

1 Analysis of auxin responses in the fern *Ceratopteris richardii* identifies tissue ontogeny as

2 a major determinant for response properties

3

4 Sjoerd Woudenberg¹, Melissa Dipp Alvarez¹, Juriaan Rienstra¹, Victor Levitsky², Victoria
5 Mironova³, Enrico Scarpella⁴, Andre Kuhn¹ and Dolf Weijers^{1*}

6

7 1. Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen,
8 the Netherlands

9 2. Department of System Biology, Institute of Cytology and Genetics,

10 Novosibirsk, Lavrentyeva 10, 630090, Russia

11 3. Department of Plant Systems Physiology, Radboud University, Heyendaalseweg 135,
12 6525 AJ Nijmegen, the Netherlands

13 4. Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences
14 Building, Edmonton, AB T6G 2E9, Canada

18 Corresponding author: don.weliers@wur.nl

17 **Abstract**

18 The auxin signalling molecule regulates a range of plant growth and developmental processes.
19 The core transcriptional machinery responsible for auxin-mediated responses is conserved
20 across all land plants. Genetic, physiological and molecular exploration in bryophyte and
21 angiosperm model species have shown both qualitative and quantitative differences in auxin
22 responses. Given the highly divergent ontogeny of the dominant gametophyte (bryophytes) and
23 sporophyte (angiosperms) generations, however, it is unclear whether such differences derive
24 from distinct phylogeny or ontogeny. Here, we address this question by comparing a range of
25 physiological, developmental and molecular responses to auxin in both generations of the
26 model fern *Ceratopteris richardii*. We find that auxin response in Ceratopteris gametophytes
27 closely resembles that of a thalloid bryophyte, whereas the sporophyte mimics auxin response
28 in flowering plants. This resemblance manifests both at phenotypic and transcriptional level.
29 Furthermore, we show that disrupting auxin transport can lead to ectopic sporophyte induction
30 on the gametophyte, suggesting a role for auxin in the alternation of generations. Our study thus
31 identifies ontogeny, rather than phylogeny, as a major determinant of auxin response properties
32 in land plants.

33

34 **Summary statement**

35 Studies in angiosperms and bryophytes have left unresolved the roles of tissue ontogeny and
36 species phylogeny in auxin response. We address that problem by characterizing auxin response
37 in a fern.

38 **Keywords**

39 Auxin, *Ceratopteris*, evolution, plant development, fern

40

41 **Running Title**

42 Auxin responses in the fern *Ceratopteris*

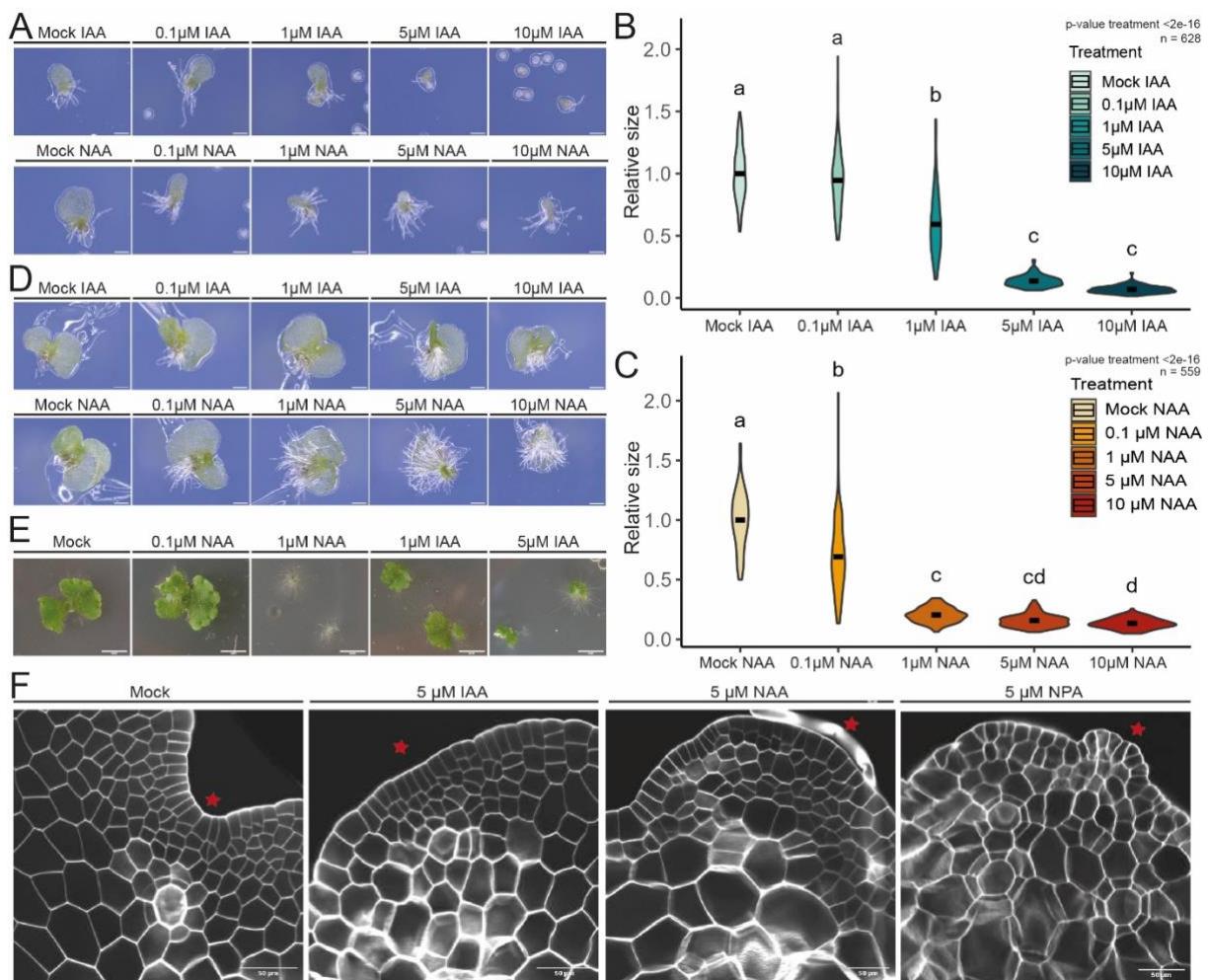
43 Introduction

44 Throughout evolution, plants adopted hormone signalling pathways to control their
45 development, and their responses to external stimuli. Many of these phytohormones are broadly
46 distributed, and responses are in many cases conserved among all land plant taxa, with
47 components of land plant pathways found even in algal sisters (reviewed in (Blázquez et al.,
48 2020; Bowman et al., 2019; Depuydt and Hardtke, 2011; Menand et al., 2007; Wang et al.,
49 2015)). Though the initial description of such phytohormone responses and pathways was
50 restricted to angiosperms, notably *Arabidopsis thaliana* (hereafter Arabidopsis) (e.g. auxin
51 (Evans et al., 1994; Sieburth, 1999)), recent years have seen increased exploration in
52 bryophytes, such as *Physcomitrium patens* (hereafter Physcomitrium) (Sakakibara et al., 2003;
53 Thelander et al., 2018) and *Marchantia polymorpha* (hereafter *Marchantia*) (Eklund et al.,
54 2015; Flores-Sandoval et al., 2015; Kato et al., 2015). Responses to phytohormones have thus
55 been recorded in a variety of land plants, but these can hardly be compared because of the
56 divergent morphologies between the different land plant clades. It is therefore difficult to define
57 a clear evolutionary scenario for the hormonal control of plant growth and development. This
58 difficulty is most prominent between bryophytes and tracheophytes, as their dominant
59 generations do not share direct tissue homologies (Harrison, 2017).

60 Auxin, one of the most-studied and best-understood plant hormones, is crucial for many
61 processes in bryophytes and tracheophytes (reviewed in (Kato et al., 2018)). The pathway
62 mediating transcriptional auxin responses is conserved among all land plants and partly present
63 in streptophyte algae (Carrillo-Carrasco et al., 2023; Mutte et al., 2018). Auxin controls many
64 different developmental processes, including rhizoid formation in the bryophytes *Marchantia*
65 and *Physcomitrium* (Flores-Sandoval et al., 2015; Sakakibara et al., 2003; Thelander et al.,
66 2018) and root branching at the expense of root elongation in *Arabidopsis* (Casimiro et al.,
67 2001; Dubrovsky et al., 2008; Lavenus et al., 2013). However, because of the lack of direct
68 tissue homology, it is hard to conclude whether those processes are comparable. One exception
69 might exist, as both *Arabidopsis* root hairs and *Marchantia* rhizoids — transcriptionally
70 homologues structures (Jones and Dolan, 2012; Menand et al., 2007) — extend and initiate upon
71 auxin treatment (Flores-Sandoval et al., 2015). Other processes are superficially similar, like
72 gravitropism (Lobachevska et al., 2022; Rashotte et al., 2000; Zhang et al., 2019), but are not
73 comparable on a cellular and tissue level. Many auxin responses in bryophytes can not thus
74 directly be compared to those in tracheophytes, and therefore the question remains which part
75 of the response is dependent on tissue ontogeny and which on species phylogeny.

76 Ferns, as sister clade to flowering plants, are positioned phylogenetically intermediate between
77 the model bryophytes *Marchantia* and *Physcomitrium* and the model tracheophyte *Arabidopsis*
78 (Donoghue et al., 2021; Puttick et al., 2018). Most important, fern lifestyles closely resemble
79 both (thalloid) bryophytes and tracheophytes (Conway and Di Stilio, 2020). During land plant
80 evolution, a major transition took place from a dominant haploid gametophyte generation in
81 bryophytes to a dominant diploid sporophyte in tracheophytes. In ferns (and lycophytes), both
82 these generations are autotrophic and free-living. From a haploid spore, a gametophytic
83 prothallus forms that develops rhizoids, archegonia and antheridia whereas from the diploid
84 embryo, a sporophytic plant develops with leaves and root-hair carrying roots, both innervated
85 by vasculature. There are sparse descriptions of auxin responses in the model fern *Ceratopteris*
86 *richardii* (hereafter Ceratopteris), but no clear overview of responses in both generations has
87 been reported. Auxin treatments on Ceratopteris gametophytes are known to affect sexual
88 differentiation, spore germination, rhizoid development, and the positioning and development
89 of the lateral notch meristem (Chauhan, 2024; Gregorich and Fisher, 2006; Hickok and Kiriluk,
90 1984; Withers et al., 2023). In gametophytes of other fern species, reported effects also include
91 cell expansion and elongation (Miller, 1961; Miller and Miller, 1965) and antheridium
92 differentiation (Ohishi et al., 2021). Sporophytic roots from Ceratopteris show reduced growth
93 rates upon auxin treatments and an increase in adventitious rooting, whereas no effects on lateral
94 root initiation has been reported (Hou et al., 2004; Yu et al., 2020). In sporophytes of other fern
95 species, cell wall extensibility and cell elongation was increased upon auxin treatment in the
96 rachis (Cookson and Osborne, 1979), whereas — in contrast to flowering plants —auxin was
97 reported not to promote vascular differentiation (Ma and Steeves, 1992).

