

1 Deletion of an sRNA primes development in a multicellular bacterium

2 Marco La Fortezza^{1*}, Jasper Verwilt^{2,3}, Sarah Cossey¹, Sabrina Eisner¹, Gregory J. Velicer¹, and Yuen-
3 Tsu N. Yu¹

4

5 1 Institute of Integrative System Biology, ETH, Switzerland

6 2 Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

7 3 Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium

8

9 *Corresponding author: marco.laforteza@env.ethz.ch

10

11 **Keywords:** multicellular development; bacterial development; transcriptomics; RNA-seq; small non-coding RNA;
12 developmental timing.

13

14 ABSTRACT

15 Small non-coding RNAs (sRNAs) are essential in regulating gene expression during many biological
16 processes. The myxobacteria gene *pxr* encodes an sRNA known to block fruiting-body development,
17 an aggregative multicellular process triggered by starvation. Deletion of *pxr* allows *Myxococcus xanthus*
18 cells to develop in the presence of nutrients. However, potential Pxr binding targets and most genes
19 regulated by Pxr remain unknown. Here, we found that the absence of *pxr* expression dramatically
20 alters the temporal dynamics of development, thus suggesting an important new role of this sRNA in
21 myxobacterial ecology. We transcriptionally profiled vegetative cells of *M. xanthus* strains possessing
22 vs lacking *pxr* and found that over half of the genes impacted by *pxr* deletion during growth are linked
23 to development, including known and potentially novel critical regulators. Many other genes are
24 associated with general metabolic processes, which Pxr regulates positively. Our study discovers new
25 phenotypic effects of Pxr regulation of likely ecological importance, identifies the suite of genes this
26 sRNA controls during vegetative growth, reveals a previously unknown developmental regulator and
27 provides new insights into the early molecular regulation of myxobacterial development.

28

29 **INTRODUCTION**

30

31 Small non-coding RNAs (sRNAs) play an important role in regulating gene expression in bacteria,
32 and their activity is essential for a wide variety of biological processes¹⁻³. These include forms of
33 virulence, stress responses, quorum sensing, and the initiation of aggregative multicellular development
34 in the myxobacteria³⁻⁵. sRNAs regulate their targets through various molecular mechanisms, such as
35 altering post-transcriptional transcript abundance or directly interfering with ribosome binding to impact
36 translation^{2,3}. sRNAs are distinguished as *cis*- or *trans*-acting relative to localisation of their gene
37 targets^{1,4,6}. The study of sRNAs is important for understanding the biological processes with which they
38 are associated and their evolution.

39 Upon starvation, myxobacteria cells respond by aggregating and cooperatively developing into
40 multicellular spore-bearing fruiting bodies⁷. The stringent response initiates fruiting-body development
41 through a complex network of molecular interactions triggered when scarcity of amino acids impedes
42 protein synthesis⁸. The molecular factors participating in fruiting-body formation are only partially known,
43 although substantial progress has been made in recent years⁸⁻¹¹. One major regulator of early
44 development in the model species *Myxococcus xanthus* is the sRNA Pxr, which guards the transition
45 from vegetative growth to multicellular development⁵.

46 The gene encoding Pxr (*pxr*) was discovered in a strain named Phoenix (PX) that spontaneously re-
47 evolved the ability to make fruiting bodies and spores after its ancestral lineage had lost that ability¹². A
48 single-nucleotide substitution in PX localised in the *pxr* gene inactivates the sRNA function, restoring
49 developmental proficiency relative to the developmentally defective strain OC from which PX derived¹².
50 The gene *pxr* encodes for the so-called long Pxr (Pxr-L) sRNA that, in vegetative cells, is subsequently
51 cleaved into a shorter version (Pxr-S). Pxr-S levels decrease as soon as cells sense starvation, whereas
52 Pxr-L levels remain stable throughout development⁵. A recent study revealed the existence of a much
53 larger Pxr precursor transcript (Pxr-XL), and maturation to Pxr-S involves at least a two-step process
54 regulated by the housekeeping ribonuclease RNaseD¹³. We previously hypothesised that Pxr-S is the
55 key inhibitor that arrests aggregate formation and, thus, the entire process of fruiting-body development
56 (Fig. 1a)⁵. However, whether Pxr-L directly influences fruiting-body formation is still unknown¹³.

57 Starvation-induced fruiting-body formation is present in most myxobacterial species identified to
58 date^{7,14}. Interestingly, homologs of the *M. xanthus* *pxr* variant are present in multiple species belonging
59 to the suborder Cystobacterineae, within which *pxr* emerged¹⁵. When inserted into a deletion-mutant of
60 *M. xanthus* lacking *pxr*, these inter-specific *pxr* homologs can partially or fully restore the developmental
61 phenotype associated with the native *pxr* gene, thus suggesting a conserved function of Pxr across
62 myxobacterial species¹⁶. While the development-inhibiting function of Pxr is known and plausibly similar
63 in all species that express this sRNA, both the direct binding targets of Pxr and the set of genes ultimately
64 regulated by Pxr in any species remain uncharacterised.

65 Previous studies have shown that Pxr is a developmental gatekeeper that blocks the transition from
66 vegetative growth to fruiting-body formation when nutrients are still available⁵. Therefore, the absence
67 of Pxr facilitates the activation of multicellular development even when nutrient levels remain high
68 enough to fuel robust vegetative growth⁵. This result implies that the expression of some genes
69 necessary for progression through early development is not regulated directly by nutrient level per se
70 but rather by the active form of Pxr (Pxr-S), the level of which is regulated by external nutrient levels (by
71 a still-unknown mechanism). Because Pxr-S is present at high levels during vegetative growth⁵, its
72 absence due to deletion of *pxr* is expected to result in increased expression of some developmental
73 genes already during growth. A mutant lacking *pxr* is thus likely to both: i) exhibit earlier progression to
74 development upon starvation than its parent in which *pxr* is intact, and ii) even during vegetative growth,
75 detectably express known positive regulators of development that are silenced during growth when *pxr*
76 is intact.

77 Our data shows for the first time the molecular targets and effects of Pxr sRNA on development
78 dynamics, which could significantly affect *M. xanthus* ecology and multicellular evolution.

79

80 RESULTS

81

82 The absence of *pxr* expression alters the temporal dynamics of fruiting-body formation

83 Impaired expression or functionality of *pxr* was previously associated with activation of the *M. xanthus*
84 developmental program even under high-nutrient conditions that normally block development^{5,12} (Fig.
85 1a). Motivated by previous informal observations, we asked whether the absence of *pxr* expression
86 during vegetative growth might accelerate development upon vegetative cells being placed in a
87 development-inducing environment⁵. Thus, we initiated development on buffered agar and monitored
88 the dynamics of fruiting-body formation by WT cells and cells devoid of *pxr* (GJV1 Δ *pxr*, also referred to
89 hereafter as Δ *pxr*, see Methods: *Strains, culturing conditions and induction of development*) for 141
90 hours by microscopy (ca. six days) (Fig. 1b) (see Methods: *Image acquisition and analysis*). As
91 expected, both strains formed fruiting bodies when starving, but their development dynamics differed
92 significantly (two-way ANOVA, time:strain, $F = 500$, $p < 0.001$) (Fig. 1c and d). Δ *pxr* cells formed visible
93 aggregates earlier (Wilcoxon test relative to the onset of aggregate formation, $W = 16$, $p = 0.028$) and
94 reached their maximum fruiting-body number faster than WT cells (Wilcoxon test comparing the time
95 point at which the maximum number of fruiting bodies formed, $W = 0$, $p = 0.029$) (Fig. 1c and d).

96 Notably, WT cells reached their maximum number of fruiting bodies (under our experimental
97 conditions) through two waves of development (I and II in Fig. 1c and d). The first wave emerged near
98 the plate centre (at the inoculation site) after ~24 hrs. In contrast, the second wave formed an outer ring
99 of fruiting bodies ~50 hrs later (Fig. 1c). Similar developmental dynamics are not uncommon. Concentric
100 rings of fruiting bodies can frequently be observed during development progression (unpublished

101 observations). Interestingly, the second developmental wave characteristic of WT cells was absent in
102 Δpxr cells, which formed most fruiting bodies within the first two days and reached nearly the maximum
103 number within three days (Fig. 1c and d). Notably, the total number of fruiting bodies produced by the
104 two strains at the end of the experiment was similar (Wilcoxon test relative to the last time point, $W = 6$,
105 $p = 0.6612$) (Fig. 1c).

106 Fruiting-body formation is a developmental process that relies on quorum sensing and, thus, on
107 cellular density¹⁷. Hence, we asked whether the observed differences in the dynamics of development
108 of Δpxr mutant could be partially explained by altered sensitivity to cell density. However, the fruiting-
109 body number for the Δpxr mutant cells in the presence and absence of nutrients was proportional to the
110 initial inoculum density (Supp. Fig. 1a and 1b, respectively), and similar to WT when developing on
111 buffered agar (Supp. Fig. 1b)¹⁷. Thus, no apparent difference in sensitivity to density on buffered agar
112 was observed between the two strains (Supp. Fig. 1b).

113 Our analysis of developmental dynamics shows that lack of *pxr* expression during growth in liquid
114 induced early activation and acceleration of the developmental program.

115

116 **Pxr positively regulates many metabolism genes during growth**

117 Little is known about the genetic interactions of *pxr*, despite its important role during myxobacterial
118 development. We used RNA-seq to compare genome-wide levels of gene transcripts during vegetative
119 growth between Δpxr vs WT cells (Supp. Fig. 2a and b, see Methods: *Strain and culturing conditions*).
120 Overall, the normalised read counts per gene between the WT and Δpxr profiles were highly correlated
121 (Pearson's $r = 0.814$) (Fig. 2a), as were counts between individual experimental replicates for both
122 genotypes (Supp. Fig. 3a and b). Yet, the lack of *pxr* expression altered the transcript abundance of 299
123 genes (~4% of all DK1622 annotated genes) relative to the wild type during vegetative growth (Supp.
124 Table 1). Of those, 49.2% showed a significant decrease, and 50.8% showed an increase in the
125 transcript levels due to the deletion of *pxr* (Supp. Fig. 2c) (see Methods: *RNA extraction and RNA-seq*
126 *analysis*).

127 We found that 33 operons were significantly enriched for the presence of differentially expressed
128 genes. Only one of these operons contained genes that changed expression discordantly – both up and
129 down (operon ID = 0521: *MXAN_0975*, *MXAN_0976*, Supp. Fig. 3d, Supp. Table 2). All other operons'
130 genes changed transcriptional levels concordantly – up or down (two-tailed χ^2 (1, $N = 33$) = 29.121; $p =$
131 0.0001) (Supp. Fig. 3d, Supp. Table 2). The overall directional consistency of transcriptional change
132 among genes belonging to the same operon suggests an upstream function of Pxr to the expression or
133 stability of the polycistronic transcripts encoded by these operons.

134 We then determined clusters of orthologous genes (COGs) (see Methods: *RNA extraction and RNA-
135 seq analysis*) enriched among the differentially expressed genes. Nine COG categories were
136 significantly enriched, although only a few genes constituted each category (Fig. 2b and c, Supp. Table
137 3). Five of the enriched categories were representative of *Metabolic processes* (categories: C, E, G, I,

138 and P), three are related to *Cellular processes and signalling* (categories: M, O, and T), and one (S)
139 contains genes related to the class *Function unknown*. Notably, most genes with decreased expression
140 levels belonged to those COGs associated with metabolism (Fig. 2c,d). In contrast, genes with unaltered
141 or increased expression were more likely to belong to categories related to cellular processes and
142 signalling (Fisher's exact test, $p = 0.0105$) (Fig. 2b,c Supp. Table 3).

