

1 The role of Med15 sequence features in transcription factor interactions.

2

3 **David G. Cooper^{1,3}, Shulin Liu¹, Emma Grunkemeyer¹, and Jan S. Fassler^{1,2}**

4

5 **¹Department of Biology, University of Iowa, Iowa City, IA**

6 **³Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN**

7

8

9

10

11

12

13

14

15

16 **²Corresponding Author**

17 **Running Head: Med15-transcription factor interactions**

18

19

20

21

Abstract

22 Med15 is a general transcriptional regulator and subunit within the tail module of the
23 RNA Pol II Mediator complex. The *S. cerevisiae* Med15 protein has a well-structured N-terminal
24 KIX domain, three Activator Binding Domains (ABDs), several naturally variable polyglutamine
25 (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-
26 terminal Mediator Association Domain (MAD). We investigated how the presence of ABDs and
27 changes in length and composition of poly-Q tracts influences Med15 activity and function using
28 phenotypic, gene expression, transcription factor interaction and phase separation assays of
29 truncation, deletion, and synthetic alleles. We found that individual Med15 activities were
30 influenced by the number of activator binding domains (ABDs) and adjacent polyglutamine tract
31 composition. Robust Med15 activity required at least the Q1 tract and the length of that tract
32 modulated activity in a context-dependent manner. We found that loss of Msn2-dependent
33 transcriptional activation due to Med15 Q1 tract variation correlated well with a reduction in
34 Msn2:Med15 interaction strength, but that interaction strength did not always mirror the
35 propensity for phase separation. We also observed that distant glutamine tracts and Med15
36 phosphorylation affected the activities of the KIX domain, suggesting that intramolecular
37 interactions may affect some Med15-transcription factor interactions. Further, two-hybrid based
38 interaction studies revealed intramolecular interactions between the N-terminal KIX domain and
39 the Q1R domain of Med15.

40

41

42 Author Summary

43 Glutamine tracts are relatively uncommon, but are a feature of many transcriptional regulators
44 including the Med15 subunit of the Mediator Complex which is a large protein complex that
45 plays an important role in gene expression in eukaryotic organisms including yeast and animals.
46 Strains lacking Med15 are compromised in their ability to grow on many kinds of media, under
47 stress conditions, and in fermentation, reflecting its importance in gene expression. Naturally
48 occurring yeast strains specialized for growth in specific environments (e.g., wine, beer, clinical)
49 vary in their glutamine tract lengths, suggesting that the length of glutamine tracts may influence
50 Med15 function in a manner that is adaptive for a specific environment. In this study, we
51 intentionally manipulated the length of the glutamine tracts in Med15 and found that these
52 changes have subtle effects on Med15 interactions with transcription factors, target gene
53 expression and growth. Taken together, our data suggests that glutamine tracts do not themselves
54 mediate critical interactions with partner proteins, but instead may influence the shape of the
55 Med15 protein, thus indirectly affecting the nature of these interactions.

56

Introduction

57 Polyglutamine (poly-Q) tracts, or consecutive repeats of the amino acid glutamine, are a
58 dynamic protein feature with the potential to cause disease by expansion of the underlying
59 microsatellite repeats [1-3]. However, poly-Q tracts have been ascribed non-pathogenic roles that
60 include providing flexible intradomain spacing and protein-protein interaction surfaces [4-8].
61 Perhaps not surprisingly many of the proteins containing poly-Q tracts are transcriptional
62 regulators [9]. Polyglutamine tract length differences encoded by naturally occurring alleles of
63 genes have been shown to modulate protein activity. Variation in the length of the poly-Q tract
64 of the Clock protein corresponds to alterations in barn swallow breeding [10]. The subcellular
65 localization of Angustifolia in *Populus tremula* is altered by poly-Q tract length changes [11].
66 Variation in the length of the poly-Q tract of the Notch protein alters developmental phenotypes
67 in fruit flies [12]. Natural and synthetic Q and QA repeat variability in yeast Cyc8 has broad
68 transcriptomic effects [13]. We hypothesize that similarly variable poly-Q tracts in yeast Med15
69 alter the transcriptional activation function of the protein.

70 Poly-Q tracts could influence activity by affecting protein-protein interactions, either
71 directly or indirectly; providing disorder to allow a larger set of transient interactions; providing
72 necessary spacing between functional domains; or by providing flexibility to the protein. Poly-Q
73 proteins have a higher number of interactions than other proteins and poly-Q proteins are often
74 found in protein complexes [9]. One interaction surface mediated by poly-Q tracts are coiled-coil
75 domains [14]. In yeast, homodimerization of the Nab3 component of the Nrd1-Nab3
76 transcription termination complex is facilitated by the coiled-coil structure of a C-terminal Q-
77 tract [5, 15]. The polyglutamine content in the human Med15 ortholog has been shown to form a

78 coiled-coil structure [16]. However, how the multiple poly-Q tracts in yeast Med15 may
79 influence transcriptional activation has not been thoroughly explored.

80 As a subunit of the RNA Polymerase II Mediator complex, Med15 functions as an
81 interaction hub with other transcriptional regulators to regulate gene expression. Distributed
82 throughout the Med15 sequence are residues and domains that have been shown to correspond to
83 the interactions between Med15 and other proteins. The C-terminal Mediator Association
84 Domain (MAD (aa 799-1081)) permits Med15 to assemble into the Mediator complex [17, 18].
85 Specifically, conserved amino acid residues 866-910 in MAD are required for Med15
86 incorporation into Mediator [19, 20]. The domains or regions of Med15 required for interactions
87 with yeast transcription factors (TFs) including Oaf1, Pdr1/3, Msn2, Gcn4, and Gal4 have been
88 mapped with varying resolution [21]. The N-terminal KIX domain (aa 6-90) mediates
89 interactions between Med15 and the Pdr1/3 and Oaf1 TFs [22, 23]. The interactions with other
90 TFs require sequences within the glutamine-rich central region of Med15 and are discussed
91 below.

92 Med15, formerly Gal11, was initially discovered in conjunction with its role in galactose
93 metabolism [19, 24]. Med15 regulates the expression of galactose metabolism genes through
94 interactions with Gal4 bound to UAS_G motifs upstream of *GAL* genes [25]. Another well-studied
95 Med15 interactor is Gcn4. Gcn4 regulates many genes in yeast, including those involved in
96 amino acid biosynthesis [26, 27]. The Gcn4 TF interacts with residues in 4 regions of Med15,
97 the N-terminal KIX domain and three so-called Activator Binding Domains (ABD1 (aa 158-
98 238), ABD2 (aa 277-368), and ABD3 (aa 496-630)) embedded in the intrinsically disordered and
99 glutamine-rich midsection of the protein [20]. Gcn4 and Gal4 interactions with Med15 are
100 described as “fuzzy” meaning that the interactions can be mediated using different subsets of the

101 available hydrophobic residues in interaction pockets [28, 29]. Interacting Gcn4 and Med15
102 proteins form liquid droplets [30]. Liquid droplet phase separation may be one way to increase
103 the concentration of interactors to compensate for “transient” interactions.

104 Med15 also interacts with the core environmental stress response transcription factors
105 Msn2/4 to regulate gene expression of stress response genes [31]. Med15 regulates the
106 expression of Msn2 dependent genes *HSP12* and *TFS1* [31]. Although Med15 is not known to
107 interact directly with Hsf1, expression of some heat shock proteins including *SSA4* and *HSP104*
108 is also regulated by *MED15*.

109 The central section of Med15 (~aa 100-700) is enriched in amidic amino acids glutamine
110 (16% of residues) and asparagine (11% of residues) [21]. Within this region there are three
111 variable polyglutamine (poly-Q) tracts (longer than 10 residues) which we refer to as Q1 (aa
112 147-158), Q2 (aa 417-480), and Q3 (aa 674-696) that flank, but are not included in the ABD
113 regions. Q1 and Q3 are simple poly-Q tracts while Q2 consists of a repeated glutamine-alanine
114 motif. While shorter stretches of glutamine are present in Med15, Q1, Q2 and Q3 stand out
115 because they vary in length (number of consecutive Q or QA residues) in *MED15* alleles from
116 different strains of *S. cerevisiae* [21]. Recent studies have addressed the functional implications
117 of naturally occurring tract length variant alleles of *MED15* on resistance to the coal-cleaning
118 chemical, 4-methylcyclohexane methanol [32], and grape juice fermentation [33]. Here we
119 investigate which additional activities of Med15 require these glutamine-rich regions, and the
120 extent to which variations to the polyglutamine tracts in Med15 influence these protein activities.

121

122

Results

123 The ability of yeast to respond to stress and changes in growth conditions requires the
124 expression of target genes dependent on interactions between Med15 and gene-specific
125 transcription factors. To test the extent to which distinct transcription factor interacting regions
126 and the intervening sequences in Med15 contribute to its activity, we analyzed a series of internal
127 deletions and truncated *MED15* alleles (Fig. 1A) for phenotypes exhibited by the deletion mutant
128 (Fig. 1B). All *MED15* alleles were driven by the native *MED15* promoter and exhibited levels of
129 expression comparable to or greater than wild type (Fig. S1).

130 **Four Med15 Activator Binding Domains contribute additively to Med15 activity.**

131 Two internal deletion constructs (153-687Δ and 46-619Δ) lacking most of the central
132 region of Med15 displayed different levels of activity when expressed in a *med15Δ* strain (Fig.
133 1). Deletion 46-619Δ disrupts or lacks all characterized activator binding domains (ABD or
134 KIX), while deletion 153-687Δ still maintains an intact KIX domain (Fig. 1). Both constructs
135 contain the Mediator Association Domain (MAD), which is necessary for Med15 activity [17,
136 19]. The 46-619Δ construct failed to fully complement most of the tested *med15Δ* defects (Fig.
137 1B). Inclusion of the KIX domain, as in the 153-687Δ construct, was sufficient for partial to full
138 complementation of the tested phenotypes except for acetic acid sensitivity (Fig. 1B).

139 **The ABD1 Region Alone (Q1R) Partially Complements *med15Δ* Defects**

140 KIX277-799Δ-*MED15* retains the glutamine-rich region of Med15 around Q1 (Q1R; aa
141 116-277) and the MAD domain (aa 799-1081) (Fig. 1A) but lacks the KIX domain, ABD2,
142 ABD3, Q2 and Q3. When expressed in a *med15Δ* strain, KIX277-799Δ-*MED15* partially
143 complemented many of the *med15Δ* phenotypes tested, including utilization of galactose as a

144 carbon source and tolerance to ethanol (not shown) (Fig. 1B), and provided substantial
145 complementation of growth in the presence of combined osmotic and thermal stress.

146 Only one of the two regions of the Med15 protein involved in interactions with the Gal4
147 transcription factor (aa 116-176 and aa 566-618) [34] is included in the KIX277-799Δ-*MED15*
148 construct. The presence of this one region (aa 116-176) allowed for partial activation of a Gal4-
149 dependent reporter (Fig. 1C). The reduced level of expression relative to full length *MED15* is
150 consistent with the phenotype of KIX277-799Δ-*MED15* on galactose plates (Fig. 1B).

151 **KIX domain activity**

152 Specific activities have been attributed to the discretely-folded and well-conserved KIX
153 domain (aa 6-90), including interactions with the transcription factor Oaf1 to regulate the
154 expression of fatty acid metabolism genes [23] and interactions with Pdr1/3 to regulate the
155 expression of drug efflux pumps involved in pleiotropic drug resistance [22, 35]. The KIX
156 domain is also known to contribute to Gcn4 and Gal4 activation alongside other activator
157 binding domains (Fig. 1A, ABD1-3 annotations) [20, 28, 36, 37].

158 Here we use ketoconazole tolerance as a phenotypic indicator of Pdr activity. Constructs
159 lacking the KIX domain exhibited mild sensitivity to the drug, however a construct containing
160 the KIX domain but lacking other ABDs was also mildly sensitive, suggesting the involvement
161 of other Med15 regions in the Pdr response (Fig. 1B). In contrast, the presence or absence of the
162 KIX domain alone (compare KIXΔ to *MED15*) appeared to have little detectable impact on
163 Msn2 (heat, osmotic stress) or Gal4 (growth on galactose as sole carbon source) and Gcn4
164 (growth on SD media) phenotypes. The importance of the KIX domain in combination with
165 ABD1-3 for Gal4 dependent activation could be seen in the KIX domain-containing *med15* 153-

166 687 Δ mutant, which exhibited better growth on galactose plates compared to the KIX-less
167 *med15* 46-619 Δ mutant.

168 In constructs lacking the KIX domain, the ABDs were important. For example, both
169 KIX277-799 Δ -*MED15* and KIXQ2Q3 Δ -*MED15*, which lack the KIX domain but contain either
170 a single (ABD1; KIX277-799 Δ) or three ABDs (KIXQ2Q3 Δ) grew well or very well on
171 galactose (Fig. 1B), although both exhibited a modest reduction in expression of a UAS_G-*lacZ*
172 reporter relative to wild type (Fig. 1C). Similarly, growth on SD media, a reflection of Gcn4
173 activity, was poor in the 46-619 Δ mutant as expected for a protein lacking the KIX as well as all
174 ABD domains and best in the KIXQ2Q3 Δ mutant which lacks the KIX domain but retains
175 ABD1, ABD2 and ABD3 (Fig. 1B).

176 **Med15 Phosphorylation**

177 In unstressed cells Med15 is phosphorylated, a modification proposed to dampen Med15
178 activation of stress genes. In contrast, Med15 is dephosphorylated in cells exposed to osmotic
179 challenge [38]. There are 30 phosphorylated residues in Med15, all clustered around the junction
180 of the central disordered domain (distal to Q3) with MAD (Fig. 1A) [38]. Of these, the
181 phosphorylation of only 7 of these is affected by osmotic stress. In the D7P mutant, each of
182 these seven dynamic phosphosites was changed to alanine, whereas in the D30P mutant all 30
183 phosphosites were alanine substituted [38]. We observed a growth defect in the D30P mutant at
184 high salt concentrations but not D7P, as previously reported [38]. We found that these mutants
185 also differed in response to acetic acid and ketoconazole. D30P exhibited wild type tolerance to
186 acetic acid stress and ketoconazole, while D7P was more sensitive (Fig. 1B).

187 **The Central Q-rich and Intrinsically Disordered Region**

188 We simplified the analyses of the central disordered domain and the Q1 tract by
189 analyzing them in the absence of the KIX domain and the Q2/Q3 tracts. The KIXQ2Q3 Δ -
190 *MED15* construct, which lacks the KIX domain as well as the Q2 and Q3 glutamine tracts,
191 nevertheless fully complemented all tested phenotypes except for ketoconazole and acetic acid
192 tolerance when expressed in a *med15* Δ background (Fig. 1B) suggesting that the region around
193 Q1 is more important than Q2 and Q3 for most KIX domain-independent Med15 functions.
194 Interestingly, acetic acid tolerance, a likely function of the recently uncovered interaction
195 between Med15 and Hap5 [39], was sensitive to the absence of Q2 and Q3 (Fig. 1B).

196 **The Q1 Tract**

197 KIXQ2Q3 Δ -*MED15* constructs containing a S288C (wild type strain background) size
198 Q1 tract consisting of 12 glutamines (12Q) fully complemented several of the tested phenotypes
199 including the utilization of galactose as a carbon source; sensitivity to ethanol; and sensitivity to
200 NaCl (Fig. 1, Fig. 2A). However, a construct lacking the Q1 tract (0-Q1) neither fully
201 complemented *med15* Δ defects on plates (Fig. 2A), nor UAS_G-*lacZ* reporter activity (Fig 2C).
202 One exception to the impact of removing the Q1 tract was that growth on minimal media (Fig. 2,
203 SD +LKHU), which reflects Gcn4 activity, was not detectably affected.

204 To determine whether changes in the length of polyglutamine tracts, which are known to
205 be naturally variable [21], modulate the activity of Med15, we tested a series of natural (12Q,
206 19Q, 21Q, 22Q) and synthetic (6Q, 24Q, 36Q, 47Q) Q1 tract lengths. Tract length effects at Q1
207 were context dependent. Plate phenotypes were examined and additional resolution achieved by
208 quantifying growth in liquid media containing a stressor and comparing it to growth in media
209 with no addition. In general, 0Q (and 6Q) inserts at Q1 afforded better tolerance than the *med15*

210 deletion strain, but less than 12Q. In some cases, 36Q and 47Q constructs exceeded 12Q (Fig.
211 2B: acetic acid, ketoconazole) and in other cases 36Q and 47Q were less robust than 12Q (Fig.
212 2B: ethanol).

213 We also used an hGR reporter system [18] to examine the impact of tract length. The
214 glutamine-rich domain of Med15 (aa 116-277) is similar in sequence to the glutamine-rich domains
215 of human steroid receptor coactivators (SRCs) and thus the Q1R domain of Med15 in a construct
216 equivalent to KIX277-799 Δ fully activates a human glucocorticoid receptor (hGR) dependent report
217 in yeast [18] as does the KIXQ2Q3 Δ construct (Fig. 2D). In this context, a 0Q-Q1 tract reduced
218 reporter activity and a Q1 length of 21 glutamines (Fig. 2D) exhibited a significant increase in
219 hGR activity relative to longer tracts consisting of 24 or 36 glutamines. In contrast, changes to
220 the Q1 tract length had only a minor impact on Med15 activation of a Gal4-dependent reporter
221 (Fig. 2C).

222 Gcn4 is known to phase separate with a Med15 (aa 6-651) truncation encompassing 60%
223 of the full-length protein [30] as part of a large transcriptionally active liquid droplet with phase
224 separation dependent on Gcn4 residues essential for transactivation [30], indicating that liquid
225 droplet formation is a key aspect of Gcn4-mediated activation. To determine if there is any
226 impact of the Q1 tract on Med15-Gcn4 phase separation we first determined whether the Q1R
227 domain could support phase separation on its own. This Med15 fragment is 157 residues and has
228 an average disorder score over the entire region of 0.65 (IUPRED3 <https://iupred.elte.hu/>) with
229 disorder peaking between amino acids 122 and 159 with an average score of 0.9. The region has
230 an extreme glutamine/asparagine bias totaling 44.6% mixed with alanine (8.9%), leucine (8.9%)
231 and proline (7.6%). We purified a full-length GFP tagged Gcn4 protein and various derivatives
232 of mCherry tagged Med15 using nickel chromatography (Fig. S2) and used the proteins in LLPS
233 assays. We found that mCh-Med15 proteins containing both the KIX domain and Q1R (KQ) as

234 well as the Q1R only (Q1R) each coalesced with GFP-Gcn4 with moderate levels of PEG added
235 as a crowding agent (Fig. 3A-B). The condensates did not form in the presence of 10% 1,6
236 hexanediol (Fig. 3C) which interferes with weak hydrophobic protein-protein interactions that
237 are characteristic of liquid condensates.

