

1

2 Hijacked Immune Cells Traverse Microenvironmental Barriers 3 by Positioning and Pushing their Intracellular Parasite Cargo

4

5

6 **Authors:** Mauricio J.A. Ruiz-Fernandez¹, Jianfei Jiang^{2,3}, Armina Mortazavi^{2,3}, Bingzhi
7 Wang¹, Artur Kuznetcov¹, Jack Merrin⁴, Markus Meissner⁵, Javier Periz^{5*}, Benedikt
8 Sabass^{2,3*}, Jörg Renkawitz^{1*}

9 **Affiliations:**

10 ¹ Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular
11 Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich;
12 Munich, Germany.

13 ² Department for Veterinary Sciences, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-
14 University Munich; Munich, Germany

15 ³ Faculty of Physics and Cetner for NanoScience, Ludwig-Maximilians-University Munich; Munich,
16 Germany

17 ⁴ Institute of Science and Technology (IST) Austria; Klosterneuburg, Austria

18 ⁵ Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich;
19 Munich, Germany

20 *Correspondence: Javier.Periz@para.vetmed.uni-muenchen.de, Benedikt.Sabass@micro.vetmed.uni-
21 muenchen.de, and Joerg.Renkawitz@med.uni-muenchen.de.

22

23 **Abstract:**

24 Intracellular pathogens hijack the cytoskeletal networks of their host cells to facilitate their
25 uptake, drive their intracellular motility, or prevent their degradation. While many underlying
26 principles have been explored during host cell infections by intracellular bacteria like *Listeria*,
27 *Chlamydia*, or *Shigella*, it remains less well understood how large eukaryotic intracellular
28 parasites like *Toxoplasma gondii* exploit the host cytoskeleton. In particular, how *Toxoplasma*
29 achieves its transport within highly motile immune cells remains largely unknown despite its
30 large intracellular size. Here, we discover that *Toxoplasma gondii* hijacks host myosin forces
31 for translocation through microenvironmental barriers along immune cell migration paths.
32 Using highly defined micro-engineered migration paths and dendritic cells as a highly motile
33 immune cell model, we reveal that large parasitic cargos acquire a surprising intracellular
34 position frontward of the host nucleus and microtubule-organizing center. This frontward
35 localization of parasitic cargos depends on microenvironmental confinement and host myosin
36 activity. We identify that the parasite cargos cause high contractility within their motile host
37 cells mediated by host myosin-II, thereby facilitating their squeezing and deformation to enable
38 transversal through confining microenvironments. Our findings establish parasitic hijacking of
39 myosin forces as a novel principle of how parasites exploit host cytoskeletal networks.

40

41 **Keywords:** *Toxoplasma gondii*, cytoskeletal forces, myosin, cell motility, organelle
42 positioning, dendritic cells, microenvironmental pores.

43 Introduction

44 Mammalian cells are equipped with dynamic cytoskeletal structures that provide forces for cell
45 shape dynamics, cell motility, organelle positioning, and intracellular transport¹⁻³. Intracellular
46 pathogens can hijack these forces generated by the host cell to (i) facilitate their uptake, (ii)
47 drive their intracellular motility, or (iii) prevent their degradation⁴. For instance, various
48 intracellular pathogens like the bacterium *Shigella flexneri* hijack and modulate the ability of
49 host cells to engulf extracellular fluid by actin-dependent cellular protrusions in a process
50 termed macropinocytosis, thereby facilitating their uptake and also release into the host
51 cytoplasm⁵⁻⁷. The host actin cytoskeleton is further critical to provide a structural scaffold
52 around vacuoles of the intracellular bacterium *Chlamydia* for vacuole stability⁸. Moreover, the
53 intracellular bacteria *Listeria* and *Rickettsia* employ a comet-like movement within host cells
54 to cross the plasma membrane of neighboring cells. The forces driving this fast intracellular
55 movement originate from the host actin cytoskeleton, which is induced by the *Listeria* protein
56 ActA that is anchored to the pathogen surface and stimulates the actin nucleation activity of
57 the host actin nucleator Arp2/3⁹, or by the *Rickettsia* protein Sca2 that has formin-like
58 properties and thereby directly nucleates host actin in a linear manner¹⁰. Thus, hijacking of the
59 host cell cytoskeleton is important for infection cycles of diverse bacterial pathogens.

60 However, whether and how the host cytoskeleton is exploited by large eukaryotic
61 intracellular parasites is less well understood. The eukaryotic intracellular parasite
62 *Leishmania* generates a protective host actin coat around *Leishmania*-containing
63 phagosomes¹¹ and also alters the host actin cytoskeleton of macrophages and dendritic cells to
64 modulate their migratory ability¹². The migratory capacity of dendritic cells is also well-known
65 to be stimulated by the eukaryotic intracellular parasite *Toxoplasma gondii*, which induces a
66 highly active migration mode of host dendritic cells^{13,14}. Considering that *Toxoplasma gondii*
67 (i) disseminates quickly from the host gut through the host organisms into lymph nodes and
68 diverse tissues, and (ii) efficiently infects highly migratory host immune cells like dendritic
69 cells, neutrophilic granulocytes, and T cells, *Toxoplasma gondii* appears to hijack the ability
70 of host immune cells to move through tissues and to cross microenvironmental barriers^{15,16}.
71 However, such a model leads to a paradox, in which the large size of the parasitophorous
72 vacuole that contains the replicating parasite¹⁷ appears incompatible with the crossing of tissue
73 microenvironments that are highly confining and contain pores that are substantially smaller
74 than the host cell body and the parasitophorous vacuole¹⁸.

75 While some studies observed efficient migration of immune cells loaded with
76 *Toxoplasma* cargos within in vivo tissues and 3D collagen matrices, others observed limited
77 crossing of microenvironmental barriers¹⁹⁻²¹. Thus, it remains unknown whether and how
78 *Toxoplasma* achieves its intracellular transport as a bulky cargo in immune cells. Also more
79 generally, how do large intracellular parasites exploit the mechanics and forces of host cells to
80 efficiently cross microenvironmental barriers efficiently?

81 To address this knowledge gap, we here generated micro-engineered
82 microenvironments that allowed us to investigate the crossing of *Toxoplasma* cargos within
83 motile immune cells through space-limiting microenvironments in a quantifiable throughput
84 manner. Thereby, we discover that *Toxoplasma* hijacks myosin-driven forces of the host cell
85 for dynamic intracellular repositioning and for crossing microenvironmental barriers,

86 providing a new principle of how intracellular pathogens hijack the cellular forces and
87 mechanics of the host.

88

89 **Results**

90 **Unfolding and deformation of the parasitophorous vacuole cargo during immune cell 91 crossing of microenvironmental barriers**

92 To address the paradox of how motile immune cells transport large intracellular parasitic cargos
93 efficiently, we employed mouse dendritic cells (DCs) as a well-established highly migratory
94 cellular model and *Toxoplasma gondii* as a well-established eukaryotic intracellular parasite
95 model. Upon timed infection, we loaded the parasite-bearing DCs into microchannels with a
96 defined width of 8 micrometers and height of 5 micrometers, providing a straight tunnel-like
97 track for motility. Using fluorescently tagged *Toxoplasma* parasites and simultaneous imaging
98 of hundreds of microchannels allowed us to precisely quantify the migratory velocity for the
99 first time depending on the replication stage of the parasite. These measurements showed that
100 dendritic cells loaded with 1-, 2-, and 4-stage parasites have high migratory velocities of around
101 10 micrometers per minute, comparable to the velocity of non-infected bystander DCs (Fig. 1a,
102 b). Yet, when the parasites further replicated to 8-, 16-, and 32-stages, in which the
103 parasitophorous vacuole (PV) that contains the individual parasites is even larger than the host
104 nucleus (Fig. 1c), decreased the host cell velocity (Fig. 1b). Nevertheless, even extremely large
105 16- and 32-stage PVs that entirely filled the width of the microchannels and large parts of the
106 host cytoplasm, still migrated with substantial speeds of 2-6 micrometers per minute (Fig. 1a-
107 c). These findings showed that microenvironmental confinement slows the migration of
108 immune cells loaded with very large parasitic cargos, but also suggested that even extremely
109 large parasitic cargo transport is rather efficient.

