

1 StereoMM: A Graph Fusion Model for Integrating Spatial 2 Transcriptomic Data and Pathological Images

3 Bingying Luo^{*1,2}, Fei Teng^{*1,2}, Guo Tang^{*1}, Weixuan Chen², Chi Qu¹, Xuanzhu Liu^{1,2}, Xin Liu¹, Xing Liu^{1,2},
4 Huaqiang Huang¹, Yu Feng³, Xue Zhang¹, Min Jian², Mei Li², Feng Xi¹, Guibo Li^{1,2}, Sha Liao^{&2}, Ao Chen^{&1,2},
5 Xun Xu^{&1,2,3}, Jiajun Zhang^{&1,2}

6

7 ¹ BGI Research, Chongqing 401329, China.

8 ² BGI Research, Shenzhen 518083, China.

9 ³ BGI Research, Hangzhou 310030, China.

10

11 * These authors contributed to this work equally

12 & Corresponding senior authors

13 ***Correspondence to:***

14 Dr. Jiajun Zhang

15 Address: Building 11, Beishan Industrial Zone, Yantian District, Shenzhen (518083)

16 Email: zhangjiajun1@genomics.cn

17 **Abstract count: (200-300)**

18 **Word count: (5000)**

19 **4795 words**

20 **Running title:**

21 **StereoMM: Integrating Spatial Transcriptomics and Images for Molecular Insights**

22

Abstract

23 Spatially resolved omics technologies generating multimodal and high-throughput data lead to
24 the urgent need for advanced analysis to allow the biological discoveries by comprehensively
25 utilizing information from multi-omics data. The H&E image and spatial transcriptomic data
26 indicate abundant features which are different and complementary to each other. AI algorithms
27 can perform nonlinear analysis on these aligned or unaligned complex datasets to decode
28 tumoral heterogeneity for detecting functional domain. However, the interpretability of AI-
29 generated outcomes for human experts is a problem hindering application of multi-modal
30 analysis in clinic. We presented a machine learning based toolchain called StereoMM, which
31 is a graph fusion model that can integrate gene expression, histological images, and spatial
32 location. StereoMM firstly performs information interaction on transcriptomic and imaging
33 features through the attention module, guaranteeing explanations for its decision-making
34 processes. The interactive features are input into the graph autoencoder together with the graph
35 of spatial position, so that multimodal features are fused in a self-supervised manner. Here,
36 StereoMM was subjected to mouse brain tissue, demonstrating its capability to discern fine
37 tissue architecture, while highlighting its advantage in computational speed. Utilizing data from
38 Stereo-seq of human lung adenosquamous carcinoma and 10X Visium of human breast cancer,
39 we showed its superior performance in spatial domain recognition over competing software
40 and its ability to reveal tumor heterogeneity. The fusion approach for imaging and gene
41 expression data within StereoMM aids in the more accurate identification of domains, unveils
42 critical molecular features, and elucidates the connections between different domains, thereby
43 laying the groundwork for downstream analysis.

44

45 **Key words: spatial omics, multimodal data, deep learning, graph fusion, molecular**
46 **characteristics**

47

48 INTRODUCTION

49 The spatial relationship between DNA/RNA and tissue-level information plays a critical role
50 in revealing pathogenesis of cancer, developing new treat strategies, and establishing precise
51 stratification and prognosis system. This intricate interplay allows biologists and clinicians to
52 observe how genetic alterations manifest within the complex architecture of tissues, providing
53 a more nuanced view of tumor biology. By integrating high-resolution genetic data with the
54 histopathological layer, medical professionals can identify specific tumor microenvironments
55 and spatial immune profile, as well as their responses to various treatments. This holistic
56 approach not only aids in the development of targeted therapies that address the unique genetic
57 makeup of the tumors but also helps in predicting disease progression and therapeutic outcomes.
58 Consequently, leveraging the spatial dynamics between genetic information and tissue
59 pathology paves the way for more effective and individualized cancer treatment strategies,
60 significantly impacting patient management and improving patient survival.

61 The recent advent of spatial and single-cell omics technologies has produced various
62 dimensions of information[1, 2] and indeed revolutionized our understanding of the
63 mechanisms underpinning cancer progression and the complex tumor-immune
64 microenvironment. These technologies provide a multi-dimensional view that captures not just
65 the static genetic information of cells but also their spatial organization, interactions, and
66 expression patterns within tissues (**Figure 1a**). The detailed insights provided by spatial and
67 single-cell omics technologies into the cellular and molecular landscape of tumors represent a
68 significant leap forward in cancer research. Spatial transcriptomics makes up for the
69 inefficiency and accuracy of the single cell data that is resulted by the lack of *in situ* information.
70 Multiple Modalities (MM) data fusion analysis paradigms have emerged in tandem with the
71 explosion of genomics, transcriptomics, proteomics, and epigenomics. This process also has
72 been aided by the development of artificial intelligence (AI) [3, 4]. The significant tumor
73 heterogeneity, unpredictable drug response, and patient stratification catalyze the need for
74 precise diagnosis and treatment of tumors, and a common trend is to combine clinical
75 information with high-throughput data of biological and clinical level using bioinformatics and
76 algorithms[5].

77 As spatial transcriptomic (ST) technologies develop, integration with other data
78 modalities provide opportunities for better tissue characterization[6]. Integration of spatial
79 transcriptomic data with conventional Hematoxylin and Eosin (H&E) histopathology images
80 of tumor tissue opens avenues for clinical applications[7-10]. The multi-channel images

81 provided in ST contain rich information, including cell morphology, cell status. Changes in
82 morphology may predict cell fate or state even before it is observed in transcriptome output[11].
83 Meanwhile, spatial relationships between cells can reveal how different cell types and genetic
84 programs relate to each other and their surroundings[12].

85 The application of multimodal data is crucial for advancing the insight into the disease
86 and personalized cancer treatment. By integrating multiple aspects of patient information, AI
87 algorithms can perform nonlinear analysis on these aligned or unaligned complex datasets
88 (**Figure 1b**), achieving more precise tumor classification, disease progression prediction, and
89 aiding physicians in crafting personalized treatment plans. This approach not only enhances
90 the accuracy of therapeutic interventions but also facilitates the discovery of new targets and
91 biomarkers, accelerating the development of novel drugs (**Figure 1c**). In alignment with this
92 vision, our research endeavours extend to a granular level, where we seek to unravel the
93 intricate biological narratives that underpin disease manifestation. We are dedicated to
94 applications such as tumor microenvironment analysis and exploration of spatial domains,
95 aiming to uncover the complete landscape of the disease and pioneer new avenues for treatment
96 (**Figure 1d**).

97 The microenvironments specific to different regions play a pivotal role in determining
98 cellular states, as the morphology and expression of cells reveals key insights into their
99 physiological and phenotypic characteristics[13, 14]. Based on these assumptions, we designed
100 the StereoMM method, which integrates RNA spatial expression data, H&E image information,
101 and tissue *in situ* locations in the spatial transcriptome via cross-attention mechanisms and
102 graph neural networks to obtain multi-modal joint embeddings. StereoMM, specifically the
103 utilization of attention weights in the model, offers insightful explanations for its decision-
104 making processes, thereby enhancing the interpretability of the outcomes for human experts.
105 This feature is particularly valuable as it bridges the gap between complex algorithmic
106 decisions and human understanding, making it possible to trace and understand the rationale
107 behind specific predictions or classifications made by the model, thus capturing interactions
108 between different patterns and providing a more accurate representation for downstream
109 analysis. StereoMM has exhibited exceptional performance in identifying spatial domains. We
110 substantiated the efficacy of StereoMM through conceptual validation across multiple cancer
111 datasets from diverse platforms, demonstrating its superiority over existing methodologies and
112 its potential for pivotal predictive biomarker discovery.

113

114 **RESULTS**

115 **Overview of StereoMM framework**

116 In the processes of diagnosis, evaluation, and therapeutic strategy formulation, physicians
117 synthesize data from multiple sources. These data encompass three key dimensions: molecular
118 biological, medical imaging information from clinical exams, and clinical information data
119 from medical practice. The first dimension pertains to molecular biology, encompassing
120 genetic, genomic, and other molecular data. The second dimension is from clinical exam,
121 including but not limited to imaging data such as Hematoxylin and Eosin (H&E) pathology
122 images, Immunohistochemistry (IHC), and other procedures. The last dimension is clinical
123 practical information, which involves data derived from patient care, treatment outcomes such
124 as response, recurrence and survival, and healthcare interactions (**Figure 1**). However,
125 contemporary clinical diagnostic approaches may not adequately consider the potential
126 nonlinear relationships between these different data types.