238 Having established that Q1R was sufficient for phase separation with Gcn4, we compared
239 the phase separation characteristics of equivalent concentrations of purified Med15 Q1R and
240 Med15 0Q-Q1R proteins in combination with low levels of Gcn4. No major effects of the Q1
241 tract on phase separation could be detected using microscopy (Fig. 3D).

242 We also examined phase separation of Med15 Q1R and 0Q-Q1R with the transactivation
243 domain of Msn2 (aa 2-301). Microscopy was conducted to visualize the effects of the two
244 Med15 Q1R variants at a single Med15 concentration (20 μ M) in conjunction with 2.5 μ M
245 Msn2. This concentration of Msn2 formed small condensates in the presence of mCherry that did
246 not require Med15. Added Med15 Q1R (12-Q1 and 24-Q1) coalesced with Msn2 condensates
247 and increased their size. Added Med15 0-Q1 Q1R was also capable of forming condensates with
248 Msn2. 10% 1,6 HD reduced condensate size and number in both the 0-Q1 and 12-Q1 reactions,
249 (Fig. 3E). Interestingly, Med15 with a 12L-Q1 insert formed non-droplet aggregates that were
250 resistant to 6% 1,6 HD.

251 Taken together, both macroscopic and microscopic assays suggest that while the Q1 tract
252 is not essential for the Med15 activities tested, it is required for normal (wild type) levels of
253 some Med15 activities, and different Med15 activities are differentially sensitive to the length of
254 Q1.

255

256 **The Coiled-Coil Propensity of the Q1 Tract Influences Med15 Activity**

257 The sequence requirements at the Q1 locus were investigated using a series of modified
258 Q-tracts and non-Q insertions into the Q1 position of the KIXQ2Q3 Δ construct. Since the region
259 around the Q1 tract is predicted to form coiled-coil structure (Fig. and Fig. S3) that could be
260 involved in protein-protein interactions, we tested a flexible glycine-rich spacer sequence
261 (spacer: SPGSAGSAAGGA), predicted to have minimal coiled-coil propensity. The spacer
262 construct was comparable to 12-Q1 under conditions in which the absence of the Q1 tract
263 impaired Med15 activity (Fig. 4B, spacer). The Q1 locus was also replaced with a glutamine
264 tract with dispersed proline residues (12PQ: PQQQPQQPQQQP and doubled, 24PQ), a sequence
265 previously shown to disrupt coiled-coil structure [14] and that is predicted to reduce the coiled-
266 coil structure of the adjacent region in Med15 (Fig. 4A and Fig. S3). The proline interrupted
267 sequences also displayed activity comparable to 12Q-Q1 (Fig. 4B). In contrast, the introduction
268 of leucine residues (15LQ; LQQQLQQQLQQQLLLQ) previously shown to promote coiled-coil
269 structure [14] did not complement the defects exhibited by the 0-Q1 construct (Fig. 4B top, most
270 evident on galactose media). These results suggest that Med15 functionality does not require a
271 coiled-coil prone sequence and that enhancing the coiled-coil propensity of the sequence at Q1
272 may be deleterious.

273 To further investigate the apparent deleterious effect of coil-coil promoting sequences,
274 additional coiled-coil forming structures [5, 16] were introduced. The first was a C-terminal
275 helix forming sequence from the *NAB3* gene (NVQSLLDSLAKLQK). Like 15LQ-Q1, NAB3
276 failed to fully complement the defects of the 0-Q1 construct (Fig. 4B: most evident on acetic acid
277 containing media). One further test involved a 20 amino acid segment of the human Med15 Q-
278 tract sequence (FrHs: LQLQQVALQQQQQQQQFQQQ) whose coiled-coil structure has been

279 confirmed by circular dichroism [16]. The functionality of the human *MED15* Q-tract coding
280 sequence was roughly comparable to 12-Q1 (Fig. 4B: FrHs-Q1). In contrast, the leucine rich
281 sequence encoded by the reverse complement of that sequence (LLLELLLLLQLRHLLELQ)
282 (RvHs-Q1; a periodically interrupted poly-L tract) and an uninterrupted poly-L tract (12L-Q1)
283 exhibited only slightly more complementation in these assays than a *med15* deletion (Fig. 4B).

284 The results of these analyses suggest that Q1 inserts with weak or no predicted coiled-coil
285 propensity (Fig. S3) are compatible with Med15 function, and that Q1 inserts that increase
286 predicted coiled-coil propensity are less so.

287 The effect of length and composition of the Q1 tract on target gene expression was
288 quantified by qRT-PCR in log-phase cultures (rich media, 30°C) of strains expressing wild type
289 *MED15* or KIXQ2Q3Δ-*MED15* constructs with various Q1 genotypes. We chose to examine the
290 effect of Med15 on basal expression rather than on induced expression for this analysis because
291 of the major effect Med15 has on basal levels [40, 41]. We found that although induced levels
292 were also affected, the extent of induction was not. The effect of *med15*Δ on basal expression
293 of selected *MED15* target genes is shown in Fig. 5 and Fig. S4. We found that basal expression
294 was dependent on the presence of the Q1 tract and that Q1 tract length variants gave distinctive
295 patterns of expression. A Med15 derivative lacking the Q1 tract (Q1-0) was less active than
296 Med15 with a Q1 tract of 12 (wild type) for genes such as *AHP1* (activation) and *MET10*
297 (repression) (Fig. 5A). Although the basal expression of *MET10* and *AHP1* was dependent on the
298 Q1 tract, it was independent of tract length. In contrast, *GLK1* was sensitive to tract length, with
299 significantly lower expression in Med15 variants with a Q1 tract length of 36 or more. The *SSA1*
300 and *HSP12* expression patterns showed a similar trend with the lowest expression in Q1-36 and
301 Q1-47 Med15 variants (Fig. 5A).

302 We also examined gene expression in the constructs with Q1 substitutions (Fig. 5B). For
303 *AHPI* and *MET10*, genes whose expression was most consistently influenced by the presence of
304 the Q1 tract, the introduction of proline residues into a 12-residue glutamine-rich tract did not
305 significantly alter expression while the introduction of proline residues into a 24-residue
306 glutamine-rich tract was somewhat deleterious. However, this effect was not evident in *GLK1*,
307 *SSA1* and *HSP12* where the presence of prolines in a glutamine-rich tract of 12 or 24 appeared to
308 increase expression (Fig. 5B).

309 Coil-promoting inserts such as FrHs-Q1, NAB3-Q1, 15LQ-Q1, and 12L-Q1 adversely
310 affected *AHPI* and *MET10* expression, but other genes were not affected (Fig. 5C). Finally,
311 leucine rich inserts such as 12L and RvHs Q1 were deleterious for *MET10* and *AHPI* expression
312 as well as *GLK1*, while *SSA1* was unaffected. A non-Q spacer insert of 12 residues was neutral
313 for all genes except *HSP12*, where it had an adverse effect (Fig. 5D).

314 Overall, Q1 tract composition differentially affected the expression of this panel of
315 genes, consistent with the phenotype studies in Fig. 4.

316

317 **Med15 interacts with Msn2 via the KIX domain or the Q1R region.**

318 To determine whether Q1-dependent changes in the activity of Med15 reflect altered
319 interactions with transcription factors, we examined Med15-Msn2 interactions using a split-
320 ubiquitin two hybrid assay with a Ura3 reporter [42, 43]. Msn2 amino acids 1-271 corresponding
321 to the transcriptional activation domain (TAD) were fused to the C terminus of ubiquitin and an
322 N-end rule sensitive derivative of the *URA3* gene (*RURA3*), and different segments of Med15
323 were fused to the N terminus of ubiquitin (Fig. 6A). The presence of interacting N-Ub and C-Ub
324 fusions cause strains to become Ura⁻ due to the ubiquitin-mediated degradation of the Ura3

325 protein. The Ura⁻ phenotype was tested in two ways: (1) with synthetic media containing lysine
326 (SD+K) or synthetic complete media lacking uracil (SC-HLMU) on which strains harboring
327 plasmids expressing fragments of Msn2 and Med15 that do interact would fail to grow, and (2)
328 on media containing 5-fluoroorotic acid (5-FOA), an inhibitor of the Ura3 enzyme, on which
329 only strains expressing interacting Med15 and Msn2 peptides would survive. Both the KIX
330 domain alone (NUb-KIX; (aa 1-118)) and the Q1R fragment alone (NUb-Q1R-12Q; (aa 120-
331 277)) as well as the entire region (NUb-KQ; (1-277)) were positive (Ura⁻ and 5-FOA^R) for an
332 interaction with the transactivation domain of Msn2 (Fig. 6B).

333

334 **Substitutions at Q1R affect the Msn2 interaction**

335 Consistent with the phenotypic analysis shown in Fig. 4, an NUb-Q1R with *NAB3*
336 sequence at Q1 was slightly less interaction positive (more Ura⁺) than Q1R itself (best seen on
337 SC-HLMU in Fig. 6B), while a Q1R with RvHs or 12L at Q1 only weakly interacted with Msn2
338 (best seen on 5-FOA in Fig. 6B) despite being positive for protein expression (Fig. S5).
339 Interactions were ranked based on pixel density from high (least growth on plates without uracil
340 or most growth on plates with 5-FOA) to low (most growth on plates without uracil or least
341 growth on plates with 5-FOA) and a composite interaction rank based on growth on all plate
342 types split the tested constructs into 3 groups (Fig. 6C). The poorest interactors, RvHs and 12L,
343 ranked alongside the negative controls. The NAB3-Q1 construct was the only tested
344 representative of the coiled-coil-promoting constructs, and it was in a group of its own as the
345 weakest interactor except for the non-functional constructs. Interestingly, there was very little
346 variability in the interaction score from plate to plate, so the NAB interaction rank appears very
347 discrete in Fig. 6C (*NAB3*). The strongest interactor was the Spacer construct, which slightly

348 outperforms the remaining tested constructs. Hence the Q1 substitution phenotypes reflect the
349 ability of Med15 to interact with Msn2.

350 Interestingly, despite a robust interaction between the Msn2 transactivation domain and
351 the Med15 KIX domain detected using split-ubiquitin two hybrid analyses, Med15 did not
352 contribute appreciably to the small condensates formed by Msn2 alone. A low level of the
353 Med15 KIX domain joined small Msn2 condensates (Fig. 7) but there was no evidence that the
354 presence of Med15 KIX facilitated or stimulated Msn2 phase separation as the condensates were
355 no larger or more abundant than those formed with an equivalent concentration of mCherry with
356 no associated Med15. We surmise that the interaction between Msn2 and Med15 has two
357 components, one that is driven by multivalency and one that is more likely driven by specific
358 residue-based electrostatic interactions. The absence of any contribution of the KIX domain is
359 mirrored in the condensate reactions between Med15 and Gcn4 (Fig. 3B).

360

361 **Med15 – Med15 interactions**

362 To examine potential interactions within Med15 as suggested by the effect of distal
363 regions of the protein on KIX-dependent activities, a series of NUb fusions with different
364 segments of Med15 were tested with a CUb-KIX construct. There was a modest interaction
365 between the KIX domain (aa 1-118) and Q1R (aa 120-277) (Fig. 8B, row 3). To probe the
366 importance of the Q1 tract in the interaction with the KIX domain, we examined the effect of
367 several Q1 length and composition variants on the KIX-Q1R interaction. Most Q1 substitutions
368 had little to no effect on the interaction with the KIX domain, however, the leucine rich insertion,
369 12L (Fig. 8C) was negative for the interaction with the KIX domain, suggesting that the failure

370 of rich Q1R substitutions to interact with Msn2 may reflect a non-permissive intramolecular
371 interaction within the Med15 protein.

372

373 **Discussion**

374 In this study we used internal deletions as well as synthetic Med15 derivatives to
375 specifically interrogate the role of the N-terminal most polyglutamine tract (Q1) adjacent to
376 Activator Binding Domain 1 (ABD1). All *MED15* variants tested were built in the context of the
377 *MED15* promoter and 3' UTR sequences within a *LEU2*-marked centromeric plasmid. We used
378 qRT-PCR and Western analysis to confirm that the expression of each construct was at least as
379 robust as constructs that exhibited completely wild type functionality (Fig. S1). In earlier studies,
380 Jedidi *et al.*, [36] measured protein levels of many internal deletions of a myc-tagged *MED15*
381 gene, and found that constructs lacking amino acids 169-202 or 500-543 were not expressed
382 well. Two of the constructs depicted in Fig. 1, Δ 153-687 and Δ 46-619 lack these sequences,
383 however in Western analysis of the N terminally 1xHA-tagged Δ 46-619 construct, the protein
384 was in fact expressed (Fig. S1D), thus ruling out the possibility that the phenotypes in Fig. 1 are
385 confounded by reduced levels of Med15 protein. The difference in protein abundance and
386 stability in our study and the Jedidi *et al.* [36] study may be due to the difference in tag or, more
387 likely, the difference in the full complement of retained/absent sequences.

388 Using these constructs, we systematically analyzed the impact of different regions of the
389 Med15 protein and found that the KIX domain and Q1R region of the protein are key
390 determinants of Med15 activity (Fig. 1) although more distal parts of the protein, including Q2,
391 Q3 and phosphorylated residues that span the boundary with the Mediator Association Domain

392 appeared to influence the functionality of these more N-terminal regions suggesting that post-
393 translational modifications or intramolecular interactions may also play a role.

394 Additional insight into the role of the Q1R region of Med15 was achieved by varying the
395 length and composition of the Q1 tract in constructs lacking the KIX domain as well as the Q2
396 and Q3 tracts. In these analyses, we probed the activity of the Med15 protein using both
397 phenotypic and target gene expression assays for the output of different Med15-dependent
398 transcription factors. We anticipated that different Med15-TF interactions would depend on
399 distinct regions of Med15 as previously shown [36], and that there might also be a TF-specific
400 response to the presence/absence and content of the Q1 motif since TF interaction and activation
401 domains fall into different classes (fuzzy, well structured, acidic etc.). The Med15 interaction
402 with Gcn4 was previously shown to require dispersed ABDs in what has been described as a
403 fuzzy interface [28, 44, 45] and could conceivably be independent of Q1, whereas Msn2, with its
404 well-structured Med15 interaction motif [43], might be expected to behave differently.

405 The results of our analyses are summarized in Table 1. We found that activity of most
406 tested TFs was diminished if the Q1 tract was deleted. We further showed that several TFs
407 except for Gcn4 and Gal4 were affected by the length of the Q1 tract, with the precise effect
408 being context dependent. Finally, we found that the amino acid composition and/or secondary
409 structure was a factor in the activity of Med15-dependent TFs. We observed that Q1
410 substitutions predicted to increase coiled-coil propensity (Fig. S3) diminished TF activity while
411 Q1 substitutions predicted to interfere with coiled-coil propensity had no effect on TF activity
412 (Fig. 4, 5), suggesting that flexibility of the sequence is an important feature. Below we discuss
413 each of these observations in more detail.

414

415

416 Table 1. Relationship of Med15 Q1 Genotype to TF Activity

Phenotype	TF	Target gene / reporters examined	Sensitivity to Q1 (phenotype / gene(s))		
			Presence ¹ (Fig. 2,3)	Length ² (Fig. 2,4)	Composition ³ (Fig. 3,4)
Acetic Acid	Hap5	Plate assay	Yes	Yes	Yes
NaCl @ 38°C; Ethanol	Msn2; Hsf1	Plate assays	Yes	Yes	Yes
		GLK1	Yes	Yes	Yes
		AHP1	Yes	No	Yes
		HSP12	Yes	Yes	Yes
		SSA1	Yes	Yes	Yes
Ketoconazole	Pdr1	Plate assay	Yes	Yes	No ⁴
Galactose	Gal4	Plate assay	Yes	No	Yes
		UAS _G reporter	Yes	No	NT ⁵
Amino Acid Limitation	Gcn4	Plate assay	No	No	No
		MET10	Yes	No	No
		ARG3	No ⁶	Yes*	NT
Suboptimal Temperature (22°C)	? ⁷	Plate assay	Yes	Yes	Yes
Glucocorticoid Response	GR	hGR reporter	Yes	Yes	NT

417 ¹Growth or expression altered by the removal of Q1

418 ²Growth or expression altered by changes in the length of Q1

419 ³Growth or expression altered by changes in the composition of Q1

420 ⁴Data not shown*

421 ⁵Not tested

422 ⁶Data in supplement

423 ⁷Target transcription factor unknown

424

425

426 The KIX-dependent Med15 interaction with Hap5 is affected by additional Med15 sequences

427 *HAP5* is essential for the DNA-binding activity of the HAP complex, a tripartite CCAT-
428 binding factor, which regulates respiratory gene expression. Hap5 mutants are also deficient in
429 growth on 0.3% (vol/vol; ~50 mM) acetic acid [39]. The Hap5 interaction with Med15 is KIX-
430 dependent as shown by standard two-hybrid assays. Mutations in the KIX domain result in
431 Hap5-dependent phenotypes including sterol homeostasis and acid tolerance [39].

432 The acetic acid tolerance phenotype was among the most revealing of the *med15* mutant
433 phenotypes we examined. We observed acetic acid sensitivity stemming from the absence of Q2
434 and Q3, and in the D7P mutant which eliminates the potential for phosphorylation of C terminal
435 sequences required to prevent activation under non-stress conditions and which become
436 dephosphorylated upon osmotic stress (Fig. 1) [38]. Acetic acid tolerance was also affected by
437 the absence, length, and composition of the Q1 tract (Fig. 2, Fig. 4). Taken together the Med15
438 sequences required for acetic acid tolerance were consistent with either dispersed activator
439 binding sites for the Hap5 acetic acid responsive TF [39] or a requirement for intramolecular
440 interactions between different regions of the Med15 protein. For example, we hypothesize that
441 an interaction between the phosphorylated region located near the C-terminal mediator
442 association domain and N-terminal sequences like the KIX domain or Q1 tract could squelch
443 Med15 activity by preventing association of the subunit with the remainder of the complex.