98 Here, we mapped auxin responses in both generations of the fern Ceratopteris to uncouple tissue
99 ontogeny from species phylogeny as determinants of auxin responses. We find that
100 phenotypically, Ceratopteris gametophytes respond similar to *Marchantia* gametophyte whereas
101 Ceratopteris sporophytes closely resemble responses of *Arabidopsis* sporophytes. This
102 separation in response is further shown in their profiles of auxin-dependent gene regulation. We
103 identify that differences in auxin-dependent gene activation are likely caused by increased
104 levels of Aux/IAA repressor proteins in the sporophyte. Lastly, we find that auxin may control
105 the alternation of generations. Together, our data identifies tissue ontogeny, rather than species
106 phylogeny, as a major driver for divergence in auxin response in land plants.


107

108

109 **Results**

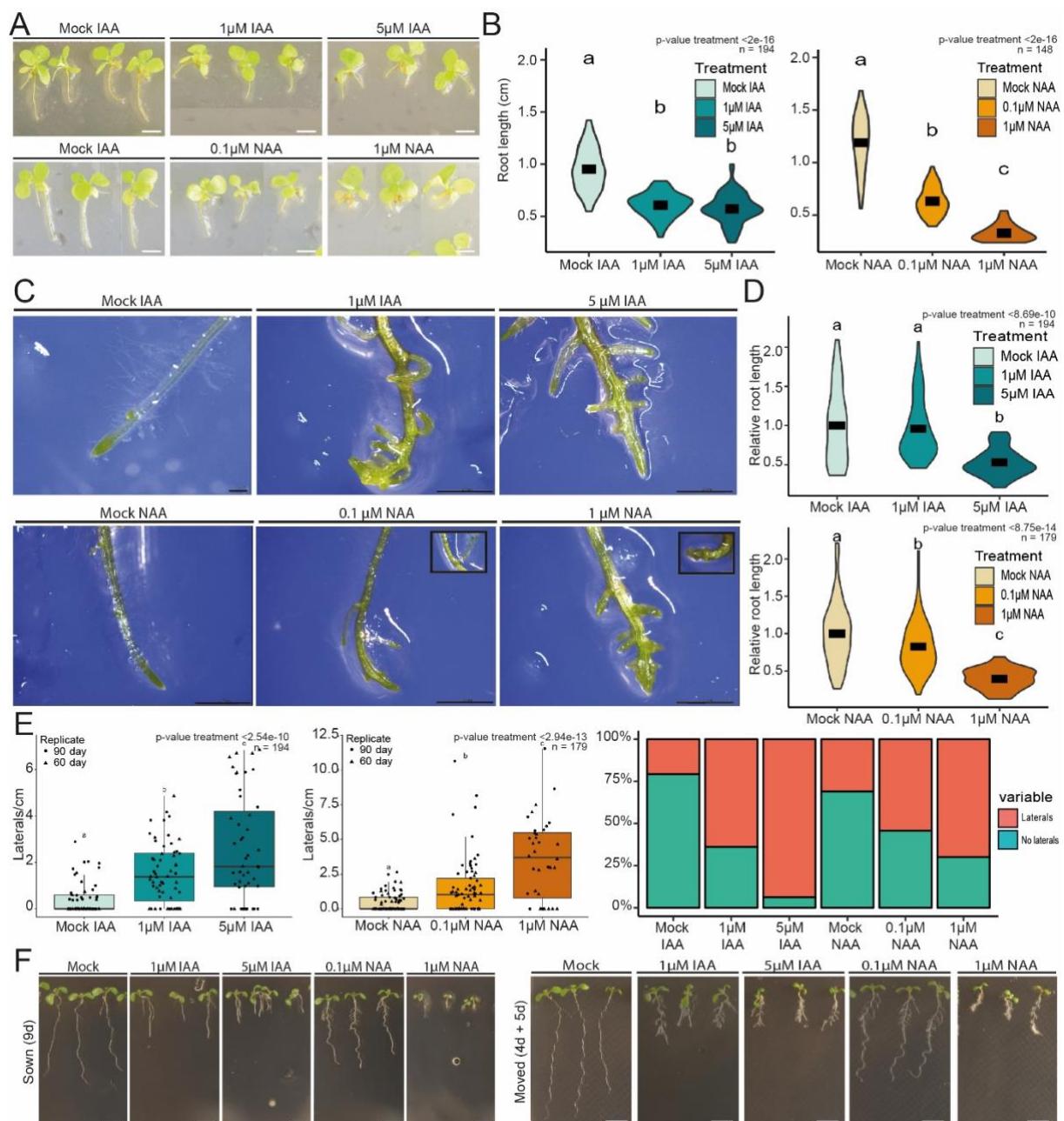
110 **A thalloid liverwort-like response in the *Ceratopteris* gametophyte**

111 To explore the growth responses to externally applied auxin in the *Ceratopteris* gametophyte,
112 spores were placed on media containing different concentrations of the natural auxin Indole 3-
113 Acetic Acid (IAA) or the synthetic auxin 1-Naphthyl Acetic Acid (NAA). Gametophytes grown
114 prior to sexual maturation showed a clear reduction in growth in response to both auxins at all
115 concentrations tested, except at 100 nM IAA, which appeared to slightly promote thallus growth
116 (Fig. 1A-C). Under standard conditions, rhizoids only develop close to the spore coat (Conway
117 and Di Stilio, 2020). With NAA however, rhizoids developed ectopically on the thallus border
118 (Fig. S1A). Given the strong growth-inhibiting effect of both auxins on the thallus, it is difficult
119 to disentangle potentially independent effects on growth and rhizoid formation. We therefore
120 transferred sexual immature gametophytes to auxin-supplemented media following initial
121 growth on control media. Upon transfer, a small growth reduction was visible but also a clear
122 induction of (ectopic) rhizoids (Fig. 1D; Fig. S1). This response closely resembles the
123 phenotype in *Marchantia* in qualitative terms (Fig. 1E). Detailed microscopic analysis revealed
124 that the morphology of the prothallus also changed in auxin-treated gametophytes, manifested
125 in disorganization of the meristematic notch (Fig. 1F; Fig. S1A). Most importantl, not only did
126 we observe these morphological defects in gametophytes treated with external auxin, but also
127 when inhibiting IAA transport with 1-N-Naphthylphthalamic Acid (NPA; Fig. 1F; Fig. S1A). The
128 connection of auxin action with the development of the lateral meristem is in agreement with
129 previously reported data (Withers et al., 2023) and with phenotypes reported in *Marchantia*
130 (Flores-Sandoval et al., 2015). The product of the *Ceratopteris* lateral meristems is the female
131 sexual organ, which establishes the first major 3D axis and will form the future sporophyte upon
132 fertilization of its egg cell (Conway and Di Stilio, 2020). We did not observe obvious defects
133 in the morphology of the archegonia even upon NPA treatment (Fig. S1B). Therefore,
134 *Ceratopteris* gametophytes show auxin responses that are similar to those observed in
135 gametophytes of the thalloid liverwort *Marchantia*.

136

137 **Figure 1: Auxin response in Ceratopteris gametophytes.** A) Gametophytes developed from
138 spores germinated and grown on auxin-supplemented medium (at the indicated concentrations
139 of IAA or NAA) until sexual maturity. B) Violin plots of the relative thallus size (normalized to
140 mock treatment) upon IAA treatment or C) NAA treatment of 4 pooled replicate experiments
141 (n>100 gametophytes per treatment). D) Gametophytes four days after transfer to auxin-
142 supplemented medium after germination and developing a lateral meristem on unsupplemented
143 media. E) Twelve-day-old *Marchantia polymorpha* gemmalings grown on medium
144 supplemented with the indicated concentrations of NAA or IAA. F) Cellular organization of
145 lateral notch meristems in thallus derived from spores transferred to auxin supplemented
146 medium after 4 days of germination on hormone-free medium. Scale bars are 0.25 mm in A, 0.5
147 mm in D, 50 mm in E and 50 µm in F. Statistical significance in B and C is shown by letters
148 based on ANOVA and Tukey pair-wise comparison (P<0.05). ANOVA P-values plotted for
149 treatments effects in plots.

150


151 The Ceratopteris sporophyte shows a flowering plant-like auxin response

152 To test the responses of Ceratopteris sporophytes to external auxin, we transferred young
153 (embryonic) sporophytes to medium containing different concentrations of IAA and NAA. We
154 initially focused on the growth and branching of the root system. The “primary” first appearing
155 root showed a clear reduction in root growth at all IAA and NAA concentrations (Fig. 2A,B),

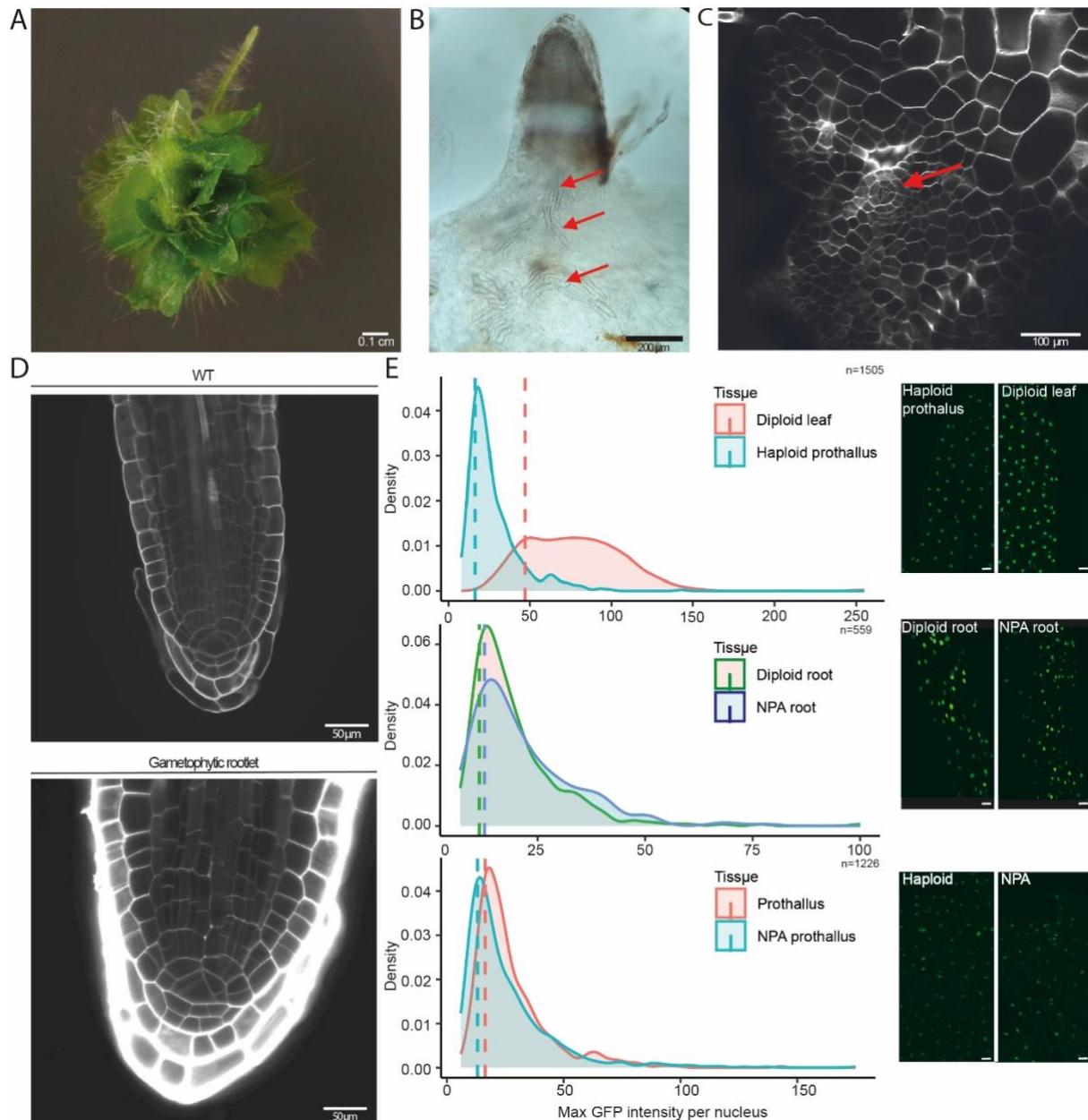
156 in line with an earlier report (Hou et al., 2004). One difficulty with *Ceratopteris* is the lack of a
157 true primary root. Therefore, responses were also measured on adventitious roots that are hard
158 to perfectly synchronize and that showed a similar decrease in root growth upon auxin treatment
159 (Fig. 2D). Interestingly, these roots also showed a clear increase of lateral root density upon
160 auxin treatment, which is in contrast to earlier observations (Hou et al. (2004)). This increased
161 branching was pronounced after 12 days of growth in auxin supplemented medium (Fig. 2C,E),
162 but an initial response was already visible after three days (Fig. S2A,B). Interestingly, the
163 increased branching was not visible in the first appearing root of the young sporophytes, clearly
164 showing that branching is root age/stage-dependent, and potentially explaining why this
165 response is sometimes not visible.

