

1 «Involvement of Pf-like phages in resistance to phage infection in clinical isolates of *P.* 2 *aeruginosa* from cystic fibrosis patients»

3 Lucía Blasco^{1,2,6}, Antonio Barrio-Pujante^{1,2} Carla López-Causape^{2,3,5,6}, Lucía Armán^{1,2}, Inés
4 Bleriot^{1,2}, Olga Pacios^{1,2}, Laura Fernández-García^{1,2}, Concha Ortiz-Cartagena^{1,2}, Clara Ibarguren-
5 Quiles^{1,2}, Rafael Cantón^{2,4,5,6}, Antonio Oliver^{2,3,5,6} & and María Tomás^{1,2,6} &

8 (1) Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología
9 Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC);
10 Universidad de A Coruña (UDC), A Coruña, Spain;
11 (2) Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando
12 parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC),
13 Madrid, Spain;
14 (3) Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca;
15 (4) Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal
16 de Investigación Sanitaria (IRYCIS), Madrid, Spain;
17 (5) CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid,
18 Spain;
19 (6) MEPRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas,
20 Madrid, Spain;

21

22

²³ ^aThese researchers contributed equally to the work

24 *For correspondence: ma.del.mar.tomas.carmona@sergas.es

25

26

27

28

29

30

31 **Keywords:** *Pseudomonas aeruginosa*, Pf-like phage, filamentous phage, anti-phage defence
32 mechanisms, phage resistance

33

34 **ABSTRACT**

35 *Pseudomonas aeruginosa* is a bacterial pathogen that is a major cause of lung infections in
36 cystic fibrosis (CF) and other patients. Isolates of *P. aeruginosa* from CF patients commonly
37 carry filamentous phages (Pf phages), a type of temperate phage known to be related to
38 biofilm production and antibiotic sequestration. In this study, 12 new Pf-like phages were
39 identified in a collection of clinical isolates of *P. aeruginosa* from CF patients. Analysis of the
40 phage genomes revealed different anti-phage defence systems, described here for first time in
41 these types of phages. Finally, relationships between resistance to phage infection and the
42 presence of Pf-like phages and also between each defence system and resistance were
43 observed.

44 **IMPORTANCE**

45 Bacteria harbour a wide range of defence mechanisms to avoid phage infections. These
46 mechanisms hamper the application of phage therapy because they can lead to the rapid
47 acquisition of phage resistance. Temperate phages, including the filamentous phages, carry
48 genes encoding virulence factors and also anti-phage defence mechanisms, as their survival
49 depends on the host survival. In this study, we identified 12 new Pf-like phages encoding
50 several different anti-phage defence mechanisms, some observed for the first time in this type
51 of phage. A relationship between these phages and resistance to phage infection was also
52 observed. The study findings are important as they provide information about newly
53 discovered filamentous phages and their proteomes and also about the role of these phages in
54 resistance to phage infections. Studying the genome of clinical isolates carrying these phages
55 could help to improve phage therapy by targeting these phages or its genes.

56

57

58

59

60

61

62

63

64 INTRODUCTION

65 The interaction between bacteria and the viruses that infect them, phages, is an evolutionary
66 driving force. Both organisms coevolve in an “arms race”, with many different immune
67 mechanisms developed in bacteria and counterpart mechanisms developed in phages.

68 The filamentous phages belong to the order *Tubulavirales* (1). These phages are uncommon
69 both in morphology and life cycle. They are present in the host genome as prophages and
70 when assembled, they exit the cell by extrusion without lysing the bacteria, causing chronic
71 infections (7). They have a helical structure composed by the major coat protein, which
72 surrounds circular, positive-sense, single stranded DNA. Many phage species integrate their
73 genome in the host genome, but others such as episomal phages are non-integrative (1, 2).

74 The filamentous phages are widely distributed in the multiresistant pathogen *Pseudomonas*
75 *aeruginosa*. This important pathogen, designated “high risk” by the World Health Organization
76 (WHO) in 2017 (3), can cause severe infections in hospitals and is responsible for chronic
77 infections in the respiratory tract, wounds and burns (4). *P. aeruginosa* is also closely
78 associated with infections in cystic fibrosis (CF) patients, at least partly because of its ability to
79 form dense biofilms, which favours the development and chronicity of the infection (4). The
80 filamentous phages are found within these biofilms as crystal liquid structures called tactoids,
81 which can enhance phage tolerance to antibiotics by forming an adsorptive diffusion barrier
82 (5). The filamentous phages identified in *P. aeruginosa* are designated Pf-like phages, of which
83 seven types have been described to date. It is estimated that 50 to 60 % of *P. aeruginosa*
84 isolates are lysogenized by a Pf-like phage. The high prevalence of these phages in *P.*
85 *aeruginosa* is related to their role in pathogenesis, virulence and immune system evasion (7).

86 Pf4 is a filamentous phage that infects *P. aeruginosa* and whose genomic structure is typical of
87 the integrative *P. aeruginosa* filamentous phages. The genome of Pf4 and other Pf phages is
88 divided into a conserved part, the core genome, and a non-conserved part, the accessory
89 genome. The core genome is the part of the genome required for completion of a replication
90 cycle in Gram-negative hosts, and it comprises genes related to structure, replication, assembly
91 and secretion (6). By contrast, the accessory genome is a variable part of the genome which
92 contains many genes of unknown function, as well as toxin genes, whose function is related to
93 interaction with the host and involves virulence factors or toxin-antitoxin systems (6).

94 The anti-phage defence mechanisms, which are considered the “prokaryotic immune system”,
95 are encoded in mobile elements in the bacterial genome, such as defence islands and

96 prophages (7). These defence systems are frequently organized in gene clusters (8). As these
97 systems are present in mobile genetic elements, they are usually acquired by bacteria through
98 horizontal gene transfer, promoting environmental adaptation of the bacterial communities (9).
99 Different anti-phage defence systems are encoded in clusters that are used as immune
100 strategies in bacteria and include the following: a) Adsorption resistance, which is the first
101 barrier to infection. Bacteria can evade adsorption by hiding the receptors with extracellular
102 polymers or by mutations in the receptor gene. These mutations involve loss of receptors or
103 structural changes in the receptors; b) Prevention of host takeover, which occurs after phage
104 adsorption and prevents irreversible takeover of the host metabolism. This can be achieved by
105 the Restriction-Modification (RM) systems, which are conformed by a restriction endonuclease
106 and a methyltransferase. RM systems act by restricting the phage genome and methylation of
107 the host genome thus protecting it from the endonuclease action. The Clustered Regularly
108 Interspaced Short Palindromic Repeats (CRISPR)-associated proteins (CRISPR-Cas) form an
109 adaptative immune system characterized by the acquisition of small fragments of foreign DNA,
110 known as spacers, between the CRISPR locus repeats. The spacers are used to recognize
111 exogenous nucleic acids, which will be degraded by the Cas endonuclease. Superinfection
112 exclusion (Sie), a defence system developed by prophages or plasmids present in the host,
113 blocks the uptake of phage nucleic acid into the cytoplasm. c) Abortive infection systems (Abi
114 systems), which are different systems that inhibit the infection at any of the stages of DNA
115 replication, translation or transduction, so that phages are unable to infect the bacteria, and
116 the bacteria die or become persistent; and d) the Toxin-Antitoxin (TA) system, which acts by
117 reducing the bacterial metabolism and thus inhibiting phage replication under stress conditions
118 (9-13).

119 In this study, we examined the prevalence of Pf-like phages in 75 clinical isolates of *P.*
120 *aeruginosa* from 25 chronic CF patients; we also examined the relationship between the
121 prophages and the host resistance to phage infection.

