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Abstract

Spatially resolved omics technologies generating multimodal and high-throughput data lead to
the urgent need for advanced analysis to allow the biological discoveries by comprehensively
utilizing information from multi-omics data. The H&E image and spatial transcriptomic data
indicate abundant features which are different and complementary to each other. Al algorithms
can perform nonlinear analysis on these aligned or unaligned complex datasets to decode
tumoral heterogeneity for detecting functional domain. However, the interpretability of Al-
generated outcomes for human experts is a problem hindering application of multi-modal
analysis in clinic. We presented a machine learning based toolchain called StereoMM, which
is a graph fusion model that can integrate gene expression, histological images, and spatial
location. StereoMM firstly performs information interaction on transcriptomic and imaging
features through the attention module, guaranteeing explanations for its decision-making
processes. The interactive features are input into the graph autoencoder together with the graph
of spatial position, so that multimodal features are fused in a self-supervised manner. Here,
StereoMM was subjected to mouse brain tissue, demonstrating its capability to discern fine
tissue architecture, while highlighting its advantage in computational speed. Utilizing data from
Stereo-seq of human lung adenosquamous carcinoma and 10X Visium of human breast cancer,
we showed its superior performance in spatial domain recognition over competing software
and its ability to reveal tumor heterogeneity. The fusion approach for imaging and gene
expression data within StereoMM aids in the more accurate identification of domains, unveils
critical molecular features, and elucidates the connections between different domains, thereby

laying the groundwork for downstream analysis.

Key words: spatial omics, multimodal data, deep learning, graph fusion, molecular

characteristics
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INTRODUCTION

The spatial relationship between DNA/RNA and tissue-level information plays a critical role
in revealing pathogenesis of cancer, developing new treat strategies, and establishing precise
stratification and prognosis system. This intricate interplay allows biologists and clinicians to
observe how genetic alterations manifest within the complex architecture of tissues, providing
a more nuanced view of tumor biology. By integrating high-resolution genetic data with the
histopathological layer, medical professionals can identify specific tumor microenvironments
and spatial immune profile, as well as their responses to various treatments. This holistic
approach not only aids in the development of targeted therapies that address the unique genetic
makeup of the tumors but also helps in predicting disease progression and therapeutic outcomes.
Consequently, leveraging the spatial dynamics between genetic information and tissue
pathology paves the way for more effective and individualized cancer treatment strategies,
significantly impacting patient management and improving patient survival.

The recent advent of spatial and single-cell omics technologies has produced various
dimensions of information[1, 2] and indeed revolutionized our understanding of the
mechanisms underpinning cancer progression and the complex tumor-immune
microenvironment. These technologies provide a multi-dimensional view that captures not just
the static genetic information of cells but also their spatial organization, interactions, and
expression patterns within tissues (Figure 1a). The detailed insights provided by spatial and
single-cell omics technologies into the cellular and molecular landscape of tumors represent a
significant leap forward in cancer research. Spatial transcriptomics makes up for the
inefficiency and accuracy of the single cell data that is resulted by the lack of in situ information.
Multiple Modalities (MM) data fusion analysis paradigms have emerged in tandem with the
explosion of genomics, transcriptomics, proteomics, and epigenomics. This process also has
been aided by the development of artificial intelligence (Al) [3, 4]. The significant tumor
heterogeneity, unpredictable drug response, and patient stratification catalyze the need for
precise diagnosis and treatment of tumors, and a common trend is to combine clinical
information with high-throughput data of biological and clinical level using bioinformatics and
algorithms[5].

As spatial transcriptomic (ST) technologies develop, integration with other data
modalities provide opportunities for better tissue characterization[6]. Integration of spatial
transcriptomic data with conventional Hematoxylin and Eosin (H&E) histopathology images

