

1 Ezrin defines TSC complex activation at endosomal compartments through EGFR-AKT
2 signaling.

3

4 Giuliana Giamundo^{1#}, Daniela Intartaglia^{1#}, Eugenio Del Prete², Elena Polishchuk², Fabrizio
5 Andreone², Marzia Ognibene³, Sara Buonocore¹, Bruno Hay Mele¹, Francesco Giuseppe Salierno²,
6 Jlenia Monfregola², Dario Antonini¹, Paolo Grumati^{2,4}, Alessandra Eva⁵, Rossella de Cegli², Ivan
7 Conte^{1*}

8

9

10 1. Department of Biology, University of Naples Federico II, Strada Vicinale Cupa Cintia, 21,
11 Naples 80126 Italy

12 2. Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078,
13 Italy.

14 3. U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147, Genova, Italy

15 4. Clinical Medicine and Surgery, University of Naples Federico II, Via S. Pansini 5, 80131
16 Naples Italy.

17 5. Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy.

18

19

20

21

22

23 #These authors contributed equally to this work

24 * Corresponding author

25 ivan.conte@unina.it

26

27 **Abstract**

28 Endosomes have emerged as major signaling hubs where different internalized ligand-receptor
29 complexes are integrated and the outcome of signaling pathways are organized to regulate the strength
30 and specificity of signal transduction events. Ezrin, a major membrane-actin linker that assembles and
31 coordinates macromolecular signaling complexes at membranes, has emerged recently as an important
32 regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex
33 interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in
34 response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of
35 Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC
36 complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively
37 active EZRIN^{T567D} is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1.
38 Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF
39 stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1.
40 Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to
41 the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a
42 pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC
43 complex, which are essential for retinal function.

44

45 **Keywords:** EGFR, EZRIN, endosomal signaling, TSC complex, mTORC1.

46 **Abbreviations:** RPE: retinal pigment epithelium; POS: photoreceptor outer segment; ERM: Ezrin-
47 radix-moesin; EZR: Ezrin; NHE1: sodium-hydrogen antiporter 1; EGFR: epidermal growth factor
48 receptor; Vsp11: vacuolar protein sorting 11; PI3K: Phosphoinositide-3-kinase; AKT: protein kinase B;
49 EGF: epidermal growth factor; TSC complex: Tuberous sclerosis complex; mTORC1: mammalian
50 target of rapamycin complex 1; GTPase: Guanine nucleotide-binding proteins; MEF: Mouse Primary
51 Embryonic Fibroblasts; LAMP1: Lysosomal Associated Membrane Protein 1; LC3: Microtubule-
52 associated proteins 1A/1B light chain 3B; CTSB: Cathepsin B; HER3: human epidermal growth factor
53 receptor 3; HER2: human epidermal growth factor receptor 2; EEA1: early endosome antigen 1;
54 MAPK: mitogen-activated protein kinase; MK2: Mitogen-activated protein kinase-
55 activated protein kinase 2; ARPE: Retinal Pigment Epithelial Cells.

56

57 **INTRODUCTION**

58 Endosomes are intracellular membrane-bound organelles that receive, integrate, and transmit a variety
59 of signals to intracellular compartments. Trafficking of receptors, ion channels, lipids, and other
60 effector proteins within the endosomal vesicles provides a mechanism to either sustain intracellular
61 signaling pathways active (Palfy, Remenyi, & Korcsmaros, 2012) or to downregulate signaling
62 pathways through their degradation in lysosomes. Accordingly, altered endosomal maturation and
63 function play a key role in the pathogenesis of a wide range of human diseases including diabetes,
64 cancer, and neurodegenerative disorders. Therefore, new insights about endosomal signaling and
65 understanding the molecular components restricting signaling activity to specific pathways will
66 uncover new opportunities for pharmacological targeting of such disorders. In the retinal pigment
67 epithelium (RPE), endosomes contribute to the diurnal clearance of phagocytosed photoreceptor outer
68 segments (POS) that is required for RPE and photoreceptor health. This process is linked to circadian
69 and light phase and is initiated by the scission from the plasma membrane of phagosomes containing

70 POS, which undergo gradual fusion with endosomes and finally with lysosomes in a coordinated
71 process termed “maturation”. The high demand on lysosomes for the digestion and recycling of
72 phagocytosed POS rather than for the clearance of mitochondria, oxidized proteins, and other cellular
73 components suggests the existence of a signaling pathway that can finely coordinate lysosomal
74 function according to needs that will not upset cellular homeostasis. A long-standing question in the
75 field is how functional diversity within the autophagy pathway is achieved in the RPE in the dark and
76 light phases. Inhibition of endosomal biogenesis, trafficking, and fusion is associated with impairment
77 of lysosomal biogenesis and autophagy flux. Implicit in these findings is the idea that endosomes, by
78 carrying signaling molecules, could serve as a signaling hub for the regulated transfer of signals to
79 lysosomes, acting more specifically than diffusion-based signal propagation. However, how endosomes
80 are essential for lysosomal function, and their relevant components regulating this process are still not
81 well defined.

82 Ezrin, a member of the ezrin-radixin-moesin (ERM) protein family, is mainly localized just beneath the
83 plasma membrane around cellular protrusions and villi. Ezrin acts as a scaffolding platform to cross-
84 link F-actin cytoskeleton with specialized membrane components (Kawaguchi & Asano, 2022) that are
85 implicated in the spatiotemporal dynamics of phagosomes and endosomes. Its association with both F-
86 actin filaments and membrane proteins is finely regulated and requires conformational activation
87 through phosphorylation at unique (Y353, Y477, and T567) residues. The central role of Ezrin in
88 regulating trafficking of vesicles has been described (Cha et al., 2006; Tamma et al., 2005; Zhou et al.,
89 2003). Indeed, maturation of endosomes and recycling/exocytosis of their components (i.e. $\alpha 1\beta$ -
90 adrenergic receptor, NHE3, and others) require the Ezrin protein (Barroso-Gonzalez, Machado, Garcia-
91 Exposito, & Valenzuela-Fernandez, 2009; Cha et al., 2006; Stanasila, Abuin, Diviani, & Cotecchia,
92 2006; Zhao et al., 2004; Zhou et al., 2005). The phosphorylated active Ezrin is observed within early
93 and late endosomes (Parameswaran, Enyindah-Asonye, Bagheri, Shah, & Gupta, 2013). Moreover,

94 through its active and reversible interactions with actin filaments and endosomal proteins, Ezrin
95 organizes signal transduction. Indeed, phosphorylation of the T567 residue of EZRIN leads to its
96 colocalization in a functional complex with NHE1, EGFR, and β 1-integrin in human breast tumors,
97 suggesting its crucial role as a scaffold protein of EGFR (Antelmi et al., 2013). Accordingly, Ezrin also
98 interacts with EGFR at membranes (Saygideger-Kont et al., 2016). In mammalian cells, depletion of an
99 Ezrin-interacting protein, Vsp11, delays the delivery of EGFR to endosomes (Chirivino et al., 2011),
100 thus linking the Ezrin protein network with EGFR trafficking via clathrin-coated transport vesicles.
101 However, the mechanisms of Ezrin-EGFR interaction and its function at the endosomal compartments
102 remain largely unexplored. Interestingly, recent findings have shown that PI3K-mediated activation of
103 AKT upon EGF stimulation is mediated by EGFR via an early endocytic pathway (Nishimura,
104 Takiguchi, Ito, & Itoh, 2015). These findings suggest that Ezrin may be required as a protein scaffold
105 for coordinating EGFR/AKT signaling at endosomes. Interestingly, EZR interacts with AKT in breast
106 cancer cells (Li et al., 2019). In addition, the Y353-phosphorylation of Ezrin is relevant for PI3K-
107 initiated signaling through its interaction with p85, the regulatory subunit of PI3K (Gautreau, Poulet,
108 Louvard, & Arpin, 1999). Notably, the Ezrin-p85 complex optimizes the physiological activation of
109 AKT, supporting a central role of Ezrin in controlling intracellular pathways in response to external cell
110 signaling (Gautreau et al., 1999).

111 Accumulating evidence has shown that the AKT-mediated Tuberous Sclerosis Complex (TSC
112 complex) phosphorylation is a major mechanism in triggering the activity of the GTPase Rheb (Ras
113 homolog enriched in brain), an essential activator of mTORC1 at lysosomes. We demonstrated
114 recently that Ezrin is a key regulator of lysosomal biogenesis and functions in RPE/retina crosstalk by
115 modulating TFEB nuclear translocation (Naso et al., 2020). Moreover, Ezrin overexpression leads to
116 altered autophagy and an impairment of POS maturation and degradation in RPE cells (Naso et al.,
117 2020). Thus, it is intriguing that Ezrin has been recently observed to be associated with lysosomes

118 (Poupon, Stewart, Gray, Piper, & Luzio, 2003). Furthermore, cancer cell proliferation and invasion
119 through an activated Akt/mTORC1 pathway was linked with activation of Ezrin (Krishnan et al.,
120 2006). In contrast, depletion of Ezrin was found to be associated with the repression of the mTORC1
121 pathway (Wan, Mendoza, Khanna, & Helman, 2005). Together, these data led us to hypothesize that
122 Ezrin-mediated EGFR endosomal sorting and trafficking could play a central role in mTORC1
123 activation on lysosomes.

124 Here, we identify a previously undocumented function for Ezrin as a platform that is essential for the
125 endosomal signaling network involving EGFR and AKT pathways, which provides an important
126 insight into the spatial inactivation of the TSC complex on endosomal compartments. We show that
127 inactivation of Ezrin is crucial to neutralize EGF-stimulated EGFR endosomal sorting and signaling
128 from the plasma membrane with a reduction of AKT-mediated phosphorylation of TSC complex,
129 which in turn translocates and inhibits mTORC1 on lysosomes. These results reveal an essential layer
130 of mTORC1 regulation by Ezrin and EGFR signaling and uncover part of the paradigm of signaling
131 from endosomes to lysosomes to coordinate the lysosomal function in the retina and other tissues.
132 Consistent with the role of the Ezrin/EGFR/TSC complex axis in lysosomal biogenesis and function,
133 alteration of this molecular network alters autophagy *in vivo* in Medaka fish, resulting in retinal
134 degeneration. Derangement of this control mechanism may underpin human eye disorders and may be
135 relevant as a therapeutic target to restore normal vision.

136

137 **RESULTS**

138 **Ezrin regulates lysosomal biogenesis.**

139 Activated Ezrin represses the autophagy pathway in the RPE (Naso et al., 2020), but the mechanism
140 remains undefined. To gain insights into this, we used integrated comparative analysis by unbiased

141 RNA-seq and high□resolution mass spectrometry□based proteomic studies on Ezrin^{-/-} mouse
142 embryonic fibroblasts (MEFs) (EZR^{KO}) (Ognibene et al., 2011). The comparison of the transcriptomics
143 and proteomics identified 572 commonly regulated genes: 317 and 213 genes are induced and inhibited
144 in both datasets, respectively (Figure supplement 1A). Gene Ontology (GO) and Functional Annotation
145 Clustering analyses were performed on these 530 commonly differentially expressed genes (DEGs),
146 restricting the output Cellular Compartments (CC) terms (Tables supplement 1-3). We found an
147 enriched overlap of these genes in cell compartments, including cell membrane and lysosome (Figure
148 1A, Figure supplement 1A and supplement 1B and Tables supplement 1-3). Consistent with this,
149 immunofluorescence analysis revealed that the EZR^{KO} displayed an increased number of lysosomes, as
150 assessed by quantification of lysotracker-fluorescent staining and Lamp1-LC3 colocalization (Figure
151 1B-F). Compared with WT MEFs, lysosomal Cathepsin B (CTSB) activity of EZR^{KO} MEFs was
152 significantly increased (Figure 1G). Furthermore, western blot analysis also revealed that EZR^{KO}
153 increased the expression of lysosomal markers (LAMP1, CTSD and LC3) as well as reducing the levels
154 of the autophagy substrate p62 and NBR1 (Figure 1H). To further investigate whether this autophagic
155 induction was Ezrin dependent, we inserted a frameshift deletion of 13 nt in the coding region (exon 2)
156 of the *EZRIN* gene in HeLa cells via CRISPR/Cas9-mediated genome editing (EZR^{-/-}) (Figure
157 supplement 1D). Concordantly, we found that EZR^{-/-} cells have a significantly increased number of
158 lysosomes and increased lysosomal activity (Figure supplement 1E-G), indicative of augmented
159 lysosomal biogenesis and function. Consistent with this, western blot analysis showed that autophagic
160 flux and lysosomal markers were also increased in EZR^{-/-} compared to control (Figure supplement 1H
161 and I). Notably, we found TFEB nuclear localization as a consequence of Ezrin depletion (Figure
162 supplement 1J), in line with previous results (Naso et al., 2020). Taken together, these results reveal the
163 crucial roles of Ezrin in lysosomal biogenesis and function. These results are consistent with our

164 previous report showing that the autophagy pathway is blocked by Ezrin overexpression *in vivo* (Naso
165 et al., 2020).

166

167 **Ezrin interacts with EGFR and regulates its activation.**

168 Previous studies have implicated Ezrin in coordinating signaling complexes on membranes in cancer,
169 raising the question of whether the Ezrin-mediated control of autophagy may be attributed to an
170 alteration of signaling pathways. To identify potential signaling pathways affected by Ezrin
171 modulation, we performed an enrichment analysis of the 530 differentially expressed genes in EZR^{KO},
172 using stable isotope labeling by amino acids in cell culture (SILAC) phosphoproteomics, kinase
173 perturbations from GEO database, and the Proteomics drug atlas. Interestingly, SILAC
174 phosphoproteomics data highlighted a significant overlap with phosphorylation changes in HeLa cells
175 upon EGF treatment (Figure 2A and Table supplement 4). Accordingly, kinase perturbation revealed a
176 significant overlap with downregulated genes upon EGFR drug activation (Figure supplement 2A and
177 Table supplement 4), whereas Proteomics drug atlas revealed a significant enrichment in cells upon
178 AZ628 (a Raf Inhibitor) or MEK162 (a MEK inhibitor) (Figure supplement 2B and Table supplement
179 4) (B. Liu, Chen, Johns, & Neufeld, 2006; Mitchell et al., 2023; Olsen et al., 2006; Ong et al., 2002;
180 Warde-Farley et al., 2010) (All resources are available <https://maayanlab.cloud/enrichr-kg/downloads>).
181 Thus, we hypothesized that the EGFR needs to be selectively recognized by EZRIN to be subjected to
182 EZRIN-mediated endosomal trafficking and signaling. Consistent with this, gene network based on
183 physical interaction reveals EGFR as a possible direct EZRIN protein partner (Figure 2B and Table
184 supplement 5). Moreover, EGFR resulted strongly upregulated in our omics dataset (Figure 2C) and co-
185 immunoprecipitation (CoIP) experiments revealed a complex composed of EZRIN and EGFR (Figure
186 2D), consistent with human biomedical interaction repositories (Oughtred et al., 2021; Petschnigg et
187 al., 2014; Salokas et al., 2022). To further detail this possible interaction, we assessed all possible

188 pairwise interactions between the known domains of Ezrin UID:P15311 and EGFR (UID:P00533) by
189 mining 3did (10.1093/nar/gkt887) and PPIDomainMiner (10.1371/journal.pcbi.1008844) (Figure
190 supplement 2C). Interestingly, the EZRIN-EGFR interaction appears to occur between the FERM
191 central domain (PF00373) of Ezrin with the PK domain (PF07714) of EGFR, in line with previous
192 structural studies by X-ray diffraction in which was patterned a direct interaction of the FERM domain
193 with kinase domain of focal adhesion kinase (FAK) (Lietha et al., 2007). Phosphorylated Ezrin
194 (Thr567) localizes at curved cytoplasmic membranes and has been implicated as a membrane-
195 cytoskeleton scaffolding protein rather than a membrane shaper (Tsai et al., 2018). We therefore tested
196 whether phosphorylation at Thr567 of Ezrin was involved in interacting with EGFR in a complex at
197 cytoplasmic membrane. As hypothesized, phosphomimic active-EZR^{T567D}, but not phospho-mutant
198 inactive-EZR^{T567A} protein (Naso et al., 2020), when expressed in EZR^{-/-} cells, highly co-
199 immunoprecipitated with EGFR (Figure 2E). These data support that active EZRIN protein interacts
200 with EGFR. Co-immunostaining analysis confirmed that EZRIN is localized at the plasma membrane
201 with EGFR (Figure 2F). Moreover, a fraction of the EZRIN signal colocalizes with EGFR, within same
202 intracellular compartments (Figure 2F), supporting the presence of an EZRIN/EGFR complex, in which
203 EZRIN acts as a scaffold protein for EGFR. Thus, we postulated that EZRIN participates in EGFR
204 trafficking and signaling. To test this hypothesis, we examined the expression levels and subcellular
205 distribution of EGFR under normal and EZRIN-depleted conditions by immunofluorescence staining
206 and Western blot (Figure 2G-I). Interestingly, the genetic depletion of EZRIN strongly induced a
207 statistically significant localization of EGFR at the plasma membrane and dramatically reduced its
208 presence within intracellular compartments (Figure 2G and H). Considering that the specific EGFR
209 signals can arise from intracellular compartments, such as the endosomal compartment (Burke,
210 Schooler, & Wiley, 2001), we examined whether EZRIN depletion would impair EGFR signaling.
211 Consistent with proteomic results, we found that the levels of total EGFR are increased in EZR^{-/-}

212 compared to control cells (Figure 2I). However, western blot analysis demonstrated that the absence of
213 EZRIN induced a reduction in EGFR signaling. Notably, the level of HER3 and active pY845 EGFR
214 were almost abolished following EZRIN depletion, in line with previous results where disruption of
215 wild-type EGFR signaling induced reduction of HER3 (B. Liu, Chen, Chen, Saber, & Haisma, 2020).
216 Interestingly, lack of EZRIN also reduced the EGFR-stimulated phosphorylation of p38 MAPK at
217 Threonine 180 (T180) and Tyrosine 182 (Y182). However, we noticed an increased phosphorylation at
218 T222 of its substrate, MK2 (Figure 2I). The latter result could be due to an activation of the ERK
219 pathway that might attenuate EZRIN/EGFR-dependent reduction of p38 MAPK signaling. Indeed,
220 ERK2 binds and phosphorylates MK2 (Sok et al., 2020). Future studies will be needed to investigate
221 ERK1/2 signaling is part of the EZRIN/EGFR-mediated signaling network. Taken together, these data
222 suggest a model by which the EZRIN interaction with EGFR contributes to EGFR trafficking and
223 signaling.