122 RESULTS

123 **Prevalence of Pf-like phages in clinical isolates of *P. aeruginosa* from CF patients**

124 The genome of 75 clinical isolates of *P. aeruginosa* from 25 chronic CF patients (3 isolates per
125 patient) were analysed to search for complete genomes of filamentous phages. The PHASTER
126 search reported the presence of complete genomes of 42 filamentous phage distributed in 39
127 isolates and also 36 isolates without filamentous phage genome (Table 1). The presence of
128 filamentous prophages in all isolates derived from one patient was variable; thus, in 40% of the

129 patients all isolates carried a filamentous phage; in 12% of patients the filamentous phage was
130 present in two isolates and in the other 12% only one isolate carried a filamentous phage.
131 Finally in 36% of the patients, none of the isolates contained a filamentous phage in the
132 genome (Table 1). The isolates from a patient in which no filamentous phage was found
133 belonged to a different sequence type (ST) than the other isolates from the same patient,
134 which carried filamentous phage (except in the case of patient 24.)

135 As the filamentous phages present in *P. aeruginosa* are known as Pf phages, the phages
136 identified in this study will be named in the same way as Pf-like phages in general, with the
137 number of the isolate added, as appropriate (Table1).

138 **Phylogenetic analysis of the Pf-like phages**

139 The Pf-like phage genomes identified were phylogenetically analysed, and the maximum
140 likelihood tree revealed a high degree of homology (Fig. 1A). Although the genomes were
141 grouped by patient, some clades showed a high degree of similarity between phages from
142 different patients. The first cluster was constituted by the Pf-like genomes located in patients
143 01, 04 and 24. A second cluster consisted of the Pf-like phages identified in patients 02 and 18,
144 and a third cluster was formed by the phages isolated from patients 20 and 25. A fourth cluster
145 included the phages isolated from patients 10 and 05 (Fig. 1A, 1B). A Brig BLAST and an ANI
146 study comparing the phage genome sequences of each tree clade revealed a high level of
147 homology, of between 99.92% and 100%, so were assumed to be of the same phage (Fig. 1B).
148 Based on these results, a total of 12 Pf-like phages were identified. The genome sequences are
149 included in Bioproject PRJNA1082103 (Table 2).

150 The maximum likelihood tree was divided into two major groups corresponding to the bacterial
151 attachment site (attB) of the prophages. One group was constituted by the Pf-like genomes
152 that use the tRNA-Met as attB and the other group included those with the tRNA-Gly and
153 tRNA-Sec attB sites (Table 2; Fig. 1A). Four of 5 phages with a tRNA-Met attB were present in
154 isolates from different patients, while the phages with the tRNA-Gly and tRNA-Sec were only
155 present in the isolates from one patient, with the exception of phage PfAC05, which was
156 present in two patients (Fig. 1A).

157 **Genomic analysis of the filamentous Pf-like prophages**

158 Analysis of the genomes showed that the 12 Pf-like phages identified were integrated in
159 different tRNA sites, so that 45% were integrated in a tRNA-Met, 47.5% in a tRNA-Gly and 7.5%
160 in a tRNA-Sec.

161 The genomic analysis revealed that all of the filamentous phages were of between 10kb and
162 14Kb in size and had between 15 and 22 CDS.

163 Annotation of the genes from the 12 Pf-like phages showed that the genome structure
164 comprised a core genome composed by 12 to 18 CDS, flanked by 1 to 7 CDS corresponding to
165 the accessory genome (Fig. 2A). The core genome was composed by genes encoding structural
166 and capsid proteins as well as proteins involved in replication and flanked by two integration
167 proteins, an integrase and an excisionase. The core genome was conserved across all of the Pf-
168 like phages identified (Fig. 2A). The accessory genome flanked the core genome and was
169 composed by moron genes, mainly related to anti-phage defence, but also genes encoding for
170 hypothetical proteins as well as ATP-binding proteins and Arc family DNA-binding proteins.

171 The genes belonging to a complete defence system constituted 36% of the accessory genome,
172 and 7% were isolated proteins from incomplete defence systems. All of the Pf-like phages
173 identified, carried two complete defence systems, except phage PfAC02a, which carried 3,
174 systems, and PfAC13 and PfAC20, which only had incomplete systems (Fig. 2A; Table2).

175 The following 8 complete defence systems were detected: TA typell, Retron, Kiwa, ShosTA,
176 Gabija, letSA, PfsE and Avs (Fig. 2A, 2B, 2C; Table 2). The PfsE gene, unlike the other defence
177 systems, was located in the core genome. This gene was present in 10 of the 12 Pf-like phages
178 (83%). The second most common system was the TA Typell system, which was present in 5 Pf-
179 like phages (42%). Annotation showed that this system corresponded to a cluster composed by
180 two contiguous genes, a RelE family toxin and a Phd family antitoxin. The retror system was
181 present in two Pf-like phages (17%) and according to the protein annotation it was a cluster
182 constituted by a retrotranscriptase and a retror effector protein. Both Kiwa and ShosTA
183 systems were present in the PfAC02a Pf-like (8%). Kiwa was a gene cluster composed by kwaA
184 and kwaB genes, identified by PADLOC. ShosTA was also a cluster constituted by two genes, a
185 DNA-binding protein (DprA-like) and a phosphoribosyl transferase (PRTase). Finally, both letAS
186 and Avs were present in one Pf-like phage (8%). The annotation revealed that the letAS system
187 was composed by a peptidase S8 (letS) and a putative ATPase (letA), while the Avs was
188 constituted by an NLR ATPase identified by HHPred.

189 Each of the incomplete systems were represented in 8% of the Pf-like phages. One gene coding
190 for the putative AbiEii toxin was found in phage PfAC13; two genes from incomplete systems, a
191 Secreted effector protein and DGHQR, were found in phage PfAC19, and finally a DNA cytosin
192 methyltransferase was present in phage PfAC20.

193 **Phage resistance pattern**

194 All 75 clinical isolates were infected with 4 lytic *P. aeruginosa* phages in order to study the
195 relationship between phage resistance and the presence of defence systems in the accessory
196 genome of the Pf-like phages.

197 The infection study was conducted by spot testing and broth infection curves. From a total of
198 300 phage-bacteria interactions, 223 (74.33%) were resistant and 77 (25.66%) sensitive (Fig.
199 3A). Of the interactions between the 4 lytic phages and 39 Pf-like carrying isolates, 124 resulted
200 in resistant interactions that were significantly higher than the 99 resistant interactions with
201 the non-Pf-like phages. By contrast, the sensitive interactions were significantly higher in the
202 non-Pf-like carriers (Fig. 3A, 3B). Finally, although both carrier and non-carrier Pf-like isolates
203 were mainly resistant to phage infection, the probability of an isolate being resistant when it
204 carried a Pf-like phage was 15.6% higher than when it did not carry any Pf-like phage (Fig. 3C).

205 The relationship between resistance and each defence system in Pf-like phage carrier isolate,
206 was calculated by differential probability (Fig. 3D). All of the systems yielded values of $dPR > 0$,
207 indicating that they are probably related to phage resistance. Gabija, letAS and Avs yielded the
208 highest value of $dPR = 1$, which indicates that these systems were directly related to resistance.
209 The probability that ShosTA and Kiwa were involved in resistance was equal because these
210 were present in the same phage and it was not possible to differentiate the individual activity
211 of each. By contrast, the presence of Gabija with ShosTA and Kiwa in the isolates from patient
212 02 increased the differential probability to 1, indicating a synergic effect. The PfsE system co-
213 occurred with all other systems, but no synergistic effect was observed, as the differential
214 probability was different for each phage.

