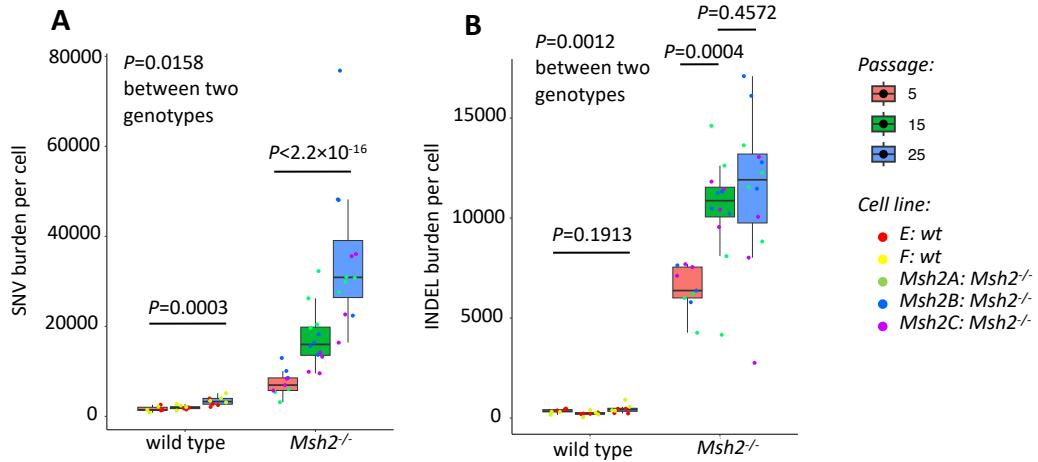


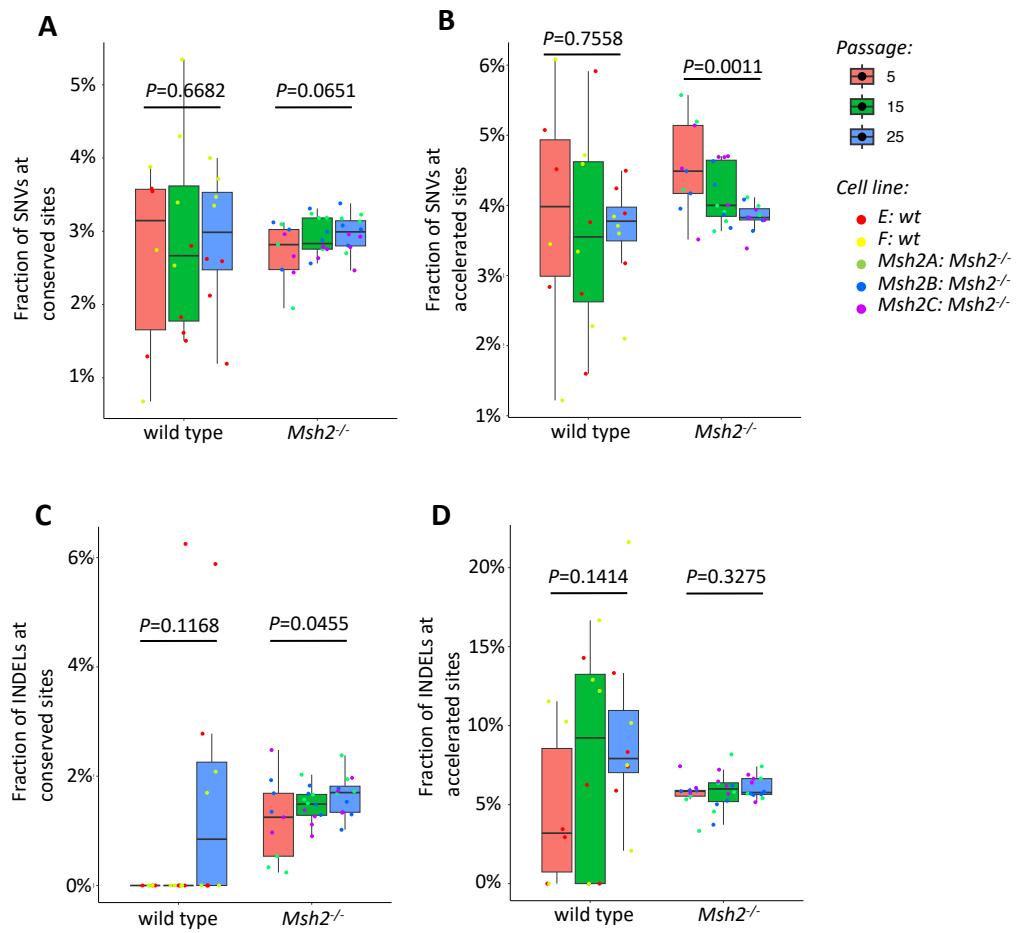
Figure 3