166 The tissues that show responses to auxin in the *Ceratopteris* sporophyte and gametophyte are
167 not homologous, except for root hairs, which are transcriptionally homologous to rhizoids
168 (Jones and Dolan, 2012; Menand et al., 2007). We therefore analysed the response to auxin in
169 root hairs. Root hairs showed an increase in length and appear to initiate closer to the root tip
170 (Fig. S2B,C) in auxin-treated roots. Thus, *Ceratopteris* roots show a combination of sporophyte-
171 specific responses that are similar to those in *Arabidopsis* (Fig. 2F), and a response shared with
172 the gametophyte in both *Ceratopteris* and *Marchantia*.

173 We next explored leaf development, as it represents a laminar morphology similar to the
174 gametophyte. Notably, however, fern leaves are not direct homologs of angiosperm leaves,
175 whereas their roots are regarded truly homologous structures (Pires and Dolan, 2012; Szövényi
176 et al., 2019; Tomescu, 2009). Upon IAA treatment, no clear difference in leaf shape was visible,
177 but inhibiting auxin export (e.g., with NPA) resulted in highly malformed leaves with altered
178 patterns of vascular tissues, which partly resembles NPA-treated *Arabidopsis* leaves (Mattsson
179 et al., 1999; Verna et al., 2015) (Fig. S3). NPA-grown *Ceratopteris* leaves had higher cardinality
180 and connectivity indices than control leaves, suggesting that auxin transport inhibition leads to
181 the formation of more veins that are more frequently connected and therefore that efficient
182 auxin transport inhibits vein formation and connection. The effect of auxin transport inhibition
183 was particularly striking in the primary embryonic leaf: Whereas in control embryonic leaves
184 the two veins branching off the single midvein remained unconnected, in NPA-grown
185 embryonic leaves the vein branches connected into a loop. Together, those observation suggest
186 a conserved role for auxin transport in vein formation of megaphylls.

187

188 **Figure 2: Auxin responses in Ceratopteris sporophytes.** A) Young sporophytes grown on
189 various concentrations of IAA or NAA for 12 days and B) Quantification of root length. C)
190 Adventitious roots on sporophytes grown for 12 days in auxin-supplemented medium. D)
191 Quantification of root length of adventitious roots grown on auxin with one representative
192 replicate shown. E) Quantification of lateral roots per cm root and the frequency of roots
193 bearing lateral roots under the different auxin conditions of a representative replicate. F)
194 Representative pictures of *Arabidopsis* seedlings sown or transferred to auxin medium for the
195 indicated times. Scale bars are 5 mm in A, 2.5 cm in C and 3 mm in F. Statistical significance
196 shown by letters based on ANOVA and Tukey pair-wise comparison ($P < 0.05$). ANOVA P-values
197 plotted for treatments effects in plots.


198

199

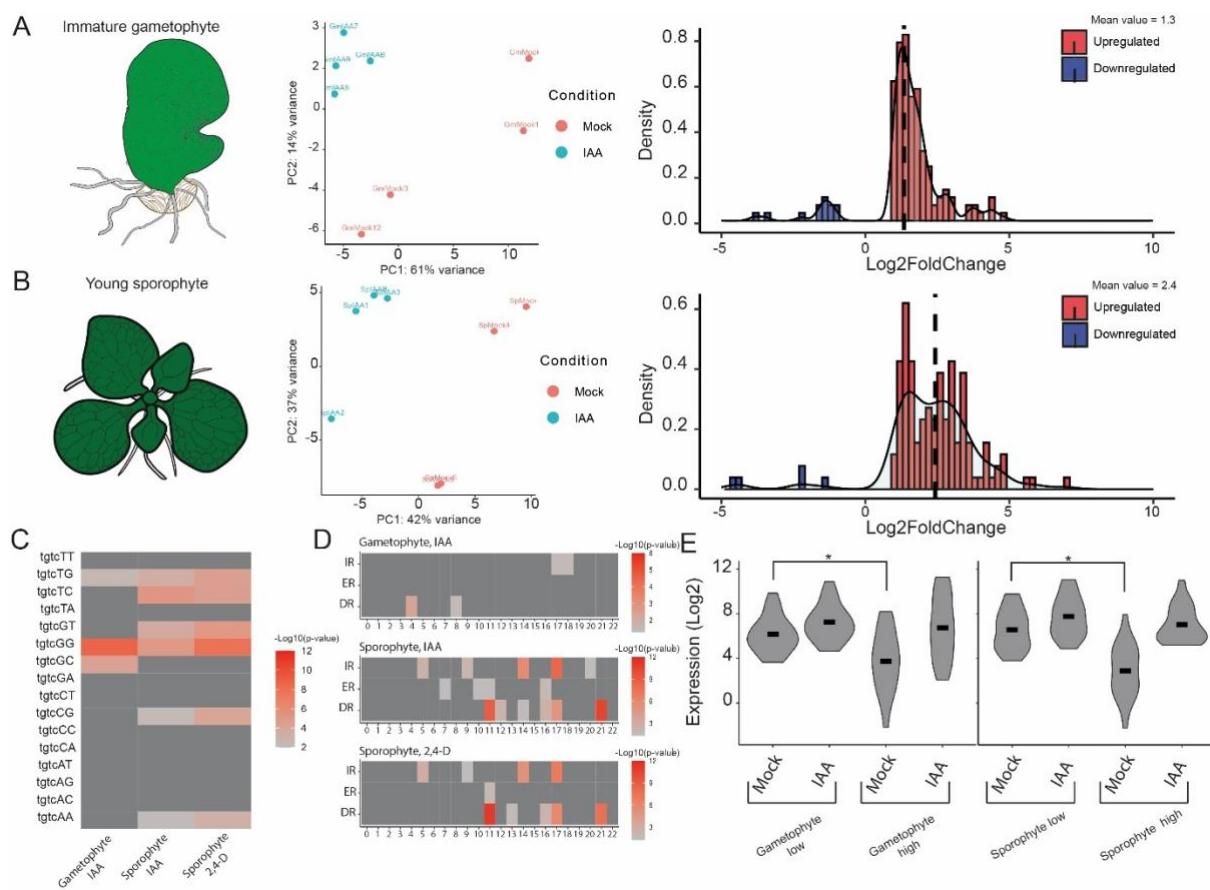
200 **Disrupting auxin transport can induce a sporophytic program**

201 When exploring the effect of auxin transport inhibition in gametophytes (Fig. 1F), we noticed
202 that, in addition to the abnormal morphologies and increased rhizoid production, tissues also
203 initiated root-like structures after prolonged treatment. These structures formed on
204 gametophytic thallus and produced root hairs (Fig. 3A). The anatomy of these structures was
205 indistinguishable that of sporophytic roots (Fig. 3D). Additionally, these roots produced
206 adventitious vascular-like tissue in the gametophyte, recognizable by the distinct spiraling
207 secondary cell wall thickenings (Fig. 3B). Importantly, these roots did not originate from
208 archegonia (Fig. 3C), such as is the case for the apomictic *Dryopteris affinis* (Ojosnegros et al.,
209 2024). To verify the ploidy of the gametophyte-derived roots, a transgenic H2B-GFP expressing
210 lines (Geng et al., 2022) was imaged and the intensity of GFP fluorescence (Fig. 3E) was
211 quantified as a proxy for ploidy. Sporophyte leaves and gametophytic thallus showed clearly
212 distinct fluorescence intensities, consistent with their difference in ploidy (Fig. 3E), validating
213 this approach for inferring ploidy. We found that sporophytic roots and NPA-induced
214 gametophyte-derived roots showed no clear difference in GFP levels, indicating a similar (i.e.
215 2N) ploidy (Fig. 3E), in line with an additional quantification of DAPI fluorescence (Fig. S4D).
216 Expression levels of the endogenous gene whose promoter was used to drive H2B-GFP
217 expression (pCrHAM (Geng et al., 2022)) were comparable between gametophyte and
218 sporophyte tissues (Fig. S4B), suggesting that ploidy, not gene expression, creates the
219 differences in H2B-GFP observed.

220 Consistent with NPA altering auxin distribution, NAA too could ectopically induce roots on
221 gametophytic tissue (Fig. S4A). Upon scoring the frequency of root initiation (Fig. S4C), root
222 initiation was most prevalent upon releasing plants from NPA treatment, going up to 50% of
223 plants developing an ectopic root. Keeping the plants continuously on NPA also resulted in
224 ectopic root formation but only after long cultivation times (50 days). Together, this suggests
225 that disrupting auxin maxima triggers the initiation of root primordia, but outgrowth only
226 happens upon restoring auxin transport. Interestingly, this root outgrowth only seems to happen
227 upon transferring media and takes time, explaining why this response was not observed
228 previously (Withers et al., 2023).

243 **Phylogeny and ontogeny conditions transcriptional auxin response**

244 Transcriptional responses to auxin show clear differences between three bryophytes (*P. patens*,
245 *M. polymorpha* and *A. agrestis*) and two vascular plants (*C. richardii* and *A. thaliana*) (Mutte
246 et al., 2018). There are two main differences: 1) The ratio of auxin-activated versus auxin-
247 repressed genes is shifted towards activation in vascular plants, and towards repression in
248 bryophytes; 2) the amplitude of auxin-activated gene expression is higher in vascular plants.
249 Given that sporophyte tissue was sampled for the vascular plants, and gametophyte tissue was
250 sampled for the bryophytes, it is unclear which of these differences are due to phylogeny and
251 which to tissue ontogeny.


252 We therefore compared transcriptional responses to auxin in both generations of *Ceratopteris*.
253 We found that the amplitude of gene activation is higher in the sporophyte than in the
254 gametophyte (Fig. 4A,B), suggesting that this difference is conditioned by ontogeny. The
255 sporophytic response appears to be robust between experiments, as it overlapped significantly
256 with prior published data (Fig S5D) (Mutte et al., 2018). By contrast, we found that in both
257 generations, there is a dominance of gene activation, unlike in bryophytes (Fig 4A,B). This
258 suggests that this trait is defined by phylogeny.