127 A diverse array of methodologies in spatial transcriptomics has dramatically transformed
128 our comprehension of tissue heterogeneity and provided opportunities for multimodal fusion.
129 Stereo-seq technology stands out for its high-resolution capabilities and expansive field of view,
130 facilitated by a chip composed of closely spaced DNA Nanoballs (DNBs) shown in **Figure 2a**.
131 This allows the detailed high-resolution gene expression analysis and the examination of large
132 tissue sections, providing valuable insights into cellular heterogeneity and tissue architecture.
133 The integration of these advantages into a multimodal data fusion algorithm framework is
134 crucial. It merges spatially resolved gene expression data with acquired images, where
135 structural differences could reflect functional variations, as in **Figure 2b**.

136 This framework utilizes a self-supervised Generative Neural Network (GNN) model
137 (**Figure 2c**). It generates a feature representation that combines multiple modalities, which can
138 be utilized for various downstream tasks to enhance the accuracy, such as spatial domain
139 recognition. The learning process is guided by a combination of minimizing the self-supervised
140 reconstruction loss and a regularization loss that forces the latent space representation. In an
141 autoencoder, the reconstruction loss function promotes a high degree of similarity between the
142 generated outputs \widehat{X} and the original input matrix (X), ensuring that the outputs closely mirror
143 the inputs. In other words, it ensures that the latent features learned by the encoder preserve the
144 maximum information from the original input, then the decoder can reconstruct the original
145 input through these latent features. The intuition of the regularization loss, also known as the

146 Kullback-Leibler (KL) divergence, encourages the model to learn a compact and smooth latent
147 space representation.

148 Specifically, the training process is divided into the following four steps: (I) For the
149 transcriptome and H&E image, a unimodal feature extractor is employed to extract s -
150 dimensional unimodal features, generate two feature matrices ($X_t \in R^{n \times s}$ for transcriptome,
151 and $X_m \in R^{n \times s}$ for morphology, where n represents the number of bins or spots). (II) These
152 features are then fed into the attention module, where the information between modalities is
153 integrated using the attention mechanism as in **Figure 2d**. This integration results in an s -
154 dimensional output that enhances the interaction between modalities ($X_{ta} \in R^{n \times s}$ for
155 transcriptome, and $X_{ma} \in R^{n \times s}$ for morphology). (III) The feature matrices from both
156 modalities are concatenated ($X = X_{ta} \oplus X_{ma}$) and used as input for the node features of the
157 graph autoencoder. (IV) To incorporate spatial location information, a Spatial Neighbour
158 Graph (SNG) is generated based on the physical distance. This SNG serves as the input for the
159 adjacency matrix in the graph autoencoder.

160 The generative model for graph data utilizes the GNN to learn a distribution of node vector
161 representations illustrated in **Figure 2e**. These representations are then sampled from the
162 distribution, and the graph is reconstructed using the decoder. By extracting the latent
163 representation from the Variational Graph AutoEncoder (VGAE), a high-quality, low-
164 dimensional representation ($Z \in R^{n \times d}$, Where d represents the feature dimension after
165 dimensionality reduction) of the graph data is obtained. This feature representation Z can be
166 effectively utilized for various downstream analyses, including clustering, trajectory analysis,
167 and more.

168 **System parameter evaluation of StereoMM**

169 We used a mouse brain tissues with intricate tissue structures as test sample for conducting a
170 systematic evaluation of parameters. Firstly, we demonstrate that StereoMM outperforms
171 individual modalities alone. We used anatomical reference annotations from the Allen Mouse
172 Brain Atlas[15] as ground truth shown in **Figure 3a**. StereoMM accurately identified the
173 hippocampal structure and differentiated mole and granul areas in the lobules shown by the
174 rectangle in **Figure 3b**. In particular, StereoMM distinguished the subthalamic nucleus
175 (domain 6), which is mainly composed of projection neurons and is a key part of movement
176 regulation[16]. None of the single modality could independently identify this specific region
177 (more details in **Supplementary Figure 1a**).

178 Therefore, we performed ablation experiments on the model to demonstrate the
179 effectiveness of attention module. Without the interactive ability of attention, mole and granul
180 areas in the lobules could no longer be distinguished, the identification of the hippocampal
181 structure and subthalamic nucleus were also blurred, and more noise was introduced. Detailed
182 comparisons are shown by the boxes in **Figure 3b** and **3c**. To clarify the role of the attention
183 mechanism in enhancing explainability, we extract the weight matrix and compute its
184 correlation with the final output (Z). This approach not only illuminates how our network
185 assesses and assigns significance to individual modal features during fusion but also
186 contributes to the model's explainability by partially elucidating the decision-making process.
187 In the mouse brain data, morphological similarity was on par with transcriptomic similarity,
188 indicating that the model has fused the two aspects in a balanced manner. StereoMM also was
189 tested on the lung cancer data of Stereo-seq, where the correlation between morphological
190 features and the latent features is higher, suggesting that the model has assigned a higher weight
191 to the morphological features in **Figure 3d**. In order to further illustrate the capabilities of the
192 attention module, we extracted the features after the attention module for visualization in
193 **Figure 3e**. After passing through the attention module, the two single-modal features become
194 more similar and Mean Cosine Similarity increased from -26.76 to -13.91, indicating that the
195 attention module enables mutual information exchange between the two modalities.

196 Meanwhile, we provided a hyperparameter to improve the guidance of prior knowledge.
197 By setting custom weights for transcriptomic features, we maintain the flexibility of the model
198 during the fusion process. As transcriptomic weight increased, the final output of the model
199 became more similar to the transcriptome in **Figure 3f**. (ARI, from 0.17 to 0.29)

200 In the Stereo-seq lung cancer dataset, manual annotation in the pathology images, i.e.
201 Whole Slides Imaging (WSI), served as the gold standard for quantification. We tested the
202 impact of different hyperparameters on the accuracy of the results. StereoMM provided 3 types
203 of convolutional neural networks for model selection, including Graph Convolutional Network
204 (GCN), Graph Attention Networks (GAT) and Graph Sample and Aggregate (GraphSAGE).
205 GCN achieved the optimal results in ARI and NMI as in **Figure 3g**. (More details in
206 **Supplementary Figure 1b**). The user has a high degree of customization, with the ability to
207 define the hidden layer of the network. For the model structure design, we assessed a total of 8
208 combinations of selecting 2048 or 1024 in the first layer, 256 or 128 in the second layer, and
209 50 or 100 in the third layer in **Figure 3h** and **Supplementary Figure 1c**. In general, StereoMM
210 was robust under the choice of different number of nodes (ARI and NMI, Anova, p-value =1).
211 However, an upward trend in ARI was observed with an increasing number of nodes,

212 suggesting that the network's enhanced fitting capability is due to the larger node count.
213 2048_256_50 achieved the highest average ARI score.

214 In demonstrating the model's effectiveness and flexibility, we particularly highlighted its
215 advantages in terms of running time. We conducted a comprehensive comparison of the time
216 needed to execute various software tools, and our findings, as illustrated in **Figure 3i**, revealed
217 that StereoMM required the shortest duration to complete its tasks. This efficiency underscores
218 StereoMM's superiority in processing speed, making it a highly practical choice for
219 applications where time efficiency is critical.

220 Following detailed testing, the concept of the attention module showcased distinct benefits
221 in terms of enhancing model performance and interpretability. Notably, it offered a clear
222 method for adjusting weights for individual modalities within the attention module. Moreover,
223 the StereoMM model's architecture demonstrated resilience, efficiency, and accuracy under
224 various parameter configurations.