444

445 Msn2 TF activity is mediated by the KIX and the Q1R regions of Med15 and is sensitive to Q1
446 length variants and substitutions.

447 A miniaturized version of Med15 consisting of aa 116-277 (ABD1, Q1) and the Mediator
448 Association Domain (KIX277-799Δ-MED15) [18] fully complemented some of the stress related
449 defects of the *med15*Δ strain. The activity of this construct is consistent with, and further refines,
450 previous work in which the N terminal 351 amino acids were found to be sufficient for
451 interactions between Med15 and the stress responsive transcription factor Msn2 [43]. We
452 confirmed that Msn2-related activities of Med15 are encoded by the region of Med15 containing
453 the Q1 tract and ABD1 (aa 116-277) but found that the KIX domain alone could also mediate an
454 interaction with Msn2 (Fig. 6), which was not previously appreciated. The fact that there was no

455 additivity between Q1R-based and KIX-based interactions with Msn2 in functional assays (Fig.
456 1) or in the split ubiquitin two-hybrid interaction assays (Fig. 6) together with the absence of
457 condensate formation between Msn2 and the KIX domain may reflect the presence of two types
458 of Msn2-Med15 interactions that are mutually exclusive and potentially redundant.

459

460 The presence and length of the Q1 tract affect Gcn4 and Msn2 activation

461 The effect of Q1 tract length on growth and stress response phenotypes and on expression
462 of reporters and target genes was context dependent. Basal (Fig. 5) and induced (Fig. S3C)
463 expression of individual Msn2-dependent (e.g., *AHPI*) and Gcn4 dependent (e.g., *MET10*) genes
464 was influenced by the Q1 tract. In all instances TF activity was reduced in the absence of the Q1
465 tract. Note that Med15 is a negative regulator of *MET10* expression so *MET10* expression
466 increases when Med15 activity decreases [21]. This suggests a general role for the Q1 tract in
467 modulating Med15 dependent regulation of TFs, potentially in providing structural flexibility
468 that facilitates TFs accessibility to residues in Med15 that participate in the interaction, although
469 other mechanisms haven't been ruled out.

470 Whether the length of the Q1 tract influenced gene expression depended on the
471 transcription factor. Gal4-dependent reporter gene expression as well as the expression of Gcn4
472 regulated *MET10* were largely tract-length insensitive (Fig. 2C and Fig. 5A). The insensitivity of
473 Gcn4 and Gal4 interactions with Med15 to Q1 tract length suggests that "fuzzy" interactions may
474 require a threshold number of residues but are otherwise independent of length.

475 In contrast, expression of an hGR-dependent reporter peaked at 21Q and was reduced at
476 36Q (Fig. 2D). Similar expression patterns were seen for Msn2/Hsf1 targets including *HSP12*,

477 *SSA1* and *GLK1* where expression peaked at 12-24Q and was reduced at lengths > 36Q (Fig.
478 5A).

479 With respect to Q1 tract composition, there was general agreement in gene expression
480 patterns (Fig. 5B-D) and Med15 phenotypes (Fig. 4). The non-functional RvHs and 12L Q1
481 inserts exhibited the most extreme changes in gene expression, followed by the partially
482 functional 15LQ and *NAB3* Q1 inserts. Med15 Q1 substitutions affected the interaction with the
483 Msn2 transcription factor. The Msn2:Med15 interaction was most affected by Q1 substitutions
484 like 12L and RvHs that were the least functional and was somewhat affected by the *NAB3* insert
485 which exhibited some reduction in functionality (Fig. 4, Fig. 6B, C). Specifically, the helical
486 nature of the *NAB3* insert sequence may promote a structure that alters the availability of
487 adjacent residues needed for the Msn2 interaction. Hence, overall, we conclude that the nature of
488 the Q1 sequence has an impact on the interaction with the Msn2 transcription factor, while the
489 length of the glutamine tract at Q1 may impact Med15 function differently.

490 It is worth noting that gene expression is not necessarily a direct readout of the
491 interaction strength between any single pair of proteins. The upstream regulatory regions of the
492 genes analyzed in our studies contain a complex network of binding sites for positive and
493 negative regulators that likely interact in uncharacterized ways, making it difficult to predict
494 whether a strong or weak interaction between one transcription factor and one Mediator
495 Complex subunit will lead to normal levels of gene expression. Hence, while it may be
496 surprising, it is not incongruous that the Q1 inserts (Spacer and 12PQ) conferring the strongest
497 Msn2 interaction (Fig. 6C) lead to reductions in the expression of the Msn2 target gene, *HSP12*
498 (Fig. 5B). An additional layer of complexity is introduced because the interaction between
499 Med15 and Msn2 not only recruits RNA Pol II to the target gene, but also brings Msn2 into

500 proximity of the CDK module of Mediator that subsequently promotes the phosphorylation and
501 degradation of Msn2 [31].

502 The role of glutamine bias and coiled-coil propensity in Med15 Function

503 The extreme glutamine bias in yeast Med15 is conserved in other fungi as well as in
504 animal orthologs [21]. The conservation of glutamine bias suggests a possible mechanistic basis
505 for glutamine overrepresentation. Mechanistically, poly-Q tracts could influence activity in
506 various ways: by affecting protein-protein interactions, either directly or indirectly; by providing
507 disorder to allow a larger set of transient interactions; by providing necessary spacing between
508 functional domains; or by providing flexibility to the protein. We found that the flexible spacer
509 sequence (SPGSAGSAAGGA) worked as well if not better than the native 12Q sequence (Fig.
510 4). These results suggest that flexibility is more important than the sequence and that glutamine
511 residues are not themselves required for creating or stabilizing a protein-protein interface. The
512 fact that residues at Q1 were not functionally constrained to be glutamine implies that the Q1
513 tract is not itself an interaction motif participating directly in protein-protein interactions. This
514 conclusion is supported by our observation that removal of the Q1 tract reduced but did not
515 eliminate activity (Fig. 2). Furthermore, no previous studies have attributed protein interactions
516 to the Q1 tract in Med15. In the context of the hGR reporter, two residues, Q198 and V199,
517 downstream of the Q1 tract were found to be critical for the interaction with hGR τ fragment
518 [18]. Gcn4, and more recently, Gal4, have been shown to interact with the ABDs of Med15 [44,
519 45]. While the Q1 tract is adjacent to ABD1, it is not a required component of the ABD1
520 interaction surface.

521 Glutamine rich sequences in Med15 and other proteins have been reported to confer
522 functionally important coiled-coil structure [5, 14, 16]. However, we found that the presence of

523 periodic proline residues known to perturb coiled-coil structures in circular dichroism studies of
524 Med15-related peptides [14] did not impair activity. This observation is consistent with the
525 naturally occurring proline interruptions in the glutamine-rich regions in functional animal
526 orthologs of Med15 [21]. In contrast, we found that the insertion of sequences with established
527 coiled-coil propensity such as the coiled-coil forming Q1 adjacent sequence in human Med15
528 [16] and especially the glutamine-adjacent region from the C-terminus of the Nab3 protein [5]
529 dampen Med15 activity (Fig. 4), suggesting that torsional flexibility of the Q1 region may be
530 important.

531 Interestingly, two Q1 substitutions were not tolerated in phenotypic assays (Fig. 4) and
532 were interaction negative with Msn2 (Fig. 6). One was the 12L (inverted glutamine, CTG)
533 sequence, and the other, the inverted Human Med15 coil (RvHs), which is also very leucine rich
534 (Fig. 4). The basis for the deleterious effect of leucine-rich sequences is unclear, however, we
535 found that leucine-rich Q1 tracts also interfered with an intramolecular interaction between the
536 Q1R and the KIX domains (Fig. 8C). Finally, we observed that a 12L Q1R protein was negative
537 for phase separation with both Gcn4 (data not shown) and Msn2 (Fig 3E). Interestingly both
538 Gcn4 and Msn2 proteins formed geometric co-aggregates with the 12L version of Med15
539 suggesting that the proteins do interact *in vitro* but that the interaction is non-productive *in vivo*.
540 Furthermore, we observed that the 12L insertion at Q1 position of the KIX277-799 Δ -Med15
541 construct had a dominant negative effect when introduced into a wild type *MED15*⁺ strain (data
542 not shown). These observations could reflect the disruption of a functionally important
543 regulatory interaction. However, the possibility of off-target effects cannot be definitively ruled
544 out as a cause of reduced TF interaction and diminished functionality of this Med15 variant.

545

546 The role of glutamine bias in Med15 coalescence with liquid droplet condensates formed by TFs

547 In *in vitro* condensate reactions consisting of Gcn4 (full length) or Msn2 (TAD, aa 2-
548 301) and Med15 Q1R or Med15 0Q-Q1R, we observed that the Q1 tract did not make major
549 contributions to the ability of Med15 (Fig. 3B) to coalesce with the transcription factor. These
550 observations are supported by turbidity measurements in which low levels of Gcn4 or Msn2 are
551 mixed with increasing concentrations of Med15 and the turbidity due to aggregation (340 nm)
552 plotted following a 1,6 HD correction of each data point to remove contributions from non-liquid
553 type condensates (Fig. S6). This rules out one additional mechanism by which the Q1 tract might
554 influence Med15 function.

555

556 The role of disorder and spacing at Q1 of Med15

557 The possibility that glutamine enrichment, including the poly-Q tracts, found throughout
558 the midsection of Med15 simply promote disorder remains plausible. By promoting disorder,
559 poly-Q tracts could increase the number of structural conformations Med15 can assume as well
560 as increase the number of potential compatible interactors. However, a role for the Q1 tract as a
561 spacer, hinge [7] or conformational modulator [46] cannot be ruled out. In studies of the
562 Huntington protein, the expansion-prone poly-Q tract in exon 1 appears to allow adjacent
563 domains within a protein to interact [7]. Both the removal and extensive expansion of the poly-Q
564 tract of the Huntington (Htt) protein disrupts the proper hinge function with a shorter Huntington
565 Q tract of 6 glutamines being partially defective [7]. In separate studies, the polyglutamine
566 expansion within Htt exon 1 was shown to lead to increased alpha helical structure affecting the
567 curvature of the protein and altering intramolecular interactions with the remainder of the protein
568 [46].

569 The shortest Q1 tract we identified in *MED15* from sequenced *S. cerevisiae* genomes is
570 10 glutamine residues [21]; Q1 tracts shorter than 10 do not occur frequently in natural
571 populations. Although complete removal of the Q1 tract (Q1=0) does not lead to complete loss
572 of Med15 function, the reduction in Med15 functionality is clear in every assay. We speculate
573 that a compromised Med15 of this sort may be maladaptive and would be selected against in
574 nature. Definitive tests of a hinge role for the Q1 tract of Med15 are potentially confounded by
575 the participation of the Med15 protein in weak multivalent interactions in the presence of TFs
576 like Gcn4 and Msn2 in the context of phase-separated liquid droplets. However, in testing for
577 intramolecular interactions (Fig. 8) between sequences on either side of the Q1 tract, we found
578 that the KIX domain is positive for interactions with Q1R. This type of interaction could be a
579 reflection of novel mechanisms for regulating Med15 activity.

580 Our working hypothesis for the role of polyglutamine tract Q1 and other Med15 sequence
581 features in modulating intra- and inter-molecular interactions of Med15 is depicted in Fig. 9.
582 Various types of Med15 interactions are shown: (1) represents the interaction of Med15 with the
583 remainder of the Mediator Complex. This interaction is primarily dependent on a specific motif
584 in the MAD region of Med15 [47], and likely independent of Q tracts. (2) represents Med15
585 interactions with activator binding domains (ABDs) via fuzzy (weak multivalent) (a) or directed
586 (b) associations. (3) points to the role of poly-glutamine tracts in providing flexibility and
587 spacing between ABDs which influences binding and levels of transcriptional activation. And
588 (4) depicts intramolecular interactions between regions of Med15. These interactions may serve
589 to compete with TF interactors thus limiting the intermolecular interactions and consequently
590 limiting the extent of transcriptional activation. Alternatively, these intramolecular interactions

591 may serve to prevent aberrant interactions between Med15 and unintentional targets by
592 obscuring interaction surfaces.

593 The potential presence of two different types of Med15 interactions, conformationally
594 flexible weak multivalent interactions (leading to phase separation) such as Med15:Gcn4 and
595 more stoichiometric interactions such as the one we postulate between the Med15 KIX domain
596 and Msn2 or Gcn4 would not be unusual. Fuzzy interactions are ubiquitous in stoichiometric
597 protein complexes [48-50]. The precise structural contributions of the potential for fuzzy
598 complexes in Med15 are yet to be determined. For example, the intramolecular interactions of
599 the fuzzy region might compete with the intermolecular interactions of the binding element [51].
600 Physiologically, the co-existence of functionally different conformations may enable a global
601 regulatory protein to be simultaneously engaged in multiple pathways. Alternatively,
602 heterogeneous conformational ensembles may lead to specific context-dependent biomolecular
603 recognition patterns via alternative interactions in response to environmental cues [52].

604

605 **Materials and Methods**

606 **Strains**

607 Strains used in this study are derivatives of S288C [53]. The *med15* deletion strain
608 (OY320) is from the deletion collection [54] and was used throughout. A second *med15*
609 knockout strain (JF1368) was used in the hGR reporter experiments (Fig. 1C). Phospho-site
610 mutant strains were a gift from Dr. Patrick Cramer and Mathias Mann [38] and are also S288C
611 derived. The genotypes of additional strains used in this study are listed in Table S1.

612 **UAS_G-lacZ Strains**

613 *GAL4 gal80* (JF2626) and *GAL4 GAL80* (JF2624) strains with an integrated UAS_G-*lacZ*
614 reporter were prepared by mating the *gal4 gal80* UAS_G-*lacZ* strain MaV103 (MAT α) [55] with
615 BY4716 (MAT α) [54]. Diploids from this cross were sporulated and tetrads were analyzed to
616 identify *GAL4 GAL80* UAS_G-*lacZ* and *GAL4 gal80* UAS_G-*lacZ* strains. *GAL4* strains were
617 identified by growth on YPGal media. Strains with *lacZ* reporters were identified by production
618 of blue color on X-Gal plates. *GAL80* strains were identified by white colony color on X-Gal
619 plates with glucose as the carbon source and blue colony color on X-Gal plates with galactose as
620 the carbon source.

621 *MED15* was deleted from both *GAL4* UAS_G-*lacZ* strains to produce *GAL80 med15*
622 (JF2629) and *gal80 med15* (JF2631) strains. A *med15Δ::kanMX4* deletion cassette was
623 amplified from genomic DNA isolated from a *med15Δ* strain (OY320) using the primers *MED15*
624 F-245 and *MED15* R+3498. The deletion cassette was transformed into JF2624 and JF2626
625 using a standard lithium acetate transformation protocol with the addition of a two-hour
626 outgrowth in YPD. Transformation reactions were plated on YPD + 350 μ g/mL G418. Deletion
627 of the *MED15* locus was verified by PCR (primers *MED15* F-245 and *MED15* R+3498) of
628 individual transformants.

629 **Variant Med15 Constructs**

630 Plasmids constructed or acquired for this study are listed in Table S2. A series of
631 constructs encoding synthetic Med15 proteins varying in number of domains and polyglutamine
632 tract lengths were generated (Fig. 1). These constructs fall into four categories: internal deletions,
633 KIX277-799 Δ -Med15, KIXQ2Q3 Δ -Med15, and KIX Δ -Med15, described below.

634 ***MED15* Internal Deletions**

635 Two independent internal deletion mutants (153-687Δ and 46-619Δ) were prepared by
636 restriction digestion of plasmid-borne intact *MED15* alleles. Designations correspond to amino
637 acid residues removed. The 153-687Δ plasmid (pDC2285) was prepared by digestion with
638 *Bsu*36I and subsequent yeast homologous recombination between sequence in the Q1 and Q3
639 tracts. The 46-619Δ internal deletion plasmid (pDC2286) was prepared by digestion with *Eco*RI
640 and subsequent ligation to join compatible ends.

641 ***MED15* Gene Fragments (gBlocks)**

642 gBlocks (Integrated DNA Technologies) corresponding to the KIX domain (bp 1-348),
643 Q2 region (bp 841-1650), Q3 region (bp 1651-2394), and combined Q2 Q3 region (bp 841-2394)
644 were synthesized. In gBlocks containing the Q2 region the Q2 tract and adjacent sequence (bp
645 1234-1446) were removed and replaced with an *Afe*I site by incorporating the silent base change,
646 T1233C. In gBlocks containing the Q3 region the Q3 tract and adjacent sequence (bp 2002-
647 2115) were removed and replaced with a *Bmg*BI site by incorporating the silent base changes
648 T2001C and G2118C. All gBlocks have 80 bp of 5' and 3' homology to KIX277-799Δ-*MED15*
649 on the pRS315 M-WT plasmid. Each gBlock was A-tailed using Taq DNA polymerase (New
650 England Biolabs), ligated into pCR2.2-TOPO (TOPO, Invitrogen) and screened on LB-Amp +
651 X-Gal plates. Light blue and white transformants were screened by PCR using M13 F and M13
652 R primers. For gBlock clones that included the Q2 and/or Q3 regions internal *MED15* primers
653 (*MED15* F+1204 and *MED15* F+1924) were used in addition to the M13 primers to reduce the
654 size of the amplified fragment. Finally, the plasmids were confirmed by sequencing and each
655 clone was stored (GC1012, GC1013, GC1014, and GC1025).

