

1 Protein interactions, calcium, phosphorylation, and cholesterol modulate CFTR cluster 2 formation on membranes

3

4 Yimei Wan^{1,2,§}, Rhea Hudson², Jordyn Smith^{2,*}, Julie D. Forman-Kay^{1,2,§}, Jonathon A.
5 Ditlev^{1,2,3,§}

6

7

8 ¹Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.

9 ²Program in Molecular Medicine, Hospital for Sick Children, Toronto, Canada.

10 ³Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.

11 #Current address: Yale School of Medicine, New Haven, CT, USA

12 *Current address: Department of Chemistry, Stanford University, Stanford, CA, USA

13 [§]Correspondence: forman@sickkids.ca; jonathon.ditlev@sickkids.ca

14 SIGNIFICANCE STATEMENT

15 Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) membrane
16 protein underlie cystic fibrosis. It is thought that molecular “hubs” of CFTR and its binding
17 partners co-regulate ion homeostasis and that disruption of these clusters can result in disease.
18 However, the physical basis for molecular hub formation is unclear. In this study, we present
19 evidence that multivalent protein and lipid interactions drive the formation of mesoscale
20 CFTR-containing clusters or “hubs” on model membranes in a manner consistent with
21 biological phase separation. These data provide important insights into physical mechanisms
22 that modulate CFTR membrane organization and offer a new lens for the development of
23 corrective therapeutics.

24

25 ABSTRACT

26 The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride channel
27 whose dysfunction leads to intracellular accumulation of chloride ions, dehydration of cell
28 surfaces, and subsequent damage to airway and ductal organs. Beyond its function as a chloride
29 channel, interactions between CFTR, ENaC, and SLC transporter family membrane proteins
30 and cytoplasmic proteins, including calmodulin and NHERF-1, co-regulate ion homeostasis.
31 CFTR has also been observed to form mesoscale membrane clusters. However, the biophysical
32 mechanisms that regulate the formation of CFTR clusters are unknown. Using a combination
33 of computational modeling and complex biochemical reconstitution assays, we demonstrate
34 that multivalent protein-protein interactions with CFTR binding partners, calcium, and
35 membrane cholesterol can induce CFTR cluster formation on model membranes.
36 Phosphorylation of the intracellular domains of CFTR also promotes cluster formation in the
37 absence of calcium, indicating that multiple mechanisms can regulate CFTR cluster formation.

38 Our findings reveal that coupling of multivalent protein and lipid interactions promote CFTR
39 cluster formation consistent with membrane-associated biological phase separation.

40

41 INTRODUCTION

42 The proper organization of receptors and channels on plasma membranes is essential for
43 cellular signaling pathway regulation and ion homeostasis [1,2]. Biomolecular condensates are
44 widely recognized for their ability to functionally organize the nucleoplasm, cytoplasm, and
45 membranes [3–7]. Phase separation driven by multivalent interactions between proteins and
46 nucleic acids can facilitate the formation of condensates [8,9]. Posttranslational modifications,
47 such as phosphorylation or glycosylation, are known to alter their formation, properties, and
48 functions [10–12]. Lipids in the membrane can also undergo phase separation into cholesterol-
49 rich or -depleted domains [13,14]. Many membrane-associated proteins that can undergo phase
50 separation are localized to cholesterol-rich regions [15,16], suggesting a link between protein
51 and lipid phase separation. Indeed, recent studies involving the T cell signaling protein, LAT,
52 and the B cell receptor demonstrated the importance of coupled lipid and protein phase
53 separation for the formation of functional protein clusters on membranes [17,18].

54 The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride
55 channel of the ATP-binding cassette (ABC) transporter superfamily that enables the movement
56 of chloride ions down their electrochemical gradient across the plasma membrane [19–23].
57 CFTR channel opening is regulated by ATP binding to the intracellular nucleotide binding
58 domains 1 and 2, and by phosphorylation of the ~200-residue regulatory (R) region, following
59 activation of the cAMP pathway [24–30]. The R region is an intrinsically disordered segment
60 of the cytoplasmic portion of CFTR that, along with the intrinsically disordered C-terminal
61 region, mediates numerous intra- and intermolecular interactions that regulate CFTR
62 localization on the plasma membrane and its function [31–34].

63 Beyond its function in chloride homeostasis, CFTR is a molecular “hub” that modulates
64 cellular ion homeostasis by co-localizing other ion transporters and channels, such as SLC26
65 family transporters and epithelium sodium channel (ENaC), and intracellular signaling proteins,
66 such as NHERF-1 and calmodulin, through multivalent interactions [32,35–37] (Figure 1).
67 Within these “hubs,” CFTR and its binding partners co-regulate one another. However, clearly
68 defining the mechanism(s) of co-regulation between CFTR and its binding partners is often
69 challenging due to their observed complexity. For instance, CFTR is inhibitory of ENaC in
70 most cells [36,38–41] but can activate ENaC in sweat ducts [42,43]. ENaC is generally
71 accepted to activate CFTR [44], although one study suggests an inhibitory role [45]. For
72 SLC26A3 and SLC26A6, the R region–STAS interaction is stimulatory for both CFTR and
73 SLC26 transporter activity [35]. Alternatively, SLC26A9 activates CFTR [46], while CFTR
74 can either activate or inhibit SLC26A9 [47]. These examples demonstrate that the co-
75 regulation between CFTR and its partners is a complex process; studies on co-regulation are
76 often contradictory and little is understood about the underlying molecular mechanisms that
77 contribute to co-regulation. Nevertheless, it appears that protein activity is intimately tied to
78 the co-localization in protein-dense clusters on membranes, sometimes referred to as
79 “macromolecular” clusters. Indeed, CFTR and its binding partners can form micron scale
80 clusters on plasma membranes [48–50]. Treatment of cells with inhibitors of calcium uptake
81 by the endoplasmic reticulum, thapsigargin and curcumin, which increases calcium
82 concentration in the cytoplasm, resulted in increased CFTR cluster size and number on the
83 plasma membrane [50–52]. Calcium also activates PKA and PKC, which can phosphorylate
84 the CFTR R region and modulate its association with other proteins [31,32]. Other research
85 suggests a role for membrane cholesterol in CFTR cluster formation; depletion of cholesterol
86 reduced cluster formation while increased cholesterol density resulted in increased CFTR
87 cluster size and number [49]. While CFTR clustering is known to be modulated by calcium

88 levels and the density of membrane cholesterol, the physical mechanisms that drive CFTR
89 clustering and the role of specific protein interactions and phosphorylation are unclear.

90 Mutations to CFTR directly cause Cystic Fibrosis (CF) by reducing the amount of
91 CFTR at the plasma membrane, improper gating of the channel, and/or inefficient ion transport
92 by CFTR [53,54]. In addition, the most common mutation to CFTR, the deletion of
93 phenylalanine at position 508 (F508del) results in defects in cluster formation on the plasma
94 membrane [50]. A previous study found that the F508del mutation can prevent dimerization of
95 the first CFTR nucleotide binding domain, thus preventing a self-associating interaction that
96 could contribute to cluster formation [55]. However, it is unclear if the lack of CFTR cluster
97 formation is due to mutations abrogating interactions that may contribute to cluster formation,
98 the density of CFTR successfully trafficked to the cell surface being too low for cluster
99 formation, or a combination of both.

100 Membrane-associated phase separation underlies the formation of numerous protein-
101 rich clusters that can depend on posttranslational modifications and organization of membrane
102 lipids, including cholesterol [1,16]. Because CFTR “macromolecular” clusters are composed
103 of multivalent proteins, we reasoned that phase separation may underlie cluster formation. This
104 possibility is especially intriguing because phase separation enables a physical understanding
105 of CFTR and binding partner cluster formation and provides a lens through which the
106 aforementioned complexity of CFTR co-regulation in cells can be appreciated [3]. However,
107 it is unclear whether multivalency and lipid domain formation can promote CFTR cluster
108 formation on membranes. In this study we use *in silico* computational modeling and *in vitro*
109 biochemical reconstitution on model membranes to evaluate the ability of protein-protein
110 interactions, calcium, phosphorylation of the CFTR cytoplasmic domains, and increasing
111 cholesterol density in membranes to promote CFTR cluster formation. Our computational
112 model predicts that protein-protein interactions and membrane cholesterol density are key

113 modulators of CFTR cluster formation. Testing of computational predictions on model
114 membranes confirms that protein-protein interactions and increasing cholesterol density are
115 essential for CFTR cluster formation. Phosphorylation of CFTR cytoplasmic regions and
116 calcium modulate protein-protein interactions to control cluster formation. Increasing density
117 of cholesterol in membranes results in increased CFTR cluster size and number. Furthermore,
118 we find that CFTR clusters can merge on model membranes, suggesting that the condensed
119 molecules are fluid. Combined, these data are consistent with properties seen for other
120 membrane-associated phase-separated condensates [17,56–62]. These results strongly support
121 phase separation as the driving mechanism for CFTR cluster formation.

122

123 **RESULTS**

124 **Protein-protein interactions and membrane cholesterol are predicted to drive CFTR 125 cluster formation *in silico*.**

126 Previous work by our lab [31,32] and others [35,37,49] demonstrated that the R region and C-
127 terminal tail of CFTR can interact with neighboring R region and C-terminal tails and engage
128 in multivalent interactions with NHERF-1, calmodulin, the sulphate transporter and anti-sigma
129 factor antagonist (STAS) domains, including their disordered intervening sequence (IVS)
130 regions and C-terminal tails of SLC26 family transporters; the transmembrane domains of
131 CFTR can also interact with cholesterol in the membrane (Figure 1). We have previously
132 demonstrated that multivalent interactions between membrane-associated proteins, binding
133 partners, and cholesterol-rich membrane domains contribute to the formation of phase-
134 separated biomolecular condensates [17,57–59]. Therefore, we posited that self-association
135 between neighboring CFTR channels and multivalent interactions between CFTR and its
136 binding partners, coupled to CFTR localization to cholesterol-rich membrane domains, could
137 drive the formation of macromolecular clusters of CFTR [48–50]. To initially test our

138 hypothesis, we created a computational biochemical model using Network Free Simulations
139 (NFSIM) in the Virtual Cell modeling environment [63–65], which has previously been used
140 to investigate phase separation between multivalent proteins [58,66–70]. Here we explicitly
141 modeled experimentally demonstrated protein-protein and protein-cholesterol interactions for
142 CFTR, calmodulin, NHERF-1, the SLC26A9 chloride transporter STAS domain and C-
143 terminal tail (hereafter SLC26A9 STAS IVS-Cterm), and cholesterol (Figures S1, S2). These
144 interactions include each of the N- and C-terminal lobes of calmodulin binding one of three
145 sites in the R region of CFTR [32], and PDZ1 of NHERF-1 binding cholesterol localized in the
146 membrane [33]. On (K_{on}) and off (K_{off}) rates for bimolecular interactions were taken directly
147 from the literature, estimated from the literature (specifically lipid-protein rate constants), or
148 experimentally derived by biolayer interferometry (BLI) using purified proteins (Figures 2A-
149 D, Table 1). While these estimates and, in some cases, experimentally fit values are not precise,
150 the exact numerical values are not critical for defining the qualitative behavior of our
151 computational model. In this computational model, we also varied the density of CFTR and
152 cholesterol on the membrane and the concentrations of soluble binding partners to test the
153 importance of these parameters for CFTR cluster formation (Table 2).

154 BLI measurements were performed using the following combinations of proteins: 1)
155 CFTR R region and C-terminal tail (hereafter CFTR R region-Cterm) and CFTR R region-
156 Cterm, 2) CFTR R region-Cterm and calcium-loaded calmodulin, 3) CFTR R region-Cterm
157 and NHERF-1, and 4) CFTR R region-Cterm and SLC29A9 STAS IVS-Cterm. The binding
158 curves for CFTR R region-Cterm self-association were best fit to a 1:1 bimolecular binding
159 model with a binding constant of 4.72 μ M (Figure 2A). The binding curves for CFTR R region-
160 Cterm and calcium-loaded calmodulin were best fit to a 2:1 binding model with two binding
161 constants of 34.7 μ M and 223 μ M (Figure 2B). The best fits are in agreement with NMR
162 evidence that calmodulin binds separately to the CFTR R region via two distinct sites in the N-

163 and C-terminal lobes of calmodulin; however, they are still not strongly overlapping the
164 experimental data, likely reflecting the additional complexity of the binding to at least three R
165 region elements revealed by NMR [32]. The binding curves for CFTR R region-Cterm and
166 NHERF-1 were best fit to a 2:1 binding model that accounts for each NHERF-1 PDZ binding
167 a single PDZ binding motif at the C-terminus of CFTR R region-Cterm with two binding
168 constants of 0.131 μ M and 0.763 μ M (Figure 2C). NHERF-1 contains two PDZ domains that
169 can each bind the PDZ binding motif found at the Cterm of CFTR. The two binding constants
170 are likely correlated with the affinities of each NHERF-1 PDZ domain for CFTR R region-
171 Cterm. Finally, the binding curves for CFTR R region-Cterm and SLC26A9 STAS IVS-Cterm
172 were measured. Unlike calmodulin and NHERF-1, the specific interactions between the
173 intrinsically disordered CFTR R region-Cterm and intrinsically disordered SLC26A9 STAS
174 IVS-Cterm are not well characterized. However, the best fit for these binding curves was
175 generated using a 2:1 binding model with two binding constants of 0.505 μ M and 1.55 μ M
176 (Figure 2D). These binding constants were incorporated into our Virtual Cell computational
177 model.

178 Using our Virtual Cell model, we first interrogated the ability of CFTR self-association
179 and protein-protein interactions between CFTR R region-Cterm, SLC26A9 STAS IVS-Cterm,
180 NHERF-1, and calmodulin, to drive the formation of CFTR clusters. Our model predicted that
181 clusters containing 2 to 4 CFTR molecules could form on membranes as the density of CFTR
182 on the membrane increased while binding partner concentrations were kept constant. No
183 clusters containing more than 5 molecules of CFTR were predicted to form through self-
184 association and protein-protein interactions alone, using our specified set of binding partners
185 (Figure 3A). When we changed the interactions in our model to account for only CFTR self-
186 association and cholesterol in membranes, our model predicted the formation of a single cluster
187 containing greater than 100 molecules of CFTR in addition to the formation of smaller clusters

188 containing more than 10, 5, or 2, CFTR molecules (Figure 3B). However, when we allowed
189 for protein-protein and protein-cholesterol interactions, three clusters formed that contained
190 more than 100 molecules of CFTR at the highest CFTR density used in the simulations (Figure
191 3C), dozens of clusters that contained more than 10 CFTR molecules at the two highest
192 densities of CFTR formed, and tens to hundreds of clusters containing more than 5 or 2
193 molecules of CFTR formed (Figure 3C). Thus, our model predicts that CFTR cluster formation
194 depends on specific protein-protein interactions, protein-lipid interactions, and the density of
195 CFTR on membranes; these predictions are consistent with phase-separated condensate
196 formation.

197

198 **Wild type CFTR R region-Cterm self-associates on model membranes**

199 We previously used *in vitro* supported lipid bilayers (SLBs) to probe the functional
200 consequences of phase separation of T cell signaling proteins [57,59,71]. To study the
201 intracellular disordered interacting element of CFTR, which had not previously been used on
202 SLBs, we generated a single His₈-tagged fusion of the CFTR R region and C-terminal region
203 (hereafter sHis₈-CFTR R region-Cterm) that can be attached to SLBs doped with NiNTA-
204 modified lipids. We first tested whether AlexaFluor (AF) 488-labelled sHis₈-CFTR R region-
205 Cterm attached to the SLB specifically via NiNTA – histidine interactions or if AF488-sHis₈-
206 CFTR R region-Cterm associated with the membrane in an unexpected manner. We reasoned
207 that if sHis₈-CFTR R region-Cterm specifically associated with NiNTA-doped SLBs, high
208 concentrations of imidazole would interrupt the interaction and AF488-sHis₈-CFTR R region-
209 Cterm would no longer associate with the membrane. We attached AF488-sHis₈-CFTR R
210 region-Cterm to SLBs and added buffer containing 0 mM or 275 mM imidazole. In buffer
211 containing 0 mM imidazole, AF488-(s)His₈-CFTR R region-Cterm remained attached to the
212 membrane (Figure S3A, left) while additional of 275 mM imidazole resulted in a loss of AF488

213 fluorescence on the membrane (Figure S3A, right), indicating that its association was a direct
214 result of NiNTA-modified lipid – histidine interactions and that there are no significant direct
215 interactions of the membrane lipids with the CFTR R region or Cterm.

