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ABSTRACT

High-content image-based assays have fueled significant discoveries in the life sciences in
the past decade (2013-2023), including novel insights into disease etiology, mechanism of
action, new therapeutics, and toxicology predictions. Here, we systematically review the
substantial methodological advancements and applications of Cell Painting. Advancements
include improvements in the Cell Painting protocol, assay adaptations for different types of
perturbations and applications, and improved methodologies for feature extraction, quality
control, and batch effect correction. Moreover, machine learning methods recently
surpassed classical approaches in their ability to extract biologically useful information from
Cell Painting images. Cell Painting data have been used alone or in combination with other -
omics data to decipher the mechanism of action of a compound, its toxicity profile, and
many other biological effects. Overall, key methodological advances have expanded Cell
Painting’s ability to capture cellular responses to various perturbations. Future advances will
likely lie in advancing computational and experimental techniques, developing new publicly

available datasets, and integrating them with other high-content data types.
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INTRODUCTION

Phenotypic drug discovery (PDD) identifies compounds based on their ability to alter a given
disease phenotype. PDD has been a critical component of therapeutic development?, having
evolved from screening a few compounds in animals to testing millions in cell models.
Although target-based drug discovery (TDD) bore much fruit throughout the 20" century?,
scientific advancements such as development of gene editing tools, organoids, and imaging
assay technologies, as well as the increasing awareness that understanding the exact
molecular target of a compound, as required in TDD, is not always a prerequisite for
effective and safe therapeutic discovery. This has resulted in the resurgence of phenotypic
screening approaches.! This is evident from the fact that around 7-18% of FDA-approved
drugs do not have a defined molecular target?, and several drugs have been found not to
work via their purported target, as highlighted in a recent analysis on anti-cancer drugs that
therapeutically acted through off-target effects.* Therefore, phenotypic strategies have
gained favor because they also allow compounds to be explored in a target-agnostic manner

(using hypothesis-free assays).”

Although target-based strategies (using hypothesis-based assays) have been valuable in
specific therapeutic areas, they have limitations, particularly when targets are complex or
considered undruggable, and when the disease of interest is polygenic.® Swinney and
Anthony highlighted that, out of the 50 small molecules discovered as first-in-class small
molecule drugs with new molecular mechanisms of action (MoA) between 1999 and 2008,
target-based strategies discovered 34% of these (17 small molecules) while phenotypic
strategies discovered 56% (28 small molecules) with the remaining 10% (5 small molecules)

being synthetic versions of natural substances.” However, this does not mean that target-
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based drug discovery is inherently inferior; phenotypic drug discovery is more likely to

succeed when understanding the most desirable mechanisms of action is prioritized."

Among phenotypic screening strategies, High Content Screening (HCS) technologies have
proven to be both effective and efficient, allowing multiple parameters to be measured at
the single-cell level simultaneously.! HCS enables cellular complexity and heterogeneity to
be captured in response to a range of perturbations, such as genetic modifications,
environmental stressors, or small molecule treatments. At the core of these technologies is
cellular morphology—the visual appearance of cells, usually stained for cell structures or
biomarkers—which is intricately linked to cell physiology, health, and function.® HCS has a
broad spectrum of applications in biological and drug discovery research. For example,
CRISPR-Cas9, siRNA, and cDNA screens are used to identify genes and proteins involved in
specific pathways and processes and are also applied in academia and pharmaceutical

9,10 . . .
"=~ HCS is also used in drug discovery to screen for novel

companies for target identification.
compounds, and to better understand the biological effects of compounds. For example,
compounds identified through traditional screening could be profiled further using
phenotypic assays to investigate selectivity and toxicity, such as in-vitro micronuclei

11,12
"> These

formation assays to identify compounds that could potentially damage DNA.
assays investigate specific endpoint(s) and require a careful experimental design; many

parameters need to be considered, such as the selection of cell model or cell line, growth

conditions, biomarkers, dyes, or antibodies.™

A major development came on the scene in 2004, when Perlman et al. demonstrated that
instead of tailoring an image-based assay to a particular biology of interest, images might be

used in an relatively unbiased way (besides choice of experimental conditions) to group
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drug treatments based on having similar impacts on cell morphology.”® This finding, in
combination with other developments such as the building momentum of transcriptional
profiling"* and the technology push to generate more biological data, resulted in the
launching of the field of image-based profiling and the development of image assays aiming
to maximize information content. The most popular among them is the Cell Painting assay,
first described by Gisladéttir et al. in 2013". The Cell Painting assay generates a holistic
"painting" of the cell that reflects its phenotypic state and cellular responses to
perturbations. The Cell Painting assay (Figure 1a) involves staining cells with a combination
of fluorescent dyes, each labeling distinct cellular components or organelles. The most
widely used dyes to perform this assay are Hoechst 33342 (DNA), concanavalin A
(endoplasmic reticulum), SYTO 14 (nucleoli and cytoplasmic RNA), phalloidin (f-actin) and
what germ agglutinin (WGA) (Golgi apparatus and plasma membrane), and Mito Tracker
Deep Red (mitochondria).'® The Cell Painting assay was designed to be easy and inexpensive
to implement in any high throughput screening facility, relying solely on dyes rather than
antibodies, which can be more costly and involve multiple labor-intensive steps. This
multiplex staining approach is followed by processing with automated imaging pipelines
(such as CellProfiler'’) that can then extract morphological profiles and standardize them
against reference and control compounds (Figure 1b). This yields a high-dimensional dataset
for each cell and captures over a thousand morphological features (including measures of
size, shape, texture and intensity, among many others). This is then followed by
normalization/pre-processing, and batch effect corrections. The morphological profiles can
then be used for further downstream analysis by distinguishing perturbations based on their
phenotypic responses (Figure 1c). Cell Painting profiles can also be used with unsupervised

machine learning models, for example, to detect clusters with similar MoAs, or with
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supervised machine learning models (for example, to predict the MoA or toxicity of new

compounds).
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Figure 1. Morphological profiling using the Cell Painting assay. a) Schematic representation of Cell Painting assay; cells are incubated and
perturbed and a set of six stains is applied. Images are then obtained by automated microscopy followed by nucleus and cell body
segmentation. b) Appropriate software or deep learning-based methods are applied to measure or calculate morphological features from the
images. c) After feature pre-processing, downstream analysis is performed. This includes a variety of methods, including supervised and
unsupervised machine learning, to better elucidate the biological effects of a compound, such as its MoA or safety profile.
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The Cell Painting assay has seen increasing adoption in academic and industry research and
here we aim to comprehensively examine the advancements and impacts of Cell Painting in
drug discovery and related areas over the past decade (2013-2023), following a systematic
review format. We explore the methodological advancements that have improved the
robustness of the assay and discuss how Cell Painting has deepened understanding of
disease processes and shaped therapeutic discovery. Importantly, we discuss the integration
of Cell Painting with machine learning and other -omics data. Moreover, we explore the role
of Cell Painting in predictive toxicology and its significance in improving the safety and
efficacy of drugs. Overall, we provide a comprehensive perspective on the potential of the

Cell Painting assay and its impact in drug discovery.
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RESULTS
Study Selection

For our systematic review, we retrieved 340 articles from three sources: PubMedlg,
Scopus™, and ScienceDirect® (accessed June 2023). Among these, 207 duplicates were
removed, and 41 review articles were further removed during the screening process. A total
of 92 articles were eligible for a full-text analysis and of these 21 studies were further
removed (18 irrelevant and 3 poster/thesis/news articles). To augment this, a manual search
contributed an additional 18 studies, acknowledging the rapidly evolving nature of this field.
Some of these studies were published after the initial cut-off date (i.e., after June 2023) but
were still included during the review process due to their significant contribution to Cell
Painting research. Overall, this yielded 89 studies for systematic review, as shown in the
Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) flow chart in
Figure 2 (for a list of the 89 studies, see Supplementary Table S1 ; excluded studies in

Supplementary Table S2).
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Figure 2. the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA)
flow chart diagram on the selection of the 89 studies included in this systematic review.
Records from manual search included some articles published the June 2023 cut-off date.

