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Abstract 22 

Spatially resolved omics technologies generating multimodal and high-throughput data lead to 23 

the urgent need for advanced analysis to allow the biological discoveries by comprehensively 24 

utilizing information from multi-omics data. The H&E image and spatial transcriptomic data 25 

indicate abundant features which are different and complementary to each other.  AI algorithms 26 

can perform nonlinear analysis on these aligned or unaligned complex datasets to decode 27 

tumoral heterogeneity for detecting functional domain. However，the interpretability of AI-28 

generated outcomes for human experts is a problem hindering application of multi-modal 29 

analysis in clinic.  We presented a machine learning based toolchain called StereoMM, which 30 

is a graph fusion model that can integrate gene expression, histological images, and spatial 31 

location. StereoMM firstly performs information interaction on transcriptomic and imaging 32 

features through the attention module, guaranteeing explanations for its decision-making 33 

processes. The interactive features are input into the graph autoencoder together with the graph 34 

of spatial position, so that multimodal features are fused in a self-supervised manner. Here, 35 

StereoMM was subjected to mouse brain tissue, demonstrating its capability to discern fine 36 

tissue architecture, while highlighting its advantage in computational speed. Utilizing data from 37 

Stereo-seq of human lung adenosquamous carcinoma and 10X Visium of human breast cancer, 38 

we showed its superior performance in spatial domain recognition over competing software 39 

and its ability to reveal tumor heterogeneity. The fusion approach for imaging and gene 40 

expression data within StereoMM aids in the more accurate identification of domains, unveils 41 

critical molecular features, and elucidates the connections between different domains, thereby 42 

laying the groundwork for downstream analysis. 43 

 44 

Key words: spatial omics, multimodal data, deep learning, graph fusion, molecular 45 

characteristics  46 
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INTRODUCTION  48 

The spatial relationship between DNA/RNA and tissue-level information plays a critical role 49 

in revealing pathogenesis of cancer, developing new treat strategies, and establishing precise 50 

stratification and prognosis system.  This intricate interplay allows biologists and clinicians to 51 

observe how genetic alterations manifest within the complex architecture of tissues, providing 52 

a more nuanced view of tumor biology. By integrating high-resolution genetic data with the 53 

histopathological layer, medical professionals can identify specific tumor microenvironments 54 

and spatial immune profile, as well as their responses to various treatments. This holistic 55 

approach not only aids in the development of targeted therapies that address the unique genetic 56 

makeup of the tumors but also helps in predicting disease progression and therapeutic outcomes. 57 

Consequently, leveraging the spatial dynamics between genetic information and tissue 58 

pathology paves the way for more effective and individualized cancer treatment strategies, 59 

significantly impacting patient management and improving patient survival. 60 

The recent advent of spatial and single-cell omics technologies has produced various 61 

dimensions of information[1, 2] and indeed revolutionized our understanding of the 62 

mechanisms underpinning cancer progression and the complex tumor-immune 63 

microenvironment. These technologies provide a multi-dimensional view that captures not just 64 

the static genetic information of cells but also their spatial organization, interactions, and 65 

expression patterns within tissues (Figure 1a). The detailed insights provided by spatial and 66 

single-cell omics technologies into the cellular and molecular landscape of tumors represent a 67 

significant leap forward in cancer research. Spatial transcriptomics makes up for the 68 

inefficiency and accuracy of the single cell data that is resulted by the lack of in situ information. 69 

Multiple Modalities (MM) data fusion analysis paradigms have emerged in tandem with the 70 

explosion of genomics, transcriptomics, proteomics, and epigenomics. This process also has 71 

been aided by the development of artificial intelligence (AI) [3, 4]. The significant tumor 72 

heterogeneity, unpredictable drug response, and patient stratification catalyze the need for 73 

precise diagnosis and treatment of tumors, and a common trend is to combine clinical 74 

information with high-throughput data of biological and clinical level using bioinformatics and 75 

algorithms[5].  76 

As spatial transcriptomic (ST) technologies develop, integration with other data 77 

modalities provide opportunities for better tissue characterization[6]. Integration of spatial 78 

transcriptomic data with conventional Hematoxylin and Eosin (H&E) histopathology images 79 

of tumor tissue opens avenues for clinical applications[7-10]. The multi-channel images 80 
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provided in ST contain rich information, including cell morphology, cell status. Changes in 81 

morphology may predict cell fate or state even before it is observed in transcriptome output[11]. 82 

