

1 **Host-derived Interleukin 1 α induces an immunosuppressive tumor microenvironment via**
2 **regulating monocyte-to-macrophage differentiation**

3
4
5

6 **Authors**

7 Manikanda Raja Keerthi Raja¹, Gourab Gupta¹, Grace Atkinson¹, Katie Kathrein¹, Alissa
8 Armstrong¹, Michael Gower², Igor Roninson³, Eugenia Broude³, Menqiang Chen³, Hao Ji³, Chang-
9 uk Lim³, Hongjun Wang⁴, Daping Fan⁵, Peisheng Xu³, Jie Li⁶, Gang Zhou⁷, Hexin Chen^{1*}

10
11
12
13

14 **Affiliations**

15 ¹Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.

16 ²Department of Chemical Engineering and Biomedical Engineering, University of South Carolina,
17 Columbia, SC 29108, USA.

18 ³Department of Drug Discovery & Biomedical Sciences (DDBS), College of Pharmacy, University
19 of South Carolina, Columbia, SC 29208, USA.

20 ⁴Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030,
21 USA.

22 ⁵Department of Cell Biology and Anatomy, University of South Carolina School of Medicine,
23 Columbia, SC 29209, USA.

24 ⁶Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29201,
25 USA.

26 ⁷Georgia Cancer Center, Department of Medicine, Medical College of Georgia, Augusta, GA
27 30912, USA.

28
29

30 ***Corresponding Author:**

31 Hexin Chen, Ph.D.

32 Department of Biological Sciences,
33 University of South Carolina,
34 Columbia, SC 29208

35 Email: hchen@biol.sc.edu

36 Tel: 803-777-2928

37
38

39 **Running title:** Host IL-1 α reprograms tumor-associated macrophages

40
41
42

43
44

45
46

47
48

49
50

51 Abstract

52 Tumor-associated macrophages exhibit high heterogeneity and contribute to the
53 establishment of an immunosuppressive tumor microenvironment (TME). Although numerous
54 studies have demonstrated that extracellular factors promote macrophage proliferation and
55 polarization, the regulatory mechanisms governing the differentiation process to generate
56 phenotypically, and functionally diverse macrophage subpopulations remain largely unexplored. In
57 this study, we examined the influence of interleukin 1 α (IL-1 α) on the development of an
58 immunosuppressive TME using orthotopic transplantation murine models of breast cancer.
59 Deletion of host IL1 α led to the rejection of inoculated congenic tumors. Single-cell sequencing
60 analysis revealed that CX3CR1+ macrophage cells were the primary sources of IL-1 α in the TME.
61 The absence of IL-1 α reprogrammed the monocyte-to-macrophage differentiation process within
62 the TME, characterized by a notable decrease in the subset of CX3CR+ ductal-like macrophages
63 and an increase in iNOS-expressing inflammatory cells. Comparative analysis of gene signatures
64 in both human and mouse macrophage subsets suggested that IL-1 α deficiency shifted the
65 macrophage polarization from M2 to M1 phenotypes, leading to enhanced cytotoxic T lymphocyte
66 activity in the TME. Importantly, elevated levels of IL-1 α in human cancers were associated with
67 worse prognosis following immunotherapy. These findings underscore the pivotal role of IL-1 α in
68 shaping an immune-suppressive TME through the regulation of macrophage differentiation and
69 activity, highlighting IL-1 α as a potential target for breast cancer treatment.

70 Teaser

71 Interleukin 1 α dictates macrophage behavior, influencing an immunosuppressive
72 microenvironment in breast cancer, suggesting it as a treatment target.

73 MAIN TEXT

74 Introduction

75 Immunotherapy is rapidly evolving as a treatment approach for breast cancer, however, the
76 response rates achieved thus far have been suboptimal(1). It is widely recognized that the
77 immunosuppressive nature of the tumor microenvironment (TME) plays a crucial role in limiting
78 the efficacy of therapies targeting breast tumors(2-4). Tumor growth can trigger an influx of bone
79 marrow-derived monocytes, which differentiate into monocytic myeloid-derived suppressor cells
80 (Mo-MDSCs), monocyte-derived dendritic cells (Mo-DCs), and tumor-associated macrophages
81 (TAMs)(5, 6). These cells contribute to creating an immunosuppressive tumor microenvironment
82 (TME). Monocyte-macrophage lineage cells display a high degree of plasticity and
83 heterogeneity(7-9), and meanwhile they share expression of numerous surface markers and
84 common properties; therefore, it is challenging to clearly distinguish and characterize these cell
85 populations(10).

86 TAMs are the most abundant immune cells in TME of many types of tumors including
87 breast cancer and can be roughly classified as M1 and M2 macrophages(11, 12). M1 macrophages
88 play a crucial role in antitumor immunity and primarily mediate proinflammatory processes,
89 whereas M2 macrophages have been demonstrated to have protumor features(13). However, TAMs
90 may exhibit a wide range of differentiation and activation states, with the classical M1 and M2
91 phenotypes representing the extreme ends of this spectrum(14). *In vitro* studies have revealed that
92 factors such as M-CSF, LPS, IFN- γ , and IL-4 can further polarize macrophages into additional M1
93 or M2-like subsets(14), likely reflecting the circumstances of *in vivo* differentiation. Recent single
94 cell sequencing analyses have identified many more subsets of macrophage *in vivo*(15-18).
95 Interestingly, these macrophage subsets identified by single cell sequencing analysis generally do
96 not reflect "M1/M2" polarization(16, 17), most likely due to exposure to multiple spatial and
97 temporal stimuli and cellular context. Furthermore, it also remains largely unknown how intrinsic
98

101 factors regulate monocytes/macrophages for the fate determination and functional adaptation in
102 response to the dynamic extrinsic microenvironmental cues(8).

103 Interleukin-1s (IL-1s) as the potent apical cytokines instigate multiple downstream
104 processes to affect both innate and adaptive immunity. Both IL-1 α and IL-1 β bind to the same
105 receptor, a type 1 IL-1 receptor (IL-1R), to activate the downstream signaling cascade (19). In
106 contrast to the highly restricted expression of IL-1 β in immune cells, IL-1 α is constitutively
107 expressed in epithelial, endothelial, and stromal cells (19). Notably, tumor-derived IL-1 α can affect
108 cancer progression by acting on both tumor and immune cells(20). Our recent work revealed an
109 essential role of IL-1 α in tumorigenesis in producing a chronic inflammatory environment
110 conducive to the maintenance of cancer stem cells(21). Kuan et al reported that breast tumor-
111 derived IL-1 α acts on tumor-infiltrating myeloid cells to induce the expression of thymic stromal
112 lymphopoietin (TSLP), which in turn promotes the survival of tumor cells(22). Secreted IL-1 α can
113 promote the production of neutrophils and less mature CD11b+ myeloid cells resulting in systemic
114 and local immune suppressive environment(2). In contrast to tumor-promoting function in a variety
115 of cancers, a few have found that particularly transient expression of membrane-bound IL-1 α in
116 fibrosarcoma and lymphoma cells might exhibit anti-tumorigenic effects(23-26). As a matter of
117 fact, very limited studies have been conducted to reveal the functions of host-derived IL-1 α in
118 tumorigenesis(27-29). Intriguingly, whole-body knockout of IL-1 α has the opposite effects on
119 oncogene Her2/neu and polyoma T antigen-induced mammary tumor in transgenic mouse
120 models(21, 30). It is most likely that different sources of IL-1 α mediated dynamic immune
121 responses during tumorigenesis.

122 In our current investigation, utilizing congenic transplantation models, we examined the
123 role of host-derived-IL-1 α in breast tumorigenesis via reprogramming immunosuppressive
124 myeloid cells. Using both single cell sequencing and flow cytometry analysis, we uncovered the
125 heterogeneity of the monocyte and macrophage-subpopulations and elucidated the mechanisms
126 underlying the rejection of tumor challenge in the IL-1 α deficient mice. Gaining insights into this
127 common immunosuppressive mechanism mediated by host-derived IL-1 α may pave the way for
128 the development of novel immunotherapeutic strategies against breast cancer.

129 **Results**

130 **Il1 α -deficient mice hindered the growth of transplanted tumors and exhibited modified local 131 and systemic immune responses.**

132 Our previous study has shown that knockout of IL1 α inhibit MMTV-neu induced
133 tumorigenesis(21). To assess the impact of host-derived IL1 α on tumor progression, we performed
134 orthotopic injections of H605 cells derived from a MMTV-neu tumor into the mammary pads of
135 both wild type (WT) and *Il1 α* ^{-/-} mice. Tumor growth was monitored at three-day intervals over a
136 40-day period. Intriguingly, the majority of transplanted tumors in *Il1 α* ^{-/-} mice grew for
137 approximately two weeks followed by regression, whereas those in the WT mice continued to grow
138 (Fig. 1A).

139 To better elucidate the underlying mechanisms, we focused on the HER2-positive breast
140 cancer model for further investigation and specifically studied the tumor microenvironment at the
141 two-week time point when the tumor regression became apparent. Dissected tumors were digested
142 into single cells and subjected to flow cytometry to characterize the infiltrated immune cells (Fig.
143 S1). Remarkably, *Il1 α* ^{-/-} tumors exhibited a significant increase in CD45+ tumor-infiltrating
144 leukocytes (Fig. 1B-C). Within those leukocytes, both CD8+ T cells and CD11b+ myeloid cells
145 were notably elevated in tumors from *Il1 α* ^{-/-} mice compared to WT mice.

146 Considering that IL-1 α plays a role in regulating hematopoiesis and the margination of
147 immune cells(31, 32), we investigated the systemic changes in the immune systems. Interestingly,
148 both tumor-free and tumor-bearing *Il1 α* ^{-/-} mice showed a significant decrease in overall blood
149 leukocyte output compared to corresponding WT mice (Fig.1D and Fig. S2). The skewed blood

151 output revealed an increased presence of B cells and Ly6C⁺ monocytes, accompanied by a
152 reduction in CD4, CD8, and neutrophils (Fig. S3A-B), which differed from the distribution of
153 infiltrated immune cells in the tumor. We reasoned that the altered periphery immune cell
154 distribution might stem from abnormal hematopoiesis in the spleen and bone marrow(31). Indeed,
155 in the tumor-bearing *Il1 α* ^{-/-} mice, spleen cellularity was diminished compared to WT mice. The
156 lymphoid distribution mirrored the blood profile trend, while the myeloid cell numbers remained
157 unchanged (Fig. 1E and Fig. S4A-B). Conversely, in tumor-bearing *Il1 α* ^{-/-} mice, the bone marrow
158 exhibited increased cellularity, featuring more B cells and fewer neutrophils, consistent with the
159 patterns observed in the spleen and blood (Fig. 1F and Fig. S5A-B).

160 To gain a deeper understanding of the altered immune cell distribution among organs, we
161 conducted ELISA analysis of blood plasma, revealing barely detectable IL1 α in WT mice (Fig. S6).
162 There was a decreasing trend in cytokines including granulocyte-colony stimulating factor (G-
163 CSF), chemokine C-C ligand 5 (CCL5), and increased expression of C-X-C motif chemokine ligand
164 10 (CXCL10) (Fig. 1G). Reduced levels of G-CSF and CCL5 may contribute to the observed
165 leukopenia by limiting egression of immune cells from bone marrow to periphery systems(32-34).
166 Additionally, cytokines like CXCL10 are required for T cell recruitment to local site of
167 inflammation(35), partially explaining the abundant recruitment of T cells to the *Il1 α* ^{-/-} TME.
168 Collectively, these results indicated that *Il1 α* -deficient mice displayed altered local and systemic
169 immune responses against tumor development.

170 171 **Loss of IL1 α leads to an immune-active TME**

172 The intricate interplay of immune, cancer, and stromal cells defines the complexity of the
173 TME. To explore the influence of IL-1 α on the TME, we conducted single-cell RNA sequencing
174 (scRNA-seq) analysis on two-week tumor samples from both WT and *Il1 α* ^{-/-} mice, unveiling the
175 existence of 14 distinct clusters (Fig. 2A and Fig. S7). Through a UMAP representation comparison,
176 we observed a significant increase in the CD8 cluster and a decrease in the tumor cluster in *Il1 α* ^{-/-}
177 mice. Further analysis of differentially expressed soluble factors and their receptor levels revealed
178 striking disparities between the WT and *Il1 α* ^{-/-} conditions. Among nonimmune cell clusters, the
179 tumor cluster in *Il1 α* ^{-/-} mice showed a remarkable upregulation of chemokines, specifically Cxcl9
180 and Cxcl10, with the expression levels reaching up to 75%, whereas they were barely detectable in
181 WT (Fig. 2B). Additionally, nonimmune clusters like endothelial cells (Endo) and fibroblasts
182 (Fibro) in the *Il1 α* ^{-/-} mice exhibited lower expression levels of interleukin 33 (*Il-33*) and colony-
183 stimulating factor 1 (CSF1) compared to the WT group. In the immune cell populations, interleukin
184 16 (*Il-16*) consistently exhibited lower expression in *Il1 α* ^{-/-} mice. Conversely, *Ccl5* and C-X-C motif
185 chemokine receptor 4 (*Cxcr4*) were expressed at higher levels in Other T cells, CD8 cells, NK, and
186 NKT cells from *Il1 α* ^{-/-} mice. Markers associated with T cell activation, such as *CD28*, *Icos*, *Ctla4*,
187 and *Pdcd1*, were significantly upregulated in Other T cells, CD8 cells, NK, and NKT cells in the
188 *Il1 α* ^{-/-} condition. Furthermore, critical T cell cytokines with anti-tumor properties, including
189 interferon gamma (*IFN- γ*), granzyme B (*Gzmb*), and tumor necrosis factor (*TNF α*), were
190 significantly expressed in the same lymphoid cells that displayed the activation markers (Fig. 2B).
191 This suggests a potential link between the upregulation of T cell activation markers and the
192 production of anti-tumor cytokines within the *Il1 α* ^{-/-} TME. Within the myeloid clusters, there was
193 a notable trend of reduced expression of colony stimulating factor receptors, including *Csf1r*,
194 *Csf2ra*, and *Csf3r*, especially in the Mono/Mac cluster. Conversely, the Mono/Mac cluster exhibited
195 higher expression levels of *Cxcr4*, while all myeloid clusters displayed decreased levels of *Tgfb1*
196 in the *Il1 α* ^{-/-} mice (Fig. 2B).

197 To corroborate the scRNA-seq findings and confirm whether T cells were indeed more
198 active and less inhibited in the transplanted tumors of *Il1 α* ^{-/-} mice, we conducted flow cytometry
199 analysis to quantify the pro-tumorigenic cytokine profile and the *ex vivo* anti-CD3/CD28 bead
200 proliferation capacity of T cells isolated from tumors. The flow cytometry results demonstrated a

201 significant elevation in the secretion of potent cytotoxic CD8 T cell cytokines, such as TNF α , IFN γ ,
202 and GzmB. Moreover, there was an upregulation in the levels of active T cell indicators like CD44
203 and Ly6C, alongside a reduction in the expression of exhaustion marker PD-1(Fig. 2C).
204 Furthermore, when cultured *ex vivo*, both stimulated and unstimulated CD8 T cells from tumors in
205 *Il1 α ^{-/-}* mice exhibited a significantly elevated proliferation rate, contrasting starkly with those from
206 the WT group (Fig. 2D). To assess the significance of T cells in the observed tumor regression, we
207 depleted CD4 T, CD8 T, and B cells in the *Il1 α ^{-/-}* mice (Fig. S8). Strikingly, CD4 and CD8 T cell
208 depletion resulted in a different tumor growth pattern compared to WT, with a noticeable lack of
209 exponential growth up to day 14, after which tumor growth resumed (Fig. 2E). Together, these
210 results suggest that the TME in *Il1 α ^{-/-}* mice demonstrated a more immune-active phenotype,
211 contributing to tumor clearance compared to that observed in WT mice.
212

213 **CX3CR1⁺ macrophages are the major cellular source of IL-1 α in TME**

214 Although the expression levels of IL-1 α were generally low (Fig. 2B), the major source of
215 IL-1 α in the TME was identified to originate from the Mono/Mac cluster (Fig. 3A). Further scRNA-
216 seq data from mouse breast cancer aligned remarkably well with the human breast cancer scRNA-
217 seq dataset showing that only a small fraction of myeloid cells expressed *IL-1 α* in TME (Fig. S9A-
218 C and Fig. 3B). Given that monocytes/macrophages are highly heterogeneous in TME and have
219 diverse functions, our investigation delved deeper by sub-clustering the Mono/Mac cluster to attain
220 a finer resolution for the cellular source of *Il1 α* (Fig. S10). As shown in Fig. 3C, the UMAP plot
221 reveals a total of seven subclusters designated as Mono and Mac1 through 6. The Mono cluster was
222 characterized by high levels of monocyte markers such as *Ly6c2* and *Ccr2* and absence/low
223 expression of macrophage markers such as *Adgre1*, *Retnla* and *H2-Aa*. The Mac 1-6 clusters are
224 characterized by different combinations of macrophage markers, reflecting their different
225 differentiation statuses and functions (Fig. 3D).