216 Membranes composed of complex lipid mixtures often undergo a liquid to solid
217 transition when in direct contact with a glass coverslip substrate (Figure S3B) [17,72].
218 Therefore, in order to test our model predictions and experimentally probe the driving forces
219 for CFTR cluster formation, we developed a SLB model in which we first laid a cholesterol-
220 depleted SLB followed by a more complex, cholesterol-rich SLB, similar to those previous
221 described for studying the biophysical properties of membranes [73]. We refer to this model
222 membrane as a double supported lipid bilayer ((d)SLB). By protecting the complex lipid
223 mixture of the upper bilayer from interacting with the coverglass substrate, we were able to
224 maintain fluidity across a wide range of compositions (Figure S3C) (Table 3).

225 In our previous NMR spectroscopy studies using a non-His-tagged version of this
226 fusion protein [31,32], we noted that the R region was prone to aggregation in solution. We
227 generated a double-His₈-tagged version of the disordered CFTR intracellular R region and C-
228 terminal tail (hereafter WT CFTR R Region-Cterm, Figure S4) that enables NiNTA-modified
229 lipid interactions at both the N-terminus and between the R region and C-terminal elements,
230 better mimicking the topology of the full-length membrane protein. To test whether this fusion
231 protein formed clusters on membranes without the contribution of other interactions, we
232 attached WT CFTR R region-Cterm via interactions of the two His₈ tags to NiNTA-modified
233 lipids doped in SLBs at 2 mol%. We immediately observed small clusters of WT CFTR R
234 region-Cterm on the membrane, as indicated by increased appearance of puncta in each image,
235 across a wide range of WT CFTR R Region-Cterm concentrations (Figure 4A). Fluorescence
236 recovery after photobleaching (FRAP) analysis of non-clustered regions showed near full

237 recovery of fluorescence, indicating that most WT CFTR R Region-Cterm molecules are
238 mobile on the bilayer (Figure 4B), even with the evidence for self-association.

239 Because we could not quantify the contribution of WT CFTR R region-Cterm to the
240 observed cluster formation, we sought to generate a model CFTR R region-Cterm lacking self-
241 associating regions that could be used to investigate other protein-protein and protein-lipid
242 interactions contributing to CFTR cluster formation. To create this fusion protein, we returned
243 to our previous NMR data [31,32] and retained only regions having interactions with binding
244 partners in our double His₈-tagged fusion (hereafter Model CFTR R region-Cterm, see
245 Materials and Methods, Figure S4). We attached the Model CFTR R region-Cterm to (d)SLBs
246 via NiNTA-modified lipid interactions to the two His₈ tags and observed homogenously
247 distributed fluorescence across the membrane as the concentration of Model CFTR R Region-
248 Cterm was increased (Figure 4C). Model CFTR R Region-Cterm attached to the (d)SLB also
249 exhibited near-full recovery of fluorescence following photobleaching (Figure 4D). Combined,
250 these results indicate that WT CFTR R region-Cterm exhibits self-association on (d)SLBs.
251 Model CFTR R region-Cterm is well distributed on the (d)SLB and lacks the propensity to
252 self-associate to a high enough degree to observe resolvable clusters. Therefore, we deemed
253 the Model CFTR R region-Cterm fusion protein to be most suitable for subsequent
254 reconstitution experiments, since changes to protein distribution and dynamics as a result of
255 changing experimental conditions can be readily assessed.

256
257 **NHERF-1, SLC26A9 STAS IVS-Cterm, calmodulin, and calcium are insufficient for**
258 **inducing CFTR R region-Cterm cluster formation *in vitro*.**

259 Previous work using NMR demonstrated that calcium enhances calmodulin N- and C-terminal
260 lobe binding to the CFTR R region [32]. We also observed that calcium promotes binding of
261 calmodulin with the CFTR R region using BLI (Figures 2B). However, our computational

262 model predicts that only small, sub-resolution (clusters containing less than 5 molecules of
263 CFTR would not be resolvable using fluorescence microscopy) CFTR R region-Cterm clusters
264 will form upon addition of binding partners, including calcium-loaded calmodulin. Given our
265 previous NMR and current BLI data (Figures 2A-D, Table 1), the reported link between CFTR
266 and calcium signaling [50], calcium-calmodulin mediated activation of CFTR [32], and our
267 model predictions, we were highly interested in experimentally interrogating the role of
268 protein-protein interactions including calcium-loaded calmodulin in driving CFTR clustering.
269 We first tested the ability of a combination of 0.5 μ M NHERF-1, 1 μ M SLC26A9 STAS IVS-
270 Cterm, and 1 μ M calmodulin with and without 500 μ M CaCl_2 to induce visible cluster
271 formation of Model CFTR R region-Cterm. The addition of this mixture did not result in visible
272 Model CFTR R region-Cterm cluster formation (Figure 5A, left column). Our experimental
273 results are consistent with our computational predictions: protein-protein interactions among
274 our set of CFTR binding partners are not sufficient to drive the formation of visible clusters of
275 Model CFTR R region-Cterm using these protein concentrations.

276

277 **Cholesterol and protein-protein interactions drive the formation of Model CFTR R**
278 **region-Cterm clusters *in vitro*.**

279 Because our computational model predicts that cholesterol interactions with CFTR are
280 necessary for robust CFTR cluster formation, we investigated the role of cholesterol in
281 modulating CFTR clustering *in vitro*. We initially performed experiments with Model CFTR
282 R region-Cterm attached to 18:1 DGS-NTA nickel modified lipids localized to cholesterol-
283 depleted regions of (d)SLBs (Figure S5A) with 0.5 μ M NHERF-1, 1 μ M SLC26A9 STAS
284 IVS-Cterm, and 1 μ M calmodulin with and without 500 μ M CaCl_2 in solution. Visible clusters
285 of Model CFTR R region-Cterm did not form as the cholesterol density was increased from 0
286 to 40 mol% (Figure 5A, top two rows). We then repeated these experiments with Model CFTR

287 R Region-Cterm attached to 16:0 DGS-NTA localized in cholesterol-rich regions of (d)SLBs
288 (Figure S5B). We previously used 16:0 DGS-NTA to localize His-tagged proteins to
289 cholesterol-rich membrane domains in spin-coated multi-layered model bilayers [17]. We first
290 performed experiments using (d)SLBs composed of increasing cholesterol density from 0 to
291 40 mol%. We attached Model CFTR to cholesterol-rich (d)SLB regions and incubated with 0.5
292 μ M NHERF-1, 1 μ M SLC26A9 STAS IVS-Cterm, and 1 μ M calmodulin without including
293 CaCl_2 in solution. We did not observe robust cluster formation, although sparse mesoscale
294 clusters did appear when (d)SLBs contained 40 mol% cholesterol (Figure 5A, third row).
295 However, upon addition of CFTR R region-Cterm binding partners and 500 μ M CaCl_2 , we
296 observed the formation of Model CFTR R region-Cterm clusters (Figure 5A, bottom row).
297 Cholesterol had a dose dependent effect on clustering, where cluster number and area increased
298 non-linearly with increases in cholesterol (Figure 5B). At 10 and 20 mol% cholesterol, clusters
299 were small ($2-3 \mu\text{m}^2$), and generally spherical. At 30 and 40 mol% cholesterol, clusters were
300 larger ($>3 \mu\text{m}^2$) and more irregular in shape. Clusters across all cholesterol densities tested
301 appeared dynamic, as multiple fusion events of two small clusters merging into a single large
302 cluster were observed (Figure 5C). These results are consistent with predictions from our
303 computational model.

304 Using our (d)SLB experimental system, we then sought to understand which specific
305 protein-protein interactions were important for Model CFTR R region-Cterm cluster formation.
306 We formed (d)SLBs containing either 10 or 40 mol% cholesterol and attached Model CFTR R
307 region-Cterm to cholesterol-rich regions. We then added 0.5 μ M NHERF-1 and / or 1 μ M
308 SLC26A9 STAS IVS-Cterm to solutions containing 1 μ M calmodulin and 500 μ M calcium.
309 We observed no Model CFTR R region-Cterm cluster formation when either NHERF-1 or
310 SLC26A9 STAS IVS-Cterm was present in the solution with calmodulin and calcium (Figure
311 6A). However, when both were present in solution with calmodulin and calcium, clusters of

312 Model CFTR R region-Cterm formed on membranes composed of 10 or 40 mol% cholesterol,
313 with a higher number and larger size of clusters on membranes composed of 40 mol%
314 cholesterol (Figure 6A). Experiments were repeated, this time using calmodulin and calcium
315 as the Model CFTR R region-Cterm binding partners with 0.5 μ M NHERF-1 and 1 μ M
316 SLC26A9 STAS IVS-Cterm already in solution. Neither 1 μ M calcium alone nor 500 μ M
317 calmodulin induces Model CFTR R region-Cterm cluster formation on (d)SLBs in the presence
318 of NHERF-1 and SLC26A9 STAS IVS-Cterm (Figure 6B). When both were combined in
319 solution, small sparse Model CFTR R region-Cterm clusters formed on (d)SLBs composed of
320 10 mol% cholesterol while large more numerous clusters formed on (d)SLBs composed of 40
321 mol% cholesterol (Figure 6B). These results demonstrate that observable Model CFTR R
322 region-Cterm cluster formation is induced only in the presence of all tested components; lack
323 of any component inhibits Model CFTR R region-Cterm cluster formation.

324

325 **Phosphorylation of the R region alters membrane distribution of Model CFTR R region-
326 Cterm clusters *in vitro***

327 PKA-mediated phosphorylation is a mechanism of CFTR channel activation that acts as an
328 alternative to calcium-calmodulin activation [32]. Given these opposing functions, we were
329 interested in the impact of CFTR R region-Cterm phosphorylation on clustering. We
330 phosphorylated Model CFTR R region-Cterm using PKA and attached the non-phosphorylated
331 or phosphorylated protein onto (d)SLBs composed of 40 mol% cholesterol and incubated with
332 1 μ M calmodulin, 0.5 μ M NHERF-1, and 1 μ M SLC26A9 STAS IVS-Cterm with and without
333 500 μ M calcium (Figure 7A). Non-phosphorylated Model CFTR R region-Cterm forms
334 micron-sized clusters only in the presence of calcium (Figure 7B). Phosphorylation induces the
335 formation of smaller more numerous clusters of Model CFTR R region-Cterm clusters, when
336 compared with those formed by non-phosphorylated Model CFTR R region-Cterm,

337 independent of buffer calcium (Figure 7C). These results demonstrate that protein-protein
338 interactions involving either calcium-calmodulin or phosphorylation of the cytoplasmic
339 domains of CFTR can induce cluster formation when combined with cholesterol in membranes.

340

341 **DISCUSSION**

342 In this study, we demonstrate that CFTR cluster formation depends on multivalent protein-
343 protein interactions, calcium, and cholesterol in the membrane, which is consistent with phase
344 separation as the driving physical mechanism for CFTR cluster formation on membranes.
345 CFTR clusters can merge with one another, indicating that the molecules within the clusters
346 are dynamic. We found that phosphorylation of the cytoplasmic domains of CFTR can drive
347 cluster formation with the full complement of binding partners and cholesterol, without
348 calcium in the buffer (Figure 7). This observation may be partly explained by the propensity
349 for the phosphorylated CFTR R region binding to the CFTR C-terminal tail. These results are
350 complementary to previous reports that described interactions between phosphorylated R
351 region with specific binding partners, including the C-terminal tail of CFTR, independent of
352 non-phosphorylated CFTR R region interactions with calmodulin, and that phosphorylation of
353 the R region by PKA inhibits calmodulin binding [32]. This potential for independent inputs
354 into cluster formation is reminiscent of LAT with Grb2 and Sos1 or Gads and SLP-76 [57] or
355 integrins with kindlin or talin in focal adhesions [60,74] and provides an example of the general
356 principle of redundancy amongst membrane-associated protein interacting partners. Such
357 redundancy could enable unique modes of CFTR cluster formation on the membranes of
358 various cell types and may be especially important because not all types of cells express every
359 CFTR interactor; ionocyte, ciliated, and basal cells in the airway epithelia express varied levels
360 of CFTR and interactors [75,76].

361 Our study also generated an editable, user-friendly computational model housed in the
362 Virtual Cell modeling environment. This tool is freely available to the community and can be
363 adapted by researchers to investigate CFTR interactions with other binding partners and predict
364 the formation of macromolecular clusters on membrane surfaces. Furthermore, the model can
365 be adapted to account for phosphorylation and other posttranslational modifications to test their
366 effect on protein-protein interactions and the subsequent role these modifications have on
367 CFTR cluster formation. Additionally, the computational model can be used to predict the
368 effect of small molecule therapeutics on interactions within CFTR clusters. This type of tool
369 will be valuable for predicting off-target effects in CFTR interaction network behavior linked
370 with small molecule interactions if the effects of the small molecule on binding affinities have
371 been evaluated. Combined, our computational model and *in vitro* biochemical reconstitution
372 system can be used to parse the complex co-regulation observed in cells to determine
373 intracellular components that contribute to the co-clustering of CFTR and binding partners.

374 Finally, the results we present here enable the viewing of CFTR cluster formation
375 through the lens of biological phase separation. The phase separation of membrane-associated
376 proteins has been linked with T cell and B cell activation [17,18,57,59,61,62], glomerular
377 filtration barrier maintenance [9,56,58], synaptic plasticity [77,78], cell adhesion [60,74], and
378 growth factor receptor signaling pathways [79]. To date, channel and transporter function has
379 yet to be linked with phase separation-directed organization. Here we provide evidence that
380 CFTR can undergo phase separation with its multivalent binding partners coupled to
381 cholesterol in the membrane. Importantly, wild type CFTR intracellular domains can self-
382 associate to a high degree, thereby increasing the effective valency of interacting motifs within
383 the R region and C-terminal tail when arrayed on membranes. In our study, we intentionally
384 used a model CFTR fusion of the R region and C-terminal tail with a decreased propensity for
385 CFTR cytoplasmic domain self-association in our experiments (Figure 4) so that we could

386 specifically parse the contribution of binding partners and membrane components to CFTR
387 cluster formation. In cells, self-association of CFTR will lower the density and concentration
388 thresholds above which CFTR and its binding partners will undergo phase separation. Thus,
389 clusters of CFTR that have been previously observed [48–50] likely form through phase
390 separation akin to signaling clusters described above.