225 **StereoMM improves performance of domain identification in Stereo-seq data of human
226 lung adenosquamous carcinoma**

227 To evaluate the accuracy of tissue identification and perform quantitative assessment of
228 StereoMM, we conducted an analysis using lung adenosquamous carcinoma data generated
229 from the Stereo-seq platform[17]. The data was meticulously annotated by pathologists into
230 three distinct sections: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
231 and mixed areas in Figure 4a, which served as the gold standard. To reduce the computing
232 burden, we divided the data into four slices (**Supplementary Figure 2a**). We also perform a
233 benchmark analysis to compare the performance among each single modality, spaGCN,
234 stLearn, MUSE and SEDR (**Figure 4b, Supplementary Figure 2b**).

235 We normalized the results of all methods to a consistent number of clusters (k=7). It has
236 shown that StereoMM significantly enhances the accuracy of single-modal analysis. Single-
237 modality features are noisy and exhibit a discontinuous distribution of clustering results. As
238 expected, multimodal fusion significantly improved the issue of data noise (**Figure 4b**). To
239 evaluate the noisy of the clustering results, we employed the local inverse Simpson's index
240 (LISI). A lower LISI score indicates better spatial separation. The LISI score of StereoMM is
241 4.64 ± 0.44 , which is lower than that of single transcriptomic features (4.81 ± 0.37) or single
242 morphological features (5.02 ± 0.44). Which demonstrated that StereoMM achieves superior

243 spatial separation compared to methods that rely solely on transcriptomic or morphological
244 features (**Figure 4c**).

245 In addition, compared with previous spatial clustering methods that combined histology
246 or spatial, StereoMM exhibits significant improvement in spatial recognition ability. We
247 quantitatively assessed its capabilities using several indicators, including evaluation metrics
248 with the gold standard of fundamental organizational facts: Adjusted Rand Index (ARI) and
249 Normalized Mutual Information (NMI) (**Figure 4d**). Furthermore, internal evaluation metrics
250 of clustering are calculated. These metrics provide insights into the quality and performance of
251 clustering results by measuring the separation and compactness of clusters. The commonly
252 used internal evaluation metrics including: Calinski-Harabasz Index (CH), Davies-Bouldin
253 Index (DB), Silhouette Coefficient (SC) (**Supplementary Figure 3a**). Except for the DB score,
254 higher scores in all the mentioned metrics indicate better performance. We also calculated LISI
255 scores for all methods (**Figure 4c**). Except for CH, StereoMM achieved the best performance,
256 obtaining the highest ARI (0.32 ± 0.07) and NMI (0.34 ± 0.05), demonstrating its exceptional
257 performance in accurately identifying different tissue types. We visualized the embeddings of
258 StereoMM using UMAP graphs. Comparing the distribution of the original transcriptome,
259 StereoMM clearly separated the three manually annotated categories, while the original
260 transcriptome showed a mixed and disordered state (**Figure 4e, Supplementary Figure 3b**).

261 To validate the enhanced accuracy of StereoMM in identifying clinical regions compared
262 to single transcriptomics (**Figure 4f**), we selected commonly used clinical diagnostic markers
263 for LUAD (NKX2-1, KRT7, NAPSA, MUC1, KRT8, and KRT18) and LUSC (KRT5, KRT6A,
264 TP63)[18] (**Supplementary Figure 4a**), and then quantified the spatial co-localization with
265 each molecule using the Kernel Density Estimation (KDE) and Pearson Correlation
266 Coefficient(PCC)[19] (**Supplementary Figure 4b-c**). We found that the accuracy of
267 StereoMM is greater than single transcriptomics, as evidenced by the higher correlation
268 between the automated annotation results of StereoMM and the molecular expression of
269 LUAD($P=0.0045<0.05$). However, for LUSC, the comparison of identification accuracy
270 between both methods was not statistically significant ($P=0.67>0.05$) (**Figure 4g**).
271 Subsequently, we used weighted gene co-expression network analysis (WGCNA) to cluster
272 gene expression into seven modules and calculated the spatial correlation of these modules
273 with StereoMM annotated regions (**Figure 4h, Supplementary Figure 5a-c**). Only Module 1
274 was linked to LUSC, but Modules 2–7 had a stronger association with LUAD. Module 3
275 exhibits the strongest association with other regions aside from this. We concluded that Module
276 5, which showed the highest correlation with LUAD, was functionally biased toward

277 immuno-suppressive and tumor growth after performing gene enrichment analysis
278 (GO&KEGG) (**Figure 4i**). The pathways associated with macrophage migration (CSF1R[20]),
279 NF- κ B signalling (CTNNB1[21]) and TGF- β signalling (SMAD5[22]) were found to be
280 overexpressed (**Figure 4j**). We referred to the genes within module 5 that interacted more with
281 other genes as eigengene genes and matched them with corresponding pathways. After
282 conducting a protein-protein interaction (PPI) network analysis of these hub genes, we
283 discovered that the interaction between CLDN3 (claudin 3), CLDN4 (claudin 4), and KRT19
284 (cytokeratin 19) was the most significant exclude irrelevant genes (**Figure 4k**), suggesting that
285 these might be important genes affecting the function of Module 5. CLDN3 and CLDN4 are
286 tight junction molecules correlated with ovarian cancer cell infiltration and wound healing[23],
287 while KRT19 is a member of the keratin family and related to Notch pathway[24]. All three
288 are overexpressed in lung adenocarcinoma and are associated with epithelial-mesenchymal
289 transition (EMT) and tumor metastasis. Therefore, we calculate the association of these genes
290 with the prognosis of LUAD patients via the Cancer Genome Atlas (TCGA) database. The
291 results exhibited higher expression of CLDN3, CLDN4, and KRT19 was associated with poor
292 prognosis in LUAD patients (**Figure 4l**), indicating that these molecules may promote tumor
293 development and be the potential biomarkers[25-27].

294 In summary, the architecture based on attention and graph neural networks used by our
295 structure helped capture and combine information that could not be obtained from either mode
296 alone. A fair comparison of results showed that the recognition ability in the spatial domain of
297 StereoMM was significantly better than that of a single modality or any competing software,
298 whether based on gold standard indicators or other indicators. Simultaneously, StereoMM can
299 assist in identifying significant genes and putative targets related to the initiation and
300 progression of tumors.

301 **StereoMM dissects breast cancer heterogeneity and identifies potential prognostic factors**

302 To assess the capability and compatibility of StereoMM, we applied StereoMM to an open-
303 access dataset generated from the fresh frozen invasive ductal carcinoma breast tissue using
304 the 10x Visium spatial platform. For this dataset, StereoMM not only revealed the clear
305 clustering structure which was consistent with the manual annotation, but also specifically
306 identified tumor boundary area as a separate domain (**Figure 5a-b**). Next, we increased the
307 number of clusters to validate the robustness of StereoMM, and successfully distinguishing

308 separate tumor boundary regions, DCIS/LCIS regions, as well as the smallest IDC region
309 (**Figure 5c**).

310 To further investigate the intricate tumor microenvironment and explore the biological
311 characteristics within different spatial compartments, we performed a correlation analysis
312 between the domains identified by StereoMM (domains=12), and discovered the tumor area
313 was divided into two parts which was not completely consistent of histological phenotype
314 (**Figure 5d-e**). We first focused on comparing intratumoral transcriptional differences between
315 tumor1 (including domain1 and 4) and tumor2 (including domain 0,3,9 and 10) by performing
316 differential expression analysis followed by gene set enrichment analysis (GSEA). We detected
317 significant DEGs ($|\log \text{fold change}| \geq 0.25$; $p\text{-value} < 0.05$) between tumor 1 and 2 (**Figure 5f**).
318 In tumor1, (Figure 5f) 'E2F_TARGETS', 'G2M_CHECKPOINT' and
319 'EPITHELIAL_MESENCHYMAL_TRANSITION' pathway were upregulated,
320 while 'INTERFERON_GAMMA_RESPONSE', 'ESTROGEN_RESPONSE_LATE' and
321 'ESTROGEN_RESPONSE_EARLY' were downregulated (Figure 5g). These pathways can
322 interact with each other and are associated with the prognosis and treatment response of breast
323 cancer[28, 29].