226 Intriguingly, *Il1 β* expression was detected in all clusters and 60% cells in Mono, Mac1, and
227 Mac6 clusters, while factor *Il1 α* was restrictedly expressed in the only 20% cells in Mac 6 cluster
228 (Fig. 3E). Mac6 cluster expressed many macrophage markers including *Adgre1*, *Retnla*, *Mrc1*, *H2-*
229 *Aa* and *C1qa*. Interestingly, only one marker, *Cx3cr1*, can uniquely identify IL-1 α producing
230 macrophages. To validate the scRNA-seq findings and identify the *Il1 α* -producing population, we
231 employed flow cytometry to identify the IL-1 α producing cells in the tumors of WT mice. Based
232 on the expression levels of Ly6c and MHC II, the mono/mac cells were stratified into four
233 subpopulations within each quadrant. Only a fraction of MHC II⁺ cells expressed IL-1 α . Consistent
234 with our scRNA-seq data, the majority of IL-1 α producing macrophages were CX3CR1⁺MHCII⁺
235 Ly6C^{lo/-} macrophages (Fig. 3F-G).

237 **IL-1 α skews differentiation of monocytes towards CX3CR1⁺ macrophages.**

238 Monocytes recruited into TME can undergo diverse differentiation pathways leading to the
239 development of various macrophage subpopulations(36, 37). To investigate the potential regulatory
240 role of IL-1 α in this process, analysis on myeloid cell distribution in the TME of tumors from WT
241 and *Il1 α ^{-/-}* mice was conducted. The findings revealed an increased presence of Mac2 and a
242 decrease in Mac4-6 cluster cells in tumor from transplanted *Il1 α ^{-/-}* mice (Fig. 4A-B). Pseudo time
243 trajectory analysis, initiated with the Mono cluster in both WT and *Il1 α ^{-/-}* samples, demonstrated a
244 similar trajectory up to Mac1. However, *Il1 α ^{-/-}* mice showed a preference for the Mac2 trajectory,
245 not observed in WT, and the Mac3 gave rise to Mac 6 via Mac 4 and Mac5 in WT, a progression
246 disrupted in *Il1 α ^{-/-}* (Fig.4C).

247 Mac2 cells expressed the typical macrophage markers including *Adge1* and *Mrc1* but low
248 levels of *Ly6c2* and *H2-Aa* (Fig. 3D), which may represent an intermediate state between monocyte
249 and mature macrophages. In contrast, both Mac5 and Mac6 expressed high levels of *H2-Aa* and
250 *Adge1* and low levels of *Ccr2* and *Ly6c2*, indicative of more mature macrophages. To validate the

251 scRNA-seq results, flow cytometry analysis of monocyte/macrophages in TME was performed.
252 Consistently, the CX3CR1⁺CD11c⁺F4/80⁺ macrophages (population 3), corresponding to Mac6
253 population, were significantly reduced in tumors from *Il1 α* ^{-/-} mice compared the WT ones (Fig. 4D).
254 Conversely, CX3CR1⁻ macrophage populations (population 1 and 2), including both immature and
255 mature macrophages differing in their Ly6C expression status, increased in transplants from *Il1 α* ^{-/-}
256 mice (Fig. 4D). These results suggested that IL1 α influences the differentiation of recruited
257 monocytes toward CX3CR1⁺ mature macrophages.
258

259 Impacts of IL1 α deficiency on the functions of myeloid cells in the TME

260 Observing the distinct distribution patterns within these Mono/Mac clusters prompted us to
261 conduct Gene Set Enrichment Analysis (GSEA) to gain deeper insights regarding their functions in
262 TME (Fig. 5A). The mono cluster exhibited classical monocyte marker genes, such as *Ccr2* and
263 *Ly6c2* (Fig. 5B). Additionally, it shared genes related to pathways involving the response to LPS,
264 regulation of leukocyte cell-cell adhesion, regulation of hemopoiesis, and leukocyte migration (Fig.
265 5A and Fig. S11A-C). Mac1 population, representing the first branching point in the trajectory (Fig.
266 4C), showed upregulation of genes associated with pathways like response to LPS, response to type
267 II interferon, and cellular response to IL-1 (Fig. S11A, D-E). This branching point preferentially
268 gave rise to either Mac2 or Mac3. Mac2 had genes upregulated for hypoxia sensing and oxidative
269 stress-responsive genes such as *Vegfa*, *Hilpda*, *Bnip3*, *Egln3*, and *Ndrg1* (Fig. 5B and S11F), a
270 unique feature compared to other subclusters, and expressed genes involved in chemokine response
271 and leukocyte migration (Fig. S11G), implying inflammatory reactions. Despite Mac2 cells
272 exhibiting both M1 and M2 polarization genes, including *Nos2* and *Arg1*, relatively lower levels of
273 mature macrophage markers like *Adge1*, *H2-Aa*, *C1qa* and *Cx3cr1* indicate their immature status
274 (Fig. 5B). Mac3 exhibited upregulated genes such as *St3gal4*, *Tspan32*, *Lilrb4a*, and *Cd24a*,
275 contributing to the regulation of cell-cell adhesion (Fig. S11B). Interestingly, the expression
276 profiles of Mac4 cells did not show enrichment in the analyzed GSEA pathways. Mac5 featured
277 genes like *Trf*, *Tfrc*, *Apoe*, *Ap2a2*, and *Ap2m1*, which are involved in receptor-mediated endocytosis
278 and lymphocyte-mediated immunity (Fig. S11H-I). Mac5 also expressed markers such as *Folr2*,
279 *Mrc1*, *Apoe*, and *C1q* (Fig. 5B), resembling the tissue-resident macrophage(38, 39). Mac6
280 expressed typical monocyte-derived macrophage markers such as *Cx3cr1*, *Trem2*, *Cadm1* and *Spp1*
281 (Fig. 5B), resembling the ductal macrophages known to be involved in apoptotic cell clearance and
282 tissue remodeling, and significantly expanded during tumorigenesis (Fig. S11F)(38). The IL1
283 production pathway was observed most in Mac6 evidently with genes such as *Il1 α* , *IL1 β* and *Il1rn*
284 (Fig. S11E and S11J).

285 In the *Il1 α* ^{-/-} TME, there was an elevation in the Mac2 population, along with the declines
286 in the Mac 4-6 populations. Furthermore, macrophages exhibited decreased expression of key
287 macrophage differentiation markers, including *Adgre1*, *C1qa*, *C1qb*, *C1qc*, *Gatm*, and *Apoe* within
288 Mac1, Mac4, and Mac6 subclusters (Fig. 5B). Furthermore, clusters of Mono, Mac1, Mac2 and
289 Mac6 in *Il1 α* ^{-/-} mice showed diminished expression of receptors essential for differentiation, such
290 as *Csf1r*, *Csf2ra*, and *Csf3r*. Notably, the M1 macrophage marker genes such *Nos2*, *Bnip3* and
291 *Ndrg1* gene were upregulated especially in clusters of Mac2, Mac5 and Mac6 in *Il1 α* ^{-/-} mice (Fig.
292 5B).

293 Given the stark differences in the cell populations and marker gene expression between WT
294 and *Il1 α* ^{-/-}, we adopted a common strategy employing the Ly6C vs. MHC II gate to study the
295 functional aspects of subpopulations within each quadrant. Ly6C⁺MHC II⁻ cells may contain Ly6C⁺
296 monocytes. The Ly6C⁺MHCII⁺ cells, characterized by the expression of Ly6C, MHCII, CD11c,
297 and a low level of CX3CR1 (Fig. 4D), may encompass cells in Mac2-3 clusters. Notably, we
298 observed the phenotypical shift on the Ly6C⁺MHCII⁺ cells from MHC II^{hi} to MHC II^{lo}, and such
299 a shift might result from the changes of cellular composition. The Ly6C⁻MHCII⁺ cells, exhibiting
300 low levels of Ly6C, MHCII, and CX3CR1, bear the resemblance to Mac4 cells. The Ly6C⁻MHCII⁺

301 cells may include cells from Mac5 and 6 clusters. Consistent with the increase in Mac2 and
302 reduction in Mac 4-6 in the *Il1 α* ^{-/-} TME, flow cytometry analysis confirmed the reduced Ly6C⁻
303 MHCII⁻ and Ly6C⁺MHCII⁺ cells but increased Ly6C⁺MHCII⁺ cells (Fig. 5C). Monocyte-derived
304 myeloid-derived suppressor cells (MDSC) and TAMs have been demonstrated to inhibit the
305 proliferation of T cells(6). Despite the alterations of cellular distributions within *Il1 α* ^{-/-} tumors, a
306 similar pattern of T cell proliferation suppression was observed (Fig. 5D-E). The Ly6C⁺MHC II⁻
307 quadrant exhibited the most potent suppressive activity on T cell proliferation, while Ly6C⁻MHC
308 II⁻ cells displayed weaker suppressive effects, and Ly6C⁺MHC II⁺ and Ly6C⁻MHC II⁺ quadrants
309 showed no apparent impact on T cell proliferation. It's intriguing that co-culturing CD8 T cells with
310 Mono/Mac cells prompted the upregulation of immune suppressive marker genes PD-1 and CTLA4
311 (Fig. 5F-G). However, the Ly6C⁺MHC II⁺ or Ly6C⁻MHC⁺ cells from tumors in *Il1 α* ^{-/-} mice
312 exhibited a diminished capacity to induce PD-1 and CTLA4 expression, indicating reduced immune
313 suppressive abilities (Fig. 5D). Conversely, both Ly6C⁺MHC II⁻ and Ly6C⁻MHC II⁻ cells displayed
314 minimal phagocytic ability, whereas Ly6C⁺MHC II⁺ or Ly6C⁻MHC⁺ cells demonstrated strong
315 phagocytic capabilities. Interestingly, the Ly6C⁺MHC II⁺ cells from tumors in *Il1 α* ^{-/-} mice showed
316 a twofold decrease in phagocytosis compared to those from the wild type (Fig. 5H). This data aligns
317 with prior research indicating that CX3CR1+ macrophages exhibit robust phagocytic capabilities
318 in both normal mammary gland development and mammary tumors(40, 41). Collectively, these
319 findings suggest that the absence of IL1 α expression leads to the reprogramming of monocytes into
320 immature macrophages with diminished phagocytic and immune suppressive capacities.
321

322 **Correlation with human monocytes differentiation and macrophage polarization**

323 To further underscore the significance of our findings in human cells, we conducted the
324 comparison analysis by selecting the top differentially expressed genes from the Mono, Mac1
325 through Mac6 clusters between the treatment groups and compared them with human myeloid cells
326 subjected to various M1/M2 maturation triggers (Fig. 6A and Table S1). In total, 299 profiles from
327 32 different stimulation conditions were obtained (14). The enrichment analysis reveals that in the
328 tumors from WT mice, clusters of Mono, Mac2, Mac4, Mac5, and Mac6 exhibited gene signatures,
329 which were strongly associated with M2 maturation induced by IL10, IL13 and glucocorticoid
330 (GC). In contrast, the corresponding clusters from *Il1 α* ^{-/-} tumors displayed higher Z scores indicative
331 of an inflammatory human monocyte signature triggered by cyclodextrin (MCD). Intriguingly,
332 Mac3 cluster cells from tumors in both WT and *Il1 α* ^{-/-} showed the strong enrichment for genes
333 similar to human DC cells stimulated with TNF α and TNF/PGE2/Pam3CSK4 (TPP). Mac1 cells
334 from tumors in WT mice exhibited gene signatures resembling that of an unstimulated Monocyte
335 and a variety of macrophages, while Mac 1 cells from *Il1 α* ^{-/-} shared a gene signature with the
336 activated human monocytes. Overall, these gene signatures effectively captured the essence of the
337 less inhibitory immune phenotype of myeloid cells observed in the *Il1 α* ^{-/-} TME, aligning closely
338 with human myeloid cell signatures (Fig. 6B). To confirm these signature analysis, flow cytometry
339 analysis was performed to examine the expression levels of M1 signature gene iNOS and M2
340 signature gene CX3CR1 in the tumor myeloid cells. Consistently we observed a significantly higher
341 expression level of iNOS but a lower expression of CX3CR1 in *Il1 α* ^{-/-} myeloid cells than WT cells
342 (Fig. 6C-D). To determine whether the changes in the CX3CR1+ macrophage populations resulted
343 from an altered ratio of classical (CX3CR1^{hi}) and patrolling (CX3CR1^{low/Neg}) monocytes from the
344 blood, the expression levels in the respective myeloid cells from both tumor and blood were
345 compared. While the CX3CR1+ myeloid population was reduced in *Il1 α* ^{-/-} TME, no alterations were
346 noticed in the cells from blood (Fig. S12). These results suggested that IL1 α influences the
347 differentiation of those recruited monocytes, shifting them away from the iNOS+ inflammatory
348 phenotype and towards becoming CX3CR1+ immune suppressive macrophages(41). In line with
349 our hypothesis that IL1 α induces immune suppressive elevated expression of IL1 α in primary
350 cancers were indicative of an unfavorable prognosis for patients undergoing immunotherapy.

351 Discussion

352 In this study, we demonstrated that IL-1 α derived from myeloid cells in the TME promotes
353 breast tumor progression by regulating the immune response. Most previous studies have focused
354 on the effects of tumor-derived IL-1 α on malignant cells themselves or the proximal stroma(2, 21,
355 22). The contributions of host-derived IL-1 α to tumorigenesis have been relatively underexplored.
356 Early congenic graft experiments into WT and IL-1 α knockout mice hinted the site-variable
357 influences of host-derived IL-1 α , with enhanced mammary oncogenesis yet suppressed melanoma
358 progression(27). However, the underlying mechanisms on the pro- versus anti-neoplastic actions of
359 host derived IL1 α remain poorly defined. Our single cell RNA sequencing analyses clearly
360 uncovered the sources of IL-1 α within the TME of mammary tumors. We consistently detected
361 abundant expression within CX3CR1 $^+$ macrophages infiltrating mammary tumors, rather than in
362 the malignant cells themselves. Re-analysis of the previously published single cell RNA sequencing
363 study of MMTV-neu tumors also showed IL-1 α expression in CX3CR1 $^+$ macrophages and some
364 neutrophils although these tumors were harvested at the different time points(42). However,
365 neutrophils only account for a small fraction of infiltrating immune cells in our study. These data
366 also align with single cell RNA sequencing studies in human breast cancer models highlighting
367 myeloid cells as the foremost IL-1 α reservoirs at tumor sites.

368 Given the dynamic changes in immune cell abundance and activity during cancer
369 progression, we hypothesize that host-derived IL-1 α assumes context-dependent functional roles at
370 different stages of tumorigenesis. Using congenic engraftment models, we uncovered that impaired
371 tumor growth in IL-1 α knockout hosts stemmed from enhanced anti-tumor immunity. Single cell
372 profiling and flow cytometry analysis consistently displayed increased immune infiltrates with
373 greater abundance and activation of cytotoxic CD8 T cells within grafts in the absence of host IL-
374 1 α signaling. Moreover, selectively depleting CD4 and CD8 T cells, but not B cells, restored tumor
375 expansion in IL-1 α deficient animals. This implicates that adaptive cell-mediated responses are
376 critical for immune control of tumors when host-derived IL-1 α is lacking. Together, these findings
377 demonstrate that host IL-1 α dampens the endogenous anti-cancer immune response that is
378 otherwise capable of rejecting implants.