391 Another aspect of phase separation underlying the formation of CFTR clusters is the
392 emergence of self-organized CFTR clusters with distinct size distribution profiles. These
393 profiles depend on 1) the percent of cholesterol in the membrane or 2) the type of interactions
394 that drive cluster formation. We observed that CFTR R region-Cterm localization with
395 cholesterol was required for mesoscale cluster formation in our computational simulations and
396 *in vitro* reconstitution experiments (Figures 3 and 5). Furthermore, as the percentage of
397 cholesterol increased in model membranes, CFTR R region-Cterm clusters increased in size
398 and number (Figure 5A). Together, these data show a direct role of membrane composition in
399 the modulation of CFTR cluster formation, size, and number. When clustering is promoted by
400 binding partner interactions, large clusters form (Figure 7A, top row). When clustering is
401 promoted by interactions between phosphorylated CFTR R region-Cterm in the presence of
402 binding partners, smaller more numerous clusters form relative to the binding partner alone
403 condition (Figure 7A, bottom row). Importantly, the total amount of phase separation, as
404 measured by the variance in fluorescence, is similar between CFTR R region-Cterm and
405 binding partners or phosphorylated CFTR R region-Cterm and binding partners with or without
406 calcium (Figure 7B, + calcium vs. Figure 7C, +/- calcium). This is especially pertinent, as a
407 recent computational study shows that membrane-associated condensate function (specifically,
408 actin polymerization) can be controlled by cluster size distribution [70]. The authors report that
409 more numerous smaller clusters collectively promote a higher amount of actin polymerization
410 than fewer, large clusters. Given that actin polymerization is increased at condensates because

411 condensates increase the probability of Arp2/3 activation [58], and that CFTR open probability
412 may be modulated by cluster formation, the possibility exists that cells may be able to modulate
413 CFTR channel activity by promoting unique modes of cluster formation, i.e., with significant
414 contribution from binding of R region to either calcium-calmodulin or the CFTR C-terminus
415 in the presence of phosphorylation. Thus, CFTR cluster formation by phase separation may
416 allow for tuning of CFTR function in different cell types or under different conditions by
417 specifically regulating plasma membrane lipid composition, binding partner expression,
418 phosphorylation of the intracellular domains of CFTR, and maintaining specific size
419 distributions on the plasma membrane.

420 It is becoming increasingly evident that CF results in lipid imbalances in cellular
421 membranes [80]. Several studies have shown that CFTR regulates lipid metabolism and
422 homeostasis [81–84]. Furthermore, lipid interactions with CFTR and ENaC are required for
423 optimal channel function [85]. This bi-directional relationship between lipids and CFTR is
424 further highlighted by our results reported here, in which we show increased cluster formation
425 directly linked with increased cholesterol density in model membranes (Figures 5 and 6).
426 Therefore, it will be important for future studies to investigate specific mechanisms by which
427 lipid components of membranes, including cholesterol and sphingolipids contribute to
428 functional CFTR cluster formation, and the effect of CFTR clustering on lipid metabolism and
429 homeostasis.

430 The results reported here are important for at least two reasons: 1) phase separation of
431 membrane-associated proteins can be functionally coupled to lipid phase separation [17], and
432 2) manipulation of phase separation by novel therapeutics provides a new avenue for treating
433 disease [86,87]. In cells, prevention of CFTR cluster formation is correlated with decreased
434 CFTR channel function during vasoactive intestinal peptide stimulation [48]. However, the
435 functional coupling between protein condensates and lipid domains for CFTR has yet to be

436 shown. Combined, these data from our study and previous cellular data [48–50] lead us to
437 propose a tantalizing possibility: CFTR cluster formation results in increased channel function
438 per molecule, or, alternatively, in regulated channel function in a manner dependent on the
439 components within the condensate, as has been reported for other membrane-associated and
440 cytoplasmic phase-separating systems [11,57,58,62,88,89]. Thus, we suggest that phase
441 separation of CFTR provides a possible mechanism for increased or otherwise regulated
442 function of CFTR and other proteins co-localized in CFTR condensates on membranes,
443 including effects on open channel probabilities. Future studies to test this hypothesis are needed,
444 with the potential to enrich understanding of the regulation of CFTR and more generally of
445 cholesterol-rich domain-localized membrane proteins, particularly those thought to be “co-
446 regulated” with other membrane proteins.

447

448 **MATERIALS AND METHODS**

449 **Modeling CFTR clustering with Virtual Cell**

450 The Virtual Cell platform [63–65] was used to model and simulate CFTR cluster formation
451 (<https://vcell.org/>). For each interaction modelled, binding mechanisms and kinetic constants
452 were based either on biolayer interferometry data from this study or published data and are
453 detailed in Table 1 provided in the supplementary material. Table 1 contains the rate constants
454 and Table 2 contains the densities and concentrations of molecular species in the models. The
455 models used in this study can be found in the Virtual Cell public database under user “ywan”
456 with the following model name: “CFTR Membrane Clustering.”

457

458 **Expression constructs**

459 Sequences of all constructs are included in Table 4 with schematics shown in Supplemental
460 Figure S6A. CFTR R region-Cterm insert sequences were codon-optimized and ordered from

461 GenScript. CFTR R region-Cterm gene inserts were amplified by PCR and cloned into pET
462 plasmids using Gibson assembly. All R region sequences contain an F833L polymorphism that
463 improves the solubility of the fusion proteins [31,32]. To generate the Model CFTR R Region-
464 Cterm sequence, we used previously published NMR data acquired in our lab [31,32] and
465 removed residues that were not found to have significantly broadened NMR resonances upon
466 interaction with calmodulin or other protein binding partners (Figure S4). WT and Model
467 CFTR R region-Cterm constructs were poly-histidine tagged with His₈ for membrane
468 attachment via nickel-chelated lipid anchors [56,57,71,90]. Full length calmodulin was inserted
469 into a pET3a plasmid, while NHERF-1 (residues 1- 358) and the intervening sequence and C-
470 terminal region of SLC29A9 (STAS IVS-Cterm, residues 569-652, 742-772, and 785-791 in a
471 single, fused disordered chain) were inserted into pET-His-SUMO plasmids. All inserts were
472 validated using Sanger sequencing. Plasmids were transformed into, amplified in, and purified
473 from NEB 10-beta Competent *E. coli* cells using the QIAprep Miniprep kit according to the
474 manufacturer's instructions.

475

476 **Protein expression, purification, and maleimide dye labeling**

477 All proteins were expressed in BL21-CodonPlus (DE3)-RIPL Competent *E. coli* bacteria
478 transformed with plasmids encoding the genes described previously. Bacteria were grown in
479 lysogeny broth (LB) containing 50 mg/mL kanamycin and 34 mg / ml chloramphenicol until
480 O.D.₆₀₀ = 0.6-0.8. Protein expression was induced using 1 mM isopropyl β-D-1-
481 thiogalactopyranoside (IPTG) and bacteria were incubated at 16 °C for 16-18 hours before
482 harvesting by centrifugation at 4500 rpm for 30 minutes at 4 °C. Cell pellets were either used
483 immediately or frozen and stored at -80 °C for up to 2 months before purification. Purification
484 protocols were adapted from previously published methods [31,32] and are detailed below. All
485 proteins were verified by mass spectrometry analysis.

486

487 *Purification of CFTR R region-Cterm fusions and SLC26A9 STAS IVS-Cterm*

488 The CFTR R region-Cterm and His₆-SUMO-SLC26A9 STAS IVS-Cterm constructs
489 were purified from the insoluble lysate fraction. Pellets were resuspended in 20 ml guanidinium
490 chloride buffer (6M GdmCl, 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.2 mM TCEP)
491 per liter of culture. Cell resuspensions were lysed by sonication on ice for 10 minutes (30%
492 amplitude, cycled at 2 secs on / 2 secs off) and clarified by centrifugation at 8500 RPM for 1
493 hour using a fixed angle JA-20 rotor (Beckman Coulter) at 4 °C. Supernatant fractions were
494 loaded onto HisPur Ni-NTA resin (Thermo Scientific) as per manufacturer's instructions and
495 washed with 5 CVs of GdmCl buffer containing 20mM imidazole (pH 7.5), and eluted in 300
496 mM imidazole (pH 7.5) in 5 x1 CV fractions. Aliquots of fractions containing protein were
497 precipitated from GdmCl by trichloroacetic acid precipitation and resuspended in 8M urea
498 before analysis by gel electrophoresis. Proteins were further purified by size exclusion
499 chromatography using a HiLoad 26 / 600 Superdex 75 prepgrade column (Cytiva), in GdmCl
500 buffer. SLC26A9 STAS IVS-Cterm was diluted to 240 mM GdmCl, incubated with 10 units
501 of ULP-1 per µg of protein for 4 hours at room temperature, and flowed over Ni-NTA to
502 remove the His₆-SUMO tag. Gels confirming fusion protein purifications are shown in
503 Supplemental Figure S6B.

504

505 *Purification of calmodulin and NHERF-1*

506 His₆-SUMO-Calmodulin and His₆-SUMO-NHERF-1 were purified from the soluble
507 lysate fraction following the previously described method for CFTR R region-Cterm and
508 SLC26A9 STAS IVS-Cterm constructs, except with non-denaturing Tris buffer (20 mM Tris-
509 HCl (pH 7.5), 150mM NaCl, and 0.2 mM TCEP). Protein-loaded Ni-NTA resin was washed
510 stepwise using Tris buffers containing 20mM imidazole (pH 7.5), and eluted in 300mM

511 imidazole (pH 7.5). Calmodulin and NHERF-1 were incubated in Tris buffer with 10 units of
512 ULP-1 per 20 μ g of protein for 4 hours at room temperature and flowed over Ni-NTA to
513 remove the His₆-SUMO tag. Gels confirming fusion protein purifications are shown in
514 Supplemental Figure S6B.

515

516 *Labeling CFTR R region-Cterm with maleimide dye*

517 This labeling protocol was adapted from previously published methods [59,72]. β ME was
518 added to a final concentration of 10 mM to purified CFTR R region-Cterm to reduce all
519 cysteine residues. CFTR R region-Cterm was then buffer exchanged into a buffer of 3M
520 GdmCl, 50 mM HEPES-NaOH (pH 7.0), and 150 mM NaCl, and incubated with 3-times molar
521 excess of Alexa Fluor (AF) 647 C2-maleimide conjugated dye (Invitrogen) for 16 hours at 4
522 °C in the dark. The labeling reaction was quenched with 10 mM β ME, and excess dye was
523 removed by size exclusion chromatography using a 10 / 300 Superdex 75 GL column (Cytiva).

524

525 *Phosphorylation of Model CFTR R region-Cterm*

526 This phosphorylation protocol was adapted from a previously published method [32]. Purified
527 and AF647-labelled CFTR R region-Cterm was diluted to below 100 mM GdmCl. 100 units
528 of protein kinase A (PKA) was added per 500 μ g of CFTR R region-Cterm and dialyzed in a
529 buffer of 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 20 mM MgCl₂, 10 mM ATP, and 2 mM
530 DTT for 16 hours at 4 °C in the dark. The buffer was exchanged for fresh buffer midway
531 through the reaction to refresh the ATP. The phosphorylation reaction was flowed over Ni-
532 NTA to remove His-tagged PKA and confirmed by mass spec analysis.

533

534 **Biolayer interferometry**

535 All measurements were performed on a FortéBio Octet RED384 instrument using Octet Ni-
536 NTA biosensors (Sartorius) and 384-well black microplates with either flat (Greiner) or tilted
537 bottoms (Sartorius). Biosensors were hydrated in Sartorius Kinetics Buffer for 5 minutes prior
538 to use. All protein was initially dialyzed into HEPES buffer (50 mM HEPES (pH 7.3), 150 mM
539 NaCl, and 1 mM TCEP) and freshly diluted in Kinetics Buffer prior to use. All biolayer
540 interferometry experiments were performed as follows: biosensors were incubated in Kinetics
541 Buffer for 120 seconds (Baseline), 500 nM CFTR R region-Cterm for 120 seconds (Loading),
542 BSA Blocking buffer for 60 seconds (Quenching), analyte (CFTR R region-Cterm, Calmodulin,
543 NHERF-1, or SLC26A9 STAS IVS-Cterm) for 300-600 seconds (Association), and Kinetics
544 Buffer for 300 seconds (Dissociation). Biosensors were regenerated up to 10 times by
545 alternately washing in Kinetics Buffer containing 750 mM and 0 mM imidazole (pH 7.5). To
546 minimize evaporation effects, a working volume of 75 μ L per well was used and experimental
547 runs did not exceed 1 hour. All measurements were performed in triplicate. Binding curves
548 were processed and fit using Octet Analysis Studio Software (Sartorius).

549

550 **Reconstitution assays using supported lipid bilayers**

551 The methods described in this section were adapted from previously published methods
552 [17,57,59,71,72].

553

554 *Preparation of small unilamellar vesicles (SUVs)*

555 Synthetic phospholipids and cholesterol were all sourced from Avanti Polar Lipids, barring
556 16:0 DGS-(Ni)NTA, which was synthesized and provided by the Levental lab. Lipids for
557 reconstitution experiments were combined as detailed in Table 3, dried under a stream of Argon,
558 desiccated for 12 hours, and resuspended in phosphate-buffered saline (pH 7.3) to create
559 solutions of multilamellar lipid vesicles. Lipid solutions were repeatedly frozen in liquid

560 nitrogen and thawed on a 45 °C heat block 30-45 times, or until the solution cleared, to generate
561 small unilamellar vesicles (SUVs). Lipid solutions were centrifuged at 21,000 g for 2 hours at
562 4 °C to pellet any remaining multilamellar vesicles. Supernatant containing SUVs was
563 collected, topped with Argon, and stored at 4 °C for up to 2 weeks. Lipid solutions were frozen
564 and stored after 15 freeze-thaws at -80 °C for up to 6 months.

565

566 *Preparation of supported lipid bilayers (SLBs)*

567 Supported lipid bilayers (SLBs) were formed on 96-well black glass-bottom plates (Corning).
568 Glass was washed with 5% Hellmanex III at 50 °C for 3 hours, thoroughly rinsed with MilliQ
569 H₂O, washed twice with 6M NaOH at 45°C for 1 hour, and thoroughly rinsed with MilliQ H₂O,
570 before equilibrating in HEPES buffer (50 mM HEPES (pH 7.3), 150 mM NaCl, and 1 mM
571 TCEP). SUVs were added to wells containing HEPES buffer and incubated at 40 °C for 45 min
572 to allow SUVs to collapse and fuse on the glass substrate to form SLBs. SLBs were washed
573 with HEPES buffer three times to remove excess SUVs. For double SLBs, base layer SUVs
574 were incubated to form the base SLB, washed three times with HEPES buffer, then incubated
575 with SUVs composed of lipids for the top bilayer for 1 hour at 40 °C, followed by a second
576 wash step with HEPES buffer, as we have previously described [72]. Table 3 contains
577 information describing the composition of supported lipid bilayers.

578 HEPES buffer containing 1 μM CFTR R region-Cterm protein was incubated on the
579 prepared SLBs for 1 hour at room temperature, resulting in a final CFTR R region-Cterm
580 density of approximately 5000 molecules / μm² on SLBs and (d)SLBs. (d)SLBs were washed
581 three times with HEPES buffer. For conditions containing CFTR interactors, proteins were
582 incubated on (d)SLBs coated with CFTR R region-Cterm proteins for 15-30 minutes at the
583 following concentrations: 1 μM calmodulin, 0.5 μM NHERF-1, and 1 μM SLC26A9 STAS
584 IVS-Cterm. For calcium-containing conditions, 0.5 mM CaCl₂ was added to the HEPES buffer,

585 and interactors were dialyzed into HEPES buffer containing the same concentration of calcium.

586 All experiments were performed in triplicate.

587

588 *Evaluation of membrane fluidity with fluorescence recovery after photobleaching*

589 Fluorescence recovery after photobleaching (FRAP) assays were used to verify the fluidity of

590 (d)SLBs and the proteins anchored to them. All FRAP experiments were performed on a point

591 scanning Leica SP8 LIGHTNING Confocal Microscope (Leica Microsystems) equipped with

592 Leica Application Suite X software, using a 63x / 1.3 NA oil immersion objective. 488 and 638

593 nm lasers were used at 100 % power for 0.65 seconds to bleach AF488-labelled (d)SLBs (18:1

594 PE-TopFluor AF488, Avanti cat. #810386) or AF647-labelled proteins, respectively. (d)SLBs

595 and proteins were bleached at a small region of interest (ROI) to 40 % fluorescence intensity

596 or lower at room temperature, and recovery within the ROI was monitored for 150 – 300

597 seconds. Following photobleaching, changes in fluorescence intensity of the ROI over time

598 produce the recovery curve. Due to gradual photobleaching of the entire microscope field of

599 view during imaging, FRAP recovery curves were corrected by normalizing ROI fluorescence

600 intensity to background fluorescence intensity over time.