324 To specifically assess the heterogeneity between tumor1 and tumor2, we next performed
325 copy number variation (CNV) analysis and differentiation analysis using inferCNV and
326 CytoTRACE respectively (**Figure 5h**), and described the different EMT tumor states based on
327 the expression of E-cadherin (E-cad) and vimentin (VIM). As expected, tumor1 displayed a
328 distinctively higher inferCNV score (t-test, $p\text{-value} = 6.44\text{e-}12$) and CytoTRACE score (t-
329 test, $p\text{-value} = 5.69\text{e-}236$), indicating the heterogeneity of tumor proliferation and malignancy.
330 Then we investigated the expression of EMT markers (**Figure 5i**), including epithelial
331 molecules (E-Cadherin and EPCAM), mesenchymal markers (VIM) and transcription factors
332 associated with EMT (ZEB1, TWIST1 and TWIST2). Next, we annotated tumor epithelial cell
333 by deconvolution and cell2location (**Supplementary Figure 6a**), and then defined distinct
334 EMT cell state ranging from epithelial (E-cad+ VIM-), hybrid EMT (E-cad+ VIM+) and
335 mesenchymal (E-cad- VIM+)[30, 31] (**Figure 5j**). We observed tumor1 increased the
336 proportion of the hybrid EMT and decreased the proportion of epithelial, indicating the
337 possibility of infiltration and metastasis. On the other hand, GSEA results displayed different
338 estrogen response across regions (**Figure 5k**), which is relevant to the published clinical
339 information of the sample (ER+PR-HER2+). Meanwhile, we observed upregulation of
340 SEMA3B and TFF1 in tumor2 (**Figure 5l**), which tend to exhibit tumor suppressor function

341 and are reported as potential biomarkers in breast cancer (BC) before. We also validated the
342 function of SEMA3B and TFF1 using survival data from TCGA cohort of 333 HER2+ BC
343 patients (**Figure 5m**), suggesting the prognosis value of SEMA3B and TFF1.

344 Another interesting finding is that in the correlation analysis with 12 cluster, domain11
345 initially labelled as IDC was clustered with healthy tissue. The DEG and GSEA results indicate
346 upregulated oncogenic pathways, immune-related pathways, and B-cell markers in this domain
347 (**Supplementary Figure 6b-c**), suggesting the potential presence of tertiary lymphoid
348 structures. This is consistent with previous studies[32] (**Supplementary Figure 6d**).

349 In summary, analysis of StereoMM clusters revealed regional and biological differences
350 reflecting tumor progression and raised the hypothesis that heterogeneity of proliferation and
351 differentiation states result the distinct capability of metastasis and resistance to therapy across
352 histologic subtypes.

353

354 Conclusion and Discussion

355 The amalgamation of histopathology with high-throughput sequencing to inform oncologic
356 treatment strategies is in its infancy. Spatial omics has emerged as a powerful tool in precision
357 medicine, outperforming established metrics such as tumor mutational burden in predicting
358 responses to PD1/PD-L1 therapies in a pivotal clinical trial[1]. Nevertheless, the utility of
359 spatial transcriptomic data is constrained by limitations such as low total transcriptions per cell,
360 significant data noise, and a high frequency of zero values, necessitating the integration of
361 additional modal data for a comprehensive analysis[2-4]. Thus, the innovation of effective
362 modal fusion methodologies is imperative.

363 Several algorithms have been designed to integrate information from MM of the ST data.
364 stLearn is a widely used spatial transcriptomics analysis tool. However, it does not perform
365 appropriate weighting when normalizing using histological images with spatial location.
366 spaGCN utilizes graph convolutional neural networks (GCN) to model spatial relationships[33].
367 While, it has limited capabilities in feature extraction because it simply utilizes the pixel values
368 of the three channels of the image and ignores the high-level features of morphology. Software
369 such as MUSE[34] and SEDR employ architectures underpinned by autoencoders to learn a
370 low-dimensional representation of multimodal data, but such integration relies entirely on
371 neural networks and lacks interpretability. While these methods have yielded numerous

372 intriguing findings, they may be limited in their flexibility, generality, and the interpretability
373 of model decisions. These limitations can hinder their application in real-world projects.

374 Our study introduces StereoMM, a deep learning approach that integrates multimodal
375 data—including high-content H&E images, spatial information, and gene expression—to
376 comprehensively identify tumor subpopulations, significantly advancing beyond conventional
377 methods by considering both histological and cellular interactions within tissue samples.
378 StereoMM employs an attention mechanism for deep interaction between modalities, followed
379 by the aggregation of multimodal features from adjacent tissues using a graph convolutional
380 network. This methodology affords StereoMM with exceptional adaptability and
381 computational efficiency. The utility of the attention module in mediating information
382 exchange has been substantiated through ablation studies and similarity assessments. By
383 adjusting various parameters, we have demonstrated the robustness of our model, which does
384 not preclude users from fine-tuning based on their understanding of the data. For instance,
385 tissues with lower inter-regional similarity may benefit from a smaller k-nearest neighbours
386 parameter or fewer graph convolutional layers. Such customization can yield results with
387 greater biological relevance across diverse datasets.

388 StereoMM has been validated on tumor datasets from Stereo-seq and 10X Visium,
389 exhibiting superior performance in spatial contour identification. Comparative analyses with
390 manual annotations have revealed spatial domains that more accurately reflect the ground
391 truths, and congruence with cell subtype marker genes has indicated subpopulation
392 compositions that correlate with biological functions. The intricate spatial architecture of tumor
393 tissues necessitates a detailed analysis of the spatial microenvironment, which is crucial for
394 comprehending tumor biology, unravelling mechanisms of oncogenesis, and identifying
395 therapeutic targets. The refined subpopulations discerned through StereoMM, in conjunction
396 with multimodal data, appear to capture significant biological variations, including genes
397 implicated in tumor progression and intratumoral heterogeneity.

398 At present, StereoMM has been applied to spatial transcriptomic analyses using binning
399 or meshing methods. While the modeling framework of StereoMM is theoretically applicable
400 to other spatial transcriptomics platforms, the rapid evolution of ST technology presents new
401 measurement techniques[5, 6], expanded data volumes, and progress in additional
402 modalities[7]. Consequently, the development of novel methods to exploit the expanding
403 spatial transcriptomic data represents a considerable challenge. The scalability of the model
404 can be enhanced through strategies such as subgraph sampling and parallel training. Moreover,
405 the incorporation of non-aligned modal data from beyond spatial transcriptomics could bolster

406 our capacity to analyse and interpret tissue heterogeneity. Future investigations will explore
407 these potential enhancements to further refine the functionality of StereoMM.

408 In summary, StereoMM is an innovative and promising approach utilizing attention
409 mechanisms and graph autoencoders for the analysis of spatial transcriptomic data. It facilitates
410 modality fusion through self-supervised learning in the absence of annotations. Poised to
411 capitalize on forthcoming advancements in measurement technologies, StereoMM holds the
412 potential to significantly improve precision oncology practices in the context of therapeutic
413 decision-making.

414

415 **Acknowledgement**

416 The author would like to acknowledge Mr. Zidong Su (BGI Research Institute, Shenzhen) for
417 his assistance in the design of the theoretical framework. This study is supported by Science
418 and Technology Innovation Key R&D Program of Chongqing (CSTB2023TIAD-STX0002).

419

420 **Ethics Approval and consent of participate**

421 This study does not require ethics approval or informed consent from participants.

422 **Competing Interests**

423 The authors declare no competing interests.

424

425 **Consent for Publication**

426 The authors declare that the research was conducted in the absence of any commercial or
427 financial relationships that could be construed as a potential conflict of interest.

428 **Code Availability**

429 Code for data analysis is available at <https://github.com/STOmics/StereoMMv1>.

430

431 **Disclosure/Competing Interest:**

432 The authors declare no potential competing interests.

433

434 **Author Contributions**

435 Conceptualization: Bingying Luo, Jiajun Zhang, Xun Xu, Ao Chen and Fei Teng.

436 Project administration and supervision: Jiajun Zhang, Xun Xu, Ao Chen, Sha Liao, Xi Feng

437 and GuiBo Li.