215 **DISCUSSION**

216 The coexistence of bacteria and other microorganisms in the environment leads to
217 competitive, collaborative and predatory interactions. Bacteria have developed different
218 systems to manage these interactions, e.g. secretion systems and phage tail-like bacteriocins,
219 which are involved in competition with other bacteria, and defence systems, which are used to
220 evade phage infections (9, 10, 14). The diversity of systems that make up the bacterial defence
221 arsenal is largely driven by the “arms race” between bacteria and phages and is, in turn,
222 enhanced by horizontal gene transfer of mobile genetic elements such as defence islands and
223 temperate phages (15, 16). During the lysogenic phase, temperate phages maintain a symbiotic
224 relationship with their hosts, and the fitness of both is intimately linked. The presence of

225 virulence and defence genes in the accessory genome of the temperate phages increases the
226 survival of the both the host and the phage itself (13, 15, 17).

227 In this study genomic analysis of 75 clinical isolates recovered from 25 CF patients led to the
228 identification of 42 filamentous phage genomes encompassed in the Pf-like type phages.
229 Phylogenetic and homology studies showed that the 42 Pf-like genomes corresponded to 12
230 different Pf-like phages, described here for first time. The genomes of these prophages were
231 found disrupting attB tRNA-Met or tRNA-Gly in the same proportion and tRNA-Sec in a lower
232 proportion. This distribution was previously reported by Fiedoruk *et al.* (2020) (4, 18).
233 However, we observed a relationship between the tRNA attachment site and the homology
234 between the phages, represented in the phylogenetic tree as 2 major clades (Fig. 1A).

235 The type of Pf-like phage is closely related to the ST of the isolate, which explains the absence
236 of Pf-like phages in isolates from the same patient but belonging to different STs. The
237 acquisition of antibiotic resistance and its maintenance in clinical *P. aeruginosa* clones was
238 related to exposure to certain antibiotics and the acquisition of resistance genes by horizontal
239 transfer or mutations. A relationship between continuous exposure of the *P. aeruginosa*
240 isolates to antibiotics and the prevalence of the Pf-like phages due to its role sequestering the
241 antibiotics in the biofilm was also described. Thus, the observed relationship between the
242 presence of a Pf-like and a ST may depend on the antibiotics used to treat the CF patient (19-
243 21). This relationship may be of interest for typing of the isolates of *P. aeruginosa*, but further
244 studies are needed to confirm its existence.

245 Annotation of the Pf-like genome and assignation of gene function revealed a canonical
246 organization of the genes in a core genome flanked by an accessory genome. The core genome
247 consists of a variable number of genes, between 10 and 16 genes, with different functions:
248 morphogenesis, assembly, DNA replication, integration and excision (4). The organization of the
249 core genome of the Pf-like phages identified was similar to that of the Pf4 phage, which is
250 widely used as a Pf-like model. The following common genes were identified: C repressor gene
251 pf4r (PA0715); excisionase XisF4 (PA0716); single-stranded DNA binding protein (PA0720);
252 coaB, major coat protein (PA0723); coaA, minor coat protein (PA0724); Zot domain protein
253 (PA0726); replication initiation protein (PA0727) and integrase intF (PA0728) (4, 18).

254 The 12 Pf-like phages identified were very similar in the core genome region but differed in the
255 genes carried in the accessory genome (Fig. 3A). The accessory genes of the Pf-like phages
256 identified were analysed, and a function was assigned to approximately half of the genes,
257 depending on the phage. The number of genes varied between 1 and 6, as previously

258 described for other Pf-like phages (4, 18). The accessory genome of Pf-like phages, shared by
259 other prophage families, was described as a group of genes that are not essential for the virus
260 but with functions that benefit the host and improve its survival (15). The beneficial genes
261 present in some prophages include anti-phage defence systems. To date, only TA and PfsE
262 defence systems have previously been described in a filamentous phage (22). Eight defence
263 systems were identified in the genomes of different Pf-like in this study, and the presence of
264 these Pf-like phages was also found to confer greater resistance to phage infection than when
265 they are not present. As previously described in other families of temperate phages, the
266 presence of these Pf-like phages can enhance host survival, protecting bacteria from lytic
267 phages via different mechanisms including inhibition of DNA translocation, premature
268 transcription termination and abortive infection (15). The anti-phage defence systems
269 identified in the Pf-like phages in this study were involved in different defence mechanisms.
270 From the different defence strategies, we found systems representative of adsorption
271 resistance (PfsE), Abi (Retron, Kiwa, Gabija, Avs) and TA (TA typell, ShosTA, IetAS) (7, 23).

272 The probability of the occurrence of a defence system was, in all cases, related to phage
273 resistance in the clinical isolate. However, it was observed that highly prevalent anti-phage
274 defence systems were less likely to be related to resistance. This is consequence of the “arms
275 race” between bacteria and phages, as more prevalent systems will be involved in a greater
276 number of interactions with lytic phages, which will therefore be more likely to develop
277 counterdefensive mechanisms (6).

278 Among the 12 Pf-like phages identified, the most common defence system was the pfsE gene
279 (observed in 83% of the Pf-like phages). This was the only gene located in the core genome,
280 which explains its high prevalence as this region is conserved in the Pf-like phages (Fig. 2A, 2B,
281 2C). The PfsE protein, first identified in the Pf4 *P. aeruginosa* filamentous phage, provides
282 resistance to adsorption by suppressing extension of the pilus type 4 (which acts as a receptor
283 for many lytic phages) via binding to PilC (24). This protein has also been identified as an
284 inhibitor of the *Pseudomonas* quinolone signal (PQS) quorum sensing (25). The high prevalence
285 of PfsE contrasts with the lower probability of involvement in phage resistance than other less
286 frequent systems (Fig. 3D), which may be a result of its role in the suppression of the pilus as
287 phage receptor, which would only be useful for inhibiting infection by phages using this
288 receptor.

289 Of the defence systems present in the accessory genome, the TA system was most prevalent
290 (43%) and was less likely to be involved in resistance than PfsE (Fig. 2B, 2C). The TA system

291 identified belongs to the type II TA systems, which is composed by a genetic module encoding a
292 toxin-antitoxin system, where the antitoxin protein blocks the toxin protein by protein-protein
293 interactions (12, 22). Although the type II TA systems are involved in inhibiting the central
294 cellular roles such as DNA replication and translation, they have a primarily biological role in
295 inhibiting phage infection (5, 39). As in this study, a type II TA system was present in the Pf4
296 filamentous phage, in which the toxin protein belongs to the ParE family and the antitoxin to
297 the PhD family (22, 26). As with PfsE, the high frequency of this system in the bacterial and
298 filamentous phage genomes has favoured the development of anti-TA mechanisms by lytic
299 phages (10).

300 A retrone system was present in 17 % of the Pf- like phages analysed and was estimated to have
301 high probability of being involved in phage resistance (Fig. 2B, 2C; Fig. 3D). Retrons encode a
302 specialized reverse transcriptase and a unique chimeric single-stranded DNA/RNA molecule.
303 Although their existence has been known for more than 30 years, it was not until 2020 that
304 their role in phage defence was determined (27, 28). The relationship between retrons and
305 anti-phage defence was also observed in the present study (Fig. 3D).

306 The other five defence systems identified, Gabija, Kiwa, ShosTA, letAS and Avs, were present in
307 8 % of the Pf-like phages, but their role in the resistance against phage infection was variable,
308 with a direct relationship for Gabija, letAS and Avs (dPR=1) (Fig. 3D). Gabija was recently partly
309 identified as a nucleotide-sensing endonuclease (15). The Gabija system is composed by two
310 genes, *gajA* and *gajB*, where *gajA* encodes a specific DNA nicking endonuclease and *gajB*
311 encodes a helicase. The GajA endonuclease is activated by the depletion of NTP and dNTP
312 when transcription of phage DNA occurs. It has been speculated that that, as a helicase, GajB
313 may interact with GajA and somehow stimulate the binding, cleavage and/or turnover of GajA
314 (29).