110 To identify the limits of parasitic cargo transport within motile DCs, we introduced a
111 defined pore of 4-micrometers widths into the migratory track. While larger parasitic cargos
112 took longer to squeeze through the pore, they still passed surprisingly efficiently (Fig. 1d). To
113 provide a smaller pore that is even smaller than an individual parasite, we next introduced pores
114 with widths of only 2 micrometers, and still observed high rates of cellular passage, even when
115 loaded with large parasitic cargos (Fig. 1e).

116 To understand how this large, bulky, and stiff parasitic cargo is translocated through
117 narrow microenvironmental pores, we next performed fast time-lapse and high-resolution
118 imaging of labeled parasites. These measurements revealed a sequential passage of parasites
119 within a PV through the pores, followed by a rapid PV reorganization behind the pore (Fig. 1f).
120 Squeezing-like deformations of individual parasites accompanied this unfolding-like behavior
121 of the parasitic PV while they translocated through the pore, substantially deforming the
122 ellipsoid shape of *Toxoplasma gondii* (Fig. 1g). Notably, the individual parasites frequently
123 resided for some time during their invasion into the pore, which was followed by a quick
124 translocation through the pore once the entire parasite was deformed (Fig. 1i), further
125 underscoring the stiffness of the parasite. Together, these findings demonstrate that
126 intracellular *Toxoplasma* parasites are a large, bulky, and stiff cargo within motile dendritic
127 cells, thereby representing a bottleneck during migration through microenvironmental pores.
128 However, the translocation of the parasite through narrow pores by PV unfolding and parasite

129 squeezing also suggests that the parasite employs mechanisms that enable its efficient transport
130 as cargo while immune cells quickly migrate through confining microenvironments.

131

132 **Dynamic intracellular repositioning of large parasitic cargos towards the cell front of**
133 **motile immune cells.**

134 To identify the mechanisms of how the parasite organizes its efficient transport as cargo, we
135 imaged the intracellular position of the parasite in relation to the host nucleus and the
136 microtubule-organising center (MTOC), both serving as indicators for the underlying cell
137 polarity and thus cytoskeletal forces. To our surprise, we observed that parasitic cargos are
138 frequently positioned forward of the host DC nucleus during the migration through maze-
139 like microenvironments (Fig. 2a). Given that DCs belong to the class of migrating cells that
140 employ an amoeboid migration mode that is characterized by low-adhesiveness to the substrate
141 and forward positioning of the nucleus towards the cellular protrusion^{3,22}, this even more
142 forward positioning of the parasitic cargo in relation to the host nucleus was highly
143 unexpected. Notably, quantification of parasite positioning in relation to the parasite stage
144 revealed that large parasitic 8- and 16-stage cargos particularly frequently positioned in front
145 of the host nucleus (Fig. 2a). To confirm this finding, we loaded parasite-infected DCs in 8
146 micrometers wide linear microchannels, allowing us to precisely map the intracellular
147 positioning of the parasite independent of directional changes of the host cell (Fig. 2b).
148 Quantification confirmed an increasing forward positioning of the PV cargo with increasing
149 PV-stage and -size, in which very small 1-stage PV cargos are mostly positioned in the back
150 of the host nucleus, whereas very large 32-stage PV cargos are mostly positioned in the front
151 (Fig. 2c). In agreement with this finding, we frequently observe repositioning of large parasitic
152 cargos from the rear to the front during our imaging intervals but rarely vice versa (Fig. 2d, e),
153 demonstrating that large parasitic cargos actively acquire their forward intracellular
154 localisation.

155 To map this surprising intracellular position of the parasitic cargo more precisely, we
156 infected EB3-mcherry expressing DCs, serving as a microtubule-plus end and microtubule-
157 organising center (MTOC) marker with the motile host cells (Fig. 2f). This revealed that large
158 parasitic cargos are mostly positioned forward of the MTOC (Fig. 2g), which typically
159 localizes approximately to the center of cells. Moreover, in most cases the large parasitic cargo
160 is even positioned together with the nucleus in front of the MTOC (Fig. 2h), showing that both
161 can acquire an amoeboid-like forward positioning. These findings together uncover that large
162 parasitic cargos are positioned towards the cell front despite their large and bulky nature.

163 Interestingly, when we loaded passive beads with a diameter of 6 micrometers into
164 parasite-infected DCs, we observed a rather random intracellular localization of the passive
165 beads, being mostly positioned behind the parasitic cargo (Fig. 2i), suggesting that the parasite
166 may actively drive its positioning with increasing PV-stage. Notably, 4- and 8-stage PVs
167 represent the transition point of when the parasitic cargo begins to be preferentially positioned
168 towards the cell front, correlating with a parasitic size that is large enough to be in the close
169 vicinity of the microenvironmental substrate in 8 micrometers wide microchannels. Thus, we
170 speculated that the forward positioning of large parasite cargo may be based on a mechanism
171 that senses the microenvironmental confinement of the parasitic cargo. To test this model, we
172 loaded parasite-infected DCs into more-wide channels with widths of 10- or 16 micrometers.

173 Quantification indeed revealed that these wider-spaced microenvironments required larger
174 parasitic cargos to observe the forward positioning of the parasitic cargo in comparison to
175 the 8 micrometers-wide microchannels (Fig. 2j, k). Together, these findings reveal that large
176 parasitic cargos are dynamically positioned towards the cell front, particularly in confining
177 microenvironments. Given that the parasitic cargo is not simply dragged at the very cell rear,
178 these data identify the existence of forces that move and position the parasitic cargo.
179

180 **Host cell myosin drives the dynamic repositioning of large parasitic cargos.**

181 To identify the forces that move the bulky parasitic cargo intracellularly, we targeted key
182 cytoskeletal force generators within the host cell. Host cells position specific sets of their
183 organelles by forces derived from the microtubule cytoskeleton and its motors³, including the
184 pulling of the large and bulky nucleus in mesenchymal migrating cells²³. However, the above-
185 described positioning of *Toxoplasma gondii* parasites within DCs far forward of the
186 microtubule organizing center rather argued against a mechanism that employs microtubule
187 forces to pull the bulky parasitic cargo. Indeed, when we analyzed the positioning of the
188 parasite cargo upon microtubule depolymerization, we did not observe any impaired forward
189 positioning of large parasitic cargo (Fig. 3a). Rather in contrast, cells with a depolymerized
190 microtubule cytoskeleton may tend to position their large parasitic cargo even more likely to
191 the front of the cell (Fig. 3a), largely excluding microtubules as a major driving force for the
192 intracellular position of *Toxoplasma gondii* in motile DCs.

193 Given that microtubule-depolymerisation is well-known to induce cellular contractility
194 via myosin, the finding that microtubule-depolymerisation may cause a more likely forward
195 positioning of large cargos suggested that forces originating from myosin may drive the
196 intracellular movement and positioning of the parasite. In line with this notion, we often
197 observed a smooth roundish cell front in *Toxoplasma gondii*-infected DCs (Fig. 3b) and even
198 occasionally cells with a blebbing cell front during migration, both indicators of a high degree
199 of intracellular contractility. This finding was surprising, as DCs have not yet been described
200 to employ a blebbing-like migration mode, which is used by some cell types for forward
201 movement^{24,25}. As DCs typically have cell fronts composed of highly dynamic veil-like
202 protrusions, this finding indicated a shift in the balance of cellular progressiveness and
203 contractility²⁶ upon parasite infection. Notably, when we quantified the frequency of this
204 smooth cell front phenotype in relation to the replication stage of the parasite, we observed that
205 large parasitic cargos almost always caused the appearance smooth roundish DC cell front (Fig.
206 3b). This phenotype was appeared even with smaller parasitic cargos upon host cell
207 microtubule depolymerization (Fig. 3b), again suggesting an increased myosin-based cell
208 contractility in *Toxoplasma gondii*-infected DCs.

