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Abstract  

Photosymbiosis indicates a long-term association between animals and photosynthetic organisms. It 

has been mainly investigated in photosymbiotic cnidarians, while other photosymbiotic associations 

have been largely neglected. The acoel Symsagittifera roscoffensis lives in obligatory symbiosis 

with the microalgal Tetraselmis convolutae and has recently emerged as alternative model to study 

photosymbiosis. Here, we investigated the effects of Bisphenol A, a common plastic additive, on 

two pivotal stages of its lifecycle: aposymbiotic juvenile development and photosymbiogenesis. 

Based on our results, this pollutant altered the development of the worms and their capacity to 

engulf algae from the environment at concentrations higher than the levels detected in seawater, yet 

aligning with those documented in sediments of populated areas. Data provide novel information 

about the effects of pollutants on photosymbiotic associations and prompt the necessity to monitor 

their concentrations in marine environmental matrices.  
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1. Introduction 

Photosymbiosis is a widespread phenomenon observed in multiple animal phyla, including sponges, 

cnidarians, acoelomorphs, platyhelminths, mollusks, ascidians, and even vertebrates (Melo Clavijo 

et al., 2018; Venn et al., 2008). The term is used to indicate a long-term association between a 

heterotrophic organism and a phototrophic one (Cowen, 1988; Yonge, 1934). The symbioses 

between animals and algae are the results of a precise balance involving different physiological and 

environmental factors, and are thus particularly susceptible to anthropogenic stressors. The peculiar 

nature of this relationship has boosted many scientific investigations, most of which have focused 

on the effects of environmental perturbations and pollutants on corals and their Symbiodinium 

symbionts (Bielmyer et al., 2010; Kuzminov et al., 2013; Marzonie et al., 2021; van Dam et al., 

2015; Venn et al., 2008). It has been reported that some compounds can trigger bleaching events, 

i.e. the loss of algae from the symbiosis. Cnidarians can lose their symbionts when exposed to 

several pollutants, such as heavy metals and herbicides (Bielmyer et al., 2010; Kuzminov et al., 

2013; Marzonie et al., 2021), and additive effects from chemicals and environmental stressors have 

been also demonstrated, (van Dam et al., 2015). Similar studies are instead rare for other 

photosymbiotic associations, which however play a key role in many marine ecosystems (Erwin and 

Thacker, 2007; Not et al., 2016; Venn et al., 2008). Furthermore, most research has studied the 

effects of stressors on bleaching processes, while their impact on the development of aposymbiotic 

embryos as well as on the onset of photosymbiosis have been largely neglected probably due to 

difficulties in the experimental design with common cnidarian models. Indeed, controlling life cycle 

in captivity offers a valuable access to any developmental stages along the species lifespan. For 

photosymbiosis, this additionally implies to cultivate the photosynthetic partner for inducing the 

photosymbiosis when the juvenile is aposymbiotic i.e. when there is no vertical transfer of the 

symbiont.  

In the last decade, the photosymbiotic acoel (phylum xenacoelomorpha) Symsagittifera roscoffensis 

and its algal symbionts Tetraselmis convolutae have emerged as alternative biological system in 

photosymbiosis research (Arboleda et al., 2018; Bailly et al., 2014). S. roscoffensis is a marine acoel 

belonging to the Saggitiferidae family that lives in obligatory symbiosis with the green microalgal 

chlorophyte T. convolutae. S. roscoffensis is a gregarious species forming large populations on 

sandy shores of the North Atlantic coasts (Bailly et al., 2014). During the breeding season, 

hermaphroditic gravid adults deposit embryos inside mucilaginous protective capsules called 

cocoons. Embryogenesis lasts about 4-5 days and results into colourless aposymbiotic juveniles. 

The symbiont transmission is strictly horizontal; hatching juveniles ingest environmental free 

microalgae within the first days and keep them for their lifetime. Algae are internalized into 
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vacuoles in the digestive syncytium where they lose their cell wall, flagella and eyespot, thus deeply 

changing their phenotype. Microalgae proliferate so that adult worms finally host around 120,000 

algae, forming a dense layer underneath the body wall and giving a green colour to the animals. 