224

225 **Ezrin regulates endocytic EGFR sorting and signaling.**

226 Activation of EGFR leads to its internalization and trafficking to early endosomes, which sustains
227 specific EGFR signaling and recycling (Burke et al., 2001). We asked if the increased EGFR protein
228 level at cell membrane and the reduction of EGFR signaling in EZR^{-/-} cells could be due to an
229 alteration in EGFR dimerization and packaging into endosomal vesicles. To test this hypothesis, the
230 cellular internalization and trafficking of EGFR basis was investigated by immunofluorescence and
231 live-imaging studies. We found that the lack of Ezrin statistically reduced dimerization of EGFR upon
232 EGF stimulation (Figure 3A and B). These results were confirmed by immunofluorescence analyses;
233 indeed, compared to control cells, Ezrin-depleted cells showed higher levels of EGFR on the cell
234 surface, which was mirrored by reduced EGFR abundance at endosomal compartments, as assessed by
235 a reduction in the overlap between EGFR and EEA1 signals (Figure 3C and D) and increased EGFR

236 protein levels on purified membranes (Figure 3E-F upper panels). Consistently, EGFR endosomal
237 localization was present on purified endosomes from control but not from EZR^{-/-} cells (Figure 3E-F
238 lower panels). The reduced internalization of EGFR to endosomes was not accompanied by a
239 suppression of endocytosis, as indicated by the slight and significant increase in the number of EEA1-
240 positive early endosomes and endotracker-positive structures in EZR^{-/-} compared to WT cells (Figure
241 3G and H). These results support that EGFR accumulation at the plasma membrane was not a result of
242 an endocytosis defect. To better define whether the lack of EZRIN alters EGFR internalization and
243 trafficking in EZR^{-/-} cells upon EGF stimulation, we performed Total Internal Reflection Fluorescence
244 (TIRF) time-lapse imaging at high spatiotemporal resolution. Both EZR^{-/-} and control cells, transfected
245 with an EGFR-GFP vector, were imaged every 0.5□s for 5 min upon EGF treatment. Notably, the
246 EGF-induced EGFR endosomal internalization was dramatically abolished in EZR^{-/-} compared to
247 control cells (Figure 4A-C, Figure 5A and Video 1-4). Consistent with a defective EGFR integration in
248 the early endosome, EGFR was localized at the plasma membrane in EZR^{-/-} cells, despite EGF
249 stimulation (Figure 4A-C, Figure 5A and Video1-4). These results suggest that EZRIN play an
250 important role for the dimerization, integration, and trafficking of EGFR in the endosomes. To
251 strengthen these findings, we performed ultrastructural analysis using immunoelectron microscopy
252 (IEM) that further revealed the reduced number of EGFR-positive endosomal compartments and the
253 increased presence of EGFR at the plasma membrane in EGF-stimulated EZR^{-/-} compared with EGF-
254 stimulated control cells (Figure 5B). Consistent with this, pY845 EGFR, pY1068 EGFR, pT202/Y204
255 p44/42 MAPK, and pT180/pY182 p38 MAPK were reduced upon EGF stimulation in EZR^{-/-} cells
256 (Figure 5C). Moreover, the increased EGFR internalization from membranes to endosomes by EGF
257 stimulation was significantly inhibited in EZR^{-/-} cells compared to WT (Figure 5D). As expected, we
258 found that the endosomal EGFR internalization was further repressed in MEF-EZR^{KO} (Figure
259 supplement 2D-H) and in HeLa cells upon NSC668394 treatment (Figure supplement 3A-B), a specific

260 Ezrin inhibitor (Naso et al., 2020). Taken together, these data strongly support a primary role of EZRIN
261 in mediating the internalization and trafficking of EGFR from plasma membrane to endosomes.

262

263 **The endosomal Ezrin-EGFR complex targets TSC complex protein**

264 We next sought to identify the molecular networks by which Ezrin/EGFR axis controls lysosomal
265 biogenesis and function. Interestingly, EGFR stimulates several downstream effectors, including
266 PI3K/AKT signaling in response to multiple stimuli (Wee & Wang, 2017). This led us to investigate
267 the role of Ezrin/EGFR axis in the control of AKT signaling. AKT binds, phosphorylates, and inhibits
268 hamartin (TSC1) and tuberin (TSC2) complex. TSC complex is essential to turn off the activity of
269 Rheb, a crucial activator of mTORC1 at lysosomal surface (Dibble & Cantley, 2015). This raised the
270 possibility of Ezrin-mediated activation of EGFR signaling would be required for AKT activation and
271 thus stimulation of the mTORC1 pathway via TSC complex repression. To test this hypothesis, we
272 analyzed the interaction between endogenous Ezrin/EGFR with AKT and TSC1 to define an
273 endosomal signaling platform. In agreement with previously presented data (Haddad et al., 2002),
274 TSC1 and AKT co-immunoprecipitated with EZRIN (Figure 6A upper panel). We also noticed that
275 Ezrin was able to interact with TSC2 (Figure 6A upper panel). The molecular basis of these
276 interactions was investigated by *in silico* domain-domain interaction analyses. Accordingly, EZRIN
277 (UID:P15311) was found as a scaffold protein interacting through its FERM central domain with the
278 PK domain of EGFR, as detailed above (Figure supplement 2C), and binding TSC1. Although
279 Alphafold3 modeling of the EZRIN/TSC1 dimer did not provide high-confidence results, suggesting
280 that the TSC1 (PF04388) could interact with both FERM N-terminal (PF09380) and C-terminal
281 (PF09379) domains of EZRIN (Figure supplement 3C-H). Concordantly, PPIDomainMiner identifies
282 the FERM-N/C-hamartin as moderately confident (silver class), further supporting the possibility of
283 EGFR/EZRIN/TSC1 interactions. Consistently, immunoprecipitation of EGFR was able to pull down

284 both TSC1 and AKT (Figure 6A lower panel), suggesting that EGFR, AKT, TSC1 and EZRIN are
285 present in a complex. The latter results led us to investigate whether EGFR could interact with AKT
286 and TSC1 indirectly through EZRIN. Co-immunoprecipitation experiments confirmed this possibility,
287 given that *EZRIN* depletion abolished the interactions of EGFR with TSC1 and AKT, thereby pointing
288 out the role of Ezrin as a scaffold protein for the formation and activation of the EGFR/AKT/TSC1
289 signaling (Figure 6A). In agreement with this hypothesis, the lack of Ezrin reduced pS473 AKT
290 activation and in turn suppressed AKT-mediated phosphorylation of pS939 TSC2 (Figure 6B). As
291 expected, the inactivation of AKT promoted activation of TSC1 and TSC2, which localized on the
292 lysosomes in EZR^{-/-} cells (Figure 6D and E). Consistently, translocation of the TSC complex on the
293 lysosomes led to inhibition of mTORC1 pathway, as demonstrated by reduction of pT389 P70 S6
294 Kinase and pS65 4E-BP1 levels (Figure 6B). In agreement, the insulin administration was not able to
295 restore mTORC1 signals (Figure 6C) and lysosomal localization of TSC complex in EZR^{-/-} cells
296 (Figure supplement 3J), in line with the hypothesis that Ezrin acts as a scaffold protein for AKT/TSC
297 complex. Thus, we ensured that these findings were also confirmed when EZRIN was
298 pharmacologically inhibited on HeLa (Figure supplement 4A) and ARPE-19 cells (Figure supplement
299 4B and C). Concordantly, these results were mirrored in MEF EZR^{KO} cells that yield a similar pattern
300 (Figure supplement 4D and E). To strengthen the molecular mechanism by which EGFR/EZRIN
301 controls mTORC1 pathway via TSC complex, we investigated the effects of EZRIN inhibition on MEF
302 TSC2^{KO} cells and found that depletion of TSC2 rescue TORC1 signaling when Ezrin was
303 pharmacologically inhibited (Figure supplement 4F). Together, these results establish an Ezrin-
304 dependent molecular machinery coordinating EGFR sorting and signaling at the endosome to a well-
305 regulated signals transfer to lysosomes via AKT/TSC complex axis. Consistent with this idea,
306 phosphorylation of pS473 AKT was significantly abolished in response to EGF treatment in EZR^{-/-}
307 compared to control cells (Figure 6F). Accordingly, using confocal Airyscan high-resolution

308 microscopy, we found that the majority of the TSC complex was present in early endosomes of HeLa
309 WT cells upon EGF treatment, as shown by co-localization with the endosomal marker EEA1 (Figure
310 6G and H). Notably, the endosomal TSC complex localization was abolished in EGF-treated EZR^{-/-}
311 cells (Figure 6G and H), which indicates that EGFR-mediated repression of TSC complex by AKT
312 activation could occur in a stable endosomal complex dependent on Ezrin. Consistently, the ectopic
313 expression of a constitutively active EZR^{T567D} protein, but not a constitutively inactive Ezr^{T567A} protein,
314 rescued EGFR sorting and signaling activation at the endosome in EZR^{-/-} cells upon EGF treatment
315 (Figure supplement 5A). Additionally, EZR^{T567D}, but not EZR^{T567A}, rescued the physiological
316 localization of TSC complex on the cytoplasm in EZR^{-/-} cells (Figure supplement 5B). Moreover, full
317 translocation of TSC complex on endosomes was restored in EZR^{-/-} cells expressing EZR^{T567D} protein
318 after EGF treatment, as shown by co-localization between TSC1 and EEA1 proteins (Figure
319 supplement 5B).

320

321 **Aberrant EGFR signaling induces retinal degeneration in EZR^{-/-} medaka fish.**

322 To further investigate the role of EZRIN/EGFR axis, which is conserved among vertebrates, in daily
323 modulation of lysosomal biogenesis and function in retinal cells, we carried out *in vivo* experiments.
324 Accordingly, we found that the EGFR expression pattern in the rodents' retina diminished in response
325 to light and increased after light off (Figure supplement 6A and B), coinciding with Ezrin expression
326 and diurnal lysosomal biogenesis in the RPE/retina (Naso et al., 2020). Consistently, we found an
327 inhibition of TSC2 and an increase of AKT/mTORC1 pathway in the mice retina in response to dark
328 condition, when active Ezrin (Naso et al., 2020) and EGFR are highly expressed (Figure supplement
329 6C). Moreover, we found that TSC2 was dephosphorylated in response to light in the retina, when
330 inactive Ezrin (Naso et al., 2020) and EGFR are weakly expressed (Figure supplement 6C) as a
331 consequence of a decrease of the AKT/mTORC1 signaling, which suggests that activation of Ezrin

332 underlies the requirement endosomal EGFR signaling to assemble the EGFR/AKT/TSC complex and
333 represses lysosomal biogenesis. This data supported that EGFR signaling in retinal cells could be
334 regulated by Ezrin for finely control lysosomal biogenesis and function in mTORC1-dependent
335 manner. Thus, we used the highly effective CRISPR-Cas9 mediated mutagenesis to create stable Ezrin
336 mutant lines in Medaka fish (*Oryzias latipes*, OI) as *in vivo* model system. Targeting two sgRNAs
337 (sgRNA1 and sgRNA2) in the exon 1 of *Ezrin* gene, we generated a 386 bp deletion and established
338 founder lines for this deletion. This mutation eliminates the first 129 amino acids containing ATG
339 ($\text{olEzrin}^{\Delta 386}$), generating a severely truncated Ezrin protein (Figure 7A), which was not detectable by
340 western blot analyses (Figure 7B). This indicated that the $\Delta 386$ Ezrin allele is likely functionally null,
341 and mutants will hereafter be called $\text{Ezrin}^{-/-}$ medaka line. Larval homozygous $\text{Ezrin}^{-/-}$ medaka line
342 appeared almost visually indistinguishable from wild-type siblings, and the $\Delta 386$ allele was inherited in
343 Mendelian ratios (Figure 7C). Interestingly, the $\text{Ezrin}^{-/-}$ medaka larvae recapitulated in part a previously
344 reported phenotype characterized in postnatal ezrin knockout mice (Bonilha, Rayborn, Saotome,
345 McClatchey, & Hollyfield, 2006). Consistent with our *in vitro* data, we observed increased levels of the
346 EGFR protein accompanied by a significant reduction of active pY845 EGFR. This was associated by a
347 significant reduction of the phosphorylation of pS473 AKT in $\text{Ezrin}^{-/-}$ Medaka line compared to control
348 larvae (Figure 7D). Consistently, we observed reduced AKT-mediated phosphorylation of pT1462 of
349 TSC2, decreased mTORC1 signaling as shown by reduction of p4EBP1 (S65) and an increased
350 autophagy, as demonstrated by higher levels of LC3-II and Lamp1 (Figure 7D and E). Notably,
351 endosomal internalization of EGFR was significantly repressed in the RPE of $\text{Ezrin}^{-/-}$ medaka line.
352 Consistent with defective EGFR internalization and trafficking, whole mount immunofluorescence
353 analysis showed that EGFR accumulated at plasma membrane of RPE of $\text{Ezrin}^{-/-}$ medaka line compared
354 with control fish (Figure 7F). Considering the role of endosomal sorting and signaling in the health of
355 retinal cells (Toops, Tan, & Lakkaraju, 2014), we addressed the consequences of aberrant EGFR

356 signaling pathway in retina of Ezrin^{-/-} medaka line. Notably, defective endosomal EGFR signaling was
357 sufficient to induce deleterious consequences for the health of photoreceptor cells, which showed
358 reduction in photoreceptor outer segments compared with native rods (Figure 7G), similarly to the
359 pathogenesis of macular degeneration (Borrelli et al., 2020; Kaur & Lakkaraju, 2018). Notably,
360 depletion of *oLEzrin* was also associated with a significant increase in the number of TUNEL-positive
361 cells in the retina from Ezrin^{-/-} medaka compared to control (Figure 7H). Altogether, these data support
362 the dynamic regulation of EGFR signaling at endosomal compartments in response to Ezrin activation,
363 which assembles and activates an EGFR/AKT/TSC complex signalosome at endosomes to finely
364 regulate the lysosomal signaling by mTORC1 pathway, required for the correct autophagy and retinal
365 cell health (Figure 8).

366

367 **DISCUSSION**

368 Canonical EGFR signaling begins at the plasma membrane with the engagement of the EGF ligand
369 (Tanaka et al., 2018). Emerging studies have indicated that sorting of the EGF-EGFR complex to
370 endosomal vesicles requires spatiotemporally defined encounters with distinct cytoskeleton platforms
371 resulting in internalization, activation, maintenance or termination of EGFR signaling (Ceresa, 2012;
372 Wang, Pennock, Chen, & Wang, 2002). Consistent with this notion, it is now increasingly recognized
373 that many molecules participating in signal transduction are central sorting hubs that coordinate
374 signaling from and to different intracellular compartments, including early endosomes, late endosomes,
375 phagosomes, and lysosomes (Sorkin & von Zastrow, 2009). However, molecular networks determining
376 selective signal transduction from endosomes to lysosomes are not well defined. In this study, we
377 demonstrated that EZRIN is a cytoskeleton scaffold protein aligned along internal membranes, and that
378 this localization is essential for endosomal EGFR signal transduction to the TSC complex. Endosomal

379 EGFR sorting and activation occurs mainly due to binding with EZRIN that facilitates dimerization and
380 activation of the EGF-EGFR receptor complex, resulting in their recruitment to endosomes, followed
381 by AKT activation that targets and inhibits the TSC complex. Indeed, time-lapse confocal imaging
382 revealed that EGFR fails to be recruited to endosomal compartments upon EGF stimulation in the
383 absence of Ezrin or in the presence of its inactive form (EZRIN^{T567A}). The loss of Ezrin function
384 compromises EGFR-mediated AKT activation, which in turn reduces TSC complex inhibition resulting
385 in TSC complex translocation to lysosomes where it constrains mTORC1 activity. Consistent with this,
386 not only does loss of Ezrin impact on lysosomal TSC complex translocation, but we also documented
387 that dephosphorylation of Ezrin in its inactive form is required for EGFR inactivation and TSC1 and
388 TSC2 release from an EGFR/EZRIN complex, possibly to support the lysosomal biogenesis and
389 function. Indeed, autophagy appears to be highly sensitive to pharmacological Ezrin inhibition via the
390 EGFR/AKT axis. Moreover, overexpression of EZRIN^{T567A}, but not EZRIN^{T567D}, fails to restore EGFR
391 endosomal signaling and lysosomal function in Ezrin-defective cells, indicating that phosphorylation of
392 Ezrin is indispensable for this activity. Supporting this possibility, loss of β A3/A1-crystallin affects
393 PIP β /PLC signaling axis associated with an age-related loss of PLC-mediated Ezrin phosphorylation
394 and subsequent compromised RPE cell polarity and EGFR signaling. Notably, the lysosome-mediated
395 POS clearance was disrupted in the Cryba1 cKO RPE (Shang et al., 2021). Beyond this, our findings
396 also showed an interaction of EGFR with the TSC complex and their co-localization with endosomes,
397 opening to future work on mechanisms of how endosomal system connects extracellular signals with
398 lysosomes under different physiological and pathological conditions.