Extracted Data

The extracted data included authors, year of publication, keywords, and the journal where
the article was published. We manually identified the research question and the major
outcome and categorized the results into major and sub-categories {(where possible). Figure
3a shows the number of publications per year. Imaging-based profiling assays such as the
Cell Painting assay are increasingly being used, as the majority of the studies were published
within the last three years (2021-2023). This also indicates that, as with other new
technologies such as transcriptomics data, it takes about a decade for scientists to make use
of it on a larger scale. Figure 3b shows the number of publications from each journal in this
study. The majority of papers were published in SLAS Discovery, which indicates that the

assay was quickly accepted by the drug profiling and screening community. Computational
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journals, for example related to cheminformatics, and bioArxiv preprints (which maybe
currently in review process at other journals) have also been a preferred dissemination
route for findings from Cell Painting datasets. Journals for the fields of chemical biology and
toxicology are among the other top publication choices, where Cell Painting data has been

used for drug discovery.
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Figure 3. (a) The growth in publications reviewed in this systematic review between 2013
and 2023 and (b) the journals where the publications were published.
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DISCUSSION

1. Assay Development

The Cell Painting protocol was first developed by Gustafsdottir et al. in 2013. It was
designed to be a low-cost single assay capable of capturing many biologically relevant
phenotypes with high throughput.”® As shown in Figure 1b, six stains were selected and
imaged in five channels to reveal morphological changes for eight cellular components or
organelles. Gustafsdottir's publication did not name the assay; however, an updated
protocol (v2) published in 2016 by Bray et al. established the moniker “Cell Painting”, while
also making minor adjustments such as stain concentrations.'® A recent effort optimized the
assay’s stability and reproducibility, culminating in Cell Painting v3 in 2022.*' To create the
updated protocol, the JUMP-CP (Joint Undertaking for Morphological Profiling — Cell
Painting) Consortium, led by the Broad Institute, used a positive control plate of 90
compounds covering 47 diverse mechanisms of action to, for the first time, quantitatively
optimized staining reagents, as well as experiment and imaging conditions.”* These included
reducing steps (such as no media removal before MitoTracker), decreasing dye
concentrations to save reagent costs (such as the reduction of Phalloidin), and increasing
SYTO 14 concentration to enhance signal-to-noise ratios. Another study included conditions

such as time point and image acquisition conditions.”

1.1 Cell Line Selection

For image-based assays, flat cells that rarely overlap are best — most cell lines meet this
criteria. In general, dozens of cell lines have been used and have performed well for Cell
Painting experiments, and thus the selection often depends on the purpose of the

experiment. For example, A549 (lung adenocarcinoma) and U20S (osteosarcoma) were
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considered for the JUMP-CP data, and both could have been suitable but U20S was selected

due to fewer restrictions related to sharing with partners.”"?

In a recent study, the
selection of optimal cell lines for high content screening was investigated because different
cell lines can result in different sensitivities to detect different MoAs.?® In total 3,214 small
molecule annotated (i.e. containing information about their putative target and MoA)
compounds (including FDA approved drugs) were profiled with Cell Painting on six different
cell lines. These were the A549, OVCAR4, DU145, 786-0O, HEPG2 and a noncancer patient-
derived fibroblast cell line (FB). The cell lines were ranked based on their ability to infer
compound activity termed “phenoactivity” (also “phenotypic activity”) of the compound
and MoA termed “phenosimilarity” (also “phenotypic consistency”) of the mechanism
groups). Here, compound activity refers to the observable effects a compound has on
biological systems, such as inhibiting or promoting cellular processes in assays, while MoA
describes the specific biochemical interaction through which a compound produces its
effect, such as binding to a receptor or inhibiting an enzyme. Results showed that the best
performing cell line in terms of detecting phenotypic activity may have poor sensitivity for
compounds with the same MoA and vice versa. This discrepancy could be attributed to the
diverse genetic landscapes of different cell lines, which may influence the expression of
targets and the cellular pathways involved. For example, HEPG2 cell line's tendency to grow
in highly compact colonies was identified as a factor impeding its ability to produce clear
phenotypic distinctions between compound-treated and control groups. This growth
pattern complicates the analysis of cellular organelles like mitochondria and actin—critical

markers in the study—since alterations in these densely packed cells become harder to

detect.
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Another study showed that Cell Painting sample preparation protocol was effective without
any cell line-specific adjustment for 16 reference chemical across six biologically diverse and
morphologically distinct human-derived cell lines (U-2 OS, MCF7, HepG2, A549, HTB-9 and
ARPE-19) that originate from various tissues and exhibiting distinct growth patterns and
cellular characteristics.** It was only necessary to optimize image acquisition and analysis
parameters to account for differences in the size and 3D shape of each cell line when
cultured in monolayers. The maximum ranges for the in vitro point-of-departure
(concentration at which chemicals begin to perturb cellular biology) differed by 1.05 logio
units across cell types, and the smallest ranges differed by 0.35 logie units. Most of the
chemicals tested showed a pronounced phenotypic effect across all cell lines, often below
cytotoxic and cytostatic concentrations. However, for all chemicals except one, the most
sensitive features were different in each cell line. This indicates that, even though the
concentration at which chemicals alter cellular morphology is consistent across cell types,
the way these effects manifest depends on the biological context of the cells. Over the past
decade, the basic Cell Painting protocol has been used on dozens of additional cell lines
without adjustment based on our survey of literature and personal communications

(Personal Communications, March 15, 2024, Dr. Anne Carpenter).

1.2 Adaptations of the Cell Painting Assay

Adaptations of the Cell Painting assay have begun to appear, which replace some of the
original dyes with alternative fluorescent dyes to increase the spectral range and facilitate
delineation of other cellular compartments and structures.?”> One such assay, the HighVia
assay, uses direct single-cell analysis to evaluate mechanisms of cell death (such as

apoptosis and necrosis), as well as determine in vitro IC50, a measure of potency, for
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compound perturbations.”® Another study replaced one dye (MitoTracker) with an antibody
against a viral protein introducing the possibility of multiplexing Cell Painting with specific
targets.”® Another adaptation of Cell Painting is LipocyteProfiler, which incorporates BODIPY
to mark lipid droplets - this metabolic disease-oriented phenotypic profiling system is used

for lipid-accumulating cells.?’
1.3 Improvements in the Choice of Perturbations

In addition to the improvements made to the assay protocol, there are also
recommendations that can help researchers tailor the screen’s conditions and parameters
with respect to downstream analysis. In addition to compound perturbation, Singh et al.
first explored RNAi-induced knockdown using the Cell Painting assay in 2015.?% They showed
that the morphological signatures are highly sensitive and reproducible but there were off-
target ‘seed’ effects of RNA interference reagents that dominated the signatures. These
‘seed’ effects occur when a short region of the RNAi molecule, known as the 'seed'
sequence, binds non-specifically to multiple messenger RNAs. More successful technologies
include open reading frame (ORF) constructs that allow for gene/protein overexpression®’
and CRISPR knockout to deplete expression.>® One challenge with a target agnostic assay,
such as Cell Painting, is that compounds active in the assay can act by on- and/or off-target
effects, which in turn results in the difficult interpretation of a given bioactivity.>* Hence,
one practical solution is to include known reference compounds. Most recently,
Chandrasekaran et al. and Jamali et al. introduced various sets of recommended control and
landmark perturbations — including two compound plates and ORF and CRISPR

22,32

perturbations plates. Dahlin et al. generated a set of Cell Painting and cellular health

profiles for 218 prototypical cytotoxic and prototypical ‘nuisance’ compounds in U20S cells
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in a concentration-response format.*! ‘Nuisance’ compounds, in this context, are substances
that frequently show up as hits in screening assays but are ultimately considered
undesirable because their effects are often nonspecific, artifactual, or due to properties that
interfere with the assay rather than a specific biological activity of interest. The exploration
and analysis of this dataset highlighted relationships between different types of cellular
injury with Cell Painting activity. Robust Cell Painting phenotypes were observed with
compound-mediated cellular damage (e.g. tubulin poisons). This reference dataset thus
serves as a valuable resource for comparing and triaging novel compounds, especially when

they exhibit phenotypes similar to reference compounds with undesirable MoAs.