601

602 *Imaging and analysis of CFTR R region-Cterm clusters*

603 Bilayer images were obtained on a point scanning Leica SP8 LIGHTNING Confocal

604 Microscope (Leica Microsystems) equipped with Leica Application Suite X software. Images

605 were obtained using a 63x / 1.3 NA oil immersion objective with 488 and 638 nm lasers.

606 Image analysis was performed using Fiji. All images were processed at identical

607 brightness and intensity settings. The degree of clustering was determined by measuring the

608 variance of intensities (Standard Deviation²) within each image, as we previously described

609 [71]. T-test analyses were performed, and data were plotted using GraphPad Prism (Dotmatics).

610

611 **ACKNOWLEDGEMENTS**

612 We thank the Levental Lab at the University of Virginia for the generous gift of 16:0 DGS-
613 NTA(Ni) used to target His-tagged proteins to cholesterol-rich membrane environments. We
614 thank Drs. Andrew Chong, Christine Bear, Trevor Moraes, and Hyun Lee for stimulating
615 discussions, the Hospital for Sick Children Structural & Biophysical Core Facility and the
616 Hospital for Sick Children Imaging Facility for use of the instruments used in this study, and
617 Drs. Leslie Loew and Michael Blinov for their assistance using the Virtual Cell which is
618 supported by NIH Grant R24 GM137787 from the National Institute for General Medical
619 Sciences. YW was supported by a Canada Graduate Scholarship – Master’s Award from the
620 Natural Sciences and Engineering Research Council. JDF-K acknowledges support from
621 Cystic Fibrosis Canada (#604926) and the Canada Research Chairs Program. JAD
622 acknowledges support for studies of membrane-associated phase separation from Natural
623 Sciences and Engineering Research Council Discovery Grant (RGPIN-2022-03274);

624

625 **AUTHOR CONTRIBUTIONS**

626 YW, JDF-K, and JAD designed the study. YW, RH, and JS prepared reagents and performed
627 experiments. YW analyzed data. YW, JDF-K, and JAD wrote and edited the manuscript with
628 comments from RH and JS.

629

630 **COMPETING INTERESTS**

631 JAD serves as an advisor for Dewpoint Therapeutics and Neurophase. YW, RH, JS, and JDF-
632 K declare no competing interests.

633

634

635 **FIGURE LEGENDS**

636 **Figure 1.** CFTR is a multivalent hub for macromolecular complexes on membranes. The CFTR
637 transmembrane domains interact with cholesterol in the membrane, CFTR R region contains
638 multiple calmodulin and SLC26A9 binding sites, and the C terminal tail of CFTR binds
639 NHERF-1. Calmodulin can interact with CFTR and SLC26A9. NHERF-1 can interact with
640 membrane cholesterol, SLC26A9, and CFTR. SLC26A9 can interact with CFTR, NHERF-1,
641 and calmodulin.

642

643 **Figure 2.** Biolayer interferometry binding curves. For **A-D**, colored lines are experimentally
644 measured binding, black traces are modeled fits. **A)** Binding of Model CFTR R region-Cterm
645 with itself. Model CFTR R region-Cterm was incubated in solutions diluted 2-fold from the
646 initial solution that contained 25 μ M Model CFTR R region-Cterm. **B)** Model CFTR R
647 region-Cterm and calmodulin with calcium. Model CFTR R region-Cterm was incubated in
648 solutions diluted 2-fold from the initial solution that contained 7.5 μ M calmodulin. 500 μ M
649 CaCl_2 was included in all solutions to ensure calcium-loaded calmodulin lobes. Note that the
650 fits to the curves do not superimpose well with the data, reflecting a more complex binding
651 mechanism of each of the two calmodulin lobes to at least three elements of the R region than
652 our simple model with only two binding parameters. **C)** Model CFTR R region-Cterm and
653 NHERF-1. Model CFTR R region-Cterm was incubated in solutions diluted 2-fold from the
654 initial solution that contained 10 μ M NHERF-1. **D)** Model CFTR R region-Cterm and
655 SLC26A9 STAS IVS-Cterm. Model CFTR R region-Cterm was incubated in solutions
656 diluted 2-fold from the initial solution that contained 10 μ M SLC26A9 STAS IVS-Cterm. A
657 total of 5 or 6 concentrations were used per analyte.

658

659 **Figure 3.** Simulations using the Virtual Cell modeling environment predict that protein –
660 protein and membrane cholesterol – protein interactions are required for the formation of
661 mesoscale CFTR-containing macromolecular clusters on membranes. Simulation results for
662 the formation of clusters containing >2, >5, >10, or greater the >100 CFTR molecules for **A)**
663 when only protein - protein interactions are considered, **B)** when only CFTR – membrane
664 cholesterol interactions are considered, and **C)** when protein – protein and protein – membrane
665 cholesterol interactions are considered.

666

667 **Figure 4.** Model CFTR R Region-Cterm is evenly distributed on supported lipid bilayers
668 (SLBs) except at the highest concentration. **A)** AF647-WT CFTR R region-Cterm fluorescence
669 is not evenly distributed on SLBs as the density increases (left), as indicated by the variance in
670 the plot (right). **B)** Fluorescence recovery after photobleaching (FRAP) indicates that AF647-
671 WT CFTR R Region-Cterm is fluid on SLBs. **C)** AF647-Model CFTR R region-Cterm
672 fluorescence is evenly distributed on SLBs as the density increases. **D)** Fluorescence recovery
673 after photobleaching (FRAP) indicates that AF647-model CFTR R Region-Cterm is fluid on
674 SLBs. Scale bars = 30 μ m

675

676 **Figure 5.** Cholesterol, binding partners, and calcium promote model CFTR R region-Cterm
677 cluster formation on double supported lipid bilayers ((d)SLBs). **A)** Model CFTR R region-
678 Cterm attached to cholesterol-depleted regions of (d)SLBs do not form clusters in the presence
679 of 1 μ M calmodulin, 0.5 μ M NHERF-1, and 1 μ M SLC26A9 STAS IVS-Cterm without or
680 with 500 μ M CaCl₂ (top two rows). Model CFTR R Region-Cterm attached to cholesterol-rich
681 regions of the (d)SLB forms clusters in the presence of 1 μ M calmodulin, 0.5 μ M NHERF-1,
682 and 1 μ M SLC26A9 STAS IVS-Cterm with 500 μ M CaCl₂ (bottom row) but not without 500
683 μ M CaCl₂ (third row). Scale bar = 30 μ m. **B)** Variance of fluorescence intensities in **(A)**

684 demonstrates significantly increased CFTR R region-Cterm cluster formation as the density of
685 cholesterol is increased in (d)SLBs. $n = 13$. * = $p < 0.05$, T-test. **C**) Full field of view of Model
686 CFTR R region-Cterm clusters (left). Scale bar is 15 μm . Time-lapse imaging of Model CFTR
687 R region-Cterm clusters shows merging event between Model CFTR R region-Cterm clusters
688 (images expanded from box inset in left image). Scale bar = 5 μm .

689

690 **Figure 6.** Distinct sets of CFTR R region-Cterm binding partners promote cluster formation
691 on double supported lipid bilayers ((d)SLBs). **A**) 0.5 μM NHERF-1 and 1 μM SLC26A9 STAS
692 IVS-Cterm promote cluster formation of AF647-Model CFTR R region-Cterm attached to
693 cholesterol-rich (d)SLB regions when combined in solution. Scale bar = 30 μm . **B**) 1 μM
694 calmodulin and 500 μM CaCl_2 promote cluster formation of AF647-Model CFTR R region-
695 Cterm attached to cholesterol-rich (d)SLB regions when combined in solution. Scale bar = 30
696 μm . Proteins in **(A)** and **(B)** were incubated for 30 minutes prior to image capture.

697

698 **Figure 7.** Phosphorylation of Model CFTR R region-Cterm results attached to cholesterol-rich
699 regions of double supported lipid bilayers ((d)SLBs) results in cluster formation. **A**) AF647-
700 Model CFTR R region-Cterm cluster formation on (d)SLBs is promoted in the presence of 1
701 μM calmodulin, 0.5 μM NHERF-1, and 1 μM SLC26A9 STAS IVS-Cterm with 500 μM CaCl_2
702 (top row). Phosphorylation of AF647-Model CFTR R region-Cterm cluster promotes
703 formation of smaller clusters on (d)SLBs in the presence of 1 μM calmodulin, 0.5 μM NHERF-
704 1, and 1 μM SLC26A9 STAS IVS-Cterm with and without 500 μM CaCl_2 (bottom row). Scale
705 bar = 30 μm . **B**) Variance of AF647-Model CFTR R region-Cterm fluorescence intensities in
706 the presence of calmodulin, NHERF-1, and SLC26A9 STAS IVS-Cterm with or without
707 calcium. $n = 3$. * = $p < 0.05$, T-test. **C**) Variance of phosphorylated AF647-Model CFTR R

708 region-Cterm fluorescence intensities in the presence of calmodulin, NHERF-1, and SLC26A9
709 STAS IVS-Cterm with or without calcium. n = 3. n.s. = no significance, p > 0.05, T-test.

710

711 **SUPPLEMENTAL FIGURE LEGENDS**

712 **Figure S1. A)** Visualized map of modeled interaction network using the Virtual Cell.
713 “Reacting” and “Reactions” here refer to binding interactions.

714

715 **Figure S2.** Modeled interactions between domains and binding motifs in CFTR and its binding
716 partners. Green lines indicate protein-protein interaction affinities defined by our study using
717 BLI. Magenta lines indicate protein-protein, protein-cholesterol, and cholesterol-cholesterol
718 affinities published in the literature. R1, R2, R3, and R4 indicate distinct CFTR R regions that
719 can interact with binding partners, as determined by our previous interaction analysis using
720 NMR [31,32]. For each binding motif, we used the overall affinity measured by BLI, as we
721 have previously done for Nck: N-WASP interactions [58,91].

722

723 **Figure S3. A)** Images of AlexaFluor (AF) 488-labelled sHis₈-CFTR R region-Cterm on
724 supported lipid bilayers (SLBs) in 0 mM (left) or 275 mM (right) imidazole-containing buffer.
725 Scale bar = 20 μ m. **B)** SLBs composed of 15% cholesterol fully recover following photobleach
726 (top). SLBs composed of 20% cholesterol do not recover (bottom). n = 5. Scale bar = X μ m.
727 **C)** The AlexaFluor488 fluorescence of the bottom SLB of (d)SLBs recovers after
728 photobleaching to the same extent as an uncovered SLB indicating that layering a second SLB
729 on top of the SLB contacting the coverglass substrates has no effect on fluidity (left). n = 5. The
730 fluorescence of the upper SLB of (d)SLBs recovers fully from when composed of 20 – 40%
731 cholesterol indicating that it remains fully fluid, unlike its SLB counterpart (**B**). n = 5.

732

733 **Figure S4. A)** Sequences of double-His₈-tagged WT and Model CFTR R region-Cterm
734 constructs. NMR-detected regions of protein-protein interaction were fused with GGS linkers
735 in Model CFTR R region-Cterm. This allows us to parse the impact of specific protein - protein
736 and protein – lipid interactions. Dual His-tags were used to anchor the fusion protein to
737 supported lipid bilayers in lieu of transmembrane domains. **B)** Schematics illustrating NMR-
738 determined binding elements within the CFTR R region from [31,32]. These elements were
739 included in our Model CFTR R region-Cterm fusion protein shown in **(A)** and Figure S6, while
740 all residues residing outside these interaction elements were replaced with GGS linkers. (Row
741 1) Schematic of sequence for wild type CFTR R region shown in **(A)**. (Row 2) Schematic of
742 sequence for Model CFTR R region shown in **(A)**. (Row 3) Schematic showing calmodulin-
743 binding elements in the presence of Ca²⁺ between R region residues 659-671, 700-715, and
744 760-780 in the non-phosphorylated R region. (Row 4) Schematic showing NMR-derived
745 binding elements of the R region to the SLC26A3 STAS domain including its IVS between
746 residues 660-681, 750-777, 805-814, and 829-836 with and without phosphorylation of the R
747 region. In the previously published NMR experiments [31], the homologous SLC26A3 STAS
748 domain with IVS was used due to instability of the STAS with IVS of SLC26A9. As shown in
749 Figure S6, here we use a fusion of only the IVS (lacking the folded STAS domain) together
750 with the Cterm of SLC26A9 for our biochemical assays. (Row 5) Schematic showing Cterm
751 binding elements between residues 663-680, 708-723, 750-778, and 803-815 in the non-
752 phosphorylated R region. (Row 6) Schematic showing Cterm binding elements between
753 residues 669-695, 708-723, 750-778, 802-810, and 827-836 in the phosphorylated R region.
754

755 **Figure S5.** Schematic of double supported lipid bilayers ((d)SLB) used in experiments shown
756 in Figures 5, 6, and 7. **A)** (d)SLB composed of cholesterol-rich and -depleted domains with
757 CFTR-R region-Cterm anchored to 18:1 DGS-NTA(Ni) in cholesterol-depleted domains. **B)**

758 (d)SLBs composed of cholesterol-rich and -depleted domains with CFTR-R region-Cterm

759 anchored to 16:0 DGS-NTA(Ni) in cholesterol-rich domains.

760

761 **Figure S6.** Schematics, including residue positions, **(A)** and Coomassie stained gels **(B)** of

762 recombinant fusion proteins used in this study.

763

764 **Table 1.** Binding constants used to describe interactions in the Virtual Cell computational
 765 model, based on Biolayer Interferometry experiments or literature values.

Interactor 1	Interactor 2	k_{on} (M \cdot s $^{-1}$)	k_{off} (s $^{-1}$)	K_D (M)	Source
Model CFTR R region-Cterm	Model CFTR R region-Cterm	$1.90 \pm 0.06 \times 10^2$	$8.98 \pm 0.34 \times 10^{-4}$	$4.72 \pm 0.04 \times 10^{-6}$	This study
Model CFTR R region-Cterm	Calmodulin*	$3.55 \pm 2.47 \times 10^3$	$2.54 \pm 1.78 \times 10^{-1}$	$2.23 \pm 2.17 \times 10^{-4}$	
Model CFTR R region-Cterm		$4.29 \pm 5.39 \times 10^3$	$1.52 \pm 1.93 \times 10^{-1}$	$3.47 \pm 0.68 \times 10^{-5}$	
Model CFTR R region-Cterm	NHERF-1	$2.73 \pm 0.08 \times 10^3$	$3.57 \pm 0.35 \times 10^{-4}$	$1.31 \pm 0.16 \times 10^{-7}$	
Model CFTR R region-Cterm		$1.10 \pm 0.03 \times 10^5$	$8.19 \pm 0.19 \times 10^{-2}$	$7.63 \pm 0.21 \times 10^{-7}$	
Model CFTR R region-Cterm	SLC26A9 STAS	$8.16 \pm 0.80 \times 10^2$	$4.21 \pm 0.57 \times 10^{-4}$	$5.05 \pm 0.66 \times 10^{-7}$	
Model CFTR R region-Cterm		$3.13 \pm 0.33 \times 10^4$	$4.85 \pm 0.52 \times 10^{-2}$	$1.55 \pm 0.10 \times 10^{-6}$	
Cholesterol	Cholesterol	5.00×10^3	1.00×10^{-3}	1.00×10^{-6}	Estimated from Corey, 2021 [92]
Model CFTR R region-Cterm	Cholesterol	1.25×10^3	1.00×10^{-2}	8.00×10^{-6}	
NHERF-1 Nterm Chol. Site	Cholesterol	1.00×10^3	4.00×10^{-5}	4.00×10^{-8}	
SLC26A9 TMD	Cholesterol	9.09×10^{-1}	1.00×10^{-1}	1.10×10^{-4}	Estimated from Corey, 2021 [92]

SLC26A9 Cterm	NHERF-1 PDZ1	1.00×10^2	2.39×10^{-3}	2.39×10^{-5}	Bertrand, 2017 [93]
SLC26A9 Cterm	NHERF-1 PDZ2	1.00×10^2	3.84×10^{-3}	3.84×10^{-5}	
SLC26A9 STAS IVS	Calmodulin	1.00×10^4	8.65×10^{-4}	8.65×10^{-8}	Keller, 2014 [94]

766 *See comment in the Figure 2 legend.