379 The altered anti-tumor immunity is likely due to IL-1 α -mediated reprogramming of
380 mononuclear phagocytic cells in the TME. Single cell RNA sequencing analysis revealed a
381 significant reduction in CX3CR1 $^+$ ductal-like macrophages (Mac6) and an increase in stress
382 response-like macrophages (Mac2) in the absence of IL-1 α . flow cytometry analysis further
383 validated the change in myeloid cell subsets within the TME. This relative change in macrophage
384 subsets is unlikely due to differential recruitment of CX3CR1 $^{\text{low}}$ classical and CX3CR1 $^{\text{high}}$ non-
385 classical monocytes for the following reasons. First, the proportion of the CX3CR1-positive
386 monocyte population is comparable in the blood of both wild type and IL-1 α knockout mice.
387 Secondly, IL-1 α knockout mice showed mild leukopenia in both tumor-free and tumor-bearing
388 conditions, consistent with the known role of IL-1 α in hematopoiesis and mobilization of myeloid
389 cells from the bone marrow (31, 32). In contrast, more immune cells infiltrate the tumors.
390 Additionally, there are no significant differences or even a slight decrease in CCR2 expression in
391 infiltrating monocytes or neutrophil of IL-1 α knockout mice. Therefore, the change in infiltrating
392 myeloid cell subsets is largely due to the results of local differentiation and/or proliferation of
393 recruited monocytes or their precursors rather than differential recruitment.

394 Monocytes can differentiate into macrophages with a high degree of phenotypic and
395 functional heterogeneity in both normal mammary gland and tumor tissues(5, 41). In normal
396 mammary gland, there are two types of resident macrophages: a rare population of ductal
397 (CX3CR1 $^+$ CD11c $^+$ Ly6C $^-$) and a major population of stromal (CX3CR1 $^-$ CD11c $^-$ Ly6C $^{\text{lo}}$ MHC II $^{\text{hi}}$)
398 microphages(38). Interestingly, in response to change in their niches in tumors, only ductal
399 macrophages drastically expanded while part of stromal macrophages (SM) change phenotype from
400 CX3CR1 $^-$ to CX3CR1 $^+$ cells(38). We have observed a dramatic decrease in the DM-like population

401 (Mac6) in the tumors of *Il1 α* ^{-/-} mice, which is most likely due to selective inhibition of DM
402 differentiation or proliferation. The increased stress response population (Mac2) in the *Il1 α* ^{-/-} mice
403 showed the stromal macrophage phenotype (CX3CR^{Ly6C^{lo}CD11c^{lo/-}MHC II^{hi/lo}}). It is likely that
404 knockout of *Il1 α* leads to expansion of SM due to the altered niches(40). The enrichment of stress
405 response and hypoxia pathway in the Mac2 population indicated that these cells are most likely
406 exposed to hypoxia environment within the tumor. In contrast to the typical peripheral location of
407 SM in the mammary tumors, we observed more macrophages inside the tumors from the *Il1 α* ^{-/-} host
408 mice.

409 The alterations in the differentiation routes of infiltrated monocyte may change their
410 functions as well. Accumulating data suggests a continuous spectrum of functionally diverse
411 macrophage states rather than ontogenically defined M1/M2 subsets in the TME(9). Most
412 macrophages *in vivo* likely express markers of both M1 and M2 activation states(16, 17). CX3CR1
413 is a marker frequently associated with anti-inflammatory, immunosuppressive M2 macrophages
414 and poor prognosis in breast cancer(40, 43, 44), whereas iNOS is a proinflammatory M1
415 macrophage biomarker that likely promotes anti-tumor immune responses(45). flow cytometry
416 analysis showed that CX3CR1+ cells are intermixed with iNOS-positive cells although the number
417 of CX3CR1+ and iNOS-expressing cells showed the opposite changes in the *Il1 α* ^{-/-} mice in
418 comparison with WT mice. In the expression profiles comparison with *in vitro*-induced human M1
419 and M2 macrophages, there is a general reduction in expression of M2 macrophage genes across
420 the subpopulations although there are no distinct M1 and M2 subpopulations.

421 Monocyte-macrophage lineage of cells can suppress CTL responses through inhibition of
422 proliferation and activation(46, 47). Several changes in monocyte-macrophage lineage of cells
423 may explain the increased number and activation status of CTL in *Il1 α* ^{-/-} mice. First, after sorting
424 based on Ly6C and MHC-II expression, we observed the shift from the Ly6C⁻MHCII⁻ population
425 to Ly6C⁺MHCII⁺ cells in the tumors from the *Il1 α* ^{-/-} mice. Although the Ly6C⁺MHCII⁺ cells from
426 both WT and *Il1 α* ^{-/-} mice did not inhibit antigen-independent T cell proliferation, the Ly6C⁻MHCII⁻
427 subpopulations showed strong suppressive abilities on T cell proliferation. The relative cellular
428 composition changes may partially explain the increased number of CD8 T cells in the transplants
429 of *Il1 α* ^{-/-} mice. Secondly, the CD8 T cells cocultured with Ly6C⁺MHC II⁺ population from WT
430 mice expressed higher expression of exhaust markers such as PD-1 and CTLA4. Several previous
431 reports indicate CX3CR1-positive TAMs commonly display high phagocytic but immune
432 suppressive activities(40, 48, 49). In MMTV-PyMT models, monocyte derived (TAMs) present
433 cancer cell antigens and drive exhaustion of cytotoxic T cell with induction of PD1 expression(50).
434 Finally, *in vivo* depletion of TAMs, but not mammary tissue macrophages (MTMs), can efficiently
435 restore the tumor infiltrating cytotoxic T-cell response by increasing the number of PD-1⁻Gzmb⁺
436 CD8 T cells(37). IL-1 α deficiency-induced reprogramming of monocyte differentiation
437 recapitulates some phenotypes of selective TAM depletion(37). Interestingly, ICI treatment can
438 also remodel tumoral monocyte/macrophage lineage cells leading to selective ablation
439 CX3CR1⁺CD206⁺ macrophages and accumulation of iNOS+ macrophages in an IFN- γ dependent
440 manner(15). Similarly, our trajectory analysis revealed that loss of IL-1 α skewed paths away from
441 the CX3CR1+ MAC6 cluster toward the iNOS-positive Mac2 cluster, with Mac1 serving as a
442 common progenitor enriched in IL-1 and IFN γ responsive signaling. This similarity raises the
443 possibility that targeting IL-1 α could be used to promote monocyte differentiation into
444 proinflammatory macrophages or antigen-presenting myeloid cells to enhance the efficacy of
445 immunotherapy.

446 Despite both scRNA seq and flow cytometry analysis showing a similar change trend, the
447 relative proportions of CX3CR1 and iNOS-positive myeloid cells are much higher by flow
448 cytometry compared to scRNA seq profiling. This difference may be due to some caveats of scRNA
449 sequencing. First, mRNA and protein expression do not always directly correlate. We used
450 relatively low cell count options for scRNA sequencing, which can cause large variations for genes

451 with low abundance. Secondly, our sample digestion procedure caused substantial cell death. To
452 improve single cell library quality, we used a live/dead staining kit to enrich live single cells. The
453 tissue dissociation, live cell enrichment, and droplet encapsulation inherent to scRNA-seq caused
454 under-representation of certain cell types including adipocytes, mast cells, tumor cells and some
455 myeloid cell subsets(51). Given these systemic procedural biases, we therefore limited our analysis
456 to relative changes between wild type and knockout grafts within the corresponding clusters, or to
457 gene expression profiles within the same compartment. Furthermore, we validated the analysis
458 using flow cytometry and verified it with published datasets from similar studies, extending the
459 gene expression profiles of mouse monocytes/macrophages to their human counterparts. By
460 comparing activation states of our macrophage clusters to published M1/M2 status markers of
461 human equivalents, we obtained the results suggesting that the TME in IL-1 α deficient mice likely
462 polarizes macrophages toward an immune active phenotype. Further elucidating the mechanisms
463 of IL-1 α mediated immune suppression in the tumor microenvironment may lead to the
464 development of new immunotherapeutic strategies for breast cancer.

465 Materials and Methods

466 Cell culture and mice

467 H605 MMTV-neu mammary tumor cell line in FVB/N background were cultured in
468 DMEM/F12 media containing 10% fetal bovine serum, 10 μ g/mL insulin with 1%
469 penicillin/streptomycin. *Il1 α* ^{-/-} mice were kindly provided by Dr. Yoichiro Iwakura and have been
470 backcrossed into FVB/N background as described previously(21).

471 Breast cancer allograft mouse models

472 The animal studies were approved by the USC (University of South Carolina) committee
473 for research in vertebrate animals. Cancer cells (2 \times 10⁶ H605 cells) were mixed with Matrigel at 1:1
474 ratio and injected to the fourth mammary glands of WT or *Il1 α* ^{-/-} FVB/N background mice. The
475 tumor was measured every 3rd day and calculated using the formula- volume = $\frac{1}{2}$ (length x width²).
476 The mice were sacrificed using cervical dislocation at the indicated time points. Blood, spleen and
477 bone marrow were collected to study immune profile. For immune cells depletion, anti-CD19,
478 CD4, and CD8 neutralization antibodies were administered at a dosage of 200 μ g per mouse. This
479 treatment was initiated through intraperitoneal (i.p.) injection two days before tumor inoculation
480 and continued at three-day intervals until day 25. Cellular depletions of CD8 T cells, CD4 T cells
481 and CD19+ B cells were confirmed by flow cytometry of PBMC.

482 Tissue collection and processing for immune profiling

483 Blood samples were collected into tubes coated with EDTA. For immune analysis, 100 μ L
484 of blood was mixed with 900 μ L of 1 \times RBC (red blood cell) lysis buffer. Upon quickly vortexing
485 the sample at speed 5/6 on the vortex, the samples were placed on ice for 10 minutes and then
486 centrifuge it at 500rcf for 5 minutes, leading to a white pellet at the bottom for flow cytometry
487 analysis. For saving serum, first centrifuge the EDTA tube containing blood at 16,000g for 5
488 minutes. Carefully collect the supernatant into a clean tube, ensuring that the red blood cells remain
489 undisturbed. Next, add 1ul of protein inhibitor prepared using PierceTM Protein Inhibitor tablets
490 (A32955) for every 500 μ l of serum, and gently flick the tube to ensure thorough mixing. Store these
491 samples at -80°C, taking care to avoid freeze-thaw cycles, to preserve the serum for further analysis.

492 The tumor processing protocol involved careful collection and division of the tumor into
493 two equal parts. The first half was fixed in 4% Paraformaldehyde and left overnight at 4°C to
494 prepare it for immune-fluorescence analysis. The second half was minced using a sterile razor in a
495 5cm dish. For cell isolation, the minced tumor was collected into a 15 ml tube and incubated in 5ml
496 of digestion buffer, which contained 2mg/ml collagenase IV and 0.2mg/mL hyaluronidase in
497 DMEM/F12, for 45 minutes at 37°C with agitation at 1000rpm in an Eppendorf shaker/incubator.

501 Following digestion, the tube was centrifuged at 500g for 5 minutes, and the supernatant was
502 removed. The cell pellet underwent treatment with RBC lysis buffer, followed by resuspension in
503 5ml of wash buffer (consisting of 2% FBS in PBS) and filtration through a 40 μ m filter to obtain a
504 single-cell suspension, which was then utilized for flow cytometry and cell sorting.

505 In the femur sample preparation process, both intact femurs were initially collected and
506 cleaned by meticulously removing excess muscle and fat using a sterile razor. The cleaned femurs
507 were grinded in a clean mortar in the presence of 5mL of wash buffer (2% FBS in 1 \times PBS). The
508 resulting non-bone liquid phase from this grinding was collected and then filtered through a 40 μ m
509 filter. The cell pellet obtained after centrifugation was resuspended in 1 \times RBC lysis buffer to
510 eliminate red blood cells. The isolated cells were then counted and used for experiments.

511 The spleen was placed in a 5cm dish with 5ml of wash buffer. Clean non-charge glass slides
512 were used to apply pressure on both sides to gently squeeze them into the wash buffer until the
513 tissue becomes pale. The cells in wash buffer were subjected to centrifugation at 500g for 5 minutes,
514 with careful removal of the supernatant. After RBC lysis, the remaining cells were resuspended in
515 wash buffer and pass through 40 μ m filter to attain single cell suspension.

516 **Multiplex cytokine assay**

517 Blood was collected into EDTA-treated tubes, plasma extracted, and samples frozen at
518 -80°C until testing. Mouse cytokine and chemokine concentrations were determined using a
519 multiplex immunoassay. 50 μl of plasma samples were sent for quantitative analysis using Eve
520 Technologies Inc.

521 **Immuno-fluorescence analysis**

522 The tumor samples were fixed in 4% PFA for 24 hrs and then switched to 30% sucrose for
523 30mins prior to O.C.T. embedding. Sections of 7 μm were cut using the cryosection microtome.
524 Primary Antibodies, which are conjugated with a fluorophore (CD11b Cat No: 101206; 1:200,
525 CD45 Cat No: 147708; 1:200) were used for immuno-fluorescents staining as described
526 previously(52). A Zeiss LSM 800 confocal microscope equipped with 2.6ZEN software was used
527 to acquire images.

528 **Flow cytometry**

529 The single cell suspension from various tissues were quantified using Bio-Rad® automatic
530 cell counter. A total of 1 million cells per stain were used, resuspended in 100 μL of washing buffer
531 for the staining of immune cells within the different tissues. A 1:1000 dilution of CD16/32 receptor
532 blockade was applied and incubated for 5 minutes, followed by the addition of the desired antibody
533 at the appropriate dilution to the single cell suspension (**Table S2**). The cells were then incubated
534 for 15 minutes at 4°C and subsequently centrifuged at 500g for 5 minutes. After that, a live-dead
535 stain (Zombie Aqua/Yellow/7-AAD) at 1:1000 dilution was used to incubate with cells for 10
536 minutes at room temperature in the dark. The cells were centrifuged again at the same speed and
537 duration. To assess T cell cytokine production capability, activation cocktail and golgi plug were
538 incubated with cells for 1 hour as per the manufacturer's instructions. Finally, the samples were
539 fixed using BD Cytofix/Cytoperm Plus (#555028) for intracellular protein staining, following the
540 manufacturer's guidelines. Nuclear proteins were analyzed using the eBioscience™ Foxp3
541 intracellular stain kit (#00-5523-00), following the manufacturer's instructions (**Table S3**).

542 **scRNA seq and analysis**

543 Single cells were extracted from two sets of tumor samples derived from both WT and $III\alpha^{-/-}$
544 mice, collected at 14 days post-transplantation. Elimination of dead cells was carried out using
545 the dead cell removal kit (#130-090-101, Miltenyi Biotec), following the manufacturer's guidelines.
546 Cells with viability greater than 90% were used and kept on ice for fixation and single cell RNA-

551 Seq analysis. Droplet-based single-cell partitioning and single-cell RNA-Seq libraries were
552 generated using the Chromium Single-Cell 3' Reagent v2 Kit (#PN-1000269, 10 \times Genomics,
553 Pleasanton, CA) per the manufacturer's protocol. The size profiles of the pre-amplified cDNA and
554 sequencing libraries were examined by Agilent Bioanalyzer 2100 using a High Sensitivity DNA
555 chip (Agilent). Samples were sequenced up to mean read of 23k reads per sample.