259 A promoter analysis on the differentially expressed genes showed conserved enrichment of the
260 high-affinity ARF binding AuxRE (TGTCGG) in both generations (Fig. 4C). ARFs bind AuxRE
261 repeats cooperatively as homodimers (Boer et al., 2014; Korasick et al., 2014; Nanao et al.,
262 2014), and we explored the syntax of such repeats in auxin-regulated genes in both generations.
263 This revealed differential enrichment of spacing in tandem repeat motifs (Fig. 4D). The
264 sporophyte motif closely resembled those motifs that were previously reported in *Arabidopsis*
265 and maize (reviewed in (Rienstra et al., 2023)). By contrast, the gametophyte-enriched motifs
266 were weakly enriched, but distinct from the sporophyte-enriched ones. This suggests that the
267 targets are indeed discrete and might differ in their mode of activation and that there is a
268 sporophytic-tracheophyte specific motif spacing.

269 As is evident from the differential motif enrichment, there was only a small overlap in the genes
270 controlled by auxin between the two generations (Fig. S5E). This overlap consisted of well-
271 known auxin-inducible genes including *Aux/IAA*'s, *GH3*'s, *YUCCA* and *EXPANSIN*'s (Fig.
272 S5A-C). Upon ortholog grouping and comparison, these genes are shared both with *Marchantia*
273 and *Arabidopsis*. However, there was no clear enrichment of overlap between *Arabidopsis* and
274 *Ceratopteris* sporophytes, or *Marchantia* and *Ceratopteris* gametophytes (Fig. S5A-C). Thus,

275 we could not define clear shared sporophytic or gametophytic auxin-regulated genetic
 276 programs.

277 The amplitude of gene activation is defined by expression level in the absence and presence of
 278 auxin. High amplitude can therefore be generated by efficient repression in the absence of
 279 auxin, or by effective activation in its presence. We explored the likely mechanism underlying
 280 the difference in amplitude between gametophyte and sporophyte. The difference between
 281 highly and lowly upregulated genes was clearly due to an increase in repression in both
 282 generations (Fig. 4E). By comparing the two generations, we found that the 20 most strongly
 283 activated genes in sporophytes show a lower expression ($\log_2 = 2.76$) under mock conditions
 284 than in gametophytes ($\log_2 = 3.78$), whereas their expression upon auxin treatment was more
 285 similar between generations ($\log_2 = 6.75$ vs $\log_2 = 7.34$). This suggests that the increased
 286 amplitude of gene activation in the sporophyte is caused by efficient repression.

287

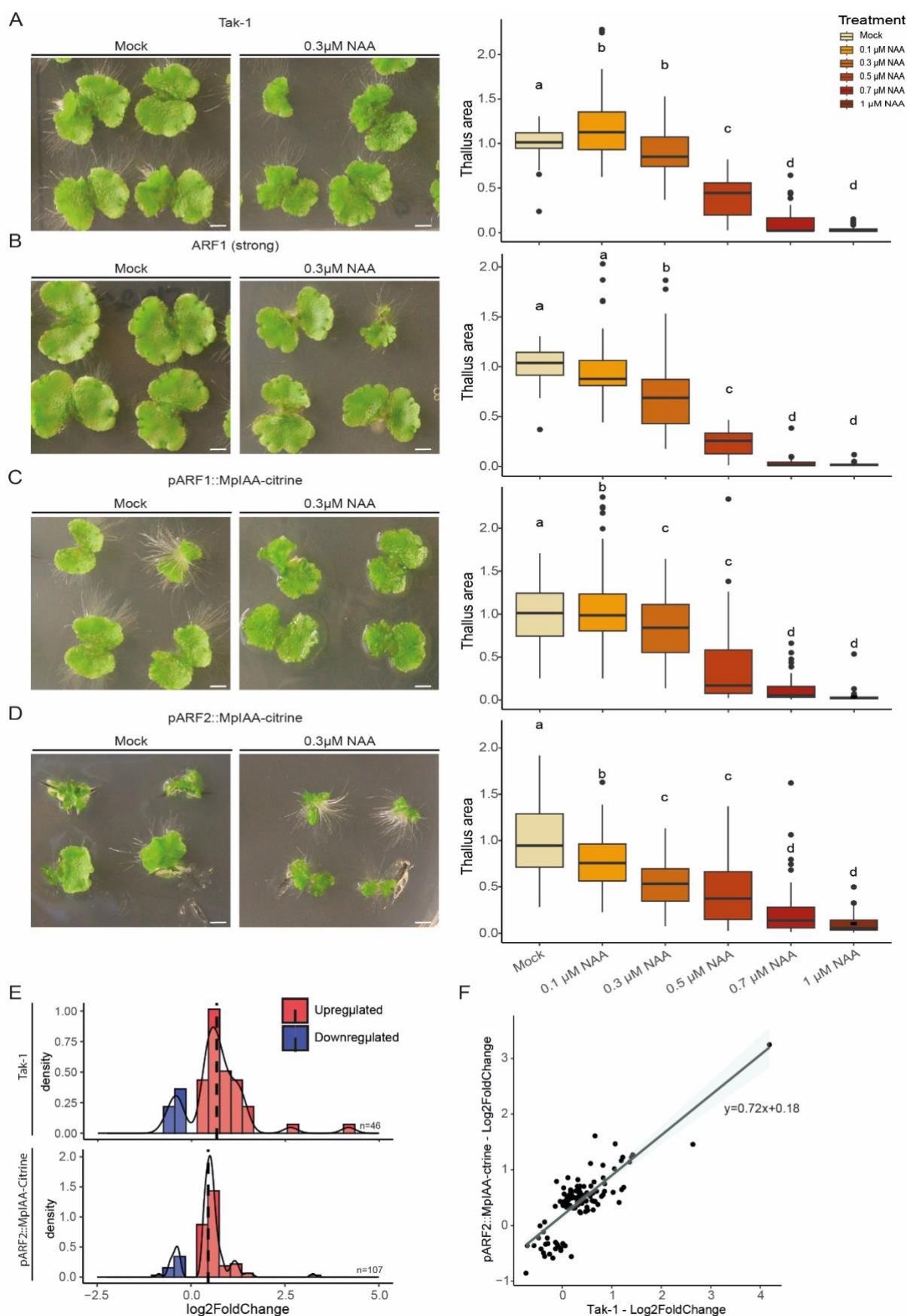
288 **Figure 4: Transcriptional auxin response of Ceratopteris gametophytes and sporophytes.**
 289 A,B) [left] Schematics of gametophyte (A) and sporophyte (B) stages on which the treatment
 290 was done [center] PCA plots showing the treatment effect and [right] density histograms of all
 291 DEG (fold change of IAA/mock). Average value is indicated with dashed line, upregulated genes
 292 are in red and downregulated genes in blue. C) The enrichment of 16 TGTCNN hexamers in
 293 auxin responsive promoters for the two generations of differentially expressed genes from

294 *Ceratopteris*. Color denotes the significance of enrichment, $-\text{Log10}(p\text{-value})$. D) Abundance of
295 *TGTCNN* repeats in auxin responsive promoters of differentially expressed genes from
296 *Ceratopteris*. X axis shows the spacer length, Y axis denotes the fraction of genes with
297 the repeats of specific structure. E) Violin plots showing the RNA expression values
298 ($\text{Log}_2(\text{TPM})$) for the 20 lowest and 20 highest DEG in the gametophyte (left) and sporophyte
299 (right). *: Wilcoxon-rank test $P\text{-value} < 0.005$.

300

301 **Aux/IAA expression levels condition auxin sensitivity**

302 We found that *Ceratopteris* gametophytes respond to auxin in a manner similar to the
303 *Marchantia* gametophyte. Transcriptional responses are a direct outcome of the components of
304 the Nuclear Auxin Pathway (NAP) encoded by each species' genome, and expressed in each
305 tissue. To identify possible genetic drivers of differences between gametophyte and sporophyte
306 auxin response, we explored expression patterns of NAP components. The core components
307 are: (1) the DNA-binding Auxin Response Factors (ARF), divided in auxin-dependent
308 activating (A-class) and auxin-independent, repressing (B-class) (2) Aux/IAA repressors and
309 (3) TIR1/AFBa that promote Aux/IAAs degradation in the presence of auxin (Lavy and Estelle,
310 2016). We found that *Aux/IAA* genes are more prominently expressed in the *Ceratopteris*
311 sporophyte (Fig. S6). This analysis was further extended to publicly available transcriptomes
312 from *Ceratopteris* across more developmental stages (Marchant et al., 2022; Marchant et al.,
313 2019), showing a similar pattern (Fig. S7). This is consistent with an increased ability to repress
314 target genes in the absence of auxin. However, A-class ARFs also seemed more abundant in the
315 sporophyte generation, possibly also explaining the difference in response. B-class ARFs
316 showed increased expression in the gametophyte, but expression levels were generally
317 extremely low, and it is unclear what the biological significance of changes in expression at
318 such low expression levels is.


319 Our transcriptomic data, along with gene content and differential expression of NAP
320 components support a model where differential Aux/IAA expression and/or A-class ARF
321 expression between generations creates distinct potential for high-amplitude gene activation.
322 Indeed, relative to *Marchantia*, *Ceratopteris* has undergone duplications both in the Aux/IAA
323 family and the A-class ARF subfamily (Mutte et al., 2018). To directly test the contribution of
324 A-ARF or Aux/IAA copy number to auxin responsiveness, we generated transgenic *Marchantia*
325 lines that either had slightly increased expression ($\text{Log}_2 = 4$) of a mCitrine-tagged copy of
326 *MpARF1* (A-class ARF), or that express an additional copy of *MpIAA*, under the *MpARF2* or
327 *MpARF1* promoter. Increased *MpARF1* expression was achieved by complementing the *arfl-*

328 4 loss of function mutant (Kato et al., 2017) with a tagged, transgenic copy of the wild-type
329 protein, and by selecting a line that had increased *ARF1* expression compared to wild-type
330 plants (Fig. S8B). The advantage of *Marchantia* is the relatively simple system of only one A-
331 class ARF and one Aux/IAA (Flores-Sandoval et al., 2015; Kato et al., 2020). Transgenic plants
332 were tested for their auxin responsiveness by measuring thallus growth inhibition by a range of
333 auxin concentrations (Fig. 5A-D). Increased MpARF1 levels did not induce a clear difference
334 in auxin response compared to Tak-1 wildtype (Fig. 5B). By contrast, lines expressing an
335 additional copy of MpIAA under the MpARF2 promoter showed a difference in overall
336 phenotype and an increase in auxin sensitivity compared to Tak-1 (Fig. 5D). Like the
337 endogenous MpIAA protein (Das et al., 2022), the additional copy was undetectable in control
338 treatments in transgenic lines, but accumulated upon inhibition of the proteosome (Fig. S8A).

339 The increased auxin responsiveness in lines expressing an addition Aux/IAA copy is consistent
340 with our predictions, but may or may not reflect a higher amplitude in auxin-dependent gene
341 activation. To directly test the properties of gene expression output, we performed RNA-seq
342 upon auxin treatment on a representative *proMpARF2-MpIAA-Citrine* line. We did not detect a
343 clear shift in response amplitude of gene activation between Tak-1 and *proMpARF2-MpIAA-*
344 *Citrine* plants (Fig. 5E,F). We used non-stringent filtering of the differentially expressed genes
345 ($\text{Padj} < 0.05$; $\text{Foldchange} > 1.25$) to identify differentially expressed genes despite the low-
346 inductive nature of auxin responses in *Marchantia*. With this filtering, a substantially larger
347 group of genes is differentially expressed in the MpIAA-Citrine lines compared to Tak-1 (Fig.
348 5E), suggesting increased responsiveness. Upon plotting only the expression of genes that are
349 auxin-responsive in the MpIAA-Citrine line, a slight increase of repression was visible
350 ($\text{Log2(TPM)} = 8.93$ instead of 9.25 in Tak-1). However, this was also accompanied by an
351 increase in activation (9.7 vs. 9.37; Fig. S8C), showing a mixed response on a transcriptional
352 level.