of tumor tissue opens avenues for clinical applications[7-10]. The multi-channel images
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81 provided in ST contain rich information, including cell morphology, cell status. Changes in
82  morphology may predict cell fate or state even before it is observed in transcriptome output[11].
83  Meanwhile, spatial relationships between cells can reveal how different cell types and genetic
84  programs relate to each other and their surroundings[12].
85 The application of multimodal data is crucial for advancing the insight into the disease
86  and personalized cancer treatment. By integrating multiple aspects of patient information, Al
87  algorithms can perform nonlinear analysis on these aligned or unaligned complex datasets
88  (Figure 1b), achieving more precise tumor classification, disease progression prediction, and
89 aiding physicians in crafting personalized treatment plans. This approach not only enhances
90 the accuracy of therapeutic interventions but also facilitates the discovery of new targets and
91  biomarkers, accelerating the development of novel drugs (Figure 1c). In alignment with this
92  vision, our research endeavours extend to a granular level, where we seek to unravel the
93 intricate biological narratives that underpin disease manifestation. We are dedicated to
94  applications such as tumor microenvironment analysis and exploration of spatial domains,
95  aiming to uncover the complete landscape of the disease and pioneer new avenues for treatment
96 (Figure 1d).
97 The microenvironments specific to different regions play a pivotal role in determining
98 cellular states, as the morphology and expression of cells reveals key insights into their
99  physiological and phenotypic characteristics[13, 14]. Based on these assumptions, we designed
100  the StereoMM method, which integrates RNA spatial expression data, H&E image information,
101  and tissue in situ locations in the spatial transcriptome via cross-attention mechanisms and
102  graph neural networks to obtain multi-modal joint embeddings. StereoMM, specifically the
103  utilization of attention weights in the model, offers insightful explanations for its decision-
104  making processes, thereby enhancing the interpretability of the outcomes for human experts.
105 This feature is particularly valuable as it bridges the gap between complex algorithmic
106  decisions and human understanding, making it possible to trace and understand the rationale
107  behind specific predictions or classifications made by the model, thus capturing interactions
108  between different patterns and providing a more accurate representation for downstream
109 analysis. StereoMM has exhibited exceptional performance in identifying spatial domains. We
110  substantiated the efficacy of StereoMM through conceptual validation across multiple cancer
111  datasets from diverse platforms, demonstrating its superiority over existing methodologies and
112  its potential for pivotal predictive biomarker discovery.
113
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114 RESULTS

115 Overview of StereoMM framework

116  In the processes of diagnosis, evaluation, and therapeutic strategy formulation, physicians
117  synthesize data from multiple sources. These data encompass three key dimensions: molecular
118  biological, medical imaging information from clinical exams, and clinical information data
119  from medical practice. The first dimension pertains to molecular biology, encompassing
120  genetic, genomic, and other molecular data. The second dimension is from clinical exam,
121  including but not limited to imaging data such as Hematoxylin and Eosin (H&E) pathology
122 images, Immunohistochemistry (IHC), and other procedures. The last dimension is clinical
123  practical information, which involves data derived from patient care, treatment outcomes such
124 as response, recurrence and survival, and healthcare interactions (Figure 1). However,
125  contemporary clinical diagnostic approaches may not adequately consider the potential
126  nonlinear relationships between these different data types.

127 A diverse array of methodologies in spatial transcriptomics has dramatically transformed
128  our comprehension of tissue heterogeneity and provided opportunities for multimodal fusion.
129  Stereo-seq technology stands out for its high-resolution capabilities and expansive field of view,
130 facilitated by a chip composed of closely spaced DNA Nanoballs (DNBs) shown in Figure 2a.
131  This allows the detailed high-resolution gene expression analysis and the examination of large
132  tissue sections, providing valuable insights into cellular heterogeneity and tissue architecture.
133  The integration of these advantages into a multimodal data fusion algorithm framework is
134  crucial. It merges spatially resolved gene expression data with acquired images, where
135  structural differences could reflect functional variations, as in Figure 2b.

136 This framework utilizes a self-supervised Generative Neural Network (GNN) model
137  (Figure 2c). It generates a feature representation that combines multiple modalities, which can
138  be utilized for various downstream tasks to enhance the accuracy, such as spatial domain
139  recognition. The learning process is guided by a combination of minimizing the self-supervised
140  reconstruction loss and a regularization loss that forces the latent space representation. In an
141  autoencoder, the reconstruction loss function promotes a high degree of similarity between the
142  generated outputs X and the original input matrix (X), ensuring that the outputs closely mirror
143  the inputs. In other words, it ensures that the latent features learned by the encoder preserve the
144 maximum information from the original input, then the decoder can reconstruct the original

145  input through these latent features. The intuition of the regularization loss, also known as the
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146  Kullback-Leibler (KL) divergence, encourages the model to learn a compact and smooth latent
147  space representation.