209 To directly test this hypothesis, we first imaged the localization of host myosin by
210 infecting Myh9-GFP expressing DCs to visualize host myosin-IIA (Fig. 3c). Live cell imaging
211 revealed a strong enrichment of myosin-IIA in the rear of the cell behind the parasitic cargo
212 (Fig. 3c). While uninfected DCs also often show a rearward accumulation, the distribution
213 pattern is often more distributed intracellularly. However, with the increasing parasite
214 replication stage, we observed an increasing frequency of a clearly defined rearward
215 enrichment of host myosin-IIA (Fig. 3d), showing that large parasitic cargos cause a shift in
216 the distribution of myosin-IIA. This strong rearward accumulation of myosin suggested a

217 model in which myosin-based contractility at the cell rear cause a contractile force that pushes
218 the parasitic cargo. To directly test this model, we employed the myosin-inhibitor para-nitro
219 blebbistatin and measured the positioning of the parasitic cargo during DC migration. While in
220 control cells the forward position of the parasite cargo increased with increasing parasite
221 stages, inhibited cells showed an overall mostly random localization pattern (Fig. 3e). This
222 finding was substantiated when we analyzed the frequency of how often the PV cargo moves
223 to the front in our imaging periods, revealing that myosin-inhibition strongly impaired the
224 ability of parasitic cargos to move toward the cell front of infected-DCs (Fig. 3f). Together,
225 these data show that *Toxoplasma gondii* parasites hijack forces from host myosin contractility.
226 Considering that this particularly occurs with large parasitic cargos shows that parasites are
227 able to adapt their hijacking strategy to the size of the parasite.

228

229 **Intracellular parasitic repositioning and host cell contractility facilitate crossing of** 230 **microenvironmental barriers.**

231 To address whether *Toxoplasma gondii* does not only hijack host myosin contractility for its
232 own intracellular movement but also to overcome microenvironmental barriers that motile
233 immune cells face on their trafficking paths, we quantified the velocity of parasite-loaded
234 motile DCs upon myosin inhibition. This showed that uninfected bystander cells achieve the
235 same velocities in the presence of the myosin inhibitor para-nitro blebbistatin as control cells
236 (Fig. 4a). Similarly, also parasite-infected cells with small 1-stage PVs showed non-impaired
237 migration velocities (Fig. 4a). However, with increasing PV stages and thus sizes of the parasite
238 cargo, myosin inhibition caused impaired migration through 8 micrometers-wide
239 microchannels (Fig. 4a), suggesting that migration of parasite cargos with sizes being confined
240 in the microenvironment may require host myosin activity.

241 To directly mimic confined microenvironments, we next investigated how often
242 parasite-infected DCs passed 2 micrometers pores. While almost all control cells efficiently
243 translocated through these tiny pores (as shown in Figure 1), myosin inhibition caused a strong
244 impairment of larger PV to cross these pores (Fig. 4b). While small 1- and 2-stage parasites
245 still sometimes migrated through the pores, large 4-, 8-, and 16-stages almost always got
246 entirely stuck at the 2 micrometer-sized pores (Fig. 4b). Notably, when we imaged the
247 behaviour of parasite-loaded DCs that get stuck at the pore entrance when myosin function is
248 impaired, we noticed egress of the parasite out of the host cell (Fig. 4c). Quantification in
249 relation to the PV cargo revealed that egress was rare in control cells but particularly frequently
250 occurring with large parasitic cargos upon impairment of myosin activity (Fig. 4c). Together,
251 these data discover that *Toxoplasma gondii* hijacks the myosin contractility of the host cell to
252 achieve its transport during the highly dynamic migration of dendritic cells through complex
253 and confining microenvironments. These data further discover that this hijacking mode adapts
254 to the size of the parasite cargo, providing forces when they are most needed, namely to move
255 and squeeze particularly large intracellular parasitic cargos.

256
257
258
259

260 **Discussion**

261 Parasites can facilitate their dissemination within the host organism by intracellular transport
262 in highly motile immune cells. Whereas the dissemination of the eukaryotic parasite
263 *Toxoplasma gondii* by long-range transport between different tissues within a single immune
264 cell is highly debated¹⁵ and appears unlikely, facilitated dissemination by a ‘hop-on hop-off’-
265 like mechanism with multiple cycles of infection and egress using different individual motile
266 immune cells is strongly supported by several pieces of evidence: *Toxoplasma gondii* (i) infects
267 efficiently and early immune cells in the gut of their host upon uptake by food, (ii) arrives
268 already after a few days in the lymph nodes, which represent the homing destination of many
269 highly motile immune cells, and (iii) even induces a high motile mode of immune cells once
270 they are infected^{15,27}. However, considering the bulky nature of the parasitophorous vacuole -
271 in which the parasite replicates - within its host cells, it remained entirely unknown how fast
272 immune cell migration through the complex and confining microenvironment of tissues is
273 compatible with such a bulky cargo. Here, we identify that the parasitic cargo is indeed larger
274 and likely even stiffer than the host nucleus. This finding was surprising, as the host nucleus is
275 already well-known to be a bottleneck for cell motility through environmental pores^{2,28}, given
276 its large size and high stiffness in comparison to other cellular organelles²⁹. Employing
277 hundreds of microchannels with defined microenvironmental topography in parallel, allowed
278 us to here discover how the parasite overcomes this paradox. We identify that the parasite
279 causes a rearward accumulation of myosin, fostering a presumably frontward-driven cellular
280 contractility from the cell rear to drive the movement of the parasite within the host cytoplasm
281 and through microenvironmental confinement. If this myosin II-driven contractility is
282 impaired, the parasitic cargo and thus the entire immune cell gets stuck at narrow pores,
283 preventing parasite dissemination and causing local egress. Together, these findings identify
284 the principle of pathogen hijacking of host myosin contractility for efficient parasite cargo
285 transport. Further, our findings identify that *Toxoplasma gondii* modulates the forces of the
286 host cytoskeleton with its own size to an increasing extent, thereby discovering that parasites
287 can adapt their hijacking of the host cytoskeleton to the nature of the parasitic cargo.