556 The sequencing data was analyzed using the Cell Ranger Pipeline (version 2.0.1) to perform
557 quality control, sample demultiplexing, barcode processing, alignment, and single-cell 3' gene
558 counting. All sequencing data processing steps were conducted with Seurat v4.3. Initially, quality
559 control was carried out on each library to establish appropriate filtering criteria. Expression matrices
560 for individual samples were imported into R as Seurat objects, retaining only cells with a gene count
561 of more than 200. Cells with poor quality, characterized by more than 5% mitochondrial genes,
562 were excluded. Genes that were not expressed in at least three cells were also removed. To mitigate
563 the technical variation, sequencing depth, and capture efficiency biases, we employed
564 NormalizeData for normalization, and scaling according to Seurat protocol. For distinction, we
565 assigned identifiers for WT and *Il1 α* ^{-/-} samples. After quality control and integration, we analyzed
566 a total of 13,335 cells. Within the tumor, 14 clusters were identified. Visualization of cell clustering
567 was achieved using uniform manifold approximation and projection (UMAP). To assign cluster
568 identities, we initially compiled a list of established cell types, along with their known markers. We
569 assessed the expression of these markers, as well as additional canonical markers, using the
570 FindAllMarkers() function in Seurat. Differential expression of each cluster was compared between
571 WT and *Il1 α* ^{-/-} cells by using log1p(AverageExpression()). GO analysis was performed using
572 unique genes from FindAllMarkers() function in subcluster Mono/Mac using ClusterProfiler library
573 and enrichGO function. The raw values from GO analysis was transported into
574 software.broadinstitute.org/morpheus/ online software to make heat map. Representative genes
575 graphs were made using violinplot(), DoHeatmap() and dotplot() function.

576 Monocle3 package was used on Seurat object. Myeloid subset object was treated as cell data
577 set for each sample using function as.cell_data_set function and cluster_cells was used to make
578 UMAP for the converted cell data set. The learn_graph function was used to predict the trajectory
579 pathway. Used function order_cells to select Mono population as starting of trajectory and graph
580 the trajectory as result.

581

582 ***In vitro* T cell proliferation assay**

583 Miltenyi bead separation was used according to the manufacturer's instructions to purify CD8 T
584 cells from the spleen tissue of WT FVB mice (#130-104-075, Miltenyi Biotec). Four subsets of
585 tumor-infiltrated myeloid cells (CD45 $^{+}$ CD11b $^{+}$ Ly6G $^{-}$) were sorted out based on the expression
586 levels of Ly6C and MHC II. 1 \times 10 6 of CD8 T cells were labeled with 500 μ L of 5 μ M
587 carboxyfluorescein diacetate succinimidyl ester (CFSE; eBioscience). The CFSE-labeled T cells
588 were then seeded at 1:4 ratio (T cells: Myeloid) in a non-adherent 96-well plate. Stimulation of
589 these cells was achieved by adding CD3+CD28 MACSibead particles (#130-093-627) according
590 to manufactures protocol. After three days of culture, the cells were subjected to centrifugation and
591 stained for CD8 and exhaustion/activation markers, alongside a live/dead marker such as DAPI or
592 Live/dead stain, to assess T-cell proliferation among live cells. Percentage suppression of
593 proliferation with myeloid cells is calculated as (1- Proliferation with myeloid cells/Proliferation
594 without myeloid cells) \times 100.

595

596 **Phagocytosis Assay**

597 Myeloid cell subsets, isolated from tumor infiltration and distinguished by their expression levels
598 of Ly6C and MHC II, were plated and treated with 25 μ m sized GFP-encapsulated particles at a
599 ratio of 10 particles per cell in 100 μ L of media in a non-adherent 96 well plate. The cells were

600 incubated at 37°C for 2 hours and flow cytometry was conducted on CD11b stained versus GFP to
601 assess phagocytosis.
602

603 Human macrophage M1/M2 gene signature analysis

604 Human expression data was accessed from GEO with GSE46903 ID. The samples from the time
605 point of 72 hours treated with GM-CSF were used for M1/M2 macrophage status along with
606 dendritic cells and monocytes with different triggers to construct the tSNE for analysis. The top
607 100 differential expressed genes from Mono/Mac subclusters between WT and *Il1α*^{-/-} were used to
608 calculate the z-score for each cluster with respect to the sample. The plots were made using the
609 ggplot2 package on the constructed tSNE plot.
610

611 Statistical analysis

612 All quantitative data are presented as mean± SD or SEM as indicated. Prism v10 was used
613 to perform 2-way ANOVA and unpaired two tailed t-test for all graphs used. Survival curves were
614 evaluated using the Kaplan–Meier method, and the differences between those survival curves were
615 tested by the log-rank test.
616

617 References

- 618 1. L. A. Emens, Breast Cancer Immunotherapy: Facts and Hopes. *Clinical cancer research : an official journal of the American Association for Cancer Research* **24**, 511-520 (2018).
- 619 2. B. M. Allen *et al.*, Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. *Nature medicine* **26**, 1125-1134 (2020).
- 620 3. A. Basu *et al.*, Immunotherapy in breast cancer: Current status and future directions. *Advances in cancer research* **143**, 295-349 (2019).
- 621 4. A. Hanna, J. M. Balko, Breast cancer resistance mechanisms: challenges to immunotherapy. *Breast cancer research and treatment* **190**, 5-17 (2021).
- 622 5. C. E. Olingy, H. Q. Dinh, C. C. Hedrick, Monocyte heterogeneity and functions in cancer. *Journal of leukocyte biology* **106**, 309-322 (2019).
- 623 6. F. Veglia, E. Sanseviero, D. I. Gabrilovich, Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. *Nature reviews. Immunology* **21**, 485-498 (2021).
- 624 7. L. Zhou, T. Zhao, R. Zhang, C. Chen, J. Li, New insights into the role of macrophages in cancer immunotherapy. *Frontiers in immunology* **15**, 1381225 (2024).
- 625 8. X. Zhang *et al.*, Reprogramming tumour-associated macrophages to outcompete cancer cells. *Nature* **619**, 616-623 (2023).
- 626 9. M. Yang, D. McKay, J. W. Pollard, C. E. Lewis, Diverse Functions of Macrophages in Different Tumor Microenvironments. *Cancer research* **78**, 5492-5503 (2018).
- 627 10. V. Bronte *et al.*, Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. *Nature communications* **7**, 12150 (2016).
- 628 11. A. K. Mehta, S. Kadel, M. G. Townsend, M. Oliwa, J. L. Guerriero, Macrophage Biology and Mechanisms of Immune Suppression in Breast Cancer. *Frontiers in immunology* **12**, 643771 (2021).
- 629 12. C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, A. M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm. *Journal of immunology (Baltimore, Md. : 1950)* **164**, 6166-6173 (2000).
- 630 13. B. Ruffell, L. M. Coussens, Macrophages and therapeutic resistance in cancer. *Cancer Cell* **27**, 462-472 (2015).
- 631 14. J. Xue *et al.*, Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. *Immunity* **40**, 274-288 (2014).
- 632 15. M. M. Gubin *et al.*, High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. *Cell* **175**, 1443 (2018).
- 633 16. A. M. Mujal *et al.*, Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer. *Cancer immunology research* **10**, 403-419 (2022).

651 17. S. Cheng *et al.*, A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. *Cell*
652 **184**, 792-809.e723 (2021).

653 18. D. Kirschenbaum *et al.*, Time-resolved single-cell transcriptomics defines immune trajectories in
654 glioblastoma. *Cell* **187**, 149-165.e123 (2024).

655 19. N. C. Di Paolo, D. M. Shayakhmetov, Interleukin 1alpha and the inflammatory process. *Nat Immunol*
656 **17**, 906-913 (2016).

657 20. S. Nozaki, G. W. Sledge, Jr., H. Nakshatri, Cancer cell-derived interleukin 1alpha contributes to
658 autocrine and paracrine induction of pro-metastatic genes in breast cancer. *Biochemical and*
659 *biophysical research communications* **275**, 60-62 (2000).

660 21. S. Liu *et al.*, HER2 Overexpression Triggers an IL1alpha Proinflammatory Circuit to Drive
661 Tumorigenesis and Promote Chemotherapy Resistance. *Cancer research* **78**, 2040-2051 (2018).

662 22. E. L. Kuan, S. F. Ziegler, A tumor-myeloid cell axis, mediated via the cytokines IL-1 α and TSLP,
663 promotes the progression of breast cancer. *Nat Immunol* **19**, 366-374 (2018).

664 23. A. Douvdevani, M. Huleihel, M. Zöller, S. Segal, R. N. Apte, Reduced tumorigenicity of fibrosarcomas
665 which constitutively generate IL-1 alpha either spontaneously or following IL-1 alpha gene transfer.
International journal of cancer **51**, 822-830 (1992).

666 24. R. N. Apte *et al.*, Cytokine-induced tumor immunogenicity: endogenous interleukin-1 alpha
667 expressed by fibrosarcoma cells confers reduced tumorigenicity. *Immunology letters* **39**, 45-52
668 (1993).

669 25. E. Voronov *et al.*, Antitumor and immunotherapeutic effects of activated invasive T lymphoma cells
670 that display short-term interleukin 1alpha expression. *Cancer research* **59**, 1029-1035 (1999).

671 26. T. Dvorkin *et al.*, Immune phenomena involved in the in vivo regression of fibrosarcoma cells
672 expressing cell-associated IL-1alpha. *Journal of leukocyte biology* **80**, 96-106 (2006).

673 27. E. Voronov *et al.*, IL-1 is required for tumor invasiveness and angiogenesis. *Proceedings of the*
674 *National Academy of Sciences of the United States of America* **100**, 2645-2650 (2003).

675 28. T. Tian *et al.*, IL1 α Antagonizes IL1 β and Promotes Adaptive Immune Rejection of Malignant Tumors.
676 *Cancer immunology research* **8**, 660-671 (2020).

677 29. M. Krishnamohan *et al.*, Tumor Cell-Associated IL-1 α Affects Breast Cancer Progression and
678 Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. *International*
679 *journal of molecular sciences* **25**, (2024).

680 30. M. Dagenais *et al.*, The Interleukin (IL)-1R1 pathway is a critical negative regulator of PyMT-
681 mediated mammary tumorigenesis and pulmonary metastasis. *Oncoimmunology* **6**, e1287247
682 (2017).

683 31. D. A. G. Barisas *et al.*, Tumor-derived interleukin-1 α and leukemia inhibitory factor promote
684 extramedullary hematopoiesis. *PLOS Biology* **21**, e3001746 (2023).

685 32. K. Hestdal *et al.*, In vivo effect of interleukin-1 alpha on hematopoiesis: role of colony-stimulating
686 factor receptor modulation. *Blood* **80**, 2486-2494 (1992).

687 33. S. O. Piryani, A. Y. F. Kam, U. T. Vu, N. J. Chao, P. L. Doan, CCR5 Signaling Promotes Murine and
688 Human Hematopoietic Regeneration following Ionizing Radiation. *Stem cell reports* **13**, 76-90
689 (2019).

690 34. H. K. Kim, M. De La Luz Sierra, C. K. Williams, A. V. Gulino, G. Tosato, G-CSF down-regulation of
691 CXCR4 expression identified as a mechanism for mobilization of myeloid cells. *Blood* **108**, 812-820
692 (2006).

693 35. E. Limagne *et al.*, MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10
694 in cancer cells. *Cancer Cell* **40**, 136-152.e112 (2022).

695 36. P. Italiani, D. Boraschi, From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional
696 Differentiation. *Frontiers in immunology* **5**, (2014).

697 37. R. A. Franklin *et al.*, The cellular and molecular origin of tumor-associated macrophages. *Science*
698 **344**, 921-925 (2014).

699 38. C. A. Dawson *et al.*, Tissue-resident ductal macrophages survey the mammary epithelium and
700 facilitate tissue remodelling. *Nature cell biology* **22**, 546-558 (2020).

702 39. R. Nalio Ramos *et al.*, Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration
703 in human breast cancer. *Cell* **185**, 1189-1207.e1125 (2022).

704 40. M. Laviron *et al.*, Tumor-associated macrophage heterogeneity is driven by tissue territories in
705 breast cancer. *Cell reports* **39**, 110865 (2022).

706 41. M. Bijnen, M. Bajénoff, Gland Macrophages: Reciprocal Control and Function within Their Niche.
707 *Trends in immunology* **42**, 120-136 (2021).

708 42. D. N. Sidiropoulos *et al.*, Entinostat Decreases Immune Suppression to Promote Antitumor
709 Responses in a HER2+ Breast Tumor Microenvironment. *Cancer immunology research* **10**, 656-669
710 (2022).

711 43. J. R. Reed *et al.*, Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes
712 macrophage recruitment in a CX3CL1-dependent manner. *PLoS one* **7**, e45877 (2012).

713 44. A. Bassez *et al.*, A single-cell map of intratumoral changes during anti-PD1 treatment of patients
714 with breast cancer. *Nature medicine* **27**, 820-832 (2021).

715 45. J. A. Mas-Rosario, J. D. Medor, M. I. Jeffway, J. M. Martínez-Montes, M. E. Farkas, Murine
716 macrophage-based iNos reporter reveals polarization and reprogramming in the context of breast
717 cancer. *Frontiers in oncology* **13**, 1151384 (2023).

718 46. L. Cassetta, J. W. Pollard, Targeting macrophages: therapeutic approaches in cancer. *Nature Reviews
719 Drug Discovery* **17**, 887-904 (2018).

720 47. F. Veglia, M. Perego, D. Gabrilovich, Myeloid-derived suppressor cells coming of age. *Nat Immunol*
721 **19**, 108-119 (2018).

722 48. S. Natsuki *et al.*, Involvement of CX3CR1(+) cells appearing in the abdominal cavity in the
723 immunosuppressive environment immediately after gastric cancer surgery. *World journal of
724 surgical oncology* **22**, 74 (2024).

725 49. M. Molgora *et al.*, TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-
726 1 Immunotherapy. *Cell* **182**, 886-900.e817 (2020).

727 50. B. G. Nixon *et al.*, Tumor-associated macrophages expressing the transcription factor IRF8 promote
728 T cell exhaustion in cancer. *Immunity* **55**, 2044-2058.e2045 (2022).

729 51. S. Z. Wu *et al.*, A single-cell and spatially resolved atlas of human breast cancers. *Nat Genet* **53**,
730 1334-1347 (2021).

731 52. M. Soni *et al.*, Autophagy, Cell Viability, and Chemoresistance Are Regulated By miR-489 in Breast
732 Cancer. *Mol Cancer Res* **16**, 1348-1360 (2018).

733 53. S. A. Kovács, J. T. Fekete, B. Győrffy, Predictive biomarkers of immunotherapy response with
734 pharmacological applications in solid tumors. *Acta Pharmacologica Sinica* **44**, 1879-1889 (2023).

735

736

737

738 Acknowledgments

739 We are deeply grateful for the technical assistance provided by Drs. Michael Shtutman
740 and Diego Altomare in single-cell sequencing, as well as Dr. Jason Kubinak in flow
741 cytometry analysis.

742

743

Funding:

744 National Institutes of Health grant R01CA266027 (IR, EB, CH)
745 National Institutes of Health grant R21 CA252360 (CH, PX)

746

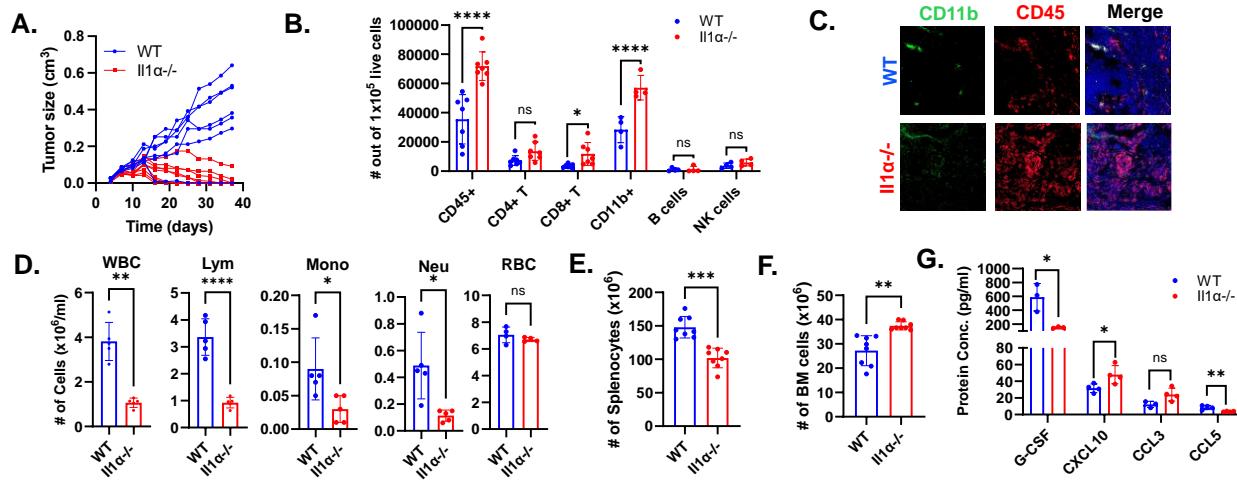
747

Author contributions:

748 Conceptualization: MK, GZ, HC

749 Methodology: MK, GG, GA, KK, AA, MG, IR, EB, MC, HJ, CL, HW, DF, PX,
750 JL, CH

751 Investigation: MK, GG, GZ, CH


Visualization: MK, CH
Supervision: CH
Writing—original draft: MK, CH
Writing—review & editing: HW, DF, GZ, CH

Competing interests: Authors declare that they have no competing interests.