148 Specifically, the training process is divided into the following four steps: (1) For the
149  transcriptome and H&E image, a unimodal feature extractor is employed to extract s-

150  dimensional unimodal features, generate two feature matrices (X e R”** for transcriptome,
151 and X, e R"** for morphology, where n represents the number of bins or spots). (11) These

152  features are then fed into the attention module, where the information between modalities is
153  integrated using the attention mechanism as in Figure 2d. This integration results in an s-
154  dimensional output that enhances the interaction between modalities ( X & RrR"*s for
155  transcriptome, and X < R"*s for morphology). (Ill) The feature matrices from both
156  modalities are concatenated (X = X, @ X ) and used as input for the node features of the
157  graph autoencoder. (IV) To incorporate spatial location information, a Spatial Neighbour
158  Graph (SNG) is generated based on the physical distance. This SNG serves as the input for the
159  adjacency matrix in the graph autoencoder.

160 The generative model for graph data utilizes the GNN to learn a distribution of node vector
161  representations illustrated in Figure 2e. These representations are then sampled from the
162  distribution, and the graph is reconstructed using the decoder. By extracting the latent
163  representation from the Variational Graph AutoEncoder (VGAE), a high-quality, low-
164  dimensional representation (Ze R4, Where d represents the feature dimension after
165  dimensionality reduction) of the graph data is obtained. This feature representation Z can be
166  effectively utilized for various downstream analyses, including clustering, trajectory analysis,

167  and more.

168  System parameter evaluation of StereoMM

169  We used a mouse brain tissues with intricate tissue structures as test sample for conducting a
170  systematic evaluation of parameters. Firstly, we demonstrate that StereoMM outperforms
171  individual modalities alone. We used anatomical reference annotations from the Allen Mouse
172 Brain Atlas[15] as ground truth shown in Figure 3a. StereoMM accurately identified the
173  hippocampal structure and differentiated mole and granul areas in the lobules shown by the
174  rectangle in Figure 3b. In particular, StereoMM distinguished the subthalamic nucleus
175  (domain 6), which is mainly composed of projection neurons and is a key part of movement
176  regulation[16]. None of the single modality could independently identify this specific region

177  (more details in Supplementary Figure 1a).
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178 Therefore, we performed ablation experiments on the model to demonstrate the
179  effectiveness of attention module. Without the interactive ability of attention, mole and granul
180 areas in the lobules could no longer be distinguished, the identification of the hippocampal
181  structure and subthalamic nucleus were also blurred, and more noise was introduced. Detailed
182  comparisons are shown by the boxes in Figure 3b and 3c. To clarify the role of the attention
183  mechanism in enhancing explainability, we extract the weight matrix and compute its
184  correlation with the final output (Z). This approach not only illuminates how our network
185 assesses and assigns significance to individual modal features during fusion but also
186  contributes to the model's explainability by partially elucidating the decision-making process.
187  In the mouse brain data, morphological similarity was on par with transcriptomic similarity,
188 indicating that the model has fused the two aspects in a balanced manner. StereoMM also was
189  tested on the lung cancer data of Stereo-seq, where the correlation between morphological
190 features and the latent features is higher, suggesting that the model has assigned a higher weight
191  to the morphological features in Figure 3d. In order to further illustrate the capabilities of the
192  attention module, we extracted the features after the attention module for visualization in
193  Figure 3e. After passing through the attention module, the two single-modal features become
194  more similar and Mean Cosine Similarity increased from -26.76 to -13.91, indicating that the
195  attention module enables mutual information exchange between the two modalities.

196 Meanwhile, we provided a hyperparameter to improve the guidance of prior knowledge.
197 By setting custom weights for transcriptomic features, we maintain the flexibility of the model
198  during the fusion process. As transcriptomic weight increased, the final output of the model
199  became more similar to the transcriptome in Figure 3f. (ARI, from 0.17 to 0.29)

200 In the Stereo-seq lung cancer dataset, manual annotation in the pathology images, i.e.
201  Whole Slides Imaging (WSI), served as the gold standard for quantification. We tested the
202  impact of different hyperparameters on the accuracy of the results. StereoMM provided 3 types
203  of convolutional neural networks for model selection, including Graph Convolutional Network
204  (GCN), Graph Attention Networks (GAT) and Graph Sample and Aggregate (GraphSAGE).
205 GCN achieved the optimal results in ARI and NMI as in Figure 3g. (More details in
206  Supplementary Figure 1b). The user has a high degree of customization, with the ability to
207  define the hidden layer of the network. For the model structure design, we assessed a total of 8
208  combinations of selecting 2048 or 1024 in the first layer, 256 or 128 in the second layer, and
209  500r 100 inthe third layer in Figure 3h and Supplementary Figure 1c. In general, StereoMM
210  was robust under the choice of different number of nodes (ARI and NMI, Anova, p-value =1).