438 Soft development and implementation: Bingying Luo and Fei Teng.

439 Data collection, processing, and application: Bingying Luo, Fei Teng, Jiajun Zhang, WeiXuan

440 Chen, Mei Li, Xuanzhu Liu, Huaqiang Huang, Yu Feng, Xing Liu, Min Jian, Xue Zhang.

441 Method comparisons: Bingying Luo, Xuanzhu Liu.

442 Manuscript writing: Bingying Luo, Guo Tang, Jiajun Zhang, Fei Teng.

443 Figure generation: Bingying Luo and Fei Teng.

444 Manuscript review: Jiajun zhang, XunXu, Feng Xi, Guibo Li, Qu Chi, Xin Liu.

445 Project coordination: Jiajun Zhang, Fei Teng, Sha Liao, and Ao Chen.

446 Biological interpretation: Bingying Luo, Guo Tang, Jiajun Zhang, and Fei Teng.

447 Manuscript review: Jiajun Zhang, Xun Xu, Ao Chen, Sha Liao.

448 References

449 [1] L. Tian, F. Chen, and E. Z. Macosko, "The expanding vistas of spatial transcriptomics,"
450 (in eng), *Nature Biotechnology*, vol. 41, no. 6, pp. 773-782, 2023.

451 [2] L. Heumos *et al.*, "Best practices for single-cell analysis across modalities," (in eng),
452 *Nature Reviews. Genetics*, vol. 24, no. 8, pp. 550-572, 2023.

453 [3] J. N. Acosta, G. J. Falcone, P. Rajpurkar, and E. J. Topol, "Multimodal biomedical AI,"
454 (in eng), *Nature Medicine*, vol. 28, no. 9, pp. 1773-1784, 2022.

455 [4] T. Athaya, R. C. Ripan, X. Li, and H. Hu, "Multimodal deep learning approaches for
456 single-cell multi-omics data integration," (in eng), *Briefings In Bioinformatics*, vol. 24,
457 no. 5, 2023.

458 [5] A. Prelaj *et al.*, "Artificial intelligence for predictive biomarker discovery in immuno-
459 oncology: a systematic review," (in eng), *Annals of Oncology : Official Journal of the
460 European Society For Medical Oncology*, vol. 35, no. 1, pp. 29-65, 2024.

461 [6] A. Rao, D. Barkley, G. S. França, and I. Yanai, "Exploring tissue architecture using spatial
462 transcriptomics," (in eng), *Nature*, vol. 596, no. 7871, pp. 211-220, Aug 2021.

463 [7] K. Vandereyken, A. Sifrim, B. Thienpont, and T. Voet, "Methods and applications for
464 single-cell and spatial multi-omics," (in eng), *Nat Rev Genet*, vol. 24, no. 8, pp. 494-515,
465 Aug 2023.

466 [8] Y. Wu, Y. Cheng, X. Wang, J. Fan, and Q. Gao, "Spatial omics: Navigating to the golden
467 era of cancer research," (in eng), *Clin Transl Med*, vol. 12, no. 1, p. e696, Jan 2022.

468 [9] K. A. Tran, O. Kondrashova, A. Bradley, E. D. Williams, J. V. Pearson, and N. Waddell,
469 "Deep learning in cancer diagnosis, prognosis and treatment selection," (in eng),
470 *Genome Med*, vol. 13, no. 1, p. 152, Sep 27 2021.

471 [10] K. M. Boehm, P. Khosravi, R. Vanguri, J. Gao, and S. P. Shah, "Harnessing multimodal
472 data integration to advance precision oncology," (in eng), *Nat Rev Cancer*, vol. 22, no.
473 2, pp. 114-126, Feb 2022.

474 [11] F. Buggenthin *et al.*, "Prospective identification of hematopoietic lineage choice by
475 deep learning," (in eng), *Nat Methods*, vol. 14, no. 4, pp. 403-406, Apr 2017.

476 [12] I. Kleino, P. Frolovaité, T. Suomi, and L. L. Elo, "Computational solutions for spatial
477 transcriptomics," (in eng), *Comput Struct Biotechnol J*, vol. 20, pp. 4870-4884, 2022.

478 [13] D. F. Quail and J. A. Joyce, "Microenvironmental regulation of tumor progression and
479 metastasis," (in eng), *Nat Med*, vol. 19, no. 11, pp. 1423-37, Nov 2013.

480 [14] J. T. Ash, G. Darnell, D. Munro, and B. E. Engelhardt, "Joint analysis of expression levels
481 and histological images identifies genes associated with tissue morphology," (in eng),
482 *Nat Commun*, vol. 12, no. 1, p. 1609, Mar 11 2021.

483 [15] E. S. Lein *et al.*, "Genome-wide atlas of gene expression in the adult mouse brain," (in
484 eng), *Nature*, vol. 445, no. 7124, pp. 168-76, Jan 11 2007.

485 [16] C. Hamani, J. A. Saint-Cyr, J. Fraser, M. Kaplitt, and A. M. Lozano, "The subthalamic
486 nucleus in the context of movement disorders," (in eng), *Brain*, vol. 127, no. Pt 1, pp.
487 4-20, Jan 2004.

488 [17] R. Zhao *et al.*, "Clonal dynamics and Stereo-seq resolve origin and phenotypic plasticity
489 of adenosquamous carcinoma," (in eng), *NPJ Precis Oncol*, vol. 7, no. 1, p. 80, Aug 26
490 2023.

491 [18] Q. Li *et al.*, "Molecular profiling of human non-small cell lung cancer by single-cell RNA-
492 seq," (in eng), *Genome Medicine*, vol. 14, no. 1, p. 87, 2022.

493 [19] F. J. Grisanti Canozo, Z. Zuo, J. F. Martin, and M. A. H. Samee, "Cell-type modeling in
494 spatial transcriptomics data elucidates spatially variable colocalization and
495 communication between cell-types in mouse brain," (in eng), *Cell Systems*, vol. 13, no.
496 1, 2022.

497 [20] S. M. Pyontek *et al.*, "CSF-1R inhibition alters macrophage polarization and blocks
498 glioma progression," (in eng), *Nature Medicine*, vol. 19, no. 10, pp. 1264-1272, 2013.

499 [21] H.-T. Kim *et al.*, "WNT/RYK signaling functions as an antiinflammatory modulator in
500 the lung mesenchyme," (in eng), *Proceedings of the National Academy of Sciences of
501 the United States of America*, vol. 119, no. 24, p. e2201707119, 2022.

502 [22] R. Yang *et al.*, "Downregulation of nc886 contributes to prostate cancer cell invasion
503 and TGF β 1-induced EMT," (in eng), *Genes & Diseases*, vol. 9, no. 4, pp. 1086-1098,
504 2022.

505 [23] R. Agarwal, T. D'Souza, and P. J. Morin, "Claudin-3 and claudin-4 expression in ovarian
506 epithelial cells enhances invasion and is associated with increased matrix
507 metalloproteinase-2 activity," (in eng), *Cancer Research*, vol. 65, no. 16, pp. 7378-7385,
508 2005.

509 [24] S. K. Saha *et al.*, "KRT19 directly interacts with β -catenin/RAC1 complex to regulate
510 NUMB-dependent NOTCH signaling pathway and breast cancer properties," (in eng),
511 *Oncogene*, vol. 36, no. 3, pp. 332-349, 2017.

512 [25] M. Mehrpouya, Z. Pourhashem, N. Yardehnavi, and M. Oladnabi, "Evaluation of
513 cytokeratin 19 as a prognostic tumoral and metastatic marker with focus on improved
514 detection methods," (in eng), *Journal of Cellular Physiology*, vol. 234, no. 12, pp.
515 21425-21435, 2019.

516 [26] W. Wang, J. He, H. Lu, Q. Kong, and S. Lin, "KRT8 and KRT19, associated with EMT, are
517 hypomethylated and overexpressed in lung adenocarcinoma and link to unfavorable
518 prognosis," (in eng), *Bioscience Reports*, vol. 40, no. 7, 2020.

519 [27] A. Piontek *et al.*, "Targeting claudin-overexpressing thyroid and lung cancer by
520 modified Clostridium perfringens enterotoxin," (in eng), *Molecular Oncology*, vol. 14,
521 no. 2, pp. 261-276, 2020.

522 [28] M. Oshi *et al.*, "The E2F Pathway Score as a Predictive Biomarker of Response to
523 Neoadjuvant Therapy in ER+/HER2- Breast Cancer," (in eng), *Cells*, vol. 9, no. 7, Jul 8
524 2020.