399 Upregulation of Ezrin has been shown to induce an age-related macular degeneration-like phenotype in
400 miR-211^{-/-} mice (Naso et al., 2020), where light-mediated cell clearance is completely abolished. We
401 can speculate that recruitment of EGFR on endosomal compartments by Ezrin orchestrates a local
402 signal between endosomes and lysosomes to drive tight control on the lysosomal cargo demands,

403 although future studies are needed in this regard. Interestingly, inhibition of EGFR activity, by
404 silencing Rubicon (RUBCN), switches lysosomal cargo degradation from POS associated to LC3-
405 associated phagocytosis to autophagy process in the RPE cells (Muniz-Feliciano, Doggett, Zhou, &
406 Ferguson, 2017). However, the molecular mechanisms are completely unknown. Therefore, Ezrin may
407 represent a nodal point in endosomal compartments where EGFR signaling and AKT converge and
408 integrate to directly control the TSC complex/mTORC1 pathway and lysosomal cargo demands and
409 degradation. Notably, mutations affecting TSC1 and TSC2 alter lysosomal function with retinal
410 manifestations in 40–50% of individuals (Rosset, Netto, & Ashton-Prolla, 2017). This phenotype is
411 also showed in RPE-specific deletion of TSC1 profoundly leading to an age-related impairment in
412 lysosomal function associated with RPE degeneration *in vivo* (Huang et al., 2019).
413 The findings of the cellular mechanisms governing endosomal EGFR sorting and signaling might be of
414 therapeutic relevance. Indeed, alteration of endosomal biogenesis and signaling have been shown to
415 participate in the age-related, progressive neurodegeneration such as in age-related macular
416 degeneration and Alzheimer's disease (REF Kaur et al). Thus, the identification of the mechanisms that
417 control Ezrin/EGFR/mTORC1 molecular network might be exploited for the treatment of diseases in
418 which defective endo-lysosomes play a part.

419

420 **MATERIALS AND METHODS**

421 **3' mRNA sequencing library preparation**

422 The transcriptional response of four biological replicates for both MEF^{WT} and MEF^{Ezr} KO cell lines
423 was analyzed using QuantSeq 3' mRNA sequencing. RNA extraction, quality control and preparation
424 of RNA-seq libraries and sequencing on an NovaSeq6000 platform were carried out in collaboration
425 with the Next Generation Sequencing (NGS) Facility at TIGEM following their standard procedures

426 (Carotenuto et al., 2022). An average yield of ~4.5 Mb was obtained per sample.

427

428 **Computational analysis of deep sequencing data**

429 Data analysis was performed using the pipeline already established at the Bioinformatics and Statistics
430 Core Facility at TIGEM (Pinelli et al., 2016). Briefly, the reads were trimmed to remove adapter
431 sequences and low-quality ends and reads mapping to contaminating sequences (e.g. ribosomal RNA,
432 phIX control) were filtered-out. Alignment was performed with STAR 2.6.0a3 (Dobin et al., 2013) on
433 mm10 reference assembly obtained from cellRanger website⁴ (Ensembl assembly release 93). The
434 expression levels of genes were determined with htseq-count 0.9.15 using mm10 Ensembl assembly
435 (release 93) downloaded from the cellRanger website⁴. We filtered out all genes having < 1 cpm in less
436 than n_min samples and Perc MM reads > 20% simultaneously. Differential expression analysis was
437 performed using edgeR6 (S. Liu et al., 2021).

438

439 **Mass Spectrometry**

440 Protein extraction and preparation of MS samples were carried out in accordance with standard
441 procedures currently utilized in the Mass Spectrometry Facility at TIGEM. About 30 mg of cell lysate
442 was used. Peptides were purified using the iST Kit (Preomics) following the company instructions.
443 Peptide separation and LC MS/MS analysis was carried out accordingly to standard procedures as
444 detailed in (Di Malta et al., 2023)

445

446 **Data analysis of mass spectrometry**

447 At least three independent biological replicates were performed for all experiments. For mass
448 spectrometry, all acquired raw files were processed using MaxQuant (1.6.2.10) and the implemented
449 Andromeda search engine. For protein assignment, spectra were correlated with the UniProt Homo

450 Sapiens including a list of common contaminants. Searches were performed with tryptic specifications
451 and default settings for mass tolerances for MS and MS/MS spectra. Carbamidomethyl at cysteine
452 residues was set as a fixed modification, while oxidations at methionine and acetylation at the N-
453 terminus were defined as variable modifications. The minimal peptide length was set to seven amino
454 acids, and the false discovery rate for proteins and peptide-spectrum matches to 1%. The match-
455 between-run feature with a time window of 0.7 min was used. For further analysis, the Perseus
456 software was used and first filtered for contaminants and reverse entries as well as proteins that were
457 only identified by a modified peptide. For full proteomes and IP-interactomes, the LFQ Ratios were
458 logarithmized, grouped and filtered for min. valid number (min. 3 in at least one group). Missing values
459 were replaced by random numbers that are drawn from a normal distribution. Finally, the intensities
460 were normalized by subtracting the median intensity of each sample. Significantly regulated proteins
461 between conditions were determined by student t-test using FDR < 0.05 as threshold.

462

463 **Functional analysis on transcriptomics and proteomics data**

464 The threshold for the statistical significance of gene expression was FDR < 0.05. The threshold for the
465 statistical significance of the proteomics analysis was $-\log_{10} > 1,3$ and $-\text{Log}_2 > =1$. GOEA and KEGG
466 Pathway were performed on induced and inhibited genes, separately, both in the transcriptome and in
467 the proteome experiments using the DAVID Bioinformatic tool (Huang da, Sherman, & Lempicki,
468 2009a, 2009b) restricting the output to Biological Process (BP), Cellular Compartments (CC) terms.
469 The threshold for statistical significance of GOEA was FDR < 0.1 and the Enrichment Score ≥ 1.5 ,
470 while for the KEGG Pathway analyses it was FDR < 0.1. The comparison of the transcriptomics and
471 proteomics identified 572 commonly regulated genes: 317 and 213 genes were induced and inhibited in
472 both datasets, respectively.

473

474 **Data visualization**

475 Heatmap and Venn diagram were generated using custom annotation scripts.

476

477 **Accession code**

478 The transcriptomics data have been deposited in the NCBI Gene Expression Omnibus (GEO) (Edgar,
479 Domrachev, & Lash, 2002) and are accessible through GEO Series accession number GSE195983. The
480 title of the dataset is: “Transcriptome profile of EZR_KO cells”. For this dataset, a secure token has
481 been created to allow a review of the record: private token. The proteome data was deposited in PRIDE
482 repository and are available via ProteomeXchange with identifier PXD045157.

483

484 **Alpha fold**

485 All protein pairs were modeled using AlphaFold3 (Abramson et al., 2024) through ChimeraX, using
486 the alphafold dimers command to generate a JSON af3 query. The FASTA input for the command was
487 downloaded from UniProt (<https://www.uniprot.org>). AlphaFold3 was run with default settings and
488 random seed. The resulting structures were evaluated by analyzing the predicted Local Distance
489 Difference Test (pLDDT) scores, Predicted Aligned Error (PAE) matrices, and protein interfaces with
490 the alphafold interfaces command in ChimeraX. Simple bash/R scripts were used to mine associations
491 between Pfam domains in the UniProt entries across various databases (PPIDM, 3DID, DOMINE). The
492 domain interaction network was built in R (R Core Team (2024). *_R: A Language and Environment for*
493 *Statistical Computing_*. R Foundation for Statistical Computing, Vienna, Austria. <<https://www.R-project.org/>>.) with tidyverse (doi.org/10.21105/joss.01686) and igraph (10.5281/zenodo.7682609)
495 and visualized using ggraph (<https://CRAN.R-project.org/package=ggraph>). All structural
496 visualization/analyses were run with ChimeraX (Pettersen et al., 2021).

497 **Western blot analysis**

498 After transfection and/or treatments, cells were collected to extract total protein, while mouse eyes
499 were enucleated, and the retina was separated from the RPE. Both mice and cell samples were lysed
500 using RIPA buffer (150 mM sodium chloride, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1%
501 sodium dodecyl sulfate, 50 mM Tris, pH 8.0) with an inhibitor cocktail (Thermo Fisher Scientific,
502 78420). The protein concentration was determined by Bradford analysis and quantified using a Thermo
503 Fisher Helios γ spectrophotometer. Proteins were fractionated by sodium dodecyl sulfate-
504 polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to PVDF membranes (EMD
505 Millipore, IPVH00010), then blocked in Tween 0.1% Tris-buffered saline containing 5% bovine serum
506 albumin (Tocris 5217) for at least 1h at room temperature and subsequently incubated overnight at 4°C
507 with primary antibodies. For Western blot analysis, the following antibodies were used: mouse anti-
508 NBR1 (1:1000, Abnova MO1), rabbit anti-LAMP1 (1:500, Sigma L1418), mouse anti-Ezrin (1:1000,
509 Novex 357300), mouse anti-SQSTM1/P62 (1:1000, Abcam ab56416), rabbit anti-Cathepsin D (1:1000,
510 Cell Signaling 2284), rabbit anti-LC3 (1:1000, Novus NB100-2220), mouse anti-GAPDH (1:1000,
511 Santa Cruz SC-32233), rabbit anti-HER2/ErbB2 (1:1000, Cell Signaling 2165), rabbit anti-
512 HER3/ErbB3 (1:1000, Cell Signaling 12708), rabbit anti-phospho-EGF receptor (Tyr845) (1:1000, Cell
513 Signaling 6963), rabbit anti-EGF receptor (1:1000, Cell Signaling 4267), rabbit anti-MAPKAPK-2
514 (1:1000, Cell Signaling 3042), rabbit anti-phospho-MAPKAPK-2 (Thr222) (1:1000, Cell Signaling
515 3316), rabbit anti-p38 MAPK (1:1000, Cell Signaling 8690), rabbit anti-phospho-p38 MAPK
516 (Thr180/Tyr182) (1:1000, Cell Signaling 4511), rabbit anti-ZO1 (1:1000, Abcam ab216880), mouse
517 anti-EEA1 (1:1000, BD 610457), rabbit anti-Tuberin/TSC2 (1:1000, Cell Signaling 4308), rabbit anti-
518 phospho-Tuberin/TSC2 (Ser939) (1:1000, Cell Signaling 3615), rabbit anti-phospho-Tuberin/TSC2
519 (Thr1462) (1:1000, Cell Signaling 3617), rabbit anti-p70 S6 Kinase (1:1000, Cell Signaling 9202),
520 mouse anti-phospho-p70 S6 Kinase (Thr389) (1:1000, Cell Signaling 9206), rabbit anti-Akt (1:1000,
521 Cell Signaling 9272), rabbit anti-phospho-Akt (Ser473) (1:1000, Cell Signaling 4060), rabbit anti-4E-

522 BP1 (1:1000, Cell Signaling 9644), rabbit anti-phospho-4E-BP1 (Ser65) (1:1000, Cell Signaling 9456),
523 rabbit anti-phospho-4E-BP1 (Thr37/46) (1:1000, Cell Signaling 2855), rabbit anti-Hamartin/TSC1
524 (1:1000, Cell Signaling 6935), mouse anti-EGFR (1:500, Santa Cruz sc-120), mouse anti-p-EGFR
525 (1:500, Santa Cruz sc-57542). After washing 3 times with Tween 0.1% Tris-buffered saline (TBS-T),
526 the membranes were incubated for 1 h at room temperature with the following secondary antibodies:
527 goat anti-rabbit IgG antibody, HPR conjugate, and goat anti-mouse IgG antibody HPR conjugate
528 (1:10,000 EMD Millipore, 12-348; 12-349). Western blot detection was done with ChemiDoc XRS+
529 System-Bio-Rad and quantified using ImageJ software.

530

531 **Immunofluorescence**

532 Mouse eyes were fixed overnight in 4% paraformaldehyde in PBS at 4°C and then cryopreserved by
533 treatment first with 5% and then with 30% sucrose in phosphate-buffered saline and embedded in OCT.
534 Twenty-micrometer cryosections were collected on slides (Superfrost Plus; Fisher Scientific,
535 Pittsburgh, PA). Cells were fixed with 4% paraformaldehyde (Chem Cruz sc-281692) for 15 min at
536 room temperature followed by washing with 1% PBS. After fixation, the cells were permeated with
537 blocking buffer (0.5% BSA, 0.005% saponin, 0.02% NaN₃) for 1 h at room temperature. Medaka fish
538 at stage 40 were subjected to anesthesia and then fixed by incubation in 4% PFA for 4 h at room
539 temperature (RT). Samples were rinsed three times with PTW 1X (1X PBS, 0.1% Tween, pH 7.3) and
540 then incubated overnight in 15% sucrose/PTW 1X at 4°C, and then again incubated overnight in 30%
541 sucrose/PTW 1X at 4°C and embedded. Sixteen-micrometer cryosection were collected on slides. The
542 following primary antibodies were used: rat anti-LAMP-1 (1:400, Santa Cruz sc-19992), mouse anti-
543 LAMP-1 (1:1000, DSHB H4A3), rabbit anti-LAMP1 (1:100, Abcam ab24170), rabbit anti-LC3B
544 (1:200, Novus NB100-2220), rabbit anti-EGF receptor (1:50, Cell Signaling 4267), mouse anti-EEA1
545 (1:100, BD 610457), rabbit anti-Tuberin/TSC2 (1:100, Cell Signaling 4308), rabbit anti-

546 Hamartin/TSC1 (1:1000, Cell Signaling 6935), mouse anti-EGFR (1:50, Santa Cruz sc-120), chicken
547 anti-GFP (1:500, Abcam ab13970), LysoTracker Red (Invitrogen L7528), CellLight Early Endosomes-
548 RFP (Invitrogen C10587). All incubations were performed overnight at 4°C. After washing with 1%
549 PBS, slides were incubated with the following secondary antibodies: Alexa 488 goat anti-
550 rabbit/mouse/Chicken (1:1000, Invitrogen A-11008 rabbit, A-11032 mouse, A-11039), Alexa 594 goat
551 anti-mouse/rat (1:1000, Invitrogen A-11032 mouse, A-11007 rat) and DAPI (1:500, Vector
552 Laboratories H-1200) for 1 h at room temperature; then, the slides were washed with 1% PBS and
553 mounted with PBS/glycerol and imaged with a Zeiss LSM800 microscope. Three dimensional images
554 were imaged with a Zeiss LSM880 confocal microscope equipped with Airyscan super-resolution
555 imaging module, using x63/1.40 NA Plan Apochromat Oil DIC M27 objective lens (Zeiss
556 MicroImaging, Jena, Germany).

557

558 **Live cell imaging**

559 HeLa cells were transiently transfected with EGFR-GFP and treated as indicated in the Fig.s. Time
560 lapse video were acquired for 5 min. One frame was acquired roughly every 0.5 s with lasers set at
561 30% power or below. Total Internal Reflection Fluorescence (TIRF) time-lapse imaging was performed
562 with a 60 x Plan Apo oil immersion lens using a Nikon Eclipse Ti Spinning Disk microscope, and
563 images were annotated, and the video was reconstitute using ImageJ software.

564

565 **Image analysis**

566 Lysotracker and Endotracker quantification. Fluorescent images of the cells were captured at 40 X
567 magnification using a LSM700 Zeiss Confocal Microscopy system, converted to grey-scale and
568 normalized to background staining, using ImageJ. Quantification of lysotracker and endotracker

569 reactivity was measured as mean values to define fluorescence signal intensity (IntDen/Area) and as the
570 area occupied by fluorescent-labeling in each region of interest.

571 LC3-LAMP-1, TSC1-LAMP-1 and TSC2-LAMP-1 colocalization. The colocalization of LC3 (green)
572 and LAMP-1 (red) and TSC1/TSC2 (green) and LAMP-1 (red) were evaluated using a LSM700 Zeiss
573 Confocal Microscopy after immunostaining of endogenous proteins. Average values were calculated
574 over 10 images, each containing a mean of 10 cells per image, and collected from at least three
575 independent experiments. Exposure settings were unchanged throughout acquisition. Images were
576 analysed using the JaCoP plugin (Bolte & Cordelieres, 2006) in ImageJ software.

577 EGFR-positive endosome quantification. Morphometric analysis of the distribution of gold particles
578 (EGFR-labeled) at endosomal structures was performed using iTEM software (Olympus SYS,
579 Germany). In detail, we counted the number of EGFR-positive endosomes on almost 10 26500 x
580 magnification images. In the absence of specific staining, early endosome identification relied on
581 morphological characteristics described in the literature (Vogel et al., 2015).

582

583 **Cathepsin B assay**

584 Cathepsin B activity was measured by a fluorometric assay kit (AB65300; Abcam, Cambridge, MA,
585 USA) following the manufacturer's instructions. The reaction and fluorescence were read at 400 nm
586 (excitation) and 505 nm (emission) on Promega GloMax discover.

587

588 **Cross-linking assay**

589 HeLa cells were washed twice with PBS and then cross-linked with DSP solution (Lomant's Reagent,
590 Thermo Fisher 22585) at a final concentration of 1 mM for 30 min at RT. The reaction was stopped by
591 adding stop solution (Tris-HCl 1 M, pH 7.5) at a final concentration of 10 mM for 15 min at RT. Each
592 sample was analyzed by Western blot assay.

593

594 **Immunoprecipitation assay**

595 Cells were washed three times with ice-cold PBS and then homogenized with ice-cold lysis buffer (20
596 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.5% NP40). At least 1 mg of proteins were
597 immunoprecipitated with mouse anti-Ezrin (Novex, 357300) and rabbit anti-EGF receptor (Cell
598 Signaling 4267) in rotation at 4° C overnight. Then, the immunoprecipitates were conjugated with
599 protein G Beads (Dynabeads Protein G, Thermo Fisher Scientific 10004D), eluted in Laemmli buffer,
600 and subjected to immunoblot analyses.