Data and materials availability: The accession number for the scRNAseq data reported in this paper is GEO: GSE 264177.

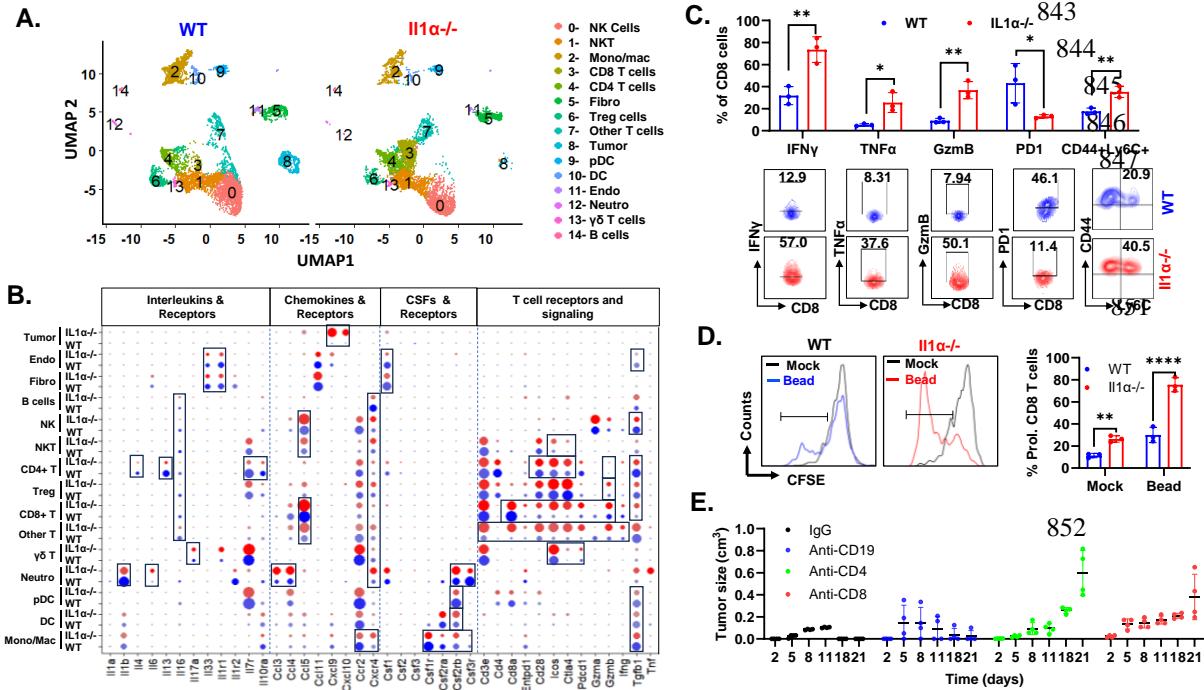
802 **Figures**

803
804
805
806

807
808 **Fig. 1. Il1a absence affects mammary gland tumor growth and systemic immunity.** **A.** H605
809 tumor growth in WT and *Il1a*^{-/-} (n = 7). **B.** Flow cytometry analysis of immune cells in H605
810 transplanted tumors at 2 weeks after inoculation. The number of infiltrating immune cells was
811 calculated from 100,000 live cells using flow cytometry (n = 7). **C.** Representative
812 immunofluorescence staining of CD11b and CD45 markers from WT and *Il1a*^{-/-} tumor sections. **D.**
813 Blood Vetscan® data shown between tumor-bearing WT and *Il1a*^{-/-} mice. Unpaired Two Tailed t-
814 test was performed. **<0.01; *<0.05. **E** and **F** describe the total number of spleen and bone marrow
815 leukocytes from tumor-bearing WT and *Il1a*^{-/-} mice. **G.** Concentration of cytokines GCSF,
816 CXCL10, CCL3 and CCL5 in the sera of tumor-bearing WT and *Il1a*^{-/-} mice. Unpaired Two Tailed
817 t-test was performed. **<0.01; *<0.05.

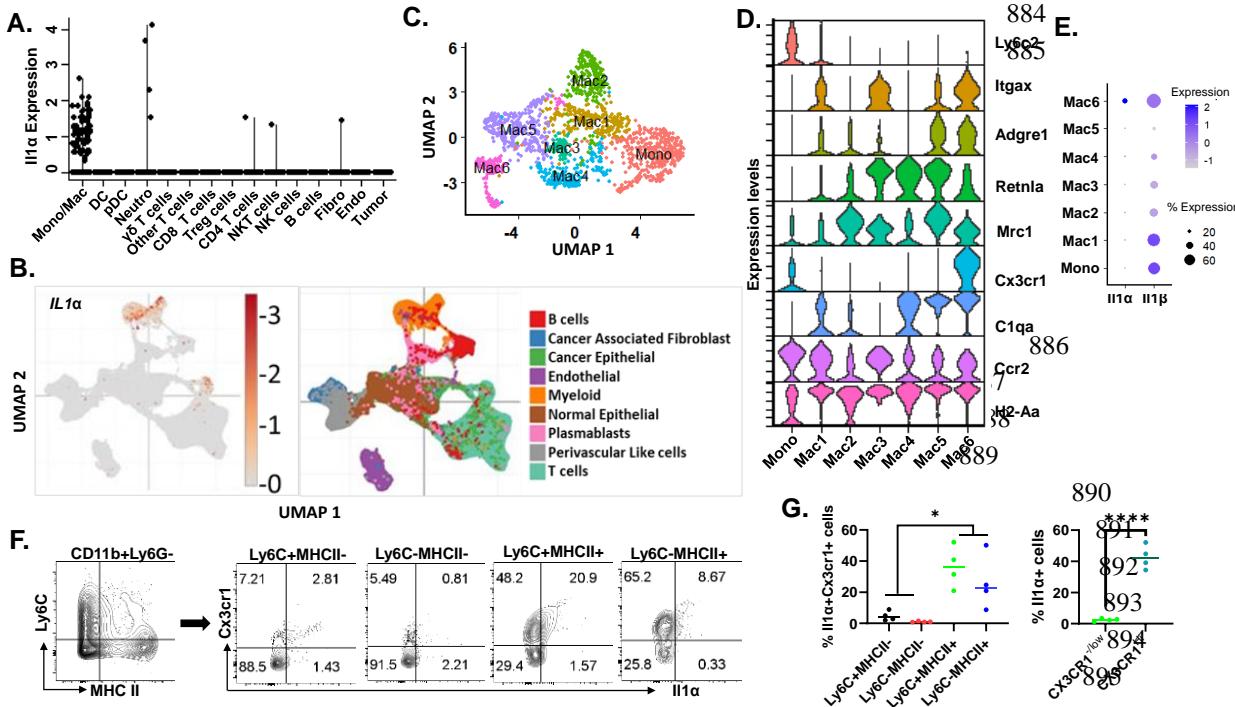
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838

839
840
841
842


848

849

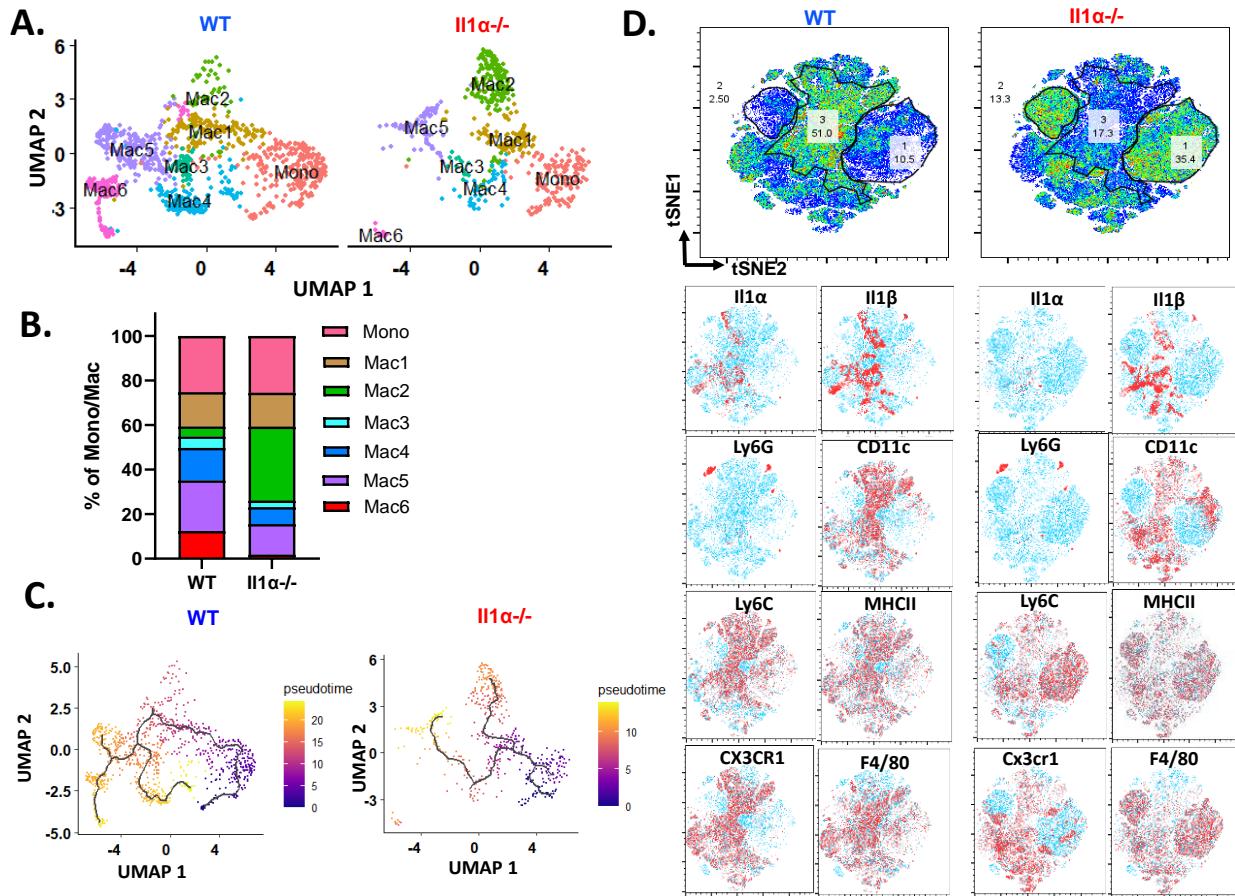
853


855
856
857
858
859
860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Fig. 2. Loss of IL1 α results in an immune-active TME. **A.** t-SNE scRNA-seq plot comparing intratumoral cells between WT and $III\alpha^{-/-}$ samples. **B.** Differential expressed soluble factors, and their receptor gene levels found across all clusters shown in dot plot. **C.** Quantification of T cell cytokines, exhaustion marker PD1 and stem like T cell marker in infiltrated CD8 T cells using flow cytometry (n = 3). **D.** Quantification of *ex vivo* tumor T cells proliferation using anti-CD3/CD28 beads (n = 3). Unpaired Two Tailed t-test was performed. **, p < 0.01; ****, p < 0.0001. **E.** H605 tumor growth in the transplanted $III\alpha^{-/-}$ mice post depletion of CD19, CD4 and CD8 T cells (n = 4).

880
881
882
883

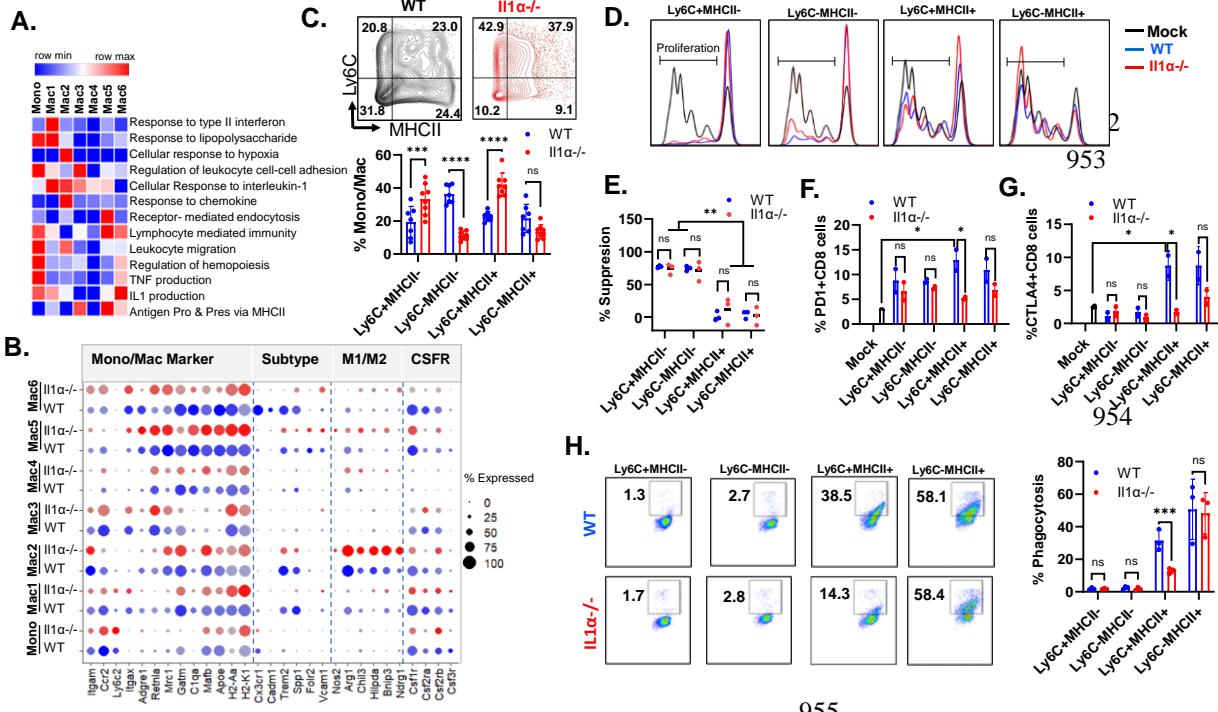


896
897

Fig. 3. CX3CR1+ macrophages serve as the major cellular source of *Il1α* in the TME. A. Expression of *Il1α* from TME scRNAseq shown in violin plot. **B.** t-SNE scRNA-seq plot from human breast cancer dataset depicting clusters where *Il1α* production is observed. **C.** t-SNE scRNA-seq plot of reclustered Mono/Mac clusters. **D.** Violin plot illustrating the expression of macrophage markers across the subclusters. **E.** Dot plot illustrating expression levels of *Il1α* and *Il1β* in reclustered Mono/Mac clusters (Mac 1 through 6). **F.** Validation of the source of *Il1α* in the TME through flow cytometry analysis. **G.** Quantification of *Il1α*-producing myeloid cells from the 2-week transplants in WT mice (n = 4). Unpaired Two Tailed t-test was performed. *p < 0.05; ***p < 0.001.