656 A Q1 region (Q1R; bp 346-831) fragment was constructed with the Q1 tract replaced by
657 an *Afe*I site using two step PCR. First, sequence on either side of the Q1 tract was amplified with

658 overlapping forward and reverse primers having an *Afe*I site between Q1 flanking sequence (0Q
659 F and 0Q R) paired with reverse (Q1R gap repair R) and forward (Q1R gap repair F) primers
660 respectively. Next, the two PCR products and the outer forward and reverse primers were used to
661 amplify a 0-Q1:*Afe*I Q1R fragment. This construct was ligated into the TOPO vector for storage
662 and propagation (pDC2178).

663 gBlock DNA was digested out of the TOPO vectors using *Bst*XI (New England Biolabs),
664 sites which are present in the vector on either side of the insert and are absent from gBlocks.
665 The gBlock band was extracted and purified from agarose gels using the QIAquick Gel
666 Extraction Kit (Qiagen). Alternatively, the KIX gBlock was PCR amplified from the TOPO
667 vector using KIX gBlock F and KIX gBlock R primers.

668 **KIXQ2Q3Δ-Med15 Variants**

669 KIXQ2Q3Δ-*MED15* constructs are intermediate in size relative to the KIX277-799Δ-
670 *MED15* and full length *MED15* in that the KIX domain is still absent as it is in the KIX277-
671 799Δ-Med15 while the central Q-rich region of Med15 is present (Fig. 1). These constructs were
672 made by the addition of the Q2Q3 gBlock to either the 0-Q1 or 12-Q1 KIX277-799Δ-Med15
673 construct. The Q1R region of pRS315 M-WT, 0-Q1 KIX277-799Δ-*MED15*, and 12-Q1 KIX277-
674 799Δ-*MED15* were PCR amplified using Q1R gap repair F and Q1R gap repair R. These PCR
675 products were individually co-transformed with the Q2Q3 gBlock and *Pst*I digested pRS315 M-
676 WT. The DNA fragment pairs have sequence overlap allowing for homologous recombination
677 with each other as well as with the gapped plasmid. Two versions of 12-Q1 KIXQ2Q3Δ-*MED15*
678 were constructed by using either pRS315 M-WT Q1R PCR (pDC2149) or using 12-Q1 KIX277-
679 799Δ-*MED15* Q1R PCR (pDC2138). 0-Q1 KIXQ2Q3Δ-*MED15* (pDC2136) was constructed by
680 using 0-Q1 KIX277-799Δ-*MED15* Q1R PCR.

681 Variant Q1 KIXQ2Q3 Δ -*MED15* constructs were prepared by first introducing natural or
682 synthetic Q1 sequences into the *Afe*I site in pDC2178 and then gap-repairing partially *Afe*I
683 digested pDC2136 with a Q1R PCR product amplified from the pDC2178 derivative using the
684 primers Q1R gap repair F and Q1R gap repair R. Natural Q1 tract length variants (19-Q1,
685 pDC2150; and 21-Q1, pDC2151) were constructed by amplifying the Q1R sequence from
686 pooled genomic DNA from multiple wine yeast strains using Q1R gap repair F and Q1R gap
687 repair R primers. Synthetic Q1 tract length variants (12-Q1, pDC2149; 24-Q1, pDC2144; 36-Q1,
688 pDC2146) were constructed by ligation of glutamine tract coding duplex DNA (5'-
689 CAACAAACAACAACAAACAGCAGCAGCACAG). This method produced tracts of
690 glutamine codons in multiples of 12. This method also produced tracts of polyleucine when the
691 duplex was ligated in the reverse orientation (12L-Q1, pDC2293). A synthetic variant (47-Q1,
692 pDC2147) was constructed by mismatch recombination between two tracts of 36 glutamine
693 codons. A short Q tract (6-Q1, pDC2260), a non-Q spacer (Spacer-Q1, pDC2185), modified Q
694 tracts (12PQ-Q1, pDC2262; 24PQ-Q1 pDC2263; 15LQ-Q1, pDC2291), and heterologous
695 sequences (NAB3-Q1, pDC2292; FrHs-Q1, pDC2294; RvHs-Q1, pDC2295) were constructed
696 by ligation of duplexed oligos. Duplexed oligos used in the ligation included: a glycine rich
697 spacer sequence (5'-CCAGGTTCTGCTGGTTCTGCTGCTGGTGGT: PGSAGSAAGG); a
698 short Q tract of 6Q (5'-CAACAAACAACACAGCAG); a coiled-coil disrupting sequence (5'-
699 CCTCAACAAACAGCCTCAGCAACCACAGCAACAAACCA: PQQQPQQPQQQP); a coiled-
700 coil promoting sequence (5'-
701 TTGCAACAAACAGTTACAGCAATTGCAGCAACAACTGTTGTTGCAA:
702 LQQQLQQQLQQQLLLQ); the C-terminal helix of Nab3 (5'-
703 AATGTTCAAAGTCTATTAGATAGTTAGCAAAACTACAAAAG:

704 NVQSLLDSLAKLQK); and a portion of the human Med15 Q tract (5'-
705 CTGCAGCTCCAGCAGGTGGCGCTGCAGCAGCAGCACACAGCAGCAGTTCCAGCA
706 GCAG) ligated in the forward (LQLQQVALQQQQQQQQFQQQ) and reverse orientation
707 (LLLELLLLLQRHLLELQ).

708 **KIX Δ -Med15**

709 Plasmid KIX277-799 Δ -*MED15* (pRS315 M-WT) was digested with *Bst*API to create a
710 gap between the Q1 containing region (Q1R) and the MAD region. The gap was repaired using
711 the Q2/Q3 gBlock isolated from GC1014 to generate pDC2149 (KIXQ2Q3 Δ -Med15). pDC2149
712 was sequentially digested at the Q3 locus using *Bmg*BI and gap repaired using the Q3 PCR
713 fragment (primers *MED15* F+1682 and *MED15* R+2385) from the lab strain BY4742 and then
714 digested at the Q2 locus using *Afe*I and gap repaired using the Q2 PCR fragment (primers
715 *MED15* F+854 and *MED15* R+1781) from the lab strain BY4742 to generate pDC2217 (KIX Δ -
716 Med15).

717 **Split Ubiquitin**

718 CUb fusions:

719 A P_{MET17} C-ubiquitin RURA3 plasmid (GC408; Addgene 131163, [56]) was linearized with
720 *Sal*I directly upstream of the C-ubiquitin sequence and gap-repaired with PCR products
721 amplified from the OY235 yeast genome. To create MSN2_{TAD}-CUb (pDC2279) the first 813 bp
722 of the *MSN2* ORF were amplified using Msn2_{TAD} F+R. For KIX-CUb (pSL2311 and pSL2318)
723 the insert was amplified using KIX-CUb F+R primers. Recombinant plasmids were confirmed
724 by colony PCR.

725

726 NUb fusions: A P_{CUP1} N-ubiquitin plasmid was constructed by amplifying the *CUP1*
727 promoter through N-ubiquitin sequence from the integrating plasmid (Addgene 131169, [56])
728 and gap repairing it into pRS315 linearized with *Bam*HI. Subsequently the 3'UTR sequence from
729 *MED15* was gap repaired into the plasmid linearized with *Hin*DIII downstream of the ORF to
730 create pDC2278. Fragments of the *MED15* gene were amplified and gap repaired into pDC2278
731 linearized with *Pst*I downstream of the N-ubiquitin sequence (KIX, pDC2283; Q1R, pDC2284;
732 KIX+Q1R, pDC2282; Q1R-NAB, pDC2280; Q1R-Hs-rev, pDC2281; Q1R-0Q, pDC2301; Q1R-
733 24Q, pDC2302; Q1R-Spacer, pDC2303; Q1R-6Q, pDC2304; Q1R-12PQ, pDC2305; Q1R-
734 24PQ, pDC2306; Q1R-12L, pDC2307; Q2Q3R, pSL2310.

735

736 **Bacterial Expression Plasmids**

737 Bacterial expression plasmids pET21a-mCherry-Med15 Q1R, pSL2272 and pET21a-mCherry-
738 Med15 Q1R-0 (pSL2289) were constructed by Gibson Assembly. Desired inserts were amplified
739 with Q5 DNA polymerase using the yeast genome or preexisting plasmids as templates (See
740 primer list, Table S4). PCR products were purified using PCR clean-up kits (Qiagen). The
741 inserts and backbones were assembled by NEBuilder HiFi DNA Assembly Cloning Kit in a 10ul
742 reaction. 2 μ L was transformed into *E.coli* DH5 α . Plasmids were isolated and confirmed by
743 DNA sequencing.

744 **Yeast Methods**

745 **Colony PCR**

746 Yeast colonies were used for rapid PCR screening using Taq polymerase, colony PCR
747 buffer (final concentrations: 12.5 mM Tris-Cl (pH 8.5), 56 mM KCl, 1.5 mM MgCl₂, 0.2 mM
748 dNTPs), and primers at a final concentration of 0.2 μ M. Reaction mixes were aliquoted into PCR

749 tubes and then a small amount of yeast cells were transferred from a streak plate into each tube
750 using the end of a 200 μ L micropipet tip. A standard hot-start thermocycler program with
751 extension at 68°C was adjusted for the Tm of the primer set and size of the amplification
752 product.

753 **Yeast Transformation**

754 Transformations of *med15Δ* strains were conducted using the Frozen-EZ Yeast
755 Transformation II kit (Zymo Research) with modifications. 10 mL of early log phase cells were
756 pelleted and washed with 2 mL EZ 1 solution, repelleted and resuspended in 1 mL EZ 2 solution.
757 Aliquots were frozen at -80°C. 0.2-1 μ g DNA and 100 μ L EZ 3 solution were added to 10 μ L
758 competent cells for each transformation. Transformations were plated on selective media
759 following incubation at 30°C for 45 minutes. Transformations into all other strains were
760 conducted using a standard lithium acetate transformation protocol [57, 58].

761 **Media and Phenotype Testing**

762 Cultures were grown in rich media (YPD), synthetic complete media lacking single
763 amino acids (SC-Leu or SC-Ura), or synthetic defined media supplemented with required amino
764 acids (SD+Lys). Synthetic media types described using one- or three-letter amino acid
765 abbreviations. Spot assays were performed on rich media or synthetic complete media with
766 additives.

767 Exponentially growing subcultures were diluted differentially to achieve a consistent
768 initial concentration of 5×10^6 cells/mL. 5-fold or 10-fold serial dilutions were carried out in the
769 wells of a sterile 96-well microtiter dish. 2 μ L volumes of each dilution were spotted on different
770 types of solid media. Plates were incubated at desired temperatures (22°C, 30°C, and 38°C).
771 Phenotypes were observed and imaged daily using a flatbed scanner. Images were selected for

772 figures based on the incubation times at which differential phenotypes on specific media types
773 were most apparent compared to growth on YPD at the same time. In some cases (various
774 concentrations of ketoconazole, even the wild type strain was affected.

775 The results of spot assays were visualized using ImageJ [59] (Fig. 4). Grayscale TIFF
776 formatted images of plates were imported into ImageJ. Background pixels, that did not
777 correspond to yeast colonies, were set to an intensity of 0 using an intensity threshold cutoff.
778 Threshold cutoffs determined for each plate separately. An area containing yeast colonies was
779 selected using the rectangle tool. The same rectangular area selection was used across a single
780 experiment. For each strain the percent area was measured (pixels corresponding to
781 colonies/total area * 100) and normalized to the growth of that strain on YPD.

782 A microtiter dish based chemical sensitivity assay was implemented as previously
783 described [60] with minor modifications to achieve increased resolution. Cells of each genotype
784 in biological triplicate (transformants) were grown to saturation in SC-Leu media, diluted to an
785 OD₆₀₀ of 0.1-0.2 and inoculated 1:1 into 2xYPD with various concentrations of drug or in
786 alternative types of media and allowed to incubate overnight at the indicated temperature. OD₆₀₀
787 readings were conducted using a microplate reader following 30 seconds of shaking at an
788 endpoint of 20-24 hours. Relative growth was calculated after background subtraction by
789 dividing the absorbance for each treated well with the corresponding value of the 0-drug control
790 well. Relative growth for each genotype was plotted for a single drug concentration chosen for
791 causing a reduction in growth of the wild type *MED15* strain of less than 50%.

792

793 **β-Galactosidase Reporter Assays**

794 **Human Glucocorticoid Receptor Tau 1 Fragment Dependent Reporter**

795 Yeast carrying an expression vector for the human glucocorticoid receptor Tau 1
796 fragment transcription factor (hGR τ 1) fused to LexA and the LexA-driven *lacZ* reporter
797 (JF2768) were transformed with a third plasmid carrying the desired *MED15* allele or an empty
798 vector (pRS315). As previously described, transformants were prescreened on X-Gal plates to
799 identify transformants displaying the “average” amount of reporter activity for that strain [18].
800 Outliers that were either noticeably more or less blue than the other transformants were
801 excluded.

802 At least 3 transformants per strain were grown in minimal media (SD+AdeLys) to a
803 concentration of approximately 2×10^7 cells/mL. Induction of the hGR transcription factor was
804 by addition of CuSO₄ to 0.25 mM for 1 hour. Cultures were pelleted and stored at -80°C in the
805 presence of glass beads and protein extraction buffer. Protein extracts were prepared and analysis
806 conducted within a week to avoid degradation or deterioration of the sample.

807 **Gal4 Dependent Reporter**

808 *med15Δ gal80Δ* strain (JF2631) containing an integrated UAS_G-*lacZ* reporter was
809 transformed with plasmids containing the desired *MED15* allele or an empty vector.
810 Transformants were subcultured in SC-Leu 2% raffinose and grown at 30°C to log phase (1-
811 2×10^7 cells/mL). *med15Δ GAL80* strains (JF2629) containing an integrated UAS_G-*lacZ* reporter
812 were likewise cultured in SC-Leu 2% raffinose to saturation but then subcultured in SC-Leu with
813 2% raffinose + 2% glucose or SC-Leu 2% raffinose + 2% galactose and grown at 30°C to log
814 phase ($1-2 \times 10^7$ cells/mL). Cultures prepared for protein extraction as above and stored at -80°C.

815 **Protein Extraction**

816 Yeast cells were harvested from log-phase cultures in reporter-specific growth conditions
817 and frozen at -80°C. Pelleted yeast cells were resuspended in Breaking Buffer (0.1 M Tris pH 8,

818 20% glycerol, 1 mM DTT) in tubes containing glass beads (200 mg, 0.4 mm) and were lysed
819 using a TissueLyser LT (Qiagen). To minimize protein degradation, 5 μ L of 40 mM PMSF was
820 added periodically throughout the process of preparing extracts. Tubes were alternately shaken at
821 50 oscillations/second for 20-30 seconds and then placed on ice for at least 1 minute for a total of
822 2 minutes of shaking. Cell debris was pelleted at 13,000 rpm for 10 minutes at 4°C. The
823 supernatant was transferred to a new tube containing additional PMSF. Protein extracts were
824 stored at -80°C or kept on ice until used for subsequent analyses.

825 **Protein Concentration Determination (Bradford Assay)**

826 Total protein concentrations were determined using a modified Bradford Assay (BioRad).
827 2-10 μ L of each protein extract or BSA standard (100-1000 mg/mL) was added in duplicate
828 wells of a 96-well plate. 200 μ L of Bradford assay working solution was added using an 8-tip
829 multichannel pipet. A standard curve was generated using a series of BSA standards of known
830 concentrations designed to produce absorbance readings within the linear range of the
831 spectrophotometer. Final absorbance readings were taken after 15 minutes at a wavelength of
832 595 nm. The average absorbance of blank wells was subtracted from all readings. A best fit
833 linear regression based on the standard calibration curve was used to determine sample
834 concentration.

835 **Enzymatic Assay**

836 Approximately 10 ng of total protein (5-50 μ L protein extract) was diluted to 1 mL in Z-
837 buffer (60 mM Na₂HPO₄, 40 mM NaH₂PO₄, 10 mM KCl, 1 mM MgSO₄, 50 mM β -
838 mercaptoethanol (BME)) in 13 mm glass tubes and incubated in a temperature block held at
839 28°C. 200 μ L ONPG (4 mg/mL in Z-buffer; made fresh for each experiment) was added to each

840 tube (time 0). Reactions were stopped once the solutions turned yellow by addition of 500 μ L of
841 1 M Na₂CO₃. A₄₂₀ measurements were taken for each sample.

842 Data Processing

843 Beta-galactosidase values were calculated using the formula:

$$844 \beta\text{Gal Units} = \frac{\text{Final OD420} * 378}{\text{Reaction time (minutes)} * \text{Volume (mL)} * \text{Protein concentration } \left(\frac{\text{mg}}{\text{mL}}\right)}$$

845 Due to systematic difference between experiments, such as different ONPG solution
846 preparations or quality of extracts, relative expression values were calculated for each
847 experiment to be able to compare strains measured in different experiments. When necessary, the
848 average β -gal value for the wild type strain was set to 100% for each experiment.

849 Split Ubiquitin Assay

850 Yeast strains containing both an N-ubiquitin and a C-ubiquitin-R_{URA3} expressing
851 plasmids were cultured in SD+LysUra or SC-HisLeu to log-phase at 30°C to a concentration of
852 $\sim 1 \times 10^7$ cells/mL. CuSO₄ was added to a final concentration of 0.05-0.25 mM and the cultures
853 incubated for an additional hour. In some experiments, methionine was added to 20 μ M during
854 this incubation. The addition of small amounts of methionine clarified the phenotype on plates
855 lacking uracil. Cultures were serially diluted and 2 μ L was plated on media lacking methionine
856 and uracil as well as media containing 5-FOA [61].

857 RNA Methods

858 Yeast strains were cultured in SC-Leu to saturation and then subcultured in 10 mL YPD
859 and grown to log-phase at 30°C to a concentration of $\sim 2 \times 10^7$ cells/mL. After incubation yeast
860 were pelleted, washed with cold water, frozen with dry ice, and stored at -80°C. RNA was
861 extracted using a hot acid phenol protocol with modifications [62]. Pellets were resuspended in
862 400 μ L TES solution (10 mM Tris, 10 mM EDTA, 0.5% SDS) and an equal volume of acid

863 phenol was added to each tube and vortexed for 10 seconds. Tubes were incubated in a 65°C
864 water bath for 1 hour and vortexed every 10-12 minutes. Phases were separated by
865 microcentrifugation in the cold for 5 minutes. The aqueous layer was extracted into a new tube
866 avoiding the DNA-enriched interface. A second round of acid phenol extraction was conducted
867 followed by a chloroform extraction. RNA was precipitated with 300 μ L of 4 M LiCl in dry ice
868 for 20 minutes followed by 5 minutes of high-speed centrifugation at 4°C. The pellet was
869 washed with 500 μ L ice cold 70% ethanol and then dried for 10 minutes at 37°C. RNA pellets
870 were resuspended in DEPC treated water and stored at -20°C.