525 [29] H. Schuhwerk and T. Brabletz, "Mutual regulation of TGF β -induced oncogenic EMT,
526 cell cycle progression and the DDR," (in eng), *Semin Cancer Biol*, vol. 97, pp. 86-103,
527 Dec 2023.

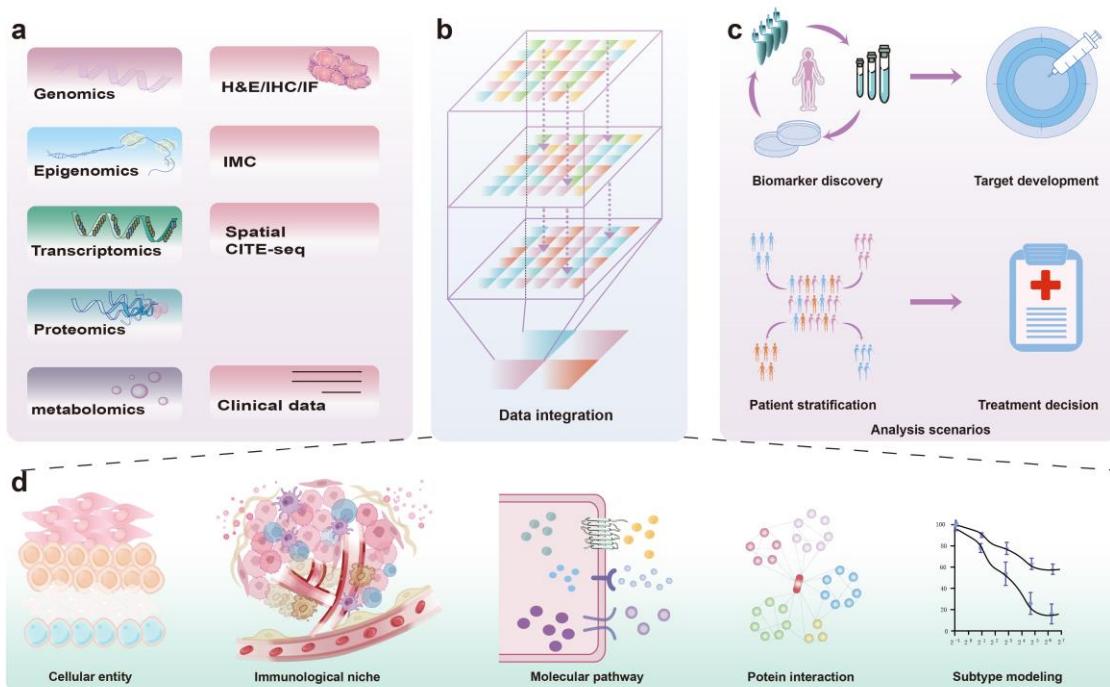
528 [30] E. M. Grasset *et al.*, "Triple-negative breast cancer metastasis involves complex
529 epithelial-mesenchymal transition dynamics and requires vimentin," (in eng), *Sci
530 Transl Med*, vol. 14, no. 656, p. eabn7571, Aug 3 2022.

531 [31] J. Cui *et al.*, "MLL3 loss drives metastasis by promoting a hybrid epithelial-
532 mesenchymal transition state," (in eng), *Nat Cell Biol*, vol. 25, no. 1, pp. 145-158, Jan
533 2023.

534 [32] A. Andersson *et al.*, "Spatial deconvolution of HER2-positive breast cancer delineates
535 tumor-associated cell type interactions," (in eng), *Nat Commun*, vol. 12, no. 1, p. 6012,
536 Oct 14 2021.

537 [33] J. Hu *et al.*, "SpaGCN: Integrating gene expression, spatial location and histology to
538 identify spatial domains and spatially variable genes by graph convolutional network,"
539 (in eng), *Nat Methods*, vol. 18, no. 11, pp. 1342-1351, Nov 2021.

540 [34] F. Bao *et al.*, "Integrative spatial analysis of cell morphologies and transcriptional
541 states with MUSE," (in eng), *Nat Biotechnol*, vol. 40, no. 8, pp. 1200-1209, Aug 2022.
542

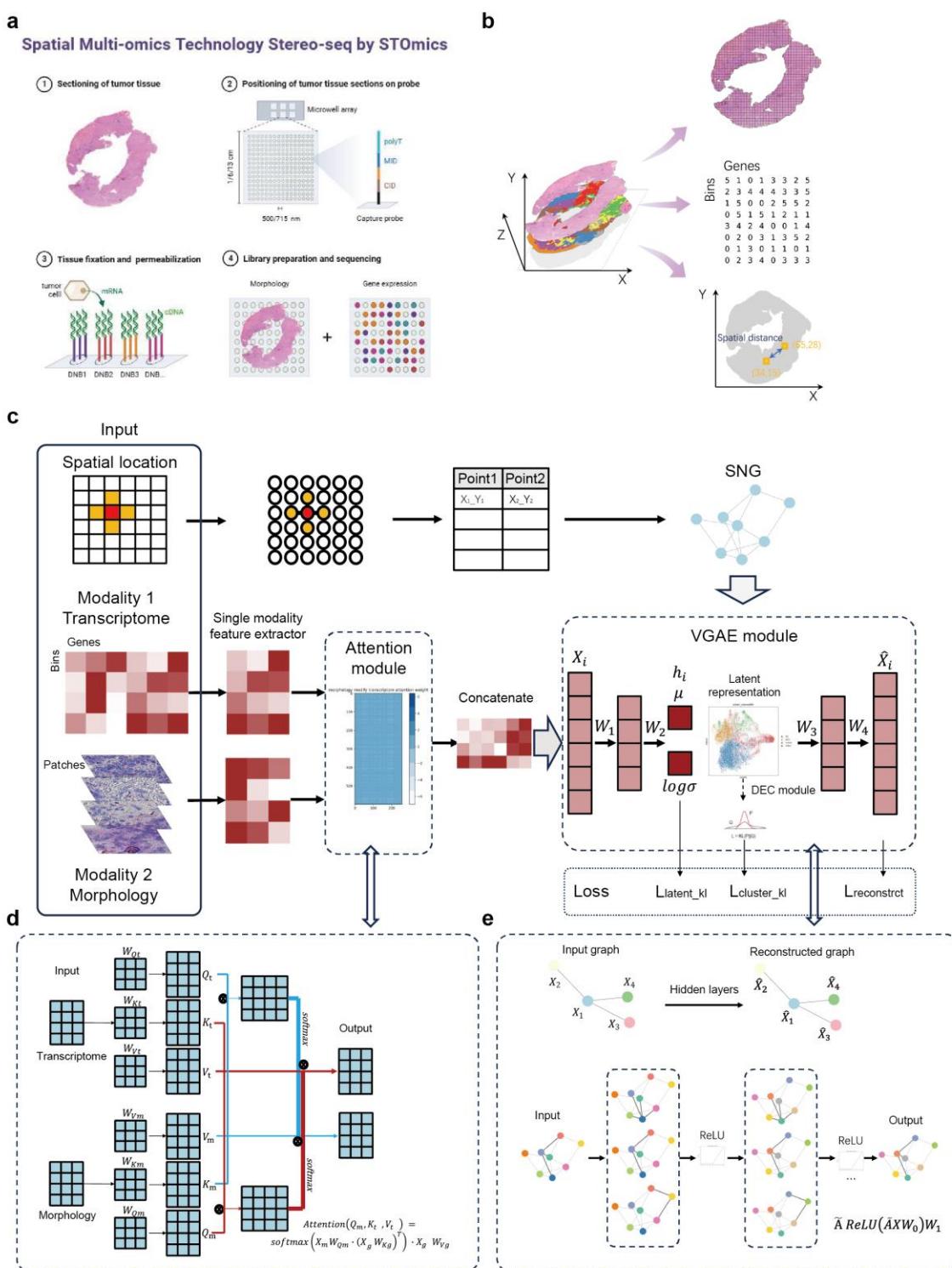


543

544 **Figure 1. Fundamentals of Multimodal Fusion Design.**

545 **a.** Hierarchical stratification of biomedical data. **b.** Integration of aligned and non-aligned
546 datasets. **c.** Application scenarios for multimodal data integration. **d.** Mechanistic insights via
547 multimodal data exploration.