601

602 **Endosomal and membrane proteins extraction**

603 For endosomal proteins, cultured cells (1×10^6) were collected by low-speed centrifugation and washed
604 with cold PBS. The pellet was resuspended in 500 μ l of Buffer solution of Minute Endosome Isolation
605 (Invent, biotechnologies, ED-028). The endosomal proteins extraction was performed in accordance
606 with manufacturer instructions. For membrane proteins extraction, 5×10^6 cells were scraped off from
607 plate surface and resuspended in growth media. After centrifuging the cells, the pellet was washed with
608 Cell Wash Solution and then was resuspended in Permeabilization Buffer, accordingly with
609 manufacturer instructions (Mem-PER Plus Membrane Protein Extraction Kit, Thermo Fisher, 89842).

610

611 **Cell culture and treatments**

612 ARPE-19, HeLa, and MEF cell lines were obtained from American Type Culture Collection (ATCC).
613 ARPE-19 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM)/F-12, while HeLa and
614 MEF cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Gibco) supplemented with
615 10% (v/v) FBS and 5% penicillin-streptomycin. All cell lines were maintained at 37°C, 5% CO₂ in a
616 humified incubator according to the guidelines provided by the vendors. MEF EZR^{KO} cells were kindly

617 donated by Alessandra Eva of Istituto G. Gaslini, Genova, Italy. To analyze the autophagic flux, cells
618 were treated with 200 nM Bafilomycin A1 (Sigma-Aldrich, B1793) for 3h in an incubator and
619 maintained in starvation for 30 min in HBSS medium (Thermo Fischer Scientific, 14025092)
620 supplemented with 10 mM HEPES (Thermo Fischer Scientific, 156330080). To evaluate EGFR
621 localization in immunoelectron microscopy, HeLa cells were treated with 100 µg/ml cycloheximide
622 (CHX) (Sigma-Aldrich, C4859). Drug treatment was performed for 6 h with 10 µM of *NSC668394* or
623 DMSO as previously reported (Bulut et al., 2012). EGF stimulation was obtained with 10 ng/ml of
624 animal-free recombinant human EGF (Peprotech AF-100-15) for 3h. Insulin stimulation was achieved
625 with 1 µM of Insulin solution human (Sigma I9278) for 30 minutes, after 16 hours of serum starvation.
626 We used a sub-confluent cell culture (i.e. 80% of confluence) for each *in vitro* experiment.

627 **Generation of an EZR^{-/-} HeLa cell line**

628 HeLa (ATCC CCL-2) full knock-out of the *EZRIN* gene was generated using the CRISPr/Cas9 system.
629 The gRNA sequence CAATGTCCGAGTTACCA was selected using
630 the <http://crispor.tefor.net/crispor.py> online tool. HeLa cells were electroporated using the Amaxa
631 system with the nucleofection kit Cat No VCA-1003 from Lonza. Cells were FACS-sorted into 96-well
632 plates to obtain single-cell derived colonies carrying the INDEL mutations. Upon genomic DNA
633 extraction, the genomic sequence containing the targeted region were amplified by PCR reaction with
634 the specific primers: hEZRNup TGCCGTCGCCACACTGAGGA, hEZRNlow
635 TCCTTGCTTCCATGCCTGG. PCR products were analyzed by DNA Sanger sequencing and the cell
636 clone carrying the homozygous deletion *c.23 DEL AGTTACCACCATG* was selected and expanded.
637

638 **Plasmids and Transfections**

639 Cells were transfected at 80% confluence using Lipofectamine 2000 (Invitrogen, 12566014), following
640 the manufacturer's protocol. The plasmids used were Ezrin^{T567D} and Ezrin^{T567A}-mCherry, modified

641 from vectors described by Coscoy et al, provided by the S.Coscoy lab (Institute Curie, Paris) (Coscoy et
642 al., 2002), EGFR-GFP (Addgene, 32751), TFEB-GFP (Addgene, 38119).

643

644 **Immunoelectron microscopy analysis**

645 HeLa cells were fixed with a mixture of 4% paraformaldehyde (PFA) and 0.05% glutaraldehyde (GA)
646 for 10 min at RT, then washed with 4% PFA once to remove the residual GA and fixed again with 4%
647 PFA for 30 min at RT. Next, the cells were incubated with a blocking/permeabilizing mixture (0.5%
648 BSA, 0.1% saponin, 50-mM NH₄Cl) for 30 min and subsequently with the primary monoclonal
649 antibody anti-GFP, diluted 1:500 in blocking/permeabilizing solution. The following day, the cells
650 were washed and incubated with the secondary antibody, an anti-rabbit Fab fragment coupled to 1.4 nm
651 gold particles (diluted 1:50 in blocking/permeabilizing solution) for 2 h at RT. The cells were then
652 post-fixed as described in Polishchuk and Polishchuk (Polishchuk & Polishchuk, 2019). After
653 dehydration, the specimens were embedded in epoxy resin and polymerized at 60°C for 72 h. Thin 60
654 nm sections were cut on a Leica EM UC7 microtome. The EM images were acquired from thin sections
655 using a FEI Tecnai-12 electron microscope equipped with a VELETTA CCD digital camera (FEI,
656 Eindhoven, the Netherlands).

657

658 **Animals and Ethics Approval Statement**

659 All studies on animals were conducted in strict accordance with the institutional guidelines for animal
660 research and approved by the Italian Ministry of Health, Department of Public Health, Animal Health,
661 Nutrition and Food Safety in accordance with the law on animal experimentation (article 31; D.L.
662 26/2014; protocol number: 0016304-21/07/2020-DGSAF-MDS-P.

663

664 **RPE and retina dissection**

665 To analyze protein expression levels in RPE individually, mouse eyes were dissected to remove optic
666 nerve, cornea, lens, and retina in ice-cold PBS 1X under stereomicroscopy (Leica). The RPE was
667 peeled from the eyecup and transferred to a tube containing 100 μ l of RIPA buffer. RPE cells were
668 pelleted by centrifugation at 12,000 x g for 15 min at 4°C.

669

670 **Light/Dark adaptation of mice for tissue isolation**

671 Mice were maintained in dark conditions with a maximum of 0.4 lux from 19:00 pm to 7:00 am. Then,
672 animals were kept in a room with the light phase (450 lux) from 7:00 am to 19:00 pm. For light/dark
673 transition studies, some animals were transferred after 3 h from light conditions to dark conditions and
674 sacrificed. Eyes from dark mice were isolated under dim red light.

675

676 **Medaka stocks**

677 The cab strain of wild-type and Ezrin^{-/-} medaka (*Oryzias latipes*) lines were maintained following
678 standard conditions (i.e., 12h/ 12h dark/light conditions at 27°C). Embryos were staged according to
679 the method proposed by Iwamatsu (Iwamatsu, 2004). All studies on fish were conducted in strict
680 accordance with the Institutional Guidelines for animal research and approved by the Italian Ministry
681 of Health, Department of Public Health, Animal Health, Nutrition and Food Safety in accordance with
682 the law on animal experimentation (D. Lgs.26/2014). Furthermore, all fish treatments were reviewed
683 and approved in advance by the Ethics Committee at the TIGEM institute (Pozzuoli (NA), Italy).

684

685 **Ezrin^{-/-} medaka generation by CRISPR/Cas9 system**

686 The genomic sequence of medaka *Ezrin* was obtained the medaka genome database at the Ensembl
687 Genome Database Project (http://www.ensembl.org/Oryzias_latipes; ENSORLG00000012128). Design
688 and construction of *OlEzrin*-sgRNA was committed to SYNTHEGO. The sequences of *OlEzrin*-

689 sgRNA oligonucleotides are listed in Table 1. Instead of Cas9 mRNA, the commercial reagent of
690 pCS2-nCas9n (Addgene, #4729) was used in this study. After pCS2-nCas9n was digested by NotI
691 treatment, this linearized vector was used as the template for synthesizing capped Cas9 mRNA with a
692 mMessage mMachine SP6 Kit (Life Technologies). Microinjection of the medaka embryos followed a
693 method described previously by Kinoshita et al. (Kinoshita, Kani, Ozato, & Wakamatsu, 2000). A
694 mixture containing 200ng/µL of Cas9 mRNA and 20ng/µl of *OlEzrin*-sgRNA was prepared and
695 injected into the fertilized eggs at the one-cell stage. After hatching, the larvae were raised to sexual
696 maturity and used as “founder” fish (F0). To observe the genomic DNA mutations induced by Cas9
697 and *OlEzrin*-sgRNA in CRISPR/Cas9-mediated Ezrin-mutated medaka, a small piece of the caudal fin
698 from individual F0 fish was collected and subjected to genomic DNA analysis, using the primer set
699 indicating in Table 1. After the above screening had confirmed the occurrence of CRISPR/Cas9-
700 mediated Ezrin mutation in the F0 generation, these founder fish were crossed with each other, and
701 their offspring (F1) were checked for Ezrin mutations in the same way. Two of the F1 progeny with the
702 same mutation patterns were mated to produce the F2 generation. The F2 generation were crossed with
703 each other to produce F3 progeny, which was screened as described above to confirm that the same
704 mutation patterns were successfully inherited.

705

	Name	Sequence (5'-3')	Usage
EZRIN- gRNA	<i>olEzrin</i> Sense	ACAATGGATGAGCCTATTAG	CRISPR/Cas9- LoxP target site
	<i>olEzrin</i> Antisense	AGACTGATGCTGCCTCACTG	
Primers	<i>olEzrin</i> _Forward	GAACTCCTTCTAGCACCC	PCR for <i>olEzrin</i>

	<i>oleEzrin</i> _Reverse	CCGCCTCCCTCCTCAATC	genotype
--	--------------------------	--------------------	----------

706 **Table 1. Primer sequences.**

707

708 **Whole mount immunostaining**

709 Medaka larvae were fixed in 4% PFA, 2X PBS, and 0.1% Tween-20. The fixed larvae were washed
710 with PTW 1X and digested for 20 min with 10 µg/ml proteinase K and washed two-fold with 2 mg/ml
711 glycine/PTW 1x. The samples were fixed for 20 min in 4% PFA, 2X PBS, and 0.1% Tween-20,
712 washed with PTW 1X, and then incubated for 2 h in FBS 1%/PTW 1X, at room temperature. The
713 larvae were incubated with mouse anti-EGFR (1:50, Santa Cruz sc-120) overnight at 4°C. The samples
714 were washed with PTW 1X, incubated with the secondary antibody, Alexa-488 goat anti-mouse IgG
715 (ThermoFisher), then with DAPI. Finally, the larvae were placed in glycerol 100%.

716

717 **Statistical analysis**

718 T-test, Welch's t-test, Mann-Whitney test. For the analysis of the statistically significant differences
719 between two conditions, we performed the Shapiro-Wilk test to check if each condition had followed
720 the normal distribution (null hypothesis): we performed the non-parametric Mann-Whitney test in case
721 of rejection of the null hypothesis (p-value < 0.05), and we performed the parametric unpaired t-test in
722 case of non-rejection of the null hypothesis (p-value ≥ 0.05). In the second case, we also performed the
723 F-test to check the homoscedasticity between the compared conditions (null hypothesis): we applied
724 the parametric Welch's t-test in case of rejection of the null hypothesis (p-value < 0.05). All the tests
725 were performed with GraphPad Prism 10.0.0, GraphPad Software, Boston, Massachusetts USA.

726 ANOVA, Welch's ANOVA, Kruskal-Wallis test (with multiple comparisons post hoc tests). For the
727 analysis of the statistically significant differences among multiple conditions, we performed the

728 Shapiro-Wilk test to check if each condition had followed the normal distribution (null hypothesis): we
729 performed the non-parametric Kruskal-Wallis test in case of rejection of the null hypothesis (p-value <
730 0.05), and we performed the parametric one way ANOVA in case of non-rejection of the null
731 hypothesis (p-value ≥ 0.05). In the second case, we also performed the Brown-Forsythe test to check
732 the homoscedasticity between the compared conditions (null hypothesis): we applied the parametric
733 Welch's one way ANOVA in case of rejection of the null hypothesis (p-value < 0.05). For
734 completeness, we computed the p-values with post hoc tests for the pairwise multiple comparisons:
735 Tukey's test for one way ANOVA, Dunnett's test for Welch's one way ANOVA, and Dunn's test for
736 Kruskal-Wallis test. All the tests were performed with GraphPad Prism 10.0.0, GraphPad Software,
737 Boston, Massachusetts USA.

738 Poisson Regression. For the analysis of the statically significant differences between two conditions
739 with discrete values (i.e., counts), we performed the Poisson Regression over data, considering a
740 Generalized Linear Model with Likelihood Ratio test. No correction for multiple comparisons was
741 necessary. Poisson Regression with Generalized Linear Model and Likelihood Ratio test were
742 performed with the package 'car' (version 3.1-2) in the R environment (version 4.2.3).

743 ACKNOWLEDGEMENTS

744 We are grateful to Dr. Cathal Wilson for critical reading and English editing of the manuscript. We are
745 grateful to Edoardo Nusco for mice technical support. We also are grateful to Advanced Microscopy,
746 Lysosomal Metabolism, Computational Biology and Medaka fish Cores at Department of Biology,
747 University of studies of Naples Federico II. Acknowledgment is made to BioRender
748 (www.biorender.com) for model images.

749 AUTHOR CONTRIBUTIONS

750 GG and DI performed the experiments and analyzed the data. DI and GG contributed to the
751 experimental design, implementation, and interpretation. SB and FGS contributed to the technical part
752 of the work. EDP and RDC performed bioinformatics analysis. EDP performed and supervised
753 statistical evaluations. RDC and DA analyzed transcriptomics and proteomics data. BHM carried out
754 domain-domain interaction analysis. FA and JM generated HeLa EZR^{-/-} cells. MO and AE donated
755 MEF EZR^{KO} cells. PG performed and analyzed mass spectrometry analysis. GG, DI and IC conceived
756 the experiments, analyzed the data, and wrote the manuscript. All authors read and approved the final
757 manuscript.

758 FUNDING

759 Work in the Conte group was supported by grants from the Million Dollar Bike Ride Grant Program
760 MDBR-21-103-CHM, International Retinal Research Foundation, MIUR FISR2020IP_03551, MIUR
761 PNRR_PRIN_P2022NPLZC, MIUR PRIN _2022WJFN5X,, and Sanfilippo Children's Foundations
762 and National MPS Society.

763 REFERENCES

764 Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., . . . Jumper, J. M. (2024).
765 Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature*,
766 630(8016), 493-500. doi: 10.1038/s41586-024-07487-w

767 Antelmi, E., Cardone, R. A., Greco, M. R., Rubino, R., Di Sole, F., Martino, N. A., . . . Reshkin, S. J.
768 (2013). ss1 integrin binding phosphorylates ezrin at T567 to activate a lipid raft signalsome
769 driving invadopodia activity and invasion. *PLoS One*, 8(9), e75113. doi:
770 10.1371/journal.pone.0075113

771 Barroso-Gonzalez, J., Machado, J. D., Garcia-Exposito, L., & Valenzuela-Fernandez, A. (2009).
772 Moesin regulates the trafficking of nascent clathrin-coated vesicles. *J Biol Chem*, 284(4), 2419-
773 2434. doi: 10.1074/jbc.M805311200

774 Bolte, S., & Cordelieres, F. P. (2006). A guided tour into subcellular colocalization analysis in light
775 microscopy. *J Microsc*, 224(Pt 3), 213-232. doi: 10.1111/j.1365-2818.2006.01706.x

776 Bonilha, V. L., Rayborn, M. E., Saotome, I., McClatchey, A. I., & Hollyfield, J. G. (2006). Microvilli
777 defects in retinas of ezrin knockout mice. *Exp Eye Res*, 82(4), 720-729. doi:
778 10.1016/j.exer.2005.09.013

779 Borrelli, E., Sacconi, R., Zuccaro, B., Cavalleri, M., Bordato, A., Zucchiatti, I., . . . Querques, G.
780 (2020). Photoreceptor alteration in intermediate age-related macular degeneration. *Sci Rep*,
781 10(1), 21036. doi: 10.1038/s41598-020-78201-9

782 Bulut, G., Hong, S. H., Chen, K., Beauchamp, E. M., Rahim, S., Kosturko, G. W., . . . Uren, A. (2012).
783 Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells.
784 *Oncogene*, 31(3), 269-281. doi: 10.1038/onc.2011.245

785 Burke, P., Schooler, K., & Wiley, H. S. (2001). Regulation of epidermal growth factor receptor
786 signaling by endocytosis and intracellular trafficking. *Mol Biol Cell*, 12(6), 1897-1910. doi:
787 10.1091/mbc.12.6.1897

788 Carotenuto, P., Romano, A., Barbato, A., Quadrano, P., Brillante, S., Volpe, M., . . . Franco, B. (2022).
789 Targeting the MITF/APAF-1 axis as salvage therapy for MAPK inhibitors in resistant
790 melanoma. *Cell Rep*, 41(6), 111601. doi: 10.1016/j.celrep.2022.111601

791 Ceresa, B. P. (2012). Spatial regulation of epidermal growth factor receptor signaling by endocytosis.
792 *Int J Mol Sci*, 14(1), 72-87. doi: 10.3390/ijms14010072

793 Cha, B., Tse, M., Yun, C., Kovbasnjuk, O., Mohan, S., Hubbard, A., . . . Donowitz, M. (2006). The
794 NHE3 juxtamembrane cytoplasmic domain directly binds ezrin: dual role in NHE3 trafficking
795 and mobility in the brush border. *Mol Biol Cell*, 17(6), 2661-2673. doi: 10.1091/mbc.e05-09-
796 0843

797 Chirivino, D., Del Maestro, L., Formstecher, E., Hupe, P., Raposo, G., Louvard, D., & Arpin, M.
798 (2011). The ERM proteins interact with the HOPS complex to regulate the maturation of
799 endosomes. *Mol Biol Cell*, 22(3), 375-385. doi: 10.1091/mbc.E10-09-0796

800 Coscoy, S., Waharte, F., Gautreau, A., Martin, M., Louvard, D., Mangeat, P., . . . Amblard, F. (2002).
801 Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. *Proc Natl Acad Sci U
802 S A*, 99(20), 12813-12818. doi: 10.1073/pnas.192084599

803 Di Malta, C., Zampelli, A., Granieri, L., Vilardo, C., De Cegli, R., Cinque, L., . . . Ballabio, A. (2023).
804 TFEB and TFE3 drive kidney cystogenesis and tumorigenesis. *EMBO Mol Med*, 15(5), e16877.
805 doi: 10.15252/emmm.202216877

806 Dibble, C. C., & Cantley, L. C. (2015). Regulation of mTORC1 by PI3K signaling. *Trends Cell Biol*,
807 25(9), 545-555. doi: 10.1016/j.tcb.2015.06.002

808 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., . . . Gingeras, T. R. (2013).
809 STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15-21. doi:
810 10.1093/bioinformatics/bts635

811 Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression
812 and hybridization array data repository. *Nucleic Acids Res*, 30(1), 207-210.