871 Contaminating genomic DNA was removed using the DNase Max Kit (Qiagen). 10 μ L of
872 a 1x Master Mix (5 μ L 10X Buffer, 5 μ L water, and 0.5 μ L DNase I) was added to 40 μ L RNA.
873 Tubes were incubated at 37°C for 30 minutes. DNase was removed by addition of 5 μ L of the
874 DNase removal resin and room temperature incubation for 10 minutes with periodic agitation
875 followed by centrifugation. Alternatively, DNase was removed using an RNA clean-up column
876 (Zymo Research). The concentration of the purified RNA was determined using a NanoDrop
877 spectrophotometer (Thermo Scientific).

878 **cDNA First Strand Synthesis**

879 cDNA was prepared using Superscript III First-Strand Synthesis System (Invitrogen) or
880 Lunascript (New England Biolabs). Transcripts were amplified with either random hexamer
881 (Invitrogen) or anchored oligo-dT20 (Integrated DNA Technologies) primers. For anchored
882 oligo-dT20 primers 1 μ g RNA, 50 ng primer, and 0.01 μ mol dNTPs were mixed in a final
883 volume of 10 μ L. Tubes were incubated for 5 minutes at 65°C and then 2 minutes on ice. 10 μ L
884 cDNA Master Mix (2x RT buffer, 10 mM MgCl₂, 0.02 M DTT, 40 U RNase OUT, 200 U
885 Superscript III Reverse Transcriptase) or mock Master Mix which did not contain reverse

886 transcriptase was added to each tube which were then incubated for 60 minutes at 50°C and 5
887 minutes at 85°C. To degrade RNA, 2 U RNase H was added to each tube and then the tubes were
888 incubated for 20 minutes at 37°C. For random hexamer primers tubes were incubated 10 minutes
889 at 25°C and then 50 minutes at 50°C.

890 **qRT-PCR**

891 Transcript abundance was quantified for each sample relative to a normalization
892 transcript using the PerfeCTa SYBR Green FastMix (Quantabio) in 96-well PCR plates (Hard-
893 Shell 480 PCR Plates, Bio-Rad) measured in a LightCycler 480 (Roche). Individual 10 µL
894 reactions consisted of 5 µL FastMix, 1 µL target-specific primer pairs (0.5 µL 10 µM forward
895 primer and 0.5 µL 10 µM reverse primer), 3 µL DEPC treated water, and 1 µL cDNA, mock
896 cDNA, or water. Plates were sealed with optically clear film (PlateSeal). A standard SYBR green
897 PCR program was used with modifications: 95°C for 5 minutes, 45 cycles of 95°C for 10
898 seconds, 55°C for 10 seconds, and 72°C for 20 seconds with a single fluorescence acquisition. A
899 melting curve was conducted directly following the PCR program to confirm the presence of
900 individual species amplified in each well. The melting curve program was 95°C for 5 seconds,
901 65°C for 1 minute, and ramp up to 97°C by 0.11°C/s with continuous fluorescence acquisition.
902 *ALG9*, a gene encoding an alpha 1,2 mannosyltransferase, which is known to be stably expressed
903 across growth conditions in yeast [63], was used as a normalization transcript. All samples were
904 measured with three technical replicates. Mock cDNA (prepared without the addition of reverse
905 transcriptase) and water were used as negative controls.

906 **Data Analysis**

907 The relative abundance of target transcripts was determined by calculating the crossing
908 point (CP) or cycle threshold (CT) value for each reaction. CP values were calculated using the

909 Second Derivative Maximum method implemented in the LightCycler 480 Software (Roche). CT
910 values were calculated using the Comparative CT ($\Delta\Delta CT$) method implemented in the
911 QuantStudio 3 Software (Applied Biosystems). The average CP or CT for technical replicates
912 amplifying the target transcript with a specific RNA sample was normalized to the average CP or
913 CT for technical replicates amplifying the normalization transcript. This ratio was then compared
914 across samples as a depiction of relative abundance of the target transcript in each sample.

915 **Primers**

916 Primers used in this study are listed in Table S3. All primers were synthesized by
917 Integrated DNA Technologies. The use of each primer in construction, screening, and
918 sequencing is noted in Table S3a, b and c. All primer pairs used to amplify transcripts in qRT-
919 PCR are listed in Table S4. Primer pair efficiency was measured by qRT-PCR analysis of serial
920 dilution of control RNA.

921

922 **Protein Expression and Purification**

923 All bacterial expression plasmids were transformed into *E. coli* BL21-AI. Transformants
924 were incubated in 250mL LB media with 0.1% glucose and grown to log phase at 37°C. 0.5mM
925 IPTG and 0.2% arabinose were added to the media and the bacteria cultured at room temperature
926 overnight. Bacteria were harvested by low-speed centrifugation for 20 minutes. Pellets were
927 resuspended in 10 mL buffer A (50 mM pH7.5 Tris-HCl, 500 mM NaCl) with PMSF added to 1
928 mM. Bacterial lysis was by sonication. The lysate was cleared by centrifugation at 3000 rpm for
929 30 minutes at 4°C

930 Gcn4 and Med15 supernatants were mixed with 5 ml Ni-NTA beads (Qiagen) and
931 incubated at 4°C for 1 hour. The beads were spun down at 600 rpm and the supernatant removed.

932 Beads were washed 2x with 5 ml buffer A containing 50 mM imidazole, and then eluted with 5 ml
933 buffer A containing 250 mM imidazole.

934 For Msn2, a 1 ml HisPur™ Cobalt (Thermo Fisher) column was equilibrated with 2 ml of
935 buffer A prior to the addition of the bacterial lysate and a 1x wash step with 4 ml buffer A. Elution
936 was with 1 ml buffer A + 250 mM imidazole. The eluate was diluted with 9 ml buffer W (100 mM
937 Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA) and added to a 1 ml Strep-TactinXT resin (IBA
938 Lifesciences) column pre-equilibrated with 2 ml buffer W. An initial wash with 5 ml of buffer W
939 was followed by elution with 1 ml buffer W + 50 mM biotin.

940 For Med15 Q1R with a 12L Q1 insert, 2% final concentration of SDS was added to the
941 lysis buffer to solubilize the protein. After sonication and centrifugation, KCl was added to the
942 supernatant at the final concentration of 400 mM. SDS-KCl crystal were allowed to form for 1
943 hour at 4°C after which these were removed by centrifugation at 3000 rpm for 30 minutes. The
944 supernatant was purified by Ni-NTA chromatography as described above. After elution, KCl was
945 added to the elution at the final concentration of 400 mM and incubated for 1 hour at 4°C again
946 followed by centrifugation at 13000 rpm for 5 minutes to ensure maximum SDS removal. The
947 supernatant was kept for further usage.

948 All purified proteins were dialyzed 3 times, 1 hour each, in 700 ml buffer K (50 mM Tris-
949 HCl pH 7.5, 200 mM KCl, 20 mM NaCl, 30 mM MgCl₂, 1 mM DTT, 10% Glycerol), and
950 concentrated using a Millipore 30,000 MWCO centrifuge concentrator to reduce the volume to
951 100 ul or less. The concentration of the protein was measured spectrophotometrically using a
952 NanoDrop One (Thermo Scientific) and purity confirmed by SDS-PAGE analysis followed by
953 Coomassie Blue staining.

954 ***In vitro* droplet formation and turbidity assays:**

955 Purified mCherry-Med15 and Gcn4-GFP were mixed to a final concentration of 20 μ M (10 μ M
956 each protein) in 5 μ L. 5 μ L of crowding buffer (6% PEG-8000 final concentration) [30] was
957 added and mixed thoroughly. 7 μ L was pipetted onto a cover slip and allowed to stand for at least
958 1 minute before being covered with a microscope slide. Slides were observed using a Zeiss
959 fluorescence microscope. 1,6 hexanediol was added at the start of reactions at the indicated
960 concentration.

961

962

963

964

References

965 1. Paulson, H.L. and K.H. Fischbeck, *Trinucleotide repeats in neurogenetic disorders*.
966 *Annu Rev Neurosci*, 1996. **19**: p. 79-107.

967 2. Gatchel, J.R. and H.Y. Zoghbi, *Diseases of unstable repeat expansion: mechanisms and*
968 *common principles*. *Nat Rev Genet*, 2005. **6**(10): p. 743-55.

969 3. Hands, S., C. Sinadinos, and A. Wyttenbach, *Polyglutamine gene function and*
970 *dysfunction in the ageing brain*. *Biochim Biophys Acta*, 2008. **1779**(8): p. 507-21.

971 4. Stott, K., et al., *Incorporation of glutamine repeats makes protein oligomerize:*
972 *implications for neurodegenerative diseases*. *Proc Natl Acad Sci U S A*, 1995. **92**(14): p.
973 6509-13.

974 5. Loya, T.J., T.W. O'Rourke, and D. Reines, *Yeast Nab3 protein contains a self-assembly*
975 *domain found in human heterogeneous nuclear ribonucleoprotein-C (hnRNP-C) that is*
976 *necessary for transcription termination*. *J Biol Chem*, 2013. **288**(4): p. 2111-7.

977 6. Garbett, K.A., et al., *Yeast TFIID serves as a coactivator for Rap1p by direct protein-*
978 *protein interaction*. *Mol Cell Biol*, 2007. **27**(1): p. 297-311.

979 7. Caron, N.S., et al., *Polyglutamine domain flexibility mediates the proximity between*
980 *flanking sequences in huntingtin*. *Proc Natl Acad Sci U S A*, 2013. **110**(36): p. 14610-5.

981 8. Nucifora, F.C., Jr., et al., *Interference by huntingtin and atrophin-1 with cbp-mediated*
982 *transcription leading to cellular toxicity*. *Science*, 2001. **291**(5512): p. 2423-8.

983 9. Schaefer, M.H., E.E. Wanker, and M.A. Andrade-Navarro, *Evolution and function of*
984 *CAG/polyglutamine repeats in protein-protein interaction networks*. *Nucleic Acids*
985 *Research*, 2012. **40**(10): p. 4273-4287.

986 10. Caprioli, M., et al., *Clock gene variation is associated with breeding phenology and*
987 *maybe under directional selection in the migratory barn swallow*. *PLoS One*, 2012. **7**(4):
988 p. e35140.

989 11. Bryan, A.C., et al., *A Variable Polyglutamine Repeat Affects Subcellular Localization*
990 *and Regulatory Activity of a Populus ANGUSTIFOLIA Protein*. *G3 (Bethesda)*, 2018.
991 **8**(8): p. 2631-2641.

992 12. Rice, C., et al., *The Nature, Extent, and Consequences of Genetic Variation in the opa*
993 *Repeats of Notch in Drosophila*. *G3 Genes|Genomes|Genetics*, 2015. **5**(11): p. 2405-
994 2419.

995 13. Gemayel, R., et al., *Variable Glutamine-Rich Repeats Modulate Transcription Factor*
996 *Activity*. *Mol Cell*, 2015. **59**(4): p. 615-27.

997 14. Fiumara, F., et al., *Essential role of coiled coils for aggregation and activity of Q/N-rich*
998 *prions and PolyQ proteins*. *Cell*, 2010. **143**(7): p. 1121-35.

999 15. Loya, T.J., et al., *A network of interdependent molecular interactions describes a higher*
1000 *order Nrd1-Nab3 complex involved in yeast transcription termination*. *J Biol Chem*,
1001 2013. **288**(47): p. 34158-67.

1002 16. Batlle, C., et al., *MED15 prion-like domain forms a coiled-coil responsible for its*
1003 *amyloid conversion and propagation*. *Commun Biol*, 2021. **4**(1): p. 414.

1004 17. Barberis, A., et al., *Contact with a component of the polymerase II holoenzyme suffices*
1005 *for gene activation*. *Cell*, 1995. **81**(3): p. 359-68.

1006 18. Kim, D.H., et al., *Functional conservation of the glutamine-rich domains of yeast Gal11*
1007 *and human SRC-1 in the transactivation of glucocorticoid receptor Tau 1 in*
1008 *Saccharomyces cerevisiae*. *Mol Cell Biol*, 2008. **28**(3): p. 913-25.

1009 19. Nishizawa, M., S. Taga, and A. Matsubara, *Positive and negative transcriptional*
1010 *regulation by the yeast GAL11 protein depends on the structure of the promoter and a*
1011 *combination of cis elements.* Mol Gen Genet, 1994. **245**(3): p. 301-12.

1012 20. Herbig, E., et al., *Mechanism of Mediator recruitment by tandem Gcn4 activation*
1013 *domains and three Gal11 activator-binding domains.* Mol Cell Biol, 2010. **30**(10): p.
1014 2376-90.

1015 21. Cooper, D.G. and J.S. Fassler, *Med15: Glutamine-Rich Mediator Subunit with Potential*
1016 *for Plasticity.* Trends Biochem Sci, 2019. **44**(9): p. 737-751.

1017 22. Thakur, J.K., et al., *A nuclear receptor-like pathway regulating multidrug resistance in*
1018 *fungi.* Nature, 2008. **452**(7187): p. 604-9.

1019 23. Thakur, J.K., et al., *Mediator subunit Gal11p/MED15 is required for fatty acid-*
1020 *dependent gene activation by yeast transcription factor Oaf1p.* J Biol Chem, 2009.
1021 **284**(7): p. 4422-8.

1022 24. Nogi, Y. and T. Fukasawa, *A novel mutation that affects utilization of galactose in*
1023 *Saccharomyces cerevisiae.* Curr Genet, 1980. **2**(2): p. 115-20.

1024 25. Traven, A., B. Jelicic, and M. Sopta, *Yeast Gal4: a transcriptional paradigm revisited.*
1025 EMBO Rep, 2006. **7**(5): p. 496-9.

1026 26. Hinnebusch, A.G. and G.R. Fink, *Positive regulation in the general amino acid control of*
1027 *Saccharomyces cerevisiae.* Proc Natl Acad Sci U S A, 1983. **80**(17): p. 5374-8.

1028 27. Natarajan, K., et al., *Transcriptional profiling shows that Gcn4p is a master regulator of*
1029 *gene expression during amino acid starvation in yeast.* Mol Cell Biol, 2001. **21**(13): p.
1030 4347-68.

1031 28. Brzovic, P.S., et al., *The acidic transcription activator Gcn4 binds the mediator subunit*
1032 *Gal11/Med15 using a simple protein interface forming a fuzzy complex.* Mol Cell, 2011.
1033 **44**(6): p. 942-53.

1034 29. Warfield, L., et al., *A sequence-specific transcription activator motif and powerful*
1035 *synthetic variants that bind Mediator using a fuzzy protein interface.* Proc Natl Acad Sci
1036 U S A, 2014. **111**(34): p. E3506-13.

1037 30. Boija, A., et al., *Transcription Factors Activate Genes through the Phase-Separation*
1038 *Capacity of Their Activation Domains.* Cell, 2018. **175**(7): p. 1842-1855 e16.

1039 31. Lallet, S., et al., *Role of Gal11, a component of the RNA polymerase II mediator in stress-*
1040 *induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae.* Mol Microbiol,
1041 2006. **62**(2): p. 438-52.

1042 32. Gallagher, J.E.G., et al., *The Polymorphic PolyQ Tail Protein of the Mediator Complex,*
1043 *Med15, Regulates the Variable Response to Diverse Stresses.* Int J Mol Sci, 2020. **21**(5).

1044 33. Cooper, D.G., et al., *Possible Role for Allelic Variation in Yeast MED15 in Ecological*
1045 *Adaptation.* Front Microbiol, 2021. **12**: p. 741572.

1046 34. Park, J.M., et al., *In vivo requirement of activator-specific binding targets of mediator.*
1047 Mol Cell Biol, 2000. **20**(23): p. 8709-19.

1048 35. Thakur, J.K., et al., *Mediator subunit Gal11p/MED15 is required for fatty acid-*
1049 *dependent gene activation by yeast transcription factor Oaf1p.* The Journal of biological
1050 chemistry, 2009. **284**(7): p. 4422-8.

1051 36. Jedidi, I., et al., *Activator Gcn4 employs multiple segments of Med15/Gal11, including*
1052 *the KIX domain, to recruit mediator to target genes in vivo.* J Biol Chem, 2010. **285**(4):
1053 p. 2438-55.

1054 37. Hidalgo, P., et al., *Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain*. Genes Dev, 2001. **15**(8): p. 1007-20.

1055 38. Miller, C., et al., *Mediator phosphorylation prevents stress response transcription during non-stress conditions*. J Biol Chem, 2012. **287**(53): p. 44017-26.

1056 39. Qi, Y., et al., *Mediator Engineering of *Saccharomyces cerevisiae* To Improve Multidimensional Stress Tolerance*. Appl Environ Microbiol, 2022. **88**(8): p. e0162721.

1057 40. Sakurai, H., Y. Hiraoka, and T. Fukasawa, *Yeast Gal11 protein is a distinctive type transcription factor that enhances basal transcription in vitro*. Proc. Natl. Acad. Sci. U.S.A., 1993. **90**: p. 8382-8386.

1058 41. Sakurai, H., et al., *Yeast GAL11 protein stimulates basal transcription in a gene-specific manner by a mechanism distinct from that by DNA-bound activators*. FEBS Letters, 1994. **351**: p. 176-180.

1059 42. Wittke, S., et al., *Probing the molecular environment of membrane proteins in vivo*. Mol Biol Cell, 1999. **10**(8): p. 2519-30.

1060 43. Sadeh, A., et al., *Conserved motifs in the Msn2-activating domain are important for Msn2-mediated yeast stress response*. J Cell Sci, 2012. **125**(Pt 14): p. 3333-42.

1061 44. Tuttle, L.M., et al., *Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex*. Cell Rep, 2018. **22**(12): p. 3251-3264.