353 Based on these experiments in *Marchantia*, we conclude that Aux/IAA expression level does
354 increase the degree of auxin-responsiveness, but that the sporophyte-like increased
355 transcriptional response amplitude is likely caused by factors beyond Aux/IAA dose.

356

357

358 **Figure 5: modulating auxin response characteristics in *Marchantia*.** A-D) *Tak-1* wild type
359 (*A*), *pARF1-ARF1* (*B*), *pARF1-MpIAA* (= relative weak expression) (*C*) and *pARF2-MpIAA* (=

360 *relative strong expression) (D) gemmalings grown on mock media and 0.3 μ M NAA (left*

361 *panels), and quantification of relative projected thallus area of three combined replicates for*

362 *each of the genotypes and across a range of NAA concentrations (right panels). E)). F) RNA-*

363 *seq of Marchantia pARF2:MpIAA and Tak-1 density histograms of auxin responsive genes*

364 *($P_{adj}<0.05$, $\text{Log}_2\text{Foldchange}(>0.3)$ F) Expression values of all auxin-responsive genes in either*

365 *of two genotypes and the linear trendline describing the point cloud. Scale bars are 2.5 mm in*

366 *A-D. Statistical significance shown by letters based on ANOVA and Tukey pair-wise comparison*

367 *($P<0.05$).*

368

369 **Conserved rapid auxin responses in *Ceratopteris***

370 In addition to transcriptional responses, auxin promotes a number of fast cellular responses

371 including cytoplasmic streaming and altered proton transport across the plasma membrane

372 (Ayling and Clarkson, 1996; Barbez et al., 2017). We recently found that some of these

373 responses are mediated by proteome-wide rapid auxin-triggered protein phosphorylation

374 involving a conserved RAF-like protein kinase (Kuhn et al., 2024). Phosphoproteomic profiling

375 in Arabidopsis, Physcomitrium, Marchantia and even streptophyte algae showed conservation

376 of the response, and identified sets of common targets, as well as bryophyte-specific and

377 species-specific targets. Again, given that sporophyte tissue was sampled for Arabidopsis,

378 where as gametophytes were used for the two bryophyte species, it is hard to tell which of these

379 differences are due to phylogeny, and which to ontogeny. We therefore performed

380 phosphoproteome profiling upon 2 minutes of treatment with 100 nM of IAA in both

381 gametophytes and sporophytes in Ceratopteris. Auxin triggered differential protein

382 phosphorylation in both generations, but the number of auxin-regulated phosphor-targets was

383 modest when compared with Arabidopsis or bryophyte species. This may in part be because we

384 sampled whole sporophytes to make a fair comparison with the whole gametophyte, whereas

385 for Arabidopsis, only roots were sampled. When comparing the two generations in Ceratopteris,

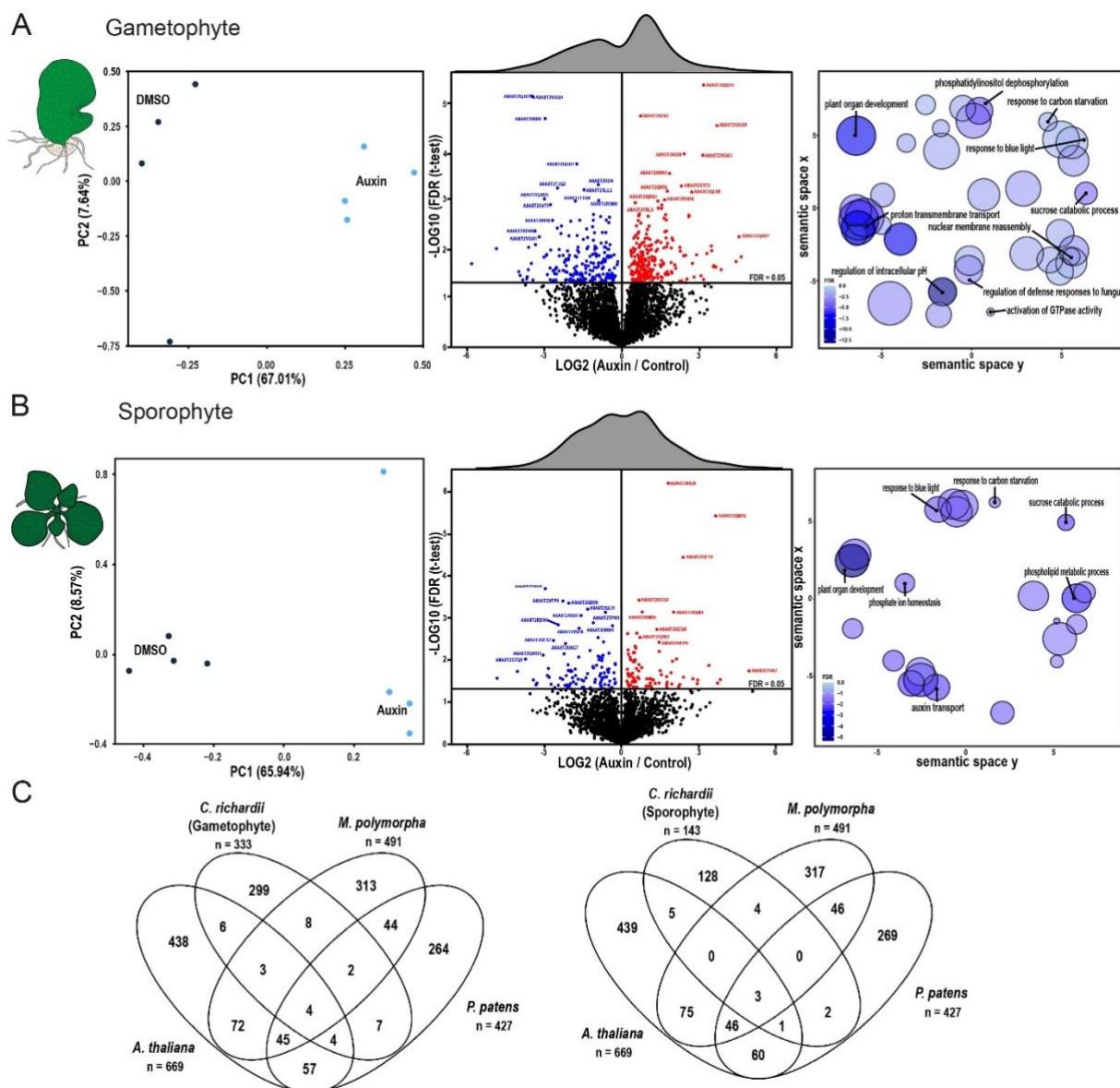
386 we did not find clear differences in the profile of phosphorylation (Fig. 6A,B). Auxin-regulated

387 phosphorylation in both generations more closely resembled that in bryophytes, than that in

388 Arabidopsis. Both shared and unique functions are targeted by auxin-triggered phosphorylation

389 in the two generations (Fig. 6A,B). Among these shared GO-terms (“plant organ development”,

390 “carbon starvation”, “response to blue light”), at least one is conserved across all species that


391 were previously tested (Kuhn, 2024) .

392 We next explored the overlap between phosphor-targets between the two generations, and with

393 Arabidopsis, Marchantia and Physcomitrium. In general, the overlap was limited (Fig. 6C) yet

394 the number of overlapping terms is in the same order as between the five different species tested
 395 by Kuhn et al. (2024). This suggests that apart from a deeply conserved auxin-sensitive core, a
 396 wide range of species-specific and generation-specific changes are induced. Thus, auxin-
 397 triggered phosphorylation is conserved in Ceratopteris, and patterns of response are conditioned
 398 both by ontogeny and phylogeny.

399

400

401 **Figure 6: Auxin-triggered protein phosphorylation in gametophyte and sporophyte**
 402 **generations.** A,B) PCA analysis (left), differential phosphorylation (middle) and GO analysis
 403 of differentially phosphorylated proteins (right) upon 2 minutes of treatment with 10 nM IAA in
 404 Ceratopteris gametophytes (A) and sporophytes (B). C) Overlap of phosphosite orthogroups

405 *between the two Ceratopteris generations and previously reported datasets for Marchantia and*
406 *Arabidopsis from Kuhn et al. (2024)*

407

408 **Discussion**

409 Here we describe a set of different auxin responses in the model fern *Ceratopteris* across its two
410 indeterminate, multicellular generations. On a phenotypic level, we see that gametophytes
411 generally resemble thalloid bryophytes like *Marchantia*, while sporophytes mostly resemble
412 flowering plants like *Arabidopsis*, in their capacity to respond to auxin. Auxin responses are
413 numerous (Paque and Weijers, 2016), and it remains to be tested if the same patterns of response
414 analogy hold for other growth or developmental processes. This similarity between *Marchantia*
415 and *Ceratopteris* gametophytes is striking but is mirrored by the developmental homology with
416 the same set of organs and cell types formed (i.e. rhizoids, antheridia, archegonia). One could
417 even argue that *Ceratopteris* gametophytes are simpler than *Marchantia* gametophytes due to
418 their short-lived nature and lack of a proper Z-axis development with no air chambers or storage
419 tissue like in *Marchantia* (Conway and Di Stilio, 2020). Similarly, it appeals to reason that
420 *Ceratopteris* sporophytes resemble *Arabidopsis* seedlings in their response to auxin, given that
421 these species share the same evolutionary origin of their roots and vasculature (Szövényi et al.,
422 2019). It is intriguing though that the response to auxin response inhibition in *Ceratopteris*
423 leaves resembles that in *Arabidopsis* leaves, given that these leaves do not share an evolutionary
424 origin (Pires and Dolan, 2012; Tomescu, 2009).

425 Long-term treatments with auxin or auxin transport inhibition in *Ceratopteris* gametophytes
426 showed that sporophytic organs can be initiated, demonstrating the power of auxin as a
427 developmental signal. To our knowledge, this is first report of such transdifferentiation,
428 although it bears a superficial resemblance to the initiation of microspore-derived embryos in
429 some flowering plant species (Corral-Martínez et al., 2020; Supena et al., 2008). It has
430 previously been reported that “rod-like structures” develop from regenerating sporophytic
431 callus in *Ceratopteris* (Xiao and Li, 2024). Likewise, roots are induced from eudicot callus when
432 treated with a high ratio of auxin over cytokinin (Che et al., 2006). It has been reported that
433 sugar in the growth media could induce apogamy in *Ceratopteris* gametophytes (Bui et al.,
434 2017; Linh T et al., 2012). Since ectopic root formation did not depend on sugar, we interpret
435 these structures as derived from a process distinct from apogamy. A plausible scenario is that
436 auxin triggers reprogramming to a diploid state from which sporophytic organs can emerge.
437 Identifying the intermediate stages and associated gene expression changes could help in

438 identifying core root specification genes, as well as in the identifying sporophyte signature
439 genes.