813 Gautreau, A., Poulet, P., Louvard, D., & Arpin, M. (1999). Ezrin, a plasma membrane-microfilament
814 linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. *Proc Natl
815 Acad Sci U S A*, 96(13), 7300-7305. doi: 10.1073/pnas.96.13.7300

816 Haddad, L. A., Smith, N., Bowser, M., Niida, Y., Murthy, V., Gonzalez-Agosti, C., & Ramesh, V.
817 (2002). The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly
818 functions as a novel integrator of the neuronal cytoskeleton. *J Biol Chem*, 277(46), 44180-
819 44186. doi: 10.1074/jbc.M207211200

820 Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009a). Bioinformatics enrichment tools: paths
821 toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Research*,
822 37(1), 1-13. doi: 10.1093/nar/gkn923

823 Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009b). Systematic and integrative analysis of large
824 gene lists using DAVID bioinformatics resources. *Nature Protocols*, 4(1), 44-57. doi:
825 10.1038/nprot.2008.211

826 Huang, J., Gu, S., Chen, M., Zhang, S. J., Jiang, Z., Chen, X., . . . Zhao, C. (2019). Abnormal mTORC1
827 signaling leads to retinal pigment epithelium degeneration. *Theranostics*, 9(4), 1170-1180. doi:
828 10.7150/thno.26281

829 Iwamatsu, T. (2004). Stages of normal development in the medaka *Oryzias latipes*. *Mech Dev*, 121(7-
830 8), 605-618. doi: 10.1016/j.mod.2004.03.012

831 Kaur, G., & Lakkaraju, A. (2018). Early Endosome Morphology in Health and Disease. *Adv Exp Med
832 Biol*, 1074, 335-343. doi: 10.1007/978-3-319-75402-4_41

833 Kawaguchi, K., & Asano, S. (2022). Pathophysiological Roles of Actin-Binding Scaffold Protein,
834 Ezrin. *Int J Mol Sci*, 23(6). doi: 10.3390/ijms23063246

835 Kinoshita, M., Kani, S., Ozato, K., & Wakamatsu, Y. (2000). Activity of the medaka translation
836 elongation factor 1alpha-A promoter examined using the GFP gene as a reporter. *Dev Growth
837 Differ*, 42(5), 469-478. doi: 10.1046/j.1440-169x.2000.00530.x

838 Krishnan, K., Bruce, B., Hewitt, S., Thomas, D., Khanna, C., & Helman, L. J. (2006). Ezrin mediates
839 growth and survival in Ewing's sarcoma through the AKT/mTOR, but not the MAPK, signaling
840 pathway. *Clin Exp Metastasis*, 23(3-4), 227-236. doi: 10.1007/s10585-006-9033-y

841 Li, N., Kong, J., Lin, Z., Yang, Y., Jin, T., Xu, M., . . . Chen, L. (2019). Ezrin promotes breast cancer
842 progression by modulating AKT signals. *Br J Cancer*, 120(7), 703-713. doi: 10.1038/s41416-
843 019-0383-z

844 Lietha, D., Cai, X., Ceccarelli, D. F., Li, Y., Schaller, M. D., & Eck, M. J. (2007). Structural basis for
845 the autoinhibition of focal adhesion kinase. *Cell*, 129(6), 1177-1187. doi:
846 10.1016/j.cell.2007.05.041

847 Liu, B., Chen, D., Chen, S., Saber, A., & Haisma, H. (2020). Transcriptional activation of cyclin D1 via
848 HER2/HER3 contributes to EGFR-TKI resistance in lung cancer. *Biochem Pharmacol*, 178,
849 114095. doi: 10.1016/j.bcp.2020.114095

850 Liu, B., Chen, H., Johns, T. G., & Neufeld, A. H. (2006). Epidermal growth factor receptor activation:
851 an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural
852 injury. *J Neurosci*, 26(28), 7532-7540. doi: 10.1523/JNEUROSCI.1004-06.2006

853 Liu, S., Wang, Z., Zhu, R., Wang, F., Cheng, Y., & Liu, Y. (2021). Three Differential Expression
854 Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2. *J Vis Exp*(175). doi:
855 10.3791/62528

856 Mitchell, D. C., Kuljanin, M., Li, J., Van Vranken, J. G., Bulloch, N., Schweppe, D. K., . . . Gygi, S. P.
857 (2023). A proteome-wide atlas of drug mechanism of action. *Nat Biotechnol*, 41(6), 845-857.
858 doi: 10.1038/s41587-022-01539-0

859 Muniz-Feliciano, L., Doggett, T. A., Zhou, Z., & Ferguson, T. A. (2017). RUBCN/rubicon and EGFR
860 regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye.
861 *Autophagy*, 13(12), 2072-2085. doi: 10.1080/15548627.2017.1380124

862 Naso, F., Intartaglia, D., Falanga, D., Soldati, C., Polishchuk, E., Giamundo, G., . . . Conte, I. (2020).
863 Light-responsive microRNA miR-211 targets Ezrin to modulate lysosomal biogenesis and
864 retinal cell clearance. *EMBO J*, 39(8), e102468. doi: 10.15252/embj.2019102468

865 Nishimura, Y., Takiguchi, S., Ito, S., & Itoh, K. (2015). EGF-stimulated AKT activation is mediated
866 by EGFR recycling via an early endocytic pathway in a gefitinib-resistant human lung cancer
867 cell line. *Int J Oncol*, 46(4), 1721-1729. doi: 10.3892/ijo.2015.2871

868 Ognibene, M., Vanni, C., Segalerba, D., Mancini, P., Merello, E., Torrisi, M. R., . . . Eva, A. (2011).
869 The tumor suppressor hamartin enhances Dbl protein transforming activity through interaction
870 with ezrin. *J Biol Chem*, 286(34), 29973-29983. doi: 10.1074/jbc.M111.270785

871 Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., & Mann, M. (2006). Global,
872 in vivo, and site-specific phosphorylation dynamics in signaling networks. *Cell*, 127(3), 635-
873 648. doi: 10.1016/j.cell.2006.09.026

874 Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., & Mann, M.
875 (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate

876 approach to expression proteomics. *Mol Cell Proteomics*, 1(5), 376-386. doi:
877 10.1074/mcp.m200025-mcp200

878 Oughtred, R., Rust, J., Chang, C., Breitkreutz, B. J., Stark, C., Willem, A., . . . Tyers, M. (2021). The
879 BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and
880 chemical interactions. *Protein Sci*, 30(1), 187-200. doi: 10.1002/pro.3978

881 Palfy, M., Remenyi, A., & Korcsmaros, T. (2012). Endosomal crosstalk: meeting points for signaling
882 pathways. *Trends Cell Biol*, 22(9), 447-456. doi: 10.1016/j.tcb.2012.06.004

883 Parameswaran, N., Enyindah-Asonye, G., Bagheri, N., Shah, N. B., & Gupta, N. (2013). Spatial
884 coupling of JNK activation to the B cell antigen receptor by tyrosine-phosphorylated ezrin. *J*
885 *Immunol*, 190(5), 2017-2026. doi: 10.4049/jimmunol.1201292

886 Petschnigg, J., Groisman, B., Kotlyar, M., Taipale, M., Zheng, Y., Kurat, C. F., . . . Stagljar, I. (2014).
887 The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein
888 interactions in human cells. *Nat Methods*, 11(5), 585-592. doi: 10.1038/nmeth.2895

889 Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., . . . Ferrin, T. E.
890 (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
891 *Protein Sci*, 30(1), 70-82. doi: 10.1002/pro.3943

892 Pinelli, M., Carissimo, A., Cutillo, L., Lai, C. H., Mutarelli, M., Moretti, M. N., . . . di Bernardo, D.
893 (2016). An atlas of gene expression and gene co-regulation in the human retina. *Nucleic Acids*
894 *Res*, 44(12), 5773-5784. doi: 10.1093/nar/gkw486

895 Polishchuk, R. S., & Polishchuk, E. V. (2019). From and to the Golgi - defining the Wilson disease
896 protein road map. *FEBS Lett*, 593(17), 2341-2350. doi: 10.1002/1873-3468.13575

897 Poupon, V., Stewart, A., Gray, S. R., Piper, R. C., & Luzio, J. P. (2003). The role of mVps18p in
898 clustering, fusion, and intracellular localization of late endocytic organelles. *Mol Biol Cell*,
899 14(10), 4015-4027. doi: 10.1091/mbc.e03-01-0040

900 Rosset, C., Netto, C. B. O., & Ashton-Prolla, P. (2017). TSC1 and TSC2 gene mutations and their
901 implications for treatment in Tuberous Sclerosis Complex: a review. *Genet Mol Biol*, 40(1), 69-
902 79. doi: 10.1590/1678-4685-GMB-2015-0321

903 Salokas, K., Liu, X., Ohman, T., Chowdhury, I., Gawriyski, L., Keskitalo, S., & Varjosalo, M. (2022).
904 Physical and functional interactome atlas of human receptor tyrosine kinases. *EMBO Rep*,
905 23(6), e54041. doi: 10.15252/embr.202154041

906 Saygideger-Kont, Y., Minas, T. Z., Jones, H., Hour, S., Celik, H., Temel, I., . . . Uren, A. (2016). Ezrin
907 Enhances EGFR Signaling and Modulates Erlotinib Sensitivity in Non-Small Cell Lung Cancer
908 Cells. *Neoplasia*, 18(2), 111-120. doi: 10.1016/j.neo.2016.01.002

909 Shang, P., Stepicheva, N., Teel, K., McCauley, A., Fitting, C. S., Hose, S., . . . Sinha, D. (2021).
910 betaA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented
911 epithelial cells. *Commun Biol*, 4(1), 850. doi: 10.1038/s42003-021-02386-6

912 Sok, P., Gogl, G., Kumar, G. S., Alexa, A., Singh, N., Kirsch, K., . . . Remenyi, A. (2020). MAP
913 Kinase-Mediated Activation of RSK1 and MK2 Substrate Kinases. *Structure*, 28(10), 1101-
914 1113 e1105. doi: 10.1016/j.str.2020.06.007

915 Sorkin, A., & von Zastrow, M. (2009). Endocytosis and signalling: intertwining molecular networks.
916 *Nat Rev Mol Cell Biol*, 10(9), 609-622. doi: 10.1038/nrm2748

917 Stanasila, L., Abuin, L., Diviani, D., & Cotecchia, S. (2006). Ezrin directly interacts with the alpha1b-
918 adrenergic receptor and plays a role in receptor recycling. *J Biol Chem*, 281(7), 4354-4363. doi:
919 10.1074/jbc.M511989200

920 Tamma, G., Klussmann, E., Oehlke, J., Krause, E., Rosenthal, W., Svelto, M., & Valenti, G. (2005).
921 Actin remodeling requires ERM function to facilitate AQP2 apical targeting. *J Cell Sci*, 118(Pt
922 16), 3623-3630. doi: 10.1242/jcs.02495

923 Tanaka, T., Zhou, Y., Ozawa, T., Okizono, R., Banba, A., Yamamura, T., . . . Sakurai, H. (2018).
924 Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic
925 trafficking of unliganded receptor monomers by non-canonical phosphorylation. *J Biol Chem*,
926 293(7), 2288-2301. doi: 10.1074/jbc.M117.811299

927 Toops, K. A., Tan, L. X., & Lakkaraju, A. (2014). A detailed three-step protocol for live imaging of
928 intracellular traffic in polarized primary porcine RPE monolayers. *Exp Eye Res*, 124, 74-85.
929 doi: 10.1016/j.exer.2014.05.003

930 Tsai, F. C., Bertin, A., Bousquet, H., Manzi, J., Senju, Y., Tsai, M. C., . . . Bassereau, P. (2018). Ezrin
931 enrichment on curved membranes requires a specific conformation or interaction with a
932 curvature-sensitive partner. *eLife*, 7. doi: 10.7554/eLife.37262

933 Vogel, G. F., Ebner, H. L., de Araujo, M. E., Schmiedinger, T., Eiter, O., Pircher, H., . . . Hess, M. W.
934 (2015). Ultrastructural Morphometry Points to a New Role for LAMTOR2 in Regulating the
935 Endo/Lysosomal System. *Traffic*, 16(6), 617-634. doi: 10.1111/tra.12271

936 Wan, X., Mendoza, A., Khanna, C., & Helman, L. J. (2005). Rapamycin inhibits ezrin-mediated
937 metastatic behavior in a murine model of osteosarcoma. *Cancer Res*, 65(6), 2406-2411. doi:
938 10.1158/0008-5472.CAN-04-3135

939 Wang, Y., Pennock, S., Chen, X., & Wang, Z. (2002). Endosomal signaling of epidermal growth factor
940 receptor stimulates signal transduction pathways leading to cell survival. *Mol Cell Biol*, 22(20),
941 7279-7290. doi: 10.1128/MCB.22.20.7279-7290.2002

942 Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., . . . Morris, Q.
943 (2010). The GeneMANIA prediction server: biological network integration for gene
944 prioritization and predicting gene function. *Nucleic Acids Res*, 38(Web Server issue), W214-
945 220. doi: 10.1093/nar/gkq537

946 Wee, P., & Wang, Z. (2017). Epidermal Growth Factor Receptor Cell Proliferation Signaling
947 Pathways. *Cancers (Basel)*, 9(5). doi: 10.3390/cancers9050052

948 Zhao, H., Shiue, H., Palkon, S., Wang, Y., Cullinan, P., Burkhardt, J. K., . . . Turner, J. R. (2004). Ezrin
949 regulates NHE3 translocation and activation after Na+-glucose cotransport. *Proc Natl Acad Sci
950 U S A*, 101(25), 9485-9490. doi: 10.1073/pnas.0308400101

951 Zhou, R., Cao, X., Watson, C., Miao, Y., Guo, Z., Forte, J. G., & Yao, X. (2003). Characterization of
952 protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation. *J Biol
953 Chem*, 278(37), 35651-35659. doi: 10.1074/jbc.M303416200

954 Zhou, R., Zhu, L., Kodani, A., Hauser, P., Yao, X., & Forte, J. G. (2005). Phosphorylation of ezrin on
955 threonine 567 produces a change in secretory phenotype and repolarizes the gastric parietal cell.
956 *J Cell Sci*, 118(Pt 19), 4381-4391. doi: 10.1242/jcs.02559

957

958

959 Figure legends

960 **Figure 1. Deletion of Ezrin increases the lysosomal pathway. A**, Gene Ontology of 530 genes
961 differentially expressed at mRNA and protein levels (EZR^{KO} versus WT). Bubble plot representing
962 some of the most enriched GO terms regarding cellular components. Color and x axis represent minus
963 logarithms of p Value. The size represents the numbers of genes enriched in a GO term. **B**, WT and
964 EZR^{KO} MEF cells were cultured in 6-cm cell plates for 24 hours, then fixed and immunostained with

965 lysotracker and DAPI. Scale bar 10 μ m. **C**, Data represent mean of lysotracker-positive cells \pm SEM
966 (n=3 experiments at least). Statistical test: unpaired t-test. **D**, MEF cells WT and Ezr^{KO} were cultured in
967 6-well plates for 24 hours, then fixed and immunostained with LAMP1 and LC3 antibodies and DAPI.
968 Scale bar 10 μ m (magnification 1 μ m). **E**, Data represent mean of LAMP1-LC3 colocalization spots \pm
969 SEM (n=3 experiments at least). Statistical test: unpaired t-test. **F**, Model showing autophagic flux
970 induction in EZR^{-/-} cells. **G**, MEF Ezr^{KO} showed CTSB enzymatic activity increase compared to control
971 cells. **H**, MEF cells WT and Ezr^{KO} were lysed and immunoblotted with NBR1, LAMP1, EZR, P62,
972 LC3 antibodies or GAPDH antibodies as a loading control. The graphs show the mean NBR1, LAMP1,
973 EZR, P62, LC3 levels relative to GAPDH \pm SEM (n=3 experiments at least). Statistical test: unpaired t-
974 test for NBR1, P62, LC3-I; Welch's t-test for CTSD, LC3-II; Mann-Whitney test for LAMP1.