143 We then extracted predicted protein interactions among the products of the differentially expressed
144 genes from the STRING database¹⁸ (see Methods: *RNA extraction and RNA-seq analysis*). Our analysis
145 individuated one distinct major network consisting of 405 total potential interactions among a subset of
146 145 genes (respectively the number of edges and nodes in the network) (Fig. 2d, and Supp. Fig. 4a).
147 All of the other differentially expressed genes belonged to either minimal networks (2 or 3 nodes with 1
148 or 2 edges, respectively) or remained unmatched given their current annotation (Supp. Fig. 4a, Supp.
149 Network Images). Interestingly, when qualitatively considering the distribution of transcriptional levels
150 mapped onto the large network, genes with a similar deviation in their expression values are frequently
151 associated with one another, again suggesting a potential role of Pxr acting upstream to these genes'
152 transcription (Fig. 2d, Supp. Fig. 4b).

153 A follow-up analysis of enriched gene ontology (GO) terms on this network revealed that a large
154 proportion of genes were associated with metabolism (Fig. 2d, Supp. Table 4). Among them, for
155 example, we identified genes involved in key metabolic pathways such as the genes *glpK*, *celA*, *zwf*,
156 which are known to be respectively associated with the metabolism of glycogen, sucrose, and the
157 pentose phosphate pathway^{19–23}. We also identified *ccoNO*, *ccoP*, and *fixG*, which encode for
158 cytochrome-associated proteins whose function is involved in the oxidative phosphorylation²⁴ (Fig. 2c
159 and Supp. Fig. 4b), as well as genes associated with the translational process, such as the two genes
160 *fusA* (MXAN_4082) and *alaS*, respectively encoding for the ribosome elongation factor G and mediator
161 of the alanyl-tRNA biosynthesis (see Supp. Table 1 and 3 for more details on the annotations for the
162 individual functions of all differentially expressed genes)^{25,26}.

163 We additionally generated a user-friendly online application using Shiny with R software
164 (https://jzego7-marco.shinyapps.io/rnaseq_app/) to interactively visualise the presented data more
165 thoroughly (see Methods: *RNA extraction and RNA-seq analysis* and Supp. Code).

166 Our global analysis of differentially expressed genes indicates that the absence of *pxr* expression
167 during vegetative growth influences the transcript levels of a subset of genes linked to metabolic
168 processes and cellular signalling, which tend to be positively and negatively regulated by Pxr,
169 respectively (Supp. Tables 1, 3 and 4).

170

171 **Most genes affected during growth by deletion of *pxr* are associated with fruiting-body 172 development**

173 Given the role of *pxr* expression in controlling fruiting-body development and its dynamics, we sought
174 to identify known developmental genes whose transcriptional levels during growth were altered by

175 deletion of *pxr*. Hence, we compared our RNA-seq data to the most recent lists of genes associated with
176 fruiting-body development in *M. xanthus*. Thus, we extracted and combined lists of developmental genes
177 from the independently published works of Muñoz-Dorado et al.⁹, Sharma G. et al.¹⁰, and McLoon et
178 al.¹¹.

179 We first compared the degree of similarity between all these studies and ours. We contrasted the
180 gene-transcript levels scaled around their relative average value for the WT cells during vegetative
181 growth (Supp. Fig. 5a) (see Methods: *Comparison of RNA-seq profiles*). This comparison allowed us to
182 estimate the consistency across the RNA-seq protocols used in all the studies based on the only
183 physiological and experimental conditions they had in common, including ours. From these
184 comparisons, we found that the vegetative profiles of WT cells for all three studies correlated with ours
185 similarly (Supp. Fig. 5a). We thus retained all three studies for further comparisons and indicated which
186 paper(s) associates a given gene with fruiting-body development (Supp. Table 5).

187 Notably, these three studies explored the expression details of potential developmental genes
188 beyond our study's scope (*i.e.*, not only during vegetative growth but also over periods of starvation).
189 However, from all three studies, we determined the list of developmental genes by considering any gene
190 found to change expression during starvation relative to their expression during vegetative growth. While
191 ~21% of all *M. xanthus* genes have been associated with development by any of the three development-
192 transcriptome studies, ~67.6% of genes differentially expressed between WT and Δpxr are found among
193 those development-associated genes. Thus, gene regulation by Pxr is biased toward development-
194 associated genes (binomial test, $p < 10^{-16}$).

195 Of the developmental genes found to be differentially expressed in Δpxr , 64.4% were associated with
196 development by Sharma et al.¹⁰, 59.9 % by McLoon et al.¹¹, and 53.5% by Muñoz-Dorado et al.⁹ (Fig. 3a
197 and b, Supp. Fig. 5b). In addition, the so-obtained developmental genes constituted half of the large
198 interaction network shown in Fig. 2d (non-developmental genes = 48%; developmental genes = 52%,
199 Supp. Fig. 6) and 75% of the previously identified 33 enriched operons contained genes associated with
200 development (Supp. Table 2 and Supp. Fig. 3d). Of the 311 genes related to development by all three
201 transcriptome studies, only 42 (13.5%) were differentially expressed in the Δpxr mutant (Fig. 3a and c).
202 Interestingly, a significant majority of these 42 genes showed increased transcriptional levels in Δpxr
203 cells (30/42; Fisher's exact test, $p = 0.0028$) (Fig. 3c). Among them, we identified well-known regulators
204 of development, such as *fruA*, *nsd*, and *MXAN_0736*, which are, respectively, a crucial transcriptional
205 regulator of other developmental genes, a nutrient-depletion sensing factor, and a histidine protein
206 kinase relevant to spore germination^{11,27-29}. We confirmed that the increased transcriptional levels of
207 *fruA* were indeed reflective of increased protein abundance, with FruA being detectable already during
208 vegetative growth in Δpxr mutant cells, whereas it became detectable only after six hours of starvation
209 in WT cells (Fig. 3d). Other known regulators of development identified by only one or two of the
210 development-transcriptome studies were also found to be differentially abundant by deletion of *pxr*, for
211 example, *abcA*³⁰, *lonD*³¹, *sgmE*³², *oar*^{33,34}, and *rodK*^{29,35} (Fig. 3b, Supp. Table 1 and 5). Together, these

212 data identify many developmental genes that Pxr regulates during vegetative growth, whether directly
213 or indirectly.

214

215 **pxrA (MXAN_1079) is a likely Pxr target important for fruiting-body development in *M. xanthus***

216 The above cross-study transcriptional profile comparisons indicate that experimental idiosyncrasies
217 can influence the identification of developmental genes. Thus, one could not exclude that other genes
218 differentially expressed in the Δpxr mutant are also relevant to fruiting-body development despite not
219 being identified as such in previous development-transcriptome analyses. This is perhaps particularly
220 true for those gene products with an uncharacterised function^{9–11,36} (Fig. 3b and Supp. Table 1). Among
221 those, *MXAN_1079*, encoding for a putative GNAT-acetyltransferase, was the most differentially
222 increased transcript in the Δpxr mutant (Fig. 2c, 3b, and Supp. Table 1). *MXAN_1079* is predicted to be
223 transcribed from its native promoter localised downstream of *pxr* (Supp. Fig. 7a). In a previous study,
224 the evolved strain PX bearing a non-functional *pxr* gene also exhibited increased expression of
225 *MXAN_1079*, and this effect was hypothesised to contribute to the restored developmental proficiency
226 of PX^{12,37}. Here, *MXAN_1079* expression was consistent with the previously published data, supporting
227 our previous hypothesis: Heightened expression of *MXAN_1079* associated with the lack of Pxr function
228 likely allows cells to bypass developmental roadblocks. -We propose to rename *MXAN_1079* as *pxrA*,
229 given its position next to *pxr* and its expression strongly influenced by Pxr (Supp. Fig. 7a).

230 To directly test whether *pxrA* is important for development, we asked whether the absence of a
231 functional PxrA would affect fruiting-body formation. We generated a non-functional merodiploid mutant
232 of *pxrA* in the WT genetic background (GJV1*pxrA*::*pCR1079*, hereafter referred to as *pxrA*[−]; see
233 Methods: *Strains and culturing conditions*) (Supp. Fig. 7a) and monitored the developmental
234 morphologies of *pxrA*[−] and WT populations over 141 h (ca. 6 days) by timelapse microscopy (Fig. 1b,
235 see Methods: *Image acquisition and analysis*). Compared to WT, *pxrA*[−] cells were incapable of forming
236 mature darkened fruiting bodies, even after 141 hours on starvation plates (Wilcoxon test relative to the
237 end of the experiment, $W = 16$, $p = 0.0294$) (Fig. 4a and b). The reduced ability of the *pxrA*[−] mutant to
238 make a lower number of mature fruiting bodies than WT was also confirmed with larger inoculation sizes
239 (Supp. Fig. 7b). Interestingly, *pxrA*[−] cells initiated aggregating slightly later than WT cells, although this
240 difference was non-significant with our sample size (Wilcoxon test relative to the onset of aggregate
241 formation, $W = 2$, $p = 0.086$) (Fig. 4b). Moreover, we also couldn't detect the second wave of
242 development characteristic of the WT strain (Fig. 4a and b).

243 In addition to experimentally demonstrating that *pxrA* plays a significant role in positively regulating
244 the *M. xanthus* developmental program, we also sought to bioinformatically identify potential Pxr targets
245 by using TargetRNA3³⁸ to run an unbiased sequence alignment. The resulting list of 25 potential Pxr
246 binding regions included a sequence near the predicted promoter region of *pxrA* (Supp. Table 6). The
247 portion of the Pxr sequence predicted to bind upstream of the *pxrA* promoter is located primarily within
248 the third of three predicted Pxr stem-loop structures known to be necessary for Pxr function³⁹ (Fig. 4c).

249 Surprisingly, none of the other 24 predicted binding regions was associated with a gene differentially
250 expressed in Δpxr . Yet, the effect of Pxr on these transcripts might affect translation without altering the
251 transcript abundance. Moreover, none of these potential targets showed significant similarities in their
252 functional annotations.

253 We then asked whether the phylogenies of PxrA and Pxr might be similar given their regulatory
254 interaction (see Methods: *Phylogenetic analysis of PxrA*)¹⁵. Our analysis showed homologous PxrA
255 sequences between a few myxobacteria species (*M. macrosporus*, *M. stipitatus*, *M. virescens*, and *M.*
256 *xanthus*, among other non-characterised *Myxococcus* strains), all of which belong to the suborder
257 Cystobacterineae within the family Myxococcaceae, where *pxr* is thought to have emerged (Fig. 4d,
258 Supp. Fig. 7c)¹⁵. Thus, *PxrA* emerged most likely later than *pxr* and was retained or transferred into only
259 a relatively small number of species, despite its current critical role in *M. xanthus* aggregative
260 multicellularity (Fig. 4d).

261 Altogether, our results identify *pxrA* as a novel positive regulator of fruiting-body development and a
262 likely direct target of Pxr regulation.

263

264 DISCUSSION

265

266 In bacteria, sRNAs regulate gene expression and are arguably associated with all major biological
267 processes¹⁻³. Pxr is a *trans*-acting sRNA involved in fruiting-body formation in myxobacteria, an
268 aggregative multicellular process that takes place in response to starvation. Specifically, Pxr prevents
269 the activation of the developmental program at nutrient levels abundant enough to support extensive
270 vegetative growth⁵. Here, we have expanded our understanding of the phenotypic effects of Pxr
271 regulation by showing that this sRNA not only prevents development under high-nutrient conditions, but
272 also limits the pace of development under starvation conditions. We further identified genes regulated
273 by Pxr during vegetative growth by comparing the transcriptomic profiles of cells lacking or expressing
274 *pxr*, including the key developmental regulator *fruA* and a GNAT-acetyltransferase gene immediately
275 downstream of *pxr* – *pxrA* – that we reveal as necessary for fruiting-body formation. We additionally
276 identified many possible direct binding targets of Pxr, including the promoter region of *pxrA*.

277

278 The role of *pxr* in controlling the dynamics of development

279 We showed that the absence of *pxr* expression greatly accelerates both the initiation and completion
280 of development when nutrients are absent (Fig. 1). Until now, Pxr has been understood to control the
281 nutrient conditions under which development is initiated; our new results show it also is a major regulator
282 of developmental timing. Interestingly, the observation that the WT and the *pxr* mutant had similar
283 numbers of fruiting bodies at the end of the experiment indicates that the absence of *pxr* expression
284 affects only the temporal dynamics of development without interfering with the developmental potential
285 of cells. We need more information about the molecular details of how Pxr function can alter

286 developmental timing. Our data suggest a potential role of Pxr both before and after the initiation of
287 development. For example, it is plausible that the unprocessed Pxr isoforms are involved during
288 development (i.e., Pxr-L and Pxr-XL), which, in contrast to the cleaved Pxr-S, remain abundant
289 throughout the aggregative process^{5,13}.