1.4 Development of Microscopy Imaging

Although high-throughput imaging platforms have advanced over the past decade resulting
in improved speed and resolution, Jamali et al. found that various microscope imaging
systems performed similarly and changing acquisition settings only minimally affected Cell
Painting profile strengths.>* Key setting alterations that improved morphological signatures
included decreasing magnification, which increases the number of cells imaged. Jamali et al.
concluded with a general set of recommendations for Cell Painting, applicable to several
microscopes, suggesting that cells should be imaged at 20x magnification across four to nine
sites {fields of view), or approximately 2,500 cells per well for the cell types considered in

the study.
2.1 Extraction of Morphological Features from Fluorescent Images

Cell Painting images are often analyzed using software to extract morphological features,

enabling the precise segmentation of cellular and subcellular structures. The open-source
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CellProfiler’” software is one example; however, other solutions are also used, including

1.). Some alternative analytical

proprietary ones {for a detailed review see Smith et a
approaches use deep learning (such as the recently published DeepProfiler®), where models
are trained to recognize features directly from raw images to optimize Cell Painting profiles,
increasing their sensitivity and robustness, and in some cases skipping the single-cell
segmentation step. Steps to further process the Cell Painting data, from morphological

feature extraction to profile normalization to batch effect correction discussed in Section 3.1

and 3.2, are also continuously improving.
2.2 Extraction of Morphological Features from Label Free Brightfield images

Some researchers have investigated ‘label-free’ assays replacing fluorescent images with
brightfield (BF), which can be captured for living cells over time. Even for fixed cells,
fluorescence imaging is typically more time-consuming, expensive and labor intensive
compared to BF imaging. While BF imaging does not yield a clear contrast of the cellular
compartments, the use of deep learning methods could potentially augment the
information available in BF images. In one study, deep learning models were used to predict
five Cell Painting fluorescent channel images from brightfield images and CellProfiler
features were calculated from the predicted images and the ground truth images.> The
models were trained on approximately 3,000 images {using one field of view per well from
17 batches) and then tested with 273 images. The predicted images achieved a mean
Pearson Correlation of 0.84 with the ground truth at the pixel level, and the authors further
calculated the Pearson correlation of CellProfiler features from the ground truth images and
the predicted images from BF. Although many morphological features extracted from the

generated images showed substantial correlation with those from the ground truth images
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(>0.6 correlation) and 30 features showed a correlation greater than 0.8, the features from
the AGP and Mito channels were more challenging to predict, likely due to the small and
subtle cellular substructures they contain. They additionally performed a downstream
analysis and investigated the ability of models in predicting compounds similar to the
positive controls, which resulted in a sensitivity of 62.5% and specificity of 98.0% and one
reason why sensitivity was low could be due to potential useful information missed from the

Mito and AGP channels.

Another study compared the abilities of deep learning-based features to predict ten MoA
classes.*® The features were trained using either brightfield images (BF) or fluorescence
images and were additionally compared to the benchmarked CellProfiler features from
fluorescent images. The dataset consisted of 231 compounds with 10 MoAs tested at 10uM
on U20S cells. Models trained with features from BF images, fluorescent images and
CellProfiler features predicting the class labels for 11 classes (10 MoAs and the DMSO
control class) showed comparable results.>’” Using activation maps, they further determined
which areas in the images were most activated and this revealed that the models focused
on different cellular features depending on the image type used for training. For example,
when predicting the MoA for the compound, 4SC-202, the models had an accuracy of 0.89,
0.04 and 0.29 when using BF, fluorescent images and CellProfiler features respectively. The
better performance of BF might be due to the fact that in the BF heatmap, there was a
strong activation for the small vesicles that are visible in the BF images but these are not
stained in the Cell Painting protocol (the FL heatmap focuses is on the full cell body). Despite
the limited number and range of MoAs tested, this study suggests that deep learning

applied to brightfield images holds great promise to augment or replace fluorescent stains

19


https://doi.org/10.1101/2024.05.04.592531
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.04.592531; this version posted May 7, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

in Cell Painting assays in the future. This change could lead to significant time and cost
savings in future experiments by leveraging the vast imaging resources already available
from brightfield microscopy, which is more widely used than fluorescence imaging. Early
reports from the techbio company Recursion indicate a transition from fluorescent to

brightfield imaging.*®
3.1 Feature Selection for Cell Painting Profiles

Not all morphological features extracted from cell images, using e.g. CellProfiler, are
informative. For a given task or even for a general representation of cell phenotype, feature
selection methods are generally used to filter them and are available from virtually all data
analysis libraries (e.g. scikit learn).*® Pycytominer, a software package designed for analyzing
Cell Painting data, incorporates feature selection methods that reduce redundancy and
increase informativeness of features®. Other approaches, such as AutoML (automated
machine learning) in Siegismund et al, enable the most informative features from Cell
Painting datasets to be identified faster.*" The AutoML approach presented in Siegismund et
al showed that a subset of only 20-30 features was sufficient to represent the most relevant
information from the morphological signature and successfully differentiate between the
control class and perturbations; although this will likely depend on the endpoint being

classified and the amount of data and the diversity of phenotypes in the profiled dataset.**
3.2 Normalization and Batch Corrections for Cell Painting Profiles

The importance of experimental design in Cell Painting assays should not be underestimated
because it can substantially impact the efficacy of normalization methods.** For example, it

is important to minimize confounding factors related to batch effect variability within the
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morphological features. For example, Janosch et al. explored the selection of unbiased
features solely using dimensionality reduction methods on images from negative controls.*?
For Cell Painting datasets, the Pycytominer tool normalizes data for individual plates, either
by using all wells or solely the negative control wells (using the RobustMAD method).*
Pycytominer also implements the sphering transformation (also termed as “whitening”) of
morphological signatures which can be viewed as a multivariate standardization

strategy.>***

Sphering the profiles increased the percent replicating score —a measure of
reproducibility of replicates of each sample — from 18-37% to 83-84% (for compounds at

10uM), although these results have not been consistently high across studies, and may be

confounded by plate layout effects.**

As part of the JUMP Cell Painting Consortium, Arevalo et al. conducted a comprehensive
analysis of seven batch effect correction methods selected from a single-cell mRNA profiling
benchmark study.*” They used qualitative visualizations in combination with 10 metrics to
assess performance on image-based profiles, focusing on batch effect reduction and
preservation of biological signals. These methods were applied to JUMP Cell Painting
Consortium data for five scenarios of increasing complexity: batches from within and
between different laboratories, within and between different imaging equipment, and with

low and high numbers of replicates.

Recent studies have begun to explore the potential of deep learning models for batch
correction, aiming to separate noise from true biological signals in Cell Painting data. Yang
et al. investigated a mean teacher-based model called DeepNoise, which was tested on the
RxRx1 dataset consisting of 125,510 fluorescent microscopy images from Recursion for the

CellSignal competition.*® The study found that DeepNoise effectively distinguished biological
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phenotypes from technical variations, achieving a multiclass accuracy of 99.60% compared
to 74.58% using plate-based normalization. However, the evaluation of the method had
limitations due to the inaccessibility of the test dataset labels, which prevented extensive
comparisons with other models and further analysis of predictions on each of the four cell
types, as well as the calculation of additional metrics such as specificity and sensitivity.
Despite these limitations, the study indicates that deep learning methods may be more
effective at learning batch-effect patterns in Cell Painting datasets compared to standard

normalization approaches.
4. Publicly Available Datasets

Over the past decade, Cell Painting has been used to screen chemical compounds and
genetic perturbation libraries to facilitate the extraction of phenotypic information from
cells. The resulting datasets have provided invaluable insights into multiple areas of the life
sciences. Image sets of varying sizes have been made available publicly in different
locations, including the Image Data Resource”, the Broad Bioimage Benchmark Collection®,
and university websites. Recently, the Cell Painting Gallery was launched to provide a
central location for datasets of interest, hosted through Amazon Web Service’s Registry of
Open Data.* Currently, three large Cell Painting datasets are publicly available for
compound and/or genetic perturbations (Table 2), which contain many thousands of

perturbations and are being used to study morphology signatures.