315 The letAS system is also directly related to the phage resistance of the strain, but the
316 mechanism of action remains unknown (15).

317 In the case of Kiwa and ShosTA, the value of the differential probability of involvement in phage
318 defence (0.6) indicates overrepresentation of these systems in the resistant isolates. However,
319 both systems were found in the same phage and their individual role in defence was not
320 determined. The ShosTA system is a TA system composed by two proteins, a DprA-like protein
321 as an antitoxin and a phosphoribosyl transferase (PRTase) as a toxin (30). The defence mode of
322 action has been proposed to consist of detection of the phage by the DprA-like protein and
323 activation of the PRTase, triggering the mechanisms for Abi (15). The Kiwa system was

324 characterized as an Abi defence system constituted by two proteins, KiwaA and KiwaB. KiwaA
325 detects the inhibition of the RNA polymerases by the lytic phage proteins and activates KiwaB,
326 which reduces the phage DNA replication in a RecBCD-dependent manner (7).

327 The Avs system has previously been related to phage resistance and proposed to provide
328 specific sensors for conserved structural features in phage proteins, such as the large terminase
329 subunit and phage portal protein. It has been suggested that Avs tetramerize and activate an
330 effector-mediated Abi-like response (7).

331 The great diversity of anti-phage defence systems found in the Pf-like phages identified may be
332 a result of the co-existence of bacterial and phages in CF mucus, as recently demonstrated in a
333 study conducted in the fish pathogen *Flavobacterium columnare*, in which co-existence with a
334 predatory phage was involved in the development of phage resistance, in particular by the
335 acquisition of CRISPR-Cas immunity (31, 32). Both lytic and lysogenic phages are ubiquitous in
336 the body and therefore in the lungs of people suffering from CF. The mucus in the lungs of CF
337 patients is hyper-concentrated and has a unique structure that favours bacterial colonization
338 and, as also occurs in gut mucosa, the phages bind to the mucus. The mucus creates spatial
339 refuges that favour the coexistence between phages and bacteria, which can explain the co-
340 evolution of both (32-34).

341 To our knowledge this is the first time in which all of these defence systems have been
342 identified in Pf-like phages and related to a high degree of phage resistance in Pf-like carrying
343 isolates of *P. aeruginosa*. Pf-like phages have been linked to virulence traits and confer a
344 competitive and survival advantage to the bacteria that possess them. The presence of defence
345 systems in all of the isolates under study here suggests that the action of these phages favours
346 survival of the *P. aeruginosa* isolates recovered from CF patients, both by increasing its
347 virulence and by providing increased resistance to phage infection. Study of the presence of
348 the Pf-like phages and the presence of defence systems in the genomes may, together with the
349 relationship with ST, be of interest to improve the phage therapy by facilitating selection of
350 appropriate lytic phages.

351 MATERIAL AND METHODS

352 Bacterial and lytic phage strains

353 Seventy-five *P. aeruginosa* clinical isolates were recovered from 25 CF patients (3 isolates per
354 patient) (Table 1). The isolates, belonging to 26 STs from a collection of *P. aeruginosa* isolates
355 from CF patients, were provided by the research group led by A. Oliver (Sons Espases Hospital,

356 Palma de Mallorca, Spain) (35). *P. aeruginosa* PA01 and PA14 were used to propagate the lytic
357 phages. Four *P. aeruginosa* lytic phages were used in the study (Table 1)

358 The *P. aeruginosa* isolates were cultured in LB (0.5% yeast extract; 0.5% NaCl; 1% tryptone),
359 and agar 2% was added when necessary.

360 **Genome sequencing of the *P. aeruginosa* clinical isolates and filamentous phage genome
361 identification and annotation**

362 Next Generation Sequencing (NGS) of the isolates was performed in a previous study, with the
363 MiSeq sequencing system (Illumina platform). The sequences were assembled using the
364 Newbler Roche assembler and Velvet (Velvet v1.2.101) (35).

365 The phage genomes were analysed using the PHASTER bioinformatic tool, to search for
366 filamentous phages (36). The sequences identified by PHASTER were confirmed manually by
367 searching the disrupted tRNA sites (attB). The genes were annotated using the RAST server
368 (37), HMMER (hmmer.com), Protein BLAST (38), and HHpred (39). The anti-phage defence
369 systems were identified using the “The Prokaryotic Antiviral Defense Locator (PADLOC)” tool
370 (40).

371 **Phylogenetic and homology study**

372 The genome sequences of the filamentous phages were aligned by the CLUSTAL method, and a
373 maximum likelihood tree was constructed using Molecular Evolutionary Genetics Analysis
374 (MEGA) software, version 11 (41).

375 Homologous analysis of the genomic sequences was done by Average Nucleotide Identity (ANI)
376 with the ANI calculator tool (<http://enve-omics.ce.gatech.edu/ani/>) and by the BLAST Ring
377 Generator Image (BRIG) (42). Finally, the homology of the protein sequences of the phages was
378 determined using Easyfig 2.2.5 software (43).

379 **Phage propagation and purification**

380 Cultures of *P. aeruginosa* PA01 or PA14, depending on the phage propagated, were grown
381 overnight at 37°C and 180 rpm. The following day, the phage was propagated by the two-agar
382 layer method (44). Briefly, the overnight culture was diluted 1:100 and incubated until the
383 optical density at a wavelength of 600 nm (OD₆₀₀) reached 0.5. An aliquot of 200 µl of the
384 bacterial culture was mixed with 100 µl of the phage of interest. Soft TA (0.5% NaCl; 1%
385 tryptone; 0.4% agar) was then added and the mixture was spread over a TA solid agar layer. The
386 plates were incubated at 37°C for 24 h. The propagated phage was recovered by washing the

387 plate with SM buffer (0.1 M NaCl, 1 mM MgSO₄, 0.2 M Tris-HCl, pH 7.5); 1% chloroform was
388 then added and the suspension was incubated for 20 min. Finally, the lysate was centrifuged
389 and the supernatant containing the phages was recovered and stored at 4°C.

390 **Phage infection assays: spot test and infection curve**

391 A spot test was conducted, as described by Kutter et al. (45), with minor modifications, to
392 determine the sensitivity of the clinical isolates to the 4 lytic phages. Briefly, several plates
393 were prepared by the double agar method with the host strain tested. Two µl of a suspension
394 containing the phage of interest (10⁹ PFU/ml) was added to the top agar. The plate was
395 incubated at 37°C for 24 h and the plate was analysed. Infection was considered positive
396 (sensitive) if a clear or turbid spot was observed and negative (resistant) if no spot was
397 observed. The tests were conducted in triplicate and were considered positive when all the
398 replicates clearly showed a spot.

399 As some positive spots can occur as a result of abortive infection mechanisms or “lysis from
400 without” and not from a productive infection (11), infection curve analysis in LB broth medium
401 was conducted for the phage-host combinations that yielded positive spot tests. Infection
402 curve analysis was conducted by combining 10⁷ CFU/ml of the clinical isolate selected and 10⁸
403 PFU/ml of the phage selected in 200 µl of LB broth in a 96 well microplate and incubating for
404 24 h at 37°C in an Biotek Epoch 2 (Agilent). Productive infection was assumed to have taken
405 place when the OD was significantly lower than the control in the exponential phase.