Adult worms do not eat any food and depend entirely on organic supply from microalgal 

photosynthetic products (no mixtrophy regime has been to date demonstrated). Despite very few 

data on the trophic relationship, T. convolutae uses the uric acid, a nitrogen waste product produced 

by the worm, as an endogenous nitrogen source (Bailly et al., 2014; Boyle and Smith, 1975; 

Doonan and Gooday, 1982; Douglas, 1983).  

The handiness of these organisms, together with the optimized laboratory conditions and the 

recently provided genomic resources have made this species an excellent model to design functional 

exploration experiments and investigating many biological questions (Bailly et al., 2014; Martinez 

et al., 2022). In this work, we used the S. roscoffensis/T. convolutae association to study the effects 

of the common plastic additive, Bisphenol A (BPA), on embryogenesis and photosymbiogenesis. 

BPA is one of the chemicals with the highest annual production; in 2021 it reached 11 million tons 

worldwide and its global demand is expected to increase significantly in the future (Devi et al., 

2023). Thus, BPA is continuously released in the environment and, despite its short half-life, it is 

considered as a pseudo-persistent chemical (Flint et al., 2012). BPA is, indeed, one of the most 

common plastic additives recovered in the marine environment. It is generally mixed with plastic 

polymers during the manufacturing processes (Hermabessiere et al., 2017), but it can easily migrate 

from plastic products to the medium in contact with it (Brede et al., 2003; Geens et al., 2010; 

Hahladakis et al., 2018). This chemical reaches the marine environment through different routes, 

including wastewater, river transport or leachate from plastic items, and they accumulate differently 

in marine compartments (Hermabessiere et al., 2017; Li et al., 2024). In seawaters, BPA has been 

generally detected in traces (ng/l) but it could reach higher concentrations (µg/l) in polluted areas, 

such as Singapore coastal water (Basheer et al., 2004; Corrales et al., 2015; Hermabessiere et al., 

2017). The occurrence of this chemical in sediments and biota is source of concern as well: due to 

its hydrophobic properties, BPA may accumulate in these environmental matrices, reaching 

warning concentrations at local scale (Flint et al., 2012; Gao et al., 2023; Hermabessiere et al., 

2017; Xu et al., 2015). Adverse effects of BPA have been reported in different marine species and 

include impairment of animal development and reproductive processes. For examples, BPA 

exposure affected sexual dimorphism in the marine medaka Oryzias melastigma (Yamamoto et al., 

2023) and induced expression of the vitellogenin-like protein and spawning event in the mussel 

Mytilus edulis (Aarab et al., 2006). During invertebrate development, effects include cleavage 

arrest, embryonic malformations, such as neural defects, and metamorphosis inhibition (Mansueto 
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et al., 2011; Mercurio et al., 2022; Messinetti et al., 2019, 2018; Miglioli et al., 2021; Zhou et al., 

2011).  

 

Here, we took advantages from the unconventional photosymbiotic model S. roscoffensis to 

investigate the still unexplored impact of this widespread contaminant on two important biological 

processes: the development of marine aposymbiotic embryos and the onset of photosymbiosis in 

order to evaluate BPA possible interference with these complex processes.  

 

2. Materials and methods 

2.1 Animals 

Adults of S. roscoffensis were collected at low tide from shores near Roscoff (NW France) in late 

October. They were immediately transferred in incubators and maintained in filtered seawater 

(FSW) at 14 ± 1°C with a photoperiod set at 10 h:14 h (light:dark). After about 48 hours, gravid 

specimens naturally spawn: cocoons were immediately collected and kept in FSW in dark 

conditions, to be used in the following experiments. T. convolutae culture was obtained from the 

Roscoff Culture Collection. 

2.2 Embryo exposures 

S. roscoffensis embryos within their cocoons at early cleavage stages (2-cell and 4-cell stage) were 

collected under a stereomicroscope and exposed to increasing concentrations of BPA (0.05, 0.1, 0.5, 

1, 5, 10, µM). BPA (MW = 228.29) was purchased from Sigma (Milan, Italy). A stock solution of 

100 mM BPA was prepared dissolving 22.8 mg of powder in 1 ml of dimethyl sulfoxide (DMSO). 