975

976 **Figure 2. Ezrin binds EGFR and regulates its activation.** **A**, Bubble plot representing the
977 enrichment analysis of 530 DEGs performed in SILAC Phosphoproteomics data. Color and x axis
978 represent minus logarithms of p Value. The size represents numbers of genes enriched in the indicated
979 data. **B**, Physical interactions, obtained by GeneMANIA, highlight Ezrin and EGFR binding. **C**,
980 Volcano plot of DEGs, with up-regulated EGFR and down-regulated MAP2 and ERBB2 (no threshold
981 on Log2FC and 0.05 threshold on -Log10FDR). Legend: red dot, up-regulated gene; blue dot, down-
982 regulated gene; grey dot, not significant gene. **D,E** Co-IP data for Ezrin-EGFR interaction. For the co-
983 IP analyses, was used Ezrin antibody, conjugated with beads, and immunoblotted with EGFR antibody
984 for WT and EZR^{-/-} (**D**) and HeLa EZR^{T567D} and EZR^{T567A} (**E**) HeLa cells, respectively. Schematic
985 representation of HeLa EZR^{T567D} and EZR^{T567A} co-IP (bottom). **F**, Confocal microscopy images
986 showing EGFR (green) and EZR (red) co-localization on the membrane in HeLa WT cells (left) and
987 magnified views of the regions are provided (right). Scale bar 10 μ m (magnification 1 μ m).
988 Representative plots of co-localization profiles on the membrane between EGFR (green) and EZR

989 (red). Data represent mean of EGFR-EZR colocalization spots \pm SEM (n=3 experiments at least); **G**,
990 Immunofluorescent labelling images of EGFR in HeLa WT and EZR^{-/-} cells, observed by confocal
991 microscopy. Scale bar 10 μ m. **H**, Data represent fluorescence intensity \pm SEM (n=3 experiments at
992 least). Statistical test: unpaired t-test; **I**, Immunoblots and calculated levels (bottom) of HER3, pY845
993 EGFR, EGFR, pT222 MK2, MK2, pT180/pY182 p38 MAPK and P38 MAPK in HeLa WT and EZR^{-/-}
994 cells. Data are expressed as mean of pY845EGFR/EGFR, pT222 MK2/MK2 and pT180/pY182 p38
995 MAPK/P38 MAPK ratio \pm SEM (n=3 experiments at least). GAPDH was used as loading control.
996 Statistical test: unpaired t-test for pY845 EGFR; Mann-Whitney test for HER3, EGFR, pT222 MK2,
997 pT180/pY182 p38 MAPK.

998

999 **Figure 3. Ezrin controls EGFR localization.** **A**, Western blot analysis of chemical crosslinked EGFR
1000 in HeLa WT and EZR^{-/-} with (+) and without (-) EGF stimulation. Arrowheads indicate detected
1001 signals of dimeric and monomeric form of EGFR. **B**, Model showing the crosslinking effect of EGFR
1002 dimer formation in HeLa WT and EZR^{-/-}. **C**, Immunofluorescence images of EGFR (green) and EEA1
1003 (red) in HeLa WT (top) and EZR^{-/-} (bottom) observed by confocal microscopy. Scale bar 10 μ m
1004 (magnification 1 μ m). Representative plots of co-localization profiles of EGFR in early endosome.
1005 HeLa EZR^{-/-} cells do not show EGFR and EEA1 co-localization compared to control cells. **D**, Data
1006 represent mean of EGFR-EEA1 colocalization spots \pm SEM (n=3 experiments at least). Statistical test:
1007 unpaired t-test. **E**, Representative immunoblots of EGFR in membrane (top) and endosomes (bottom)
1008 proteins in HeLa WT and EZR^{-/-}. ZO-1 and EEA1 are used as membrane and endosomes extraction
1009 control, respectively. GAPDH are used as loading control. **F**, Schematic translocation of EGFR in the
1010 endosomes in HeLa WT compared to HeLa EZR^{-/-}. **G**, HeLa cells were fixed and immunostained with
1011 endotracker and EEA1 (red) and DAPI (blue). Scale bar 10 μ m (magnification 1 μ m). **H**, Graph shows
1012 mean of endotracker-positive cells \pm SEM (n=3 experiments at least). Statistical test: unpaired t-test.

1013

1014 **Figure 4. EGFR migrates on the endosomes depending on Ezrin.** **A**, Immunofluorescence labelling
1015 images of EGFR-GFP (green), EEA1 (red) and DAPI (blue) after 3h of EGF stimulation (right) in
1016 HeLa WT (top) and EZR^{-/-} (bottom). Magnified views of the regions in the boxes are provided in both
1017 Airyscan high-resolution microscopy and 3D-confocal microscopy. **B**, EGFR and EEA1 co-localization
1018 is expressed as a representative plot in HeLa WT (top) and EZR^{-/-} (bottom). Scale bar 10 μ m
1019 (magnification 1 μ m). **C**, Data represent mean of EGFR-EEA1 colocalization spots \pm SEM (n=3
1020 experiments at least). Statistical test: One Way ANOVA.

1021

1022 **Figure 5. EGF stimulation does not affect EGFR in absence of Ezrin.** **A**, Live cell imaging and
1023 model for EGFR (green) translocation from the membrane to the endosomes in HeLa WT (top) and
1024 EZR^{-/-} (bottom) cells without EGF stimulation (T0) and with a progressive EGF stimulation (from
1025 T10'' to T60''). White boxes are magnifications that depict EGFR protein migration. Scale bar 1 μ m).
1026 Please refer to Video 1. **B**, IEM (anti-GFP immunolabelling) of cycloheximide treated HeLa WT, WT
1027 + EGF, EZR^{-/-} and EZR^{-/-} + EGF cells expressing EGFR-GFP. Endosomes containing EGFR is shown
1028 in green. Scale bar 200 nm. Quantitative analysis (right) of EGFR positive endosomes expressed as
1029 mean \pm SEM. Statistical test: generalized Linear Model with Likelihood Ratio (Poisson Regression). **C**,
1030 immunoblots and calculated levels (bottom) of HER2, pY845 EGFR, pY1068 EGFR, EGFR,
1031 pT202/Y204 p42/44 MAPK, pT180/pY182 p38 MAPK and P38 MAPK in HeLa WT and EZR^{-/-} cells
1032 with (+) and without (-) EGF stimulation. Data are expressed as mean of pY845EGFR/EGFR and
1033 pT180/pY182 p38 MAPK/P38 MAPK ratio \pm SEM (n=3 experiments at least). GAPDH was used as
1034 loading control. Statistical test: Unpaired t-test for HER2 WT, HER2 EZR^{-/-}, pY845 EGFR EZR^{-/-},
1035 pY1068 EGFR WT, pY1068 EGFR EZR^{-/-}, EGFR WT, EGFR EZR^{-/-}, pT202/Y204 p44/42 MAPK
1036 WT, pT202/Y204 p44/42 MAPK EZR^{-/-}, pT180/pY182 p38 MAPK WT, pT180/pY182 p38 MAPK

1037 EZR^{-/-}; unpaired t-test with Welch's correction for pY845 EGFR WT. **D**, Representative immunoblots
1038 of EGFR in membrane (top) and endosomes (bottom) proteins in HeLa WT and EZR^{-/-} with (+) and
1039 without (-) EGF stimulation. ZO-1 and EEA1 are used as membrane and endosomes extraction control,
1040 respectively. GAPDH are used as loading control.

1041

1042 **Figure 6. EGFR-Ezrin complex interacts with TSC1.** **A**, co-IP analysis for Ezr-TSC1 (left) and
1043 EGFR-TSC1 (right) interaction. For co-IP analyses, Ezrin (left) and EGFR (right) antibodies were
1044 used. The proteins immunoprecipitated were blotted for TSC1 and AKT antibodies in HeLa WT and
1045 EZR^{-/-}. **B**, HeLa WT and EZR^{-/-} cells were lysed and immunoblotted with pS939 TSC2, TSC2, PT389
1046 P70 S6 Kinase, P70 S6 Kinase, pS473 AKT, AKT, pS65 4E-BP1, 4E-BP1 and GAPDH as a loading
1047 control. Data represent the mean of pS939 TSC2/TSC2, T389 P70 S6 Kinase/P70 S6 Kinase, pS473
1048 AKT/AKT and pS65 4E-BP1/4E-BP1 ratio \pm SEM (n=3 experiments at least). Statistical test: unpaired
1049 t-test for pT389 P70 S6 Kinase, pS473 AKT; Unpaired t-test with Welch's correction for pS939 TSC2;
1050 Mann-Whitney test for pS939 TSC2. **C**, pP70 S6 Kinase western blotting with insulin time course in
1051 HeLa WT (up) and EZR^{-/-} (bottom) cells. Graph shows the mean of pP70 S6/P70 S6 ratio \pm SEM (n=3
1052 experiments at least). Statistical test: One Way ANOVA for WT and KO curve (pairwise comparisons
1053 with reference T0). **D**, Representative confocal images of LAMP1 and TSC1 (left) and LAMP1 and
1054 TSC2 (right) immunofluorescence in HeLa WT and EZR^{-/-} cells. Magnified insets of TSC1/2
1055 localization are shown. Scale bar 10 μ m (magnification 1 μ m). **E**, Data represent mean of LAMP1-
1056 TSC1 (left) and LAMP1-TSC2 (right) colocalization spots \pm SEM (n=3 experiments at least).
1057 Statistical test: unpaired t-test for LAMP1-TSC1; Unpaired t-test with Welch's correction for LAMP1-
1058 TSC2. **F**, pS473 AKT western blotting with EGF time course in HeLa WT (left) and EZR^{-/-} (right)
1059 cells. Graph shows the mean of pS473 AKT/AKT ratio \pm SEM (n=3 experiments at least). Statistical
1060 test: One Way ANOVA with Dunnett's post-hoc test for WT curve; Kruskal-Wallis test with Dunn's

1061 post-hoc test for KO curve (pairwise comparisons with reference T0). NS: not significant. **G**, HeLa
1062 WT, WT + EGF, EZR^{-/-} and EZR^{-/-} + EGF cells were immunostained with EGFR (green), TSC1 (red)
1063 and EEA1 (gray). Representative magnifications are shown. Scale bar 10 μ m (magnification 1 μ m). **H**,
1064 Data represent mean of TSC1-EEA1 colocalization spots \pm SEM (n=3 experiments at least). Statistical
1065 test: One Way ANOVA.

1066

1067 **Figure 7. Ezrin depletion induces EGFR-mediated retinal degeneration. A**, Schematic
1068 representation of used CRISPR/Cas9 strategy to generate Ezrin^{-/-} medaka lines. The red box
1069 highlighted the deleted nucleotides in the *Ezrin* exon 1 gene. **B**, WT and Ezrin^{-/-} medaka proteins were
1070 immunoblotted with Ezrin antibody and Actin as a loading control. **C**, Stereo-microscopic
1071 representative images of WT and Ezrin^{-/-} medaka at stage 40. Scale bar 1 mm. **D**, Immunoblots and
1072 calculated levels (right) of pT1462 TSC2, pS473 Akt, LC3-I, LC3-II, pY845 Egfr and Egfr, pS65 4E-
1073 BP1 in WT and Ezrin^{-/-} medaka fish. Data are expressed as mean of pT1462 TSC2/TSC2, pS473
1074 Akt/Akt, pS65 4E-BP1/4EB-P1 and pY845EGFR/EGFR ratio \pm SEM (n=3 experiments at least). Actin
1075 was used as loading control. Statistical test: Unpaired t-test. **E**, Representative confocal images of
1076 LAMP1 immunofluorescence in WT and Ezrin^{-/-} medaka fish. Magnified insets of RPE LAMP1
1077 localization are shown. Scale bar 10 μ m. RPE: retinal pigment epithelium; ONL: outer nuclear layer;
1078 INL: inner nuclear layer. **F**, Medaka WT and Ezrin^{-/-} fish were immunostained with EGFR. Scale bar
1079 10 μ m. **G**, Immunofluorescence labelling images of RHO (left) and ZPR1 (right) in WT and Ezrin^{-/-}
1080 fish. Magnified views of the regions in the boxes are provided at the bottom. Scale bar 10 μ m. **H**,
1081 Confocal images showing representative TUNEL positive cells on cryosection from WT and Ezrin^{-/-}
1082 medaka lines. Scale bar 10 μ m. Graph shows the mean of number of TUNEL positive cells for retina \pm
1083 SEM (n=3 experiments at least). Statistical test: unpaired t-test.

1084

1085 **Figure 8. EGFR/Ezrin/TSC complex molecular pathway**

1086 Diurnal inactivation of Ezrin leads to incapacity of EGFR to dimerize. The absence of active EGFR on
1087 the endosome causes the migration of TSC complex on the lysosome, where it inhibits mTORC1C1.
1088 On the contrary, the nocturnal activation of Ezrin favorites the phosphorylation and dimerization of
1089 EGFR, that translocate from the plasma membrane on the early endosome. Ezrin localized with EGFR,
1090 on the endosomal membrane, binds TSC complex, preventing mTORC1C1 inactivation on the
1091 lysosome.

1092

1093 **Figure supplement 1. Ezrin knockout cells show lysosomal enhancement. A,** VENN diagram
1094 showing the comparison of transcriptomics (GSE195983) and proteomics (PRIDE ID: PXD045157)
1095 performed in EZR^{KO} MEF cells. 572 genes are commonly regulated: 317 and 213 genes are induced
1096 and inhibited in both datasets, respectively; the remaining 42 are regulated in opposite manner.
1097 Heatmap on 22 Lysosomal genes (out of 317) induced in the transcriptome **B** and in the proteome **C. D,**
1098 Schematic representation of *Ezrin* gene and the corresponding protein. The position of the mutation in
1099 exon 2 and the relative changes in the coding sequence is highlighted. **E,** WT and EZR^{-/-} HeLa cells
1100 were cultured in 6-cm cell plates for 24 hours, then fixed and immunostained with lysotracker and
1101 DAPI. Scale bar 10 μ m. **F,** Data represent mean of lysotracker-positive cells \pm SEM (n=3 experiments
1102 at least). Statistical test: unpaired t-test. **G,** HeLa WT and EZR^{-/-} cells were lysed and immunoblotted
1103 with NBR1, LAMP1, EZR, p62, LC3 antibodies or GAPDH antibody as a loading control. Data
1104 represent the mean relative NBR1, LAMP1, p62 and LC3 levels relative to GAPDH \pm SEM (n=3
1105 experiments at least). Statistical test: unpaired t-test for NBR1, p62, LC3-I and LC3-II; Mann-Whitney
1106 test for LAMP1. **H,** HeLa EZR^{-/-} showed CTSB enzymatic activity increase compared to control cells.
1107 Statistical test: unpaired t-test. **I,** HeLa WT and EZR^{-/-} cells were cultured in normal medium (stv-, baf-
1108). Starved HBSS medium (stv+), or starved medium supplemented with baflomycin (baf+) or without

1109 baflomycin (baf-), were lysed and immunoblotted with LC3 antibodies or GAPDH antibody as a
1110 loading control. Data represent the mean relative LC3 levels relative to GAPDH \pm SEM (n=3
1111 experiments at least). Statistical test: unpaired t-test for all the comparisons against WT; Mann-
1112 Whitney test for all the comparisons against EZR^{-/-}. **J**, Immunofluorescence labelling images of TFEB-
1113 GFP (green) in WT and EZR^{-/-} HeLa cells. Scale bar 50 μ m.

1114

1115 **Figure supplement 2. Ezrin genetic and pharmacological depletion causes EGFR signaling**
1116 **alteration. A and B**, Bubble plots representing the enrichment analysis of 530 DEGs performed in
1117 kinase perturbation from GEO database and from the Proteomics Drug Atlas. Color and x axis
1118 represent minus logarithms of p Value. The size represents numbers of genes enriched in the indicated
1119 data. **C**, Domain interaction network based on multiple resources. Proteins are colored shapes; domains
1120 are dots. Domains are connected if they are found in a reliable association within a database/resource,
1121 with color coding the database/resource. **D**, MEF cells were fixed and immunostained with endotracker
1122 (red) and DAPI (blue). Scale bar 10 μ m. **E**, Graph shows mean of endotracker-positive cells \pm SEM
1123 (n=3 experiments at least). Statistical test: unpaired t-test. **F**, Immunoblots and calculated levels
1124 (bottom) of HER2, HER3, EGFR, pT222 MK2, MK2, pT202/Y204 P44/42 MAPK, P44/42 MAPK,
1125 pT180/pY182 p38 MAPK and P38 MAPK in MEF WT and EZR^{KO} cells. Data are expressed as mean
1126 of HER2, HER3, EGFR, pT222 MK2/MK2, pT202/Y204 P44/42 MAPK/P44/42 MAPK and
1127 pT180/pY182 p38 MAPK/ p38 MAPK ratio \pm SEM (n=3 experiments at least). GAPDH was used as
1128 loading control. Statistical test: unpaired t-test for HER3 and pT180/pY182 p38 MAPK; unpaired t-test
1129 with Welch's correction for EGFR; Mann-Whitney test for HER2 and pT222 MK2. **G**, Representative
1130 immunoblots of EGFR in endosomes proteins in MEF WT and EZR^{KO}. EEA1 are used as endosomes
1131 extraction control. **H**, Immunofluorescence images of EGFR (green) and EEA1 (red) in MEF WT and
1132 EZR^{KO} observed by confocal microscopy. Scale bar 10 μ m (magnification 1 μ m).