211  However, an upward trend in ARI was observed with an increasing number of nodes,
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212  suggesting that the network's enhanced fitting capability is due to the larger node count.
213 2048 256 50 achieved the highest average ARI score.

214 In demonstrating the model's effectiveness and flexibility, we particularly highlighted its
215  advantages in terms of running time. We conducted a comprehensive comparison of the time
216  needed to execute various software tools, and our findings, as illustrated in Figure 3i, revealed
217  that StereoMM required the shortest duration to complete its tasks. This efficiency underscores
218  StereoMM's superiority in processing speed, making it a highly practical choice for
219  applications where time efficiency is critical.

220 Following detailed testing, the concept of the attention module showcased distinct benefits
221 in terms of enhancing model performance and interpretability. Notably, it offered a clear
222  method for adjusting weights for individual modalities within the attention module. Moreover,
223  the StereoMM model's architecture demonstrated resilience, efficiency, and accuracy under

224  various parameter configurations.

225  StereoMM improves performance of domain identification in Stereo-seq data of human

226  lung adenosquamous carcinoma

227  To evaluate the accuracy of tissue identification and perform quantitative assessment of
228  StereoMM, we conducted an analysis using lung adenosquamous carcinoma data generated
229  from the Stereo-seq platform[17]. The data was meticulously annotated by pathologists into
230 three distinct sections: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
231  and mixed areas in Figure 4a, which served as the gold standard. To reduce the computing
232  burden, we divided the data into four slices (Supplementary Figure 2a). We also perform a
233  benchmark analysis to compare the performance among each single modality, spaGCN,
234  stLearn, MUSE and SEDR (Figure 4b, Supplementary Figure 2b).

235 We normalized the results of all methods to a consistent number of clusters (k=7). It has
236 shown that StereoMM significantly enhances the accuracy of single-modal analysis. Single-
237  modality features are noisy and exhibit a discontinuous distribution of clustering results. As
238  expected, multimodal fusion significantly improved the issue of data noise (Figure 4b). To
239  evaluate the noisy of the clustering results, we employed the local inverse Simpson’s index
240  (LISI). A lower LISI score indicates better spatial separation. The LISI score of StereoMM is
241  4.6440.44, which is lower than that of single transcriptomic features (4.8140.37) or single
242  morphological features (5.0240.44). Which demonstrated that StereoMM achieves superior
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243  spatial separation compared to methods that rely solely on transcriptomic or morphological
244  features (Figure 4c).

245 In addition, compared with previous spatial clustering methods that combined histology
246  or spatial, StereoMM exhibits significant improvement in spatial recognition ability. We
247  quantitatively assessed its capabilities using several indicators, including evaluation metrics
248  with the gold standard of fundamental organizational facts: Adjusted Rand Index (ARI) and
249  Normalized Mutual Information (NMI) (Figure 4d). Furthermore, internal evaluation metrics
250  of clustering are calculated. These metrics provide insights into the quality and performance of
251  clustering results by measuring the separation and compactness of clusters. The commonly
252  used internal evaluation metrics including: Calinski-Harabasz Index (CH), Davies-Bouldin
253  Index (DB), Silhouette Coefficient (SC) (Supplementary Figure 3a). Except for the DB score,
254  higher scores in all the mentioned metrics indicate better performance. We also calculated LISI
255  scores for all methods (Figure 4c). Except for CH, StereoMM achieved the best performance,
256  obtaining the highest ARI (0.3240.07) and NMI (0.3440.05), demonstrating its exceptional
257  performance in accurately identifying different tissue types. We visualized the embeddings of
258  StereoMM using UMAP graphs. Comparing the distribution of the original transcriptome,
259  StereoMM clearly separated the three manually annotated categories, while the original
260 transcriptome showed a mixed and disordered state (Figure 4e, Supplementary Figure 3b).
261 To validate the enhanced accuracy of StereoMM in identifying clinical regions compared
262  to single transcriptomics (Figure 4f), we selected commonly used clinical diagnostic markers
263  for LUAD (NKX2-1, KRT7, NAPSA, MUC1, KRT8, and KRT18) and LUSC (KRT5, KRT6A,
264  TP63)[18] (Supplementary Figure 4a), and then quantified the spatial co-localization with
265 each molecule using the Kernel Density Estimation (KDE) and Pearson Correlation
266  Coefficient(PCC)[19] (Supplementary Figure 4b-c). We found that the accuracy of
267  StereoMM is greater than single transcriptomics, as evidenced by the higher correlation
268  between the automated annotation results of StereoMM and the molecular expression of
269 LUAD(P=0.0045<0.05). However, for LUSC, the comparison of identification accuracy
270  between both methods was not statistically significant (P=0.67>0.05) (Figure 4g).
271  Subsequently, we used weighted gene co-expression network analysis (WGCNA) to cluster
272  gene expression into seven modules and calculated the spatial correlation of these modules
273  with StereoMM annotated regions (Figure 4h, Supplementary Figure 5a-c). Only Module 1
274 was linked to LUSC, but Modules 2—7 had a stronger association with LUAD. Module 3
275  exhibits the strongest association with other regions aside from this. We concluded that Module