Tested concentrations were obtained by scale dilutions in FSW and half of the exposure volume 

was renewed with freshly prepared solutions every day. BPA exposure levels were defined based on 

published works (Hermabessiere et al., 2017; Mercurio et al., 2022; Messinetti et al., 2019, 2018; 

Miglioli et al., 2021) and preliminary trials. Two control groups were set up: CO embryos were 

reared in FSW and DMSO animals were maintained in FSW with 0.01% DMSO, in order to verify 

possible solvent effects. All exposures were performed in triplicates at 14 ± 1°C in glass Petri 

dishes and lasted 5 days, i.e. when aposymbiotic juveniles hatched from their cocoons. At the end of 

the experiments, samples were observed under a stereomicroscope to score the number of free-

swimming individuals, unhatched individuals still inside their cocoons (showing a delay of 

development) and dead embryos. Then, embryos were relaxed in a solution of 7% MgCl2 in FSW 

for 10 minutes and fixed for 1 h at room temperature in a solution of 4% paraformaldehyde, 0.5 M 

NaCl and 0.1 M 3-(N-morpholino)propanesulfonic acid (MOPS fixative; pH 7.5). After several 
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rinsing in Phosphate Buffered Saline (PBS) with 0.1% Tween-20 (PBT), samples were 

photographed under a Leica optical microscope and then dehydrated and stored in 70% ethanol at -

20°C.  

2.3 In situ hybridization 

The effects of BPA on the development of the nervous system were analyzed performing in situ 

hybridization experiments with a commercial DIG-labelled Locked Nucleic Acid probe (LNA; 

Exiqon, Norway) against the neuro-specific microRNA miR-124. The sequence of the LNA probe 

(5'-TTGGCATTCACCGCGTGCCTTA -3') was designed complementary to the S. roscoffensis 

miR-124 sequence previously reported (Sempere et al., 2007). A protocol of whole mount in situ 

hybridization with LNA probes was specifically optimized modifying those used for other marine 

invertebrates (Mercurio et al., 2020, 2019a, 2019b). Briefly, samples fixed in MOPS fixative were 

rinsed several times in PBT and hybridized with LNA probe at 55°C in 50% formamide, 5x SSC, 

100 μg/ml yeast RNA; 50 μg/ml Heparin; 0.1% Tween-20 for 5 days. To eliminate the probe 

excess, samples were washed several times in a solution of 50% formamide, 5x SSC, 0.1 Tween-20 

at 55°C and then rinsed in PBT at room temperature. Samples were pre-incubated for 2 h in 

blocking solution (25% deactivated goat serum in PBT) and incubated overnight at 4°C in blocking 

solution with anti-DIG antibody conjugated to alkaline phosphatase (Roche Diagnostics, Germany; 

1:2000). After several washes in PBT, staining reaction was carried out in alkaline 

phosphataselabeled buffer (100 mM NaCl, 100 mM Tris HCl, pH 9.5, 50 mM MgCl2, 0.1% 

Tween�20) + 2.3 μl/ml 4�Nitrotetrazolium Blue chloride and 3.5 μl/ml 

5�Bromo�4�chloro�3�indolyl phosphate p�toluidine salt in dark conditions at room 

temperature. When a satisfactory signal was developed, the reaction was stopped by rinsing the 

samples in PBT and fixing them in MOPS fixative for 1 h. Finally, hybridized juveniles were 

mounted in 80% glycerol and photographed under an optical microscope equipped with Leica 

DFC�320 Camera.  