1133

1134 **Figure supplement 3. EZRIN interacts with TSC1.**

1135 **A**, Immunoblots and calculated levels (bottom) of HER2, HER3, pY845 EGFR, EGFR, pT222 MK2,
1136 MK2, pT180/pY182 p38 MAPK and P38 MAPK in MEF WT and EZR^{KO} cells. Data are expressed as
1137 mean of HER2, HER3, pY845 EGFR, EGFR, pT222 MK2 and pT180/pY182 p38 MAPK ratio \pm SEM
1138 (n=3 experiments at least). GAPDH was used as loading control. Data are expressed as mean of HER2,
1139 HER3, pY845EGFR/EGFR, EGFR, pT222 MK2/MK2 and pT180/pY182 p38 MAPK/P38 MAPK ratio
1140 \pm SEM (n=3 experiments at least). Statistical test: One Way ANOVA with Tukey's post-hoc test for
1141 HER2, EGFR, pT222 MK2 and pT180/pY182 p38 MAPK; Kruskal-Wallis test with Dunn's post-hoc
1142 for pY845 EGFR. **B**, Immunofluorescence labelling images of EGFR-GFP (green), EEA1 (red) and
1143 DAPI (blue) after 3h of EGF stimulation (bottom) in HeLa WT (left) and NSC668394-treated cells
1144 (right). Scale bar 10 μ m (magnification 1 μ m). **C-E**, Alphafold3 fold prediction for the EZRIN
1145 (UID:P15311)/HAMARTIN (UID:Q92574) dimer and detail of domain-domain interaction (**F-H**). The
1146 dimer prediction is color-coded by chain (**C**; EZRIN is firebrick, HAMARTIN is orange), by plddt (**D**;
1147 yellow to blue with blue better), and by domain (cyan is hamartin protein domain (PF04388), magenta
1148 is FERM C-terminal PH-like domain (PF09380), green is FERM N-terminal domain (PF09379)). (**E,F**)
1149 closeup of the interface as surface (**F**) and spheres representation (**G**). (**H**) is the structural alignment
1150 (ChimeraX mmaker) of the five dimer fold models over the hamartin protein domain. The stable
1151 portion (gray section) of hamartin is coloured in shades of blue, unreliable prediction (azure section) is
1152 depicted as gray sticks, FERM N and C term domain are depicted as ribbons and color-coded as per
1153 other subfigures. Regardless of the model confidence, EZRIN consistently interacts with a specific
1154 region of hamartin through FERM N/C domains. **J**, Immunofluorescence labelling images of LAMP1
1155 (red), TSC1 (green) and DAPI (blue) after 30 min of Insulin stimulation (upper panel) and LAMP1

1156 (red), TSC2 (green) and DAPI (blue) after 30 min of Insulin stimulation (lower panel) in HeLa WT and
1157 EZR^{-/-} cells, respectively. Scale bar 10 μ m (magnification 1 μ m).

1158

1159 **Figure supplement 4. Ezrin inhibition induces mTORC1C1 pathway inhibition. A,** Immunoblots
1160 and calculated levels (bottom) of pS939 TSC2, TSC2, pT389 P70 S6 Kinase, P70 S6 Kinase, pS473
1161 AKT, AKT, pS65 4E-BP1, 4E-BP1 in HeLa WT, DMSO-treated and *NSC668394*-treated cells. Data
1162 are expressed as mean of pS939 TSC2/TSC2, pT389 P70 S6 Kinase/P70 S6 Kinase, pS473 AKT/ AKT
1163 and pS65 4E-BP1/4E-BP1 ratio \pm SEM (n=3 experiments at least). GAPDH was used as loading
1164 control. Statistical test: One Way ANOVA with Tukey's post-hoc test for pS939 TSC2, pS473 AKT,
1165 pS65 4E-BP1; Kruskal-Wallis test with Dunn's post-hoc test for pT389 P70 S6 Kinase. **B,**
1166 Immunoblots and calculated levels (bottom) of pT1462 TSC2, TSC2, pT389 P70 S6 Kinase, P70 S6
1167 Kinase, pS473 AKT, AKT, pS65 4E-BP1 and 4E-BP1 in HeLa WT, DMSO-treated and *NSC668394*-
1168 treated cells. Data are expressed as mean of pT1462 TSC2/TSC2, pT389 P70 S6 Kinase/P70 S6
1169 Kinase, pS473 AKT/ AKT and pS65 4E-BP1/4E-BP1 ratio \pm SEM (n=3 experiments at least). GAPDH
1170 was used as loading control. Statistical test: One Way ANOVA with Tukey's post-hoc test for pT389
1171 P70 S6 Kinase, pS473 AKT, pS65 4E-BP1; Kruskal-Wallis test with Dunn's post-hoc test for pT1462
1172 TSC2. **C,** Immunofluorescence labelling images of LAMP1 (red), TSC1/TSC2 (green) and DAPI
1173 (blue) in MEF WT (left) and *NSC668394*-treated cells. Scale bar 10 μ m (magnification 1 μ m). **D,**
1174 Immunoblots and calculated levels (bottom) of pS939 TSC2, TSC2, pT389 P70 S6 Kinase, P70 S6
1175 Kinase, pS473 AKT and AKT in MEF WT and EZR^{KO} cells. Data are expressed as mean of pS939
1176 TSC2/TSC2, pT389 P70 S6 Kinase/P70 S6 Kinase and pS473 AKT/ AKT ratio \pm SEM (n=3
1177 experiments at least). GAPDH was used as loading control. Statistical test: unpaired t-test. **E,**
1178 Immunofluorescence labelling images of LAMP1 (red), TSC1 (green) and DAPI (blue) in MEF WT
1179 and EZR^{KO} cells. Scale bar 10 μ m (magnification 1 μ m). **F,** Immunoblots and calculated levels (right)

1180 of pT389 P70 S6 Kinase in MEF WT, MEF WT with *NSC668394* treatment and TSC2^{KO} treated with
1181 *NSC668394* cells. Data are expressed as mean of pT389 P70 S6 Kinase/P70 S6 Kinase ratio \pm SEM
1182 (n=3 experiments at least). GAPDH was used as loading control. Statistical test:one way ANOVA.

1183

1184 **Figure supplement 5. Ezrin overexpression rescue EGFR and TSC1 localization.** **A**,
1185 Immunofluorescence labelling images of EGFR-GFP (green), EZR^{T567D}-CHE (top), EZR^{T567A}-CHE
1186 (bottom), EEA1 (gray) and DAPI (blue) in HeLa EZR^{-/-}. EZR^{T567D}, but not EZR^{T567A}, with EGF
1187 stimulation rescued EGFR translocation on the endosomes in EZR^{-/-} cells. Magnified views of EGFR
1188 and Ezrin localization are provided in both Airyscan high-resolution microscopy and 3D-confocal
1189 microscopy. Scale bar 10 μ m (magnification 1 μ m). **B**, Representative confocal images of EGFR-GFP
1190 (green), EZR^{T567D}-CHE (top), EZR^{T567A}-CHE (bottom), TSC1 (gray) and DAPI (blue) in HeLa EZR^{-/-}.
1191 TSC1 localization misplaced from lysosomes to endosomes in HeLa EZR^{-/-} cells, after
1192 EZR^{T567D} transfection and upon EGF stimulation. Boxes show magnifications of TSC1 position,
1193 displayed both as Airyscan high-resolution microscopy and 3D-confocal microscopy. Scale bar 10 μ m
1194 (magnification 1 μ m).

1195

1196 **Figure supplement 6. Light/dark transitions regulate EGFR and mTORC11 signaling in mice**
1197 **RPE.** **A**, WT mice were exposed 3h in light on (left) and dark (right) condition and after 3 h the retina
1198 was analyzed by EGFR immunofluorescence. Representative images are shown. Scale bar 50 μ m.
1199 Schematic summary of EGFR and Ezrin trend in mice retina. **B**, WT mice RPE were analyzed by
1200 western blot for EGFR pathway in light and dark conditions. Data are expressed as mean of pY845
1201 EGFR/EGFR and pT180/pY182 p38 MAPK/P38 MAPK ratio \pm SEM (n=3 experiments at least).
1202 GAPDH was used as loading control. Statistical test: unpaired t-test for EGFR, pY845 EGFR, and
1203 pT180/pY182 p38 MAPK. **C**, Immunoblots and calculated levels (right) of pS939 TSC2, TSC2, pT389

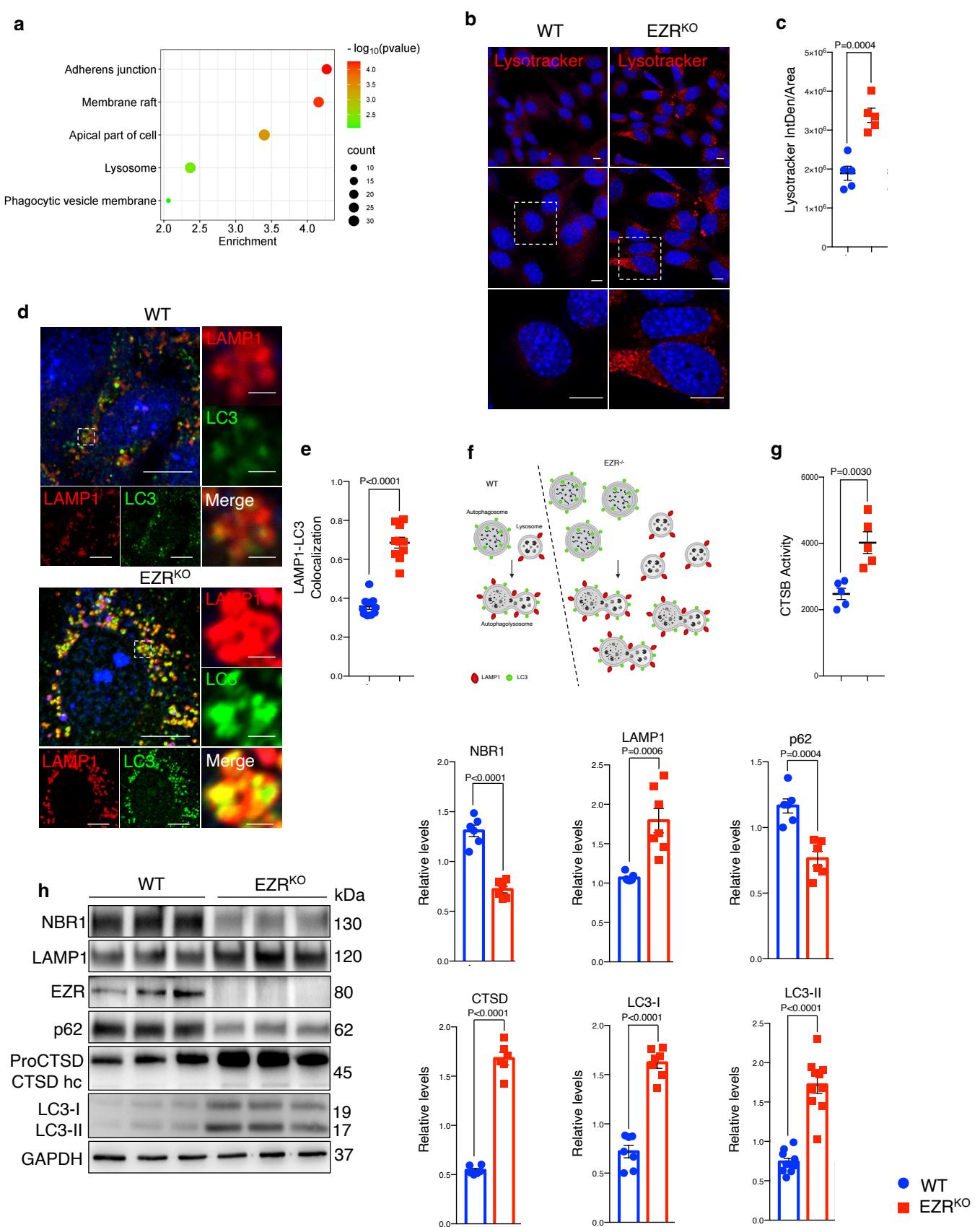
1204 P70 S6 Kinase, P70 S6 Kinase, pS473 AKT, AKT, pT37/46 4E-BP1 and 4E-BP1 in light and dark-
1205 exposed WT mice. Data are expressed as mean of pS939 TSC2/TSC2, pT389 P70 S6 Kinase/P70 S6
1206 Kinase, pS473 AKT/ AKT and pT37/46 4E-BP1/4E-BP1 ratio \pm SEM (n=3 experiments at least).
1207 GAPDH was used as loading control. Statistical test: unpaired t-test for pS939 TSC2, pS473 AKT;
1208 Unpaired t-test with Welch's correction for pT389 P70 S6 Kinase; Mann-Whitney test for pT37/46 4E-
1209 BP1.