406 **Relationship between defence systems in filamentous phages and host phage resistance**

407 The probability of the host being resistant or sensitive when carrying a Pf-like phage was
408 calculated as PR=P(R|Pf) or PS=P(S|Pf), where R is resistant and S is sensitive. The relationship
409 between the presence of complete defence systems and the phage resistance of the host was
410 also calculated as a differential probability for each defence system in those strains carrying a
411 Pf-like phage, as dPR=P(DF|R)-P(DF|S), where DF is the defence system. Values of dPR close to
412 1 indicate overrepresentation of defence systems in resistant interactions, while negative
413 values indicate overrepresentation of defence systems in sensitive strains (46).

414

415

416

417

418

419 **REFERENCES**

- 420 1. Knezevic P, Adriaenssens EM, Ictv Report C. 2021. ICTV Virus Taxonomy Profile:
421 Inoviridae. *J Gen Virol* 102.
- 422 2. Gavric D, Knezevic P. 2022. Filamentous *Pseudomonas* Phage Pf4 in the Context of
423 Therapy-Inducibility, Infectivity, Lysogenic Conversion, and Potential Application.
424 *Viruses* 14.
- 425 3. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C,
426 Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavalieri M, Cox
427 EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Group
428 WHOPPLW. 2018. Discovery, research, and development of new antibiotics: the WHO
429 priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect Dis* 18:318-
430 327.
- 431 4. Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van
432 Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J,
433 Wheeler TJ, Milla CE, Bollyky PL. 2020. Pf Bacteriophage and Their Impact on
434 *Pseudomonas* Virulence, Mammalian Immunity, and Chronic Infections. *Front Immunol*
435 11:244.
- 436 5. van Rossem M, Wilks S, Kaczmarek M, Secor PR, D'Alessandro G. 2022. Modelling of
437 filamentous phage-induced antibiotic tolerance of *P. aeruginosa*. *PLoS One*
438 17:e0261482.
- 439 6. Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 2015. 'Big
440 things in small packages: the genetics of filamentous phage and effects on fitness of
441 their host'. *FEMS Microbiol Rev* 39:465-87.
- 442 7. Mayo-Munoz D, Pinilla-Redondo R, Birkholz N, Fineran PC. 2023. A host of armor:
443 Prokaryotic immune strategies against mobile genetic elements. *Cell Rep* 42:112672.
- 444 8. Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R. 2018.
445 Systematic discovery of antiphage defense systems in the microbial pangenome.
446 *Science* 359.
- 447 9. Ambroa A, Blasco L, Lopez M, Pacios O, Bleriot I, Fernandez-Garcia L, Gonzalez de
448 Aledo M, Ortiz-Cartagena C, Millard A, Tomas M. 2021. Genomic Analysis of Molecular
449 Bacterial Mechanisms of Resistance to Phage Infection. *Front Microbiol* 12:784949.
- 450 10. Bleriot I, Blasco L, Pacios O, Fernandez-Garcia L, Lopez M, Ortiz-Cartagena C, Barrio-
451 Pujante A, Fernandez-Cuenca F, Pascual A, Martinez-Martinez L, Oteo-Iglesias J, Tomas

- 452 M. 2023. Proteomic Study of the Interactions between Phages and the Bacterial Host
453 Klebsiella pneumoniae. *Microbiol Spectr* 11:e0397422.
- 454 11. Hyman P, Abedon ST. 2010. Bacteriophage host range and bacterial resistance. *Adv
455 Appl Microbiol* 70:217-48.
- 456 12. Bleriot I, Blasco L, Pacios O, Fernandez-Garcia L, Ambroa A, Lopez M, Ortiz-Cartagena C,
457 Cuenca FF, Oteo-Iglesias J, Pascual A, Martinez-Martinez L, Domingo-Calap P, Wood TK,
458 Tomas M. 2022. The role of PemIK (PemK/PemI) type II TA system from Klebsiella
459 pneumoniae clinical strains in lytic phage infection. *Sci Rep* 12:4488.
- 460 13. Bleriot I, Pacios O, Blasco L, Fernandez-Garcia L, Lopez M, Ortiz-Cartagena C, Barrio-
461 Pujante A, Garcia-Contreras R, Pirnay JP, Wood TK, Tomas M. 2024. Improving phage
462 therapy by evasion of phage resistance mechanisms. *JAC Antimicrob Resist* 6:dlae017.
- 463 14. Blasco L, de Aledo MG, Ortiz-Cartagena C, Bleriot I, Pacios O, Lopez M, Fernandez-
464 Garcia L, Barrio-Pujante A, Hernandez-Garcia M, Canton R, Tomas M. 2023. Study of 32
465 new phage tail-like bacteriocins (pyocins) from a clinical collection of *Pseudomonas*
466 aeruginosa and of their potential use as typing markers and antimicrobial agents. *Sci
467 Rep* 13:117.
- 468 15. Rousset F, Depardieu F, Miele S, Dowding J, Laval AL, Lieberman E, Garry D, Rocha EPC,
469 Bernheim A, Bikard D. 2022. Phages and their satellites encode hotspots of antiviral
470 systems. *Cell Host Microbe* 30:740-753 e5.
- 471 16. Bernheim A, Sorek R. 2020. The pan-immune system of bacteria: antiviral defence as a
472 community resource. *Nat Rev Microbiol* 18:113-119.
- 473 17. Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL.
474 2016. Prophages mediate defense against phage infection through diverse
475 mechanisms. *ISME J* 10:2854-2866.
- 476 18. Fiedoruk K, Zakrzewska M, Daniluk T, Piktel E, Chmielewska S, Bucki R. 2020. Two
477 Lineages of *Pseudomonas aeruginosa* Filamentous Phages: Structural Uniformity over
478 Integration Preferences. *Genome Biol Evol* 12:1765-1781.
- 479 19. Pourtois JD, Kratochvil MJ, Chen Q, Haddock NL, Burgener EB, De Leo GA, Ballyky PL.
480 2021. Filamentous Bacteriophages and the Competitive Interaction between
481 *Pseudomonas aeruginosa* Strains under Antibiotic Treatment: a Modeling Study.
482 *mSystems* 6:e0019321.
- 483 20. Martinez JL, Baquero F. 2014. Emergence and spread of antibiotic resistance: setting a
484 parameter space. *Ups J Med Sci* 119:68-77.