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

923
924
925
926

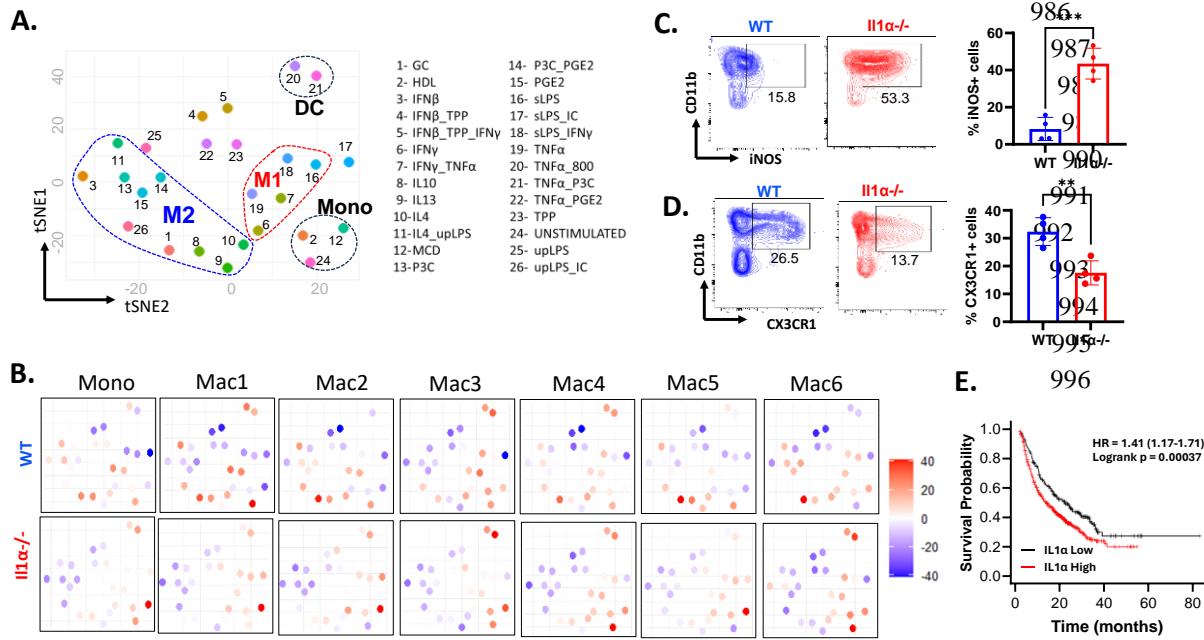


927
928
929

930 **Fig. 4. II1 α skews differentiation and alters myeloid phenotype. A.** t-SNE scRNA-seq plot
931 comparing reclustered Mono/Mac clusters in WT and $II1\alpha^{-/-}$. **B.** Percentage distribution of each
932 subcluster within the total Mono/Mac, comparing WT and $II1\alpha^{-/-}$. **C.** t-SNE scRNA seq trajectory
933 analysis comparing subclusters between WT and $II1\alpha^{-/-}$. **D.** Representative t-SNE visualization from
934 flow cytometry of WT and $II1\alpha^{-/-}$. Gated CD45 $^+$ CD11b $^+$ myeloid cells highlighting different
935 markers such as II1 α , II1 β , Ly6G, CD11c, Ly6C, MHCII, CX3CR1 and F4/80.

936
937
938
939
940
941
942
943
944
945
946
947

948
949
950
951



956
957

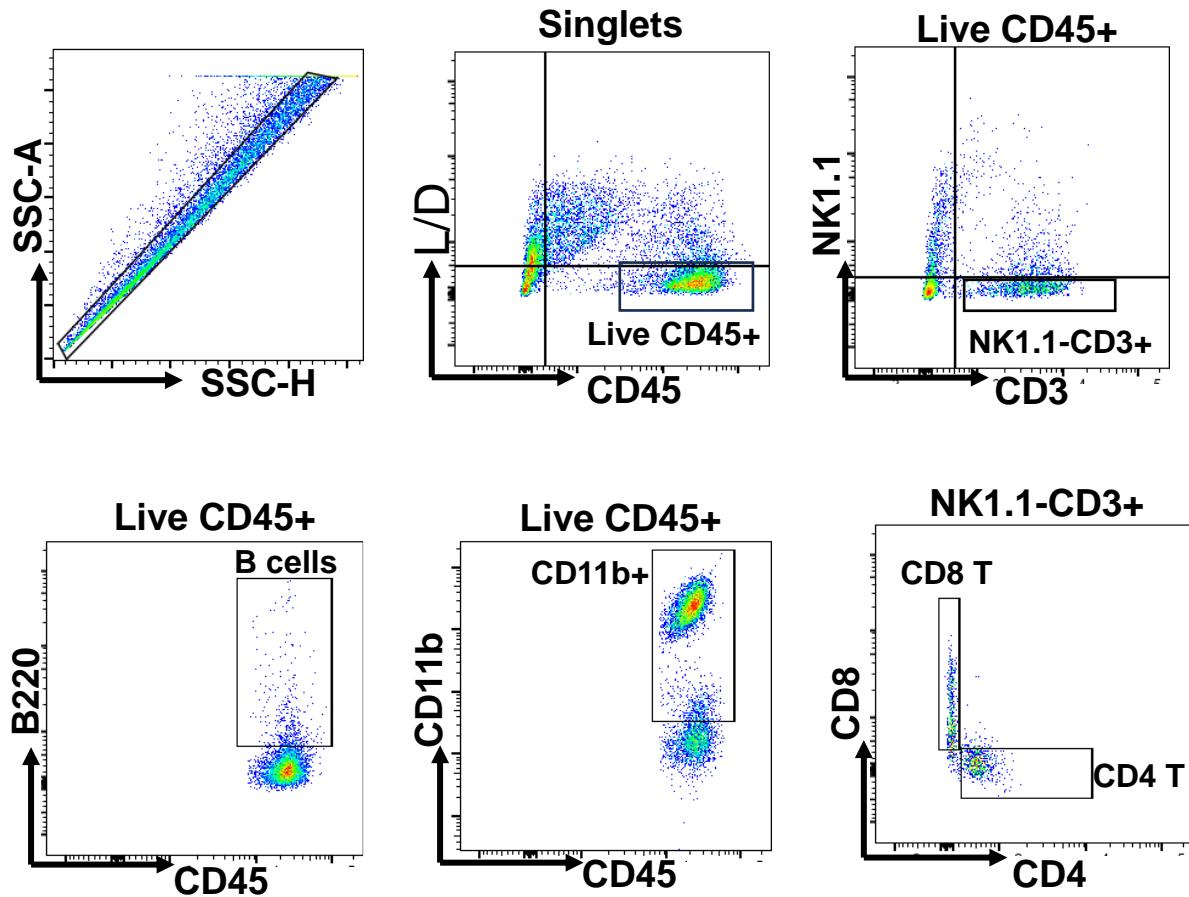
Fig. 5. Il1 α alters heterogeneity and functions of TAMs. A. Heatmap of GO pathway analysis across Mono/Mac subclusters. **B.** scRNASeq Differential expressed genes found in WT and $Il1\alpha^{-/-}$ myeloid subclusters. **C.** flow cytometry analysis of $CD45^+CD11b^+Ly6G^-$ gated myeloid cells distribution based on the expression levels of Ly6C and MHCII ($n = 5$). 2-way ANOVA. *** <0.05 ; **** <0.001 . **D.** Representative figure depicting bead mediated T cell proliferation co-culture with each quadrant of myeloid population shown in Fig. 5C. **E.** Quantification of T cell suppression mediated by each quadrant of myeloid population. 2-way ANOVA. ** <0.006 . **F** and **G**. Quantification of exhaustion markers PD1 and Ctla4 mediated by myeloid cell on co-cultured T cells ($n=2$). 2-way ANOVA. * <0.006 . **H.** Phagocytosis assay of micro-beads with each quadrant of myeloid population and representative flow cytometry graph ($n = 3$). 2-way ANOVA. ns, not significant; *** <0.001 .

969
970
971
972
973
974
975
976
977
978
979
980
981

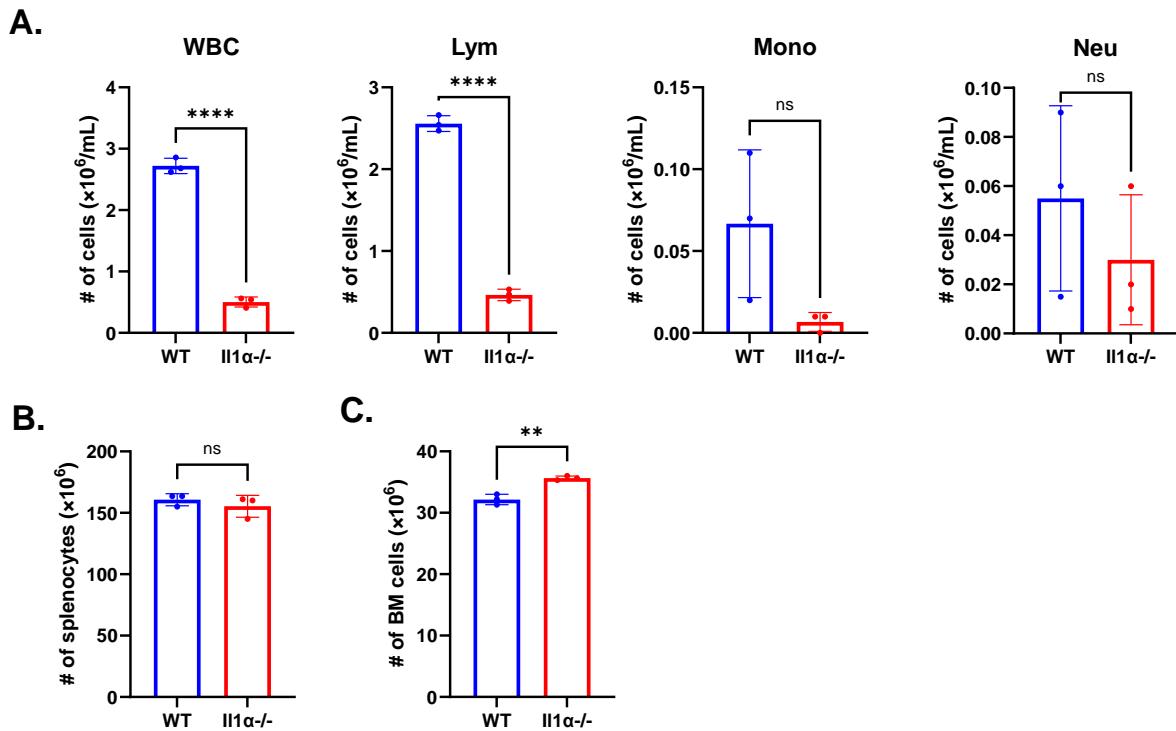
982
983
984
985

997
998
999
1000
1001
1002
1003
1004
1005
1006

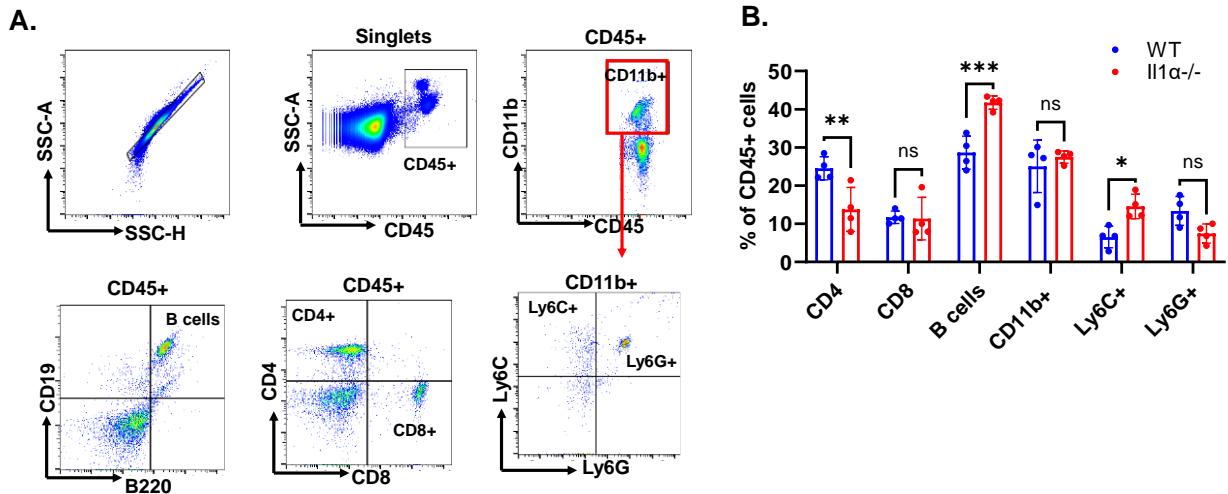
Fig. 6. *Il1α*-mediated reprogramming of TAM phenotype and comparison to human macrophages. A. tSNE map juxtaposing dendritic cells and monocytes stimulated with diverse inflammatory triggers alongside human macrophages characterized by M1/M2 polarization gene profiles for GSE46903 dataset. **B.** tSNE map shown for each subcluster of mono/mac of WT and *Il1α*^{-/-} in comparison to human macrophages under differing stimulation conditions. **C** and **D.** Percentage of CD11b⁺iNOS⁺ and CD11b⁺CX3CR1⁺ cells in tumor (n = 4). Unpaired Two Tailed t-test was performed. ***<0.05; **<0.05. **E.** *Il1α* expression levels predict prognosis of cancer patients after immunotherapy. Patients were stratified into two groups based on the mean values of *Il1α* expression (kmplot.com)(53).