1062 45. Tuttle, L.M., et al., *Mediator subunit Med15 dictates the conserved "fuzzy" binding mechanism of yeast transcription activators Gal4 and Gcn4*. Nat Commun, 2021. **12**(1): p. 2220.

1063 46. Vijayvargia, R., et al., *Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function*. Elife, 2016. **5**: p. e11184.

1064 47. Nishizawa, M., S. Taga, and A. Matsubara, *Positive and negative transcriptional regulation by the yeast GAL11 protein depends on the structure of the promoter and a combination of cis elements*. Mol. Gen. Genet., 1994. **245**: p. 301-312.

1065 48. Gianni, S., et al., *Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly*. Acc Chem Res, 2021. **54**(5): p. 1251-1259.

1066 49. Hatos, A., et al., *FuzDB: a new phase in understanding fuzzy interactions*. Nucleic Acids Res, 2022. **50**(D1): p. D509-D517.

1067 50. Miskei, M., C. Antal, and M. Fuxreiter, *FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies*. Nucleic Acids Res, 2017. **45**(D1): p. D228-D235.

1068 51. Fuxreiter, M., *Fold or not to fold upon binding - does it really matter?* Curr Opin Struct Biol, 2019. **54**: p. 19-25.

1069 52. Fuxreiter, M., *Towards a Stochastic Paradigm: From Fuzzy Ensembles to Cellular Functions*. Molecules, 2018. **23**(11).

1070 53. Mortimer, R.K. and J.R. Johnston, *Genealogy of principal strains of the yeast genetic stock center*. Genetics, 1986. **113**(1): p. 35-43.

1071 54. Brachmann, C.B., et al., *Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications*. Yeast, 1998. **14**(2): p. 115-32.

1072 55. Vidal, M., et al., *Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions*. Proc Natl Acad Sci U S A, 1996. **93**(19): p. 10315-20.

1100 56. Dunkler, A., J. Muller, and N. Johnsson, *Detecting protein-protein interactions with the*
1101 *Split-Ubiquitin sensor*. Methods Mol Biol, 2012. **786**: p. 115-30.

1102 57. Ito, H., et al., *Transformation of intact yeast cells treated with alkali cations*. J Bacteriol,
1103 1983. **153**(1): p. 163-8.

1104 58. Gietz, R.D. and R.A. Woods, *Transformation of yeast by lithium acetate/single-stranded*
1105 *carrier DNA/polyethylene glycol method*. Methods Enzymol, 2002. **350**: p. 87-96.

1106 59. Petropavlovskiy, A.A., et al., *A Quantitative Imaging-Based Protocol for Yeast Growth*
1107 *and Survival on Agar Plates*. STAR Protoc, 2020. **1**(3): p. 100182.

1108 60. Hung, C.W., et al., *A simple and inexpensive quantitative technique for determining*
1109 *chemical sensitivity in *Saccharomyces cerevisiae**. Sci Rep, 2018. **8**(1): p. 11919.

1110 61. McCusker, J.H. and R.W. Davis, *The use of proline as a nitrogen source causes*
1111 *hypersensitivity to, and allows more economical use of 5FOA in *Saccharomyces**
1112 *cerevisiae*. Yeast, 1991. **7**(6): p. 607-8.

1113 62. Collart, M.A. and S. Oliviero, *Preparation of yeast RNA*. Curr Protoc Mol Biol, 2001.
1114 **Chapter 13**: p. Unit13 12.

1115 63. Teste, M.A., et al., *Validation of reference genes for quantitative expression analysis by*
1116 *real-time RT-PCR in *Saccharomyces cerevisiae**. BMC Mol Biol, 2009. **10**: p. 99.

1117

1118

1119 **Figure Legends**

1120

1121 **Figure 1. Internal deletions and associated Med15 activities. (A)** Full length Med15 (1081 aa)
1122 domains: KIX (Kinase-inducible domain Interacting Domain), ABD1-3 (Activator Binding
1123 Domains), Q1-3 (polyglutamine tracts), MAD (Mediator Association Domain). Regions
1124 containing phosphorylation sites (S/T and S) including those dynamically phosphorylated in
1125 response to salt stress (red box) and others (black boxes). Numbers represent amino acid
1126 residues. KIX Δ -*MED15* constructs lack the KIX domain. KIXQ2Q3 Δ -*MED15* constructs lack
1127 the KIX domain and the poly-Q tracts for Q2 and Q3. In addition to the construct with the lab
1128 allele 12 glutamine residues at Q1, KIXQ2Q3 Δ -*MED15* constructs include a 0-Q1 construct as
1129 well as versions with different Q1 tract lengths (#-Q1) and non-glutamine sequences. KIX277-
1130 799 Δ -*MED15* constructs lack the KIX domain and central Q2/Q3 containing region. **(B)** Log-
1131 phase cultures of the *med15 Δ* strain (OY320) carrying a CEN plasmid with the indicated *MED15*
1132 allele, or strains with integrated phospho-site mutations (D7P and D30P) were serially diluted
1133 and spotted on YPD media with or without supplements and incubated at 30°C or alternative
1134 temperature as specified (38°C or room temperature (22°C)). **(C)** β -galactosidase activity of a
1135 Gal4-dependent (UAS_G-*lacZ*) reporter in a *med15 Δ* *gal80 Δ* strain (JF2631) carrying a CEN
1136 plasmid with the indicated *MED15* allele. Data points are the averages of at least 3 biological
1137 replicates (transformants) and error bars are the standard deviation of the mean. Significant
1138 differences were determined using ANOVA analysis with a Tukey post-hoc test, *** p \leq 0.001.

1139

1140 **Figure 2. Poly-Q length variation at Q1 alters Med15 activity. (A)** Log-phase cultures of the
1141 *med15 Δ* strain (OY320) carrying a CEN plasmid with the indicated *MED15* or KIXQ2Q3 Δ -

1142 *MED15* allele were serially diluted and spotted on YPD media with or without supplements and
1143 incubated at 30°C or room temperature (22°C) as specified. **(B)** Quantitative microtiter dish
1144 assay for growth in various media or in the presence of added chemicals. Each genotype was
1145 tested in biological triplicate. Plotted values are averages of the endpoint OD₆₀₀ divided by
1146 growth in permissive conditions (media without chemical, 30°C). Drug concentration was chosen
1147 for an effect on the wild type *MED15* strain of no more than 50% reduction in growth and was
1148 62.5 mM acetic acid, 6.25% ethanol and 5 µg/mL ketoconazole. Significance is indicated relative
1149 to growth of the wild type *MED15* strain. **(C-D)** β-galactosidase activity of a Gal4-dependent
1150 (UAS_G-*lacZ*) reporter (C, red) as in Figure 1, or a human glucocorticoid receptor dependent
1151 (hGR τ 1-*lacZ*) reporter (D, blue). All data points are the averages of at least 3 biological
1152 replicates (transformants) and error bars are the standard deviation of the mean. Significant
1153 differences were determined using ANOVA analysis with a Tukey post-hoc test, * p≤0.05.
1154

1155 **Figure 3. The Q1R fragment of Med15 forms liquid droplet like condensates with Gcn4**
1156 **and Msn2_{TAD}.** **(A)** Representative microscope images of *in vitro* reactions consisting of
1157 5uM Gcn4 and 20uM Med15 in the presence of 4% PEG and 125 mM NaCl. Images are the
1158 merge of the red and green channels. **(B)** The KIX-Q1R (KQ), Q1R and KIX (K) regions of
1159 Med15 were tested for droplet formation with Gcn4. **(C)** The Q1R-Gcn4 reaction was
1160 performed in the presence of 10% 1,6% 1,6-Hexandiol. **(D)** Comparison of Gcn4 aggregates
1161 formed in the presence of Med15 Q1R with and without the 12Q tract (Med15 12-Q1 Q1R and
1162 Med15 0-Q1 Q1R). **(E)** Representative microscope images of *in vitro* reactions consisting of 20
1163 µM mCherry-tagged Med15 Q1R variants and 5 µM GFP-tagged Msn2 (aa 2-301), or the same
1164 concentration of mCherry in the presence of 6% PEG. 1,6 hexanediol was added to 10% in

1165 parallel 12Q and 0Q – Msn2 reactions and only the merged image is shown at the end of each of
1166 the first two rows. Likewise, 1,6 hexanediol was added to 6% in parallel 12L and mCherry
1167 reactions and only the merged image is shown at the end of each of the last two rows.

1168

1169 **Figure 4. Q1 tract region coiled-coil structure perturbs Med15 activity.** (A) Sequence and
1170 coiled coil (cc) propensity of non-Q inserts. Maximum ccProbability (Max ccProb.) corresponds
1171 to the peak coiled-coil formation probability within the Q1 region for each construct. Relative
1172 ccPropensity (Rel. ccPropensity) is the average ccProbability across the Q1 region peak relative
1173 to the 12Q construct prediction. (B) Log-phase cultures of the *med15Δ* strain (OY320) carrying
1174 a CEN plasmid with the indicated *MED15* allele were serially diluted and spotted on YPD media
1175 with or without supplements and incubated at 30°C or room temperature (22°C) as specified.
1176 Graphs provide a visual representation of growth for each row of each plate. Relative growth is
1177 a pixel-based growth measurement that incorporates both viability and colony size relative to the
1178 wild type *MED15⁺* strain on each plate.

1179

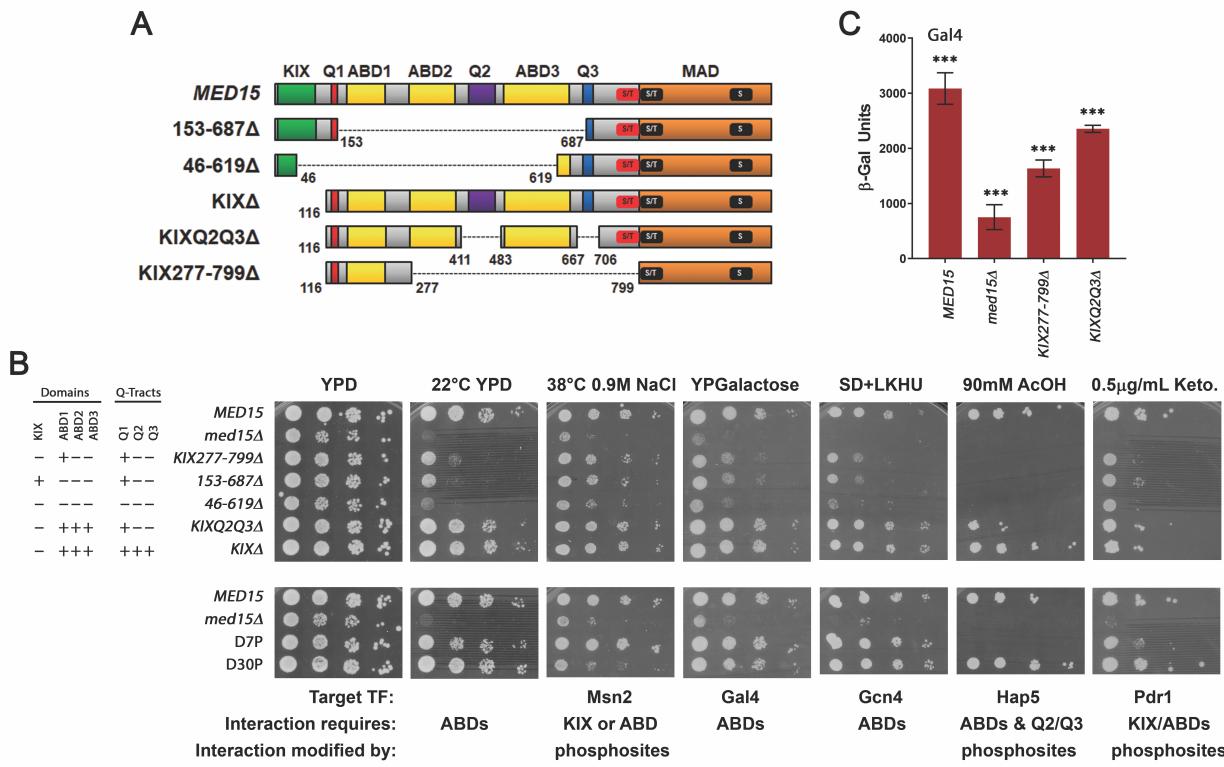
1180 **Figure 5. Basal Gcn4 and Msn2 dependent gene expression is modulated by the presence**
1181 **and length of the Q1 tract in Med15.** Relative expression of target genes for log-phase
1182 cultures of the *med15Δ* strain (OY320) carrying CEN plasmids with specified KIXQ2Q3Δ-
1183 *MED15* Q1 variant constructs in YPD grown at 30°C. Expression values for 12Q-Q1 (red) are
1184 set to 1. (A) *MED15* dependence of five representative target genes under basal (uninduced)
1185 conditions. (B) Q1 length variants; (C) Q1 inserts with interspersed proline variants designed to
1186 disrupt possible coiled-coil structures; (D) Q1 inserts with predicted or established coiled-coil

1187 structure (E) Non-glutamine Q1 inserts. For each strain the target gene expression was
1188 normalized to *ALG9* and averaged over 3 biological replicates (transformants).
1189 Significance was determined for each group of sequences relative to 12Q-Q1 using ANOVA
1190 analysis with a Tukey post-hoc, * $p \leq 0.05$, ** $p \leq 0.01$.

1191 **Figure 6. Med15 interacts with Msn2 through the KIX domain and Q1R. (A)** Split ubiquitin
1192 constructs. Wild type yeast (BY4742) transformed with plasmids expressing N-terminal
1193 Ubiquitin fragment (NUb) fused to fragments of *MED15* behind a copper inducible *CUP1*
1194 promoter and C-terminal Ubiquitin fragment (CUb) fused to a mutated *URA3* gene coding for an
1195 N-terminal arginine (*RURA3*) and the transcriptional-activation domain of Msn2 (*MSN2_{TAD}*)
1196 behind a methionine repressible *MET17* promoter. **(B)** Log-phase cultures in minimal media with
1197 leucine, lysine, and uracil (lacking methionine) were exposed to 0.05 or 0.2mM copper for 1
1198 hour and then serially diluted and spotted on media lacking uracil or containing 5-FOA. Plates
1199 corresponding to strains induced with 0.2mM copper are shown. **(C)** Relative spot size formation
1200 quantified per plate as in Figure 3 at a single time point for plates lacking uracil or containing 5-
1201 FOA corresponding to strains induced with 0.1 or 0.2mM copper (8 total plates per strain). The
1202 relative growth rank was determined for each plate across all 14 tested constructs. A rank of 1
1203 corresponds to the worst growth on plates lacking uracil and best growth on plates containing 5-
1204 FOA.

1205

1206 **Figure 7. The KIX domain of Med15 does not undergo efficient phase separation with**
1207 **Msn2.** Representative microscope images of 20 μ M mCherry tagged Med15 fragments (Q1R or
1208 KIX) or 20 μ M mCherry with no associated Med15 together with 5 μ M GFP tagged Msn2 in the
1209 presence of 6% PEG-8000 in the presence or absence of 6% 1,6 hexanediol.


1210

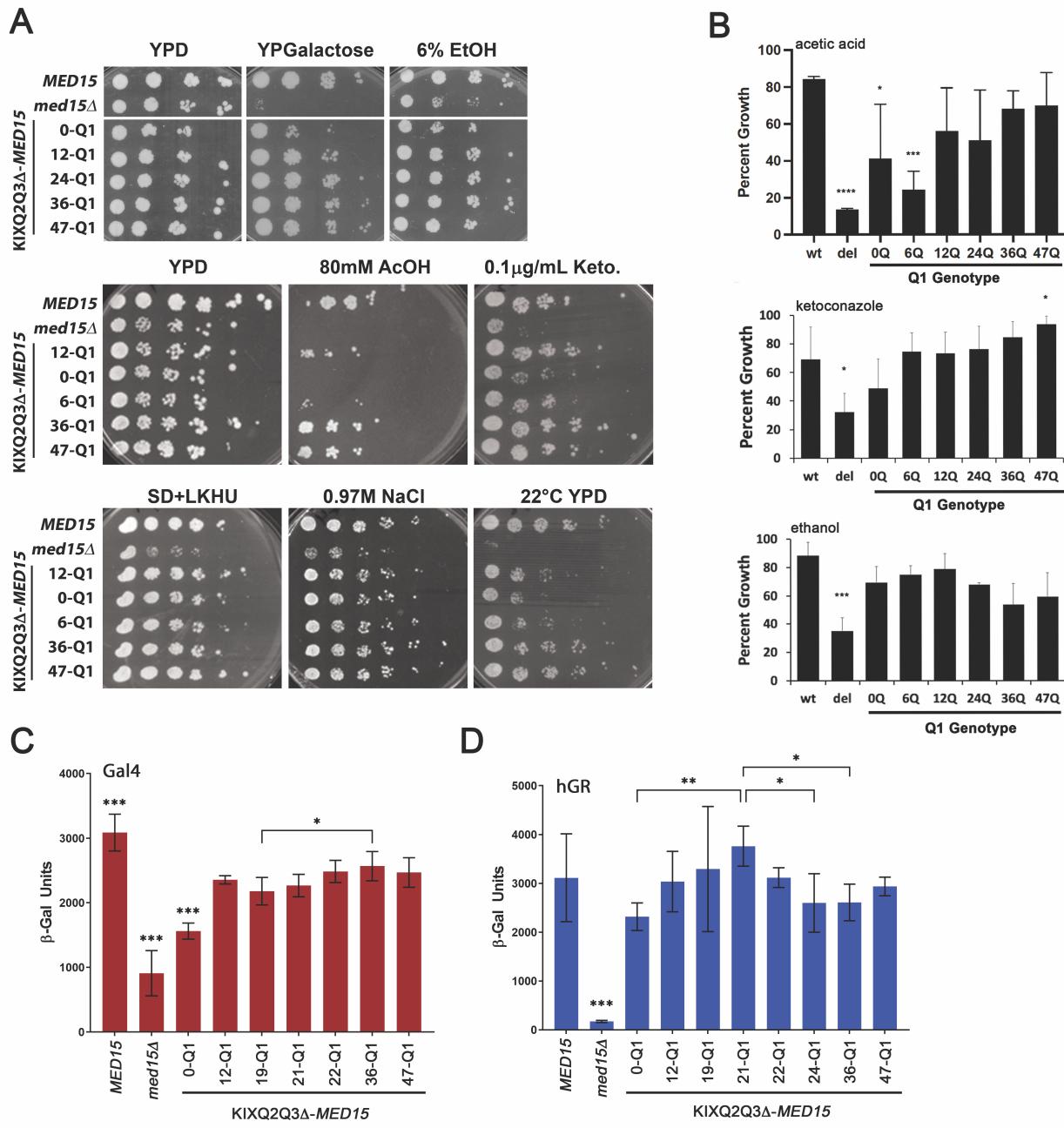
1211 **Figure 8. Interactions between Med15 sequences. (A)** Cartoon depicting split ubiquitin
1212 constructs. **(B)** Log phase cultures of wild type strains carrying both CUb and NUb plasmids
1213 were exposed to 0.05 mM copper (and in some cases 0.02 mM methionine) for 1 hour and then
1214 serially diluted and spotted on media lacking uracil (SC-HLMU) or containing 5-FOA. **(C)**
1215 Substitutions of the 12Q region in Q1R were tested for effects on the interaction with the KIX
1216 domain.