290 The absence of *pxr* expression can impact the dynamics and total duration of development beyond
291 the induction of aggregative multicellularity. Thus, variation in *pxr* expression across different genotypes
292 could have profound implications for myxobacteria ecology and evolution. For example, mutations that
293 lead to an early commitment to the developmental program while nutrients can still favour growth could
294 negatively affect performance at interference competition mechanisms requiring high metabolic
295 activity^{40,41}. Alternatively, being able to induce sporulation earlier and more quickly could be
296 advantageous in resisting such antagonistic behaviours exerted by co-developing genotypes that
297 develop more slowly^{41,42}. Our data brings important evidence suggesting an ecological role of *pxr* exerted
298 by controlling the developmental dynamics of multicellular development.

299

300 **Lack of *pxr* expression influences the transcriptional levels of metabolic genes**

301 We found that deletion of *pxr* affected the transcript levels of 4% of all annotated *M. xanthus* genes
302 (299/7451 total DK1622 annotated genes). However, it is likely that Pxr directly interacts with only a
303 small minority of them, with the majority being regulated indirectly. For example, the congruency in the
304 sign of transcriptional effects within operons supports this hypothesis.

305 More than half of the genes affected by the absence of *pxr* have been linked to metabolism (Fig. 2).
306 Notably, association with metabolism does not exclude potential involvement in development.
307 Interestingly, metabolism-related genes had decreased transcript values in cells without *pxr* expression.
308 By reducing metabolic gene transcripts, we hypothesise that the lack of Pxr pried cells toward a
309 developmental state where metabolic processes are typically turned off or reduced (Fig. 5).

310

311 **Altered developmental gene expression in the absence of Pxr**

312 In line with our initial expectation, we also strengthened the association between *pxr* and multicellular
313 development from a molecular standpoint. Using previously published lists of potential *M. xanthus*
314 developmental genes^{9–11}, we determined that more than half (67.6%) of the genes differentially
315 expressed in the *pxr* mutant were associated with development in at least one of three developmental-
316 transcriptome studies (Fig. 3). We found a number of critical developmental genes, such as *nsd*,
317 *MXAN_0736*, *pxrA* and *fruA* (among others) showed transcriptional levels consistent with the
318 expectation of an activated developmental program in cells lacking *pxr* expression.

319 During fruiting-body morphogenesis, FruA, a DNA binding response regulator, is essential in
320 orchestrating population rippling, aggregation, and sporulation^{11,27}. Transcription of *fruA*, depending on
321 the early developmental A-signal, is induced after 3–6 hours of starvation in WT cells. The function of
322 the FruA protein controlled by the contact-dependent C-signal was thought to be activated by

323 phosphorylation. However, the cognate histidine kinase remains unknown⁴³. Here, we showed that the
324 increase of *fruA* transcript was indeed followed by an increase of the FruA protein levels detectable
325 during vegetative growth. Our data suggests that the accelerated development observed for Δpxr cells
326 may directly result from the differential expression of developmental genes already during vegetative
327 growth (Fig. 5).

328 We also found developmental genes important to development less abundant during vegetative
329 growth in the *pxr* mutant cells than in WT. For example, the two developmental genes *lonD* (also known
330 as *bsgA*, important for the early developmental signalling pathway) and the response regulator *rodK*,
331 whose functions are relevant to fruiting-body formation^{29,31,35}, had decreased transcript levels in *pxr*
332 mutant cells (Supp. Table 1 and 5). However, in the case of *lonD*, it has been indicated that a *pxr* mutant
333 can undergo development by bypassing the requirement of the *lonD* gene, indicating that the removal
334 of the developmental gatekeeper Pxr can trigger a developmental process by turning on suites of
335 downstream developmental regulons without a functional *lonD* gene¹³. Therefore, high expression of
336 *lonD* is not required in a ready-to-develop state of the Δpxr mutant cells. It is possible that a reduction
337 in *lonD* transcripts is a byproduct of an auto-regulatory circuit to shut down early signalling genes that
338 are not needed.⁶⁴

339 The obtained lists of developmental genes differ between the three consulted studies (Supp. Fig.
340 4a)^{9–11}, and the temporal dynamics and expression levels of those genes shared between the studies
341 may vary, too. These differences are likely due to protocol differences and genetic backgrounds
342 (different reference strains), but study idiosyncrasies may also reflect the molecular complexity and
343 plasticity intrinsic to fruiting-body development^{11,44–46}. Discrepancies in specific gene-expression levels
344 from our transcriptome profiles can be ascribed to the different physiological states in which cells were
345 sampled (growing vs starving cells).

347 ***pxrA* is a potential Pxr binding target associated with multicellular development**

348 In myxobacteria, the functions of many genes remain uncharacterised, and in many cases, function
349 is predicted only based on sequence similarity. Indeed, one of the clusters of orthologous genes
350 enriched for genes differentially expressed in the *pxr* deletion-mutant (cluster S) includes genes of
351 unknown function, including *MXAN_1079*, which encodes a putative GNAT-acetyltransferase³⁷. GNAT-
352 acetyltransferases are conserved in all organisms and are involved in post-translational modifications
353 that modulate many cellular functions⁴⁷. The transfer of an acetyl group from acetyl CoA to a protein
354 substrate can occur at either the amino-terminal end or at the ϵ -amino group of an internal lysine residue.
355 Post-translational modification by acetylation is considered a major mode of regulating gene expression
356 and is as prominent as phosphorylation-mediated modification.

357 The simple explanation for the increased *pxrA* transcripts detected in a *pxr*-deletion mutant is that
358 *pxrA* is a binding target of Pxr that is negatively controlled by this sRNA. Indeed, bioinformatic analysis
359 does predict base-pairing between Pxr and the *pxrA* non-coding region upstream to its transcriptional

360 start site. However, the possibility that the upstream localisation of the *pxr* deletion might have
361 contributed to the specific transcriptional levels of this gene cannot be excluded. Yet, the upregulation
362 of *pxrA* in response to an impaired function of *pxr* reflects previous observations done with a different
363 genetic background to this study, where the association of the Pxr-*pxrA* interaction with development
364 was first hypothesised¹².

365 Here, we went one step further and demonstrated that, besides being a potential Pxr target, *pxrA* is
366 critical to fruiting-body formation and developmental timing (Fig. 4). Interestingly, our phylogenetic
367 analysis indicated that *pxrA* emerged in the Myxobacterineae family, a subgroup of the Cystobacterineae
368 in which *pxr* is considered to have originated¹⁵ (Fig. 4). Our analysis suggests that *pxrA* emerged more
369 recently than *pxr*. It will be interesting for further work to investigate potential developmental features
370 unique to the interaction between these two genes in species that carry them both.

371 A previous study found another putative GNAT-acetyltransferase (*MXAN_6704*) important to fruiting
372 body-formation⁴⁸. As for *pxrA*, none of the consulted developmental transcriptome studies^{9–11} had
373 associated *MXAN_6704* with development. In our research, *pxrA* was the only acetyltransferase to show
374 increased transcriptional levels. Thus, these two acetyltransferases are likely regulated independently
375 via different signalling pathways during fruiting-body development. GNAT-acetyltransferase activity is
376 critical to gene regulation in bacteria⁴⁷, making it tempting to speculate that the genetic interaction
377 between *pxr* and *pxrA* is important for modulating developmental gene expression. A further analysis
378 contrasting the molecular targets of both PxrA and *MXAN_6704* could help understand the role of
379 acetyltransferases during bacterial aggregative development.

380 Our analysis indicates that classifying a gene as *developmental* depends, to some degree, on the
381 environmental context, the experimental procedure used, and the intrinsic plasticity and molecular
382 redundancy of the fruiting-body formation process^{11,45}. Our demonstration that *pxrA* (*MXAN_1079*)
383 positively regulates development despite the other transcriptome studies not having flagged this gene
384 is a clear example of this scenario, which suggests that additional new developmental genes remain to
385 be discovered.

386

387 Future research themes of interest include the exact molecular mechanisms used by Pxr to exert its
388 function, experimental confirmation of Pxr binding targets, and what role *pxr* expression plays in the
389 evolution of the temporal dynamics of aggregative multicellular development across the myxobacteria.

390

391

METHODS

392

393

Strains, culturing conditions and induction of development.

394

The following strains were used for this study: GJV1 (a laboratory-derived strain of DK1622⁴⁹ used as wild-type reference (WT); GJV1 Δ p_{xr} (a *p_{xr}*-deletion strain⁵) lacking the expression of the *p_{xr}* gene (referred to as Δ p_{xr} in the main text); and GJV1xrA::pCR-1079 (a strain characterised by the knockout of *p_{xrA}* (*MXAN_1079*), referred as *p_{xrA}*⁻ in the text; see Methods: *Plasmid and strain construction*). Myxobacteria strains were grown in the casitone-based liquid media CTT (Tris-HCl 10mM, MgSO₄ 8mM, Bacto Casitone 1 %, KH₂PO₄-K₂HPO 1mM, pH 7.6). Bacterial cultures were incubated at 32 °C with orbital shaking at 300 rpm. To induce fruiting-body formation, cells were plated on nutrient-limited TPM agar plates (Tris-HCl 10mM, MgSO₄ 8mM, Bacto agar 1.5 %, KH₂PO₄-K₂HPO 1mM, pH 7.6). For developmental assays, mid-log cultures were pelleted and resuspended in TPM liquid buffer (Tris-HCl 10mM, MgSO₄ 8mM, KH₂PO₄-K₂HPO 1mM, pH 7.6) to ~5 x 10⁹ cells/mL, after which 50 μ l or 1 μ l (for high-magnification developmental analysis under Nikon Ti2 microscope) samples were spotted on a TPM-agar plate.

405

406

Plasmid and *p_{xrA}* knock-out strain construction.

407

To make the pCR-1079 plasmid, an ~280-bp internal fragment of the *p_{xrA}* coding gene was generated by a PCR reaction with primers 1079-11 (TCTTGCCCGGCTGTTCTTG) and 1079-12 (CCCGCTTCACGTTGAGGAC) and cloned into the pCR-Blunt vector. Restriction-enzyme digestion and Sanger sequencing confirmed the positive constructs. The *p_{xrA}*-knockout strain GJV1xrA::pCR-1079 (referred to as *p_{xrA}*⁻ in the main text) was constructed by transforming the parental strain GJV1 with pCR-1079 and isolated from a kanamycin-CTT hard agar plate. Integration of pCR-1079 at the *MXAN_1079* locus created a non-functional merodiploid with one truncated *MXAN_1079* copy lacking codons for residues 113-278 of the encoded protein's C-terminus and the other partial copy lacking codons for residues 1-19 of the protein's N-terminus (see Supp. Fig. 7a). The construct of the merodiploid mutant was verified with Sanger sequencing using the same primers indicated above and vector-specific primers.

417

418

RNA extraction and RNA-seq analyses.