767

768 **Table 2.** Densities and concentrations of molecular species used in the Virtual Cell
769 computational model.

Molecule	Estimated physiological concentration	Chosen simulated concentration	Source
CFTR	16-36 molecules/ μm^2 (overall expression in polarized epithelia model)	50-1000 molecules/ μm^2	McShane, 2014 [95]
Calmodulin	2-25 μM (different tissues) 5.7 μM (lungs)	5.0 μM	Kakiuchi, 1982 [96]
NHERF-1	~0.05-5 μM (different cytoskeletal proteins)	0.5 μM	Wu, 2005 [97]
SLC26A9	N/A (was estimated as same or greater than CFTR)	500-1000 molecules/ μm^2	N/A
Cholesterol	10-40%	10,000-50,000 molecules/ μm^2 (~5-10%)	N/A

770

771

772 **Table 3.** Compositions of supported lipid bilayers. POPC is 1-palmitoyl-2-oleoyl-sn-glycero-
773 3-phosphocholine, Avanti Cat. #850457. DPPC is 1,2-dipalmitoyl-sn-glycero-3-
774 phosphocholine, Avanti Cat. #850355. Cholesterol was purchased from Avanti Cat. #700100.
775 18:1 DGS-NTA is 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic
776 acid)succinyl] (nickel salt), Avanti Cat. #790404. 16:0 DGS-NTA is 1,2-dipalmitoyl-sn-
777 glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt), provided
778 by the Levental Lab. PEG5000-PE is 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
779 [methoxy(polyethylene glycol)-5000] (ammonium salt), Avanti Cat. #880230.

Figure	Bilayer	POPC	DPPC	Cholesterol	18:1 DGS-NTA(Ni)	16:0 DGS-NTA(Ni)	PEG5000PE
5, 6, 7	Base	99%	0%	0%	0%	0%	1%
4	Base	98%	0%	0%	2%	0%	0.01%
5	Top	59%	29%	10%	2%	0%	0.01%
5, 6	Top	59%	29%	10%	0%	2%	0.01%
5	Top	49%	29%	20%	2%	0%	0.01%
5	Top	49%	29%	20%	0%	2%	0.01%
5	Top	39%	29%	30%	2%	0%	0.01%
5	Top	39%	29%	30%	0%	2%	0.01%
5	Top	29%	29%	40%	2%	0%	0.01%
5, 6, 7	Top	29%	29%	40%	0%	2%	0.01%

780

781

782 **Table 4.** Amino acid sequences of all recombinant proteins used in this study.

Construct	Sequence	Notes
Model CFTR R region-Cterm	<p>MSSSHHHHHHHGG<u>SCGGSGGSGGSS</u></p> <p>AERRN<u>S</u>ILTELHR<u>F</u>SLEGDAPVSW<u>T</u>ETKK<u>Q</u>G</p> <p>GS<u>GGSGGSGGSEKRKNS</u>ILNPINSIRK<u>F</u>SIV<u>Q</u></p> <p>K<u>TPLQGGSGGSGGSGGSGE</u>AILPRI<u>S</u>VISTGP</p> <p>TLQ<u>ARRRQS</u>VLNLMTHSV<u>N</u>QQQNIHRGGSG</p> <p>GS<u>GGSGG</u>STELDIYSRR<u>L</u>S<u>Q</u>EGGSGGSGG<u>S</u></p> <p>GGSLK<u>E</u>SFFDDGGSGGSGGSG<u>SHHHHHHH</u></p> <p><u>H</u>GGSGGSGGSGGSEENKVRGGSGGSGGSG</p> <p>GSDTRL</p> <p>R region boundaries: 654-685, 695-720, 745-785, 803-815, 829-836</p> <p>C terminal tail boundaries: 1417-1422, 1477-1480</p> <p>PKA phosphorylation sites (red): S660, S670, S700, S712, S753, S768, S813</p> <p>(R region and Cterm segments are all joined by (GGS)₄ linkers)</p>	<p>Human, CFTR R region and Cterm construct containing sites implicated in binding calmodulin, NHERF-1, and SLC26A9 based on NMR analysis [31,32]. Contains 7 known PKA phosphorylation sites. Contains one N-terminal His₈ tag and another His₈ tag between the R region and Cterm sites for anchoring to supported lipid bilayers (His tags are underlined). Intervening (GGS)₄ linkers (gray shade) were added between each segment of the R region and Cterm, to improve solubility. A C1458S mutation was introduced, and one cysteine was included in the N-terminal (GGS)₅ linker, for labeling with maleimide dye without blocking Cterm interactions.</p>

WT CFTR R region-Cterm	<p>MSSSHHHHHHHGGSCGGSGSGGGSS</p> <p>AERRNSILTETLHRFSLEGDAPVSWTETKKQS</p> <p>FKQTGEFGEKRKNSILNPINSIRKFSSIVQKTPL</p> <p>QMNGIEEDSDEPLERRLSLVPDSEQGEAILPRI</p> <p>SVISTGPTLQARRRQSVNLMTSVNQGQNIH</p> <p>RKTTASTRKVSLAPQANLTELDIYSRRRLSQET</p> <p>GLEISSEEINEEDLKESFFDDGGSGGSGGGSGG</p> <p>SHHHHHHHHGGSGGSGGSEENKVRQY</p> <p>DSIQKLLNERSLFRQAISPSDRVKLFPHRNSSK</p> <p>SKSKPQIAALKEETEEEVQDTRL</p> <p>R region boundaries: 654-836</p> <p>C terminal tail boundaries: 1417-1480</p> <p>PKA phosphorylation sites (red): S660, S670, S700, S712, S737, S752, S768, S795, S813</p>	<p>Human, CFTR full-length R region and Cterm fusion.</p> <p>Contains one N-terminal His₈ tag and another His₈ tag between the R region and Cterm for anchoring to SLBs. Intervening GGS linkers (gray shade) were added to improve solubility.</p> <p>C1458S mutation and one cysteine was included in the N-terminal GGS linker, for labeling with maleimide dyes without blocking Cterm interactions.</p>
sHis ₈ -WT CFTR R Region-Cterm	<p>MSSSHHHHHHHSAERRNSILTETLHRFSLEGDAP</p> <p>VSWTETKKQSFKQTGEFGEKRKNSILNPINSIRKFSI</p> <p>VQKTPLQMNGIEEDSDEPLERRLSLVPDSEQGEAIL</p> <p>PRISVISTGPTLQARRRQSVNLMTHSVNQGQNIHR</p> <p>KTTASTRKVSLAPQANLTELDIYSRRRLSQETGLEISE</p> <p>EINEEDLKECLFDDMEKVRQYDSIQKLLNERSLFRQ</p> <p>AISPSDRVKLFPHRNSSKSKSKPQIAALKEETEEEV</p> <p>QDTRL</p>	<p>Human, CFTR full-length R region and Cterm fusion.</p> <p>Contains one N-terminal His₈ tag for anchoring to SLBs. A C1458S mutation was introduced to allow for single maleimide-dye labeling by conjugation with C832.</p>

Calmodulin	CMADQLTEEQIAEFKEAFSLFDKDGDTITTKELGT VMRSLGQNPTAEELQDMINEVDADGNGTIDFPEFL TMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAE LRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYE EFVQMMTAK	Human, full-length calmodulin. One cysteine was added directly N-terminal to calmodulin for labeling with maleimide dyes.
NHERF-1	MSADAAAGAPLPRLCLEKGPNNGYGFHLHGEKGK LGQYIRLVEPGSPAEEKAGLLAGDRLVEVNGENVEKE THQQVVSIRALAALNAVRLLVDPETDEQLQKLGVQ VREELLRAQEAPGQAEPPAAEVQGAGNENEPR ADKSHPEQRELPRRLCTMKKGPSGYGFNLHSDKS KPGQFIRSVDPDSPAEASGLRAQDRIVEVNGVCME GKQHGDVVSAIRAGGDETKLVVDRETDEFFKKCR VIPSQEHLNGPLPVFTNGEIQKENSREALAEAALE SPRPALVRSASSDTSEELNSQDSPPKQDSTAPSST SSSDPILDNFNISLAMAKERAHQ KRSSKRAPQMDWSKKNELFSNL	Human, full-length NHERF-1.
SLC26A9 STAS IVS-Cterm	YLKKQEKRMRPTQQRRSLFMKTKTVSLQELQQD FENAPPTDPNNNQTPANGTSVSYITFSPDSSSPAQ SEPPASAEAPGEPSDM <u>RDVTPGHNFQGAPGDAEL</u> <u>SLYDSEEDIRSYWAETLTAL</u> IVS boundaries: 569-652 C terminal tail boundaries: 742-772 , 785-791 (IVS and Cterm segments are all fused directly)	Human, SLC26A9 full-length intervening sequence (IVS, gray shade) and Cterminal tail (Cterm, underlined) fusion, with no linker separating the IVS and Cterm. The residues 773-784 were removed from the Cterm sequence due to a predicted alpha-helical structural element.

783

784

785 **REFERENCES**

- 786 1. Ditlev, J.A. Membrane-Associated Phase Separation: Organization and Function
787 Emerge from a Two-Dimensional Milieu. *J. Mol. Cell Biol.* **2021**,
788 doi:10.1093/jmcb/mjab010.
- 789 2. Jaqaman, K.; Ditlev, J.A. Biomolecular Condensates in Membrane Receptor Signaling.
790 *Curr. Opin. Cell Biol.* **2021**, 69, 48–54, doi:<https://doi.org/10.1016/j.ceb.2020.12.006>.
- 791 3. Ditlev, J.A.; Case, L.B.; Rosen, M.K. Who's In and Who's Out—Compositional Control of
792 Biomolecular Condensates. *J. Mol. Biol.* **2018**,
793 doi:<https://doi.org/10.1016/j.jmb.2018.08.003>.
- 794 4. Lyon, A.S.; Peebles, W.B.; Rosen, M.K. A Framework for Understanding the Functions of
795 Biomolecular Condensates across Scales. *Nat. Rev. Mol. Cell Biol.* **2020**,
796 doi:10.1038/s41580-020-00303-z.
- 797 5. Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular Condensates:
798 Organizers of Cellular Biochemistry. *Nat Rev Mol Cell Biol* **2017**, 18, 285–298.
- 799 6. Ahangama Liyanage, L.; Ditlev, J.A. Mesoscale Condensates Organize the Cytoplasm.
800 *Nat. Cell Biol.* **2024**, 26, 310–312, doi:10.1038/s41556-023-01331-5.
- 801 7. Keber, F.C.; Nguyen, T.; Mariotti, A.; Brangwynne, C.P.; Wühr, M. Evidence for
802 Widespread Cytoplasmic Structuring into Mesoscale Condensates. *Nat. Cell Biol.* **2024**,
803 doi:10.1038/s41556-024-01363-5.
- 804 8. Banani, S.F.; Rice, A.M.; Peebles, W.B.; Lin, Y.; Jain, S.; Parker, R.; Rosen, M.K.
805 Compositional Control of Phase-Separated Cellular Bodies. *Cell* **2016**, 166, 651–663,
806 doi:10.1016/j.cell.2016.06.010.
- 807 9. Li, P.; Banjade, S.; Cheng, H.C.; Kim, S.; Chen, B.; Guo, L.; Llaguno, M.; Hollingsworth,
808 J.V.; King, D.S.; Banani, S.F.; et al. Phase Transitions in the Assembly of Multivalent
809 Signalling Proteins. *Nature* **2012**, 483, 336–340, doi:10.1038/nature10879.
- 810 10. Kwon, I.; Kato, M.; Xiang, S.; Wu, L.; Theodoropoulos, P.; Mirzaei, H.; Han, T.; Xie, S.;
811 Corden, J.L.; McKnight, S.L. Phosphorylation-Regulated Binding of RNA Polymerase II to
812 Fibrous Polymers of Low-Complexity Domains. *Cell* **2013**, 155, 1049–1060,
813 doi:10.1016/j.cell.2013.10.033.
- 814 11. Kim, T.H.; Tsang, B.; Vernon, R.M.; Sonenberg, N.; Kay, L.E.; Forman-Kay, J.D. Phospho-
815 Dependent Phase Separation of FMRP and CAPRIN1 Recapitulates Regulation of
816 Translation and Deadenylation. *Science* **2019**, 365, 825 LP – 829,
817 doi:10.1126/science.aax4240.
- 818 12. Nosella, M.L.; Tereshchenko, M.; Pritišanac, I.; Chong, P.A.; Toretsky, J.A.; Lee, H.O.;
819 Forman-Kay, J.D. O-Linked-N-Acetylglucosaminylation of the RNA-Binding Protein EWS
820 N-Terminal Low Complexity Region Reduces Phase Separation and Enhances
821 Condensate Dynamics. *J. Am. Chem. Soc.* **2021**, 143, 11520–11534,
822 doi:10.1021/jacs.1c04194.
- 823 13. Sezgin, E.; Kaiser, H.-J.; Baumgart, T.; Schwille, P.; Simons, K.; Levental, I. Elucidating
824 Membrane Structure and Protein Behavior Using Giant Plasma Membrane Vesicles.
825 *Nat. Protoc.* **2012**, 7, 1042.
- 826 14. Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C. The Mystery of Membrane Organization:
827 Composition, Regulation and Roles of Lipid Rafts. *Nat. Rev. Mol. Cell Biol.* **2017**, 18,
828 361–374.