548

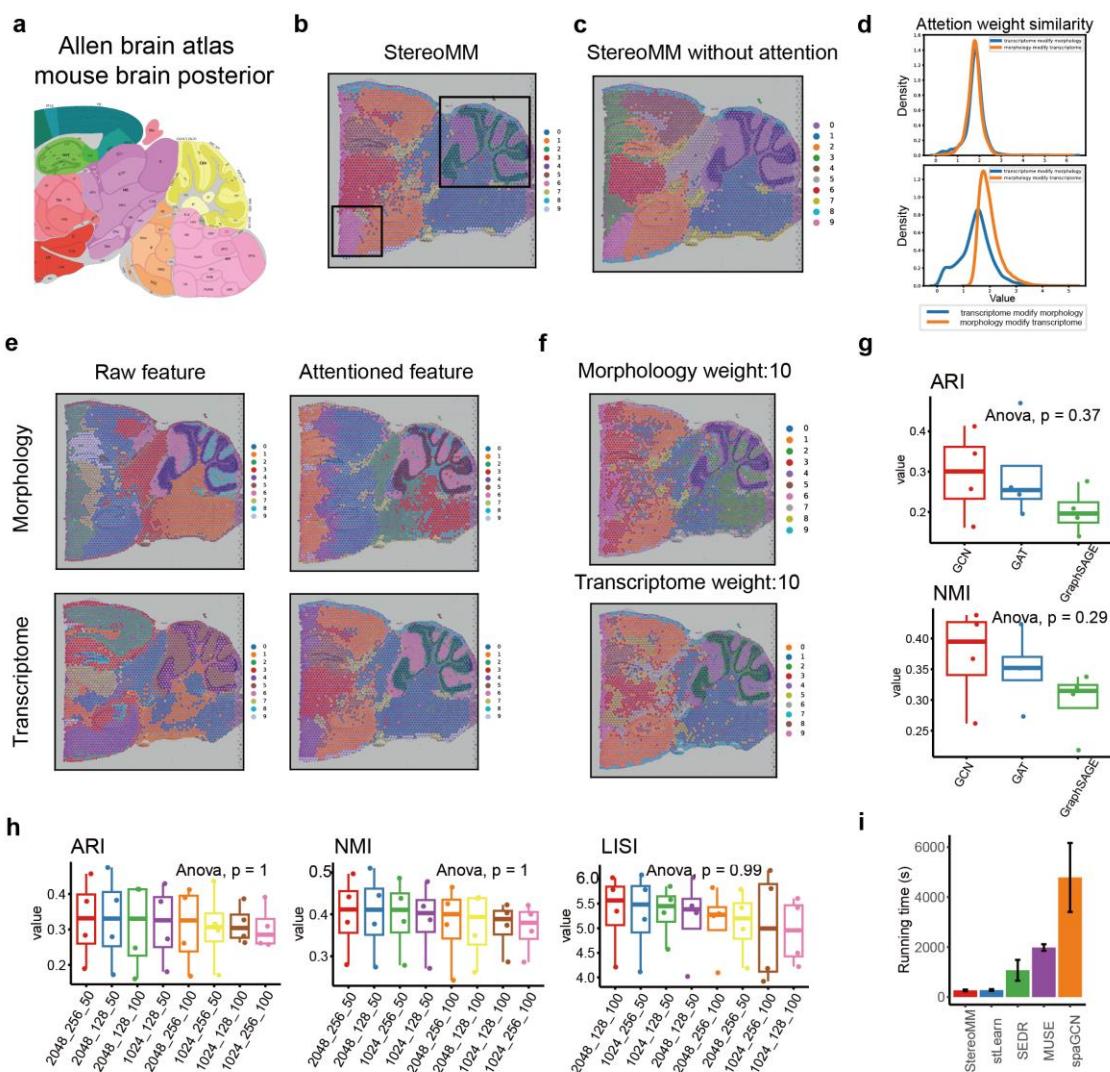


549

550 **Figure 2. Schematic overview of StereoMM.**

551 **a.** Workflow for Stereo-seq experimental analysis. Created with BioRender.com. **b.** Data
 552 output formats from spatial transcriptomics. **c.** The overall framework of StereoMM. It requires
 553 three inputs: spatial coordinates, gene expression matrix, and image patches. Through the
 554 attention module and VGAE module, it generates low-dimensional a latent representation

555 which can be used for downstream tasks. **d.** The cross-attention module in StereoMM captures
 556 relationships between different modalities by attending to relevant information from one
 557 modality based on another. In this module, each individual modality generates its own set of
 558 queries (Q), keys (K), and values (V). The Q from one modality is used to query the K and V
 559 from another modality. **e.** The VGAE module in StereoMM aggregates spatial information and
 560 each modality feature, and reduces the dimensionality of the original features through the
 561 encoder to obtain the final latent representation.



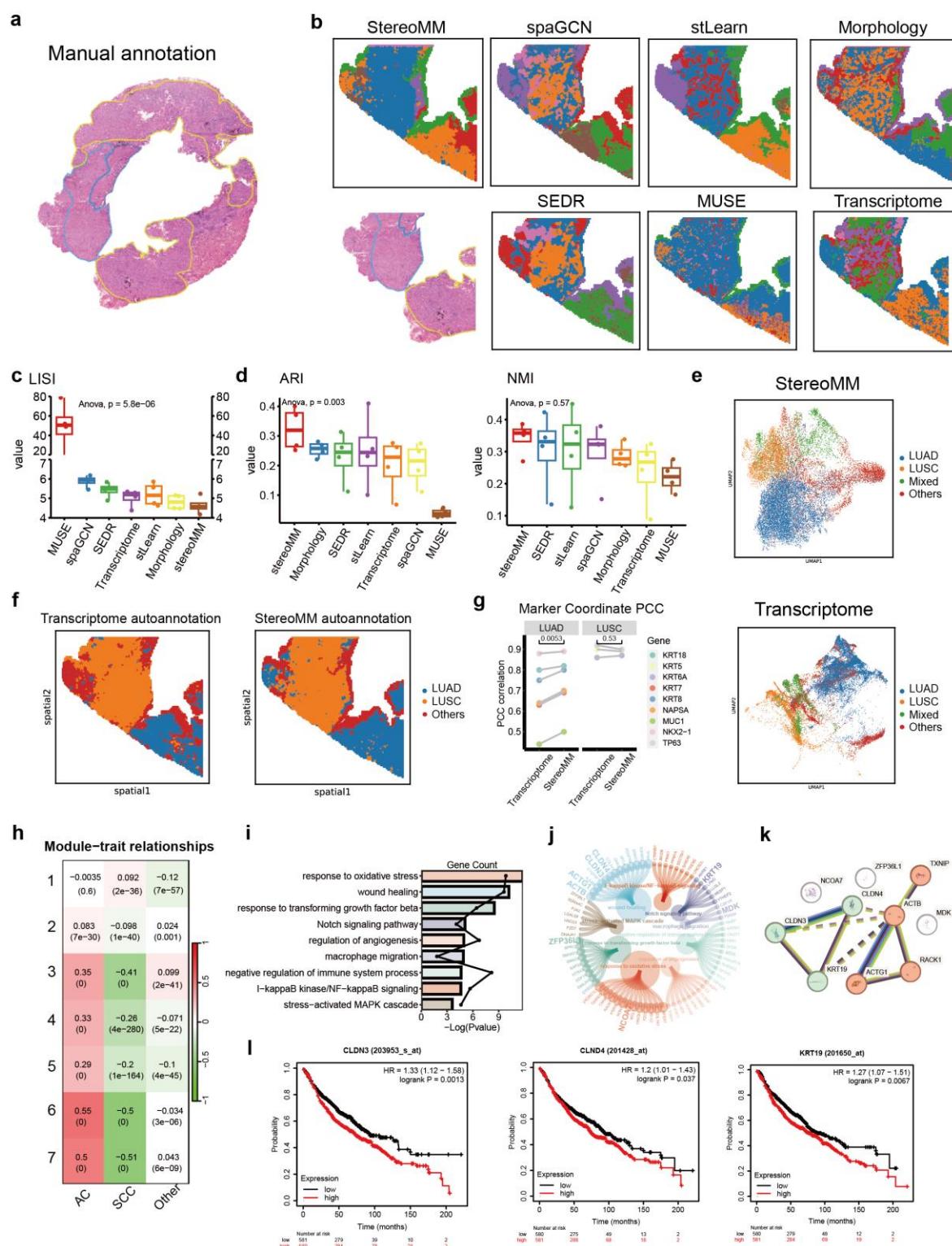
562

563 **Figure3. System parameter evaluation of StereoMM.**

564 **a.** The corresponding anatomical Allen Mouse Brain Atlas (<https://atlas.brain-map.org/>). **b.**
 565 Spatial domains identified by StereoMM. The black box denotes the cerebellar cortex and
 566 subthalamic nucleus. **c.** Spatial domains identified by StereoMM without attention module. **d.**
 567 The correlation between attention-enhanced features and final latent representations. On the