440 We also find that the amplitude of auxin response is stronger in the sporophyte than in the
441 gametophyte, reflecting the bryophyte – tracheophyte split, and suggesting this to be an
442 emergent property of ontogeny. It is unlikely that differences in tissue permeability to auxin
443 contribute to these different responses, since *Ceratopteris* gametophytes are less complex in
444 architecture, and most cells are directly exposed to the media. However, PINs (auxin efflux
445 carriers) are less expressed in the gametophyte (not shown) and important for sporophytic
446 development in *Ceratopteris* (Xiang and Li, 2024), which may dampen the response.

447 We tested directly whether the inferred duplications in A-class ARFs and Aux/IAAs that
448 preceded the emergence of ferns may contribute to sporophyte-like response dynamics. Our
449 results show that growth indeed becomes more sensitive to auxin when an additional Aux/IAA
450 copy is expressed in the *Marchantia* gametophyte. However, gene expression does not fully
451 resemble that in sporophytes of *Ceratopteris* or *Arabidopsis* in terms of amplitude. This result
452 can be interpreted in many ways, but it is clear that there is additional complexity in the genetic
453 architecture of the NAP and its differences between generations. A logical next step would be
454 to combine the expression of an additional A-ARF copy with an additional Aux/IAA copy.
455 Future advanced in facile genome editing in *Ceratopteris* (Jiang et al., 2024; Xiang and Li,
456 2024) and transgene expression (Geng et al., 2022; Plackett et al., 2014) will also help to further
457 explore the genetic requirements for auxin response in both generations.

458 The above-mentioned similarities between *Ceratopteris* gametophytes and bryophytes suggest
459 a conserved mechanism of auxin response based on their ontogeny. However, the targets of the
460 auxin response are very divergent, besides the small core sets, as shown by orthogroup
461 comparisons for both transcriptomics and phosphoproteomics. This is probably due to their
462 distinct phylogenetic placement and 500 million years of divergence (Donoghue et al., 2021).
463 Together with the previous points, this suggests that the exact targets of the response are
464 strongly dependent on phylogeny, while the nature and mechanisms of the response depend
465 more on ontogeny.

466 In summary, by studying the fern *Ceratopteris richardii*, a missing link in our understanding of
467 auxin biology has been filled. The transcriptional nature of the response clearly depends on the
468 ontogeny of the organism and vice-versa shapes its development due to their interdependency.
469 This helps us to further understand the divergence, but equally importantly, the homology in

470 hormone signalling between land plants. We expect that further exploration of the two
471 generations in *Ceratopteris* will shed light on gametophyte and sporophyte developmental
472 programs and their origin and homology.

473

474 **Acknowledgements**

475 We are grateful to our team members and especially Sumanth Mutte and Danilo dos Santos
476 Pereira for providing support with bioinformatic analysis and Aaron Ang for experimental
477 support and Hirotaka Kato for providing the plasmids. This work was supported by a grant from
478 the Graduate School Experimental Plant Sciences to S.W., a grant from the Human Frontiers
479 Science Program (HFSP; contract number RGP0015/2022) to D.W., and grants from the
480 Netherlands Organization for Scientific Research (NWO) to A.K. (VI.VENI.212.003) and J.R.
481 (GSGT.GSGT.2018.013).

482

483 **Conflict of interest**

484 The authors have no competing interests.

485

486 **Materials and Methods**

487

488 **Plant growth conditions**

489 Spores of *Ceratopteris richardii* strain Hn-n (Hickok et al., 1995) were sterilized and grown as
490 described (Plackett et al., 2014) in a Hettich MPC600 plant growth incubator set at 28°C, with
491 16 hours of 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Plants were grown on ½-strength MS medium supplemented with
492 1% sucrose unless stated otherwise. Gametophytes were grown from spores and synchronized
493 by imbibing the spores in the dark in water for >4 days. Sporophytes were obtained by flooding
494 plates containing sexually mature gametophytes with water. *Marchantia polymorpha* plants
495 were grown on ½-strength Gamborg's B5 medium at 22°C with constant light. *Arabidopsis*
496 *thaliana* plants were grown on ½-strength MS with 1% sucrose at 20°C, 60% humidity with
497 16h of light/day.

498

499 **Auxin growth experiments**

500 For gametophytes, spores were sown directly on plates supplemented with Indole-3-acetic acid
501 (IAA; Alfa aesar) or 1-Naphthaleneacetic Acid (NAA, Sigma). Size measurements were done
502 when plants reached sexual maturity ($\pm 6/7$ days). Alternatively, germinated spores were
503 transferred onto auxin-supplemented medium before the lateral notch meristem was established
504 (± 5 days) and grown for another 5 days. N-1-naphthylphthalamic acid (NPA, Sigma) treatments
505 were done in a similar fashion. Gametophytes were imaged with a Leica M205FA
506 epifluorescence microscope and their size was quantified by measuring their length and width.
507 Sporophytes were grown in liquid 1/2MS without sucrose for root phenotyping. For every
508 individual experiment, young sporophytes from the same plate were used to synchronize as
509 much as possible their development. Sporophytes were grown for 12 days to measure root
510 growth and branching. Sporophytes were imaged with a Canon EFS (18-135mm) camera, close-
511 up of the root tips was done with a Leica M205FA epifluorescence microscope. Root lengths
512 were measured using ImageJ and scored manually for the number of lateral roots. Rhizoid
513 images were taken 3 days after transfer. *Marchantia* and *Arabidopsis* plants were treated in a
514 similar manner, instead that the medium was different as described in the previous section.

515 To induce sporophytic roots on gametophytic thallus, spores were grown for at least 10 days on
516 ½ strength MS containing 1% sucrose and 5 μM NPA, afterwards, they were transferred to
517 NPA-free medium. First roots appeared 25 days after transfer. Sporophytic roots were also

518 obtained when gametophytes were grown for 50 days on 5 μ M NPA or if germinated normally
519 and then transferred to 5-10 μ M NPA or 5-10 μ M NAA.

520

521 **Leaf venation analysis**

522 NPA treated leaves were harvested 2 weeks after young sporophytes were transferred to medium
523 containing 10 or 20 μ M NPA. Only the youngest developed leaves were harvested to ensure
524 that leaf primordia developed under NPA conditions. Leaves were fixed and cleared in ethanol:
525 acetic acid for at least 1 day. Afterwards, leaves were rehydrated in 70% ethanol and stored at
526 4°C until imaging. Imaging was done with a Leica M205FA epifluorescence microscope.
527 Quantification was done similar to Verna et al. (2015). Briefly, the number of touch, end, break
528 and exit points of the veins were calculated for every leaf. From those numbers, the
529 connectivity, absolute cardinality, and continuity index were calculated. The relative indexes
530 were used to enable the pooling of different experiments. Statistical analysis was done by first
531 testing for equal variance with a F-test and then a student's t-test to test for equal means.

532

533 **Ploidy analysis**

534 CrHAM::H2B-GFP line spores were described in Geng et al. (2022) and grown similarly as
535 described before. GFP intensities were imaged with a Leica SP5 confocal microscope, with
536 HyD detectors on photon counting mode to facilitate quantification. Z-stacks were obtained
537 throughout the whole tissue, and maximum projections of those stacks were subsequently
538 quantified in ImageJ. Nuclear intensity was quantified by first selecting the nuclei by binarizing
539 the image. By subsequently analyzing the particles, all nuclear ROIs could be selected which
540 were then imported to the original image to measure their intensities. All ROIs smaller than a
541 given size (arbitrary area<30) were discarded as they were outside the expected size range for
542 nuclei. DAPI quantification was done in a similar fashion by staining cleared roots (Kurihara
543 et al., 2021), overnight with 50 μ g/ μ L DAPI and washed once before imaging.

544

545 **RNA isolation and sequencing**

546 For RNA isolation, immature gametophytes were grown for 5 days on a 100 μ m nylon mesh.
547 Young sporophytes of 22 days after fertilization were transferred to a new plate with a 100 μ m
548 nylon mesh and collected 5 days later after which new roots had developed. At this stage,

549 sporophytes had approximately 5 leaves. Auxin treatments were performed by dissolving an
550 IAA stock in liquid ½-strength MS with no sugar to a final concentration of 1 μ M IAA and a
551 DMSO control. The medium was preheated to 28°C to prevent any cold shock on the plants.
552 Plates were taken out of the incubator, flooded with IAA or DMSO, and returned to the
553 incubator for 1 hour.

554 RNA was isolated with the QIAGEN RNeasy kit and Total RNA was treated with RNase-free
555 DNase I set (QIAGEN). RNAseq libraries were prepared and up to 20 million 150bp paired-
556 end sequences were collected by Illumina-sequencing by Novogene (Uk). RNA quality was
557 checked using FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc) and reads were
558 mapped by Salmon and the obtained raw read counts were normalized and differentially
559 expressed genes ($p_{adj} < 0.05$) were identified using DEseq2. All plots were made with ggplot2
560 (<https://cran.r-project.org/web/packages/ggplot2/index.html>) besides the upset plot with
561 UpSetR (<https://cran.r-project.org/web/packages/UpSetR/index.html>)

562 For *Marchantia*, gemmae were grown for 9 days at 22°C. IAA treatments were done as
563 described previously by Kuhn et al. (2024). Briefly, prior to IAA treatment, plants were flooded
564 with liquid medium overnight before incubating with 1 μ M IAA for 1h. *Marchantia* RNA was
565 isolated with the QIAGEN RNeasy kit with an additional Trizol step before column binding.
566 RNAseq libraries were prepared and up to 20 million 150bp paired-end sequences were
567 collected by Illumina-sequencing by BMKGENE (Germany). RNA quality was checked using
568 FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc) and reads were mapped by
569 Hisat2 and the obtained raw read counts were normalized and differentially expressed genes
570 ($p_{adj} < 0.05$) were identified using DEseq2.

571

572 **Expression analysis**

573 For the comparison between gametophytes and sporophytes, the normalized expression values
574 of the mock treatments of both life stages were compared using R package ComplexHeatmap
575 (<https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html>). Expression
576 values across all developmental stages were retrieved from (Marchant et al., 2022) and TPM
577 values were normalized to a Z-score which were plotted with ComplexHeatmap.

578

579 **Promoter analysis**

580 We used the reference genome of fern *Ceratopteris richardii* v2.1 from Phytozome DB.
581 Promoters of all genes were analysed for overrepresentation of hexamers in the interval 600 bp
582 upstream from the transcription start site (TSS) to either translation start site or 1 kbp
583 downstream TSS, depending on which was smaller. We took into analysis three sets of up-
584 regulated DEGs (foreground sequences), and generated for each of them the background
585 consisting of the same genomic intervals for the rest genes. First, for each pair ‘foreground vs.
586 background’ sets, we used Fisher’s exact test to estimate the enrichment for TGTCNN
587 consensus sequences. Here and below, this test counted the number of genes. Second, we
588 applied the package MCOT (Levitsky et al., 2019) to count the numbers of genes containing in
589 the genomic interval TGTCNN repeats with spacers from 0 bp to 25 bp, and specific
590 orientations (direct (DR), inverted (IR) and everted (ER) repeats). For each pair ‘foreground vs.
591 background’ and any possible mutual location and orientation of hexamer in pairs, we estimated
592 the enrichment of their co-occurrence by Fisher’s exact test.

593

594 **Orthogroup analysis**

595 Orthogroups between the different species were identified using Orthofinder (Emms and Kelly,
596 2019). Therefore, transcriptomes from the used species *Arabidopsis thaliana* (Araport11),
597 *Marchantia polymorpha* (v6.1) and *Ceratopteris richardii* (v2.1) were used and common
598 orthologous sequences were identified. Similarly, for the phospho-proteomics, orthogroups
599 were identified from the proteomes of the different species. The auxin-responsive DEG or
600 phosphosites from the different species were converted to their specific orthogroup and
601 subsequently overlayed using a Venn diagram.