419

RNA isolation from three independent biological replicates of the strains GJV1 and GJV1 Δ p_{xr} was done using the RNeasy Mini Kit (QIAGEN, # 74004) according to the manufacturer's protocol using cells at mid-log phase. The isolated RNA was treated with the TURBO DNA-freeTM Kit (Invitrogen, # AM1907) in a volume of 50 μ l using 5 μ g of total RNA, and the reaction was incubated at 37 °C for 45 min. Ribosomal RNA (rRNA) was depleted using Ribo-Zero Plus rRNA Depletion Kit (Illumina, #20040526) according to the manufacturer's protocol. RNA quality was checked using the Aligent 4150 TapeStation® machine, and only samples with an RNA integrity number (RIN) higher than 8 were further processed. The Illumina True-seq protocol for total RNA was used for library preparation, and 150bp single-end read sequencing was run on an Illumina-Novaseq 6000 at the

427 Functional Genomic Centre Zurich (FGCZ), University of Zurich, Switzerland (Supp. Fig. 2b).
428 Sequencing reads were checked for quality using *FastQC* v0.73⁵⁰ and trimmed with *Trimmomatic*⁵¹ for
429 the adapter sequences and poorly sequenced bases (parameters set at 4:20). Trimmed reads were then
430 mapped to the DK1622 (ASM1268v1) genome using *bowtie*⁵² while controlling for correct strand
431 orientation. Read counts per gene were obtained using *HTSeq*⁵³ with minimum alignment quality set to
432 10 bases and model *union* to obtain the final read counts. On average, the number of mapped read
433 counts per individual sample was 2 million. To assess differences in gene expression levels, read counts
434 per gene of all six independent replicate samples (three replicates for GJV1 (WT) clones and three
435 replicates for GJV1 Δ pxr clones) were analysed with *DESeq2*⁵⁴ using the quantile method to normalise
436 read counts and compared across replicates. Significant differences were considered using an α value
437 set at 0.1. RNA-seq-specific analyses were all conducted on the Galaxy platform
438 (<https://galaxyproject.org>)⁵⁵. Enrichment analyses for the clusters of orthologous genes (COGs) and
439 operons were performed with *FUNAGE-Pro*⁵⁶ using the DK1622 (ASM1268v1) as the reference
440 genome. Networks of gene associations and GO enrichment analysis were done using the STRING
441 database¹⁸ with the *stringApp* on the Cytoscape software⁵⁷ with the genome DK1622 (ASM1268v1) as
442 reference. In addition, we retrieve the individual gene functional annotations from the UniProt⁵⁸ database
443 and store them as Supp. Data 1. The raw *fastq* files and read counts per gene are deposited at GEO
444 with the following IDs (GSE265958). We generated an online application at the following link
445 (https://izego7-marco.shinyapps.io/rnaseq_app/) with Shiny⁵⁹ (<https://shiny.posit.co/>) in R⁶⁰ to allow a
446 user-friendly exploration of our data. The application is stored as Supp. Code listed among the
447 Supplementary Information.

448

449 **Comparisons of RNA-seq profiles.** A list of *M. xanthus* genes associated with fruiting-body
450 development was obtained from three studies that used RNA-seq to characterise transcriptional profiles
451 of cells during development^{9–11}. The degree of similarity between our study and the others was assessed
452 by comparing the expression levels of cells sampled during the exponential growth phase. Each study
453 differed in some respects (e.g., growth media, equipment used for growth), with the vegetative growth
454 of wild-type cells being the only experimental condition common to all four studies. When available,
455 expression levels were recovered as normalised gene counts⁹¹¹ or as the differential expression
456 analysis¹⁰. However, all transcriptional levels were scaled across their relative mean value before direct
457 comparison. Pearson's correlation test was performed for all pairwise combinations across all datasets,
458 including ours (Supp. Fig. 5a). As mentioned, the three studies differ in their experimental setups (e.g.,
459 the protocol used to process and sequence the RNA and the genetic background of the reference WT
460 strains). Therefore, significant differences between them were expected, as previously
461 acknowledged^{10,11}. Given these considerations, a correlation close to 50% was heuristically considered
462 relevant. Thus, all three other studies were used to extract potential developmental genes.

463

464 **Image acquisition and analysis.** Analyses of fruiting-body development over time for the two strains
465 GJV1 and GJV1 Δ pxr were done with a Nikon Ti2-E microscope and a DS-Qi2 camera. Developing cells
466 were observed for a maximum of 141 h, and images were taken every 30 m with a 2x objective. While
467 at the microscope, cells were kept at 32 °C using a customised microscope stage-top incubator.
468 Development time lapses were analysed with ImageJ software v2.9.0⁶¹ to assess the number of fruiting
469 bodies over time (Supp. Data 2). Using a previously established protocol in our lab⁶², fruiting bodies
470 were identified based on their grey values and consistently counted across all samples. Subsequently,
471 statistical analysis of the data obtained was run in R v4.0⁶⁰.

472 To obtain representative images of fruiting bodies on plates after 5 days of starvation-induced
473 development, a Zeiss STEMI 2000 microscope and a Nikon Coolpix S10 camera were used.

474
475 **Phylogenetic analysis of PxrA.** PxrA (MXAN_1079) orthologs were identified by searching all
476 sequences in the non-redundant NCBI and integrated microbial genomes (IMG) databases⁶³. Next, hits
477 for E-values lower than 10⁻¹⁰⁰ and sequences higher than 80% similarity were selected and aligned
478 against each other using MUSCLE⁶⁴. ProtTest 3⁶⁵ was used to determine the optimal model (JTT+G+F,
479 with gamma: 0.67) before the tree generation. Maximum Likelihood trees were generated using PhyML
480 3.0⁶⁶, running 1,000 bootstraps. Lastly, iTOL v4⁶⁷ was used to visualise the tree obtained.

481
482 **Western immunoblotting assay of FruA.** The protein samples prepared from the vegetative
483 cultures growing in CTT (V) as well as developing populations submersed in MC7 buffer at different time
484 points (0, 6, 12, 18 and 24 h) were electrophoresed in a 12.5% SDS polyacrylamide
485 gel. Subsequently, proteins were electro-transferred from electrophoresis gels to Whatman Protran
486 nitrocellulose membranes by a semidry blotting device. The membrane blots were first hybridised with
487 rabbit anti-FruA antibody (1:1500 dilution in TTBS [Tris-buffered saline with 0.1% Tween 20] -1%
488 gelatin) followed by incubating with alkaline phosphatase (AP)-conjugated goat anti-
489 rabbit immunoglobulin G (1:3000 dilution in TTBS-1% gelatin). Detection of FruA protein was visualised
490 for all conditions in parallel by a chemiluminescent reaction with a light emitting substrate (CDP-
491 StarTM) (Ambion).

492 493 ACKNOWLEDGEMENTS

494 We thank the Genetic Diversity Centre (GDC – ETH Zürich), the Functional Genomic Center Zürich
495 (FGCZ – University of Zürich) for the helpful technical support and the Evolutionary Biology group at
496 ETH Zurich for comments on the manuscript. This work was partly funded by an EMBO Long-Term
497 Fellowship (ALTF 1208–2017) to **M.L.F.** and Swiss National Science Foundation grant
498 310030B_182830 to **G.J.V.**

500 **AUTHORS' CONTRIBUTION**

501 **Y.-T.N.Y., G.J.V. and M.L.F.** designed the project, experiments and analyses; **M.L.F., J.V., S.C.,**
502 **S.E.,** and **Y.-T.N.Y.** conducted the experiments; **M.L.F.** and **J.V.** analysed the data and generated
503 figures. **M.L.F.** and **Y.-T.N.Y.** drafted the manuscript; all authors reviewed and commented on the
504 manuscript; **M.L.F., G.J.V. and Y.-T.N.Y.** revised the manuscript.

505

506 **COMPETING INTERESTS**

507 The authors declare no competing interests.

508

509 **DATA AVAILABILITY**

510 RNA-seq data are deposited at NCBI's Gene Expression Omnibus⁶⁸ and are accessible through GEO
511 Series accession number GSE265958 ([ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE265958](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE265958)).

512 Supplementary Information is stored on Dryad at <https://doi.org/10.5061/dryad.xsj3tx9pn>

513

514

515 **REFERENCES**

516

- 517 1. Dutta, T., and Srivastava, S. (2018). Small RNA-mediated regulation in bacteria: a growing palette of
518 diverse mechanisms. *Gene* 656, 60–72. 10.1016/j.gene.2018.02.068.
- 519 2. Cech, T.R., and Steitz, J.A. (2014). The noncoding RNA revolution—trashing old rules to forge new
520 ones. *Cell* 157, 77–94. 10.1016/j.cell.2014.03.008.
- 521 3. Wagner, E.G.H., and Romby, P. (2015). Small RNAs in bacteria and archaea: who they are, what
522 they do, and how they do it. *Adv Genet* 90, 133–208. 10.1016/bs.adgen.2015.05.001.
- 523 4. Felden, B., and Augagneur, Y. (2021). Diversity and versatility in small RNA-mediated regulation in
524 bacterial pathogens. *Front Microbiol* 12, 719977. 10.3389/fmicb.2021.719977.
- 525 5. Yu, Y.-T.N., Yuan, X., and Velicer, G.J. (2010). Adaptive evolution of an sRNA that controls
526 Myxococcus development. *Science* 328, 993. 10.1126/science.1187200.
- 527 6. Storz, G., Vogel, J., and Wassarman, K.M. (2011). Regulation by small RNAs in bacteria: expanding
528 frontiers. *Mol Cell* 43, 880–891. 10.1016/j.molcel.2011.08.022.
- 529 7. Shimkets, L.J., Dworkin, M., and Reichenbach, H. (2006). The Myxobacteria. In *The Prokaryotes*, M.
530 Dworkin, S. Falkow, E. Rosenberg, KH. Schleifer, E. Stackebrandt, eds. (Springer), pp. 31–115.
531 10.1007/0-387-30747-8_3.
- 532 8. Kroos, L. (2017). Highly signal-responsive gene regulatory network governing Myxococcus
533 development. *Trends Genet* 33, 3–15. 10.1016/j.tig.2016.10.006.
- 534 9. Muñoz-Dorado, J., Moraleda-Muñoz, A., Marcos-Torres, F.J., Contreras-Moreno, F.J., Martin-
535 Cuadrado, A.B., Schrader, J.M., Higgs, P.I., and Pérez, J. (2019). Transcriptome dynamics of the
536 *Myxococcus xanthus* multicellular developmental program. *Elife* 8, e50374. 10.7554/elife.50374.

537 10. Sharma, G., Yao, A.I., Smaldone, G.T., Liang, J., Long, M., Facciotti, M.T., and Singer, M. (2021).
538 Global gene expression analysis of the *Myxococcus xanthus* developmental time course. *Genomics*
539 113, 120–134. 10.1016/j.ygeno.2020.11.030.

540 11. McLoon, A.L., Boeck, M.E., Bruckskotten, M., Keyel, A.C., and Søgaard-Andersen, L. (2021).
541 Transcriptomic analysis of the *Myxococcus xanthus* FruA regulon, and comparative developmental
542 transcriptomic analysis of two fruiting body forming species, *Myxococcus xanthus* and *Myxococcus*
543 *stipitatus*. *BMC Genomics* 22, 784. 10.1186/s12864-021-08051-w.

544 12. Fiegna, F., Yu, Y.-T.N., Kadam, S.V., and Velicer, G.J. (2006). Evolution of an obligate social
545 cheater to a superior cooperator. *Nature* 441, 310–314. 10.1038/nature04677.

546 13. Cossey, S.M., Velicer, G.J., and Yu, Y.-T.N. (2023). Ribonuclease D processes a small RNA
547 regulator of multicellular development in myxobacteria. *Genes* 14, 1061. 10.3390/genes14051061.

548 14. Dawid, W. (2000). Biology and global distribution of myxobacteria in soils. *FEMS Microbiol Rev* 24,
549 403–427. 10.1111/j.1574-6976.2000.tb00548.x.

550 15. Chen, I.-C.K., Griesenauer, B., Yu, Y.-T.N., and Velicer, G.J. (2014). A recent evolutionary origin of
551 a bacterial small RNA that controls multicellular fruiting body development. *Mol Phylogenet Evol.* 73, 1–
552 9. 10.1016/j.ympev.2014.01.001.

553 16. Chen, I.-C.K., Velicer, G.J., and Yu, Y.-T.N. (2017). Divergence of functional effects among
554 bacterial sRNA paralogs. *BMC Evol Biol* 17, 199. 10.1186/s12862-017-1037-5.

555 17. Rosenbluh, A., Nir, R., Sahar, E., and Rosenberg, E. (1989). Cell-density-dependent lysis and
556 sporulation of *Myxococcus xanthus* in agarose microbeads. *J Bacteriol* 171, 4923–4929.
557 10.1128/jb.171.9.4923-4929.1989.

558 18. Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M.,
559 Doncheva, N.T., Morris, J.H., Bork, P., et al. (2018). STRING v11: protein–protein association networks
560 with increased coverage, supporting functional discovery in genome-wide experimental datasets.
561 *Nucleic Acids Res.* 47, D607-D613. 10.1093/nar/gky1131.