276 5, which showed the highest correlation with LUAD, was functionally biased toward


https://doi.org/10.1101/2024.05.04.592486
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.04.592486; this version posted May 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

277  immunosuppressive and tumor growth after performing gene enrichment analysis
278 (GO&KEGG) (Figure 4i). The pathways associated with macrophage migration (CSF1R[20]),
279  NF-x B signalling (CTNNB1[21]) and TGF-B8 signalling (SMAD5[22]) were found to be
280  overexpressed (Figure 4j). We referred to the genes within module 5 that interacted more with
281  other genes as eigengene genes and matched them with corresponding pathways. After
282  conducting a protein-protein interaction (PPI) network analysis of these hub genes, we
283  discovered that the interaction between CLDN3 (claudin 3), CLDN4 (claudin 4), and KRT19
284  (cytokeratin 19) was the most significant exclude irrelevant genes (Figure 4k), suggesting that
285  these might be important genes affecting the function of Module 5. CLDN3 and CLDN4 are
286  tight junction molecules correlated with ovarian cancer cell infiltration and wound healing[23],
287  while KRT19 is a member of the keratin family and related to Notch pathway[24]. All three
288  are overexpressed in lung adenocarcinoma and are associated with epithelial-mesenchymal
289 transition (EMT) and tumor metastasis. Therefore, we calculate the association of these genes
290  with the prognosis of LUAD patients via the Cancer Genome Atlas (TCGA) database. The
291  results exhibited higher expression of CLDN3, CLDN4, and KRT19 was associated with poor
292  prognosis in LUAD patients (Figure 4l), indicating that these molecules may promote tumor
293  development and be the potential biomarkers[25-27].

294 In summary, the architecture based on attention and graph neural networks used by our
295  structure helped capture and combine information that could not be obtained from either mode
296 alone. A fair comparison of results showed that the recognition ability in the spatial domain of
297  StereoMM was significantly better than that of a single modality or any competing software,
298  whether based on gold standard indicators or other indicators. Simultaneously, StereoMM can
299 assist in identifying significant genes and putative targets related to the initiation and
300  progression of tumors.

301 StereoMM dissects breast cancer heterogeneity and identifies potential prognostic factors

302 To assess the capability and compatibility of StereoMM, we applied StereoMM to an open-
303  access dataset generated from the fresh frozen invasive ductal carcinoma breast tissue using
304  the 10x Visium spatial platform. For this dataset, StereoMM not only revealed the clear
305 clustering structure which was consistent with the manual annotation, but also specifically
306 identified tumor boundary area as a separate domain (Figure 5a-b). Next, we increased the

307  number of clusters to validate the robustness of StereoMM, and successfully distinguishing
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308 separate tumor boundary regions, DCIS/LCIS regions, as well as the smallest IDC region
309  (Figure 5¢c).