Table 2: Large Publicly Available Cell Painting Datasets covering Compound or Genetic
Perturbations

Dataset Release | Type of Perturbations | Cell Line Number of unique References

Date perturbations
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(compounds or
genetic)
Bray et al. January | Compounds U20S 30,616 bioactive >
Cell Painting | 2017 compounds
Dataset
Recursion January | CRISPR/Cas9- HUVEC 17,063 CRISPR/Cas9- >t
RxRx3 2023 mediated gene mediated gene
dataset knockouts and knockouts (most
compounds with anonymized) and
dose-response 1,674 compounds at 8
concentrations each
JUMP-CP March Over-expression of U20S Over-expression of 22
dataset 2023 genes, knockout of 12,602 genes,
genes using CRISPR- knockout of 7,975
Cas9, and compounds genes using CRISPR-
Cas9, 116,750 unique
compounds

Wawer at al. from the Broad Institute released the first large public Cell Painting dataset in
2014; the same data was further refined and re-released in Bray et al. 2017, covering over

50,52

30,616 compounds in human U20S cells. More recently, Recursion Pharmaceuticals
released their RxRx3 dataset, their largest to date.”® Rxrx3 consists of approximately 2.2

million multi-channel microscopy images, representing over 1,674 unique compounds and

17,000 genes profiled in the HUVEC cell line. They gathered this data through their efforts to
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develop treatments for various diseases; however, there is one caveat: most genes are
anonymized to protect their business interests. The JUMP-Cell Painting Consortium recently
released a large-scale dataset involving the U20S cell line, perturbed with over 116,750
different molecules, 12,602 gene overexpression reagents, and 7,975 gene knockouts using
CRISPR-Cas9.?? A comparison of the chemical space of compounds from these three large
datasets is shown in Figure 4. Several studies have also released smaller datasets (derived
from the Broad Institute’s large public datasets) that provide different modalities of data
along with Cell Painting. One recent study by Haghighi et al. provided a collection of four
datasets covering 28,000 genetic and compound perturbations in both the Cell Painting and
L1000 (for gene expression) assays.” Another study by Dafniet et al. released a
chemogenomic library of 5,000 small molecules by integrating drug target-pathway-disease
relationships with morphological profiles.® This dataset includes 2,473 chemical-target
interactions covering diverse biological contexts that can be used in combination with Cell
Painting morphological signatures accessible from the Broad Institute’s datasets to facilitate
target identification. Most recently, several pooled, genome-wide CRISPR perturbation
screens’ data were released, in which Cell Painting was adapted to an optical barcoding

scheme.>
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Figure 4. The physicochemical space of compounds in the three publicly available Cell
Painting datasets. The physicochemical space was defined by using t-distributed Stochastic
Neighbor Embedding (t-SNE) embeddings from six descriptors: molecular weight,

topological polar surface area, number of rotatable bonds, hydrogen bond acceptors,
hydrogen bond donors, and log P.

5. Applications of Cell Painting Data

As in most scientific domains, the processing and downstream analysis of Cell Painting data
(Figure 1c), often using Machine Learning (ML) and statistical approaches, have enabled
complex patterns in such data to be identified and accurate predictions to be made. ML
models used in biological sciences research offer new frameworks for understanding
biological systems through the lenses of information compression, qualitative intelligibility,
and dependency relation modelling.”® These algorithms are particularly well-explored for

analyzing morphological profiles to predict the safety or toxicity of unknown compounds,
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both in vitro and in vivo, and to predict MOAs and targets.”’°

Supervised methods are used
when labeled datasets are available (that is, the "correct answer", or ground truth, is known
for each sample), enabling the algorithms to be trained to predict specific outcomes and
patterns from feature representations. Unsupervised methods are used to investigate the
similarities among samples in the feature space itself without needing labelled data. Such
clustering can be based on similarity, distance, or density metrics. Deep learning-based
methods have also been applied to Cell Painting data, both to train predictive models and to
calculate morphological features directly from raw images (rather than using classical

algorithms). In the following sections we discuss the different applications of Cell Painting

data, using ML and statistical approaches, to aid drug discovery.

5.1 Predicting Mechanisms of Action

The Cell Painting assay offers a comprehensive view of cellular responses to compound
perturbations, enabling the identification of mechanisms of action (MoA) for compounds
that induce morphological changes detectable by the assay. This identification process
involves comparing the phenotype of a query compound to those of 'landmark compounds'
with known MoAs. However, defining a compound's MoA is complex, as compounds can
have multiple targets with varying affinities, and genes and proteins downstream of the
direct targets may be altered differently in various cell types (e.g., expression levels,
phosphorylation levels). As a result, binary labels for MoAs in datasets often oversimplify
the reality (see Trapotsi et al. for more details).®® Moreover, the resolution of MoAs that can
be adequately described by any profiling assay, including Cell Painting, transcriptomics, or
proteomics, is limited because these assays, individually or collectively, do not capture every

possible cellular response. While they provide valuable insights into some MoAs, the
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applicability of Cell Painting data for each MoA must be established separately. It is
important to note that 'Mechanism of Action' is a broad term, and studies in this section
may discuss target-related MoA predictions, such as drug-target interactions, or biological

process-related MoA predictions.

5.1.1 Predicting Biological-process-related Mechanisms of Action

Early studies in the field initially focused on exploring the efficacy of data derived from the
Cell Painting assay to distinguish compounds’ MoA under different experimental conditions,
such as the number of channels and multiple cell lines. Cimini et al. analyzed 90 compounds
and found that collected data are robust to changes in the measured channels, however
datasets are small and specific phenotype(s) of interest may depend on compartments that
are less critical for the compounds in the study.”* Therefore, it would be interesting to
reassess this with newer and larger publicly available datasets. A study by Rose et al.
investigated the impact of using multiple fluorescent dyes for DNA, actin and tubulin, which
partially overlap with the Cell Painting dyes, and 453 CellProfiler features were extracted in
total to predict the MoAs of different compounds.®! First, they investigated 38 drugs from
the BBBC021 dataset which included 12 relatively distinguishable MoA labels (including
actin disruptors, DNA damage, kinase inhibitors, and others), achieving up to 83% MoA
prediction accuracy with three staining channels (DNA, actin, tubulin). Accuracy remained at
68% using the DNA channel alone. Rose et al. next determined whether using multiple cell
lines with fewer markers could be more effective than using multiple dyes on a single cell
line.®* To do this, they used 10 cell lines with fewer markers to test 614 compounds, which
targeted 113 gene products. By using an ensemble voting method (target within the top five

predictions), they achieved an accuracy of 25% compared to a random classifier (accuracy
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0.09%). They found that incorporating additional cell lines incrementally increased the
overall prediction accuracy; however, as nine of the ten cell lines were biologically similar to
each other, it would be useful to test whether including a more diverse set of cell lines could
further improve prediction accuracies. A few years later, Cox et al screened 1,008 approved
drugs and well characterized compounds (218 unique MoAs) at four concentrations in a high
content screen against a panel of 15 reporter cell lines (three cell lineages, 12 organelle and
pathway markers; grouped in five combinations).®” Morphological profiles of these
compounds (generated using PerkinElmer Acapella/Columbus software) were used for MoA
prediction, and the treatments with active reference compounds were ranked based on
their mechanisms of action. This ranking involved calculating the area under the receiver
operating characteristic curve (AUC-ROC) for each MoA and a high AUC-ROC value (220.9)
indicated that the MoA could be clearly distinguished from others. Results showed that 20
out of 83 MoAs were readily distinguished in the best single cell line. The number of
distinguishable MoAs increased with the addition of each cell line but this effect quickly
plateaued around 41 MoAs, that is, 41 out of 83 MoAs were readily distinguished across all

15 reporter cell lines.