562 19. Fraser, A.D.E., and Yamazaki, H. (1980). Characterization of an *Escherichia coli* mutant which
563 utilizes glycerol in the absence of cyclic adenosine monophosphate. *Can J Microbiol* 26, 393–396.
564 10.1139/m80-064.

565 20. Holmberg, C., Beijer, L., Rutberg, B., and Rutberg, L. (1990). Glycerol catabolism in *Bacillus*
566 *subtilis*: nucleotide sequence of the genes encoding glycerol kinase (*glpK*) and glycerol-3-phosphate
567 dehydrogenase (*glpD*). *J Gen Microbiol* 136, 2367–2375. 10.1099/00221287-136-12-2367.

568 21. Cornet, P., Millet, J., Béguin, P., and Aubert, J.-P. (1983). Characterization of two *Cel* (cellulose
569 degradation) genes of *Clostridium thermocellum* coding for endoglucanases. *Bio/Technology* 1, 589–
570 594. 10.1038/nbt0983-589.

571 22. Béguin, P., and Aubert, J.-P. (1994). The biological degradation of cellulose. *FEMS Microbiol Rev*
572 13, 25–58. 10.1111/j.1574-6976.1994.tb00033.x.

573 23. Watson, B.F., and Dworkin, M. (1968). Comparative intermediary metabolism of vegetative cells
574 and microcysts of *Myxococcus xanthus*. *J Bacteriol* 96, 1465–1473. 10.1128/jb.96.5.1465-1473.1968.

575 24. Goldman, B., Bhat, S., and Shimkets, L.J. (2007). Genome evolution and the emergence of fruiting
576 body development in *Myxococcus xanthus*. PLoS One 2, e1329. 10.1371/journal.pone.0001329.

577 25. Johanson, U., and Hughes, D. (1994). Fusidic acid-resistant mutants define three regions in
578 elongation factor G of *Salmonella typhimurium*. Gene 143, 55–59. 10.1016/0378-1119(94)90604-1.

579 26. Schimmel, P. (1991). Classes of aminoacyl-tRNA synthetases and the establishment of the genetic
580 code. Trends Biochem Sci 16, 1–3. 10.1016/0968-0004(91)90002-d.

581 27. Ogawa, M., Fujitani, S., Mao, X., Inouye, S., and Komano, T. (1996). FruA, a putative transcription
582 factor essential for the development of *Myxococcus xanthus*. Mol Microbiol 22, 757–767.
583 10.1046/j.1365-2958.1996.d01-1725.x.

584 28. Brenner, M., Garza, A.G., and Singer, M. (2004). *nsd*, a locus that affects the *Myxococcus xanthus*
585 cellular response to nutrient concentration. J Bacteriol. 186, 3461–3471. 10.1128/jb.186.11.3461-
586 3471.2004.

587 29. Wegener-Feldbrügge, S., and Søgaard-Andersen, L. (2009). The atypical hybrid histidine protein
588 kinase RodK in *Myxococcus xanthus*: spatial proximity supersedes kinetic preference in
589 phosphotransfer reactions. J Bacteriol. 191, 1765–1776. 10.1128/jb.01405-08.

590 30. Ward, M.J., Mok, K.C., Astling, D.P., Lew, H., and Zusman, D.R. (1998). An ABC transporter plays
591 a developmental aggregation role in *Myxococcus xanthus*. J Bacteriol 180, 5697–5703.
592 10.1128/jb.180.21.5697-5703.1998.

593 31. Tojo, N., Inouye, S., and Komano, T. (1993). The *lonD* gene is homologous to the *lon* gene
594 encoding an ATP-dependent protease and is essential for the development of *Myxococcus xanthus*. J
595 Bacteriol 175, 4545–4549. 10.1128/jb.175.14.4545-4549.1993.

596 32. Youderian, P., and Hartzell, P.L. (2006). Transposon insertions of *magellan-4* that impair social
597 gliding motility in *Myxococcus xanthus*. Genetics 172, 1397–1410. 10.1534/genetics.105.050542.

598 33. Martinez-Canamero, M., Muñoz-Dorado, J., Farez-Vidal, E., Inouye, M., and Inouye, S. (1993).
599 Oar, a 115-kilodalton membrane protein required for development of *Myxococcus xanthus*. J Bacteriol
600 175, 4756–4763. 10.1128/jb.175.15.4756-4763.1993.

601 34. Gómez-Santos, N., Glatter, T., Koebnik, R., Świątek-Połatyńska, M.A., and Søgaard-Andersen, L.
602 (2019). A TonB-dependent transporter is required for secretion of protease PopC across the bacterial
603 outer membrane. Nat Commun 10, 1360. 10.1038/s41467-019-09366-9.

604 35. Rasmussen, A.A., Wegener-Feldbrügge, S., Porter, S.L., Armitage, J.P., and Søgaard-Andersen,
605 L. (2006). Four signalling domains in the hybrid histidine protein kinase RodK of *Myxococcus xanthus*
606 are required for activity. Mol Microbiol 60, 525–534. 10.1111/j.1365-2958.2006.05118.x.

607 36. Whitfield, D.L., Sharma, G., Smaldone, G.T., and Singer, M. (2020). Peripheral rods: a specialized
608 developmental cell type in *Myxococcus xanthus*. Genomics 112, 1588–1597.
609 10.1016/j.ygeno.2019.09.008.

610 37. Kadam, S.V., Wegener-Feldbrügge, S., Søgaard-Andersen, L., and Velicer, G.J. (2008). Novel
611 transcriptome patterns accompany evolutionary restoration of defective social development in the
612 bacterium *Myxococcus xanthus*. Mol Biol Evol 25, 1274–1281. 10.1093/molbev/msn076.

613 38. Tjaden, B. (2023). TargetRNA3: predicting prokaryotic RNA regulatory targets with machine
614 learning. *Genome Biol.* 24, 276. 10.1186/s13059-023-03117-2.

615 39. Yu, Y.-T.N., Cooper, E., and Velicer, G.J. (2017). A conserved stem of the *Myxococcus xanthus*
616 sRNA Pxr controls sRNA accumulation and multicellular development. *Sci Rep* 7, 15411.
617 10.1038/s41598-017-15439-w.

618 40. Rendueles, O., Amherd, M., and Velicer, G.J. (2015). Positively frequency-dependent interference
619 competition maintains diversity and pervades a natural population of cooperative microbes. *Curr Biol*
620 25, 1673–1681. 10.1016/j.cub.2015.04.057.

621 41. La Fortezza, M., Schaal, K.A., and Velicer, G.J. (2022). Group formation: on the evolution of aggrega-
622 tive multicellularity. In *The Evolution of Multicellularity*, M.D. Herron, P.L. Conlin, W.C. Ratcliff, eds.
623 (CRC Press), pp. 89–110. 10.1201/9780429351907-8.

624 42. Pande, S., and Velicer, G.J. (2018). Chimeric synergy in natural social groups of a cooperative
625 microbe. *Curr Biol* 28, 262–267.e3. 10.1016/j.cub.2017.11.043.

626 43. Ellehauge, E., Nørregaard-Madsen, M., and Søgaard-Andersen, L. (1998). The FruA signal
627 transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in
628 *Myxococcus xanthus* development. *Mol Microbiol* 30, 807–817. 10.1046/j.1365-2958.1998.01113.x.

629 44. La Fortezza, M., Rendueles, O., Keller, H., and Velicer, G.J. (2022). Hidden paths to endless forms
630 most wonderful: ecology latently shapes evolution of multicellular development in predatory bacteria.
631 *Commun Biol* 5, 977. 10.1038/s42003-022-03912-w.

632 45. Rajagopalan, R., Wielgoss, S., Lippert, G., Velicer, G.J., and Kroos, L. (2015). *devl* is an
633 evolutionarily young negative regulator of *Myxococcus xanthus* development. *J Bacteriol* 197, 1249–
634 1262. 10.1128/jb.02542-14.

635 46. Schaal, K.A., Yu, Y.-T.N., Vasse, M., and Velicer, G.J. (2022). Allopatric divergence of cooperators
636 confers cheating resistance and limits effects of a defector mutation. *BMC Ecol Evol* 22, 141.
637 10.1186/s12862-022-02094-7.

638 47. Carabetta, V.J., and Cristea, I.M. (2017). Regulation, function, and detection of protein acetylation
639 in bacteria. *J Bacteriol* 199, e001017–e00117. 10.1128/jb.00107-17.

640 48. Bhat, S., Boynton, T.O., Pham, D., and Shimkets, L.J. (2014). Fatty acids from membrane lipids
641 become incorporated into lipid bodies during *Myxococcus xanthus* differentiation. *PLoS One* 9, e99622.
642 10.1371/journal.pone.0099622.

643 49. Velicer, G.J., Raddatz, G., Keller, H., Deiss, S., Lanz, C., Dinkelacker, I., and Schuster, S.C.
644 (2006). Comprehensive mutation identification in an evolved bacterial cooperator and its cheating
645 ancestor. *Proc Natl Acad Sci U S A* 103, 8107–8112. 10.1073/pnas.0510740103.

646 50. Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data [Online].
647 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

648 51. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
649 sequence data. *Bioinformatics* 30, 2114–2120. 10.1093/bioinformatics/btu170.

650 52. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L. (2009) Ultrafast and memory-efficient
651 alignment of short DNA sequences to the human genome. *Genome Biol* 10, R25. 10.1186/gb-2009-10-
652 3-r25.

653 53. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework to work with high-
654 throughput sequencing data. *Bioinformatics* 31, 166–169. 10.1093/bioinformatics/btu638.

655 54. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion
656 for RNA-seq data with DESeq2. *Genome Biol* 15, 1–53. 10.1101/002832.

657 55. Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D.,
658 Coraor, N., Grüning, B.A., et al. (2018). The Galaxy platform for accessible, reproducible and
659 collaborative biomedical analyses: 2018 update. *Nucleic Acids Res* 46, W537-W544.
660 10.1093/nar/gky379.

661 56. de Jong, A., Kuipers, O.P., and Kok, J. (2022). FUNAGE-Pro: comprehensive web server for gene
662 set enrichment analysis of prokaryotes. *Nucleic Acids Res* 50, W330–W336. 10.1093/nar/gkac441.

663 57. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski,
664 B., and Ideker, T. (2003). Cytoscape: A Software environment for integrated models of biomolecular
665 interaction networks. *Genome Res* 13, 2498–2504. 10.1101/gr.1239303.

666 58. The UniProt Consortium (2023). UniProt: the universal protein knowledgebase in 2023. *Nucleic
667 Acids Res* 51, D523–D531. 10.1093/nar/gkac1052.

668 59. Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert,
669 A., Borges, B. (2024). shiny: Web Application Framework for R. R package version 1.8.1.9000,
670 <https://github.com/rstudio/shiny>, <https://shiny.posit.co/>.

671 60. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for
672 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

673 61. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
674 Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image
675 analysis. *Nat Methods* 9, 676–682. 10.1038/nmeth.2019.

676 62. La Fortezza, M., and Velicer, G.J. (2021). Social selection within aggregative multicellular
677 development drives morphological evolution. *Proc R Soc B* 288, 20211522. 10.1098/rspb.2021.1522.

678 63. Markowitz, V.M., Chen, I.-M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A.,
679 Jacob, B., Huang, J., Williams, P., et al. (2012). IMG: the integrated microbial genomes database and
680 comparative analysis system. *Nucleic Acids Res* 40, D115–D122. 10.1093/nar/gkr1044.

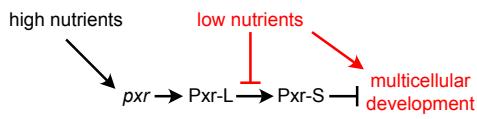
681 64. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high
682 throughput. *Nucleic Acids Res* 32, 1792–1797. 10.1093/nar/gkh340.

683 65. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2011). ProtTest 3: fast selection of best-fit
684 models of protein evolution. *Bioinformatics* 27, 1164–1165. 10.1093/bioinformatics/btr088.