- 485 21. Burgener EB, Sweere JM, Bach MS, Secor PR, Haddock N, Jennings LK, Marvig RL,
486 Johansen HK, Rossi E, Cao X, Tian L, Nedelec L, Molin S, Bollyky PL, Milla CE. 2019.
487 Filamentous bacteriophages are associated with chronic *Pseudomonas* lung infections
488 and antibiotic resistance in cystic fibrosis. *Sci Transl Med* 11.
489 22. Li Y, Liu X, Tang K, Wang W, Guo Y, Wang X. 2020. Prophage encoding toxin/antitoxin
490 system PfT/PfA inhibits Pf4 production in *Pseudomonas aeruginosa*. *Microb
491 Biotechnol* 13:1132-1144.
492 23. Wu Y, Garushyants SK, van den Hurk A, Aparicio-Maldonado C, Kushwaha SK, King CM,
493 Ou Y, Todeschini TC, Clokie MRJ, Millard AD, Gencay YE, Koonin EV, Nobrega FL. 2024.
494 Bacterial defense systems exhibit synergistic anti-phage activity. *Cell Host Microbe*
495 doi:10.1016/j.chom.2024.01.015.
496 24. Schmidt AK, Fitzpatrick AD, Schwartzkopf CM, Faith DR, Jennings LK, Coluccio A, Hunt
497 DJ, Michaels LA, Hargil A, Chen Q, Bollyky PL, Dorward DW, Wachter J, Rosa PA,
498 Maxwell KL, Secor PR. 2022. A Filamentous Bacteriophage Protein Inhibits Type IV Pili
499 To Prevent Superinfection of *Pseudomonas aeruginosa*. *mBio* 13:e0244121.
500 25. Schwartzkopf CM, Taylor VL, Groleau MC, Faith DR, Schmidt AK, Lamma TL, Brooks DM,
501 Deziel E, Maxwell KL, Secor PR. 2024. Inhibition of PQS signaling by the Pf
502 bacteriophage protein PfsE enhances viral replication in *Pseudomonas aeruginosa*. *Mol
503 Microbiol* 121:116-128.
504 26. Patel PH, Maxwell KL. 2023. Prophages provide a rich source of antiphage defense
505 systems. *Curr Opin Microbiol* 73:102321.
506 27. Maxwell KL. 2020. Retrons: Complementing CRISPR in Phage Defense. *CRISPR J* 3:226-
507 227.
508 28. Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A,
509 Oppenheimer-Shaanan Y, Sorek R. 2020. Bacterial Retrons Function In Anti-Phage
510 Defense. *Cell* 183:1551-1561 e12.
511 29. Cheng R, Huang F, Wu H, Lu X, Yan Y, Yu B, Wang X, Zhu B. 2021. A nucleotide-sensing
512 endonuclease from the Gabija bacterial defense system. *Nucleic Acids Res* 49:5216-
513 5229.
514 30. Stokar-Avihail A, Fedorenko T, Hor J, Garb J, Leavitt A, Millman A, Shulman G, Wojtanica
515 N, Melamed S, Amitai G, Sorek R. 2023. Discovery of phage determinants that confer
516 sensitivity to bacterial immune systems. *Cell* 186:1863-1876 e16.
517 31. de Freitas Almeida GM, Hoikkala V, Ravanti J, Rantanen N, Sundberg LR. 2022. Mucin
518 induces CRISPR-Cas defense in an opportunistic pathogen. *Nat Commun* 13:3653.

- 519 32. Ling KM, Stick SM, Kicic A. 2023. Pulmonary bacteriophage and cystic fibrosis airway
520 mucus: friends or foes? *Front Med (Lausanne)* 10:1088494.
- 521 33. Lourenco M, Chaffringeon L, Lamy-Besnier Q, Pedron T, Campagne P, Eberl C, Berard M,
522 Stecher B, Debarbieux L, De Sordi L. 2020. The Spatial Heterogeneity of the Gut Limits
523 Predation and Fosters Coexistence of Bacteria and Bacteriophages. *Cell Host Microbe*
524 28:390-401 e5.
- 525 34. Chin WH, Kett C, Cooper O, Museler D, Zhang Y, Bamert RS, Patwa R, Woods LC,
526 Devendran C, Korneev D, Tiralongo J, Lithgow T, McDonald MJ, Neild A, Barr JJ. 2022.
527 Bacteriophages evolve enhanced persistence to a mucosal surface. *Proc Natl Acad Sci U
528 S A* 119:e2116197119.
- 529 35. Sastre-Femenia MA, Fernandez-Munoz A, Gomis-Font MA, Taltavull B, Lopez-Causape
530 C, Arca-Suarez J, Martinez-Martinez L, Canton R, Larrosa N, Oteo-Iglesias J, Zamorano L,
531 Oliver A, Group G-SCPs. 2023. *Pseudomonas aeruginosa* antibiotic susceptibility
532 profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year
533 time lapse analysis. *Lancet Reg Health Eur* 34:100736.
- 534 36. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a
535 better, faster version of the PHAST phage search tool. *Nucleic Acids Res* 44:W16-21.
- 536 37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass
537 EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK,
538 Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V,
539 Wilke A, Zagnitko O. 2008. The RAST Server: rapid annotations using subsystems
540 technology. *BMC Genomics* 9:75.
- 541 38. Kent WJ. 2002. BLAT--the BLAST-like alignment tool. *Genome Res* 12:656-64.
- 542 39. Soding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein
543 homology detection and structure prediction. *Nucleic Acids Res* 33:W244-8.
- 544 40. Payne LJ, Meaden S, Mestre MR, Palmer C, Toro N, Fineran PC, Jackson SA. 2022.
545 PADLOC: a web server for the identification of antiviral defence systems in microbial
546 genomes. *Nucleic Acids Res* 50:W541-W550.
- 547 41. Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics
548 Analysis Version 11. *Mol Biol Evol* 38:3022-3027.
- 549 42. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator
550 (BRIG): simple prokaryote genome comparisons. *BMC Genomics* 12:402.
- 551 43. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer.
552 *Bioinformatics* 27:1009-10.

- 553 44. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2009. Enumeration of
554 bacteriophages by double agar overlay plaque assay. *Methods Mol Biol* 501:69-76.
- 555 45. Kutter E. 2009. Phage host range and efficiency of plating. *Methods Mol Biol* 501:141-
556 9.
- 557 46. Beamud B, Garcia-Gonzalez N, Gomez-Ortega M, Gonzalez-Candelas F, Domingo-Calap
558 P, Sanjuan R. 2023. Genetic determinants of host tropism in *Klebsiella* phages. *Cell Rep*
559 42:112048.
- 560 47. Garcia-Cruz JC, Rebollar-Juarez X, Limones-Martinez A, Santos-Lopez CS, Toya S, Maeda
561 T, Ceapa CD, Blasco L, Tomas M, Diaz-Velasquez CE, Vaca-Paniagua F, Diaz-Guerrero M,
562 Cazares D, Cazares A, Hernandez-Duran M, Lopez-Jacome LE, Franco-Cendejas R,
563 Husain FM, Khan A, Arshad M, Morales-Espinosa R, Fernandez-Presas AM, Cadet F,
564 Wood TK, Garcia-Contreras R. 2023. Resistance against two lytic phage variants
565 attenuates virulence and antibiotic resistance in *Pseudomonas aeruginosa*. *Front Cell
566 Infect Microbiol* 13:1280265.
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580

581 **TABLE AND FIGURE LEGENDS**

582 **Table 1.** Clinical strains of *P. aeruginosa* recovered from CF patients, showing the isolates
583 grouped by patient, the ST and the filamentous phage found in each isolate. The lytic phages
584 used in the study are also shown.

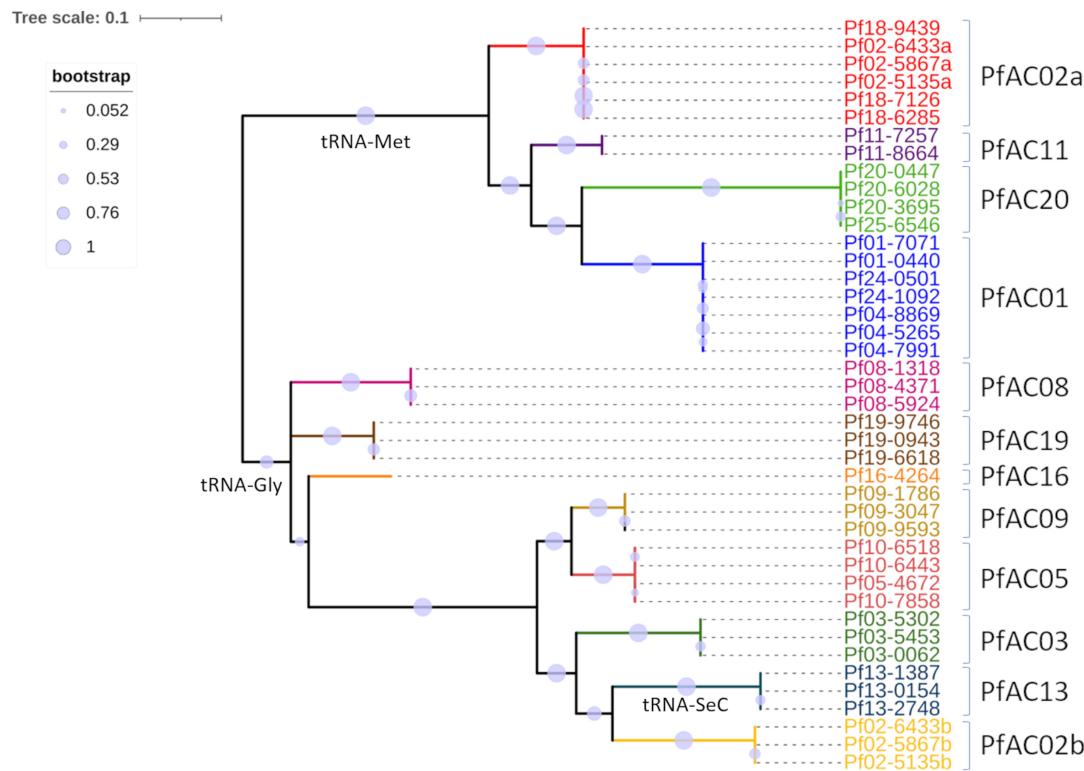
585 **Table 2.** 12 Pf-like phages identified in this study, showing the genome size, Genbank code, ST
586 related to each phage, insertion site for each Pf-like phage, CDS number, Core Genome CDS,
587 Accessory Genome CDS and Defence System found in each Pf-like phage.