602

603 **Plasmid construction**

604 MpARF1 and MpARF2 promoters (+ 3kb upstream) were amplified with the primer set
605 HK120/HK125 and HK126/HK127 respectively (Table S1). and cloned into pMPGWB307
606 using the XbaI site (pHKDW031/038). MpIAA and MpARF1 CDS were subcloned into
607 pENTR/D (thermo) using the primer combinations of MpIAA_entry/JHG081 and
608 HK009/HK015 respectively. These genomic CDS sequences were then transferred to the
609 pHKDW031 (pARF2) or 038 (pARF1) with Gateway LR Clonase II Enzyme mix (Thermo
610 Fisher Scientific). pHKDW038 was described previously and kindly provided by Hirotaka Kato
611 (Kato et al., 2017; Kato et al., 2020).

612

613 **RT-qPCR**

614 MpARF1 expression was validated in multiple complemented *arf1-4* mutant (Kato et al., 2017)
615 to select for a higher expressing line. RNA was isolated from ten-day old gemmalings as
616 described before. 1 μ g of total RNA was used for cDNA synthesis (iScript cDNA synthesis kit,
617 Bio-Rad) according to manufacturer's instructions. RT-qPCR was performed using a 384CFX
618 Connect Real-Time PCR Detection system (Bio-Rad) and iQ SYBR Green Supermix (Bio-
619 Rad). A two-step cycle of 95°C 10s followed by 60°C for 30s was repeated for 40 cycles,
620 followed by a melt-curve analysis. Three biological and two technical replicates were used. All
621 primers used are listed in Supplementary table 2. The geometric mean of MpSAND, MpAPT7
622 and MpAPT3 (Saint-Marcoux et al., 2015) was used to normalize expression of MpARF1
623 according to (Taylor et al., 2019).

624

625

626 ***Marchantia* transformation**

627 A protocol based on the *Agrobacterium*-mediated transformation of *M.*
628 *polymorpha* regenerating thalli (Kubota et al., 2013) was used. Briefly, *Agrobacterium* cultures
629 were grown for 2 days in liquid LB medium. Afterwards they were spun down and resuspended
630 in liquid Gamborg medium supplemented with sucrose and casamino acids and acetosyringone
631 and left for 6h. Tak-1 thallus was cut into 1mm x 1mm pieces and added to liquid medium
632 together with *Agrobacterium*. Co-cultures were grown for three days at 22 degrees while
633 shaking. After washing, positive transformants were selected on medium containing
634 chlorsulfuron (0.5uM) and cefotaxime (100mg/L). Transformants were validated by PCR and
635 microscopy. The strong expressing line for ARF1 was validated by qPCR

636

637 **Phosphoproteomics**

638 Ceratopteris gametophytes and sporophytes were grown on mesh and treated for 2 minutes with
639 100nM IAA and harvested immediately. Protein purification and phospho-peptide enrichment
640 and measurements were done as described earlier (Kuhn et al., 2024).

641

642 **Confocal microscopy**

643 Ceratopteris gametophytes grown on auxin-supplemented medium were cleared and fixed using
644 Clearsee alpha (Kurihara et al., 2021), and stained with SR-2200/Renaissance (Musielak et al.,
645 2016). Roots were cleared and stained in a similar fashion. Imaging was done with a Leica SP5
646 confocal microscope.

647 *Marchantia* MpIAA-Citrine was detected with a Leica SP8 confocal microscope. MG132
648 (Sigma) treatments were done on gemmae that were allowed to germinate for 8h in the presence
649 of MG132 and imaged afterwards.

650

651 **References**

- 652 Ayling, S.M., Clarkson, D., 1996. The cytoplasmic streaming response of tomato root hairs to
653 auxin; the role of calcium. *Functional Plant Biology* 23, 699-708.
- 654 Barbez, E., Dünser, K., Gaidora, A., Lendl, T., Busch, W., 2017. Auxin steers root cell expansion
655 via apoplastic pH regulation in *Arabidopsis thaliana*. *Proceedings of the National Academy of
656 Sciences* 114, E4884-E4893.
- 657 Blázquez, M.A., Nelson, D.C., Weijers, D., 2020. Evolution of plant hormone response
658 pathways. *Annual Review of Plant Biology* 71, 327-353.
- 659 Boer, D.R., Freire-Rios, A., Van Den Berg, W.A., Saaki, T., Manfield, I.W., Kepinski, S., López-
660 Vidrieo, I., Franco-Zorrilla, J.M., de Vries, S.C., Solano, R., 2014. Structural basis for DNA
661 binding specificity by the auxin-dependent ARF transcription factors. *Cell* 156, 577-589.
- 662 Bowman, J.L., Briginshaw, L.N., Fisher, T.J., Flores-Sandoval, E., 2019. Something ancient
663 and something neofunctionalized—evolution of land plant hormone signaling pathways.
664 *Current Opinion in Plant Biology* 47, 64-72.
- 665 Bui, L.T., Pandzic, D., Youngstrom, C.E., Wallace, S., Irish, E.E., Szövényi, P., Cheng, C.L.,
666 2017. A fern *AINTEGUMENTA* gene mirrors *BABY BOOM* in promoting apogamy in
667 *Ceratopteris richardii*. *The Plant Journal* 90, 122-132.
- 668 Carrillo-Carrasco, V.P., Hernandez-Garcia, J., Mutte, S.K., Weijers, D., 2023. The birth of a
669 giant: evolutionary insights into the origin of auxin responses in plants. *The EMBO Journal*
670 42, e113018.
- 671 Casimiro, I., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swarup, R., Graham, N.,
672 Inzé, D., Sandberg, G., Casero, P.J., 2001. Auxin transport promotes *Arabidopsis* lateral
673 root initiation. *The Plant Cell* 13, 843-852.
- 674 Chauhan, R.K., 2024. INVESTIGATING IAA'S EFFECTS ON CERATOPTERIS
675 THALICTROIDES: IMPLICATIONS FOR SPORE GERMINATION
676 AND GAMETOPHYTE DEVELOPMENT IN SITAMATA WILDLIFE SANCTUARY.
677 *American Journal of Agriculture and Environmental Sciences* 12, 51-59.
- 678 Che, P., Lall, S., Nettleton, D., Howell, S.H., 2006. Gene expression programs during shoot,
679 root, and callus development in *Arabidopsis* tissue culture. *Plant physiology* 141, 620-637.
- 680 Conway, S.J., Di Stilio, V.S., 2020. An ontogenetic framework for functional studies in the
681 model fern *Ceratopteris richardii*. *Developmental biology* 457, 20-29.
- 682 Cookson, C., Osborne, D.J., 1979. The effect of ethylene and auxin on cell wall extensibility of
683 the semi-aquatic fern, *Regnellidium diphyllum*. *Planta* 146, 303-307.

- 684 Corral-Martínez, P., Siemons, C., Horstman, A., Angenent, G.C., de Ruijter, N., Boutilier, K.,
685 2020. Live Imaging of embryogenic structures in *Brassica napus* microspore embryo
686 cultures highlights the developmental plasticity of induced totipotent cells. *Plant*
687 *reproduction* 33, 143-158.
- 688 Das, S., de Roij, M., Bellows, S., Kohlen, W., Farcot, E., Weijers, D., Borst, J.W., 2022.
689 Selective degradation of ARF monomers controls auxin response in *Marchantia*. *bioRxiv*,
690 2022.2011. 2004.515187.
- 691 Depuydt, S., Hardtke, C.S., 2011. Hormone signalling crosstalk in plant growth regulation.
692 *Current biology* 21, R365-R373.
- 693 Donoghue, P.C., Harrison, C.J., Paps, J., Schneider, H., 2021. The evolutionary emergence of
694 land plants. *Current Biology* 31, R1281-R1298.
- 695 Dubrovsky, J.G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M.G., Friml, J., Shishkova,
696 S., Celenza, J., Benková, E., 2008. Auxin acts as a local morphogenetic trigger to specify
697 lateral root founder cells. *Proceedings of the National Academy of Sciences* 105, 8790-
698 8794.
- 699 Eklund, D.M., Ishizaki, K., Flores-Sandoval, E., Kikuchi, S., Takebayashi, Y., Tsukamoto, S.,
700 Hirakawa, Y., Nonomura, M., Kato, H., Kouno, M., 2015. Auxin produced by the indole-
701 3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort
702 *Marchantia polymorpha*. *The Plant Cell* 27, 1650-1669.
- 703 Emms, D.M., Kelly, S., 2019. OrthoFinder: phylogenetic orthology inference for comparative
704 genomics. *Genome biology* 20, 1-14.
- 705 Evans, M.L., Ishikawa, H., Estelle, M.A., 1994. Responses of *Arabidopsis* roots to auxin studied
706 with high temporal resolution: comparison of wild type and auxin-response mutants. *Planta*
707 194, 215-222.
- 708 Flores-Sandoval, E., Eklund, D.M., Bowman, J.L., 2015. A simple auxin transcriptional
709 response system regulates multiple morphogenetic processes in the liverwort *Marchantia*
710 *polymorpha*. *PLoS genetics* 11, e1005207.
- 711 Geng, Y., Yan, A., Zhou, Y., 2022. Positional cues and cell division dynamics drive meristem
712 development and archegonium formation in *Ceratopteris* gametophytes. *Communications*
713 *Biology* 5, 650.
- 714 Gregorich, M., Fisher, R., 2006. Auxin regulates lateral meristem activation in developing
715 gametophytes of *Ceratopteris richardii*. *Botany* 84, 1520-1530.
- 716 Harrison, C., J., 2017. Development and genetics in the evolution of land plant body plans.
717 *Philosophical Transactions of the Royal Society B: Biological Sciences* 372, 20150490.