310 To further investigate the intricate tumor microenvironment and explore the biological
311  characteristics within different spatial compartments, we performed a correlation analysis
312  between the domains identified by StereoMM (domains=12), and discovered the tumor area
313  was divided into two parts which was not completely consistent of histological phenotype
314  (Figure 5d-e). We first focused on comparing intratumoral transcriptional differences between
315  tumorl (including domainl and 4) and tumor2 (including domain 0,3,9 and 10) by performing
316  differential expression analysis followed by gene set enrichment analysis (GSEA). We detected
317  significant DEGs (|log fold change| >0.25; p-value < 0.05) between tumor 1 and 2 (Figure 5f).
318 In tumorl, (Figure  5f) ‘E2F TARGETS’, ‘G2M_CHECKPOINT’ and
319 ‘EPITHELIAL MESENCHYMAL TRANSITION’  pathway  were  upregulated,
320 while ’INTERFERON GAMMA RESPONSE’, ’ESTROGEN RESPONSE LATE’ and
321 ‘ESTROGEN_ RESPONSE EARLY’ were downregulated (Figure 5g). These pathways can
322 interact with each other and are associated with the prognosis and treatment response of breast
323  cancer[28, 29].

324 To specifically assess the heterogeneity between tumorl and tumor2, we next performed
325  copy number variation (CNV) analysis and differentiation analysis using inferCNV and
326  CytoTRACE respectively (Figure 5h), and described the different EMT tumor states based on
327  the expression of E-cadherin (E-cad) and vimentin (VIM). As expected, tumorl displayed a
328  distinctively higher inferCNV score (t-test, p-value = 6.44e-12) and CytoTRACE score (t-
329  test, p-value = 5.69e-236), indicating the heterogeneity of tumor proliferation and malignancy.
330 Then we investigated the expression of EMT markers (Figure 5i), including epithelial
331  molecules (E-Cadherin and EPCAM), mesenchymal markers (VIM) and transcription factors
332  associated with EMT (ZEB1, TWIST1 and TWIST2). Next, we annotated tumor epithelial cell
333 by deconvolution and cell2location (Supplementary Figure 6a), and then defined distinct
334 EMT cell state ranging from epithelial (E-cad+ VIM-), hybrid EMT (E-cad+ VIM+) and
335 mesenchymal (E-cad- VIM+)[30, 31] (Figure 5j). We observed tumorl increased the
336 proportion of the hybrid EMT and decreased the proportion of epithelial, indicating the
337  possibility of infiltration and metastasis. On the other hand, GSEA results displayed different
338  estrogen response across regions (Figure 5k), which is relevant to the published clinical
339 information of the sample (ER+PR-HER2+). Meanwhile, we observed upregulation of
340 SEMAS3B and TFF1 in tumor2 (Figure 5I), which tend to exhibit tumor suppressor function
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341 and are reported as potential biomarkers in breast cancer (BC) before. We also validated the
342  function of SEMA3B and TFF1 using survival data from TCGA cohort of 333 HER2+ BC
343  patients (Figure 5m), suggesting the prognosis value of SEMA3B and TFFL1.

344 Another interesting finding is that in the correlation analysis with 12 cluster, domainl1
345 initially labelled as IDC was clustered with healthy tissue. The DEG and GSEA results indicate
346  upregulated oncogenic pathways, immune-related pathways, and B-cell markers in this domain
347  (Supplementary Figure 6b-c), suggesting the potential presence of tertiary lymphoid
348  structures. This is consistent with previous studies[32] (Supplementary Figure 6d).

349 In summary, analysis of StereoMM clusters revealed regional and biological differences
350 reflecting tumor progression and raised the hypothesis that heterogeneity of proliferation and
351  differentiation states result the distinct capability of metastasis and resistance to therapy across
352  histologic subtypes.

353

354  Conclusion and Discussion

355  The amalgamation of histopathology with high-throughput sequencing to inform oncologic
356  treatment strategies is in its infancy. Spatial omics has emerged as a powerful tool in precision
357  medicine, outperforming established metrics such as tumor mutational burden in predicting
358  responses to PD1/PD-L1 therapies in a pivotal clinical trial[1]. Nevertheless, the utility of
359  spatial transcriptomic data is constrained by limitations such as low total transcriptions per cell,
360 significant data noise, and a high frequency of zero values, necessitating the integration of
361 additional modal data for a comprehensive analysis[2-4]. Thus, the innovation of effective
362  modal fusion methodologies is imperative.