1217

1218 **Figure 9. Cartoon model depicting different types of Med15 interactions.** (A) View of
1219 Med15 in a pre-initiation complex. (B) Zoomed in view of a TF binding interface of Med15
1220 with Gcn4 and Msn2 shown as examples. (C) A depiction of the alternate states of Med15 either
1221 forming intermolecular interactions with a TF (Gcn4 shown as an example) or forming
1222 intramolecular interactions. Specific types of interactions are numbered: (1) Integration into
1223 Mediator likely independent of Q-tracts and dependent primarily on MAD. (2) Different TFs
1224 interact with MED15 ABDs through fuzzy (a, dashed line) or directed (b, solid line) interactions.
1225 (3) Poly-Q tracts provide flexibility and spacing between ABDs which influences interactions
1226 and transcriptional activation. (4) Intramolecular interactions within Med15 that compete with or
1227 are displaced by TF intermolecular interactions.

1228

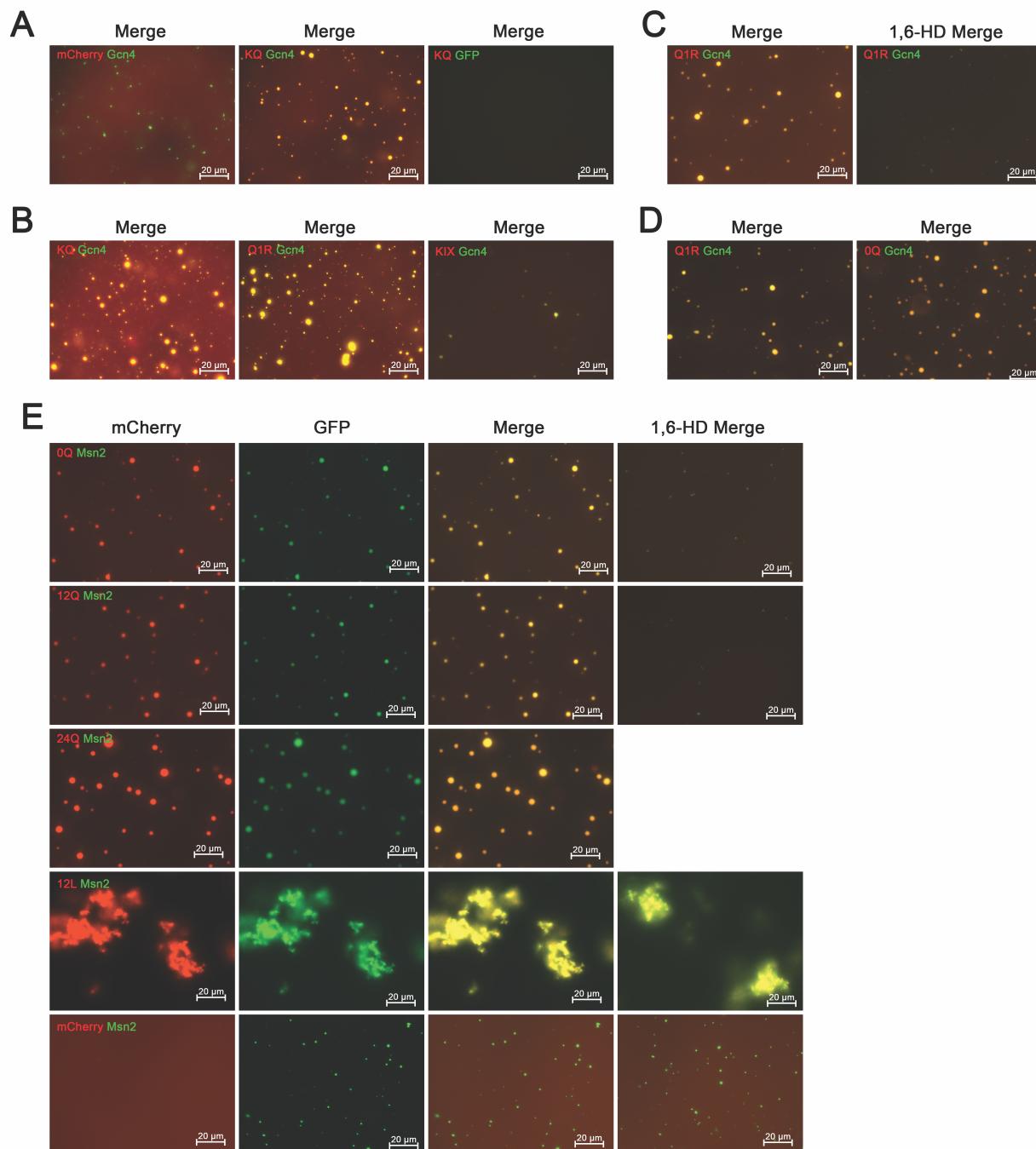
1229


1230

1231 **Figure 1. Internal deletions and associated Med15 activities. (A)** Full length Med15 (1081 aa)
1232 domains: KIX (Kinase-inducible domain Interacting Domain), ABD1-3 (Activator Binding
1233 Domains), Q1-3 (polyglutamine tracts), MAD (Mediator Association Domain). Regions
1234 containing phosphorylation sites (S/T and S) including those dynamically phosphorylated in
1235 response to salt stress (red box) and others (black boxes). Numbers represent amino acid
1236 residues. KIXΔ-*MED15* constructs lack the KIX domain. KIXQ2Q3Δ-*MED15* constructs lack
1237 the KIX domain and the poly-Q tracts for Q2 and Q3. In addition to the construct with the lab
1238 allele 12 glutamine residues at Q1, KIXQ2Q3Δ-*MED15* constructs include a 0-Q1 construct as
1239 well as versions with different Q1 tract lengths (#-Q1) and non-glutamine sequences. KIX277-
1240 799Δ-*MED15* constructs lack the KIX domain and central Q2/Q3 containing region. **(B)** Log-
1241 phase cultures of the *med15Δ* strain (OY320) carrying a CEN plasmid with the indicated *MED15*

1242 allele, or strains with integrated phospho-site mutations (D7P and D30P) were serially diluted
1243 and spotted on YPD media with or without supplements and incubated at 30°C or alternative
1244 temperature as specified (38°C or room temperature (22°C)). **(C)** β -galactosidase activity of a
1245 Gal4-dependent (UAS_G-*lacZ*) reporter in a *med15Δ gal80Δ* strain (JF2631) carrying a CEN
1246 plasmid with the indicated *MED15* allele. Data points are the averages of at least 3 biological
1247 replicates (transformants) and error bars are the standard deviation of the mean. Significant
1248 differences were determined using ANOVA analysis with a Tukey post-hoc test, *** p≤0.001.

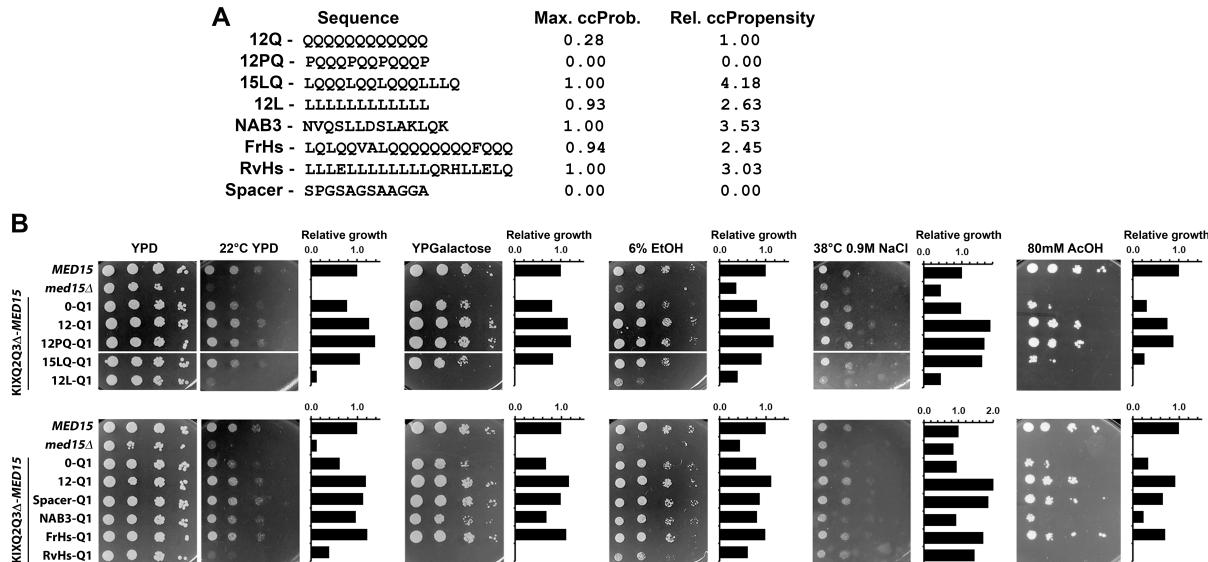
1249


1250

1251 **Figure 2. Poly-Q length variation at Q1 alters Med15 activity. (A)** Log-phase cultures of the
 1252 *med15Δ* strain (OY320) carrying a CEN plasmid with the indicated *MED15* or *KIXQ2Q3Δ-MED15*
 1253 allele were serially diluted and spotted on YPD media with or without supplements and
 1254 incubated at 30°C or room temperature (22°C) as specified. **(B)** Quantitative microtiter dish
 1255 assay for growth in various media or in the presence of added chemicals. Each genotype was
 1256

1257 tested in biological triplicate. Plotted values are averages of the endpoint OD₆₀₀ divided by
1258 growth in permissive conditions (media without chemical, 30°C). Drug concentration was chosen
1259 for an effect on the wild type *MED15* strain of no more than 50% reduction in growth and was
1260 62.5 mM acetic acid, 6.25% ethanol and 5 µg/mL ketoconazole. Significance is indicated relative
1261 to growth of the wild type *MED15* strain. **(C-D)** β-galactosidase activity of a Gal4-dependent
1262 (UAS_G-*lacZ*) reporter (C, red) as in Figure 1, or a human glucocorticoid receptor dependent
1263 (hGR τ 1-*lacZ*) reporter (D, blue). All data points are the averages of at least 3 biological
1264 replicates (transformants) and error bars are the standard deviation of the mean. Significant
1265 differences were determined using ANOVA analysis with a Tukey post-hoc test, * p≤0.05.
1266
1267

1268

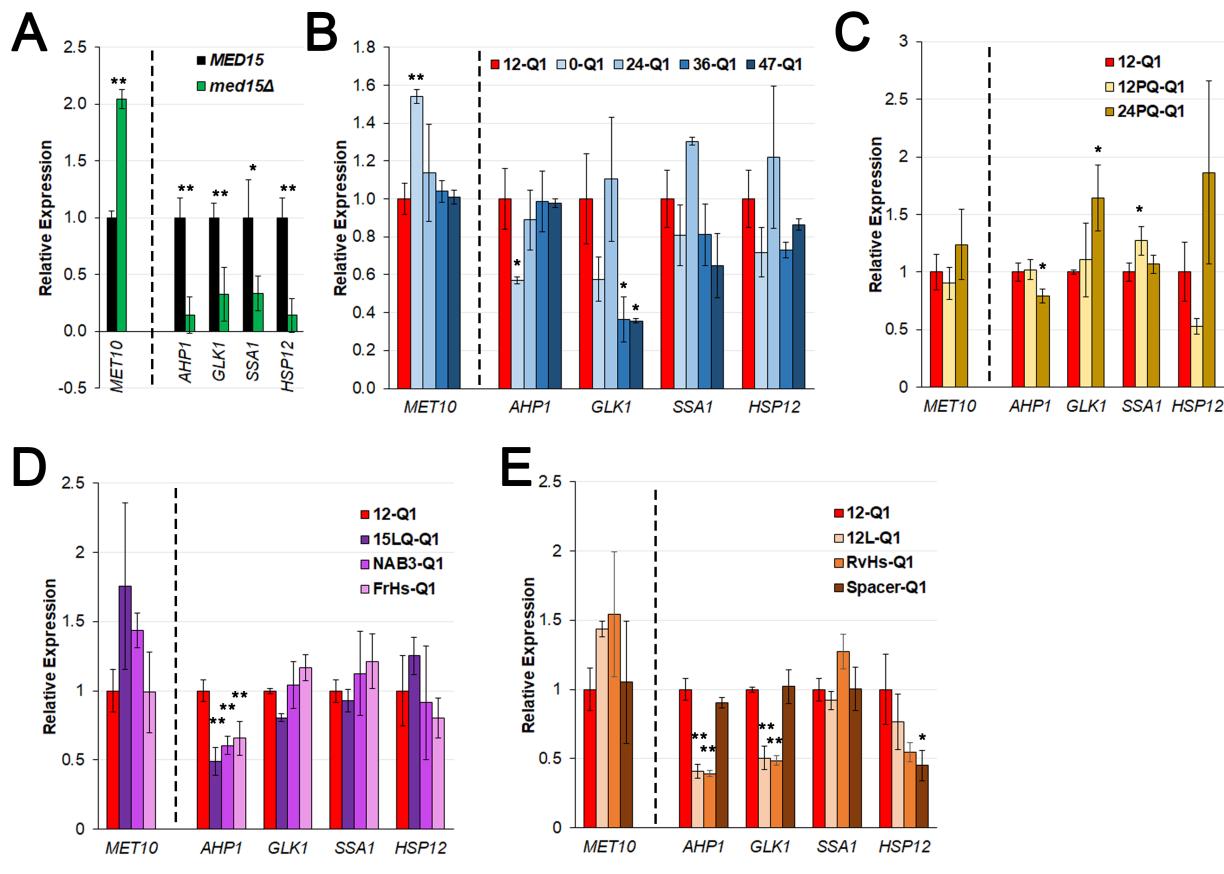

1269

1270 **Figure 3. The Q1R fragment of Med15 forms liquid droplet like condensates with Gcn4**

1271 **and Msn2_{TAD}.** (A) Representative microscope images of in vitro reactions consisting of

1272

1273 5uM Gcn4 and 20uM Med15 in the presence of 4% PEG and 125 mM NaCl. Images are the
1274 merge of the red and green channels. **(B)** The KIX-Q1R (KQ), Q1R and KIX (K) regions of
1275 Med15 were tested for droplet formation with Gcn4. **(C)** The Q1R-Gcn4 reaction was
1276 performed in the presence of 10% 1,6% 1,6-Hexandiol. **(D)** Comparison of Gcn4 aggregates
1277 formed in the presence of Med15 Q1R with and without the 12Q tract (Med15 12-Q1 Q1R and
1278 Med15 0-Q1 Q1R). **(E)** Representative microscope images of *in vitro* reactions consisting of 20
1279 μ M mCherry-tagged Med15 Q1R variants and 5 μ M GFP-tagged Msn2 (aa 2-301), or the same
1280 concentration of mCherry in the presence of 6% PEG. 1,6 hexanediol was added to 10% in
1281 parallel 12Q and 0Q – Msn2 reactions and only the merged image is shown at the end of each of
1282 the first two rows. Likewise, 1,6 hexanediol was added to 6% in parallel 12L and mCherry
1283 reactions and only the merged image is shown at the end of each of the last two rows.
1284