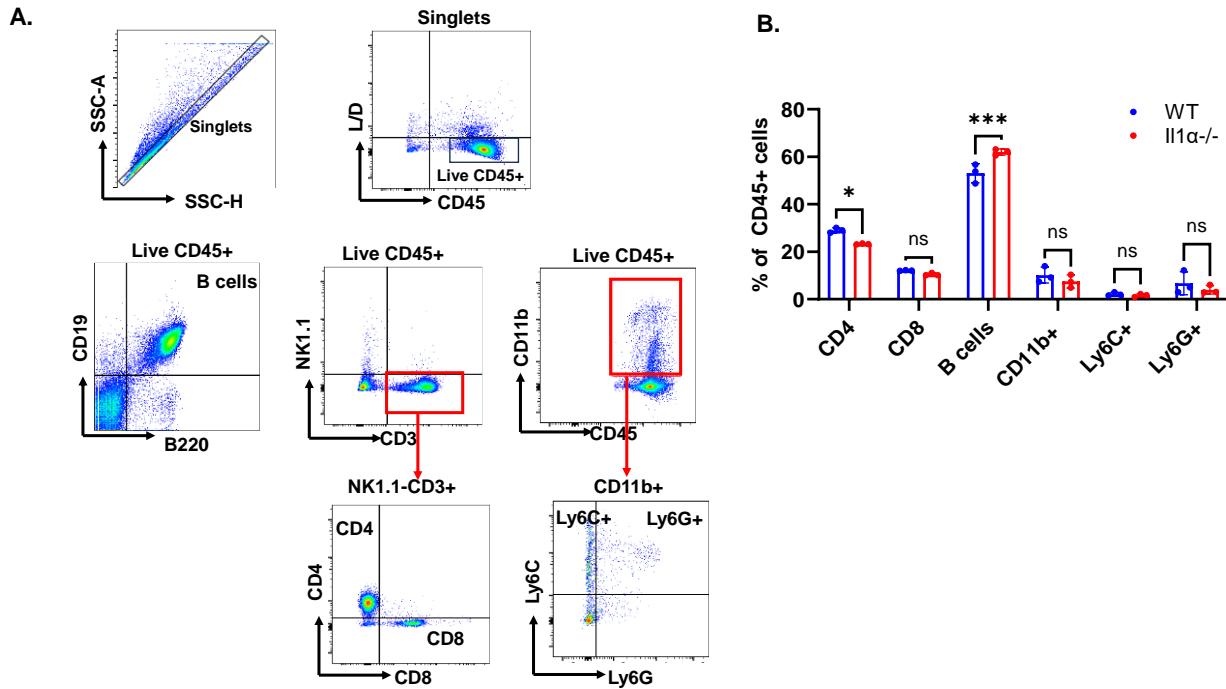

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

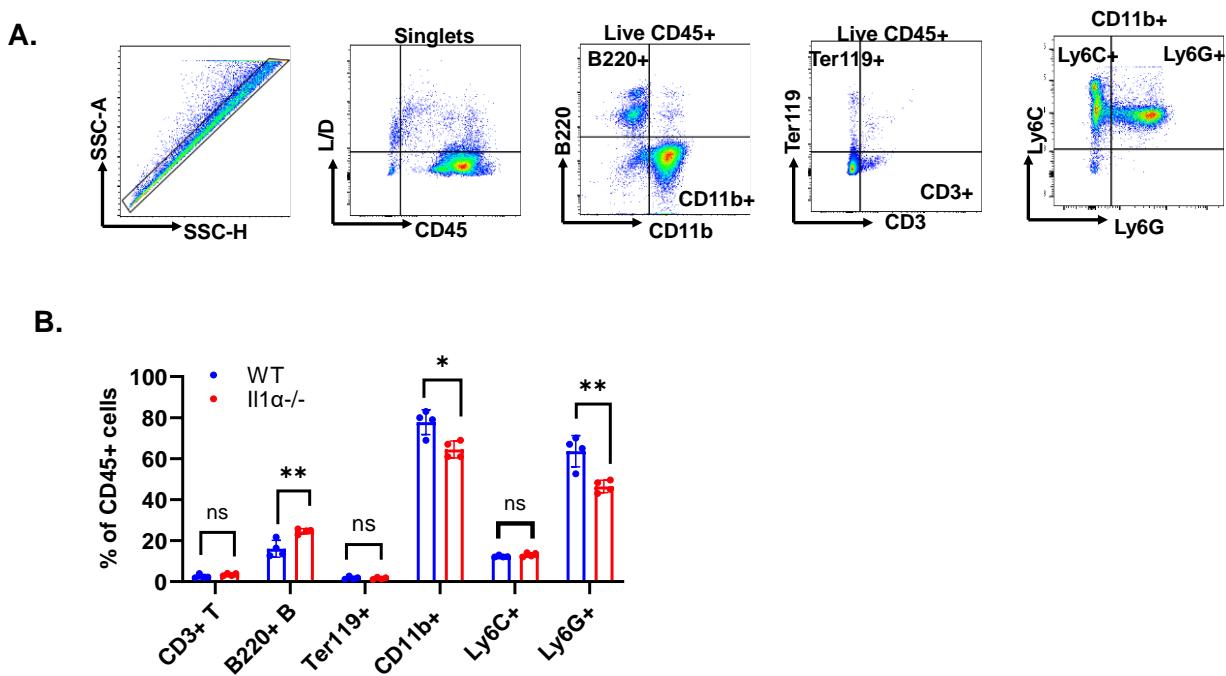
Supplementary Materials for

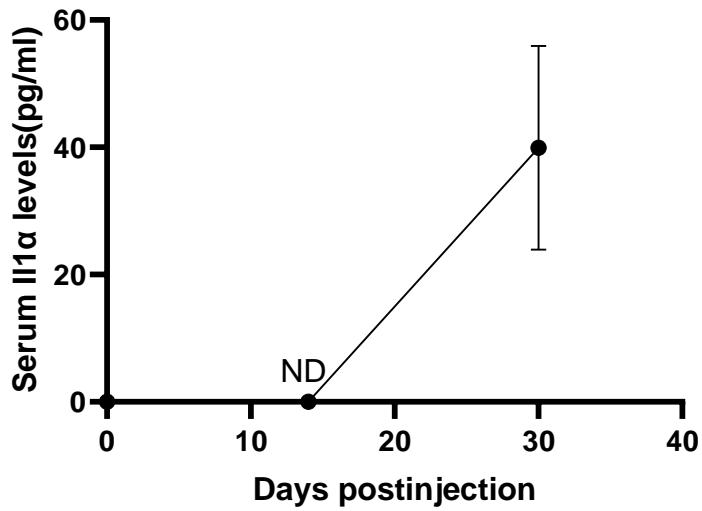

Host-derived Interleukin 1 α induces an immunosuppressive tumor microenvironment via regulating monocyte-to-macrophage differentiation

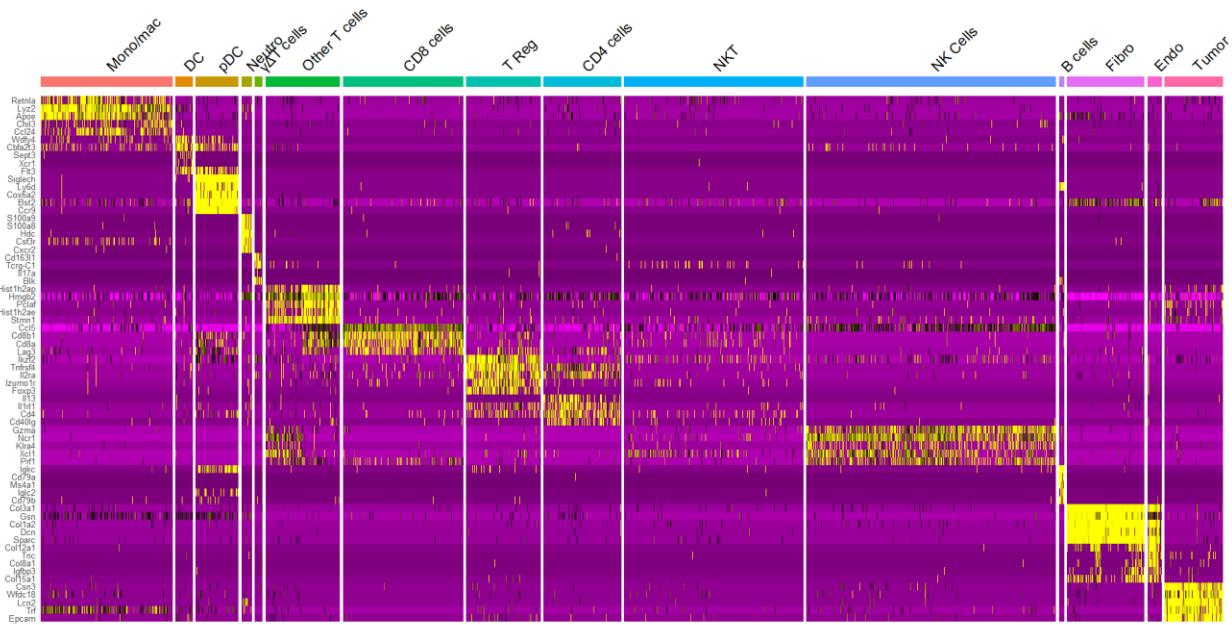
Manikanda Raja Keerthi Raja et al.

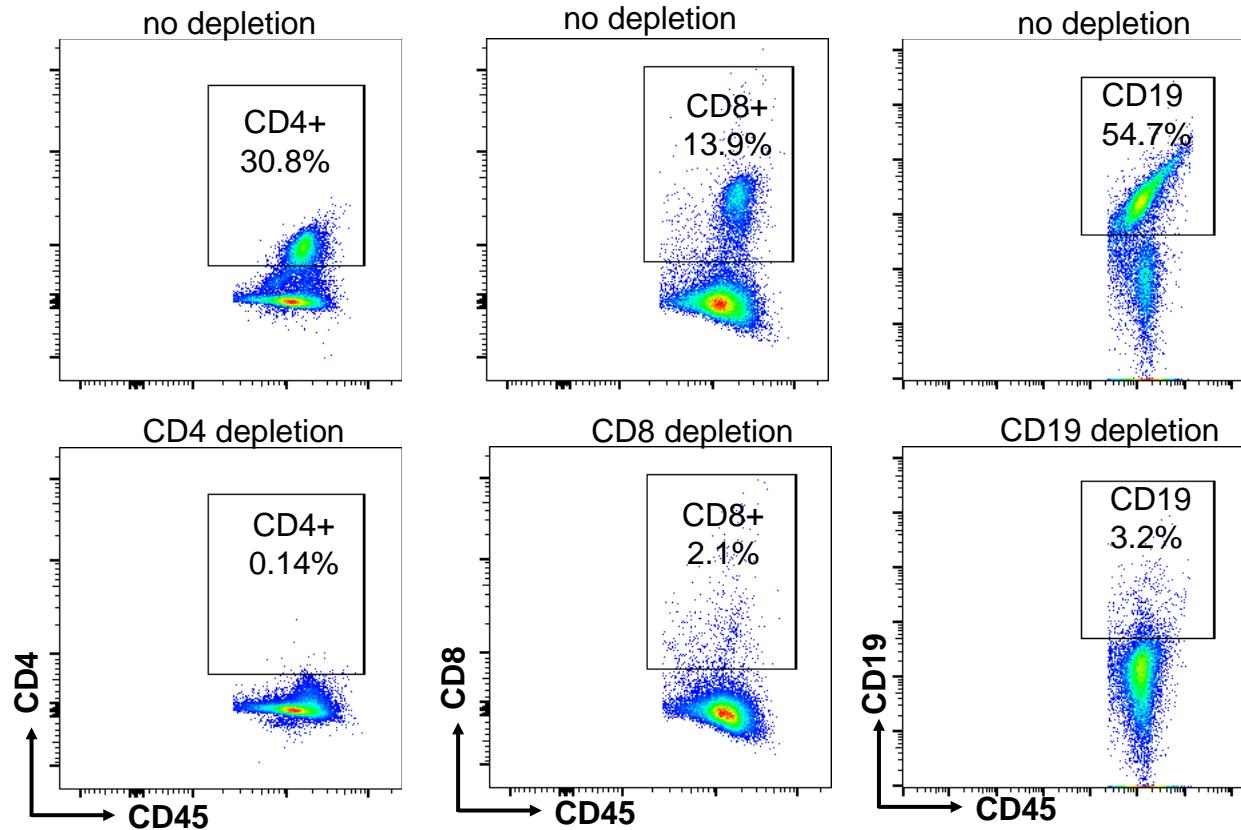

*Corresponding author. Email: hchen@biol.sc.edu

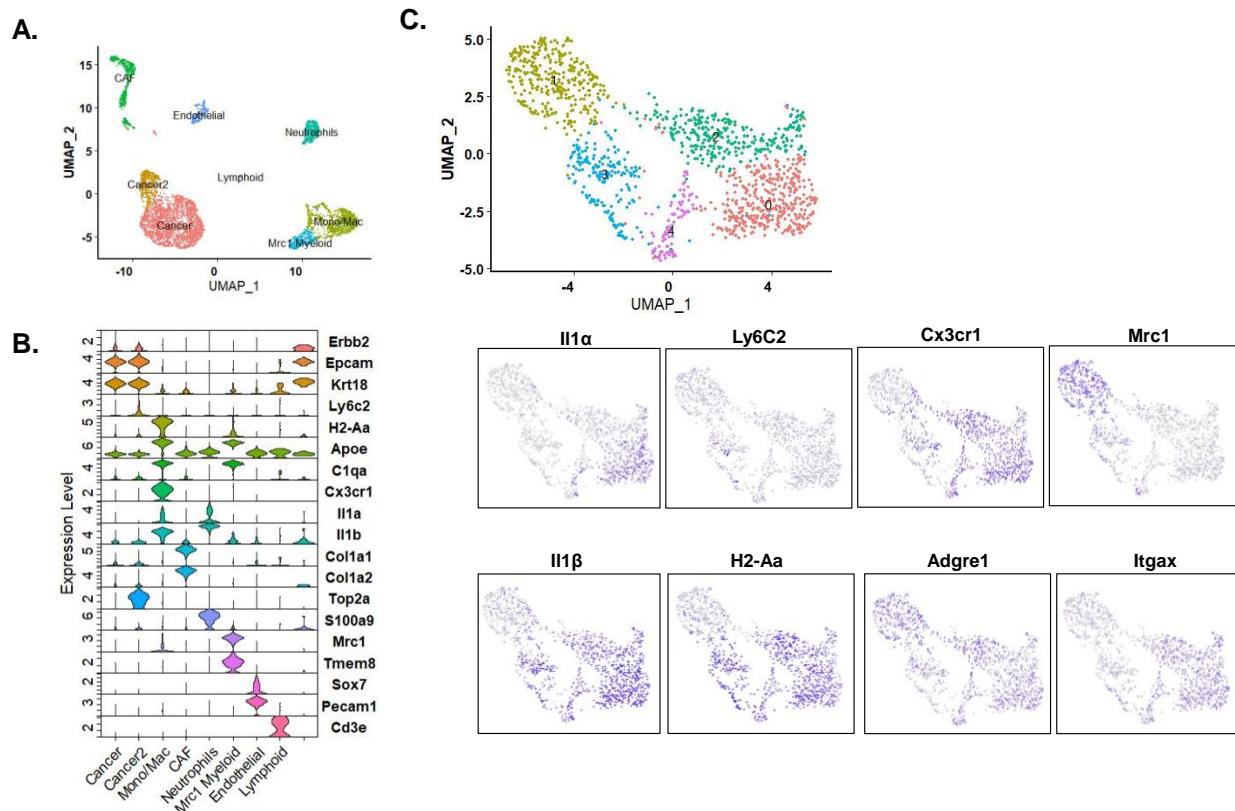

Fig. S1. Tumor Immune cells gating strategy. Tumor single cells stained from 2-week time point to study overall immune lineage such as B cells (B220+), CD4 and CD8 T cells, Myeloid cells (CD11b+) which are singlets and Immune cell marker positive (CD45+) live cells.

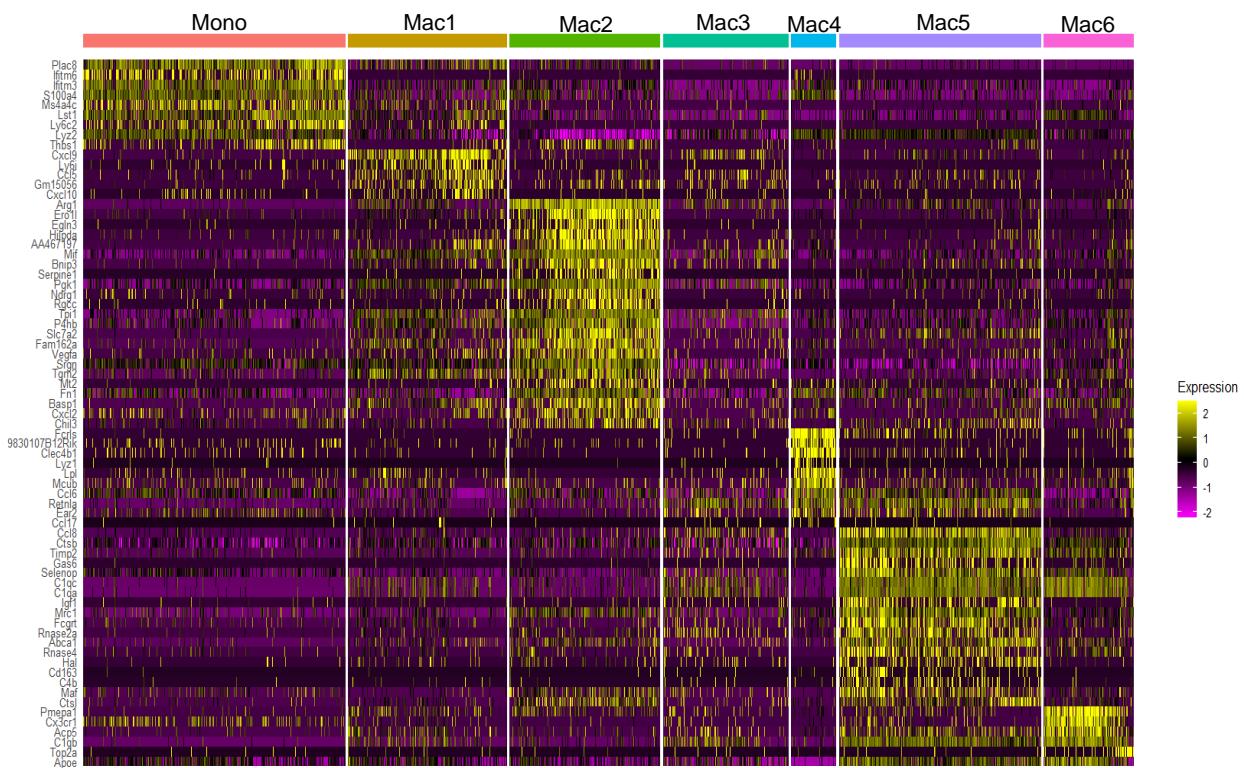

Fig. S2. Immune profiles of tumor-free WT and $\text{II1}\alpha^{-/-}$ mice. A. Blood Vetscan® data shown between tumor-free WT and $\text{II1}\alpha^{-/-}$ mice. **B.** and **C** describe the total number of spleen and bone marrow leukocytes from tumor-bearing WT and $\text{II1}\alpha^{-/-}$ mice. Unpaired Two Tailed t-test was performed. **** p<0.0001; **p < 0.01; ns, not significant.