363 Several algorithms have been designed to integrate information from MM of the ST data.
364  stLearn is a widely used spatial transcriptomics analysis tool. However, it does not perform
365 appropriate weighting when normalizing using histological images with spatial location.
366  spaGCN utilizes graph convolutional neural networks (GCN) to model spatial relationships[33].
367  While, it has limited capabilities in feature extraction because it simply utilizes the pixel values
368  of the three channels of the image and ignores the high-level features of morphology. Software
369  such as MUSE[34] and SEDR employ architectures underpinned by autoencoders to learn a
370  low-dimensional representation of multimodal data, but such integration relies entirely on

371  neural networks and lacks interpretability. While these methods have yielded numerous
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372 intriguing findings, they may be limited in their flexibility, generality, and the interpretability
373  of model decisions. These limitations can hinder their application in real-world projects.

374 Our study introduces StereoMM, a deep learning approach that integrates multimodal
375  data—including high-content H&E images, spatial information, and gene expression—to
376  comprehensively identify tumor subpopulations, significantly advancing beyond conventional
377  methods by considering both histological and cellular interactions within tissue samples.
378  StereoMM employs an attention mechanism for deep interaction between modalities, followed
379 by the aggregation of multimodal features from adjacent tissues using a graph convolutional
380 network. This methodology affords StereoMM with exceptional adaptability and
381 computational efficiency. The utility of the attention module in mediating information
382  exchange has been substantiated through ablation studies and similarity assessments. By
383  adjusting various parameters, we have demonstrated the robustness of our model, which does
384  not preclude users from fine-tuning based on their understanding of the data. For instance,
385 tissues with lower inter-regional similarity may benefit from a smaller k-nearest neighbours
386  parameter or fewer graph convolutional layers. Such customization can yield results with
387  greater biological relevance across diverse datasets.

388 StereoMM has been validated on tumor datasets from Stereo-seq and 10X Visium,
389  exhibiting superior performance in spatial contour identification. Comparative analyses with
390  manual annotations have revealed spatial domains that more accurately reflect the ground
391 truths, and congruence with cell subtype marker genes has indicated subpopulation
392  compositions that correlate with biological functions. The intricate spatial architecture of tumor
393  tissues necessitates a detailed analysis of the spatial microenvironment, which is crucial for
394  comprehending tumor biology, unravelling mechanisms of oncogenesis, and identifying
395 therapeutic targets. The refined subpopulations discerned through StereoMM, in conjunction
396  with multimodal data, appear to capture significant biological variations, including genes
397  implicated in tumor progression and intratumoral heterogeneity.

398 At present, StereoMM has been applied to spatial transcriptomic analyses using binning
399  or meshing methods. While the modeling framework of StereoMM is theoretically applicable
400 to other spatial transcriptomics platforms, the rapid evolution of ST technology presents new
401  measurement techniques[5, 6], expanded data volumes, and progress in additional
402  modalities[7]. Consequently, the development of novel methods to exploit the expanding
403  spatial transcriptomic data represents a considerable challenge. The scalability of the model
404  can be enhanced through strategies such as subgraph sampling and parallel training. Moreover,

405  the incorporation of non-aligned modal data from beyond spatial transcriptomics could bolster
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406  our capacity to analyse and interpret tissue heterogeneity. Future investigations will explore
407  these potential enhancements to further refine the functionality of StereoMM.

408 In summary, StereoMM is an innovative and promising approach utilizing attention
409  mechanisms and graph autoencoders for the analysis of spatial transcriptomic data. It facilitates
410  modality fusion through self-supervised learning in the absence of annotations. Poised to
411  capitalize on forthcoming advancements in measurement technologies, StereoMM holds the
412  potential to significantly improve precision oncology practices in the context of therapeutic

413  decision-making.
414
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544  Figure 1. Fundamentals of Multimodal Fusion Design.

545  a. Hierarchical stratification of biomedical data. b. Integration of aligned and non-aligned
546  datasets. c. Application scenarios for multimodal data integration. d. Mechanistic insights via
547  multimodal data exploration.
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Figure 2. Schematic overview of StereoMM.

a. Workflow for Stereo-seq experimental analysis. Created with BioRender.com. b. Data
output formats from spatial transcriptomics. c. The overall framework of StereoMM. It requires
three inputs: spatial coordinates, gene expression matrix, and image patches. Through the

attention module and VGAE module, it generates low-dimensional a latent representation
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555  which can be used for downstream tasks. d. The cross-attention module in StereoMM captures
556  relationships between different modalities by attending to relevant information from one
557  modality based on another. In this module, each individual modality generates its own set of
558  queries (Q), keys (K), and values (V). The Q from one modality is used to query the K and V
559  from another modality. e. The VGAE module in StereoMM aggregates spatial information and
560 each modality feature, and reduces the dimensionality of the original features through the

561  encoder to obtain the final latent representation.
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563  Figure3. System parameter evaluation of StereoMM.
564 a. The corresponding anatomical Allen Mouse Brain Atlas (https://atlas.brain-map.org/). b.