Meanwhile, spatial relationships between cells can reveal how different cell types and genetic 83 

programs relate to each other and their surroundings[12].  84 

The application of multimodal data is crucial for advancing the insight into the disease 85 

and personalized cancer treatment. By integrating multiple aspects of patient information, AI 86 

algorithms can perform nonlinear analysis on these aligned or unaligned complex datasets 87 

(Figure 1b), achieving more precise tumor classification, disease progression prediction, and 88 

aiding physicians in crafting personalized treatment plans. This approach not only enhances 89 

the accuracy of therapeutic interventions but also facilitates the discovery of new targets and 90 

biomarkers, accelerating the development of novel drugs (Figure 1c). In alignment with this 91 

vision, our research endeavours extend to a granular level, where we seek to unravel the 92 

intricate biological narratives that underpin disease manifestation. We are dedicated to 93 

applications such as tumor microenvironment analysis and exploration of spatial domains, 94 

aiming to uncover the complete landscape of the disease and pioneer new avenues for treatment 95 

(Figure 1d). 96 

The microenvironments specific to different regions play a pivotal role in determining 97 

cellular states, as the morphology and expression of cells reveals key insights into their 98 

physiological and phenotypic characteristics[13, 14]. Based on these assumptions, we designed 99 

the StereoMM method, which integrates RNA spatial expression data, H&E image information, 100 

and tissue in situ locations in the spatial transcriptome via cross-attention mechanisms and 101 

graph neural networks to obtain multi-modal joint embeddings. StereoMM, specifically the 102 

utilization of attention weights in the model, offers insightful explanations for its decision-103 

making processes, thereby enhancing the interpretability of the outcomes for human experts. 104 

This feature is particularly valuable as it bridges the gap between complex algorithmic 105 

decisions and human understanding, making it possible to trace and understand the rationale 106 

behind specific predictions or classifications made by the model, thus capturing interactions 107 

between different patterns and providing a more accurate representation for downstream 108 

analysis. StereoMM has exhibited exceptional performance in identifying spatial domains. We 109 

substantiated the efficacy of StereoMM through conceptual validation across multiple cancer 110 

datasets from diverse platforms, demonstrating its superiority over existing methodologies and 111 

its potential for pivotal predictive biomarker discovery. 112 

 113 
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RESULTS 114 

Overview of StereoMM framework 115 

In the processes of diagnosis, evaluation, and therapeutic strategy formulation, physicians 116 

synthesize data from multiple sources. These data encompass three key dimensions: molecular 117 

biological, medical imaging information from clinical exams, and clinical information data 118 

from medical practice. The first dimension pertains to molecular biology, encompassing 119 

genetic, genomic, and other molecular data. The second dimension is from clinical exam, 120 

including but not limited to imaging data such as Hematoxylin and Eosin (H&E) pathology 121 

images, Immunohistochemistry (IHC), and other procedures. The last dimension is clinical 122 

practical information, which involves data derived from patient care, treatment outcomes such 123 

as response, recurrence and survival, and healthcare interactions (Figure 1). However, 124 

contemporary clinical diagnostic approaches may not adequately consider the potential 125 

nonlinear relationships between these different data types. 126 

A diverse array of methodologies in spatial transcriptomics has dramatically transformed 127 

our comprehension of tissue heterogeneity and provided opportunities for multimodal fusion. 128 

Stereo-seq technology stands out for its high-resolution capabilities and expansive field of view, 129 

facilitated by a chip composed of closely spaced DNA Nanoballs (DNBs) shown in Figure 2a. 130 

This allows the detailed high-resolution gene expression analysis and the examination of large 131 

tissue sections, providing valuable insights into cellular heterogeneity and tissue architecture. 132 

The integration of these advantages into a multimodal data fusion algorithm framework is 133 

crucial. It merges spatially resolved gene expression data with acquired images, where 134 

structural differences could reflect functional variations, as in Figure 2b. 135 

This framework utilizes a self-supervised Generative Neural Network (GNN) model 136 