588 **Figure 1.** Genomic analysis of the filamentous phage genomes. (A) Phylogenetic analysis by
589 Maximum likelihood, with the tree showing the groups that corresponded to the final Pf-like
590 phages identified and two major groups corresponding to the insertion sites. (B) Brig homology
591 analysis of the filamentous phage genome groups.

592 **Figure 2.** Pf-like phage genome and anti-phage defence systems. (a) Protein annotation and
593 homology of the 12 Pf-like phages. The Core Genome (CG), Accessory Genome (AG), integrase
594 and excisionase (brown), excisionase negative regulator (black), defence systems (red),
595 hypothetical genes in the accessory genome (yellow) and genes of the core genome (blue) are
596 shown. (B) Protein components of the defence systems. (C) Prevalence of each defence system
597 in the 12 Pf-like phages identified.

598 **Figure 3.** Relationship between the Pf-like phage and resistance to phage infection. (A)
599 Resistance pattern for each isolate (Pf-like carrier and non-Pf-like carrier) challenged with 4
600 lytic phages; the graph represents the results obtained in both the spot test and infection
601 curves. (B) Resistant and Sensitive interactions between the *P. aeruginosa* identified as carriers
602 and non-carriers of Pf-like phages. (C) Probability that the *P. aeruginosa* isolates identified as
603 carriers and non-carriers of Pf-like phages are resistant to phage infection. (D) Differential
604 probability (dPR) of each anti-phage defence system carried in the Pf-like genomes. Values of
605 dPR close to 1 indicate overrepresentation of phage resistance, while negative values indicate
606 overrepresentation of sensitivity to phage infection.

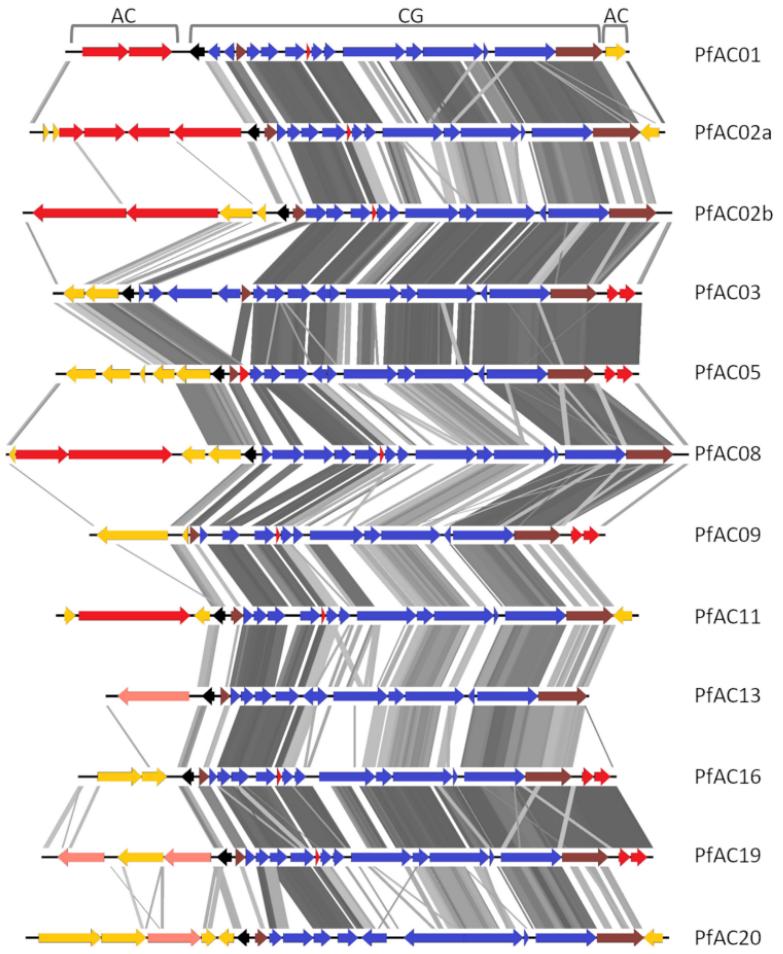
Patient	<i>P. aeruginosa</i> CF isolate	ST	Pf-like isolate
01	01-0440	1089	Pf01-0440
	01-5978	1089	-
	01-7071	1089	Pf01-7071
02	02-5135	312	Pf02-5135a;Pf02-5135b
	02-5867	312	Pf02-5867a;Pf02-5867b
	02-6433	312	Pf02-6433a;Pf02-6433b
03	03-0062	285	Pf03-0062
	03-5302	285	Pf03P. -5302
	03-5453	285	Pf03-5453
04	04-5265	274	Pf04-5265
	04-7991	274	Pf04-7991
	04-8869	274	Pf04-8869
05	05-2269	NEW1	-
	05-2840	NEW1	-
	05-4672	360	Pf05-4672
06	06-6855	242	-
	06-7209	242	-
	06-9800	242	-
07	07-1155	279	-
	07-5966	279	-
	07-8998	279	-
08	08-1318	NEW2	Pf08-1318
	08-4371	NEW2	Pf08-4371
	08-5924	NEW2	Pf08-5924
09	09-0786	1109	Pf09-0786
	09-3048	1109	Pf09-3048
	09-9593	1109	Pf09-9593
10	10-6443	360	Pf10-6443
	10-6518	360	Pf10-6518
	10-7858	360	Pf10-7858
11	11-4349	198	-
	11-7257	2475	Pf11-7257
	11-8664	2475	Pf11-8664
12	12-0969	277	-
	12-2742	277	-
	12-2760	277	-
13	13-0154	1123	Pf13-0154
	13-1387	1123	Pf13-1387
	13-2748	1123	Pf13-2748
14	14-4114	319	-
	14-4688	319	-
	14-5818	319	-