The selection of channels and cell lines are not the only parameters that were investigated
to improve MoA classification accuracy. For example, using the BBBC021 and the BBBC022
(U20S cells treated with 1,600 known bioactive compounds) datasets, Janosch et al.
explored the selection of unbiased features using images from negative controls, using only
dimensionality reduction methods to improve compound MoA classifications.* They
hypothesized that if a feature remains reproducible within all negative control wells, any

significant changes would likely be due to a perturbation rather than a technical variation.
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They compared their method with a benchmarked dimensionality reduction method (L1-
norm) and then classified MoAs using the reduced features. In both the BBBC021 and the
BBBCO022 datasets, their proposed method using binned, stable parameters produced the
second-highest accuracy. Removal of the noisiest parameters improved MoA classification
accuracies (from 17.66% to 20.19% for the BBBC022). However, their proposed method
showed better generalization when they trained models without seeing a class, for example
with 180 compounds as dopamine receptor antagonists, 118 compounds were misclassified
by L1-norm, whereas 115 were misclassified by their proposed method. Therefore, this
method can be used to further select features for downstream analysis and authors suggest

that the method could be further improved by applying deep learning methodologies.

5.1.2 Identifying Biological-process-related Mechanisms of Action using similarity based

approaches

Moreover, the similarity of query compounds to reference compounds has been extensively
used as a strategy to better understand MoA. Svenningsen et al. used this strategy to
investigate the MoA of 9-methylstreptimidone®® They calculated the Pearson correlation
between the Cell Painting profiles of 9-methylstreptimidone and reference compounds
known for their effects on protein synthesis inhibition, DNA synthesis, and tubulin dynamics
modulation. 9-methylstreptimidone had the highest similarity to cycloheximide, a known
protein synthesis inhibitor. Further validation confirmed that 9-methylstreptimidone acts as

dose-dependent protein synthesis inhibitor.

Other studies have used the same “guilt-by-association” strategy to assign the MoA, that is,
by comparing test compounds with reference compounds to understand their biological

processes. Autoquin, a previously uncharacterized autophagy inhibitor compound, was
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found to be similar to iron chelators and to induce S-phase arrest. °*°

Similarly,
diaminopyrimidine DP68 was identified as a Sigma 1 (o1) receptor antagonist.®® Cell
Painting-based similarity approaches have also led to the discovery of several unexplored
small molecules that modulate microtubules®’, inhibitors of pyrimidine biosynthesis, and

68

three novel scaffolds targeting dihydroorotate dehydrogenase (DHODH).”™ The most

commonly detected MoAs in Cell Painting readouts include microtubule modulation®”®?,

8971 and inhibitors of the

DNA damaging agents>, mitochondrial membrane depolarisation
plasma membrane Na+ pump®®, among others. It is important to note that the ‘guilt-by-

association’ strategy is limited by the number of compounds with known MoA annotations,

making the development of comprehensive reference sets crucial for their success.

5.1.3 Identifying Biological-process-related Mechanisms of Action using Deep Learning

approaches

Apart from using pre-defined classical Cell Painting features as described in most studies
above, another way to use imaging data involves using convolutional neural networks
(CNNs), a type of deep learning architecture, directly on images of cells generated from Cell
Painting assays. CNNs are adept at identifying correlations between objects and extracting
meaningful information from images and can therefore be used to classify cellular

phenotypes (Figure 5).
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Figure 5. Summary of Convolutional Neural Network Analyses of Cell Painting Images. The
input image consists of a matrix with pixel values. The convolution filters {smaller weight
matrices) slide over the input image, detecting patterns such as edges, textures, and shapes,
resulting in a feature map. An activation function (e.g., ReLU) is then applied element-wise,
which introduces non-linearity into the model. Pooling then reduces the spatial dimensions
of the feature maps (Step 1). Finally, the high-level features extracted from the image are
flattened into a one-dimensional vector and arranged into fully connected layers to produce
final classification scores for each category (Step 2).

One of the earliest studies by Durr et al. developed a CNN that classified single-cell
phenotypes based on images generated from Cell Painting assays.”” They trained CNNs to
classify MoAs (including tubulin modulation, modulation of neuronal receptors, and
cytotoxic MoAs) using approximately 40,000 single-cell images for 75 bioactive compounds
and a DMSO negative control.”” The CNN models misclassified 6.6% of all cells while models
trained on numerical features from CellProfiler misclassified 8.9%, suggesting limited value
in using CNNs compared to CellProfiler features. Applying CNNs to more challenging tasks,
where traditional approaches do not perform well, will be useful to understand the

potential added value of CNNs.

While the study by Durr et al. focused on using CNNs for directly classifying MoAs, another

important aspect of deep learning in the context of Cell Painting is learning meaningful
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representations from the image data. These learned representations can capture important
phenotypic features and confounding factors, which can then be used to improve
downstream analyses, such as predicting MoAs or matching biological compounds. Several
studies have explored various approaches to representation learning using deep learning in

Cell Painting assays.

One such study by Moshkov et al. introduced a novel approach to learning representations
from Cell Painting data. They trained a deep convolutional neural network architecture
(known as EfficientNet) using only phenotypically strong compounds from three Cell
Painting datasets. The features computed by EfficientNet accounted for both confounding
factors and phenotypic features within the learned representation. This approach improved
downstream analysis for matching biological compounds by 30% compared to using classical
features. Studies such as Moshkov et al. highlight the potential of self-supervised learning
strategies to learn meaningful representations that can enhance various downstream tasks,
including MoA prediction.>® Given the field's rapid expansion in 2023-24, a detailed
examination of representation learning strategies exceeds the scope as we confined our
systematic review to articles published prior to the June 2023 cut-off date, making select
exceptions for some articles published during to the time of writing. There is an ever-
growing scope of representation learning in Cell Painting with the availability of large

datasets.

5.2 Cell Painting in Hit Discovery

Cell Painting can also be used to potential 'hits'—compounds showing targeted biological
activity—and to identify novel active compounds with therapeutic potential. While

supervised ML models learn from previously defined categories, an outlier test such as
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novelty detection (ND) instead recognizes ‘novel’ (unknown) patterns, thus predicting
whether compounds exhibit any biological activity.”? For this, they used Cell Painting
features for 641 validated and highly selective pharmaceutically relevant inhibitors over 123
targets to train models and they further used two additional validation sets (one for
compounds that affect cell cycle and another with staurosporines). They found that a ND
algorithm with an ensemble of classical ML algorithms was suitable to search for new active
compounds. The ND method (LocalOutlierFactor from scikit-learn®®) learns patterns of the
data and compares the new samples with the learnt pattern by using a density function to
determine whether new samples belong to the known dataset or not. Two NDs were
trained; one with the bioactive compounds and another with the control groups and for a
compound to be classified as “novel” both NDs should agree. Results on the two validation
sets showed that for the cell cycle data, accuracy increased by 15% to 93% compared to not
using ND, while specificity and precision remained the same and recall improved from 82%
to 100%. For the other validation set, the performance of the model remained the same.
This approach can be useful to identify bioactive compounds with ‘novel’ phenotypic
responses. In addition, Nyffeler et al. compared various computational strategies to
determine bioactivity hits using a Cell Painting assay and showed that nine out of ten
approaches were highly concordant for 82% of the tested chemicals.”* This indicates that
Cell Painting assays contain a signal for bioactivity that can be used to predict assay hit calls

via different approaches.