(Figure 2c). It generates a feature representation that combines multiple modalities, which can 137 

be utilized for various downstream tasks to enhance the accuracy, such as spatial domain 138 

recognition. The learning process is guided by a combination of minimizing the self-supervised 139 

reconstruction loss and a regularization loss that forces the latent space representation. In an 140 

autoencoder, the reconstruction loss function promotes a high degree of similarity between the 141 

generated outputs  and the original input matrix ( ), ensuring that the outputs closely mirror 142 

the inputs. In other words, it ensures that the latent features learned by the encoder preserve the 143 

maximum information from the original input, then the decoder can reconstruct the original 144 

input through these latent features. The intuition of the regularization loss, also known as the 145 
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Kullback-Leibler (KL) divergence, encourages the model to learn a compact and smooth latent 146 

space representation. 147 

Specifically, the training process is divided into the following four steps: (I) For the 148 

transcriptome and H&E image, a unimodal feature extractor is employed to extract s-149 

dimensional unimodal features, generate two feature matrices (  for transcriptome, 150 

and  for morphology, where n represents the number of bins or spots). (II) These 151 

features are then fed into the attention module, where the information between modalities is 152 

integrated using the attention mechanism as in Figure 2d. This integration results in an s-153 

dimensional output that enhances the interaction between modalities (  for 154 

transcriptome, and  for morphology). (III) The feature matrices from both 155 

modalities are concatenated ( ) and used as input for the node features of the 156 

graph autoencoder. (IV) To incorporate spatial location information, a Spatial Neighbour 157 

Graph (SNG) is generated based on the physical distance. This SNG serves as the input for the 158 

adjacency matrix in the graph autoencoder. 159 

The generative model for graph data utilizes the GNN to learn a distribution of node vector 160 

representations illustrated in Figure 2e. These representations are then sampled from the 161 

distribution, and the graph is reconstructed using the decoder. By extracting the latent 162 

representation from the Variational Graph AutoEncoder (VGAE), a high-quality, low-163 

dimensional representation ( , Where d represents the feature dimension after 164 

dimensionality reduction) of the graph data is obtained. This feature representation  can be 165 

effectively utilized for various downstream analyses, including clustering, trajectory analysis, 166 

and more. 167 

System parameter evaluation of StereoMM 168 

We used a mouse brain tissues with intricate tissue structures as test sample for conducting a 169 

systematic evaluation of parameters. Firstly, we demonstrate that StereoMM outperforms 170 

individual modalities alone. We used anatomical reference annotations from the Allen Mouse 171 

Brain Atlas[15] as ground truth shown in Figure 3a. StereoMM accurately identified the 172 

hippocampal structure and differentiated mole and granul areas in the lobules shown by the 173 

rectangle in Figure 3b. In particular, StereoMM distinguished the subthalamic nucleus 174 

(domain 6), which is mainly composed of projection neurons and is a key part of movement 175 

regulation[16]. None of the single modality could independently identify this specific region 176 

(more details in Supplementary Figure 1a). 177 
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Therefore, we performed ablation experiments on the model to demonstrate the 178 

effectiveness of attention module. Without the interactive ability of attention, mole and granul 179 

areas in the lobules could no longer be distinguished, the identification of the hippocampal 180 

structure and subthalamic nucleus were also blurred, and more noise was introduced. Detailed   181 

comparisons are shown by the boxes in Figure 3b and 3c. To clarify the role of the attention 182 

mechanism in enhancing explainability, we extract the weight matrix and compute its 183 

correlation with the final output (Z). This approach not only illuminates how our network 184 

assesses and assigns significance to individual modal features during fusion but also 185 

contributes to the model's explainability by partially elucidating the decision-making process. 186 

In the mouse brain data, morphological similarity was on par with transcriptomic similarity, 187 

indicating that the model has fused the two aspects in a balanced manner. StereoMM also was 188 

tested on the lung cancer data of Stereo-seq, where the correlation between morphological 189 

features and the latent features is higher, suggesting that the model has assigned a higher weight 190 

to the morphological features in Figure 3d. In order to further illustrate the capabilities of the 191 

attention module, we extracted the features after the attention module for visualization in 192 

Figure 3e. After passing through the attention module, the two single-modal features become 193 

more similar and Mean Cosine Similarity increased from -26.76 to -13.91, indicating that the 194 

attention module enables mutual information exchange between the two modalities. 195 

Meanwhile, we provided a hyperparameter to improve the guidance of prior knowledge. 196 

By setting custom weights for transcriptomic features, we maintain the flexibility of the model 197 

during the fusion process. As transcriptomic weight increased, the final output of the model 198 

became more similar to the transcriptome in Figure 3f. (ARI, from 0.17 to 0.29)  199 

In the Stereo-seq lung cancer dataset, manual annotation in the pathology images, i.e. 200 

Whole Slides Imaging (WSI), served as the gold standard for quantification. We tested the 201 

impact of different hyperparameters on the accuracy of the results. StereoMM provided 3 types 202 

of convolutional neural networks for model selection, including Graph Convolutional Network 203 