2.4 Co-exposures of algae and juveniles 

To investigate BPA impact on photosymbiogenesis, we co-exposed T. convolutae microalgae and 

aposymbiotic juveniles of S. roscoffensis to BPA tested concentrations (controls, 0.05, 0.1, 0.5, 1, 5, 

10, µM BPA). To mimic an environmental scenario, algae and juveniles were separately exposed to 

BPA for 12 hours prior to mix them in the same exposure solution. Algal pre-treatment involved 

mixing 5 ml of a dense T. convolutae culture with an equal volume of a solution containing BPA 

concentration twice that of the exposure level. Similarly, 3 ml of FSW containing aposymbiotic 

juveniles were mixed with an equal volume of 2x concentrated solution of BPA to obtain the final 
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tested solution. Then, co-exposures were carried out added BPA pre-treated juveniles to their 

corresponding BPA-treated algae culture. Experiments lasted 72 h and were performed in 

triplicates. S. roscoffensis juveniles were then washed in FSW, fixed in MOPS fixative for 1 h at 

room temperature and stored at 4°C.  

2.5 Evaluation of symbiogenesis  

The effects of algae and juvenile co-exposure to BPA were determined by counting the number of 

algae that were recruited by each treated juvenile. Exposed juveniles were mounted in 80% glycerol 

and observed under a fluorescence microscope equipped with red filter, i.e. transmitting light with a 

wavelength between 550–700 nm. Taking advantage of the endogenous autofluorescence produced 

by the chlorophyll (Fricker and White, 1992; Yentsch and Menzel, 1963; Zhang et al., 2010) we 

could easily count algae internalized by each S. roscoffensis juvenile and annotate algae 

number/sample for each experimental group. 

2.6 Statistical analysis 

All the analyses were performed in the R 3.6.3 environment (R Core Team, 2019). Analysis of 

variance (ANOVA), followed by honestly significant difference Tukey's post hoc test, was 

performed to assess the effect of BPA on embryonic development as previously reported (Mercurio 

et al., 2021). We used generalized mixed models (GLMM) to assess the relationship between BPA 

concentration and the number of symbionts, while taking into account potential differences between 

experimental trials. Models were run in the glmmTMB package using a negative binomial error 

distribution to take into account overdispersion of counts across individuals within treatment 

(Brooks et al., 2017). Tukey’s post-hocs were then run using the multcomp package to identify 

differences between treatments (Hothorn et al., 2008). Binomial generalized linear models with 

probit link function (GLM) was used to assess the impact of different concentrations of BPA on 1) 

mortality rate of embryos and 2) the proportion of embryos with malformations within alive 

embryos,. Due to overdispersion, for GLMs we used a quasibinomial error and calculated 

significance using a F test (Venables and Ripley, 2002). On the basis of GLMs, we calculated LC50 

(median lethal concentration) – EC50 (median effective concentration) i.e. the concentration of PBA 

that determines 50% mortality / 50% of embryos with developmental alterations.  

 

3. Results 

3.1 Embryogenesis 
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BPA effects on the embryogenesis of S. roscoffensis were evaluated by comparing the morphology 

and the percentages of swimming juveniles, unhatched embryos, which were still inside their 

cocoons after the exposure period, and dead samples among the experimental groups.  

Most of controls and solvent control juveniles (DMSO) regularly hatched 5 days post cocoon laying 

(CO: 94.7%; DMSO: 97.9%; Table 1). They displayed an elongated shape with a broad anterior 

extremity and a narrow posterior one (Fig. 1 A and B). The anterior sensory organ, the statocyst, 

was well-developed and samples moved actively crawling on the bottom of the petri dishes. From 1 

μM BPA, the incidence of unhatched embryos significantly increased compared to controls: 37.5% 

of the exposed embryos remained inside their cocoons at the end of the exposure period (Tukey 

HSD Post-hoc Test; BPA vs CO and vs DMSO: P<0.001; Fig. 1 F; Table 1). Although these 

embryos within their cocoons exhibited movements, they showed developmental delayed or were 

incapable of hatching. Compared to the control elongated phenotype, most of them showed a 

rounded morphology as body elongation had not occurred yet. Hatched juveniles were similar to 

controls and normally crawled on the substrate. At 5 μM BPA, more than 95% of embryos were 

still inside their cocoons (Tukey HSD Post-hoc Test; 5 μM BPA vs CO/DMSO: P<0.001; Fig. 1 G; 