829 15. Lorent, J.H.; Diaz-Rohrer, B.; Lin, X.; Spring, K.; Gorfe, A.A.; Levental, K.R.; Levental, I.
830 Structural Determinants and Functional Consequences of Protein Affinity for
831 Membrane Rafts. *Nat. Commun.* **2017**, *8*, 1219, doi:10.1038/s41467-017-01328-3.
832 16. Case, L.B.; Ditlev, J.A.; Rosen, M.K. Regulation of Transmembrane Signaling by Phase
833 Separation. *Annu. Rev. Biophys.* **2019**, *48*, 465–494, doi:10.1146/annurev-biophys-
834 052118-115534.
835 17. Wang, H.-Y.; Chan, S.H.; Dey, S.; Castello-Serrano, I.; Rosen, M.K.; Ditlev, J.A.; Levental,
836 K.R.; Levental, I. Coupling of Protein Condensates to Ordered Lipid Domains
837 Determines Functional Membrane Organization. *Sci. Adv.* **2023**, *9*, eadf6205,
838 doi:10.1126/sciadv.adf6205.
839 18. Shelby, S.A.; Castello-Serrano, I.; Wisser, K.C.; Levental, I.; Veatch, S.L. Membrane
840 Phase Separation Drives Responsive Assembly of Receptor Signaling Domains. *Nat.*
841 *Chem. Biol.* **2023**, *19*, 750–758, doi:10.1038/s41589-023-01268-8.
842 19. Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.-S.; Drumm, M.L.; Melmer, G.; Dean, M.;
843 Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N.; et al. Identification of the Cystic
844 Fibrosis Gene: Chromosome Walking and Jumping. *Science* **1989**, *245*, 1059–1065,
845 doi:10.1126/science.2772657.
846 20. Riordan, J.R.; Rommens, J.M.; Kerem, B.-S.; Alon, N.; Rozmahel, R.; Grzelczak, Z.;
847 Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.-L.; et al. Identification of the Cystic Fibrosis
848 Gene: Cloning and Characterization of Complementary DNA. *Science* **1989**, *245*, 1066–
849 1073, doi:10.1126/science.2475911.
850 21. Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.;
851 Buchwald, M.; Tsui, L.C. Identification of the Cystic Fibrosis Gene: Genetic Analysis.
852 *Science* **1989**, *245*, 1073–1080, doi:10.1126/science.2570460.
853 22. Bear, C.E.; Li, C.H.; Kartner, N.; Bridges, R.J.; Jensen, T.J.; Ramjeesingh, M.; Riordan, J.R.
854 Purification and Functional Reconstitution of the Cystic Fibrosis Transmembrane
855 Conductance Regulator (CFTR). *Cell* **1992**, *68*, 809–818, doi:10.1016/0092-
856 8674(92)90155-6.
857 23. Gadsby, D.C.; Vergani, P.; Csanády, L. The ABC Protein Turned Chloride Channel Whose
858 Failure Causes Cystic Fibrosis. *Nature* **2006**, *440*, 477–483, doi:10.1038/nature04712.
859 24. Farinha, C.M.; Swiatecka-Urban, A.; Brautigan, D.L.; Jordan, P. Regulatory Crosstalk by
860 Protein Kinases on CFTR Trafficking and Activity. *Front. Chem.* **2016**, *4*.
861 25. Kunzelmann, K.; Mehta, A. CFTR: A Hub for Kinases and Crosstalk of cAMP and Ca2+.
862 *FEBS J.* **2013**, *280*, 4417–4429, doi:10.1111/febs.12457.
863 26. Moran, O. Model of the cAMP Activation of Chloride Transport by CFTR Channel and
864 the Mechanism of Potentiators. *J. Theor. Biol.* **2010**, *262*, 73–79,
865 doi:10.1016/j.jtbi.2009.08.032.
866 27. GADSBY, D.C.; NAIRN, A.C. Control of CFTR Channel Gating by Phosphorylation and
867 Nucleotide Hydrolysis. *Physiol. Rev.* **1999**, *79*, S77–S107,
868 doi:10.1152/physrev.1999.79.1.S77.
869 28. Guggino, W.B.; Stanton, B.A. New Insights into Cystic Fibrosis: Molecular Switches That
870 Regulate CFTR. *Nat. Rev. Mol. Cell Biol.* **2006**, *7*, 426–436, doi:10.1038/nrm1949.
871 29. Liang, X.; Da Paula, A.C.; Bozóky, Z.; Zhang, H.; Bertrand, C.A.; Peters, K.W.; Forman-
872 Kay, J.D.; Frizzell, R.A. Phosphorylation-Dependent 14-3-3 Protein Interactions Regulate
873 CFTR Biogenesis. *Mol. Biol. Cell* **2012**, *23*, 996–1009, doi:10.1091/mbc.e11-08-0662.

874 30. Khushoo, A.; Yang, Z.; Johnson, A.E.; Skach, W.R. Ligand-Driven Vectorial Folding of
875 Ribosome-Bound Human CFTR NBD1. *Mol. Cell* **2011**, *41*, 682–692,
876 doi:10.1016/j.molcel.2011.02.027.

877 31. Bozoky, Z.; Krzeminski, M.; Muhandiram, R.; Birtley, J.R.; Al-Zahrani, A.; Thomas, P.J.;
878 Frizzell, R.A.; Ford, R.C.; Forman-Kay, J.D. Regulatory R Region of the CFTR Chloride
879 Channel Is a Dynamic Integrator of Phospho-Dependent Intra- and Intermolecular
880 Interactions. *Proc. Natl. Acad. Sci.* **2013**, *110*, E4427–E4436,
881 doi:10.1073/pnas.1315104110.

882 32. Bozoky, Z.; Ahmadi, S.; Milman, T.; Kim, T.H.; Du, K.; Di Paola, M.; Pasyk, S.; Pekhletski,
883 R.; Keller, J.P.; Bear, C.E.; et al. Synergy of cAMP and Calcium Signaling Pathways in
884 CFTR Regulation. *Proc. Natl. Acad. Sci.* **2017**, *114*, E2086–E2095,
885 doi:10.1073/pnas.1613546114.

886 33. Sheng, R.; Chen, Y.; Yung Gee, H.; Stec, E.; Melowic, H.R.; Blatner, N.R.; Tun, M.P.; Kim,
887 Y.; Källberg, M.; Fujiwara, T.K.; et al. Cholesterol Modulates Cell Signaling and Protein
888 Networking by Specifically Interacting with PDZ Domain-Containing Scaffold Proteins.
889 *Nat. Commun.* **2012**, *3*, 1249, doi:10.1038/ncomms2221.

890 34. Walter, J.D.; Sawicka, M.; Dutzler, R. Cryo-EM Structures and Functional
891 Characterization of Murine Slc26a9 Reveal Mechanism of Uncoupled Chloride
892 Transport. *eLife* **2019**, *8*, e46986, doi:10.7554/eLife.46986.

893 35. Ko, S.B.H.; Zeng, W.; Dorwart, M.R.; Luo, X.; Kim, K.H.; Millen, L.; Goto, H.; Naruse, S.;
894 Soyombo, A.; Thomas, P.J.; et al. Gating of CFTR by the STAS Domain of SLC26
895 Transporters. *Nat. Cell Biol.* **2004**, *6*, 343–350, doi:10.1038/ncb1115.

896 36. Ismailov, I.I.; Awayda, M.S.; Jovov, B.; Berdiev, B.K.; Fuller, C.M.; Dedman, J.R.; Kaetzel,
897 M.A.; Benos, D.J. Regulation of Epithelial Sodium Channels by the Cystic Fibrosis
898 Transmembrane Conductance Regulator (*). *J. Biol. Chem.* **1996**, *271*, 4725–4732,
899 doi:10.1074/jbc.271.9.4725.

900 37. Wang, S.; Raab, R.W.; Schatz, P.J.; Guggino, W.B.; Li, M. Peptide Binding Consensus of
901 the NHE-RF-PDZ1 Domain Matches the C-Terminal Sequence of Cystic Fibrosis
902 Transmembrane Conductance Regulator (CFTR). *FEBS Lett.* **1998**, *427*, 103–108,
903 doi:10.1016/S0014-5793(98)00402-5.

904 38. Stutts, M.J.; Canessa, C.M.; Olsen, J.C.; Hamrick, M.; Cohn, J.A.; Rossier, B.C.; Boucher,
905 R.C. CFTR as a cAMP-Dependent Regulator of Sodium Channels. *Science* **1995**, *269*,
906 847–850, doi:10.1126/science.7543698.

907 39. Mall, M.; Hipper, A.; Greger, R.; Kunzelmann, K. Wild Type but Not ΔF508 CFTR Inhibits
908 Na⁺ Conductance When Coexpressed in Xenopus Oocytes. *FEBS Lett.* **1996**, *381*, 47–52,
909 doi:10.1016/0014-5793(96)00079-8.

910 40. Ji, H.-L.; Chalfant, M.L.; Jovov, B.; Lockhart, J.P.; Parker, S.B.; Fuller, C.M.; Stanton, B.A.;
911 Benos, D.J. The Cytosolic Termini of the β- and γ-ENaC Subunits Are Involved in the
912 Functional Interactions between Cystic Fibrosis Transmembrane Conductance
913 Regulator and Epithelial Sodium Channel*. *J. Biol. Chem.* **2000**, *275*, 27947–27956,
914 doi:10.1074/jbc.M002848200.

915 41. König, J.; Schreiber, R.; Voelcker, T.; Mall, M.; Kunzelmann, K. The Cystic Fibrosis
916 Transmembrane Conductance Regulator (CFTR) Inhibits ENaC through an Increase in
917 the Intracellular Cl⁻ Concentration. *EMBO Rep.* **2001**, *2*, 1047–1051,
918 doi:10.1093/embo-reports/kve232.

919 42. Reddy, M.M.; Light, M.J.; Quinton, P.M. Activation of the Epithelial Na⁺ Channel (ENaC)
920 Requires CFTR Cl⁻ Channel Function. *Nature* **1999**, *402*, 301–304, doi:10.1038/46297.

921 43. Reddy, M.; Quinton, P. Functional Interaction of CFTR and ENaC in Sweat Glands. *Pflüg. Arch.* **2003**, 445, 499–503, doi:10.1007/s00424-002-0959-x.

922 44. Jiang, Q.; Li, J.; Dubroff, R.; Ahn, Y.J.; Foskett, J.K.; Engelhardt, J.; Kleyman, T.R. Epithelial Sodium Channels Regulate Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels in Xenopus Oocytes*. *J. Biol. Chem.* **2000**, 275, 13266–13274, doi:10.1074/jbc.275.18.13266.

923 45. Chan, L.N.; Wang, X.F.; Tsang, L.L.; Liu, C.Q.; Chan, H.C. Suppression of CFTR-Mediated Cl⁻ Secretion by Enhanced Expression of Epithelial Na⁺ Channels in Mouse Endometrial Epithelium. *Biochem. Biophys. Res. Commun.* **2000**, 276, 40–44, doi:10.1006/bbrc.2000.3426.

924 46. Bertrand, C.A.; Zhang, R.; Pilewski, J.M.; Frizzell, R.A. SLC26A9 Is a Constitutively Active, CFTR-Regulated Anion Conductance in Human Bronchial Epithelia. *J. Gen. Physiol.* **2009**, 133, 421–438, doi:10.1085/jgp.200810097.

925 47. El Khouri, E.; Touré, A. Functional Interaction of the Cystic Fibrosis Transmembrane Conductance Regulator with Members of the SLC26 Family of Anion Transporters (SLC26A8 and SLC26A9): Physiological and Pathophysiological Relevance. *Cyst. Fibros. O-Mics Cell Biol. Physiol. Ther. Adv.* **2014**, 52, 58–67, doi:10.1016/j.biocel.2014.02.001.

926 48. Abu-Arish, A.; Pandžić, E.; Kim, D.; Tseng, H.W.; Wiseman, P.W.; Hanrahan, J.W. Agonists That Stimulate Secretion Promote the Recruitment of CFTR into Membrane Lipid Microdomains. *J. Gen. Physiol.* **2019**, 151, 834–849, doi:10.1085/jgp.201812143.

927 49. Abu-Arish, A.; Pandžić, E.; Goepf, J.; Matthes, E.; Hanrahan, J.W.; Wiseman, P.W. Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells. *Biophys. J.* **2015**, 109, 85–94, doi:10.1016/j.bpj.2015.04.042.

928 50. Abu-Arish, A.; Pandžić, E.; Luo, Y.; Sato, Y.; Turner, M.J.; Wiseman, P.W.; Hanrahan, J.W. Lipid-Driven CFTR Clustering Is Impaired in Cystic Fibrosis and Restored by Corrector Drugs. *J. Cell Sci.* **2022**, 135, doi:10.1242/jcs.259002.

929 51. Egan, M.E.; Glöckner-Pagel, J.; Ambrose, C.A.; Cahill, P.A.; Pappoe, L.; Balamuth, N.; Cho, E.; Canny, S.; Wagner, C.A.; Geibel, J.; et al. Calcium-Pump Inhibitors Induce Functional Surface Expression of ΔF508-CFTR Protein in Cystic Fibrosis Epithelial Cells. *Nat. Med.* **2002**, 8, 485–492, doi:10.1038/nm0502-485.

930 52. Harada, K.; Okiyoneda, T.; Hashimoto, Y.; Oyokawa, K.; Nakamura, K.; Suico, M.A.; Shuto, T.; Kai, H. Curcumin Enhances Cystic Fibrosis Transmembrane Regulator Expression by Down-Regulating Calreticulin. *Biochem. Biophys. Res. Commun.* **2007**, 353, 351–356, doi:10.1016/j.bbrc.2006.12.036.

931 53. Veit, G.; Avramescu, R.G.; Chiang, A.N.; Houck, S.A.; Cai, Z.; Peters, K.W.; Hong, J.S.; Pollard, H.B.; Guggino, W.B.; Balch, W.E.; et al. From CFTR Biology toward Combinatorial Pharmacotherapy: Expanded Classification of Cystic Fibrosis Mutations. *Mol. Biol. Cell* **2016**, 27, 424–433, doi:10.1091/mbc.e14-04-0935.

932 54. Rowe, S.M.; Verkman, A.S. Cystic Fibrosis Transmembrane Regulator Correctors and Potentiators. *Cold Spring Harb. Perspect. Med.* **2013**, 3, doi:10.1101/cshperspect.a009761.

933 55. Chong, P.A.; Farber, P.J.; Vernon, R.M.; Hudson, R.P.; Mittermaier, A.K.; Forman-Kay, J.D. Deletion of Phenylalanine 508 in the First Nucleotide-Binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Increases Conformational Exchange and Inhibits Dimerization. *J. Biol. Chem.* **2015**, 290, 22862–22878, doi:10.1074/jbc.M115.641134.

967 56. Banjade, S.; Rosen, M.K. Phase Transitions of Multivalent Proteins Can Promote
968 Clustering of Membrane Receptors. *eLife* **2014**, *3*, e04123, doi:10.7554/eLife.04123.

969 57. Su, X.; Ditlev, J.A.; Hui, E.; Xing, W.; Banjade, S.; Okrut, J.; King, D.S.; Taunton, J.; Rosen,
970 M.K.; Vale, R.D. Phase Separation of Signaling Molecules Promotes T Cell Receptor
971 Signal Transduction. *Science* **2016**, *352*, 595–599, doi:10.1126/science.aad9964.

972 58. Case, L.B.; Zhang, X.; Ditlev, J.A.; Rosen, M.K. Stoichiometry Controls Activity of Phase-
973 Separated Clusters of Actin Signaling Proteins. *Science* **2019**, *363*, 1093–1097,
974 doi:10.1126/science.aau6313.

975 59. Ditlev, J.A.; Vega, A.R.; Köster, D.V.; Su, X.; Tani, T.; Lakoduk, A.M.; Vale, R.D.; Mayor,
976 S.; Jaqaman, K.; Rosen, M.K. A Composition-Dependent Molecular Clutch between T
977 Cell Signaling Condensates and Actin. *eLife* **2019**, *8*, e42695, doi:10.7554/eLife.42695.

978 60. Case, L.B.; De Pasquale, M.; Henry, L.; Rosen, M.K. Synergistic Phase Separation of Two
979 Pathways Promotes Integrin Clustering and Nascent Adhesion Formation. *eLife* **2022**,
980 *11*, e72588, doi:10.7554/eLife.72588.

981 61. Huang, W.Y.C.; Yan, Q.; Lin, W.-C.; Chung, J.K.; Hansen, S.D.; Christensen, S.M.; Tu, H.-
982 L.; Kuriyan, J.; Groves, J.T. Phosphotyrosine-Mediated LAT Assembly on Membranes
983 Drives Kinetic Bifurcation in Recruitment Dynamics of the Ras Activator SOS. *Proc. Natl.*
984 *Acad. Sci.* **2016**, *113*, 8218–8223, doi:10.1073/pnas.1602602113.

985 62. Huang, W.Y.C.; Alvarez, S.; Kondo, Y.; Lee, Y.K.; Chung, J.K.; Lam, H.Y.M.; Biswas, K.H.;
986 Kuriyan, J.; Groves, J.T. A Molecular Assembly Phase Transition and Kinetic
987 Proofreading Modulate Ras Activation by SOS. *Science* **2019**, *363*, 1098 LP – 1103,
988 doi:10.1126/science.aau5721.