(GCN), Graph Attention Networks (GAT) and Graph Sample and Aggregate (GraphSAGE). 204 

GCN achieved the optimal results in ARI and NMI as in Figure 3g. (More details in 205 

Supplementary Figure 1b). The user has a high degree of customization, with the ability to 206 

define the hidden layer of the network. For the model structure design, we assessed a total of 8 207 

combinations of selecting 2048 or 1024 in the first layer, 256 or 128 in the second layer, and 208 

50 or 100 in the third layer in Figure 3h and Supplementary Figure 1c. In general, StereoMM 209 

was robust under the choice of different number of nodes (ARI and NMI, Anova, p-value =1). 210 

However, an upward trend in ARI was observed with an increasing number of nodes, 211 
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suggesting that the network's enhanced fitting capability is due to the larger node count. 212 

2048_256_50 achieved the highest average ARI score.  213 

In demonstrating the model's effectiveness and flexibility, we particularly highlighted its 214 

advantages in terms of running time. We conducted a comprehensive comparison of the time 215 

needed to execute various software tools, and our findings, as illustrated in Figure 3i, revealed 216 

that StereoMM required the shortest duration to complete its tasks. This efficiency underscores 217 

StereoMM's superiority in processing speed, making it a highly practical choice for 218 

applications where time efficiency is critical. 219 

Following detailed testing, the concept of the attention module showcased distinct benefits 220 

in terms of enhancing model performance and interpretability. Notably, it offered a clear 221 

method for adjusting weights for individual modalities within the attention module. Moreover, 222 

the StereoMM model's architecture demonstrated resilience, efficiency, and accuracy under 223 

various parameter configurations. 224 

StereoMM improves performance of domain identification in Stereo-seq data of human 225 

lung adenosquamous carcinoma 226 

To evaluate the accuracy of tissue identification and perform quantitative assessment of 227 

StereoMM, we conducted an analysis using lung adenosquamous carcinoma data generated 228 

from the Stereo-seq platform[17]. The data was meticulously annotated by pathologists into 229 

three distinct sections: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), 230 

and mixed areas in Figure 4a, which served as the gold standard. To reduce the computing 231 

burden, we divided the data into four slices (Supplementary Figure 2a). We also perform a 232 

benchmark analysis to compare the performance among each single modality, spaGCN, 233 

stLearn, MUSE and SEDR (Figure 4b, Supplementary Figure 2b). 234 

We normalized the results of all methods to a consistent number of clusters (k=7). It has 235 

shown that StereoMM significantly enhances the accuracy of single-modal analysis. Single-236 

modality features are noisy and exhibit a discontinuous distribution of clustering results. As 237 

expected, multimodal fusion significantly improved the issue of data noise (Figure 4b). To 238 

evaluate the noisy of the clustering results, we employed the local inverse Simpson’s index 239 

(LISI). A lower LISI score indicates better spatial separation. The LISI score of StereoMM is 240 

4.64±0.44, which is lower than that of single transcriptomic features (4.81±0.37) or single 241 

morphological features (5.02±0.44). Which demonstrated that StereoMM achieves superior 242 
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spatial separation compared to methods that rely solely on transcriptomic or morphological 243 

features (Figure 4c). 244 

In addition, compared with previous spatial clustering methods that combined histology 245 

or spatial, StereoMM exhibits significant improvement in spatial recognition ability. We 246 

quantitatively assessed its capabilities using several indicators, including evaluation metrics 247 

with the gold standard of fundamental organizational facts: Adjusted Rand Index (ARI) and 248 

Normalized Mutual Information (NMI) (Figure 4d). Furthermore, internal evaluation metrics 249 

of clustering are calculated. These metrics provide insights into the quality and performance of 250 

clustering results by measuring the separation and compactness of clusters. The commonly 251 

used internal evaluation metrics including: Calinski-Harabasz Index (CH), Davies-Bouldin 252 

Index (DB), Silhouette Coefficient (SC) (Supplementary Figure 3a). Except for the DB score, 253 

higher scores in all the mentioned metrics indicate better performance. We also calculated LISI 254 

scores for all methods (Figure 4c). Except for CH, StereoMM achieved the best performance, 255 

obtaining the highest ARI (0.32±0.07) and NMI (0.34±0.05), demonstrating its exceptional 256 

performance in accurately identifying different tissue types. We visualized the embeddings of 257 

StereoMM using UMAP graphs. Comparing the distribution of the original transcriptome, 258 

StereoMM clearly separated the three manually annotated categories, while the original 259 

transcriptome showed a mixed and disordered state (Figure 4e, Supplementary Figure 3b). 260 