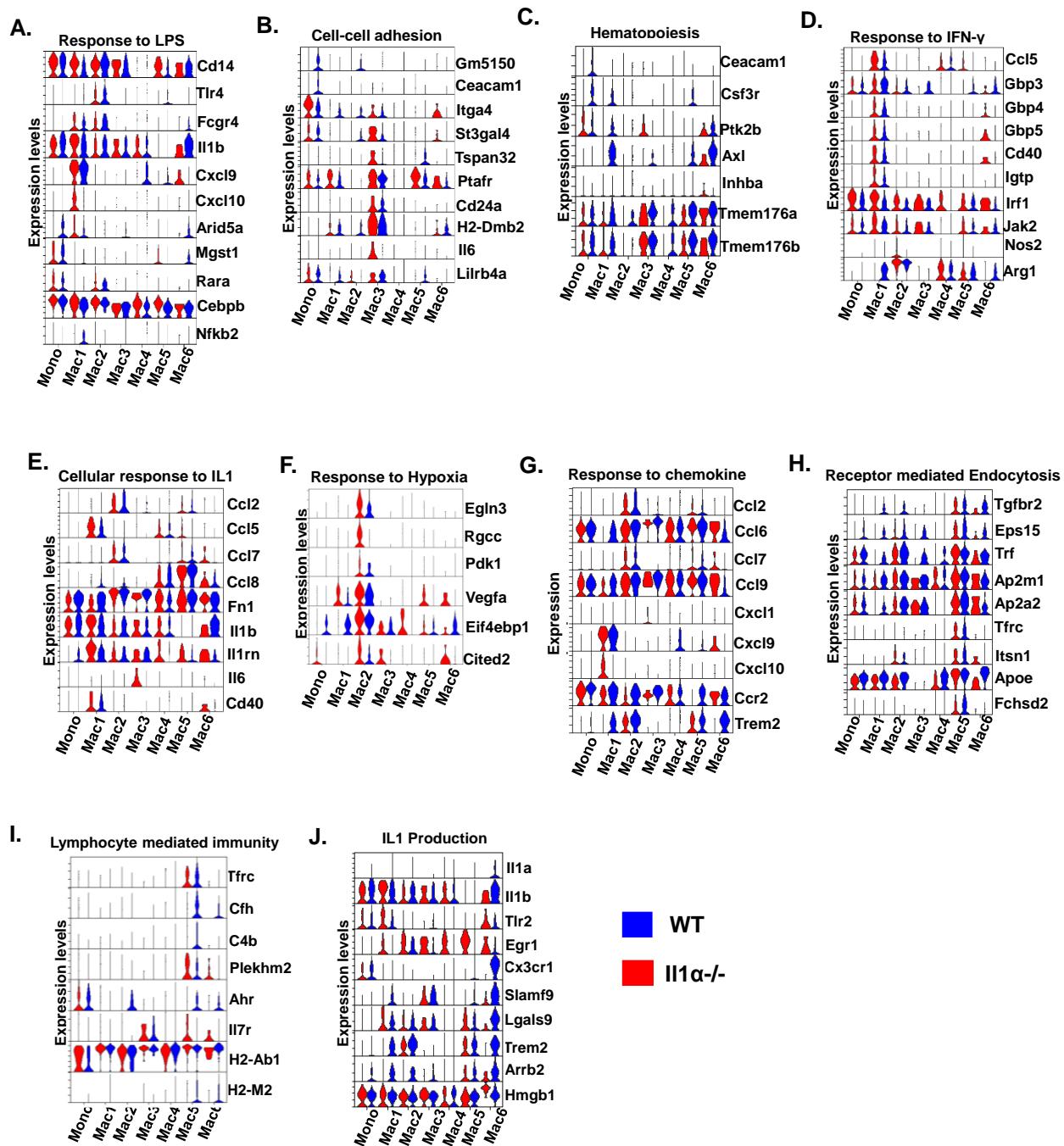

Fig. S3. Blood Immune cells gating strategy. A. Blood collected from 2-week time point to study overall immune lineage such as B cells (B200+), CD4 and CD8 T cells, Myeloid cells (CD11b+) and their subsets Ly6C+ and Ly6G+ which are singlets and Immune cell marker positive (CD45+) live cells **B.** Quantified distribution of immune cells in blood comparing *WT* and *II1α-/-*. Unpaired Two Tailed t-test was performed. *** <0.001 ; ** <0.01 .


Fig. S4. Spleen Immune cells gating strategy. A. Spleen from 2-week time point to study overall immune lineage such as B cells (B200+), CD4 and CD8 T cells, Myeloid cells (CD11b+) and their subsets Ly6C+ and Ly6G+ which are singlets and Immune cell marker positive (CD45+) live cells **B.** Quantified distribution of immune cells in spleen comparing WT and *II1α-/-*. Unpaired Two Tailed t-test was performed. *** <0.001 ; ** <0.01 .


Fig. S5. Bone Marrow Immune cells gating strategy. A. Bone marrow from 2-week time point to study overall immune lineage such as B cells (B200+), CD3+ T cells, Myeloid cells (CD11b+), Erythrocytes (Ter119+) and subsets of myeloid cells Ly6C+ and Ly6G+ which are singlets and Immune cell marker positive (CD45+) live cells. **B.** Quantified distribution of immune cells in bone marrow comparing *WT* and *Il1a^{-/-}*. Unpaired Two Tailed t-test was performed. ***<0.001; **<0.01.


Fig. S6. IL1 α plasma dynamics. Plasma was monitored from day 0 until day 30 from *WT* tumor bearing mice quantified using Multiplex ELISA assay for IL1 α ($n = 3$). ND, not detectable using this technology. The expression levels are not notably elevated compared to the background.


Fig. S7. The top unique genes from the 14 overall clusters shown in heat map from scRNA seq analysis performed on 2-week tumor.


Fig. S8. Immune cell depletion validation. Representative flow cytometry data of spleen to indicate depletion of CD4, CD8 and CD19 using neutralization antibody pre-gated for CD45+ live cells.

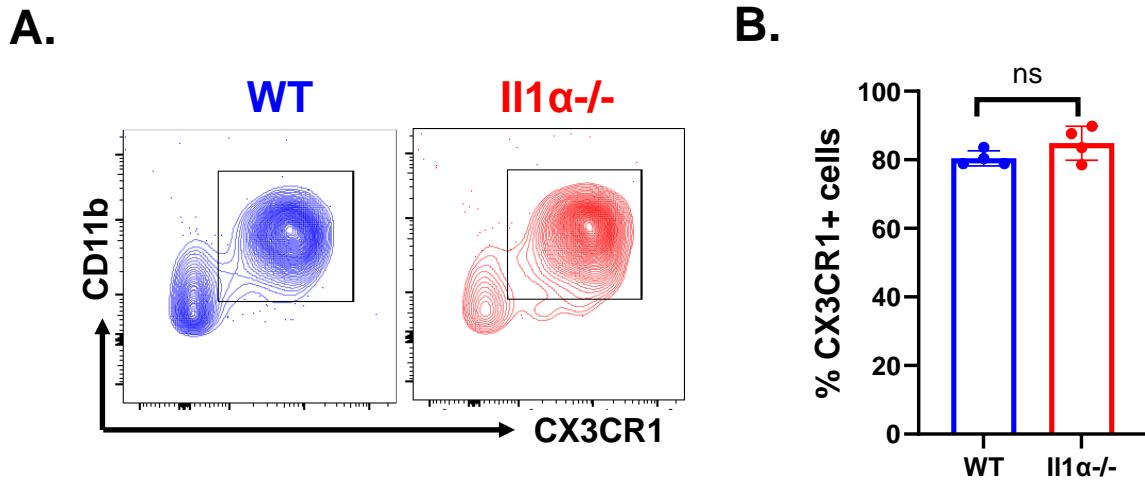

Fig. S9. Cross verified MMTV driven HER2+ mice tumor scRNA seq dataset for Il1a source from GEO accession number: GSE166321. A. The representative tSNE, **B.** The top genes are shown in violin plot to identify the clusters. **C.** The Mono/Mac and Mrc1+ myeloid clusters were reclustered to find 5 subclusters as shown in the UMAP with genes Il1a, Ly6c2, Cx3cr1, Mrc1, Il1b, H2-Aa, Adgre1 and Itgax.

Fig. S10. Top unique genes from the reclustered mono/mac subclusters from the 2-week time point tumor shown as heat map using scRNA seq analysis.

Fig. S11. Unique genes selected to show from GO-pathway analysis with respect to WT (Blue) and $Il1\alpha^{-/-}$ (Red) in Violin plot from scRNA seq analysis.

Fig. S12. CX3CR1+ myeloid cells in blood from 2-week time point are not quantitatively different between the groups **A.** Representative figure of CD11b+Cx3cr1+ flow cytometry from blood which is pre-gated from CD45+ live cells. **B.** Quantified percent of CD11b+Cx3cr1+ cells in blood n = 4. Unpaired Two Tailed t-test was performed.

Table S1. Abbreviations for stimuli used for induction of human macrophage polarization.

MCSF	macrophage colony-stimulating factor
GMCSF	granulocyte-macrophage colony-stimulating factor
GC	glucocorticoid
IC	immune complexes
P3C	Pam3CysSerLys4
TPP	TNF+PGE2+P3C
PA	palmitic acid
OA	oleic acid
LA	lauric acid
LiA	linoleic acid
SA	stearic acid
sLPS	standard lipopolysaccharide
upLPS	ultrapure lipopolysaccharide
HDL	high density lipoprotein
MCD	cyclodextrins

Table S2. List of antibodies used in the study.

Target	Host	Clone	Flour	Catalog Number	Company	Final Dilution
Arg1	Rat	A1exF5	PE	12-3697-80	Invitrogen	1:100
B220	Rat	RA3-6B2	FITC	103206	Biolegend	1:200
CD11b	Rat	M1/70	FITC	101206	Biolegend	1:400
CD11b	Rat	M1/70	APC	101212	Biolegend	1:400
CD11b	Rat	M1/70	PE	101208	Biolegend	1:400
CD11c	Armenian Hamster	N418	PE/Cy7	117318	Biolegend	1:100
CD11c	Armenian Hamster	N418	BV421	117330	Biolegend	1:100
CD19	Rat	6D5	PE/Cy7	115520	Biolegend	1:100
CD3	Armenian Hamster	145-2C11	PE	100308	Biolegend	1:400
CD3	Rat	17A2	FITC	100204	Biolegend	1:400
CD4	Rat	RM4-5	FITC	100510	Biolegend	1:100
CD40L	Rat	SA047C3	PE/Cy7	157008	Biolegend	1:100
CD44	Rat	IM7	BV510	103044	Biolegend	1:100
CD45	Rat	30-F11	APC	103112	Biolegend	1:400
CD8a	Rat	53-6.7	APC/Cy7	100714	Biolegend	1:100
CTLA4/CD152	Armenian Hamster	UC10-4B9	BV421	106312	Biolegend	1:100
CX3CR1	Mouse	SA011F11	BV421	149023	Biolegend	1:100
CX3CR1	Mouse	SA011F11	PE/Cy7	149016	Biolegend	1:100
F4/80	Rat	BM8	APC/Cy7	123118	Biolegend	1:100
F4/80	Rat	BM8	BV510	123135	Biolegend	1:100
F4/80	Rat	BM8	PE	123110	Biolegend	1:100
GR1	Rat	RB6-8C5	PE	108408	Biolegend	1:400
Granzyme B	Mouse	OA16A02	PE/Cy7	372214	Biolegend	1:100
IFN γ	Rat	XMG1.2	BV421	505830	Biolegend	1:100
IL1a	Armenian Hamster	ALF-161	PE	503203	Biolegend	1:100
IL1b	Rat	NJTEN3	PE	12-7114-80	Invitrogen	1:100

iNOS	Rat	W16030C	PE	696806	Biolegend	1:100
KI67	Rat	16A8	BV421	652411	Biolegend	1:100
Ly6C	Rat	HK1.4	BV785	128041	Biolegend	1:100
Ly6C	Rat	HK1.4	PE/Cy7	128018	Biolegend	1:100
LY6G	Rat	1A8	APC/Cy7	127624	Biolegend	1:100
LY6G	Rat	1A8	BV510	127633	Biolegend	1:100
LY6G	Rat	1A8	BUV387	127678	Biolegend	1:100
MHCII	Rat	M5/114.15. 2	PE/Cy7	107630	Biolegend	1:200
MHCII	Rat	M5/114.15. 2	FITC	107606	Biolegend	1:200
NK1.1	Mouse	S17016D	PE/Cy7	156514	Biolegend	1:100
PD-1	Rat	RMP1-30	PerCP/Cy5. 5	109120	Biolegend	1:100
Ter119	Rat	TER-119	PE/Cy7	116221	Biolegend	1:100
CD4	Rat		GK1.5	BE0003-1	Bioxcell	
CD8a	Rat		2.43	BE0061	Bioxcell	
CD19	Mouse		4G7	BE0281	Bioxcell	

Table S3. List of key reagents used in this study.

Reagent	Supplier	Catalog Number	Final Dilution
DMEM/F12	Corning	10-090-CV	
RPMI	Corning	10-040-CV	
Fetal Bovine Serum	Peak Bio	PS-FB3	
Recombinant Human Insulin	Gibco	Rp-10908	
Phosphate Buffered Saline	Corning	21040CV	
Penicillin/Steptomycin Solution	Corning	30-002-CI	
Antibiotic Antimycotic Solution	Corning	30-004-CI	
0.25% Trypsin	Gibco	25200-072	
Matrigel Matrix	Corning	CB-40234	
1ml 25G syringe	BD	309626	
0.5ml 28G syringe	BD	329461	
EDTA	VWR	E522-100ML	
PierceTM Protein Inhibitor tablets	Thermo Scientific	A32955	
EDTA Blood Collection Tubes	BD	BD367842	
Vetscan HM5 Hematology Analyzer	Abaxis	770-0000	
10X RBC lysis buffer	Biolegend	420302	
4% Paraformaldehyde in PBS	Thermo Scientific	AAJ61899AK	
No.9 Razor Blades	Garvey	40475	
5cm culture dish	Corning	430166	
15ml tubes	Extra Gene	P1013-15BF	
Collagenase IV	Worthington Biochem	LS004188	
Hyaluronidase	MP Biochemicals	100740	
40Micron Filter	VWR	21008-949	
Sucrose	Macron	MK772304	
Peel-A-Way OCT Mold	Polysciences	18646A	
Tissue-Tek OCT compound	Sakura	4583	
Cryosection station	Leica	CM1860UV	
ColorMark Charged Glass Slides	Epredia	CM-4951WPLUS-001	
Uncharged Glass Slides	Fishcer Scientific	12-544-4	
Cell Counter	Bio-Rad	TC20	
Flow cytometry Machine	BD	FACSAria II	
Flow cytometry Machine	BD	Symphony A5	
Cell sorter	Sony	SH800	
Zombie Aqua	Invitrogen	L34957	1:1000

Zombie Yellow	Invitrogen	L34968	1:1000
7-AAD	Biolegend	420404	1:1000
Cytofix/cytoperm plus kit	BD	555028	
Foxp3 intracellular stain kit	eBioscience	00-5523-00	
cd16/32 receptor blockade	BD	553142	1:1000
CD8 isolation kit	Miltenyi Biotec	130-104-075	
carboxyfluorescein diacetate succinimidyl ester (CFSE)	eBioscience	65-0850-84	
Anti-CD3/CD28 beads	Miltenyi Biotec	130-093-627	