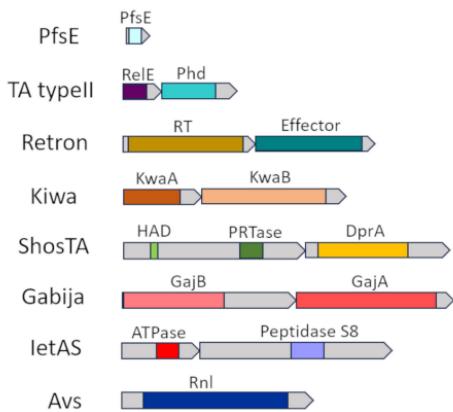

15	15-4963	412	-
	15-7676	412	-
	15-8860	412	-
16	16-0109	252	-
	16-2856	252	-
	16-4264	408	Pf16-4264
17	17-0755	274	-
	17-3115	274	-
	17-8321	274	-
18	18-6285	312	Pf18-6285
	18-7126	312	Pf18-7126
	18-9439	312	Pf18-9439
19	19-0943	1092	Pf19-0943
	19-6618	1092	Pf19-6618
	19-9746	1092	Pf19-9746
20	20-0447	1072	Pf20-0447
	20-3695	1072	Pf20-3695
	20-6028	1072	Pf20-6028
21	21-2955	198	-
	21-4234	198	-
	21-9889	198	-
22	22-5179	NEW3	-
	22-5546	2101	-
	22-5835	1134	-
23	23-2344	701	-
	23-6966	CC701	-
	23-9557	701	-
24	24-0501	274	Pf24-0501
	24-1092	274	Pf24-1092
	24-7416	274	-
25	25-6546	1072	Pf25-6546
	25-7986	235	-
	25-9260	1613	-
<i>P. aeruginosa</i> reference strain		Origin	
PA01		Present study	
PA14		Present study	
Lytic Phages		Origin	
φDCL-PA6		Contaminated river water (Contreras research group, UNAM) (47)	
φDCL-PA6α		Contaminated river water (Contreras research group, UNAM)(47)	
PAC8		Contaminated river water (Contreras research group, UNAM)(47)	
PAC2		Compost (This group)	

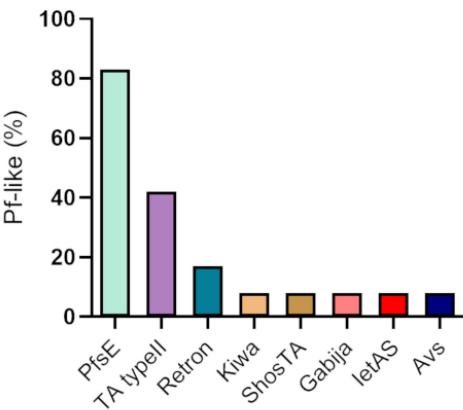
608 **Table 1.** The clinical isolates of *P. aeruginosa* were provided by the research group led by
609 A. Oliver (35).

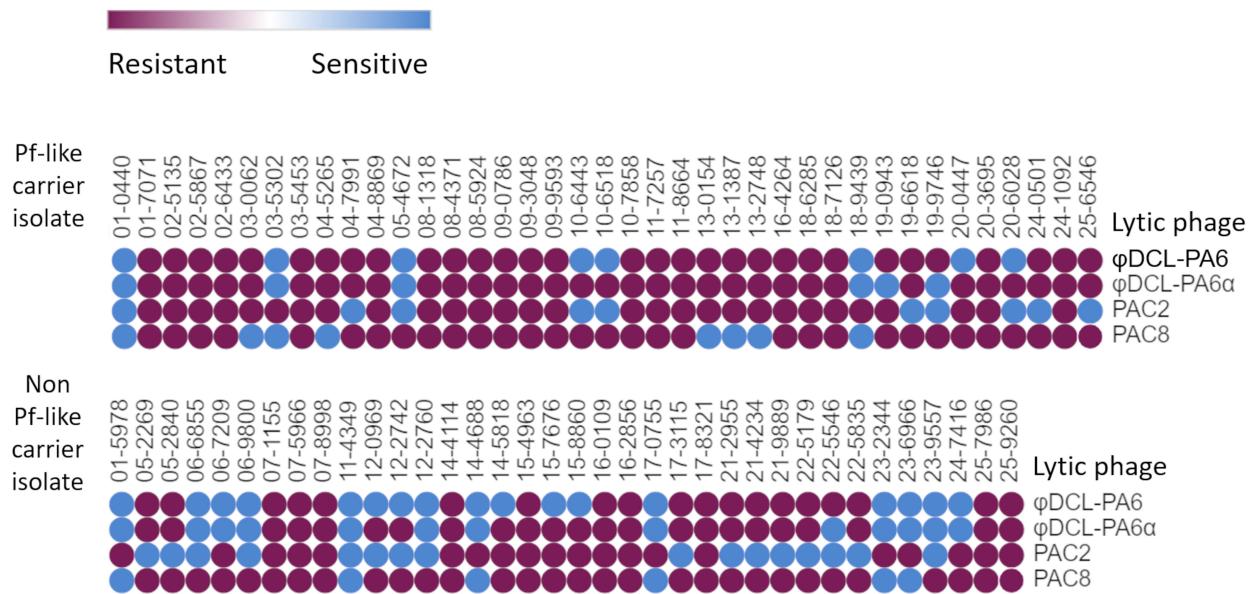
Pf-like phage	Nº of isolates (Patients)	Isolate ST	Genbank	tRNA insertion site	Genome Size	CDS	Core CDS	Accessory CDS	Defence system
PfAC01	7 (3)	1089/274	OR863249	tRNA-Met	11915	19	15	4	Retron; PfsE
PfAC02a	6 (2)	312	OR790968	tRNA-Met	13430	22	15	7	ShosTA; Kiwa; PfsE
PfAC02b	3 (1)	312	OR790969	tRNA-Gly	13720	18	14	4	Gabija; PfsE
PfAC03	3 (1)	285	OR801191	tRNA-Gly	12443	22	18	4	TA
PfAC05	4 (2)	360	OR801193	tRNA-Gly	12329	21	14	7	TA; PfsE
PfAC08	3 (1)	NEW2	OR818368	tRNA-Gly	14433	20	15	5	letAS; PfsE
PfAC09	3 (1)	1109	OR818369	tRNA-Gly	10911	17	15	2	TA; PfsE
PfAC11	2 (1)	360	OR863245	tRNA-Met	12311	19	16	3	Avs; PfsE
PfAC13	3 (1)	2475	OR863246	tRNA-SeC	10211	15	14	1	AbiEii toxin
PfAC16	1 (1)	1123	OR863247	tRNA-Gly	11376	19	15	4	TA; PfsE
PfAC19	3 (1)	408	OR863248	tRNA-Gly	12922	20	15	5	Secreted effector protein; DGHQR; TA; PfsE
PfAC20	4 (2)	1072	PP058144	tRNA-Met	13600	18	12	6	Cytosine methyltransferase

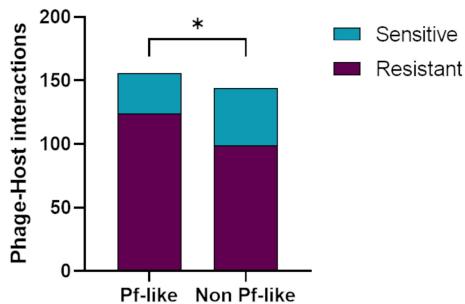
Table 2. Incomplete Defence Systems (shown in bold).


A)

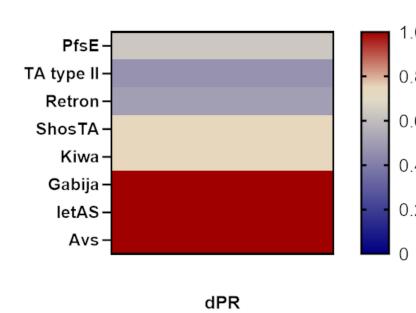

B)


A)


B)


C)

A)


B)

C)

Probability (%)	
$P(R Pf)$	79,49
$P(S Pf)$	20,51
$P(R nPf)$	63,89
$P(S nPf)$	36,11

D)