A**B****C****Figure 4**

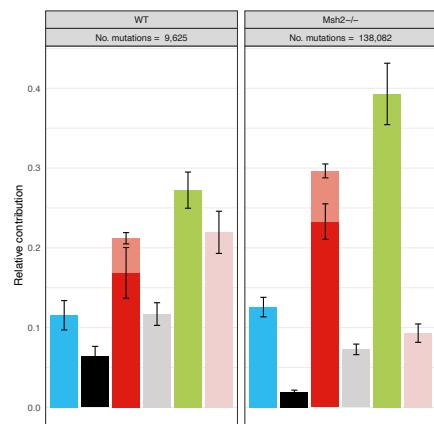
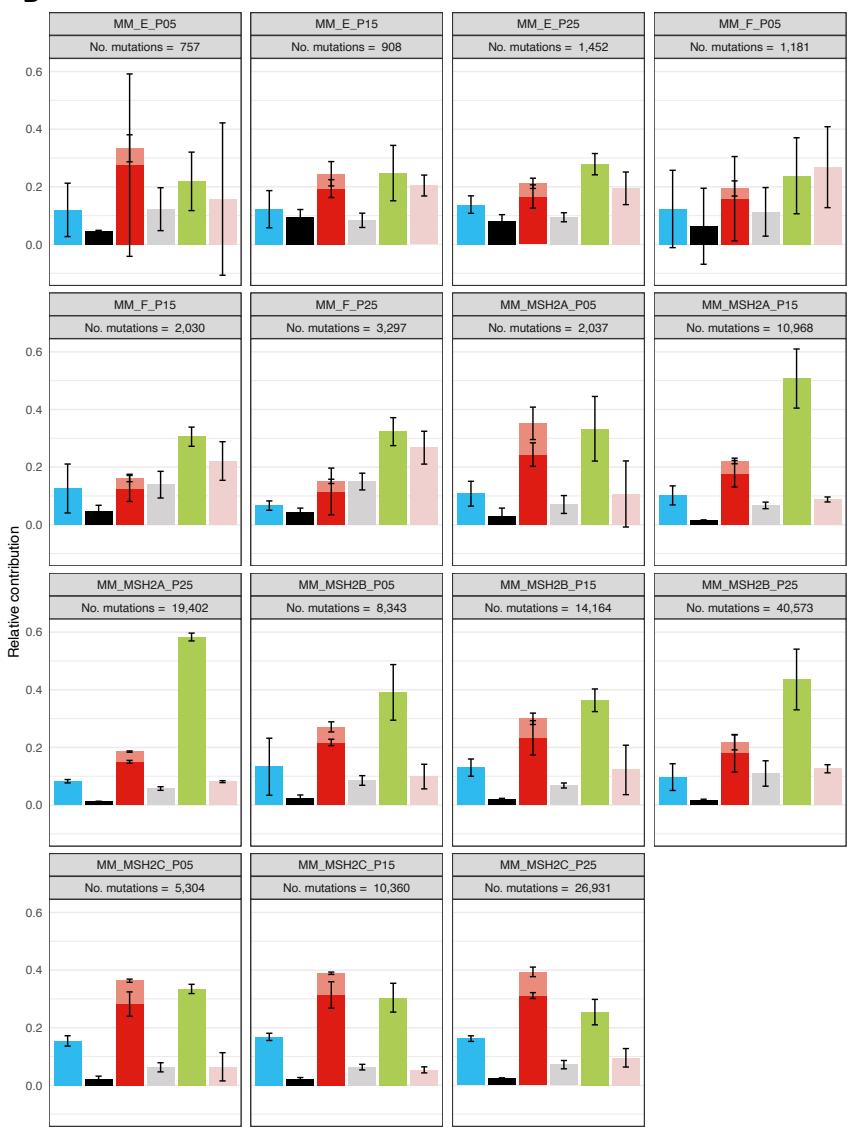
Figure 5