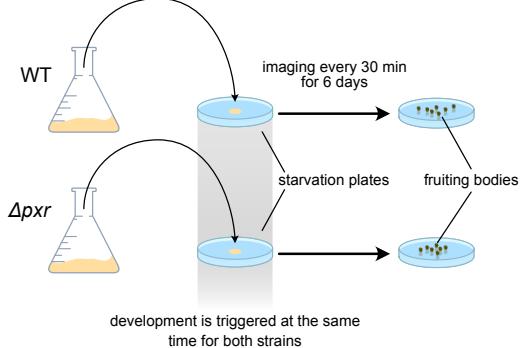
685 66. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New
686 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of
687 PhyML 3.0. *Syst Biol* 59, 307–321. 10.1093/sysbio/syq010.

688 67. Letunic, I., and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new
689 developments. *Nucleic Acids Res* 47, W256-W259. 10.1093/nar/gkz239.

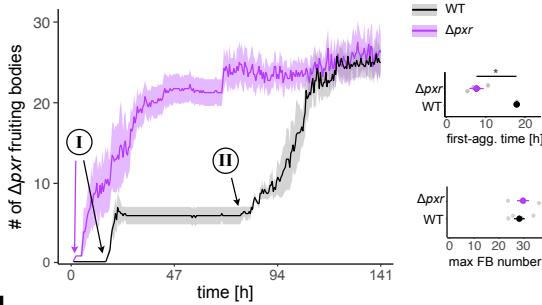
690 68. Edgar R, Domrachev M, Lash AE. (2002). Gene Expression Omnibus: NCBI gene expression and
691 hybridization array data repository. *Nucleic Acids Res*. 1;30(1):207-10. 10.1093/nar/30.1.207.

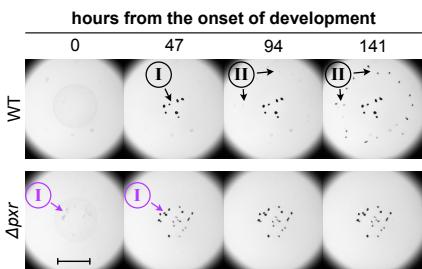

692

693


694
695

FIGURES


a


b

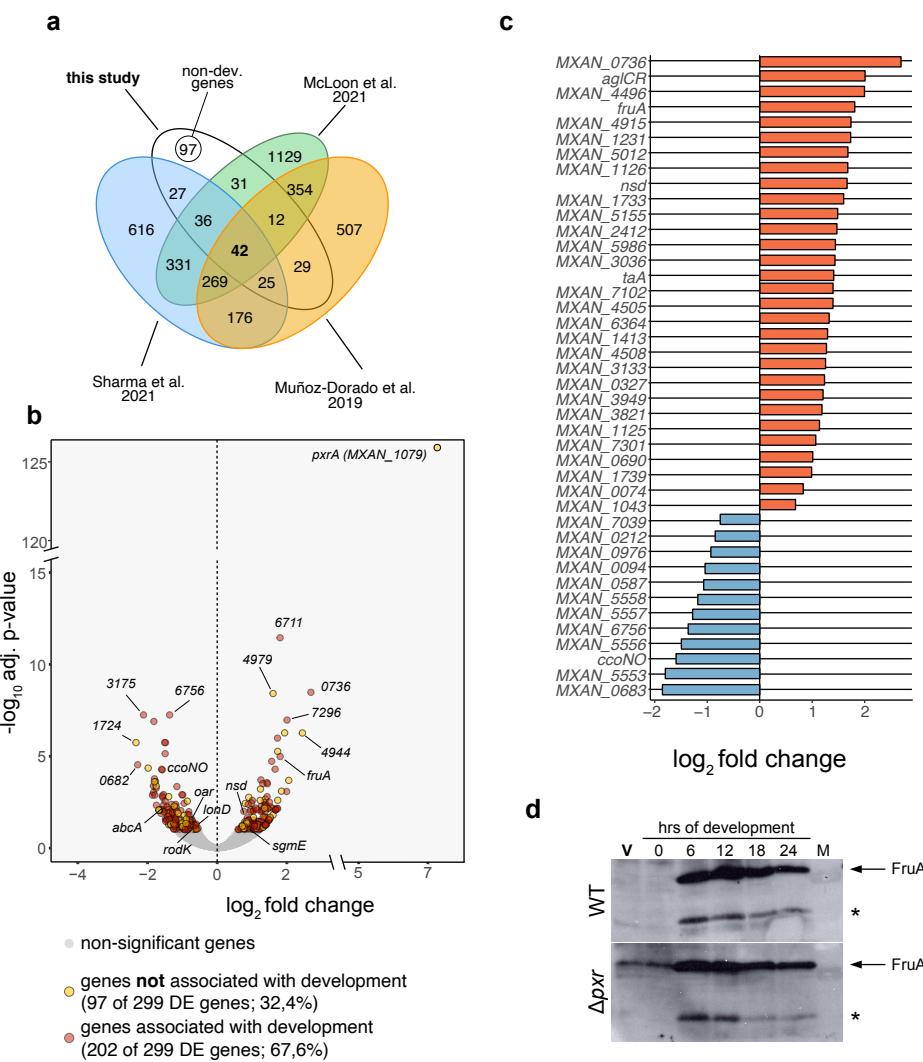
c


d

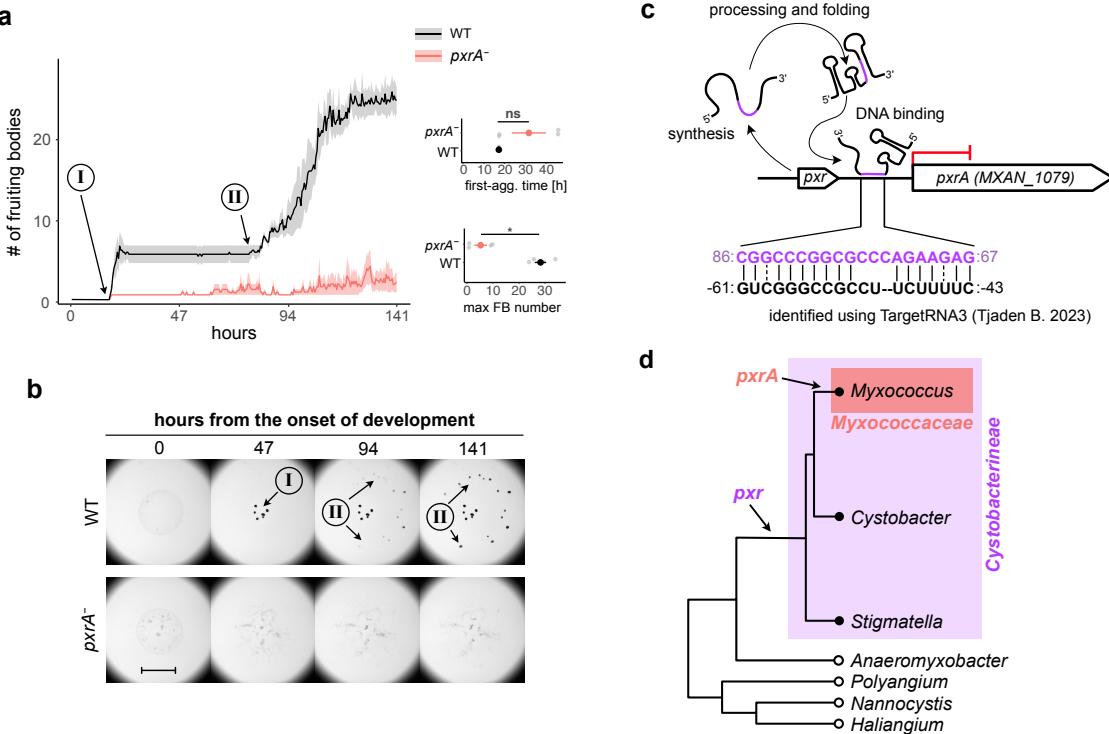
696
697

698 **Figure 1. Deletion of *pxr* accelerates fruiting-body development during starvation.** a) Simple model summarising
699 the current knowledge of nutrient-level effects on Pxr processing and inhibition of multicellular development. b) Overview
700 of the experiment used to compare the dynamics of fruiting-body development between WT and Δ pxr. WT (GJV1) and
701 mutant cells were independently grown in rich media until the mid-log phase and plated at equal density on starvation
702 plates (minimal media) to induce multicellular development. Plates were imaged for 141 h (~ 6 days) every 30 min to
703 quantify the speed and proficiency of fruiting-body development over time. c) Plot reporting the average number of
704 fruiting-body counts (thick lines) over time for WT (GJV1) (black line and shaded area) and Δ pxr cells (purple line and
705 shaded area). The two developmental waves observed in GJV1 are indicated with I and II circled in the plot area (black
706 arrows); the first and only major developmental wave observed for Δ pxr is also indicated with I and a purple arrow.
707 Graphs on the right report the average developmental time at which aggregates first formed (top) and the average
708 number of fruiting bodies present at the end of the experiment (bottom) for WT and Δ pxr cells (black and purple,
709 respectively). The shaded areas in the large plot and the error bars in both graphs represent the standard errors
710 associated with each measurement ($n = 4$). The asterisk indicates a significant mean difference. The experiment was
711 run using the same experimental protocol shown in Fig. 3a. d) Representative images of developing fruiting bodies (dark
712 spots) over the time course of WT (GJV1) (top row) and Δ pxr cells (bottom row). Arrows indicate the groups of fruiting
713 bodies characterising the two developmental waves I and II circled in the images for both WT (black arrows and text)
714 and Δ pxr cells (purple arrows and text). Images reporting Δ pxr developing cells lack the second developmental wave II
715 present for the WT cells. The scale bar equals 1 mm.

716



717
718


719 **Figure 2. *pxr* expression downregulates many metabolism genes and upregulates many genes associated with**
720 **cellular processes and signalling. a)** Heat-density scatter plot reporting the average read counts per gene in both WT
721 (GJV1) and the Δ pxr mutant. The colour gradient shifting from blue to yellow indicates increased data-point density.
722 Pearson's correlation r is shown within the plot area. **b)** Left: COG categories significantly enriched with differentially
723 expressed (DE) genes (Table S2). The x axis shows the enriched COG categories, while the y axis reports the
724 significance levels expressed as $-\log_{10}$. The dashed black line highlights the significance threshold of $p = 0.05$. Dark and
725 light grey areas group COG terms that belong to “Metabolism” and “Cellular processes and signalling”, respectively.
726 Right: Dot plots reporting the average gene expression level grouped by enriched COG term (left) and by enriched COG
727 category (right). In all cases, blue shaded dots refer to COGs terms associated with *Metabolism* (C, E, G, I, P), orange
728 with *Cellular Processes and Signalling* (M, O, T), and purple with *Function unknown* (S). For both graphs, error bars
729 represent a bootstrap 95% CI. **c)** Volcano plot reporting differential gene expression levels as a function of their adjusted
730 p -values. Coloured dots refer to genes associated with enriched COGs categories (see panel c), while grey dots indicate
731 genes that are either not significant ($adjusted\ p > 0.1$) or not annotated to any enriched COG term. Numbers refer to
732 MXAN gene names. For the complete list of DE genes and their COG annotation, refer to Supp. Table S1. Visit this [link](#)
733 to explore the graph in detail. **d)** Structure of the primary gene-interaction network found among the DE genes. Each
734 node represents one gene, while each connecting line (edge) indicates the potential interaction between two genes. For
735 the left version of the network, the colour gradient from blue to red indicates differential gene-expression levels between
736 WT and Δ pxr. White dots represent genes that did not show a significant difference in expression between the two
737 genotypes added to complete the interaction network. For the right version of the network, each colour represents one
738 enriched GO term found among genes constituting the shown network (Supp. Table 3). Multicolour dots indicate genes
739 annotated to multiple enriched GO terms. Grey dots represent genes not belonging to any enriched GO term. The bar
740 plot below summarises the gene counts per GO term. The depicted networks can be downloaded and examined in more
741 detail online using this [link](#).
742