Cell Painting assays have also been used to elucidate the biological targets or actions of
previously uncharacterized Dark Chemical Matter (DCM). These DCM compounds are

usually analogs of bioactive compounds with drug-like features that lack biological activity in
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assays used to characterize the equivalent analogue structures. Pahl et al. profiled 7,700
DCM compounds with the Cell Painting assay and showed that 12% of them resulted in
significant morphological changes (compared to a DMSO neutral control).”” They selected
371 compounds and performed a cluster sub-profile analysis to identify their MoAs,
comparing them with compounds with known MoAs {DNA synthesis inhibition, tubulin, and
uncoupling of the mitochondrial proton gradient, among others). This analysis identified
compounds associated with microtubule modulation, DNA synthesis, and pyrimidine

biosynthesis.

5.3 Cell Painting in Assay Activity Prediction

Cell Painting data have proven useful in bioactivity prediction and drug-target interactions.
For example, a landmark study by Simm et al. (2018) investigated using a three-channel
glucocorticoid receptor (GCR) high-throughput imaging assay (in contrast to five-channel
Cell Painting assays), which produced an 842-dimensional morphological fingerprint.”® The
multitask models developed in this study to predict assay activity performed highly
(AUC>0.90) for a small subset, namely 31 out of 535 assays. Selecting two projects for
prospective follow-up, they improved hit rates by 50-fold for a kinase target in an oncology
project (from 0.725% to 36.3% hit rate) and by 289-fold for a non-kinase enzyme in a CNS
project (from 0.088% to 25.5% hit rate). Both targets had no obvious connections to the
glucocorticoid receptor for which the imaging assay was developed. This landmark study
showed that these imaging assays generated broadly useful features that could then be

used to predict activity on a wider range of biological targets.

Hofmarcher et al. then explored the ability of CNNs to predict the bioactivity of compounds

in 209 biological assays.”” They compared CNN models trained directly using Cell Painting
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images with fully connected neural networks (FNNs) trained using classically extracted
numerical features and concluded that the former (mean AUC=0.73) were better than the
latter (mean AUC=0.675). This highlighted that the raw-image CNN models could capture
information, such as morphological characteristics, from Cell Painting images that may be
overlooked by predefined CellProfiler features.”” In addition to CNNs, transfer learning—
where the knowledge of a pre-trained model (e.g., image-based knowledge) is transferred
or fine-tuned to another model to perform a similar task {(e.g. Cell Painting data)—is useful,
reducing the need to train Deep Neural Network {DNN) models from scratch; this is being
increasingly explored for cell imaging data especially when there is less data for the training

of a DNN model.”®

Various indicators of cell state or cell health can be detected using specific hypothesis-based
dyes that reveal specific toxicity or anti-tumorigenic effects, such as apoptosis, DNA
damage, and Reactive Oxygen Species (ROS) generation, among others. In contrast to the
less expensive, hypothesis-free morphology signatures obtained in Cell Painting, indicators
of cell state provide insight into exact cellular responses. That said, many aspects of cell
health can be inferred from Cell Painting data (beyond a simple cell count), including the
percentage of dead cells (R>=0.62), number of S-phase cells (R>=0.64), level of DNA damage
in Gi-phase cells (R°=0.51), and percentage of apoptotic cells (R*=0.37).° Aside from
providing insights into cell health, Cell Painting can also be used to study effects on
individual sub-cellular compartments. For example, with multiple drugs where the
endoplasmic reticulum (ER) was a downstream target, expectedly 80% of ER-related

features were affected compared to other organelles.”
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Other studies using similar ML methodologies compared bioactivity predictions based on

8081 prediction accuracies for targets like B-

Cell Painting and chemical structure information.
catenin (usually assayed using a specific stain) were better when using a BMF Macau model
with Cell Painting profiles as side information (F1 score = 0.87) compared to a model using
only chemical structural data (F1 score = 0.48).%° Another study showed that the models
that combined structural information and Cell Painting profiles, using similarities to training

data, improved the AUC by 16.3% compared to models that only used chemical structure

information.®

5.5 Phenotypic profiling of structurally diver se compounds

Considering structural diversity when creating small molecule libraries ensures the coverage
of a vast spectrum of biological and functional relevance, facilitating the discovery of small
molecules that can modulate specific targets. One way to generate a wide array of
structurally distinct compounds is diversity-oriented synthesis (DOS).®? These libraries could
involve compounds that are structurally similar to known drugs or natural products.
Phenotypic profiling, particularly with the Cell Painting assay, is increasingly being used to
evaluate and characterize compounds generated through diversity-oriented synthesis. For
example, in 2016, Nelson et al. explored the use of Cell Painting-based phenotypic profiling
to compare the biological activity of certain sp*-rich (carbon atoms with four single bonds)
chemical compounds known as tetrahydrocyclopenta[c]pyranone derivatives.®’> They found
that two of the epoxy ketone diastereomers synthesized caused striking cellular responses
and induced consistent morphological changes for all doses, prompting studies to compare
their morphological signatures to reference compounds. Studies using structurally diverse,
reduced flavones and their Cell Painting profiles have shown that the fraction of sp’

hybridized atoms is not the only factor for enhanced biodiversity, but stereochemistry and
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appendage diversity are also contributors.?*®°

More recently, biology-oriented synthesis has
focused on pseudo-natural products, and to this end, Christoforow et al. characterized the
potential bioactivity of novel classes of pyrano-furo-pyridone (PFP) pseudo-natural
products.®® They found that among the five initial hits (exhibiting bioactivity in the assay),
the morphological profiles exhibited more than 70% similarity to the reference compound
profiles; this then helped them to decipher their MoAs. Other studies have explored the use
of target agnostic (hypothesis-free) Cell Painting to determine the phenotypic roles of novel
compounds compared to reference compounds, including indocinchona alkaloids®’, a
natural-product inspired flavonoid library®; spiroindane pyrrolidines®®; pyrroquinoline
pseudo-natural products®®; and indofulvin pseudo-natural products®. Recently in 2023, a
study by Liu et al. identified the mitotic kinesin, Eg5, as the molecular target for
spirooxindoles—unique inhibitors of the kinesin Eg5 chemotype.”> Overall, phenotypic
profiling enables the bioactivity and MoA of diversity-oriented synthesized compounds to be

predicted based on their similarities with reference compound activity profiles, which in

many cases, can reveal new chemical scaffolds of interest.

5.6 Predicting Compounds Toxicity

More recently, Cell Painting assays have been used to predict multiple safety/toxicity-
related assay outcomes, including effects on the cell cycle, cytokinesis, and cytoskeletal
morphology. The Cell Painting assay was found sensitive enough to detect cell growth and
viability at sub-lethal concentrations of podophyllotoxin, microtubule destabilizer, which
resulted in a 50% reduction in cell count, even at the lowest tested concentration of
0.38nM. * In addition, Seal et al. predicted the outcomes of 12 cytotoxicity- and
proliferation-related in vitro assays using Cell Painting data profiles.*® These models

achieved an AUC of 0.71 compared with an AUC of 0.56 achieved by models using only
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chemical data (when using Morgan fingerprints). Using Cell Painting data to predict in vitro
activity is not only limited to cell-based toxicity. Trapotsi et al. successfully predicted
mitochondrial toxicity with an AUC = 0.93 when using Cell Painting profiles.”. In addition, in
the same study they included both small molecule compounds and PROteolysis Targeting
Chimeras (PROTACs), which have garnered attention due to their unique bifunctional nature
and potential ability to degrade ‘undruggable’ targets.” Trapotsi et al. showed that Cell
Painting could be used to identify PROTAC phenotypic signatures, but that these did not
necessarily correlate with the Cell Painting profiles of their individual components (i.e., the
POI ligand and the E3 ligase ligand). This further highlights the advantages of using Cell
Painting for safety assessment of new therapeutic modalities where, as opposed to small

molecules, no decades of experience and best practice have been established.