288

289

290 **References**

291

- 292 1. Fletcher, D.A., and Mullins, R.D. (2010). Cell mechanics and the cytoskeleton. *Nature* 293 *463*, 485–492. 10.1038/nature08908.
- 294 2. Yamada, K.M., and Sixt, M. (2019). Mechanisms of 3D cell migration. *Nature Reviews* 295 *Molecular Cell Biology* *20*, 738–752. 10.1038/s41580-019-0172-9.
- 296 3. Kroll, J., and Renkawitz, J. (2024). Principles of organelle positioning in motile and non- 297 motile cells. *EMBO Rep.*, 1–16. 10.1038/s44319-024-00135-4.
- 298 4. Kühn, S., and Enninga, J. (2020). The actin comet guides the way: How Listeria actin 299 subversion has impacted cell biology, infection biology and structural biology. *Cell.* 300 *Microbiol.* *22*, e13190. 10.1111/cmi.13190.
- 301 5. Weiner, A., Mellouk, N., Lopez-Montero, N., Chang, Y.-Y., Souque, C., Schmitt, C., and 302 Enninga, J. (2016). Macropinosomes are Key Players in Early Shigella Invasion and 303 Vacuolar Escape in Epithelial Cells. *PLoS Pathog.* *12*, e1005602. 304 10.1371/journal.ppat.1005602.
- 305 6. Chang, Y., Enninga, J., and Stévenin, V. (2021). New methods to decrypt emerging 306 macropinosome functions during the host–pathogen crosstalk. *Cell. Microbiol.* *23*, e13342. 307 10.1111/cmi.13342.
- 308 7. Mercer, J., and Helenius, A. (2009). Virus entry by macropinocytosis. *Nature cell biology* 309 *11*, 510–520. 10.1038/ncb0509-510.
- 310 8. Kumar, Y., and Valdivia, R.H. (2008). Actin and Intermediate Filaments Stabilize the 311 Chlamydia trachomatis Vacuole by Forming Dynamic Structural Scaffolds. *Cell Host* 312 *Microbe* *4*, 159–169. 10.1016/j.chom.2008.05.018.
- 313 9. Welch, M.D., Rosenblatt, J., Skoble, J., Portnoy, D.A., and Mitchison, T.J. (1998). 314 Interaction of Human Arp2/3 Complex and the Listeria monocytogenes ActA Protein in 315 Actin Filament Nucleation. *Science* *281*, 105–108. 10.1126/science.281.5373.105.
- 316 10. Haglund, C.M., Choe, J.E., Skau, C.T., Kovar, D.R., and Welch, M.D. (2010). *Rickettsia* 317 *Sca2* is a bacterial formin-like mediator of actin-based motility. *Nat. Cell Biol.* *12*, 1057– 318 1063. 10.1038/ncb2109.
- 319 11. Lodge, R., and Descoteaux, A. (2005). *Leishmania donovani* promastigotes induce 320 periphagosomal F-actin accumulation through retention of the GTPase Cdc42. *Cell.* 321 *Microbiol.* *7*, 1647–1658. 10.1111/j.1462-5822.2005.00582.x.
- 322 12. Luz, Y., Rebouças, A., Bernardes, C.P.O.S., Rossi, E.A., Machado, T.S., Souza, B.S.F., 323 Brodskyn, C.I., Veras, P.S.T., Santos, W.L.C. dos, and Menezes, J.P.B. de (2023). 324 *Leishmania* infection alters macrophage and dendritic cell migration in a three-dimensional 325 environment. *Front. Cell Dev. Biol.* *11*, 1206049. 10.3389/fcell.2023.1206049.

326 13. Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M., and Barragan, A. (2006). Induction
327 of dendritic cell migration upon *Toxoplasma gondii* infection potentiates parasite
328 dissemination. *Cellular microbiology* 8, 1611–1623. 10.1111/j.1462-5822.2006.00735.x.

329 14. Weidner, J.M., Kanatani, S., Castañeda, M.A.H., Fuks, J.M., Rethi, B., Wallin, R.P.A.,
330 and Barragan, A. (2013). Rapid cytoskeleton remodelling in dendritic cells following
331 invasion by *Toxoplasma gondii* coincides with the onset of a hypermigratory phenotype.
332 *Cellular microbiology* 15, 1735–1752. 10.1111/cmi.12145.

333 15. Drewry, L.L., and Sibley, L.D. (2019). The hitchhiker's guide to parasite dissemination.
334 *Cell Microbiol* 21, e13070. 10.1111/cmi.13070.

335 16. Ólafsson, E.B., and Barragan, A. (2020). The unicellular eukaryotic parasite *Toxoplasma*
336 *gondii* hijacks the migration machinery of mononuclear phagocytes to promote its
337 dissemination. *Biol Cell* 112, 239–250. 10.1111/boc.202000005.

338 17. Clough, B., and Frickel, E.-M. (2017). The *Toxoplasma* Parasitophorous Vacuole: An
339 Evolving Host–Parasite Frontier. *Trends Parasitol* 33, 473–488. 10.1016/j.pt.2017.02.007.

340 18. Kameritsch, P., and Renkawitz, J. (2020). Principles of Leukocyte Migration Strategies.
341 *Trends Cell Biol* 30, 818–832. 10.1016/j.tcb.2020.06.007.

342 19. Bhandage, A.K., Olivera, G.C., Kanatani, S., Thompson, E., Loré, K., Varas-Godoy, M.,
343 and Barragan, A. (2020). A motogenic GABAergic system of mononuclear phagocytes
344 facilitates dissemination of coccidian parasites. *Elife* 9, e60528. 10.7554/elife.60528.

345 20. Drewry, L.L., Jones, N.G., Wang, Q., Onken, M.D., Miller, M.J., and Sibley, L.D. (2019).
346 The secreted kinase ROP17 promotes *Toxoplasma gondii* dissemination by hijacking
347 monocyte tissue migration. *Nat Microbiol* 4, 1951–1963. 10.1038/s41564-019-0504-8.

348 21. Sangaré, L.O., Ólafsson, E.B., Wang, Y., Yang, N., Julien, L., Camejo, A., Pesavento, P.,
349 Sidik, S.M., Lourido, S., Barragan, A., et al. (2019). In Vivo CRISPR Screen Identifies
350 TgWIP as a *Toxoplasma* Modulator of Dendritic Cell Migration. *Cell Host Microbe* 26, 478–
351 492.e8. 10.1016/j.chom.2019.09.008.

352 22. Renkawitz, J., Kopf, A., Stopp, J., Vries, I. de, Driscoll, M.K., Merrin, J., Hauschild, R.,
353 Welf, E.S., Danuser, G., Fiolka, R., et al. (2019). Nuclear positioning facilitates amoeboid
354 migration along the path of least resistance. *Nature* 568, 546–550. 10.1038/s41586-019-1087-
355 5.

356 23. Calero-Cuenca, F.J., Janota, C.S., and Gomes, E.R. (2018). Dealing with the nucleus
357 during cell migration. *Current Opinion in Cell Biology* 50, 35–41.
358 10.1016/j.ceb.2018.01.014.

359 24. García-Arcos, J.M., Jha, A., Waterman, C.M., and Piel, M. (2024). Blebology: principles
360 of bleb-based migration. *Trends Cell Biol*. 10.1016/j.tcb.2024.02.009.

361 25. Paluch, E.K., and Raz, E. (2013). The role and regulation of blebs in cell migration.
362 *Current Opinion in Cell Biology* 25, 582–590. 10.1016/j.ceb.2013.05.005.

363 26. Lämmermann, T., and Sixt, M. (2009). Mechanical modes of “amoeboid” cell migration.
364 Current Opinion in Cell Biology 21, 636–644. 10.1016/j.ceb.2009.05.003.

365 27. Matta, S.K., Rinkenberger, N., Dunay, I.R., and Sibley, L.D. (2021). Toxoplasma gondii
366 infection and its implications within the central nervous system. Nat Rev Microbiol, 1–14.
367 10.1038/s41579-021-00518-7.

368 28. Wolf, K., Lindert, M. te, Krause, M., Alexander, S., Riet, J. te, Willis, A.L., Hoffman,
369 R.M., Figdor, C.G., Weiss, S.J., and Friedl, P. (2013). Physical limits of cell migration:
370 Control by ECM space and nuclear deformation and tuning by proteolysis and traction force.
371 J Cell Biol 201, 1069–1084. 10.1083/jcb.201210152.

372 29. Kalukula, Y., Stephens, A.D., Lammerding, J., and Gabriele, S. (2022). Mechanics and
373 functional consequences of nuclear deformations. Nat Rev Mol Cell Bio, 1–20.
374 10.1038/s41580-022-00480-z.

375 30. Redecke, V., Wu, R., Zhou, J., Finkelstein, D., Chaturvedi, V., High, A.A., and Häcker,
376 H. (2013). Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nature
377 methods 10, 795–803. 10.1038/nmeth.2510.