To validate the enhanced accuracy of StereoMM in identifying clinical regions compared 261 

to single transcriptomics (Figure 4f), we selected commonly used clinical diagnostic markers 262 

for LUAD (NKX2-1, KRT7, NAPSA, MUC1, KRT8, and KRT18) and LUSC (KRT5, KRT6A, 263 

TP63)[18] (Supplementary Figure 4a), and then quantified the spatial co-localization with 264 

each molecule using the  Kernel Density Estimation (KDE) and Pearson Correlation 265 

Coefficient(PCC)[19] (Supplementary Figure 4b-c). We found that the accuracy of 266 

StereoMM is greater than single transcriptomics, as evidenced by the higher correlation 267 

between the automated annotation results of StereoMM and the molecular expression of 268 

LUAD(P=0.0045<0.05). However, for LUSC, the comparison of identification accuracy 269 

between both methods was not statistically significant (P=0.67>0.05) (Figure 4g). 270 

Subsequently, we used weighted gene co-expression network analysis (WGCNA) to cluster 271 

gene expression into seven modules and calculated the spatial correlation of these modules 272 

with StereoMM annotated regions (Figure 4h, Supplementary Figure 5a-c). Only Module 1 273 

was linked to LUSC, but Modules 2–7 had a stronger association with LUAD. Module 3 274 

exhibits the strongest association with other regions aside from this. We concluded that Module 275 

5, which showed the highest correlation with LUAD, was functionally biased toward 276 
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immunosuppressive and tumor growth after performing gene enrichment analysis 277 

(GO&KEGG) (Figure 4i). The pathways associated with macrophage migration (CSF1R[20]), 278 

NF-κB signalling (CTNNB1[21]) and TGF-β signalling (SMAD5[22]) were found to be 279 

overexpressed (Figure 4j). We referred to the genes within module 5 that interacted more with 280 

other genes as eigengene genes and matched them with corresponding pathways. After 281 

conducting a protein-protein interaction (PPI) network analysis of these hub genes, we 282 

discovered that the interaction between CLDN3 (claudin 3), CLDN4 (claudin 4), and KRT19 283 

(cytokeratin 19) was the most significant exclude irrelevant genes (Figure 4k), suggesting that 284 

these might be important genes affecting the function of Module 5. CLDN3 and CLDN4 are 285 

tight junction molecules correlated with ovarian cancer cell infiltration and wound healing[23], 286 

while KRT19 is a member of the keratin family and related to Notch pathway[24]. All three 287 

are overexpressed in lung adenocarcinoma and are associated with epithelial-mesenchymal 288 

transition (EMT) and tumor metastasis. Therefore, we calculate the association of these genes 289 

with the prognosis of LUAD patients via the Cancer Genome Atlas (TCGA) database. The 290 

results exhibited higher expression of CLDN3, CLDN4, and KRT19 was associated with poor 291 

prognosis in LUAD patients (Figure 4l), indicating that these molecules may promote tumor 292 

development and be the potential biomarkers[25-27]. 293 

In summary, the architecture based on attention and graph neural networks used by our 294 

structure helped capture and combine information that could not be obtained from either mode 295 

alone. A fair comparison of results showed that the recognition ability in the spatial domain of 296 

StereoMM was significantly better than that of a single modality or any competing software, 297 

whether based on gold standard indicators or other indicators. Simultaneously, StereoMM can 298 

assist in identifying significant genes and putative targets related to the initiation and 299 

progression of tumors. 300 

StereoMM dissects breast cancer heterogeneity and identifies potential prognostic factors 301 

To assess the capability and compatibility of StereoMM, we applied StereoMM to an open-302 

access dataset generated from the fresh frozen invasive ductal carcinoma breast tissue using 303 

the 10x Visium spatial platform. For this dataset，StereoMM not only revealed the clear 304 

clustering structure which was consistent with the manual annotation, but also specifically 305 

identified tumor boundary area as a separate domain (Figure 5a-b). Next, we increased the 306 

number of clusters to validate the robustness of StereoMM, and successfully distinguishing 307 
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separate tumor boundary regions, DCIS/LCIS regions, as well as the smallest IDC region 308 

(Figure 5c).  309 

To further investigate the intricate tumor microenvironment and explore the biological 310 

characteristics within different spatial compartments, we performed a correlation analysis 311 

between the domains identified by StereoMM (domains=12), and discovered the tumor area 312 

was divided into two parts which was not completely consistent of histological phenotype 313 