- 718 Hickok, L.G., Kiriluk, R.M., 1984. Effects of auxins on gametophyte development and sexual
719 differentiation in the fern *Ceratopteris thalictroides* (L.) Brongn. *Botanical Gazette* 145, 37-
720 42.
- 721 Hickok, L.G., Warne, T.R., Fribourg, R.S., 1995. The biology of the fern *Ceratopteris* and its
722 use as a model system. *International Journal of Plant Sciences* 156, 332-345.
- 723 Hou, G., Hill, J.P., Blancaflor, E.B., 2004. Developmental anatomy and auxin response of lateral
724 root formation in *Ceratopteris richardii*. *Journal of Experimental Botany* 55, 685-693.
- 725 Jiang, W., Deng, F., Babla, M., Chen, C., Yang, D., Tong, T., Qin, Y., Chen, G., Marchant, D.B.,
726 Soltis, P.S., Soltis, D.E., Zeng, F., Chen, Z.-H., 2024. Efficient Gene Editing and
727 Overexpression of Gametophyte Transformation in a Model Fern. *bioRxiv*,
728 2024.2004.2010.588889.
- 729 Jones, V.A., Dolan, L., 2012. The evolution of root hairs and rhizoids. *Annals of Botany* 110,
730 205-212.
- 731 Kato, H., Ishizaki, K., Kouno, M., Shirakawa, M., Bowman, J.L., Nishihama, R., Kohchi, T.,
732 2015. Auxin-mediated transcriptional system with a minimal set of components is critical
733 for morphogenesis through the life cycle in *Marchantia polymorpha*. *PLoS genetics* 11,
734 e1005084.
- 735 Kato, H., Kouno, M., Takeda, M., Suzuki, H., Ishizaki, K., Nishihama, R., Kohchi, T., 2017.
736 The roles of the sole activator-type auxin response factor in pattern formation of
737 *Marchantia polymorpha*. *Plant and Cell Physiology* 58, 1642-1651.
- 738 Kato, H., Mutte, S.K., Suzuki, H., Crespo, I., Das, S., Radoeva, T., Fontana, M., Yoshitake, Y.,
739 Hainiwa, E., van den Berg, W., 2020. Design principles of a minimal auxin response
740 system. *Nature Plants* 6, 473-482.
- 741 Kato, H., Nishihama, R., Weijers, D., Kohchi, T., 2018. Evolution of nuclear auxin signaling:
742 lessons from genetic studies with basal land plants. *Journal of Experimental Botany* 69,
743 291-301.
- 744 Korasick, D.A., Westfall, C.S., Lee, S.G., Nanao, M.H., Dumas, R., Hagen, G., Guilfoyle, T.J.,
745 Jez, J.M., Strader, L.C., 2014. Molecular basis for AUXIN RESPONSE FACTOR protein
746 interaction and the control of auxin response repression. *Proceedings of the National
747 Academy of Sciences* 111, 5427-5432.
- 748 Kubota, A., Ishizaki, K., Hosaka, M., Kohchi, T., 2013. Efficient Agrobacterium-mediated
749 transformation of the liverwort *Marchantia polymorpha* using regenerating thalli.
750 *Bioscience, biotechnology, and biochemistry* 77, 167-172.

- 751 Kuhn, A., Roosjen, M., Mutte, S., Dubey, S.M., Carrasco, V.P.C., Boeren, S., Monzer, A.,
752 Koehorst, J., Kohchi, T., Nishihama, R., 2024. RAF-like protein kinases mediate a deeply
753 conserved, rapid auxin response. *Cell* 187, 130-148. e117.
- 754 Kurihara, D., Mizuta, Y., Nagahara, S., Higashiyama, T., 2021. ClearSeeAlpha: advanced
755 optical clearing for whole-plant imaging. *Plant and Cell Physiology* 62, 1302-1310.
- 756 Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De Smet, I., Fukaki, H.,
757 Beeckman, T., Bennett, M., Laplaze, L., 2013. Lateral root development in *Arabidopsis*:
758 fifty shades of auxin. *Trends in plant science* 18, 450-458.
- 759 Lavy, M., Estelle, M., 2016. Mechanisms of auxin signaling. *Development* 143, 3226-3229.
- 760 Levitsky, V., Zemlyanskaya, E., Oshchepkov, D., Podkolodnaya, O., Ignatjeva, E., Grosse, I.,
761 Mironova, V., Merkulova, T., 2019. A single ChIP-seq dataset is sufficient for
762 comprehensive analysis of motifs co-occurrence with MCOT package. *Nucleic acids
763 research* 47, e139-e139.
- 764 Linh T, B., Amelia, H., Erin E, I., Chi-Lien, C., 2012. The effects of sugars and ethylene on
765 apospory and regeneration in *Ceratopteris richardii*. *American journal of plant sciences*
766 2012.
- 767 Lobachevska, O.V., Kyyak, N.Y., Kordyum, E.L., Khorkavtsiv, Y.D., Kern, V.D., 2022. Gravi-
768 Sensitivity of Mosses and Their Gravity-Dependent Ontogenetic Adaptations. *Life* 12,
769 1782.
- 770 Ma, Y., Steeves, T.A., 1992. Auxin effects on vascular differentiation in ostrich fern. *Annals of
771 Botany* 70, 277-282.
- 772 Marchant, D.B., Chen, G., Cai, S., Chen, F., Schafran, P., Jenkins, J., Shu, S., Plott, C., Webber,
773 J., Lovell, J.T., 2022. Dynamic genome evolution in a model fern. *Nature Plants* 8, 1038-
774 1051.
- 775 Marchant, D.B., Sessa, E.B., Wolf, P.G., Heo, K., Barbazuk, W.B., Soltis, P.S., Soltis, D.E.,
776 2019. The C-Fern (*Ceratopteris richardii*) genome: insights into plant genome evolution
777 with the first partial homosporous fern genome assembly. *Scientific reports* 9, 18181.
- 778 Mattsson, J., Sung, Z.R., Berleth, T., 1999. Responses of plant vascular systems to auxin
779 transport inhibition. *Development* 126, 2979-2991.
- 780 Menand, B., Yi, K., Jouannic, S., Hoffmann, L., Ryan, E., Linstead, P., Schaefer, D.G., Dolan,
781 L., 2007. An ancient mechanism controls the development of cells with a rooting function
782 in land plants. *Science* 316, 1477-1480.
- 783 Miller, J.H., 1961. The effect of auxin and guanine on cell expansion and cell division in the
784 gametophyte of the fern, *Onoclea sensibilis*. *American Journal of Botany* 48, 816-819.

- 785 Miller, J.H., Miller, P.M., 1965. The relationship between the promotion of elongation of fern
786 protonemata by light and growth substances. *American Journal of Botany* 52, 871-876.
- 787 Musielak, T.J., Bürgel, P., Kolb, M., Bayer, M., 2016. Use of SCRI renaissance 2200 (SR2200)
788 as a versatile dye for imaging of developing embryos, whole ovules, pollen tubes and roots.
789 *Bio-protocol* 6, e1935-e1935.
- 790 Mutte, S.K., Kato, H., Rothfels, C., Melkonian, M., Wong, G.K.-S., Weijers, D., 2018. Origin
791 and evolution of the nuclear auxin response system. *Elife* 7, e33399.
- 792 Nanao, M.H., Vinos-Poyo, T., Brunoud, G., Thévenon, E., Mazzoleni, M., Mast, D., Lainé, S.,
793 Wang, S., Hagen, G., Li, H., 2014. Structural basis for oligomerization of auxin
794 transcriptional regulators. *Nature communications* 5, 3617.
- 795 Ohishi, N., Hoshika, N., Takeda, M., Shibata, K., Yamane, H., Yokota, T., Asahina, M., 2021.
796 Involvement of auxin biosynthesis and transport in the antheridium and prothalli formation
797 in *Lygodium japonicum*. *Plants* 10, 2709.
- 798 Ojosnegros, S., Alvarez, J.M., Gagliardini, V., Quintanilla, L.G., Grossniklaus, U., Fernandez,
799 H., 2024. Transcriptomic analyses in the gametophyte of
800 *Dryopteris affinis*: apomixis and more. *bioRxiv* preprint.
- 801 Paque, S., Weijers, D., 2016. Q&A: Auxin: the plant molecule that influences almost anything.
802 *BMC biology* 14, 1-5.
- 803 Pires, N.D., Dolan, L., 2012. Morphological evolution in land plants: new designs with old
804 genes. *Philosophical Transactions of the Royal Society B: Biological Sciences* 367, 508-
805 518.
- 806 Plackett, A.R., Huang, L., Sanders, H.L., Langdale, J.A., 2014. High-efficiency stable
807 transformation of the model fern species *Ceratopteris richardii* via microparticle
808 bombardment. *Plant physiology* 165, 3-14.
- 809 Puttick, M.N., Morris, J.L., Williams, T.A., Cox, C.J., Edwards, D., Kenrick, P., Pressel, S.,
810 Wellman, C.H., Schneider, H., Pisani, D., 2018. The interrelationships of land plants and
811 the nature of the ancestral embryophyte. *Current Biology* 28, 733-745. e732.
- 812 Rashotte, A.M., Brady, S.R., Reed, R.C., Ante, S.J., Muday, G.K., 2000. Basipetal auxin
813 transport is required for gravitropism in roots of *Arabidopsis*. *Plant physiology* 122, 481-
814 490.
- 815 Rienstra, J., Hernández-García, J., Weijers, D., 2023. To bind or not to bind: how Auxin
816 Response Factors select their target genes. *Journal of Experimental Botany* 74, 6922-6932.

- 817 Saint-Marcoux, D., Proust, H., Dolan, L., Langdale, J.A., 2015. Identification of reference
818 genes for real-time quantitative PCR experiments in the liverwort *Marchantia polymorpha*.
819 *PloS one* 10, e0118678.
- 820 Sakakibara, K., Nishiyama, T., Sumikawa, N., Kofuji, R., Murata, T., Hasebe, M., 2003.
821 Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of
822 the moss *Physcomitrella patens*.
- 823 Sieburth, L.E., 1999. Auxin is required for leaf vein pattern in *Arabidopsis*. *Plant Physiology*
824 121, 1179-1190.
- 825 Supena, E.D.J., Winarto, B., Riksen, T., Dubas, E., Van Lammeren, A., Offringa, R., Boutilier,
826 K., Custers, J., 2008. Regeneration of zygotic-like microspore-derived embryos suggests
827 an important role for the suspensor in early embryo patterning. *Journal of experimental*
828 *botany* 59, 803-814.
- 829 Szövényi, P., Waller, M., Kirbis, A., 2019. Evolution of the plant body plan. *Current topics in*
830 *developmental biology* 131, 1-34.
- 831 Taylor, S.C., Nadeau, K., Abbasi, M., Lachance, C., Nguyen, M., Fenrich, J., 2019. The ultimate
832 qPCR experiment: producing publication quality, reproducible data the first time. *Trends*
833 *in biotechnology* 37, 761-774.
- 834 Thelander, M., Landberg, K., Sundberg, E., 2018. Auxin-mediated developmental control in the
835 moss *Physcomitrella patens*. *Journal of Experimental Botany* 69, 277-290.
- 836 Tomescu, A.M., 2009. Megaphylls, microphylls and the evolution of leaf development. *Trends*
837 *in plant science* 14, 5-12.
- 838 Verna, C., Sawchuk, M.G., Linh, N.M., Scarpella, E., 2015. Control of vein network topology
839 by auxin transport. *BMC biology* 13, 1-16.
- 840 Wang, C., Liu, Y., Li, S.-S., Han, G.-Z., 2015. Insights into the origin and evolution of the plant
841 hormone signaling machinery. *Plant physiology* 167, 872-886.
- 842 Withers, K.A., Kvamme, A., Youngstrom, C.E., Yarvis, R.M., Orpano, R., Simons, G.P., Irish,
843 E.E., Cheng, C.-L., 2023. Auxin Involvement in *Ceratopteris* Gametophyte Meristem
844 Regeneration. *International journal of molecular sciences* 24, 15832.
- 845 Xiang, D.-L., Li, G.-S., 2024. Control of leaf development in the water fern *Ceratopteris*
846 *richardii* by the auxin efflux transporter CrPINMa in the CRISPR/Cas9 analysis. *BMC*
847 *Plant Biology* 24, 1-10.
- 848 Xiao, Y.-L., Li, G.-S., 2024. Differential expression and co-localization of transcriptional
849 factors during callus transition to differentiation for shoot organogenesis in the water fern
850 *Ceratopteris richardii*. *Annals of Botany*, mcae006.

851 Yu, J., Zhang, Y., Liu, W., Wang, H., Wen, S., Zhang, Y., Xu, L., 2020. Molecular evolution of
852 auxin-mediated root initiation in plants. *Molecular Biology and Evolution* 37, 1387-1393.
853 Zhang, Y., Xiao, G., Wang, X., Zhang, X., Friml, J., 2019. Evolution of fast root gravitropism
854 in seed plants. *Nature communications* 10, 3480.

855

856