743
744

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

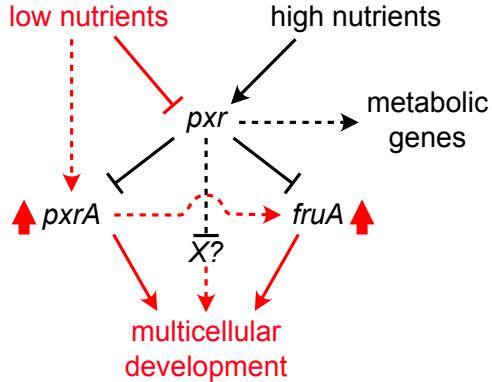


Figure 3. Lack of pxr changes the expression of many genes associated with fruiting-body development during vegetative growth. **a)** Venn diagram showing the number of DE genes found in our study (white area) that were identified as showing development-specific patterns of gene expression by Muñoz-Dorado et al. 2019⁹ (orange area), Sharma et al. 2021¹⁰ (blue area), or McLoon et al. 2021¹¹ (green area). (For details on the comparison, consult Methods: *RNA-seq profile comparisons*). **b)** Volcano plot reporting differential gene expression levels as a function of the significance levels with a 1% alpha cutoff (light grey indicates genes with an *adjusted p* > 0.1). Respectively, red and yellow dots indicate genes that have and have not been previously associated with fruiting-body development^{9–11}. The legend reports the absolute gene numbers for both categories and their frequencies relative to the total number of DE genes. For the complete list of DE genes, refer to Supp. Table S1 and Supp Table 5 for the complete list of DE genes associated with development. Visit this [link](#) to explore the graph in detail. **c)** Plot showing the expression-difference levels of the 42 DE genes with altered expression in the Δ pxr mutant during vegetative growth associated with development in all three published *M. xanthus* developmental-transcriptome studies^{9–11}. Orange and blue bars highlight the increase or decrease of transcript levels, respectively. **d)** Western blot showing FruA presence/absence in the WT (GJV1) and the Δ pxr mutant during vegetative growth (V, in red) and throughout two days of development (0, 6, 8, 12, 24 h). The arrow on the right side indicates the FruA-specific band (~ 24.7 kDa), while the asterisk indicates the presence of an unspecific recognition of the antibody used.

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Figure 4. pxrA is a potential Pxr binding target essential to fruiting-body development. **a)** Plot reporting the average number of fruiting-body counts (thick lines) over time for WT (black line and shaded area) and pxrA- cells (red line and shaded area). The two developmental waves localisation of WT developing cells are indicated with I and II circled in the plot area, with arrows pointing at the corresponding time point. Graphs on the right report the average developmental time for the first aggregates to form (top) and the average number of fruiting bodies at the end of the experiment (bottom) for WT and pxrA- coloured in black and red, respectively. The shaded areas in the large plot and the error bars in both graphs represent the standard errors associated with each measurement ($n = 4$). The asterisk indicates a significant mean difference, while ns indicates a non-significant one. **b)** Representative images of developing fruiting bodies (dark spot) over the time course for WT (GJV1) (top row) and pxrA- cells (bottom row). The circled-ordinal numbers I and II and arrows indicate the emergence and localisation of the two waves observed in the WT. The scale bar equals 1 mm. **c)** Schematic diagram showing the effect and the potential binding site of Pxr to the upstream promoter region proximal to pxrA (MXAN_1079). Numbers at the end of each string of letters indicate the base position relative to the Pxr sequence (purple numbers and letters) and the pxrA transcriptional start site (black number and letters). For a complete list of all predicted Pxr binding targets, refer to Supp. Table 6. **d)** Phylogenetic tree qualitatively contrasting the emergence of pxr and pxrA in myxobacteria (modified from ref. ¹⁵ with individual species collapsed to individual genera). Refer to ref ¹⁵ and Supp. Fig. 6c for a more detailed visualisation of pxr and PxrA phylogenies, respectively.

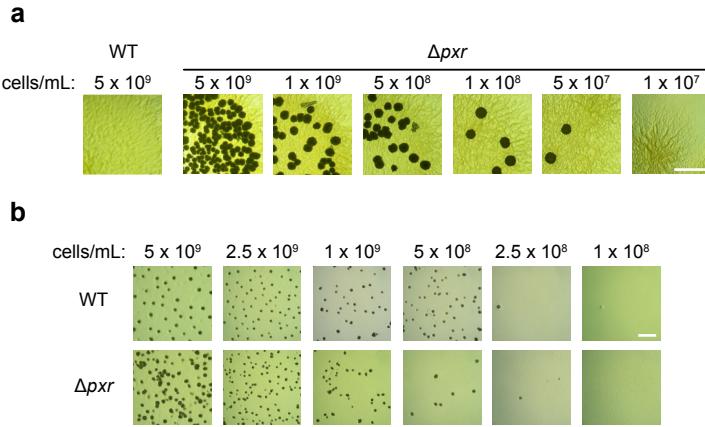
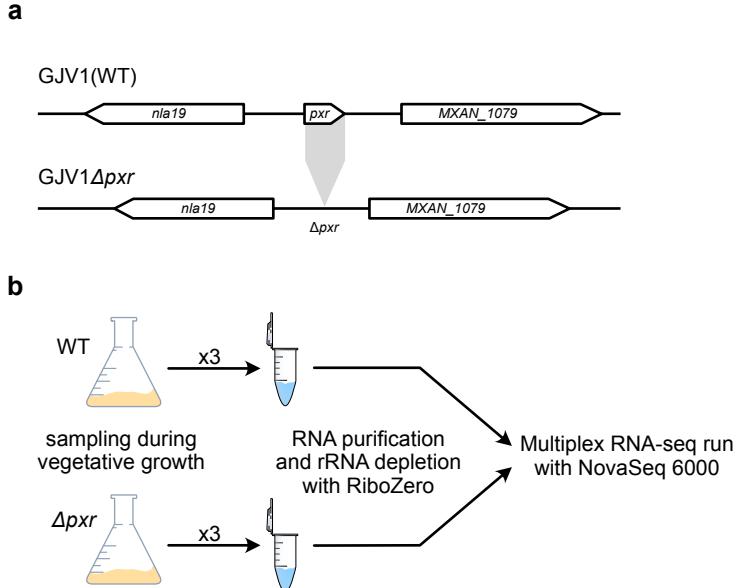

783
784
785
786
787
788
789
790
791
792
793

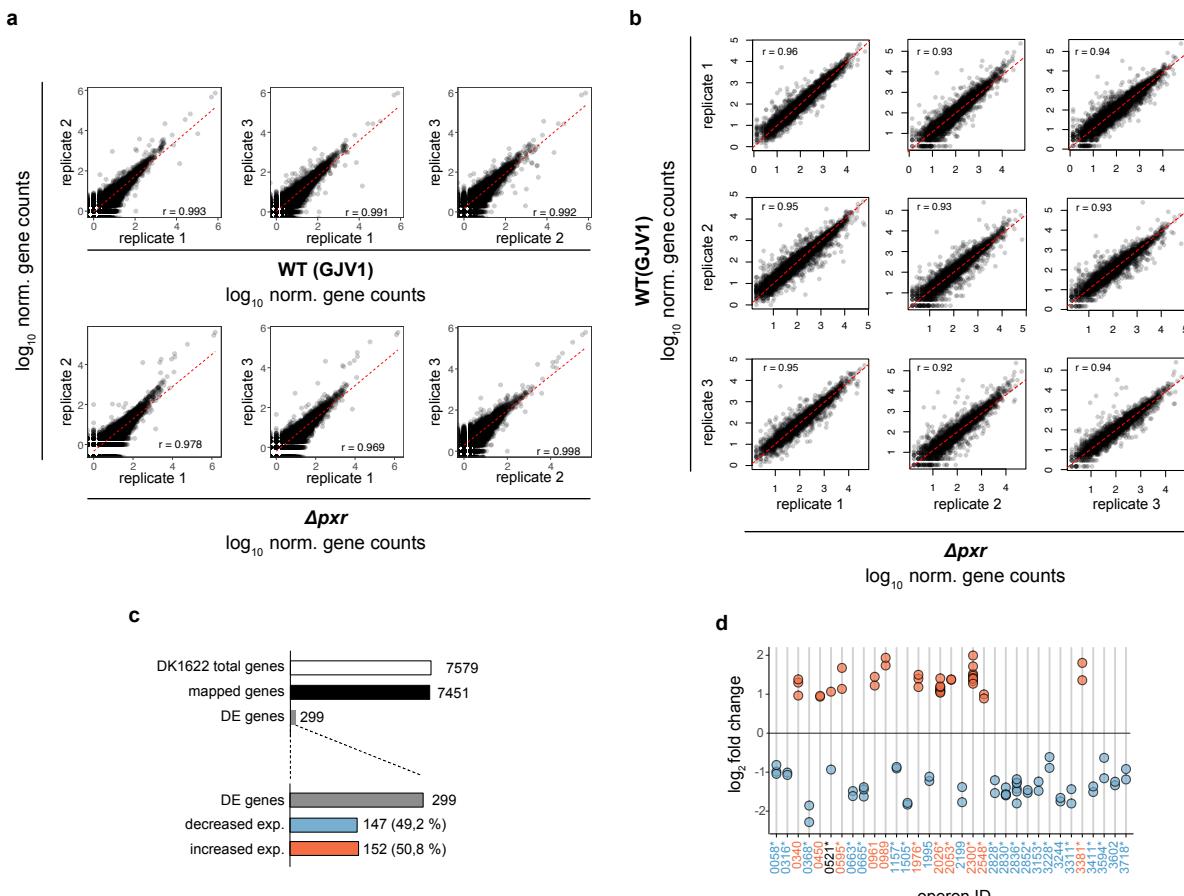
Figure 5. Hypothetical model of Pxr function preventing multicellular development by repressing levels – and hence activity – of key regulators of fruiting-body development. When nutrients are conducive to growth (black lines and arrows), Pxr represses levels of positive developmental regulators such as Pxra and FruA. Moreover, under the same conditions, our data suggest a positive effect of Pxr on the expression of genes associated with metabolic processes. When nutrient levels become scarce (red lines and arrows), however, the repressive function of Pxr is relieved. Cells decrease their metabolic rates and activate the developmental program via *pxr* repression, leading to multicellularity by increasing the expression of positive regulators of fruiting-body development.