989 63. Schaff, J.; Fink, C.C.; Slepchenko, B.; Carson, J.H.; Loew, L.M. A General Computational
990 Framework for Modeling Cellular Structure and Function. *Biophys. J.* **1997**, *73*, 1135–
991 1146.

992 64. Cowan, A.E.; Moraru, I.I.; Schaff, J.C.; Slepchenko, B.M.; Loew, L.M. Spatial Modeling of
993 Cell Signaling Networks. *Methods Cell Biol.* **2012**, *110*, 195–221, doi:10.1016/B978-0-
994 12-388403-9.00008-4.

995 65. Blinov, M.L.; Schaff, J.C.; Vasilescu, D.; Moraru, I.I.; Bloom, J.E.; Loew, L.M.
996 Compartmental and Spatial Rule-Based Modeling with Virtual Cell. *Biophys. J.* **2017**,
997 *113*, 1365–1372, doi:10.1016/j.bpj.2017.08.022.

998 66. Falkenberg, C.V.; Blinov, M.L.; Loew, L.M. Pleomorphic Ensembles: Formation of Large
999 Clusters Composed of Weakly Interacting Multivalent Molecules. *Biophys J* **2013**, *105*,
1000 2451–2460, doi:10.1016/j.bpj.2013.10.016.

1001 67. Chattaraj, A.; Youngstrom, M.; Loew, L.M. The Interplay of Structural and Cellular
1002 Biophysics Controls Clustering of Multivalent Molecules. *Biophys. J.* **2019**, *116*, 560–
1003 572, doi:10.1016/j.bpj.2019.01.001.

1004 68. Chattaraj, A.; Blinov, M.L.; Loew, L.M. The Solubility Product Extends the Buffering
1005 Concept to Heterotypic Biomolecular Condensates. *eLife* **2021**, *10*, e67176,
1006 doi:10.7554/eLife.67176.

1007 69. Chattaraj, A.; Loew, L.M. The Maximum Solubility Product Marks the Threshold for
1008 Condensation of Multivalent Biomolecules. *Biophys. J.* **2023**, *122*, 1678–1690,
1009 doi:10.1016/j.bpj.2023.03.036.

1010 70. Chattaraj, Aniruddha; Baltaci, Zeynep; Mayer, Bruce J.; Loew, Leslie M.; Ditlev,
1011 Jonathon A. Measurement of Solubility Product in a Model Condensate Reveals the
1012 Interplay of Small Oligomerization and Self-Association. *bioRxiv* **2024**,
1013 2024.01.23.576869, doi:10.1101/2024.01.23.576869.

1014 71. Su, X.; Ditlev, J.A.; Rosen, M.K.; Vale, R.D. Reconstitution of TCR Signaling Using
1015 Supported Lipid Bilayers. In *The Immune Synapse*; Baldari, C.T., Dustin, M.L., Eds.;
1016 Methods in Molecular Biology; Springer New York: New York, NY, 2017; Vol. 1584, pp.
1017 65–76 ISBN 978-1-4939-6879-4.

1018 72. Zhemkov, V.; Ditlev, J.A.; Lee, W.-R.; Wilson, M.; Liou, J.; Rosen, M.K.; Bezprozvanny, I.
1019 The Role of Sigma 1 Receptor in Organization of Endoplasmic Reticulum Signaling
1020 Microdomains. *eLife* **2021**, *10*, e65192, doi:10.7554/eLife.65192.

1021 73. Fragneto, G.; Charitat, T.; Daillant, J. Floating Lipid Bilayers: Models for Physics and
1022 Biology. *Eur. Biophys. J.* **2012**, *41*, 863–874, doi:10.1007/s00249-012-0834-4.

1023 74. Hsu, C.-P.; Aretz, J.; Hordeichyk, A.; Fässler, R.; Bausch, A.R. Surface-Induced Phase
1024 Separation of Reconstituted Nascent Integrin Clusters on Lipid Membranes. *Proc. Natl.
1025 Acad. Sci.* **2023**, *120*, e2301881120, doi:10.1073/pnas.2301881120.

1026 75. Barbry, P.; Marcet, B.; Caballero, I. Where Is the Cystic Fibrosis Transmembrane
1027 Conductance Regulator? *Am. J. Respir. Crit. Care Med.* **2021**, *203*, 1214–1216,
1028 doi:10.1164/rccm.202012-4434ED.

1029 76. Okuda, K.; Dang, H.; Kobayashi, Y.; Carraro, G.; Nakano, S.; Chen, G.; Kato, T.; Asakura,
1030 T.; Gilmore, R.C.; Morton, L.C.; et al. Secretory Cells Dominate Airway CFTR Expression
1031 and Function in Human Airway Superficial Epithelia. *Am. J. Respir. Crit. Care Med.* **2021**,
1032 *203*, 1275–1289, doi:10.1164/rccm.202008-3198OC.

1033 77. McDonald, N.A.; Fetter, R.D.; Shen, K. Assembly of Synaptic Active Zones Requires
1034 Phase Separation of Scaffold Molecules. *Nature* **2020**, doi:10.1038/s41586-020-2942-0.

1035 78. Zeng, M.; Chen, X.; Guan, D.; Xu, J.; Wu, H.; Tong, P.; Zhang, M. Reconstituted
1036 Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation
1037 and Plasticity. *Cell* **2018**, *174*, 1172–1187.e16,
1038 doi:<https://doi.org/10.1016/j.cell.2018.06.047>.

1039 79. Lin, C.-C.; Suen, K.M.; Jeffrey, P.-A.; Wieteska, L.; Lidster, J.A.; Bao, P.; Curd, A.P.;
1040 Stainthorp, A.; Seiler, C.; Koss, H.; et al. Receptor Tyrosine Kinases Regulate Signal
1041 Transduction through a Liquid-Liquid Phase Separated State. *Mol. Cell* **2022**, *82*, 1089–
1042 1106.e12, doi:<https://doi.org/10.1016/j.molcel.2022.02.005>.

1043 80. Cottrill, K.A.; Farinha, C.M.; McCarty, N.A. The Bidirectional Relationship between CFTR
1044 and Lipids. *Commun. Biol.* **2020**, *3*, 179, doi:10.1038/s42003-020-0909-1.

1045 81. Hanssens, L.S.; Duchateau, J.; Casimir, G.J. CFTR Protein: Not Just a Chloride Channel?
1046 *Cells* **2021**, *10*, doi:10.3390/cells10112844.

1047 82. Aureli, M.; Schiumarini, D.; Loberto, N.; Bassi, R.; Tamanini, A.; Mancini, G.; Tironi, M.;
1048 Munari, S.; Cabrini, G.; Dechechchi, M.C.; et al. Unravelling the Role of Sphingolipids in
1049 Cystic Fibrosis Lung Disease. *Chem. Phys. Lipids* **2016**, *200*, 94–103,
1050 doi:10.1016/j.chemphyslip.2016.08.002.

1051 83. Uhl, F.E.; Vanherle, L.; Matthes, F.; Meissner, A. Therapeutic CFTR Correction
1052 Normalizes Systemic and Lung-Specific S1P Level Alterations Associated with Heart
1053 Failure. *Int. J. Mol. Sci.* **2022**, *23*, doi:10.3390/ijms23020866.

1054 84. Schnitker, F.; Liu, Y.; Keitsch, S.; Sodemann, M.; Verhasselt, H.L.; Kehrmann, J.;
1055 Grassmé, H.; Kamler, M.; Gulbins, E.; Wu, Y. Reduced Sphingosine in Cystic Fibrosis
1056 Increases Susceptibility to *Mycobacterium Abscessus* Infections. *Int. J. Mol. Sci.* **2023**,
1057 *24*, doi:10.3390/ijms241814004.

1058 85. Strandvik, B. Is the ENaC Dysregulation in CF an Effect of Protein-Lipid Interaction in
1059 the Membranes? *Int. J. Mol. Sci.* **2021**, *22*, doi:10.3390/ijms22052739.

1060 86. Klein, I.A.; Boija, A.; Afeyan, L.K.; Hawken, S.W.; Fan, M.; Dall'Agnese, A.; Oksuz, O.;
1061 Henninger, J.E.; Shrinivas, K.; Sabari, B.R.; et al. Partitioning of Cancer Therapeutics in
1062 Nuclear Condensates. *Science* **2020**, *368*, 1386–1392, doi:10.1126/science.aaz4427.

1063 87. Dall'Agnese, A.; Platt, J.M.; Zheng, M.M.; Friesen, M.; Dall'Agnese, G.; Blaise, A.M.;
1064 Spinelli, J.B.; Henninger, J.E.; Tevonian, E.N.; Hannett, N.M.; et al. The Dynamic
1065 Clustering of Insulin Receptor Underlies Its Signaling and Is Disrupted in Insulin
1066 Resistance. *Nat. Commun.* **2022**, *13*, 7522, doi:10.1038/s41467-022-35176-7.

1067 88. Peeples, W.; Rosen, M.K. Phase Separation Can Increase Enzyme Activity by
1068 Concentration and Molecular Organization. *bioRxiv* **2020**, 2020.09.15.299115,
1069 doi:10.1101/2020.09.15.299115.

1070 89. Sang, D.; Shu, T.; Pantoja, C.F.; Ibáñez de Opakua, A.; Zweckstetter, M.; Holt, L.J.
1071 Condensed-Phase Signaling Can Expand Kinase Specificity and Respond to
1072 Macromolecular Crowding. *Mol. Cell* **2022**, *82*, 3693-3711.e10,
1073 doi:10.1016/j.molcel.2022.08.016.

1074 90. Nye, J.A.; Groves, J.T. Kinetic Control of Histidine-Tagged Protein Surface Density on
1075 Supported Lipid Bilayers. *Langmuir* **2008**, *24*, 4145–4149, doi:10.1021/la703788h.

1076 91. Ditlev, J.A.; Michalski, P.J.; Huber, G.; Rivera, G.M.; Mohler, W.A.; Loew, L.M.; Mayer,
1077 B.J. Stoichiometry of Nck-Dependent Actin Polymerization in Living Cells. *J Cell Biol*
1078 **2012**, *197*, 643–658, doi:10.1083/jcb.201111113.

1079 92. Ansell, T.B.; Curran, L.; Horrell, M.R.; Pipatpolkai, T.; Letham, S.C.; Song, W.; Siebold, C.;
1080 Stansfeld, P.J.; Sansom, M.S.P.; Corey, R.A. Relative Affinities of Protein–Cholesterol
1081 Interactions from Equilibrium Molecular Dynamics Simulations. *J. Chem. Theory
1082 Comput.* **2021**, *17*, 6548–6558, doi:10.1021/acs.jctc.1c00547.

1083 93. Bertrand, C.A.; Mitra, S.; Mishra, S.K.; Wang, X.; Zhao, Y.; Pilewski, J.M.; Madden, D.R.;
1084 Frizzell, R.A. The CFTR Trafficking Mutation F508del Inhibits the Constitutive Activity of
1085 SLC26A9. *Am. J. Physiol.-Lung Cell. Mol. Physiol.* **2017**, *312*, L912–L925,
1086 doi:10.1152/ajplung.00178.2016.

1087 94. Keller, J.P.; Homma, K.; Duan, C.; Zheng, J.; Cheatham, M.A.; Dallos, P. Functional
1088 Regulation of the SLC26-Family Protein Prestin by Calcium/Calmodulin. *J. Neurosci.*
1089 **2014**, *34*, 1325, doi:10.1523/JNEUROSCI.4020-13.2014.

1090 95. McShane, A.J.; Bajrami, B.; Ramos, A.A.; Diego-Limpin, P.A.; Farrokhi, V.; Coutermarsh,
1091 B.A.; Stanton, B.A.; Jensen, T.; Riordan, J.R.; Wetmore, D.; et al. Targeted Proteomic
1092 Quantitation of the Absolute Expression and Turnover of Cystic Fibrosis
1093 Transmembrane Conductance Regulator in the Apical Plasma Membrane. *J. Proteome
1094 Res.* **2014**, *13*, 4676–4685, doi:10.1021/pr5006795.

1095 96. KAKIUCHI, S.; YASUDA, S.; YAMAZAKI, R.; TESHIMA, Y.; KANDA, K.; KAKIUCHI, R.;
1096 SOBUE, K. Quantitative Determinations of Calmodulin in the Supernatant and
1097 Particulate Fractions of Mammalian Tissues1. *J. Biochem. (Tokyo)* **1982**, *92*, 1041–1048,
1098 doi:10.1093/oxfordjournals.jbchem.a134019.

1099 97. Wu, J.Q.; Pollard, T.D. Counting Cytokinesis Proteins Globally and Locally in Fission
1100 Yeast. *Science* **2005**, *310*, 310–314.