565  Spatial domains identified by StereoMM. The black box denotes the cerebellar cortex and
566  subthalamic nucleus. c. Spatial domains identified by StereoMM without attention module. d.
567  The correlation between attention-enhanced features and final latent representations. On the
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top: the results on mouse brain slide, on the below: the results on slide3 of lung cancer. e. The
features before and after the attention module are used to identify the spatial domain. f. The
spatial domain recognized after manually setting the modality weight parameters. g. Boxplots
of ARI and NMI values for three GNN types, each evaluated on 4 lung cancer slides. The center
line, box lines, and whiskers of the boxplot represent the median, upper and lower quartiles,
and 1.5x interquartile range, respectively. h. Boxplots of ARI, NMI and LISI values for
different number of nodes per layer, each type evaluated on 4 lung cancer slides. i. Running
time of 5 algorithms (StereoMM, stLearn, SEDR, MUSE, spaGCN) on all 4 lung cancer slices.
The height of the histogram represents the average running time, and the whiskers represents

the variance.
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580  Figured. StereoMM improves recognition performance of human lung adenocarcinoma
581  pathological regions.
582  a. Manual annotation by pathologist. Area circled by red marker showed AC phenotype, blue
583  displayed SCC phenotype. Green enclosed area presented mixed AC and SCC phenotypes. b.
584  Manual annotation and the spatial domain identified by all algorithms on slice 4. c¢. Boxplot of


https://doi.org/10.1101/2024.05.04.592486
http://creativecommons.org/licenses/by-nc-nd/4.0/

585
586
587
588
589
590
591
592
593
594
595

596

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.04.592486; this version posted May 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

LISI scores for seven methods in all 4 lung cancer slices. The center line, box lines, and
whiskers of the boxplot represent the median, upper and lower quartiles, and 1.5xinterquartile
range, respectively. d. Boxplot of the cluster external evaluation index for seven methods in all
4 slices. e. UMAP visualizations of transcriptome and latent representation generated by
StereoMM. f. Automated subtype annotation results from single transcriptome and StereoMM
clustering. g. Spatial co-localization analysis of subtype annotations with corresponding marker genes.
h. Heatmap of correlation between WGCNA gene modules and subtypes identified by StereoMM. i
GO functional enrichment results for Module 6. j. Circular visualization of genes within GO-enriched
pathways. K. Protein-protein interaction network of hub genes. I. Correlation of genes within PPI

clusters with prognosis.
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597  Figure5: StereoMM dissects breast cancer heterogeneity.

598 a. Manual pathological annotation based on hematoxylin and eosin staining of human breast
599  cancer data. IDC, invasive ductal carcinoma; DCIS, ductal carcinoma in situ; LCIS, lobular
600 carcinoma in situ; tumor edge; healthy region. b. Spatial domains identified by StereoMM (left)
601 and each single modality (middle: single transcriptome; right: single morphology). c. Spatial
602 domains identified by StereoMM with 20 clusters. d. Heatmap of pearson correlation
603  coefficient between domains (domains= 12). e. Volcano plot visualization of DEGs between
604  tumorl and tumor2. f. GSEA showed related pathways enriched in different tumor subtypes
605 (tumorl and tumor2). g. CNV scores and differentiation calculated by CytoTRACE for
606  different tumor subtypes. On the left: visualization of spatial location of CNV scores. On top
607  right: CytoTRACE scores for different tumor subtypes. On bottom right: CNV scores for
608  different tumor subtypes. h. Spatial location of the expression of EMT-related marker genes. i.
609  Proportion of EMT status in different tumor subtypes. j. Potential gene regulatory network of
610  estrogen response pathway (early and late). k. Expression levels of genes shared by estrogen
611  response pathways (SEMA3B and TFF1) in different tumor subtypes. I. Survival curves of
612 SEMAS3B and TFF1 genes in TCGA breast cancer database.
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