378 31. Li, W., Grech, J., Stortz, J.F., Gow, M., Periz, J., Meissner, M., and Jimenez-Ruiz, E.
379 (2022). A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in
380 host cell egress and invasion. Nat. Microbiol. 7, 882–895. 10.1038/s41564-022-01114-y.

381 32. Rosario, M.D., Periz, J., Pavlou, G., Lyth, O., Latorre-Barragan, F., Das, S., Pall, G.S.,
382 Stortz, J.F., Lemgruber, L., Whitelaw, J.A., et al. (2019). Apicomplexan F-actin is required
383 for efficient nuclear entry during host cell invasion. EMBO Rep. 20, e48896.
384 10.15252/embr.201948896.

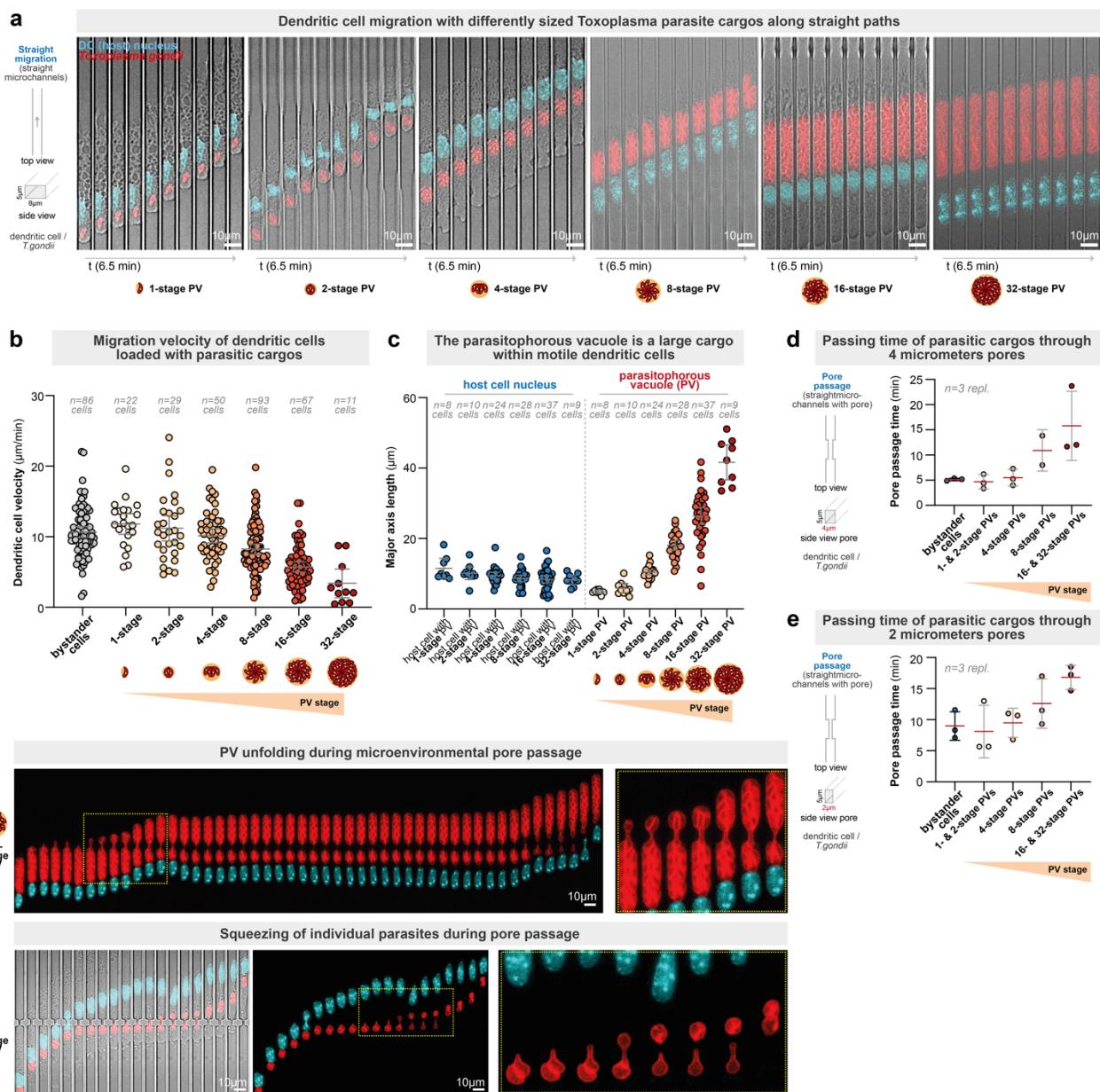
385 33. Kroll, J., Ruiz-Fernandez, M.J.A., Braun, M.B., Merrin, J., and Renkawitz, J. (2022).
386 Quantifying the Probing and Selection of Microenvironmental Pores by Motile Immune
387 Cells. Curr Protoc 2, e407. 10.1002/cpz1.407.

388 34. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
389 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform
390 for biological-image analysis. Nature methods 9, 676–682. 10.1038/nmeth.2019.