568 top: the results on mouse brain slide, on the below: the results on slide3 of lung cancer. **e.** The
569 features before and after the attention module are used to identify the spatial domain. **f.** The
570 spatial domain recognized after manually setting the modality weight parameters. **g.** Boxplots
571 of ARI and NMI values for three GNN types, each evaluated on 4 lung cancer slides. The center
572 line, box lines, and whiskers of the boxplot represent the median, upper and lower quartiles,
573 and $1.5 \times$ interquartile range, respectively. **h.** Boxplots of ARI, NMI and LISI values for
574 different number of nodes per layer, each type evaluated on 4 lung cancer slides. **i.** Running
575 time of 5 algorithms (StereoMM, stLearn, SEDR, MUSE, spaGCN) on all 4 lung cancer slices.
576 The height of the histogram represents the average running time, and the whiskers represents
577 the variance.

578



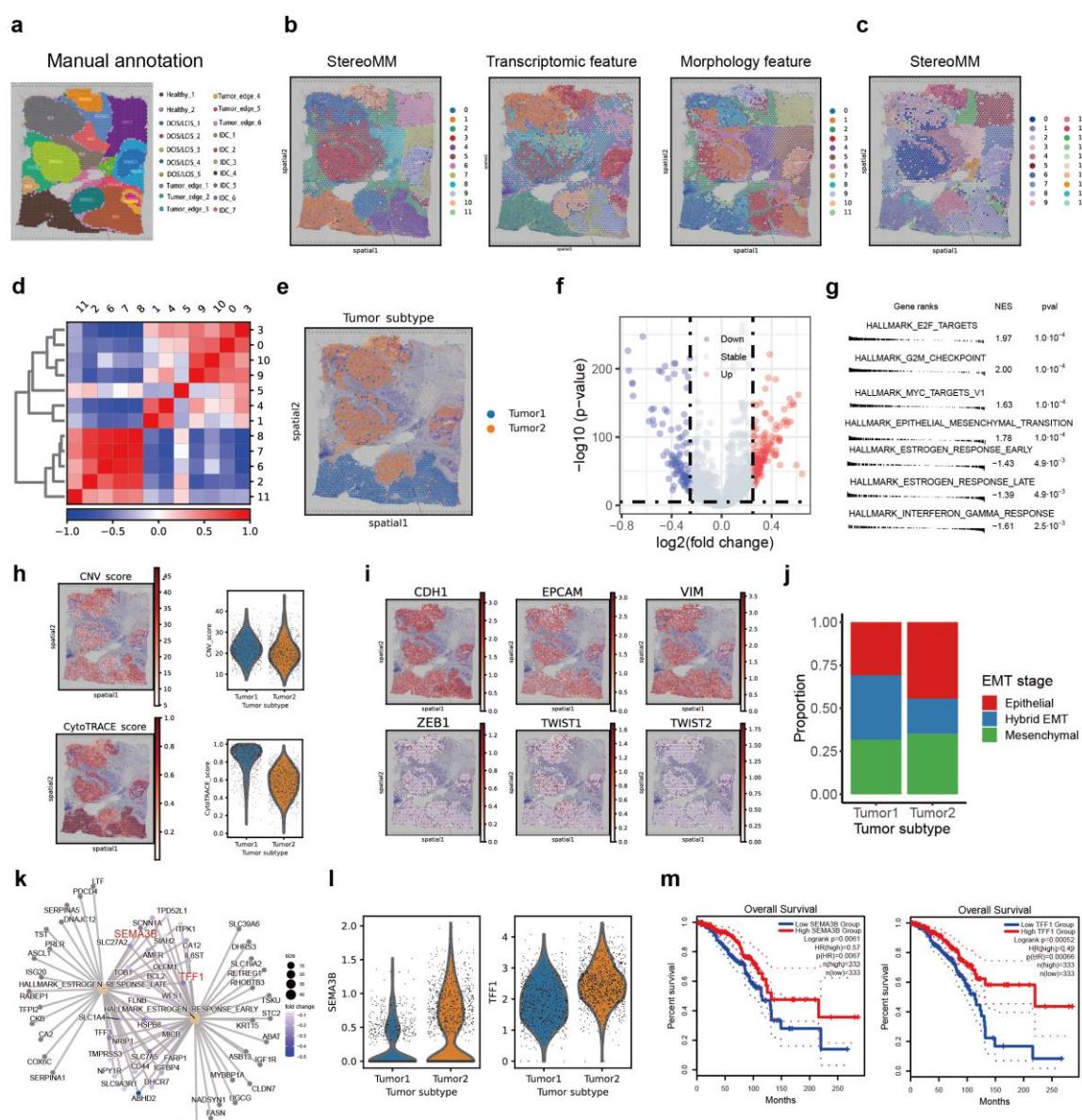
579

580 **Figure4. StereoMM improves recognition performance of human lung adenocarcinoma**
 581 **pathological regions.**

582 **a.** Manual annotation by pathologist. Area circled by red marker showed AC phenotype, blue
 583 displayed SCC phenotype. Green enclosed area presented mixed AC and SCC phenotypes. **b.**
 584 Manual annotation and the spatial domain identified by all algorithms on slice 4. **c.** Boxplot of

585 LISI scores for seven methods in all 4 lung cancer slices. The center line, box lines, and
 586 whiskers of the boxplot represent the median, upper and lower quartiles, and $1.5 \times$ interquartile
 587 range, respectively. **d.** Boxplot of the cluster external evaluation index for seven methods in all
 588 4 slices. **e.** UMAP visualizations of transcriptome and latent representation generated by
 589 StereoMM. **f.** Automated subtype annotation results from single transcriptome and StereoMM
 590 clustering. **g.** Spatial co-localization analysis of subtype annotations with corresponding marker genes.
 591 **h.** Heatmap of correlation between WGCNA gene modules and subtypes identified by StereoMM. **i.**
 592 GO functional enrichment results for Module 6. **j.** Circular visualization of genes within GO-enriched
 593 pathways. **k.** Protein-protein interaction network of hub genes. **l.** Correlation of genes within PPI
 594 clusters with prognosis.

595



596

597 **Figure5: StereoMM dissects breast cancer heterogeneity.**

598 **a.** Manual pathological annotation based on hematoxylin and eosin staining of human breast
599 cancer data. IDC, invasive ductal carcinoma; DCIS, ductal carcinoma *in situ*; LCIS, lobular
600 carcinoma *in situ*; tumor edge; healthy region. **b.** Spatial domains identified by StereoMM (left)
601 and each single modality (middle: single transcriptome; right: single morphology). **c.** Spatial
602 domains identified by StereoMM with 20 clusters. **d.** Heatmap of pearson correlation
603 coefficient between domains (domains= 12). **e.** Volcano plot visualization of DEGs between
604 tumor1 and tumor2. **f.** GSEA showed related pathways enriched in different tumor subtypes
605 (tumor1 and tumor2). **g.** CNV scores and differentiation calculated by CytoTRACE for
606 different tumor subtypes. On the left: visualization of spatial location of CNV scores. On top
607 right: CytoTRACE scores for different tumor subtypes. On bottom right: CNV scores for
608 different tumor subtypes. **h.** Spatial location of the expression of EMT-related marker genes. **i.**
609 Proportion of EMT status in different tumor subtypes. **j.** Potential gene regulatory network of
610 estrogen response pathway (early and late). **k.** Expression levels of genes shared by estrogen
611 response pathways (SEMA3B and TFF1) in different tumor subtypes. **l.** Survival curves of
612 SEMA3B and TFF1 genes in TCGA breast cancer database.