Primer A: CCCTCCTGTTGAGCCATCTTA


Primer B: GCCAGCTCATTCCCTCCACTC

Primer C: TTTCGCTGCTTGTCCTGGAAT



Figure S1

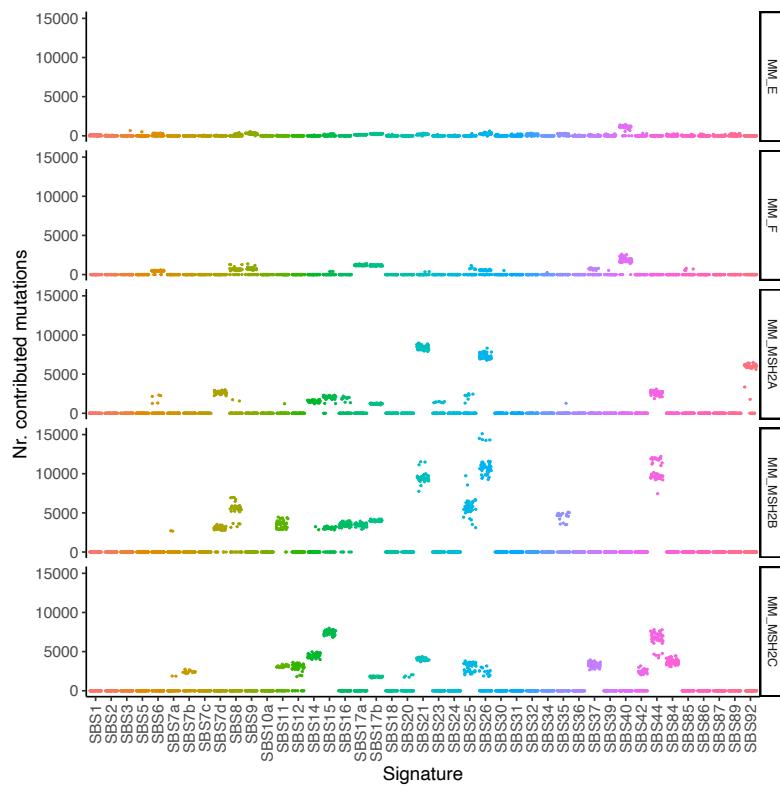
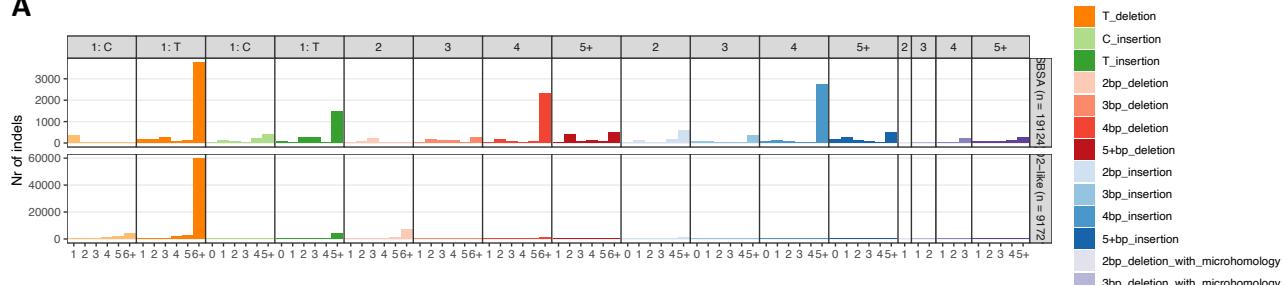
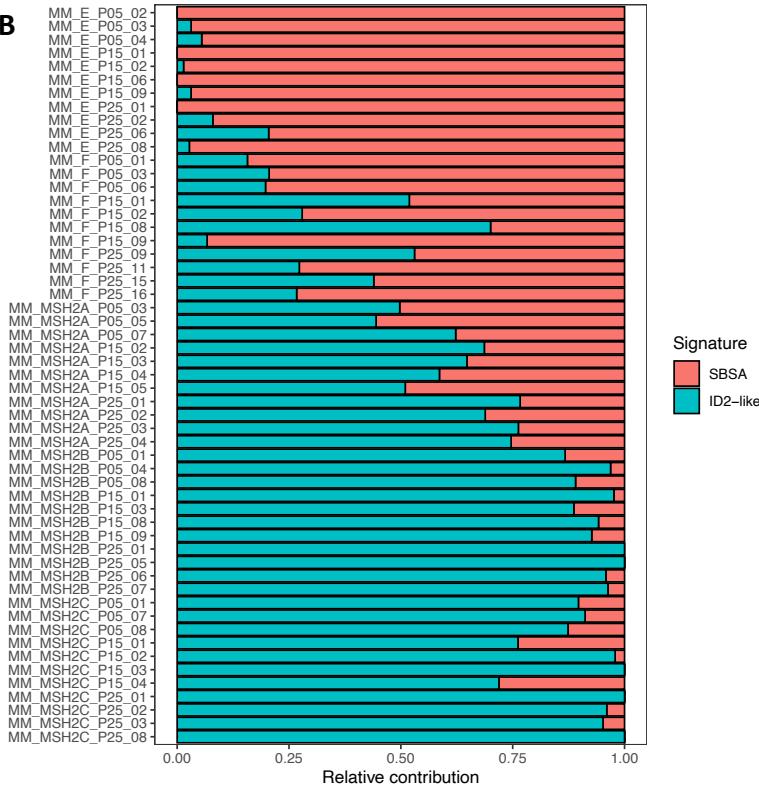
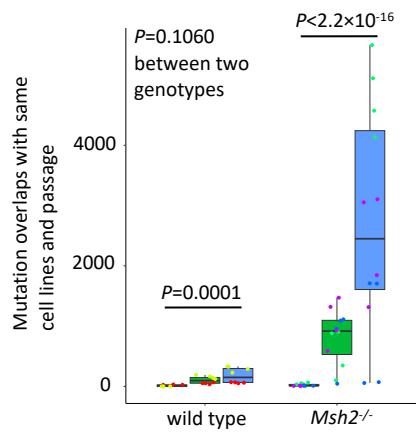


Figure S2


Figure S3

A**B****Figure S4**

Figure S5

A**B****Figure S6**

Figure S7