391

392

393


394 **Figures and figure legends**

395

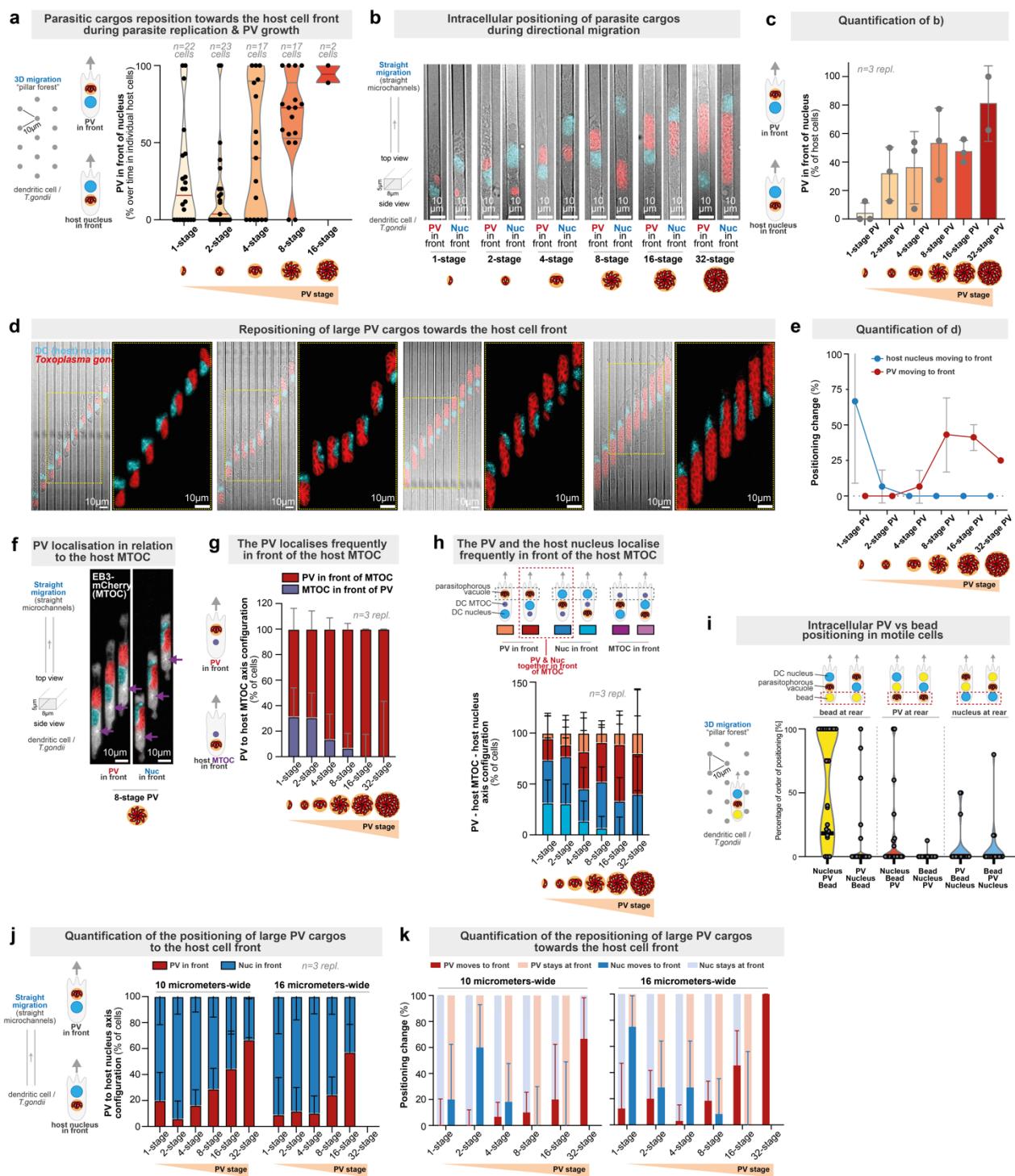
396

397

Figure 1. Unfolding and deformation of the parasitophorous vacuole cargo during immune cell crossing of microenvironmental barriers.

398

399


400 **Figure 1. Unfolding and deformation of the parasitophorous vacuole cargo during**
401 **immune cell crossing of microenvironmental barriers.** **(A)** Representative *Toxoplasma*
402 *gondii*-infected dendritic cells (DCs) migrating in linear microchannels. Note the different
403 replication stages (1- to 32-stage) of the parasite within the motile host cell. *Toxoplasma gondii*
404 is shown in red, the host DC nucleus in cyan (Hoechst), and the imaging medium contained
405 DMSO. **(B)** Quantification of a) of the DC velocity in relation to the replication stage of the
406 parasite cargo. N= 86 cells (non-infected bystander DCs), 22 cells (1-stage PV), 29 cells (2-
407 stage PV), 50 cells (4-stage PV), 93 cells (8-stage PV), 67 cells (16-stage PV), and 11 cells
408 (32-stage PV) from 3 independent biological replicates. Data are mean \pm 95% CI. **(C)** Length of
409 the parasitophorous vacuole in comparison to the host cell nucleus during DC migration along
410 linear microchannels as shown in a). N= 8 cells (1-stage PV), 10 cells (2-stage PV), 24 cells
411 (4-stage PV), 28 cells (8-stage PV), 37 cells (16-stage PV), and 9 cells (32-stage PV) from 3
412 independent biological replicates. Data are mean \pm 95% CI. **(D)** Passing times of parasitic cargos
413 of different sizes during DC migration through 4 micrometers-sized pores. Data are mean \pm SD.
414 **(E)** Passing times of parasitic cargos of different sizes during DC migration through 2
415 micrometers-sized pores. Data are mean \pm SD. **(F)** Representative 16-stage example of
416 unfolding of the parasitophorous vacuole (PV) during passage through a 2 micrometers-sized
417 pore. The yellow dashed square is shown as a zoom. **(G)** Representative example of squeezing
418 of individual parasites within a 2-stage parasitophorous vacuole (PV) during passage through
419 a 2 micrometers-sized pore. The yellow dashed square is shown as a zoom.

420
421
422
423

424

425

Figure 2. Dynamic intracellular repositioning of large parasitic cargos towards the cell front of motile immune cells.