5.7 Phenotypic profiling of compound mixtures

Cell Painting has also been used to profile compound mixtures. For example, Pierozan et al.
examined the responses of human breast epithelial cells to low-concentration mixtures of
perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA), two widely used
industrial chemicals.’® Through Cell Painting, they were able to demonstrate the synergistic
effects of these compounds on cell proliferation, even at very low concentrations (500 pM).
This illustrates that the sensitive multiparametric nature of the Cell Painting assay can reveal
alterations in cell morphology and toxicity. In another study, Rietdijk et al. have explored
using Cell Painting to profile the effects of combining different environmental chemicals on
four cell lines; in one example, Bisphenol A (BPA) did not cause significant morphological
changes to cells when screened on its own. However, it caused various synergistic effects in
three out of four cell lines {(U-2 OS, A549 and MCF7 cells) when combined with the cationic

compound that is used as an antibacterial and antifungal surfactant called
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Cetyltrimethylammonium bromide and Dibutyltin dilaurate, which is widely used as
industrial chemical, serving as an antifouling coating, and in pesticides and fungicides.” In
conclusion, Cell Painting assay was shown to elucidate biological effects exhibited by various

mixtures of compounds.

One key Cell Painting development has been the assembly of sets of reference compounds
with well-characterized toxic effects. These references can be used as benchmarks against
which to compare novel compounds. Recently a study by Dahlin et al. established a
reference set of 218 prototypical cytotoxic and nuisance compounds in U20S using a
concentration-response format (0.6—20uM). The compounds associated with cellular injury
produced distinct morphological clusters (e.g., a genotoxin cluster and a tubulin poisons
cluster). In addition, nonspecific and suboptimal probes ‘historical” KAT inhibitors (hKATIs)
produced profound morphological profiles, and compounds associated with cell damage,
such as genotoxins, produced robust phenotypes. Concentration was an important
parameter of cellular injury-related phenotypes. For example, some compounds, when
present at higher concentrations trigger cellular responses called “cytotoxicity burst”; these
higher compound concentrations activated multiple stress responses within the cell rather

than affecting a singular target. This dataset can be used to characterize cellular injuries.**

Cell Painting is an in vitro assay that captures changes in cell morphology, but several
studies have explored its ability to predict in vivo compound perturbation effects. In 2020,
Nyffeler et al. performed an in-vitro-to-in-vivo extrapolation (IVIVE) of in vitro potency
estimates obtained through Cell Painting.”® They used reverse dosimetry to calculate
administered equivalent doses {(AEDs) and compared them to effect values from in vivo

mammalian toxicity studies. They observed that 68% of the Cell Painting-based AEDs were
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either similar to or more conservative than the in vivo studies.”® This shows that Cell
Painting screens might be used to derive AEDs similar to traditional IVIVE practices. In 2023,
Nyffeler et al. determined a phenotype altering concentration of compounds and used IVIVE
to determine the administered equivalent doses (AEDs) to predict human exposure.® For 18
out of 412 chemicals, in vivo-relevant toxicity was observed at the given exposure, that is,
the AEDs overlapped with predicted human exposures.” On a larger scale, the U.S.
Environmental Protection Agency (EPA) is working towards using transcriptomics and Cell

100

Painting data in their risk assessments.” In the future, new sources of relevant in vivo

101,102

toxicity annotations, and the inclusion of pharmacokinetic (PK) information , might be

used to augment Cell Painting data in predictive toxicology.

Overall, leveraging Cell Painting data has the potential to enhance toxicity predictions.
Expanding the scope of the models using high-dimensional data can enable patterns and
relationships to be identified effectively, offering the potential to triage compounds for

certain hypothesis-based assays in future.

5.8 Using Cell Painting Assays to Advance Disease Under standing

Understanding disease biology and developing potential therapeutic interventions involves
many steps, including disease modeling and biomarker discovery. The Cell Painting assay has
been used to functionally associate human genes and disease-associated alleles based on
the similar morphology of cells when those genes are perturbed, or alleles are present.
Rohban et al. used this approach to reveal a previously unknown interaction between the
NF-kB pathway and Hippo pathways, which regulate tumorigenesis and tumor
progression'®, and furthermore to identify promising compounds that match a desired

phenotypic profile impinging on those pathways.'® Disease-specific morphological
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signatures can serve as biomarkers for disease diagnosis or prognosis, or to monitor
therapeutic responses. For example, Cell Painting assays have been used to model cancer
cell morphologies to identify the distinct morphological signatures associated with
esophageal adenocarcinoma and responses to selective modulators for these

phenotypes.'>1%

Cell Painting image-based data of cells overexpressing specific cancer-
associated variants could also be used to predict the functional impacts of somatic variants,

including at the single-cell level.”

Cell Painting has been used for antiviral drug discovery identifying virus-induced phenotypic

. . . . . 26
signatures in virus-infected and non-infected cells.

In this study, they showed that
treatment of infected cells with a panel of various host- and virus-targeting antivirals could
reverse the morphological profile of the host cells towards that of a non-infected cell. It was
also used to explore novel therapies for ER stress-associated disorders by identifying
compounds that corrected aberrant morphological phenotypes associated with ER stress.'®’
Cell Painting has also been used to investigate transcription factor EB (TFEB) signaling and
lysosomal dysfunction by detecting phenotypic changes in organelles in response to TFEB

108

localization.™" Finally, the assay was also used to investigate drug resistance in anti-cancer

109

therapy ™ by identifying the morphological signature of bortezomib treatment resistance in

cells.

Another application of Cell Painting aimed to investigate relationships between genetic
variants and cellular morphology in induced pluripotent stem cells (iPSCs)."° Novel
associations (“cell morphology quantitative trait loci” - cmQTLs) were identified between
rare protein altering variants in WASF2, TSPAN15, and PRLR and morphological changes in

the cell shape, nucleic granularity, and mitochondrial distribution. Further knockdown of
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these genes by CRISPRi confirmed their role in cell morphology, and hence morphological
profiling can vyield insight about the function of genes and variants. McDiarmid et al.
previously used Cell Painting data to reveal 16 FDA-approved drugs from five mechanistic
groups that were able to reverse morphological signatures associated with Alzheimer

11 Overall, the broad and

disease — risk gene SORL1 variants in neural progenitor cells.
multidimensional data generated by Cell Painting assays not only provides opportunities for

new insights into complex cellular responses but can also reveal novel therapeutic targets

and strategies for drug discovery and repurposing.

5.9 Integrating Cell Painting, Transcriptomics, and Proteomics Data

Given that Cell Painting readouts describe only one category of biological phenotype, one
possibility to improve predictive models is to integrate Cell Painting data with further
biological data, such as gene expression and proteomic data.'** Nassiri and McCall
integrated Cell Painting with LINCS {Library of Integrated Network-Based Cellular Signatures)

gene expression data for improved insight into MoAs.'"

They used a reference database of
9,515 compounds to identify compounds with similar gene expression changes, followed by
‘cell morphology enrichment analysis’. The enrichment analysis involved identifying
significant associations between changes in cell morphology and gene expression, and then
modeling these associations using ML and hence generating a dataset of the associations
between genes and each morphological feature. They investigated the regulatory
mechanisms underlying compound-induced changes in both gene expression and cell
morphology for three compounds by performing pathway enrichment analysis. By
integrating both Cell Painting and LINCS data and methods, this study revealed a novel

interdependence between gene expression and cell morphologies and proposed using these

relationships to infer compound MoAs.
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Combining Cell Painting and gene expression data was also explored by Way et al., who
showed that, together, they provided complementary information for mapping cell states. **
Individually, Cell Painting could group compounds sharing the same MOA 44% of the time
and mRNA profiles 50% of the time (across all doses), but when combined, attained 69%

when comparing across doses.**

The benefits of integrating Cell Painting data also apply to protein profiling. Particularly,
combining nELISA protein profiling and Cell Painting profiling data can provide
complementary information. One study explored this by testing 306 well-characterized

compounds with established MoAs using both profiling methods. ***

They then determined
whether the two profiling methods were able to retrieve the known MoAs based on shared
phenotypes. Cell Painting and nELISA profiling methods successfully retrieved compounds
that shared at least one common MoA in 21.2% and 26.7% of cases, respectively. Some
compounds were well predicted by both platforms while each platform showed better
predictions for distinct subsets of compounds. Tian et al. found that combining morphology
and chemical structure data significantly improved F1 detection scores for 10 well-
represented MoA classes compared to using morphology data alone, with scores improving
from 0.81 to 0.92, respectively.'” Another study combined morphological profiling with
proteome analyses to reveal lysosomotropic activity leading to cholesterol homeostasis

disruption for the natural product-inspired compound, tetrahydroindolo[2,3-alquinolizine

derivative.'®

Another study combined RNA-Seq and Cell Painting data to estimate the phenotype altering
concentration of a set of 11 mechanistically diverse compounds, and found that for most of

the compounds, the phenotype altering concentration from Cell Painting and biological
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phenotype altering concentration from RNA-Seq were within half an order of magnitude.**’
Furthermore, they found that combining both modalities provided the best potency
estimates, particularly for compounds with strong morphological signatures that did not

affect expression of target genes (ATRA in this study).