Table 1). The embryos were roundish and the two body extremities were not distinguishable (Fig. 1 

F). Statocysts were not always recognizable. The highest tested concentration, 10 μM BPA, resulted 

lethal for the totality of the exposed samples (Tukey HSD Post-hoc Test; 10 μM BPA vs 

CO/DMSO: P<0.001; Fig. 1 G, Table 1) and developmental disruption occurred early during 

embryogenesis as dead embryos were already observable after 24 h of exposure. Probit analysis 

(Fig. 1 H) confirmed these results: LC50 was 6.31 μM (95% CI for the coefficient estimate: 0.318-

3.950; F1,19 = 7.18, P = 0.015) and EC50 was 1.28 μM (95% CI for the coefficient estimate: 0.382-

3.192; F1,16= 8.27, P = 0.011). BPA teratogenic index (TI = LC50/EC50) was 4.93. 

3.2 Neural development 

The effects of BPA exposure on the development of nervous system were investigated by analyzing 

the expression of miR-124, a pan-neuronal microRNA (Fig. 2). In control juveniles, miR-124 

expression was detected in the central nervous system, in the neuropile surrounding the statocyst 

(Fig. 2 A). Similar expression was observed in juveniles exposed to low concentrations of BPA (up 

to 1 μM BPA; Fig. 2 B and C). Conversely, miR-124 was not detectable in samples exposed to 5 

μM BPA (Fig. 2 D). 

3.3 Photosymbiogenesis  

S. roscoffensis aposymbiotic juveniles and T. convolutae algae were co-exposed to increasing 

concentrations of BPA to assess its effects on the onset of photosymbiosis. The number of 
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microalgal photosymbionts showed a very strong decrease at growing BPA concentrations (GLMM 

with negative binomial models: χ2
6 = 316.1, P < 0.0001; Fig. 3). The number of symbionts 

remained roughly constant (average: 9-11 symbionts per individual) at concentrations up to 1 μM 

(Fig. 3 A and B), with no significant changes compared to controls (Tuckey’s post-hoc: P > 0.5 for 

all pairwise comparisons; Fig. 3 E). At 5 μM (Fig. 3 C), the average number of algae dropped at 

1.3, with a significant decrease compared to both the control and all the lower tested concentrations 

(Tuckey’s post-hoc: all P < 0.001; Fig. 3 E). The average number of algal symbionts further 

dropped at 10 μM (average: 0.5 symbionts / individual; Fig. 3 D), with a significant decrease 

compared to 5 μM (P = 0.01) and to all the previous concentrations (all P < 0.001; Fig. 3 E). 

 

4. Discussion 

In the present work, we exploited the emerging photosymbiotic model organism S. roscoffensis to 

study the effects of BPA, a common marine pollutant (Corrales et al., 2015; Flint et al., 2012; 

Hermabessiere et al., 2017), on its embryonic development and photosymbiogenesis, revealing that 

this chemical can disrupt both processes. 

BPA induced developmental delay and alterations starting from less than 1 μM (22.800 ng/L) (EC50 

was 1.28 μM). Similarly, its effects on development, reproduction, settlement and metamorphosis in 

3 coral reef photosymbiotic invertebrates, Stylophora pistillata, Millepora dichotoma, and Rhytisma 

fulvum, have been demonstrated to be limited at environmentally relevant concentrations (Vered 

and Shenkar, 2022). However, these concentrations are higher than the levels detected in seawater, 

yet aligning with those documented in sediments of populated areas (Corrales et al., 2015; 

Hermabessiere et al., 2017). Sediments are the environmental matrix with the highest concentration 

of BPA (Torres-García et al., 2022) where concentration as high as 270 ng/g dw have been reported 

(Dan Liu et al., 2017). S. roscoffensis is a benthic invertebrate which lives in close association with 

the sandy substrate (Bailly et al., 2014), and thus could experience high level of hydrophobic 

pollutants, such as BPA, which accumulate in this environmental compartment. This result is 

particularly concerning as this photosymbiotic acoel has an important ecological role. S. 

roscoffensis has a highly efficient photosynthetic ability and its large populations of the intertidal 

zone can generate a primary production close to those reported for coral reefs (Androuin et al., 

2020; Thomas et al., 2023). Moreover, this species has been proposed as a possible natural 

bioremediator as it shows high nitrate assimilation rates, and it can thus act as an important in situ 

nitrate recycler in polluted marine environments (Carvalho et al., 2013).  