426

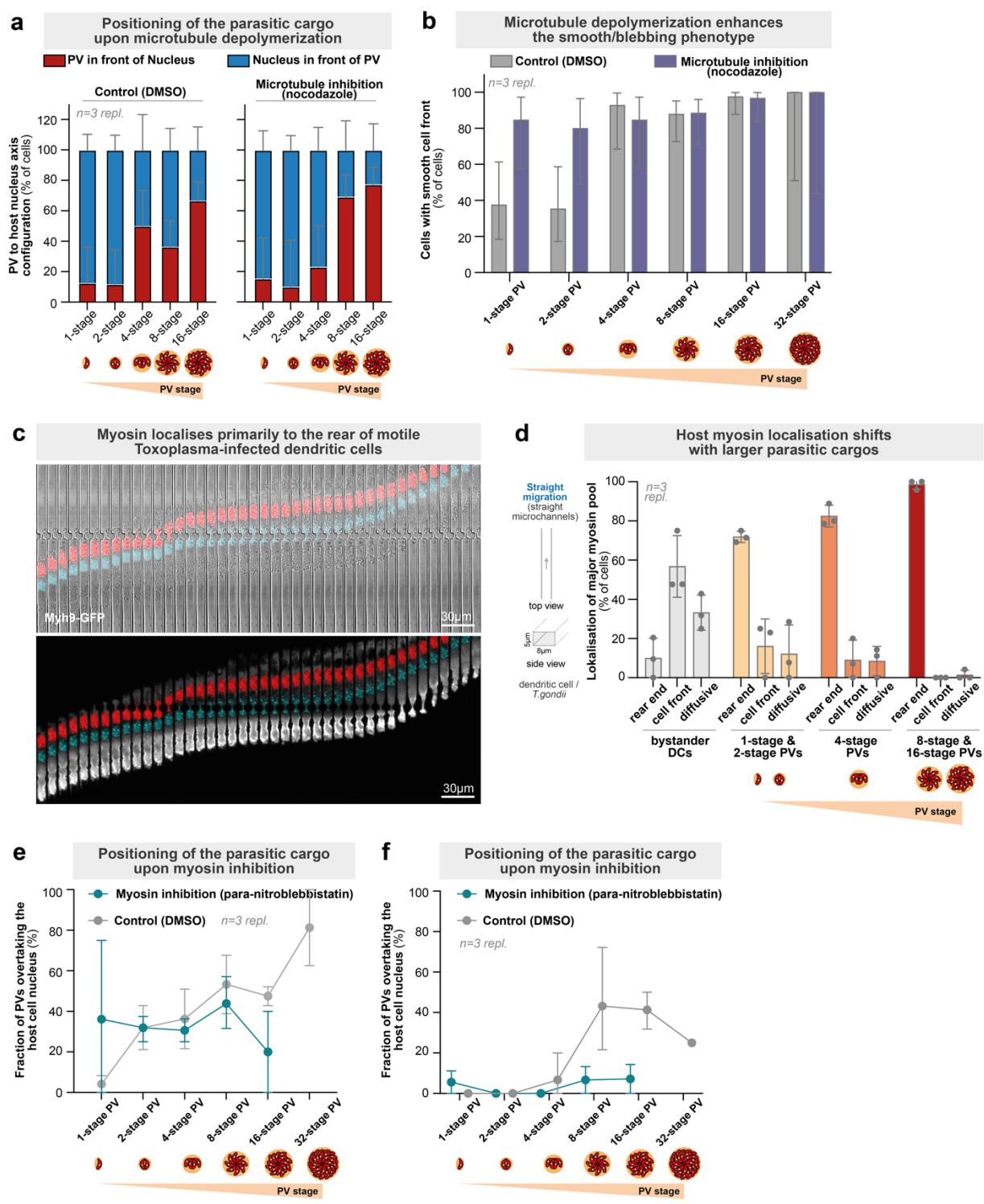
427

428

429 **Figure 2. Dynamic intracellular repositioning of large parasitic cargos towards the cell**
430 **front of motile immune cells. (A)** Positioning of the parasitophorous vacuole (PV) in relation
431 to the host cell nucleus during migrating of toxoplasma-infected dendritic cells (DCs) through
432 a maze of pillars (10 micrometer spacing between pillars). N= 22 cells (1-stage PV), 23 cells
433 (2-stage PV), 17 cells (4-stage PV), 17 cells (8-stage PV), 2 cells (16-stage PV) from 3
434 independent biological replicates. Data are mean \pm 95% CI. **(B)** Representative examples of PV
435 positioning in relation to the host cell nucleus during DC migration in a straight 8 micrometer-
436 wide microchannel. *Toxoplasma gondii* in red, host cell nucleus in cyan. **(C)** Quantification of
437 the positioning of the parasite cargo in relation to the host nucleus as shown in b) in the presence
438 of DMSO. N=3 individual biological replicates. **(D)** Representative examples of the
439 repositioning of large PV cargos towards the host cell front into the front of the host nucleus.
440 **(E)** Quantification of d). **(F)** Representative example of EB3-mcherry expressing dendritic
441 cells (white; label for the MTOC) infected with *Toxoplasma gondii* shown in red. The host
442 nucleus is shown in cyan **(G)** Quantification of the PV to MTOC positioning as shown in f).
443 N=3 individual biological replicates. **(H)** Quantification of the PV to MTOC to nucleus
444 positioning as shown in f). N=3 individual biological replicates. **(I)** Quantification of the PV
445 to nucleus axis configuration in relation to latex beads. N=3 individual biological replicates.
446 **(J)** Quantification of the PV to nucleus axis configuration during migration in wider 10 and 16
447 micrometers channels. N=3 individual biological replicates. **(K)** As in J, but showing the
448 repositioning of PV cargos towards the host cell front into the front of the host nucleus. N=3
449 individual biological replicates.

450

451


452

453

454

455
456

Figure 3. Host cell myosin drives the dynamic repositioning of large parasitic cargos.

457
458
459

460 **Figure 3. Host cell myosin drives dynamic repositioning of large parasitic cargos. (A)**
461 Quantification of the positioning of the parasitic cargo in relation to the host nucleus in the
462 presence of the microtubule inhibitor nocodazole or DMSO controls. N=3 individual biological
463 replicates. **(B)** Quantification of the smooth cell front phenotype in the presence of the
464 microtubule inhibitor nocodazole or DMSO controls. N=3 individual biological replicates. **(C)**
465 Representative examples of Myh9-GFP expressing DCs (myosin-IIA; shown in white) infected
466 with *Toxoplasma gondii* (shown in red). The host nucleus is shown in cyan. **(D)** Quantification
467 of the major localization of the Myh9-GFP signal in relation to the replication stage. N=3
468 individual biological replicates. **(E)** Positioning of the parasitic cargo in presence of the myosin
469 II inhibitor para-nitro-blebbistatin or DMSO controls. Note that the control cells are the same
470 as plotted in Fig 2c. N=3 individual biological replicates. **(F)** Repositioning of the parasitic
471 cargo toward the cell front into the front of the host nucleus in presence of the myosin II
472 inhibitor para-nitro-blebbistatin or DMSO controls. Note that the control cells are the same as
473 plotted in Fig 2e. N=3 individual biological replicates.

474
475

498 **Methods**

499 **Cell culture.**

500 Cells were maintained at 37°C in a humidified incubator with 5% CO₂ in basis medium of
501 RPMI-1640 medium (Invitrogen, 21875034) containing 10% fetal bovine serum (Gibco,
502 10437-028), 1% penicillin-streptomycin (Sigma-Aldrich, P0781, 100 U/ml penicillin and 100
503 µg/ml streptomycin), 50 µM 2-mercaptoethanol (Gibco, 31350-010). For the culture of
504 immortalized hematopoietic precursor cells (Hoxb8 cell³⁰), the basis medium was
505 supplemented with 5% culture supernatant of Flt31 secreting cells and 1 µM estradiol (Sigma-
506 Aldrich, E2758-1G).

507

508 **Bone marrow isolation from mice**

509 All animal experiments were performed in accordance with the German Animal Welfare Act.
510 The Core Facility Animal Models of the Biomedical Center (BMC) at LMU Munich housed
511 the used mice. Bone marrow from male and female C57Bl6/J mice sacrificed at age 8 to 12
512 weeks was used for the generation of bone marrow-derived dendritic cells (BMDCs). For this,
513 mice were euthanized by cervical dislocation, femurs and tibiae were isolated, cut open and
514 flushed with basis medium.

515

516 **Differentiation of dendritic cells**

517 DCs were differentiated from Hoxb8 progenitor cells or murine bone marrow derived
518 progenitor cells. Progenitor cells were seeded in basis medium supplemented with 10% culture
519 supernatant of GM-CSF secreting cells. On day 3, 20% GM-CSF medium was added 1:1 to the
520 cells without pipetting the cells. On day 6, half the culture medium was replaced with 20%
521 GM-CSF medium without pipetting the remaining cells. On day 8 cells were frozen in fetal
522 bovine serum (FBS, Gibco, 10437-028) supplemented with 10% DMSO, first for 3 day at -70C
523 in a suitable Freezing Container then stored for up to 1 year in liquid Nitrogen storage. Cells
524 were used after fast thawing in 37 °C water bath and washing in basis medium, cells were
525 resuspended in basis medium supplemented 10 % GM-CSF medium, 1 million cells were
526 seeded in 3 ml medium per well of a 6 well plate.

527

528 **Culturing of *Toxoplasma gondii* parasites**

529 Toxoplasma cell line was tagged with HALO following standard protocols established in the
530 lab³¹. Parasites were maintained on HFFs (Human foreskin fibroblasts (HFFs) (RRID:
531 CVCL_3285, ATCC) in DMEM (Dulbecco's modified Eagle's medium), 10% fetal bovine
532 serum, 2 mM L-glutamine and 25 mg/ml gentamicin, and maintained at 37°C and 5% CO₂.
533 Cultured cells and parasites were screened against mycoplasma contamination with LookOut
534 Mycoplasma detection kit (Sigma) and Mycoplasma Removal Agent (Bio-Rad) if needed.

535

536 **Infection of dendritic cells with *Toxoplasma gondii* parasites**

537 HFFs 4cm dish cell cultures were infected with 5x10⁶ parasites and left to replicate for 48h
538 until replicating vacuoles were ready to egress. Following the established protocols in the lab³²,
539 parasites were released by process of scratching and syringing, and then filtered to remove cell
540 debris. Next, toxoplasma cells were centrifuged at 300 g for 5 min and resuspended in
541 prewarmed PBS, washed again and resuspended in prewarmed basis media supplemented with
542 10% GM-CSF medium. DCs were infected by incubating 0.5x10⁶ parasites with 1x10⁶ DCs
543 for 20 h in 3 ml basis media supplemented with 10% GM-CSF medium in the well of a 6 well
544 plate. Cells were stained for 50 min with Janelia dye 646 HaloTag ligand (Promega, GA1120)
545 and Hoechst 33342, two drops of NucBlue (Invitrogen, R37605) per 3ml cells, pelleted at 300g
546 for 5 min and resuspended in basis medium with inhibitors or DMSO according to the

547 experimental requirements. For imaging, imaging medium was used, phenol-free basis medium
548 supplemented with 50 μ M L-ascorbic acid (MilliporeSigma, W210901) to limit photobleaching
549 and phototoxicity.

550

551 **PDMS microchannel assays:**

552 Microchannels were generated as described previously described ³³ Polydimethylsiloxane
553 (PDMS, Sylgard 184, Biesterfield) was mixed, elastomer and curing agent 1:10, poured over
554 silicon wafer with the negative microchannel structures imprinted by photolithography,
555 degassed in vacuum, and cured at 80 °C overnight. The PDMS was cut to micro devices of
556 approx. 7x12 mm in size, 2 holes of 2x7 mm were punched with 1 mm distance in between
557 using a custom-made puncher, then the devices and glass coverslips that had been cleaned with
558 isopropanol and ethanol were cleaned in a plasma cleaner and bonded at 120 °C. The PDMS
559 devices were glued to a multi well plate. After 2 min plasma cleaner the microchannels were
560 flooded with imaging medium, and equilibrated in the cell culture incubator. 0.625 μ g/ml
561 CCL19 were loaded into one hole and 50x10³ infected and stained dendritic cells in the other
562 hole. Imaging was started as soon as the first cells entered into the microchannels.