794
795
796
797
798
799

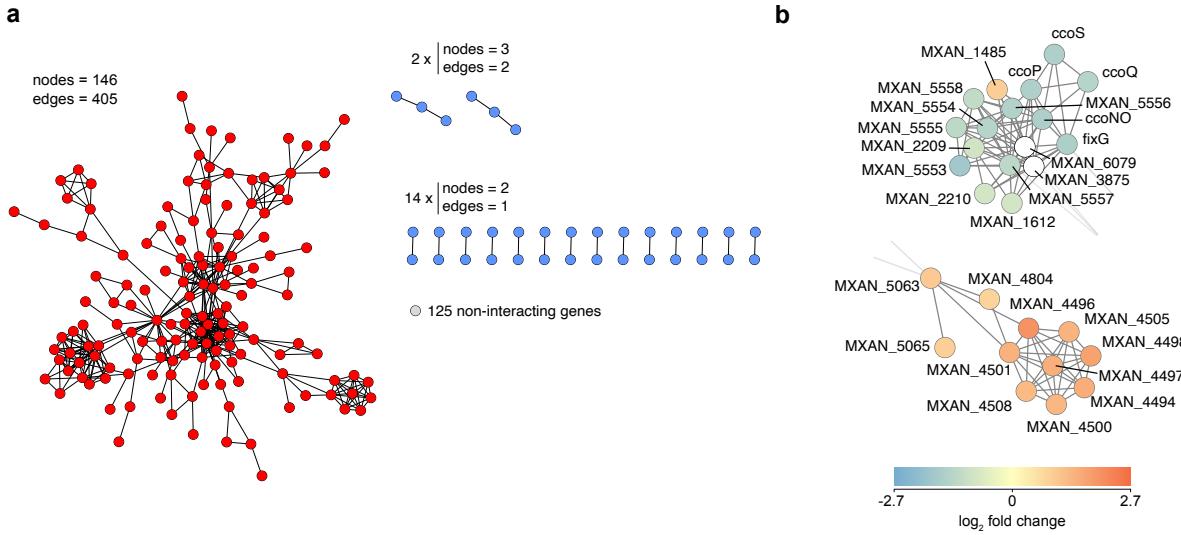
Supplementary information


4 Supplementary Figures
6 Supplementary Tables

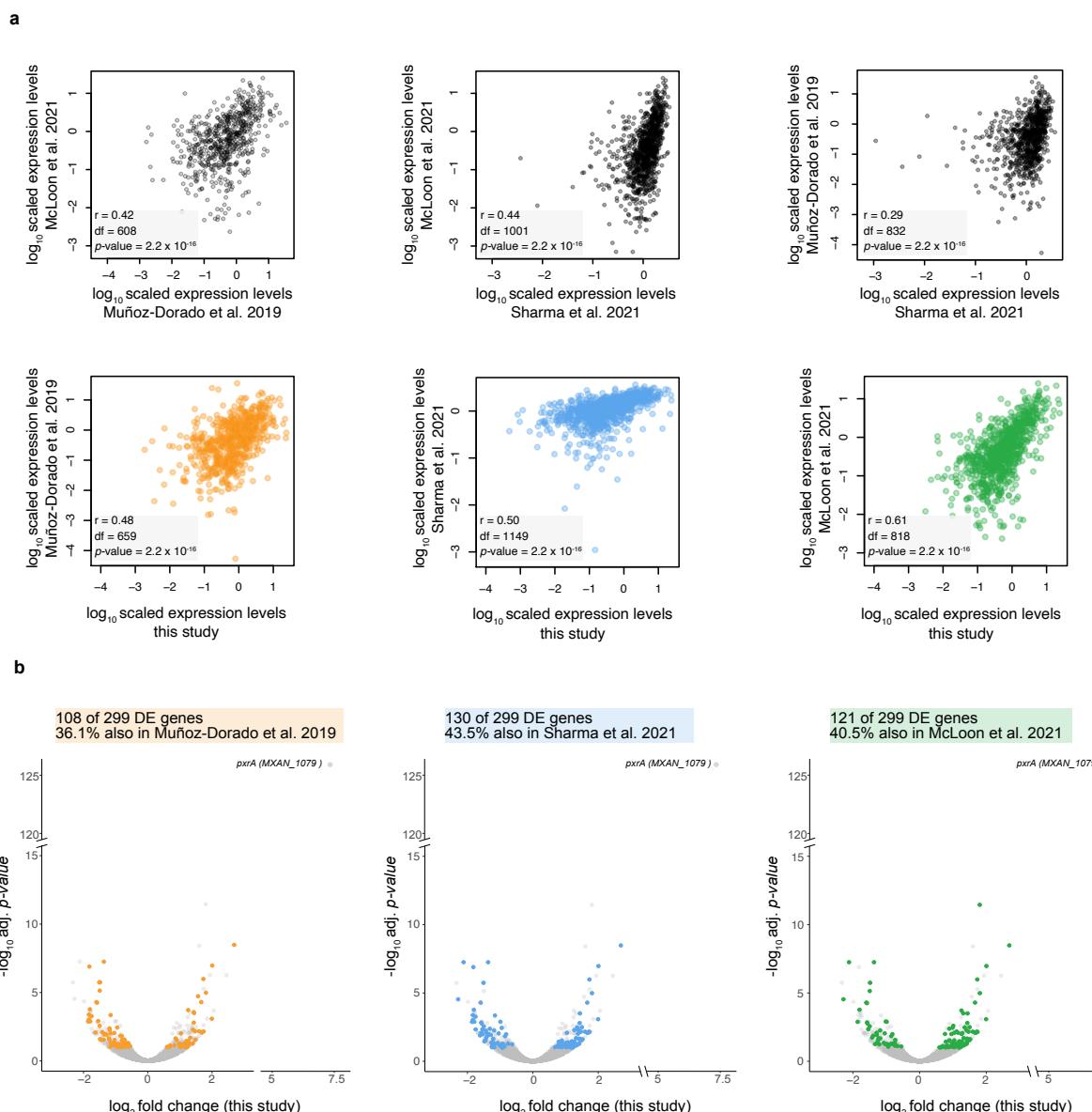
800
801
802
803
804
805
806
807
808

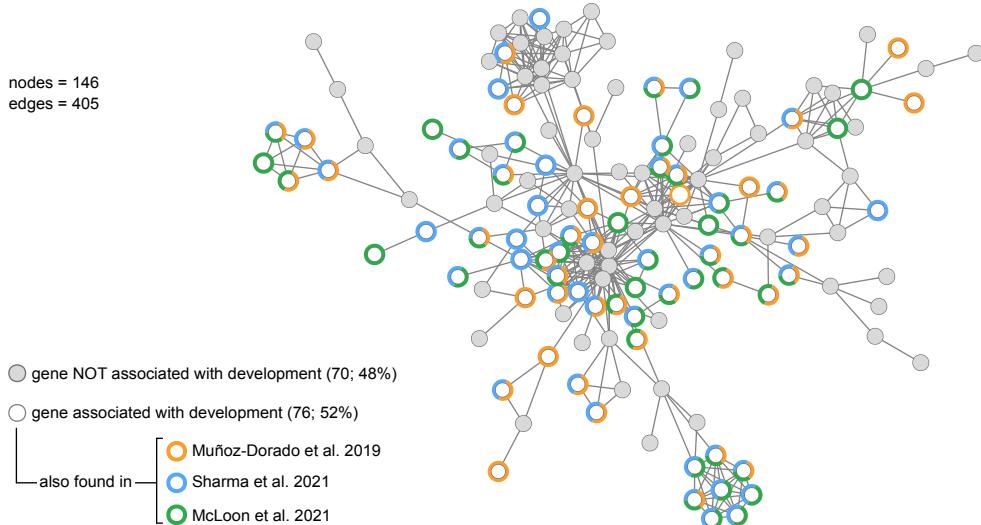

Supp. Fig. 1. a) Microscopy images comparing five-day-old WT and Δpxr cell cultures inoculated on an agar plate with 0.3% casitone, with decreasing cellular densities for the Δpxr mutant. Dark spots are mature fruiting bodies. **b)** Microscopy images showing five-day-old cultures of WT and Δpxr (top and bottom array rows, respectively) after inoculation onto buffered (TPM) agar at six different initial densities. Dark spots are mature fruiting bodies. Scale bars equal to 2mm for both panels.

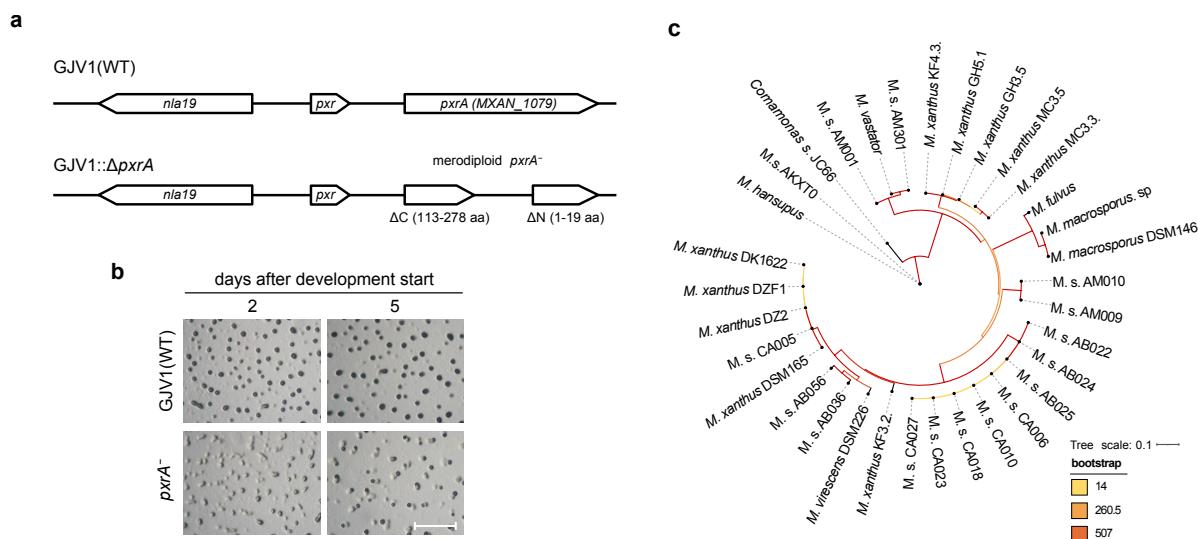
809


810
811
812
813
814
815

Supp. Fig. 2. a) Schematic representation of the *ppxr* locus in WT (GJV1) cells (top) and GJV1 Δ *ppxr* mutant cells (bottom). **b)** Cartoon reporting the experimental design used to sample RNA from cells during vegetative growth in rich media. RNA was extracted, purified, and rRNA removed using RiboZero before whole transcriptome sequencing on a NovaSeq 6000 machine. The total number of reads per sample was estimated to be approximately eight million (total number of annotated genes for DK1622 = 7579).


816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831


Supp. Fig. 3. a) Scatter plots reporting the pairwise comparison of gene counts between the individual biological replicates per each strain (WT or Δpxr). Pearson's coefficients of correlation (r) are reported within each plot. We measured an average variance value of 0.048 and 0.142 for WT and Δpxr , respectively. **b)** Scatter plots reporting the pairwise comparison of gene counts between WT (GJV1) and Δpxr individual biological replicates. Pearson's coefficients of correlation (r) are reported within each plot. **c)** Top: Summary of the total number of unique transcript sequences mapped onto the DK1622 reference genome (white and black bars, respectively), the number of genes differentially expressed (DE) between WT and the Δpxr mutant (grey bars) compared to the mapped and total genes. Bottom: Numbers (and percentages) of DE genes (grey bar) that are down-regulated (blue bar) and up-regulated (red bar). **d)** Dot plot illustrating the level of differential expression of genes (y axis) belonging to the list of the enriched operons (x axis). The blue and red text refers to operons containing genes with decreased and increased transcript levels. 0521 (in black) is the only operon that contains genes with different signs of expression levels. Asterisks placed next to the operon IDs indicate operons that contain at least one gene associated with development (75% of the 33 operons); see Supp. Table 2 and 5 for more details.


832
833
834
835
836
837
838
839

Supp. Fig. 4. a) Summary of all the networks resulting from previously annotated gene interactions. The main network is red, blue which all interactions are less than five genes, and grey, which are all single non-interacting genes. **b)** Close-ups of two dense sub-clusters from the main red network reported in (a). Nodes are coloured by their differential expression levels, going from blue (low transcript levels) to red (high transcript levels). The depicted networks can be downloaded and consulted in greater detail online at this [link](#).

852
853
854 **Supp. Fig. 6. a)** The main gene interaction network (also in Fig. 2d- and S4) highlights developmental genes in white
855 and genes not associated with development in grey. Coloured circles identify developmental genes present in Muñoz-
856 Dorado et al. 2019 (orange circles), Sharma et al. 2021 (blue circles), and/or McLoon et al. 2021 (green circles). The
857 depicted network can be downloaded and visualised in greater detail using this [link](#).
858

859
 860
 861
 862 **Supp. Fig. 7. a)** Illustration of the *pxrA* locus in WT(GJV1) and *pxrA*⁻ (GJV1*pxrA*::*pCR*-1079) mutant cells. Merodiploid
 863 mutant cells carried the two deletions at the N- (1-19) and C-terminal (113-278) regions of PxrA (total protein length 278
 864 aa). **b)** Representative microscopy images showing the wild-type GJV1 (top row) and the mutant *pxrA*⁻ during starvation-
 865 induced development. The photographs were taken two and five days after the onset of development. The fruiting bodies
 866 are visible as darkened aggregates. The scale bar equals 1 mm. **c)** Phylogenetic tree for PxrA orthologues. Branches
 867 are coloured by their bootstrap values, and their lengths indicate the expected number of substitutions per site. The
 868 species name and strain are indicated at the end of each branch. M.s. = *Myxococcus* sp.