At the high tested concentrations (from 5 µM), BPA affects worm morphology as most juveniles 

appeared roundish and statocysts were not always recognizable. Moreover, thanks to a newly 
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optimized protocol for whole mount in situ hybridization, we reported for the first time the 

expression of the pan-neural miRNA, miR-124, in acoels and demonstrated that BPA disrupts 

neural development in S. roscoffensis. Similar effects have been already documented in other 

marine invertebrates. In the ascidians Ciona robusta and Phallusia mammillata, BPA, at 

concentrations higher than 5 µM, impaired sensory organ formation and central nervous system 

development (Messinetti et al., 2019, 2018). It interfered with the differentiation of GABAergic and 

dopaminergic neurons in C. robusta (Messinetti et al., 2019) while serotoninergic system was the 

main neural target in the mussel Mytilus galloprovincialis (Miglioli et al., 2021). However, EC50 

and LC50 are highly variable among marine organisms: in C. intestinalis and C. robusta, BPA EC50 

resulted 8.25 μM (1.88 mg/l) and 7.04 μM (1.6 mg/l) while BPA LC50 was 13.42 μM (3.06 mg/l) 

and 9.36 μM (2.13 mg/l) respectively (Mercurio et al., 2022); LC50 was 107.2 mg/l for the 

zooplanktonic grazer Artemia salina, 11.5 mg/l for the snail Heleobia australis, and 3.5 mg/l for the 

fish Poecilia vivipara (Naveira et al., 2021b). Comparing to these data, S. roscoffensis appeared 

more sensitive to BPA than many other animals: EC50 was 1.28 μM (0.29 mg/l) and LC50 was 6.31 

μM (1.4 mg/l). 

The onset of photosymbiosis was affected by BPA exposure as well: growing BPA concentrations 

induced a drastic decrease in algal content in aposymbiotic juveniles, suggesting that the chemical 

interfered with some of the mechanisms involved in the photosymbiogenesis. The bleaching 

phenomenon has been extensively investigated in coral and their symbionts (Bielmyer et al., 2010; 

Kuzminov et al., 2013; Marzonie et al., 2021; van Dam et al., 2015; Venn et al., 2008), in which 

loss of algae can be triggered by different pollutants, such as heavy metal and herbicides (Bielmyer 

et al., 2010; Kuzminov et al., 2013; Marzonie et al., 2021). On the contrary, the mechanisms 

involved in photosymbiogenesis are mostly unexplored. Thanks to S. roscoffensis / T. convolutae 

biological system and its optimized experimental conditions (Bailly et al., 2014), we explored for 

the first time BPA interference with the onset of photosymbiotic interaction. Data related to EC50 

and LC50 indicate that Tetraselmis sp. algae well-tolerate a wide range of BPA concentrations 

(Naveira et al., 2021a), while our Probit results suggested that S. roscoffensis acoels are sensitive to 

the contaminant (EC50=1.28 μM; LC50=6.31 μM). We could thus hypothesize that BPA effects on 

photosymbiogenesis were mainly determined by disruptions in the interaction mechanisms exerted 

by the worms, but the current lack of information about cues controlling symbiotic interactions 

prevents any more specific considerations.  

As these concentrations are higher than the average environmental ones, this result appeared quite 

comforting, but more awareness is necessary. In fact, concentrations of the same magnitude of EC50 

of S. roscoffensis have already been reported in both surface water and groundwater (25,000 and 
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30,000 ng/L BPA respectively) in the Santa Catarina River, Mexico (Cruz-López et al., 2020) and 

in sludge from sewage treatment works (16300 ng/L BPA) in UK (Petrie et al., 2019). Moreover, 

marine animals are exposed simultaneously to a variety of pollutants, which may affect 

photosymbiosis at different levels and can cause mixture additive effects (Altenburger et al., 2003) 

and thus even at low concentrations might be able to disrupt this algal-animal relationship.  