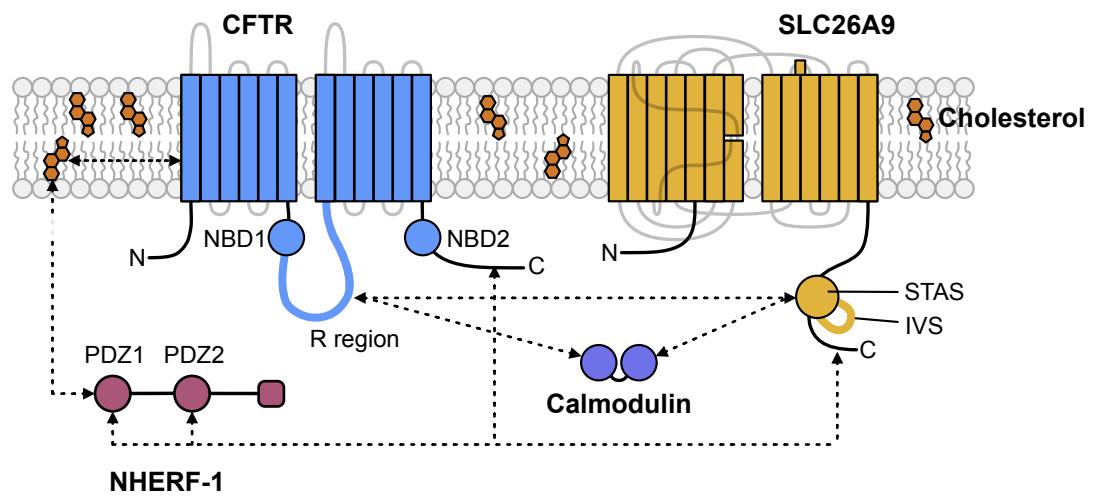


Figure 1

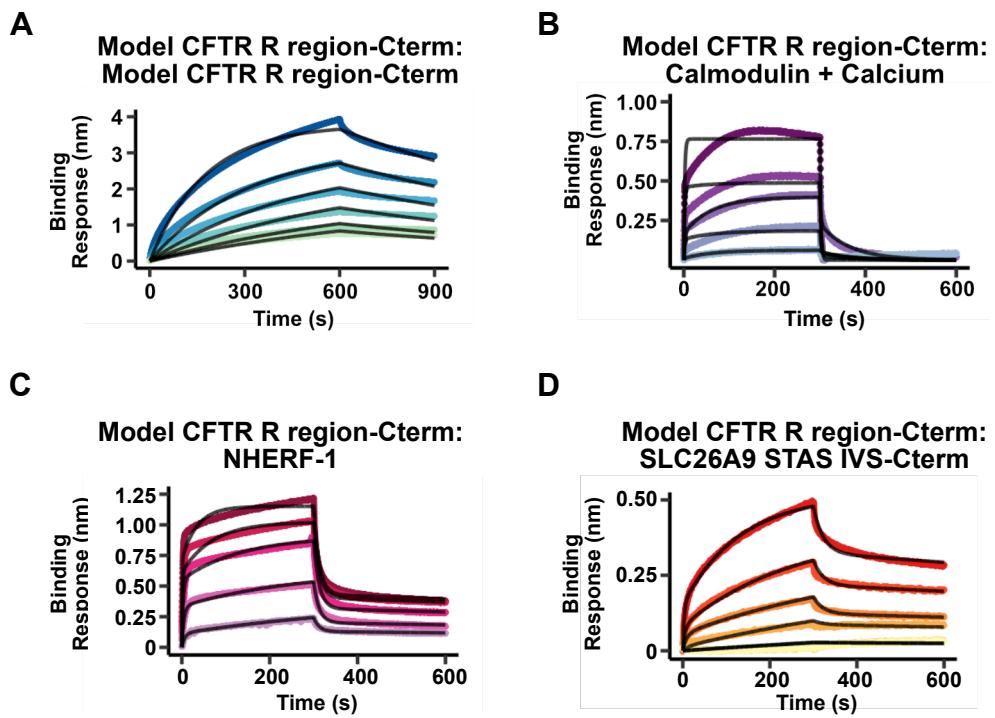


Figure 2

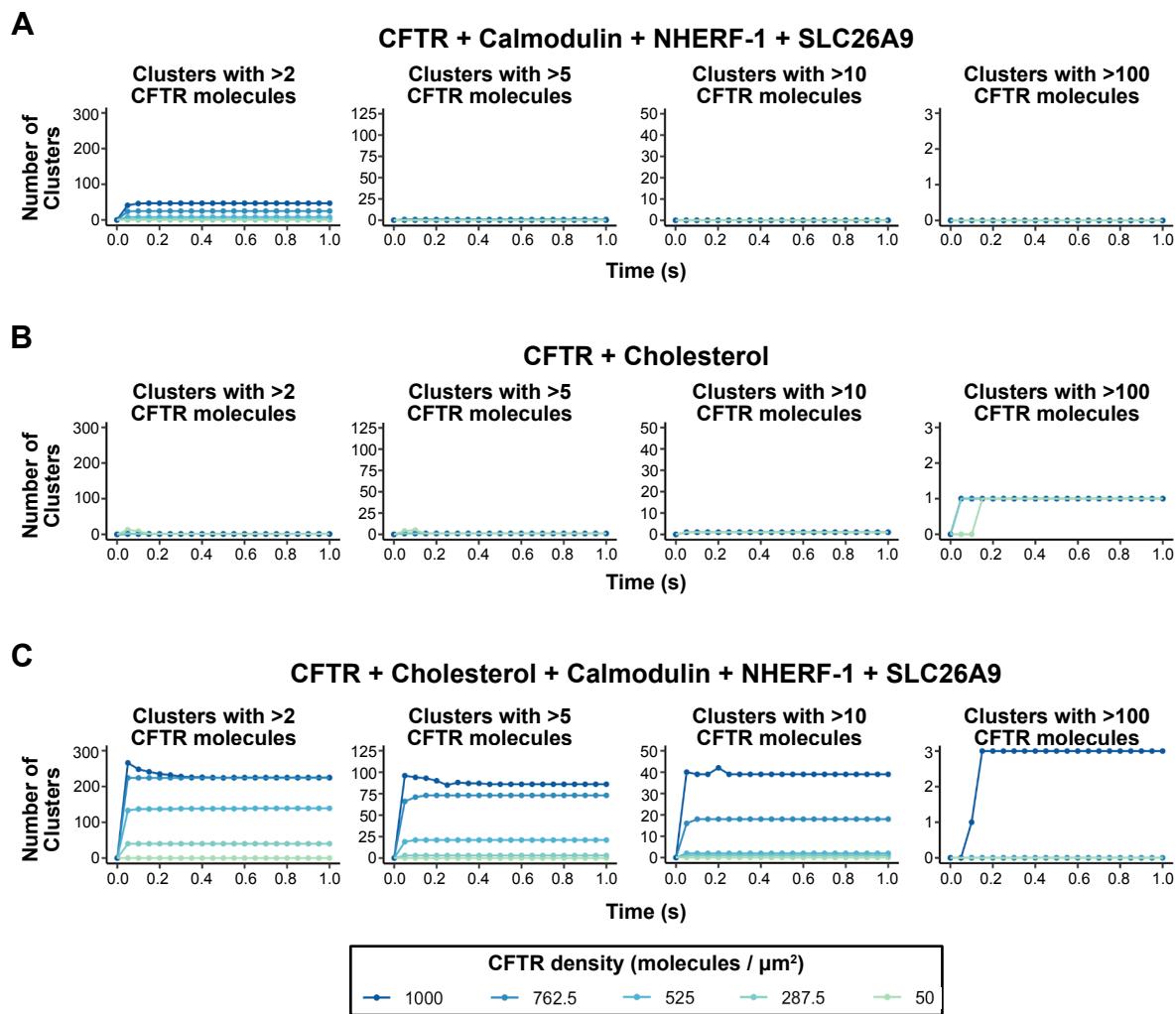


Figure 3

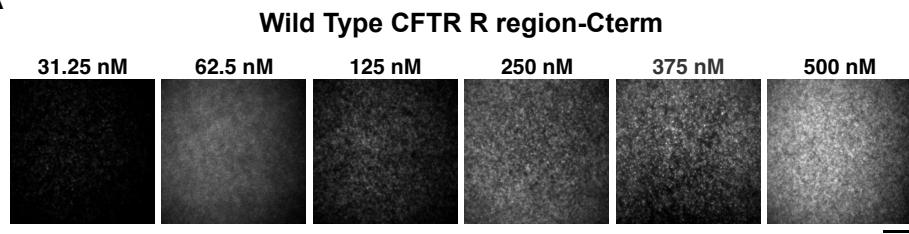
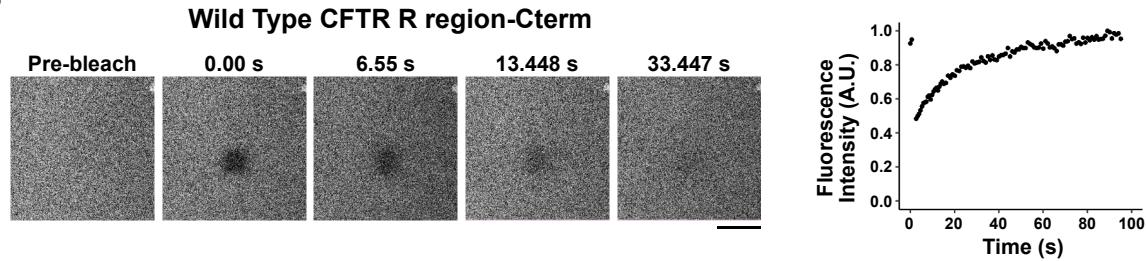
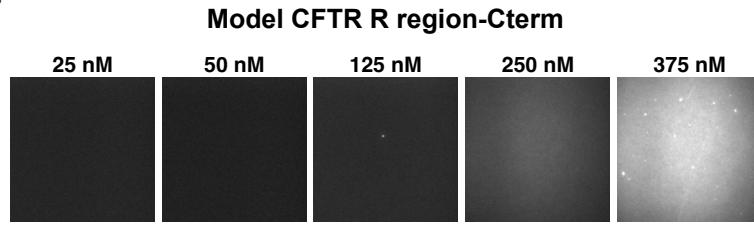
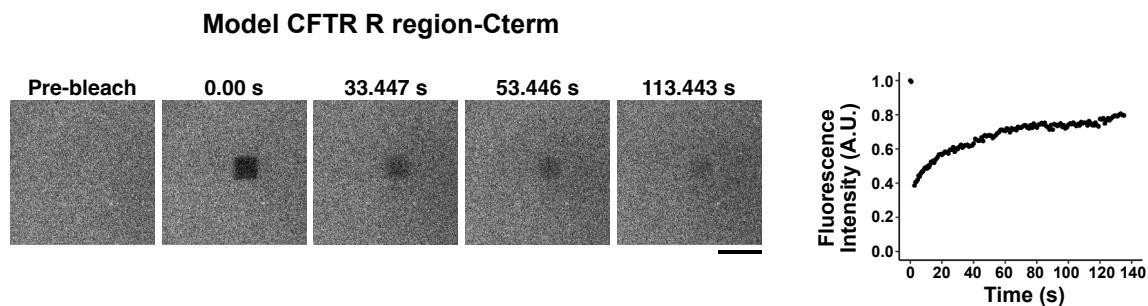




A**B****C****D**

Figure 4

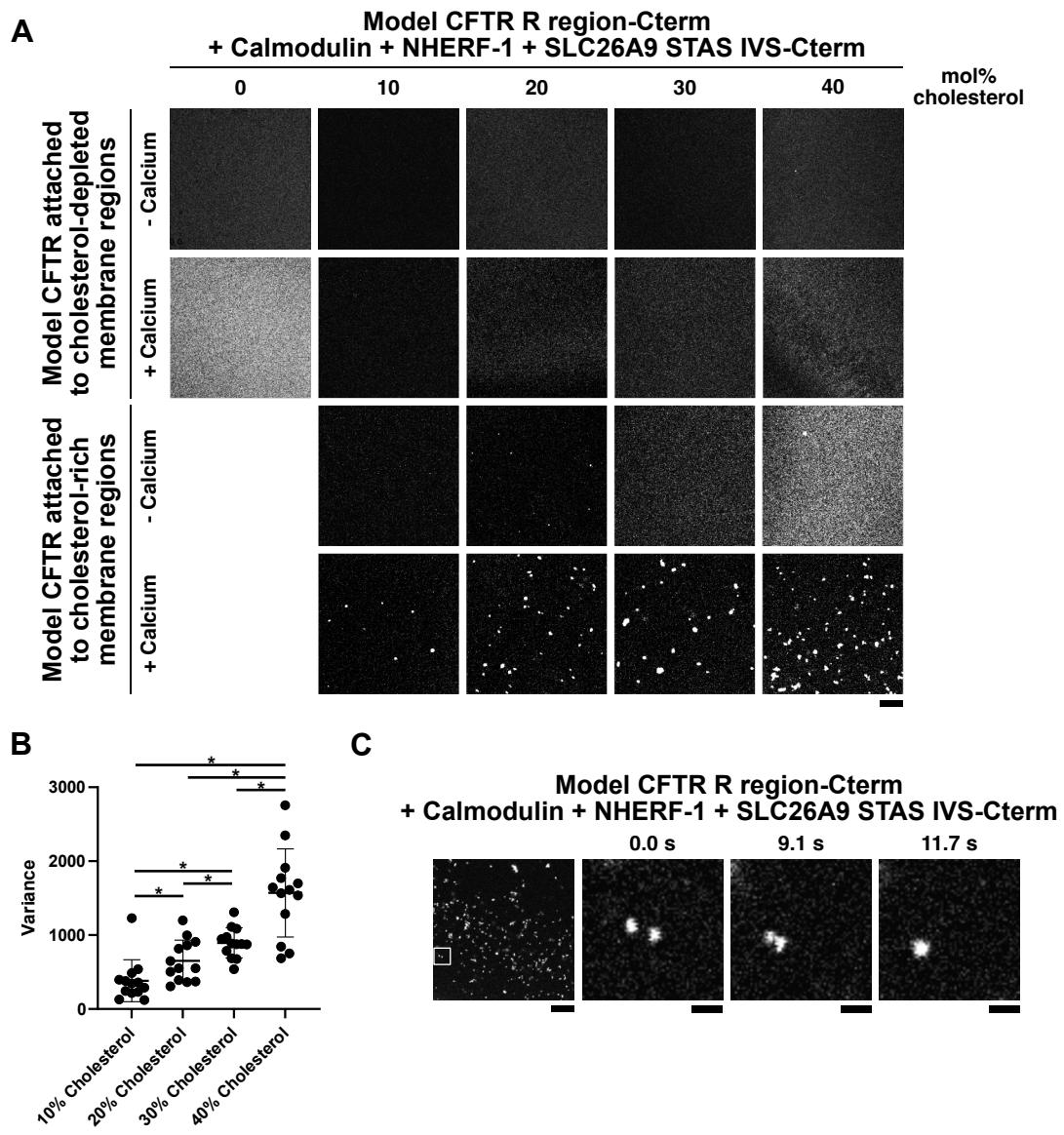


Figure 5

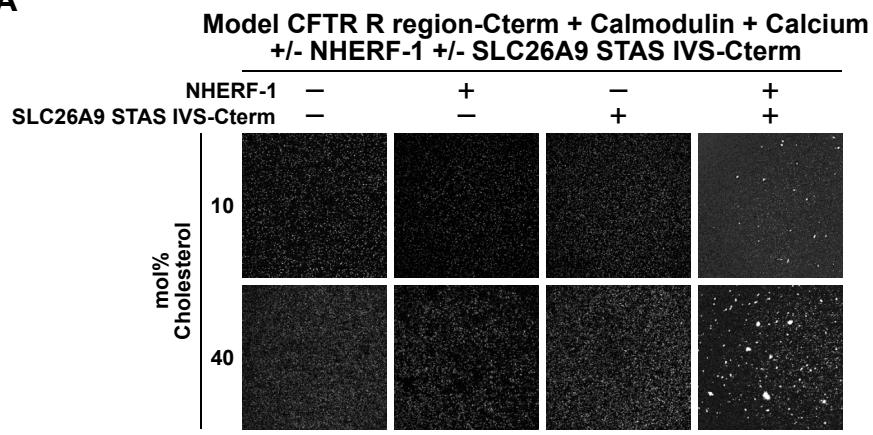
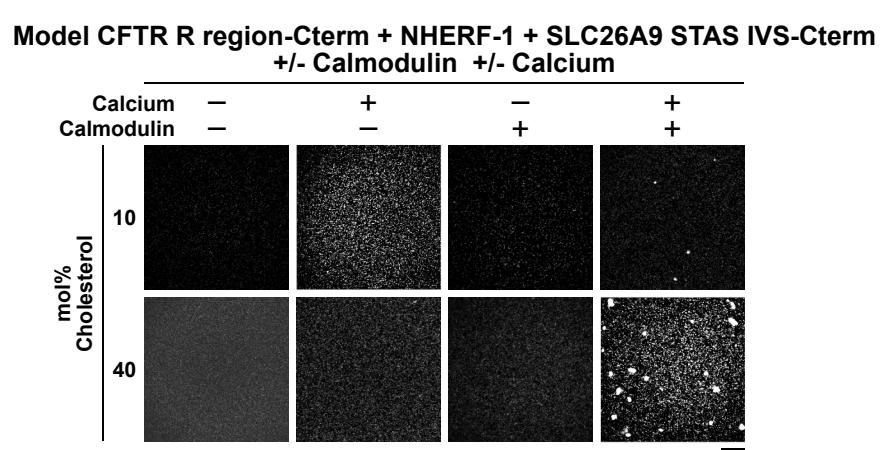


A**B**

Figure 6

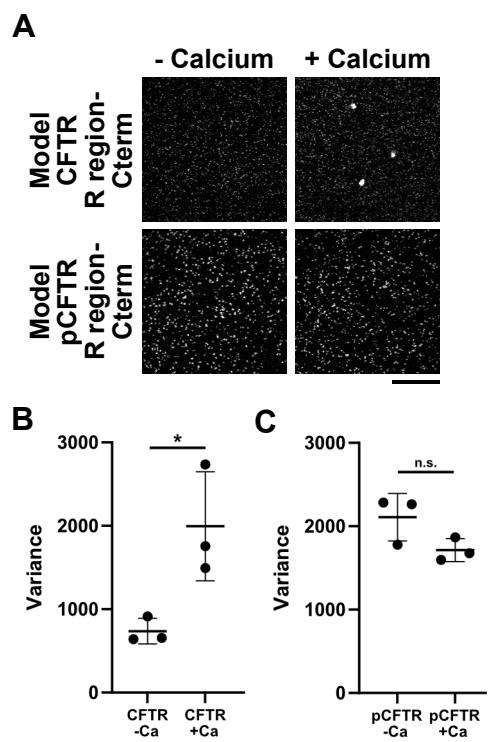


Figure 7