1285

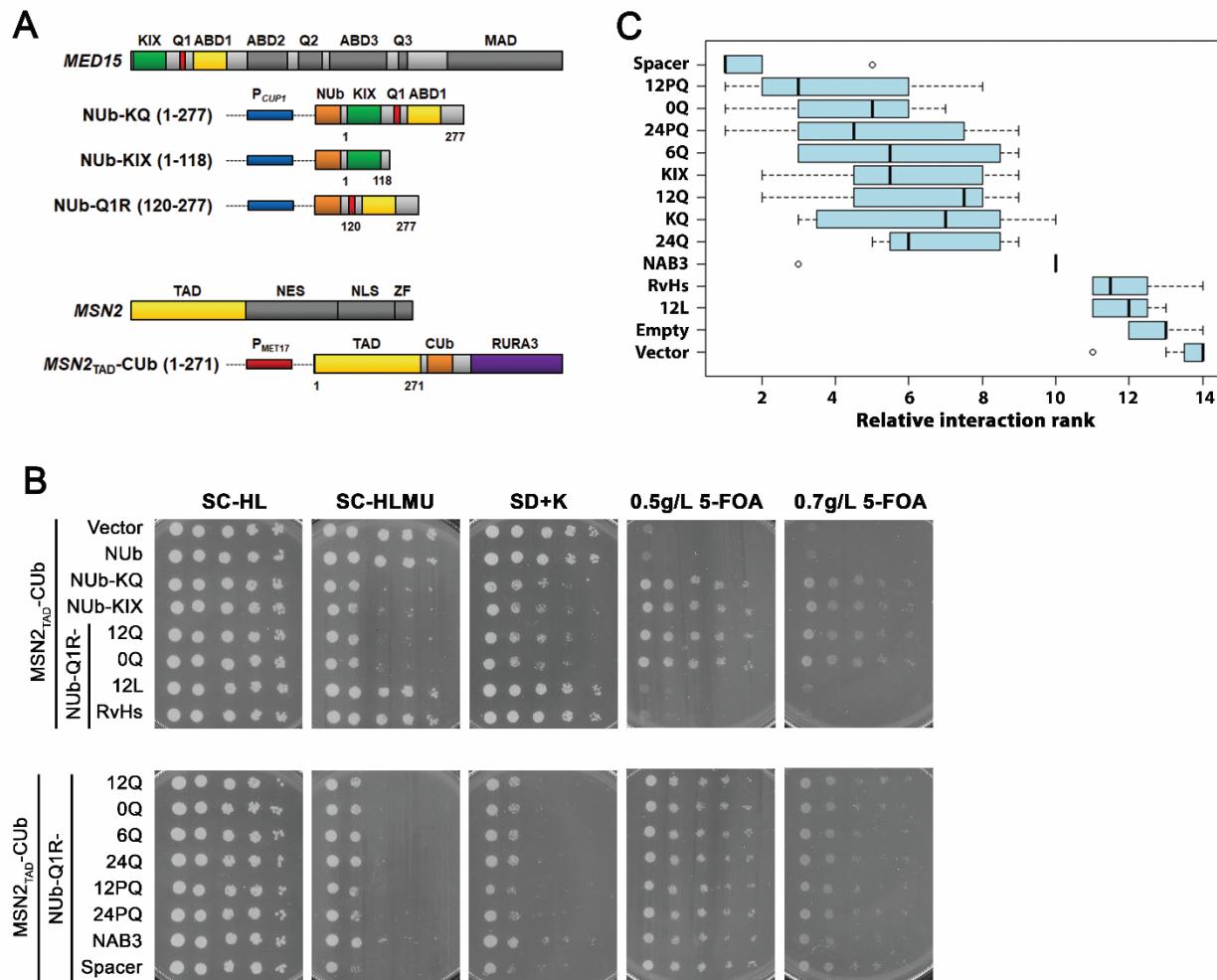
1286

1287 **Figure 4. Q1 tract region coiled-coil structure perturbs Med15 activity. (A)** Sequence and
1288 coiled coil (cc) propensity of non-Q inserts. Maximum ccProbability (Max ccProb.) corresponds
1289 to the peak coiled-coil formation probability within the Q1 region for each construct. Relative
1290 ccPropensity (Rel. ccPropensity) is the average ccProbability across the Q1 region peak relative
1291 to the 12Q construct prediction. **(B)** Log-phase cultures of the *med15Δ* strain (OY320) carrying
1292 a CEN plasmid with the indicated *MED15* allele were serially diluted and spotted on YPD media
1293 with or without supplements and incubated at 30°C or room temperature (22°C) as specified.
1294 Graphs provide a visual representation of growth for each row of each plate. Relative growth is
1295 a pixel-based growth measurement that incorporates both viability and colony size relative to the
1296 wild type *MED15⁺* strain on each plate.

1297

1298

1299

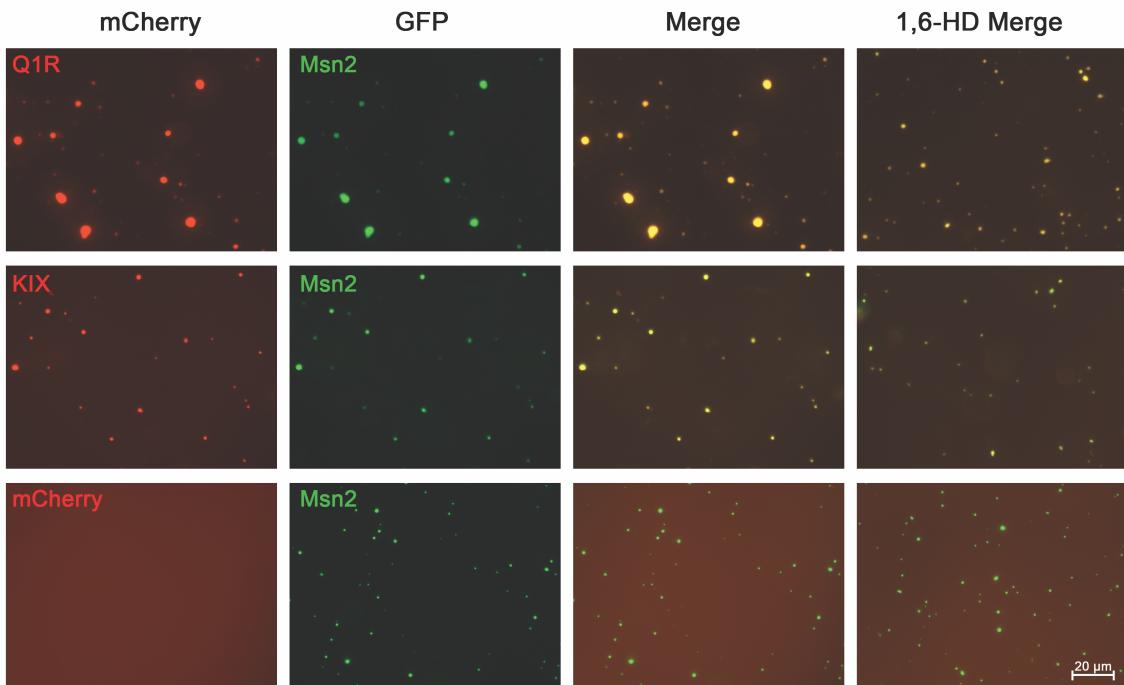

1300 **Figure 5. Basal Gcn4 and Msn2 dependent gene expression is modulated by the presence**
 1301 **and length of the Q1 tract in Med15.** Relative expression of target genes for log-phase
 1302 cultures of the *med15Δ* strain (OY320) carrying CEN plasmids with specified KIXQ2Q3Δ-
 1303 *MED15* Q1 variant constructs in YPD grown at 30°C. Expression values for 12Q-Q1 (red) are
 1304 set to 1. **(A)** *MED15* dependence of five representative target genes (four activated, one
 1305 repressed) under basal (uninduced) conditions. **(B)** Q1 length variants; **(C)** Q1 inserts with
 1306 interspersed proline variants designed to disrupt possible coiled-coil structures; **(D)** Q1 inserts
 1307 with predicted or established coiled-coil structure **(E)** Non-glutamine Q1 inserts. For each strain
 1308 the target gene expression was normalized to *ALG9* and averaged over 3 biological replicates
 1309 (transformants).

1310 Significance was determined for each group of sequences relative to 12Q-Q1 using ANOVA

1311 analysis with a Tukey post-hoc, * $p \leq 0.05$, ** $p \leq 0.01$.

1312

1313


1315 **Figure 6. Med15 interacts with Msn2 through the KIX domain and Q1R.** (A) Split ubiquitin
 1316 constructs. Wild type yeast (BY4742) transformed with plasmids expressing N-terminal
 1317 Ubiquitin fragment (NUb) fused to fragments of *MED15* behind a copper inducible *CUP1*
 1318 promoter and C-terminal Ubiquitin fragment (CUb) fused to a mutated *URA3* gene coding for an
 1319 N-terminal arginine (RURA3) and the transcriptional-activation domain of *MSN2* (*MSN2_{TAD}*)
 1320 behind a methionine repressible *MET17* promoter. (B) Log-phase cultures in minimal media with
 1321 leucine, lysine, and uracil (lacking methionine) were exposed to 0.1 or 0.2 mM copper for 1 hour
 1322 and then serially diluted and spotted on media lacking uracil or containing 5-FOA. Plates
 1323 corresponding to strains induced with 0.2 mM copper are shown. (C) Relative spot size

1324 formation quantified per plate as in Figure 3 at a single time point for plates lacking uracil or
1325 containing 5-FOA corresponding to strains induced with 0.1 or 0.2 mM copper (8 total plates per
1326 strain). The relative growth rank was determined for each plate across all 14 tested constructs. A
1327 rank of 1 corresponds to the worst growth on plates lacking uracil and best growth on plates
1328 containing 5-FOA.

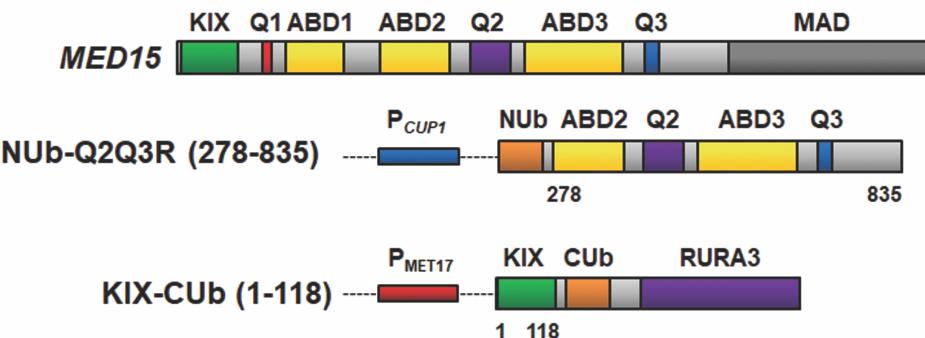
1329

1330

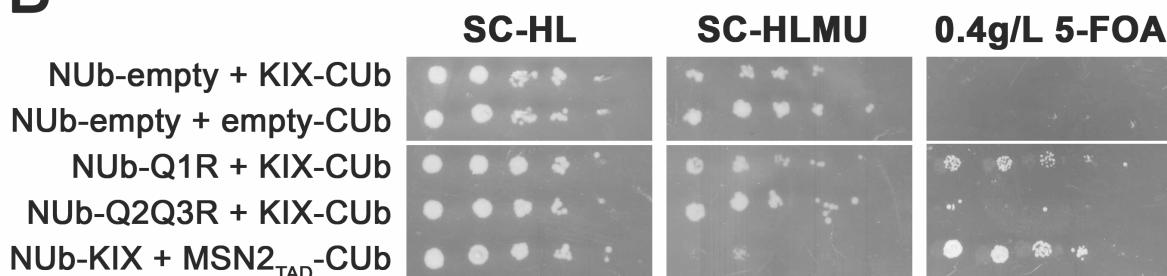
A

1331

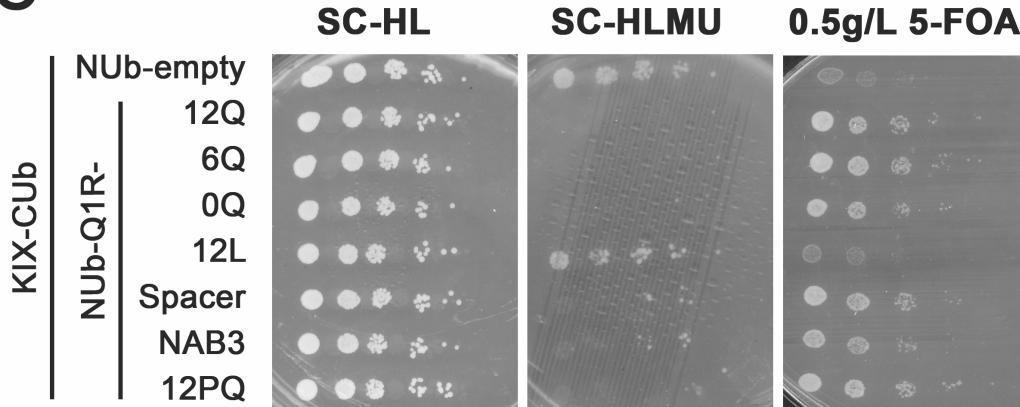
1332 **Figure 7. The KIX domain of Med15 does not phase separate efficiently with Msn2.**


1333 Representative microscope images of 20μM mCherry tagged Med15 fragments (Q1R or KIX) or

1334 20 μM mCherry with no associated Med15 together with 5 μM GFP tagged Msn2 in the


1335 presence of 6% PEG-8000 in the presence or absence of 6% 1,6 hexanediol.

1336


A

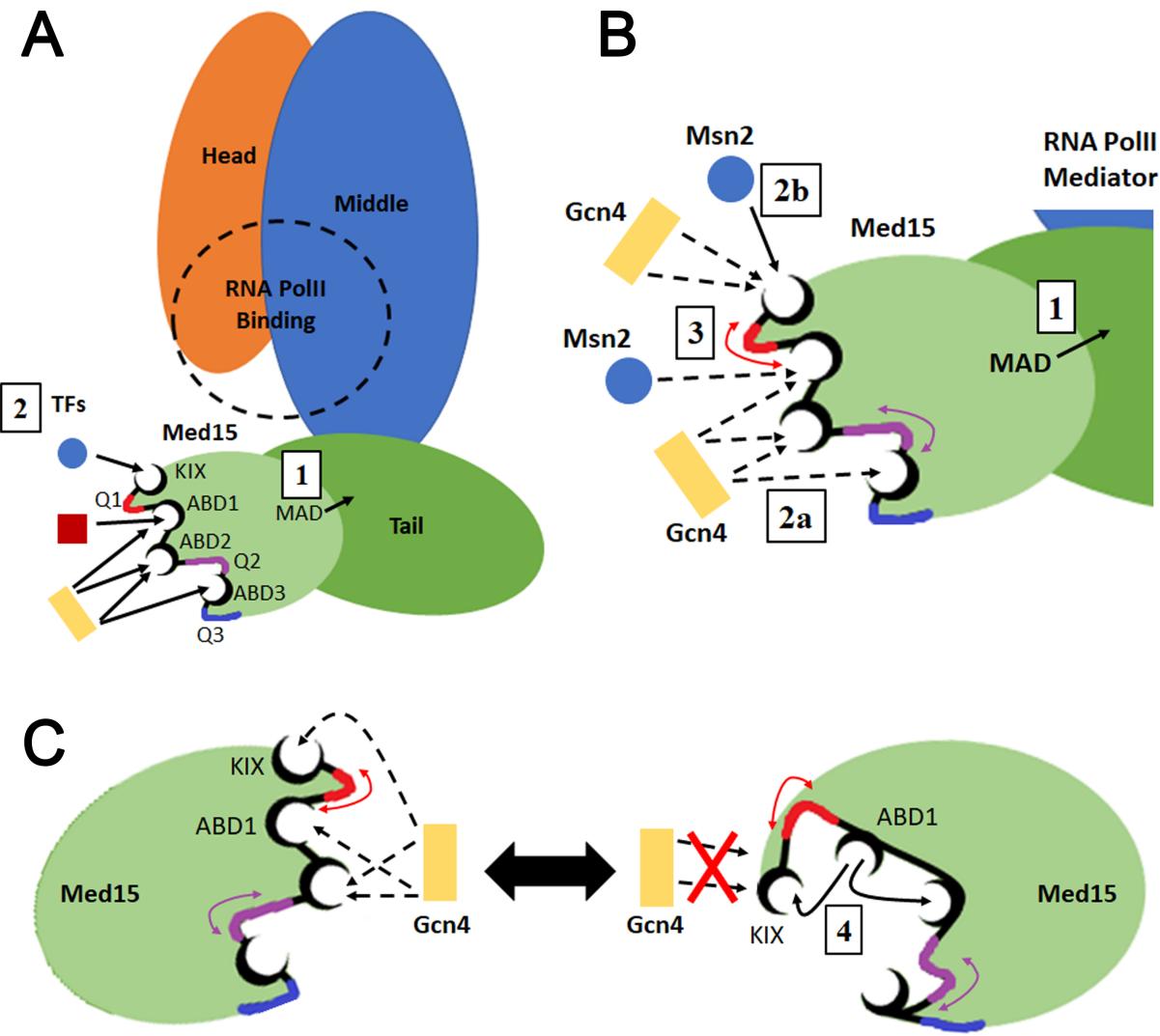
B

C

1337

1338

1339 **Figure 8. Interactions between Med15 sequences. (A)** Cartoon depicting split ubiquitin
1340 constructs. **(B)** Log phase cultures of wild type strains carrying both CUb and NUb plasmids


1341 were exposed to 0.05 mM copper (and in some cases 0.02 mM methionine) for 1 hour and then

1342 serially diluted and spotted on media lacking uracil (SC-HLMU) or containing 5-FOA. (C)

1343 Substitutions of the 12Q region in Q1R were tested for effects on the interaction with the KIX

1344 domain.

1345

1346

1347 **Figure 9** (A) View of Med15 in a pre-initiation complex. (B) Zoomed in view of a TF binding
1348 interface of Med15 with Gcn4 and Msn2 shown as examples. (C) A depiction of the alternate
1349 states of Med15 either forming intermolecular interactions with a TF (Gcn4 shown as an
1350 example) or forming intramolecular interactions. Specific types of interactions are numbered: (1)
1351 Integration into Mediator likely independent of Q-tracts and dependent primarily on MAD. (2)
1352 Different TFs interact with MED15 ABDs through fuzzy (a, dashed line) or directed (b, solid
1353 line) interactions. (3) Poly-Q tracts provide flexibility and spacing between ABDs which

1354 influences interactions and transcriptional activation. (4) Intramolecular interactions within
1355 Med15 that compete with or are displaced by TF intermolecular interactions.
1356

1357 **Acknowledgements.** The authors gratefully acknowledge the generous gift of strains and
1358 plasmids from Dr. Patrick Cramer and Mathias Mann, (phospho-site mutant strains), Dr. Young
1359 Chul Lee (glucocorticoid reporter plasmids), and Nils Johnsson via Addgene (split ubiquitin
1360 vectors) and Dr. Richard Young for the GFP-Gcn4 expression vector, RY8740. The authors also
1361 appreciate comments and suggestions by Dr. Daniel Weeks and Dr. Bryan Phillips, as well as
1362 members of the lab, and anonymous reviewers.

1363

1364 **Conflict of Interest.** The authors declare that they have no conflict of interest.

1365

1366 **Funding.** Funding for this project was from T32 (Bioinformatics Training Grant), a University
1367 of Iowa CLAS Dissertation Writing Fellowship, and the University of Iowa, Department of
1368 Biology Evelyn Hart Watson Summer Fellowship, supplemental funding to NIH award R35
1369 GM058939-19S1 and a University of Iowa Investment in Strategic Priorities initiative Award.

1370