Photosymbiotic associations are frequent in marine environment and involved a great variety of 

organisms, most of which plays a key ecological role (Decelle et al., 2015; Erwin and Thacker, 

2007; Not et al., 2016; Venn et al., 2008). However, so far experimental investigations have been 

mainly focused on photosymbiotic corals and anemones (cnidarian/dinoflagellate associations) due 

to their ecological importance for coral reef ecosystems (Bielmyer et al., 2010; Kuzminov et al., 

2013; Marzonie et al., 2021; Venn et al., 2008). Here, we exploited the alternative model S. 

roscoffensis to study BPA effects on two focal developmental stages of marine photosymbionts. 

Our results provided novel information about one of the most common pollutants (Corrales et al., 

2015; Flint et al., 2012; Hermabessiere et al., 2017), which can help shape effective science-driven 

policies for environmental management. Moreover, we provided new experimental tools to design 

functional experiments and investigate biological questions related to photosymbiosis and the 

molecular interactions involved in its onset. 
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Table 1 

 

 
Swimming 

juveniles (%) Unhatched embryos (%) Dead embryos (%) 

CO 94.7 ± 2.5 5.3 ± 2.5 0 ± 0 

DMSO 97.9 ± 1 2 ± 1 0 ± 0 

0.1 µM BPA 93.7 ± 5 1.6 ± 0.8 4.6 ± 4.6 

0.5 µM BPA 98.2 ± 0.9 1.8 ± 0.9 0 ± 0 

1 µM BPA 57 ± 11 37.5 ± 5.6 5.4 ± 5.4 

5 µM BPA 0 ± 0 95.24 ± 4.7 4.7 ± 4.7 

10 µM BPA 0 ± 0 0 ± 0 100 ± 0 

Table 1. Percentages of swimming juveniles, unhatched and dead embryos among the experimental 

groups. Values are expressed as means ± standard errors.  
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Figure 1. Effect of BPA exposure on the development of S. roscoffensis. A-F) Morphology of 
controls, CO (A) and DMSO (B) and of juveniles exposed to 0.1 µM (C), 0.5 µM (D), 1 µM (E) 
and 5 µM (F) BPA. Scale bar = 50 µm. G) Percentages of swimming, unhatched and dead juveniles 
exposed to BPA expressed as mean values and standard errors; differences from controls: the 
repetition of each symbol indicates the level of significance: *** p < 0.001. H) BPA dose-response 
curves for mortality and developmental alterations determined by probit analysis. Continuous blue 
line indicates the mortality/alteration rates predicted by models; black dots indicate the observed 
mortality/alteration rates in the different experimental replicates, shaded areas are 95% CIs. The 
vertical dotted lines indicate the LC50 and EC50 values. 
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Figure 2. Expression of miR-124 in S. roscoffensis juveniles exposed to different concentrations of 
BPA. A) DMSO; B) 0.5 µM BPA; C) 1 µM BPA; D) 5 µM BPA. Scale bar = 50 µm 
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Figure 3. Evaluation of BPA effects on the onset of photosymbiosis. A-C) Juveniles of S. 
roscoffensis juveniles (green) and T. convolutae algae (red) observed under a fluorescence 
microscope. Free-living algae attached on the outer surface of the animals are often visible. 
Controls exposed to 0.01% DMSO (A) and samples exposed to 1 µM BPA (B) displayed numerous 
internalized algae in their body (~20). In samples exposed to 5 µM (C) and 10 µM (D) algal 
symbionts were rare (<5). Scale bar = 50 µm. E) Variation in the average number of 
photosymbionts across BPA concentrations. Error bars are 95% confidence intervals, estimated on 
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the basis of generalized mixed models. *** indicate significant differences (P < 0.001) compared to 
the controls. 
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