(Figure 5d-e). We first focused on comparing intratumoral transcriptional differences between 314 

tumor1 (including domain1 and 4) and tumor2 (including domain 0,3,9 and 10) by performing 315 

differential expression analysis followed by gene set enrichment analysis (GSEA). We detected 316 

significant DEGs (|log fold change| ≥0.25; p-value < 0.05) between tumor 1 and 2 (Figure 5f). 317 

In tumor1, (Figure 5f) ‘E2F_TARGETS’, ‘G2M_CHECKPOINT’ and 318 

‘EPITHELIAL_MESENCHYMAL_TRANSITION’ pathway were upregulated, 319 

while ’INTERFERON_GAMMA_RESPONSE’, ’ESTROGEN_RESPONSE_LATE’ and 320 

‘ESTROGEN_RESPONSE_EARLY’ were downregulated (Figure 5g). These pathways can 321 

interact with each other and are associated with the prognosis and treatment response of breast 322 

cancer[28, 29].  323 

To specifically assess the heterogeneity between tumor1 and tumor2, we next performed 324 

copy number variation (CNV) analysis and differentiation analysis using inferCNV and 325 

CytoTRACE respectively (Figure 5h), and described the different EMT tumor states based on 326 

the expression of E-cadherin (E-cad) and vimentin (VIM). As expected, tumor1 displayed a 327 

distinctively higher inferCNV score（t-test, p-value = 6.44e-12）and CytoTRACE score (t-328 

test, p-value = 5.69e-236), indicating the heterogeneity of tumor proliferation and malignancy. 329 

Then we investigated the expression of EMT markers (Figure 5i), including epithelial 330 

molecules (E-Cadherin and EPCAM), mesenchymal markers (VIM) and transcription factors 331 

associated with EMT (ZEB1, TWIST1 and TWIST2). Next, we annotated tumor epithelial cell 332 

by deconvolution and cell2location (Supplementary Figure 6a), and then defined distinct 333 

EMT cell state ranging from epithelial (E-cad+ VIM-), hybrid EMT (E-cad+ VIM+) and 334 

mesenchymal (E-cad- VIM+)[30, 31] (Figure 5j). We observed tumor1 increased the 335 

proportion of the hybrid EMT and decreased the proportion of epithelial, indicating the 336 

possibility of infiltration and metastasis. On the other hand, GSEA results displayed different 337 

estrogen response across regions (Figure 5k), which is relevant to the published clinical 338 

information of the sample (ER+PR-HER2+). Meanwhile, we observed upregulation of 339 

SEMA3B and TFF1 in tumor2 (Figure 5l), which tend to exhibit tumor suppressor function 340 
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and are reported as potential biomarkers in breast cancer (BC) before. We also validated the 341 

function of SEMA3B and TFF1 using survival data from TCGA cohort of 333 HER2+ BC 342 

patients (Figure 5m), suggesting the prognosis value of SEMA3B and TFF1. 343 

Another interesting finding is that in the correlation analysis with 12 cluster, domain11 344 

initially labelled as IDC was clustered with healthy tissue. The DEG and GSEA results indicate 345 

upregulated oncogenic pathways, immune-related pathways, and B-cell markers in this domain 346 

(Supplementary Figure 6b-c), suggesting the potential presence of tertiary lymphoid 347 

structures. This is consistent with previous studies[32] (Supplementary Figure 6d). 348 

In summary, analysis of StereoMM clusters revealed regional and biological differences 349 

reflecting tumor progression and raised the hypothesis that heterogeneity of proliferation and 350 

differentiation states result the distinct capability of metastasis and resistance to therapy across 351 

histologic subtypes. 352 

 353 

Conclusion and Discussion  354 

The amalgamation of histopathology with high-throughput sequencing to inform oncologic 355 

treatment strategies is in its infancy. Spatial omics has emerged as a powerful tool in precision 356 

medicine, outperforming established metrics such as tumor mutational burden in predicting 357 

responses to PD1/PD-L1 therapies in a pivotal clinical trial[1]. Nevertheless, the utility of 358 

spatial transcriptomic data is constrained by limitations such as low total transcriptions per cell, 359 

significant data noise, and a high frequency of zero values, necessitating the integration of 360 

additional modal data for a comprehensive analysis[2-4]. Thus, the innovation of effective 361 

modal fusion methodologies is imperative. 362 

Several algorithms have been designed to integrate information from MM of the ST data. 363 

stLearn is a widely used spatial transcriptomics analysis tool. However, it does not perform 364 

appropriate weighting when normalizing using histological images with spatial location. 365 

spaGCN utilizes graph convolutional neural networks (GCN) to model spatial relationships[33]. 366 