Morphological features and gene expression data were also used by Cerisier et al. to explore
associations between chemicals and disease by developing a biological network combining
chemical-gene-pathway-morphological perturbation and disease relationships.'*® They
investigated two chemicals (amiodarone and prochlorperazine) because both showed a risk
for drug induced liver injury (DILI) in humans and thus, they assessed if they share common
information in Cell Painting and L1000 dataset. They found a direct relation between
deregulated genes and cell morphology observations. This was one of the examples that the
authors used to demonstrate that some compounds shared similar genes, pathways, and
morphological profiles. Previously, combining proxy-DILI labels with chemical and
pharmacokinetic features, achieving improved detection accuracy and differentiation
between animal and human DILI sensitivity and it remains to be seen if -omics datasets such
as Cell Painting, gene expression and proteomics data can be used for DILI prediction, which

119,120
>" QOverall, where

is one of the aims of the recently established OASIS consortium.
multiple modalities can be considered together, that could help in elucidating chemical-

phenotype observations.

In another study, Seal et al. combined gene expression and Cell Painting data to predict
mitochondrial toxicity using machine learning models.®® Their model, which incorporated
information on gene expression, cell morphology, and chemical structure, improved F1

detection scores to 0.40 (from 0.25 using chemical structures alone). This was explored
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further with the recently developed similarity-based merger model, which increases the
applicability domain as well as the diversity of assays that would be well predicted.®*
Similarity-based merger models combine the outputs of individual models trained on Cell
Painting data and chemical structure information based on the structural and morphological
similarities of the compounds in the test dataset to compounds in the training dataset.
Models were trained for 177 assays to predict assay hit calls and the similarity-based merger
models outperformed other models by an additional 20% assays (79 out of 177 assays)
having an AUCE>R0.70 compared to 65 out of 177 assays using chemical structure

information alone and 50 out of 177 assays using Cell Painting information alone.

Most recently, Sanchez-Fernandez et al. developed CLOOME, a multi-modal contrastive
learning algorithm, to combine chemical structure data and Cell Painting images into a
unified space. Their retrieval system correctly identified the image corresponding to a given
compound with an accuracy approximately 70 times higher than a random baseline model,;
this system was also used to predict compound activity (in a similar setting as Hofmarcher et
al.) and CLOOME achieved an AUC of 0.714+0.20 across all prediction tasks.* This result
indicates that the learned representations are transferable to different tasks (in this case
bioactivity prediction) since no activity data were used to train the CLOOME encoders. Using
images directly therefore enables unbiased insight into information contained within that
image without requiring classical feature extraction algorithms. Overall, the integration of
Cell Painting with diverse and complementary -omics modalities such as transcriptomics and
proteomics can offer more comprehensive insights into the biological impacts of

compounds and improve the accuracy of MoA predictions.
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CHALLENGESAND FUTURE DIRECTIONS

There are many avenues for improving image-based profiling in the future. One major
challenge is the interpretation of morphological profiles. While sophisticated image analysis
algorithms and machine learning methods can extract and analyze complex morphological
signatures, interpreting these computational/statistical signatures can be challenging, even
for classical algorithms where features are precisely defined mathematically. The BioMorph
space attempts to address this by linking 827 Cell Painting features to 412 descriptive terms,
based on mapping to assays capturing phenotypes of cell health™?. However, for broad

utility, mapping to more assay data would be needed.

'3 The high-content nature of the

A second challenge relates to data handling and storage.
Cell Painting assay generates vast amounts of data, which can be challenging to store,
manage, and share, and the data requires considerable computational resource to process

and analyze. Cloud-based solutions and open-source software tools are emerging to address

these challenges™*, but increasing their user-friendliness would expand the use of this data

type.

Another challenge is relevant to larger Cell Painting studies and common to all high-
throughput assays: the adoption of assay miniaturization in academic and small company
settings, to enable higher throughput and more cost-effective screening. 384-well format is
commonly used for Cell Painting but requires high-throughput equipment as does the 1536-

well format microplate recently demonstrated for Cell Painting assays in the industry.***%

We see great promise in extending the Cell Painting assay (originally developed with 2D cell
cultures) for use with more physiologically relevant systems such as 3D cell cultures,

. 127 . . . . . 128
organoids™’, tissue slices, and live cell imaging.
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Finally, improvements in deep learning methods have dramatically altered the landscape in
many fields of scientific research and we expect the same for Cell Painting data. Already,
promising improvements have been made but there remains much room for improvement,
particularly in batch correction methods that can extract biologically meaningful signals

from technical noise.*®

To conclude, over the past decade, the Cell Painting assay has evolved from a promising
concept to a widely used tool for drug discovery and cellular biology. It has provided insights
into the complex world of cellular morphology, expanding our understanding of disease
mechanisms, and enhancing drug discovery processes. Continued advancements in Cell
Painting (and advances towards extracting similar information from brightfield images) offer
promising prospects, particularly for characterizing cellular responses, developing
personalized medicine strategies, and providing deeper insights into complex biological

processes.

SIGNIFICANCE

The adoption of Cell Painting and related technologies within the pharmaceutical industry
and academic has been steadily growing. The availability of large Cell Painting datasets has
empowered the exploration of machine learning methods on a wide range of biological
endpoints. This expanded scope opens new possibilities for predictive modeling and
comprehensive assessments of compound toxicity. However, transitioning from the
introduction of a novel assay to achieving widespread implementation is not without its
challenges, as recently noted for both image-based and transcriptional profiling.'* It takes
time to fund and conducting large-scale experiments, and accumulate experience. As

observed with Connectivity Map—a genomic database released in 2006 that links drug
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compounds to gene expression profiles—launching a new tool or technique requires
considerable time and evaluation under different contexts before it is widely adopted.
Consortia can serve a valuable role in evaluation, offering several advantages, including
pooling resources to increase sample sizes and the potential for experimental design to
encompass a broader range of applications and chemical space. The involvement of multiple
companies, organizations, and societies can foster collaborations and ensure the success of
these endeavors. In summary, with the availability of larger datasets, increased industry

interest, and the potential for collaboration through consortia, the future looks promising.

METHODS

Literature Search

The literature search was conducted using three major databases: ScienceDirect®®,
PubMed®,and Scopus™®, and completed in June 2023. All searches required the words “Cell
Painting” to be present in the title, abstract, and subject terms/keyword headings. While
writing this systematic review, we also searched the literature manually, which resulted in
the addition of some articles published after June 2023 (listed in Supplementary Tables S1

and S2).

Inclusion and exclusion criteria

Studies that used Cell Painting assays were included. Studies were excluded when they were
not primarily in English, had been published before 2013 (before the Cell Painting assay was
formally introduced), and had not been peer-reviewed (except in a few cases where we felt
they were significant or included them during a manual search). Reviews, news articles,

posters, thesis abstracts, and perspective papers were not included as primary research
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articles (these are instead listed in Supplementary Table S2 and referenced where

applicable).

Supplementary information

The Supplementary Datasets are available as Supplementary Table S1: 89 studies included in

this study (XLSX); Supplementary Table S2: 65 studies excluded from this study (XLSX)

Data availability
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