563

564 **Live cell imaging.**

565 Live-cell imaging was performed using a Leica DMi8 inverted wide-field epifluorescence
566 microscope with motorized stage and cell culture conditions of 37 °C and humidified 5 % CO₂
567 (Pecon). Time-lapse recordings were performed using a 20x (Leica HC PL APO 20x/0.80,
568 11506529) or 40x (Leica HC PL APO 40x/0.95 CORR, 11506414) Lenses. The Leica sCMOS
569 Camera DFC9000 GT was used as camera, LED5 fluorescence light source. *Toxoplasma* JF640
570 signal was imaged with a far-red filter (Excitation: 638/31, Emission: 695/58) and 640 nm
571 excitation, EB3-mcherry with an orange filter (Excitation: 554/24, Emission: 594/32) and 550 nm
572 excitation, signal the nuclear Hoechst signal with a blue filter (Excitation: 391/32, Emission:
573 435/30) and 395 nm excitation. Exposure to 395 nm light was kept to a bare minimum, just enough
574 to clearly localize the nucleus position and size, to avoid photo toxicity affecting experimental
575 results.

576 **Inhibitor experiments**

577 Inhibitors were added to the imaging medium and added to the cells after staining, and the
578 experimental environment, and CCL19 medium aswell. Para-Nitrolebbistatin was used at 25 μ M
579 with the same volume of DMSO as control, here a 1:2000 dilution. Nocodazol was used at 1 μ M
580 with the same volume of DMSO as control, here a 1:3333 dilution.

581

582 **Image Analysis.**

583 Fiji (version 2.14.0, ³⁴ and LAS X (Version 3.7.6) were used for image processing. Only cells not
584 interacting with other cells, and with single 1-32 stage PVs or uninfected bystanders were analyzed.
585 For each cell individual parasite cells inside the PV were counted to assess the PV stage. All data
586 was grouped accordingly. Cells positions were tracked using ROI manager of Fiji and quantified,
587 exported, or merged to kymographs using custom made ImageJ scripts. Single cell data was analyzed
588 with R (R version: 4.3.3, R-studio version 2023.12.1.402, tidyverse package version 2.0.0) and
589 exported to GraphPad Prism (version 8.0.1) for statistical analysis.

590

591 **Analysis of migration in straight channels: PV – host nucleus axis, migration speed, PV size**

592 For orientation of *Toxoplasma* PV – host nucleus axis, cells were analyzed migrating in 8, 10 or 16
593 μ m wide and 5 μ m high PDMS channels. In imaging medium alone or supplemented with DMSO
594 or inhibitors as indicated in the figure legends. Cells were imaged from ~100 to 600 μ m after
595 entering channels, PV-nucleus orientation, position, was documented at the beginning and end of
596 the frame, from which orientation changes and average migration speed was calculated. PV or
597 nucleus size was measured as the length of the PV or nucleus in direction of the channel,
598 representing the major axis of the PV area. Cells were imaged at constant time interval that was

599 depending on the replicate between 45 and 75 seconds, except for the unfolding analysis, here cells
600 were recorded every 10 s.

601

602 **Analysis of migration in 2 and 4 μm constriction channels**

603 For each cell first time point of entering the channel of the cell, the nucleus, and the PV,
604 respectively, as well as first timepoint in which the cell, PV, and nucleus, respectively, fully exited
605 the constriction were documented. From the difference in time the passing time was calculated.
606 Further cells that did not exit the constriction during the recording of 5 h were documented to
607 calculate percentage of passed and stuck cells. Egress also was documented. Cells were imaged at
608 2 min time interval.

609

610 **Analysis of eb3-mcherry live fluorescence analysis.**

611 DCs derived from EB3-mcherry or Myosin-GFP expressing Hoxb8 cells were imaged while
612 migrating in 8 μm wide and 5 μm high microchannels. For the MTOC orientation analysis cells
613 with a clearly defined MTOC, as a single brightest spot in the EB3-mcherry fluorescence single
614 that was consistently present the recording time, were used. PV-Nuc-MTOC axis orientation was
615 documented after cells migrated roughly 300-500 μm in the channels.

616

617 **Analysis of myosin-GFP live fluorescence analysis.**

618 Myosin-GFP signal was analyzed first in 2 μm constriction channels. Kymographs of cells passing
619 2 μm constriction were generated. As the fluoresce localization did not notably change during pore
620 passage, the localization of Myosin-GFP analysis was analyzed in straight PDMS microchannels
621 of 8 μm width and 5 μm height. Myosin-GFP was categorized into predominantly in front,
622 predominantly in the rear, or diffuse signal, where fluorescence was not clearly localized neither to
623 the front or back but present everywhere.

624

625 **Statistics.** All experiments were performed at least as three independent biological replicates.
626 All replicates were validated independently. Statistical analysis was conducted using GraphPad
627 Prism (version 8.0.1) using the appropriate tests according to normal or non-normal data
628 distribution as stated in the figure legend. Fractional of cell subpopulations was calculated from
629 pooled cell numbers of at least three independent biological replicates, 95% confidence of the
630 fractions were calculated using the Wilson/Brown hybrid method. Error bars are defined in the
631 figure legends.

632

633

634 **Acknowledgements**

635 We thank Kasia Stefanowski for excellent technical assistance, Ana-Maria Lennon-Dumenil
636 and Aline Yatim for bone marrow from MyoIIA-Flox*CD11c-Cre mice, Michael Sixt for
637 Myh9-GFP expressing HoxB8 cells, and the Core Facility Bioimaging, the Core Facility Flow
638 Cytometry, and the Animal Core Facility of the Biomedical Center (BMC) for excellent
639 support. This study was supported by the Deutsche Forschungsgemeinschaft (DFG; German
640 Research Foundation; Priority Programme SPP2332, project 492014049, to JR and BS; and
641 DFG project ME 2675/6-2 to JP), the Peter Hans Hofsneider Professorship of the foundation
642 “Stiftung Experimentelle Biomedizin” (to JR), the LMU Institutional Strategy LMU-Excellent
643 within the framework of the German Excellence Initiative (to JR), and the European Research
644 Council (ERC) under the European Union's Horizon 2020 research and innovation programme
645 (BacForce, G.A.No. 852585, to BS).

646

647 **Author contributions**

648 Mauricio J.A. Ruiz-Fernandez: Conceptualization; investigation; methodology; writing -
649 original draft; writing – review and editing.

650 Jianfei Jiang: Software and simulation; methodology; writing – review and editing.

651 Armina Mortazavi: investigation; methodology; writing – review and editing.

652 Bingzhi Wang: investigation; writing – review and editing.

653 Artur Kuznetcov: investigation; writing – review and editing.

654 Jack Merrin: Methodology; writing – review and editing.

655 Markus Meissner: Supervision; methodology; writing – review and editing.

656 Javier Periz: Conceptualization; supervision; investigation; writing – review and editing.

657 Benedikt Sabass: Conceptualization; supervision; investigation; funding acquisition; project
658 administration; writing – review and editing.

659 Jörg Renkawitz: Conceptualization; supervision; investigation; funding acquisition; project
660 administration; writing - original draft; writing – review and editing.

661

662 **Competing interest declaration**

663 The authors declare no competing interests.

664

665 **Data availability**

666 All data supporting the findings of this study are available within the paper. Requests for
667 materials should be addressed to Jörg Renkawitz, Benedikt Sabass, and Javier Periz.

668

669 **Additional information**

670 Correspondence should be addressed to Jörg Renkawitz, Benedikt Sabass, and Javier Periz.

671

672