While, it has limited capabilities in feature extraction because it simply utilizes the pixel values 367 

of the three channels of the image and ignores the high-level features of morphology. Software 368 

such as MUSE[34] and SEDR employ architectures underpinned by autoencoders to learn a 369 

low-dimensional representation of multimodal data, but such integration relies entirely on 370 

neural networks and lacks interpretability. While these methods have yielded numerous 371 
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intriguing findings, they may be limited in their flexibility, generality, and the interpretability 372 

of model decisions. These limitations can hinder their application in real-world projects. 373 

Our study introduces StereoMM, a deep learning approach that integrates multimodal 374 

data—including high-content H&E images, spatial information, and gene expression—to 375 

comprehensively identify tumor subpopulations, significantly advancing beyond conventional 376 

methods by considering both histological and cellular interactions within tissue samples. 377 

StereoMM employs an attention mechanism for deep interaction between modalities, followed 378 

by the aggregation of multimodal features from adjacent tissues using a graph convolutional 379 

network. This methodology affords StereoMM with exceptional adaptability and 380 

computational efficiency. The utility of the attention module in mediating information 381 

exchange has been substantiated through ablation studies and similarity assessments. By 382 

adjusting various parameters, we have demonstrated the robustness of our model, which does 383 

not preclude users from fine-tuning based on their understanding of the data. For instance, 384 

tissues with lower inter-regional similarity may benefit from a smaller k-nearest neighbours 385 

parameter or fewer graph convolutional layers. Such customization can yield results with 386 

greater biological relevance across diverse datasets. 387 

StereoMM has been validated on tumor datasets from Stereo-seq and 10X Visium, 388 

exhibiting superior performance in spatial contour identification. Comparative analyses with 389 

manual annotations have revealed spatial domains that more accurately reflect the ground 390 

truths, and congruence with cell subtype marker genes has indicated subpopulation 391 

compositions that correlate with biological functions. The intricate spatial architecture of tumor 392 

tissues necessitates a detailed analysis of the spatial microenvironment, which is crucial for 393 

comprehending tumor biology, unravelling mechanisms of oncogenesis, and identifying 394 

therapeutic targets. The refined subpopulations discerned through StereoMM, in conjunction 395 

with multimodal data, appear to capture significant biological variations, including genes 396 

implicated in tumor progression and intratumoral heterogeneity. 397 

At present, StereoMM has been applied to spatial transcriptomic analyses using binning 398 

or meshing methods. While the modeling framework of StereoMM is theoretically applicable 399 

to other spatial transcriptomics platforms, the rapid evolution of ST technology presents new 400 

measurement techniques[5, 6], expanded data volumes, and progress in additional 401 

modalities[7]. Consequently, the development of novel methods to exploit the expanding 402 

spatial transcriptomic data represents a considerable challenge. The scalability of the model 403 

can be enhanced through strategies such as subgraph sampling and parallel training. Moreover, 404 

the incorporation of non-aligned modal data from beyond spatial transcriptomics could bolster 405 
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our capacity to analyse and interpret tissue heterogeneity. Future investigations will explore 406 

these potential enhancements to further refine the functionality of StereoMM. 407 

In summary, StereoMM is an innovative and promising approach utilizing attention 408 

mechanisms and graph autoencoders for the analysis of spatial transcriptomic data. It facilitates 409 

modality fusion through self-supervised learning in the absence of annotations. Poised to 410 

capitalize on forthcoming advancements in measurement technologies, StereoMM holds the 411 

potential to significantly improve precision oncology practices in the context of therapeutic 412 

decision-making. 413 
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 542 

 543 

Figure 1. Fundamentals of Multimodal Fusion Design.  544 

a. Hierarchical stratification of biomedical data. b. Integration of aligned and non-aligned 545 

datasets. c. Application scenarios for multimodal data integration. d. Mechanistic insights via 546 

multimodal data exploration. 547 

 548 
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 549 

Figure 2. Schematic overview of StereoMM.  550 

a. Workflow for Stereo-seq experimental analysis. Created with BioRender.com. b. Data 551 

output formats from spatial transcriptomics. c. The overall framework of StereoMM. It requires 552 

three inputs: spatial coordinates, gene expression matrix, and image patches. Through the 553 

attention module and VGAE module, it generates low-dimensional a latent representation 554 
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which can be used for downstream tasks. d. The cross-attention module in StereoMM captures 555 

relationships between different modalities by attending to relevant information from one 556 

modality based on another. In this module, each individual modality generates its own set of 557 

queries (Q), keys (K), and values (V). The Q from one modality is used to query the K and V 558 

from another modality. e. The VGAE module in StereoMM aggregates spatial information and 559 

each modality feature, and reduces the dimensionality of the original features through the 560 

encoder to obtain the final latent representation. 561 

 562 

Figure3. System parameter evaluation of StereoMM.  563 

a. The corresponding anatomical Allen Mouse Brain Atlas (https://atlas.brain-map.org/). b. 564 

Spatial domains identified by StereoMM. The black box denotes the cerebellar cortex and 565 

subthalamic nucleus. c. Spatial domains identified by StereoMM without attention module. d. 566 

The correlation between attention-enhanced features and final latent representations. On the 567 
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top: the results on mouse brain slide, on the below: the results on slide3 of lung cancer. e. The 568 

features before and after the attention module are used to identify the spatial domain. f. The 569 

spatial domain recognized after manually setting the modality weight parameters. g. Boxplots 570 

of ARI and NMI values for three GNN types, each evaluated on 4 lung cancer slides. The center 571 

line, box lines, and whiskers of the boxplot represent the median, upper and lower quartiles, 572 

and 1.5× interquartile range, respectively. h. Boxplots of ARI, NMI and LISI values for 573 

different number of nodes per layer, each type evaluated on 4 lung cancer slides. i. Running 574 

time of 5 algorithms (StereoMM, stLearn, SEDR, MUSE, spaGCN) on all 4 lung cancer slices. 575 

The height of the histogram represents the average running time, and the whiskers represents 576 

the variance. 577 

 578 
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 579 

Figure4. StereoMM improves recognition performance of human lung adenocarcinoma 580 

pathological regions.  581 

a. Manual annotation by pathologist. Area circled by red marker showed AC phenotype, blue 582 

displayed SCC phenotype. Green enclosed area presented mixed AC and SCC phenotypes. b. 583 

Manual annotation and the spatial domain identified by all algorithms on slice 4. c. Boxplot of 584 
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LISI scores for seven methods in all 4 lung cancer slices. The center line, box lines, and 585 

whiskers of the boxplot represent the median, upper and lower quartiles, and 1.5× interquartile 586 

range, respectively. d. Boxplot of the cluster external evaluation index for seven methods in all 587 

4 slices. e. UMAP visualizations of transcriptome and latent representation generated by 588 

StereoMM. f. Automated subtype annotation results from single transcriptome and StereoMM 589 

clustering. g. Spatial co-localization analysis of subtype annotations with corresponding marker genes. 590 

h. Heatmap of correlation between WGCNA gene modules and subtypes identified by StereoMM. i. 591 

GO functional enrichment results for Module 6. j. Circular visualization of genes within GO-enriched 592 

pathways. k. Protein-protein interaction network of hub genes. l. Correlation of genes within PPI 593 

clusters with prognosis. 594 

 595 

 596 
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Figure5: StereoMM dissects breast cancer heterogeneity.  597 

a. Manual pathological annotation based on hematoxylin and eosin staining of human breast 598 

cancer data. IDC, invasive ductal carcinoma; DCIS, ductal carcinoma in situ; LCIS, lobular 599 

carcinoma in situ; tumor edge; healthy region. b. Spatial domains identified by StereoMM (left) 600 

and each single modality (middle: single transcriptome; right: single morphology). c. Spatial 601 

domains identified by StereoMM with 20 clusters. d. Heatmap of pearson correlation 602 

coefficient between domains (domains= 12). e. Volcano plot visualization of DEGs between 603 

tumor1 and tumor2. f. GSEA showed related pathways enriched in different tumor subtypes 604 

(tumor1 and tumor2). g. CNV scores and differentiation calculated by CytoTRACE for 605 

different tumor subtypes. On the left: visualization of spatial location of CNV scores. On top 606 

right: CytoTRACE scores for different tumor subtypes. On bottom right: CNV scores for 607 

different tumor subtypes. h. Spatial location of the expression of EMT-related marker genes. i. 608 

Proportion of EMT status in different tumor subtypes. j. Potential gene regulatory network of 609 

estrogen response pathway (early and late). k. Expression levels of genes shared by estrogen 610 

response pathways (SEMA3B and TFF1) in different tumor subtypes. l. Survival curves of 611 

SEMA3B and TFF1 genes in TCGA breast cancer database. 612 
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