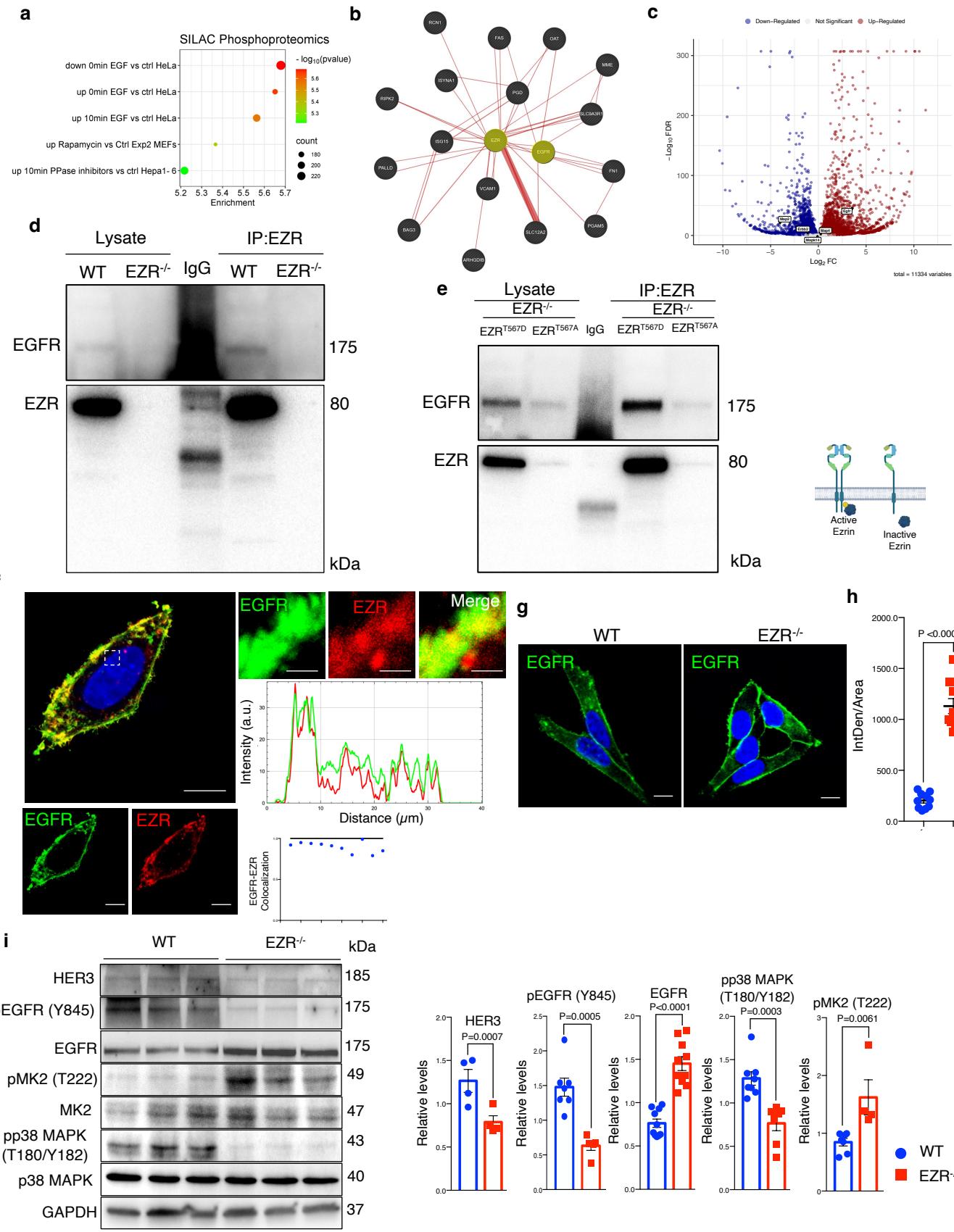
1210

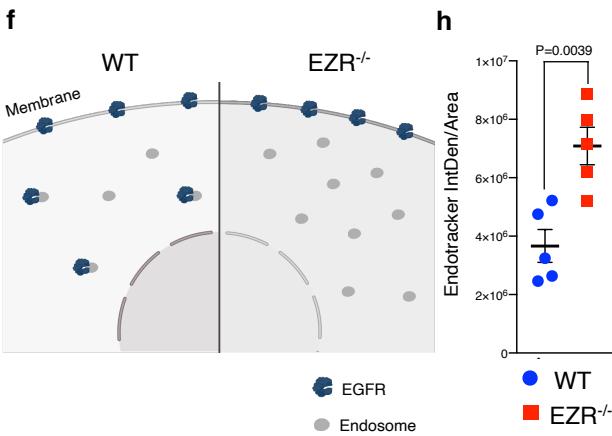
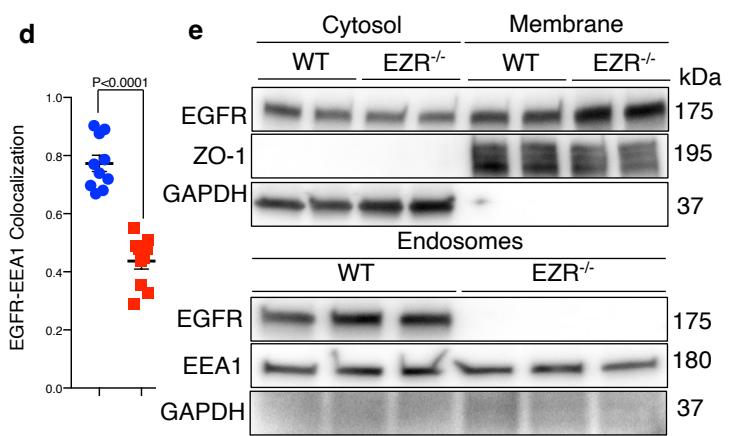
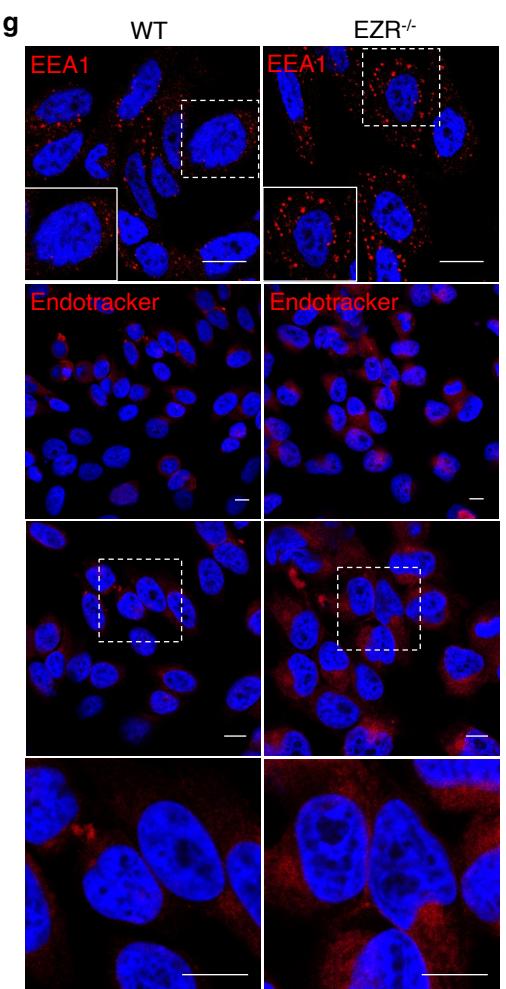
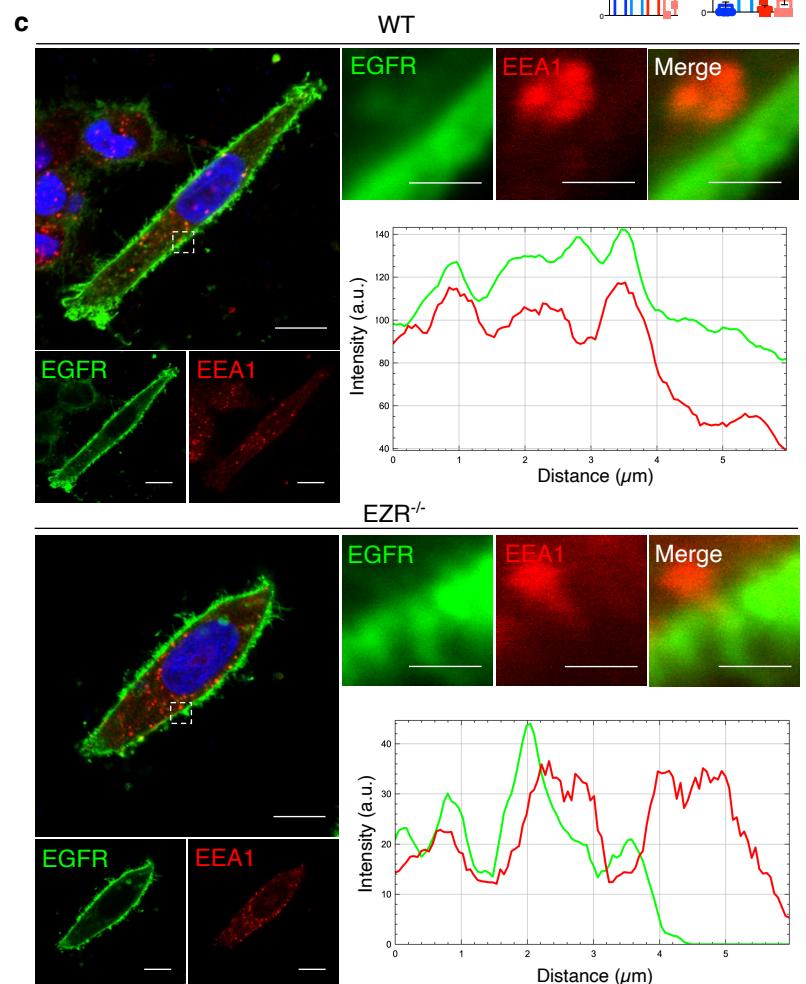
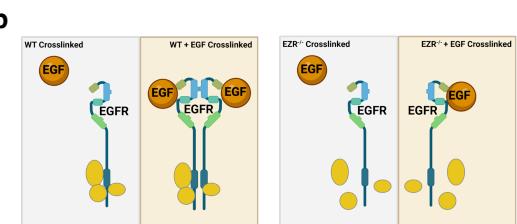
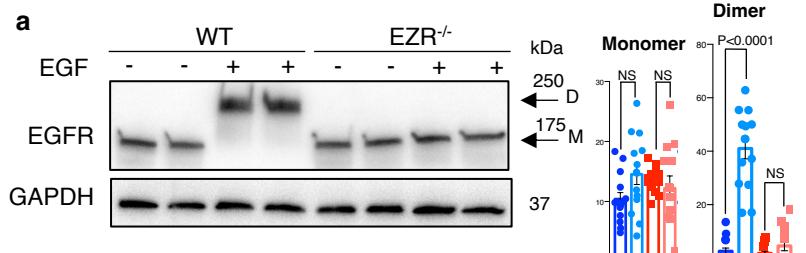
1211 **Video 1**

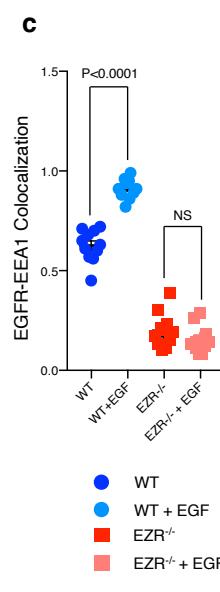
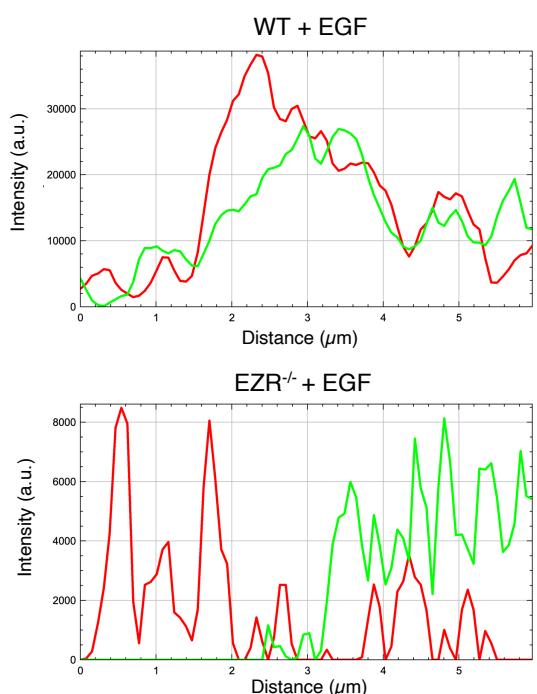
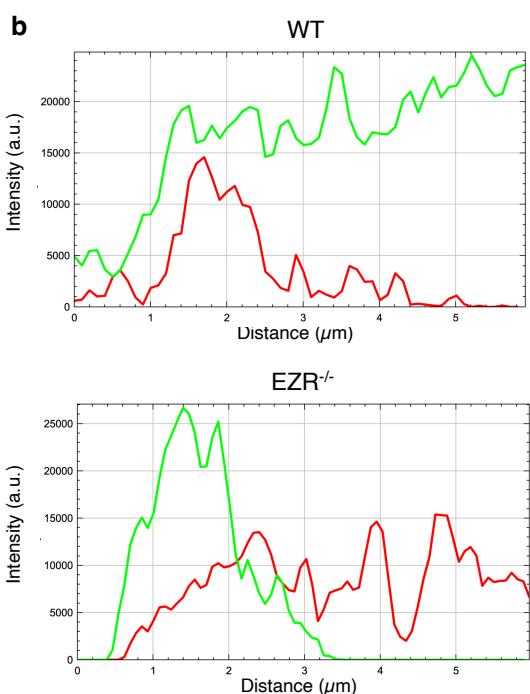
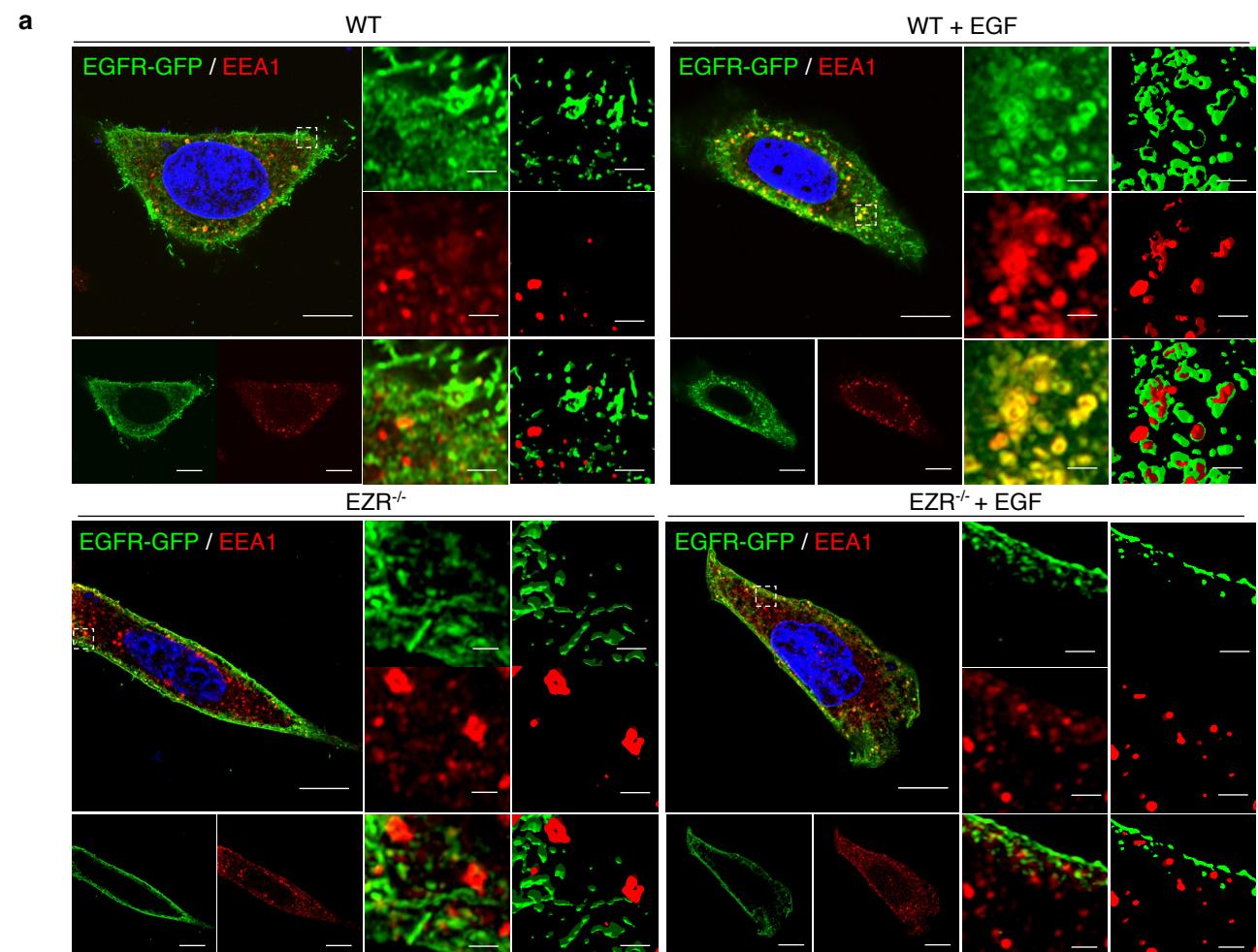
1212 WT HeLa cells expressing EGFR-GFP were imaged by TIRF super-resolution microscopy every were
1213 imaged every 0.5 \square s for 5 min after EGF stimulation (related to Figure 5A).

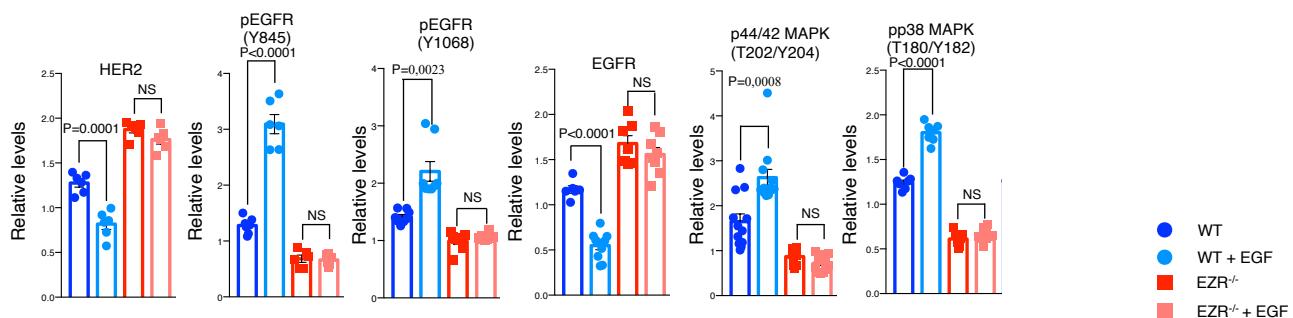
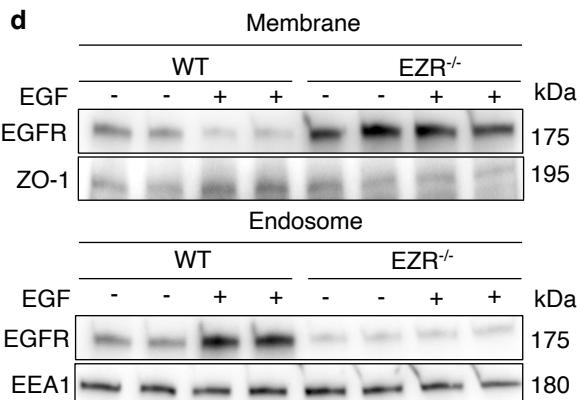
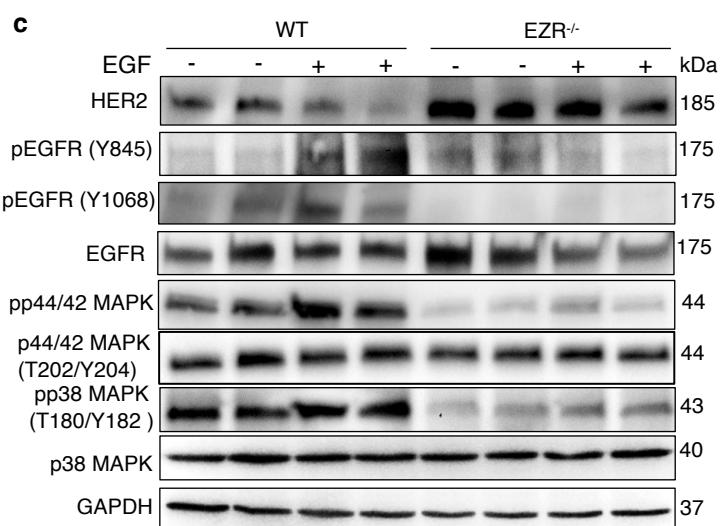
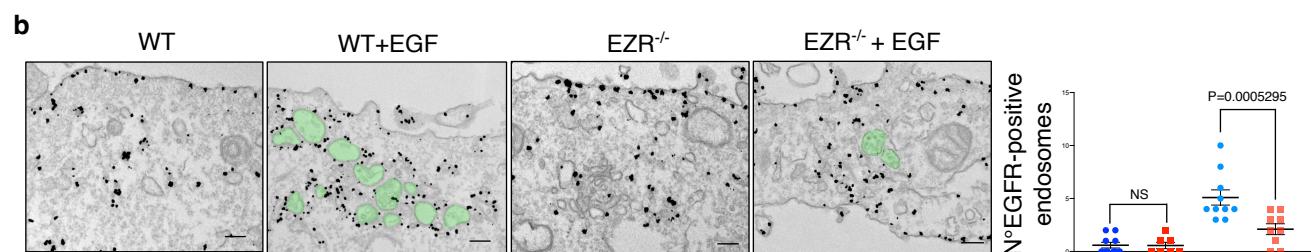
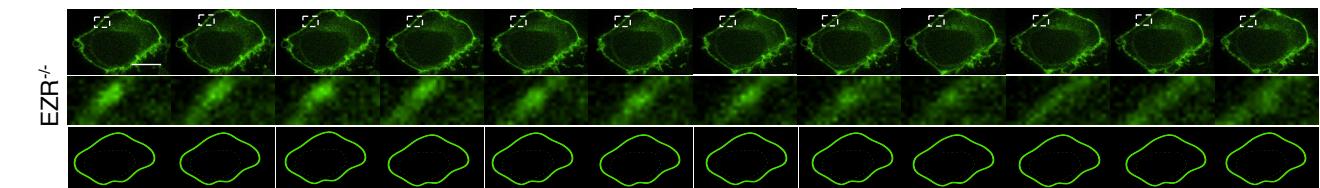
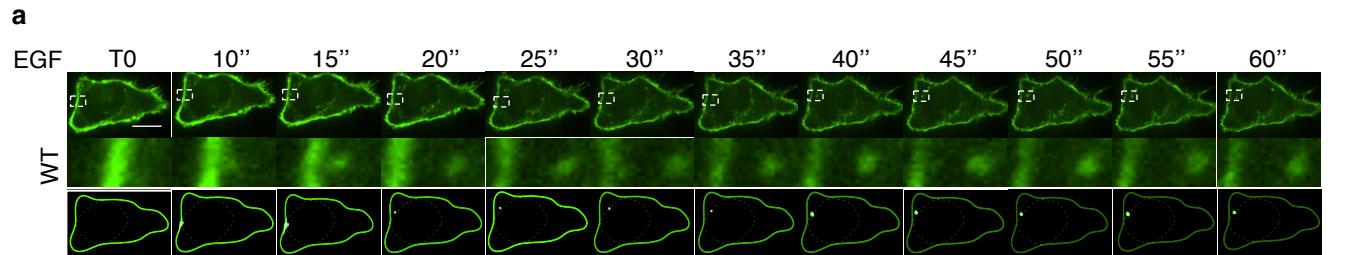
1214 **Video 2**

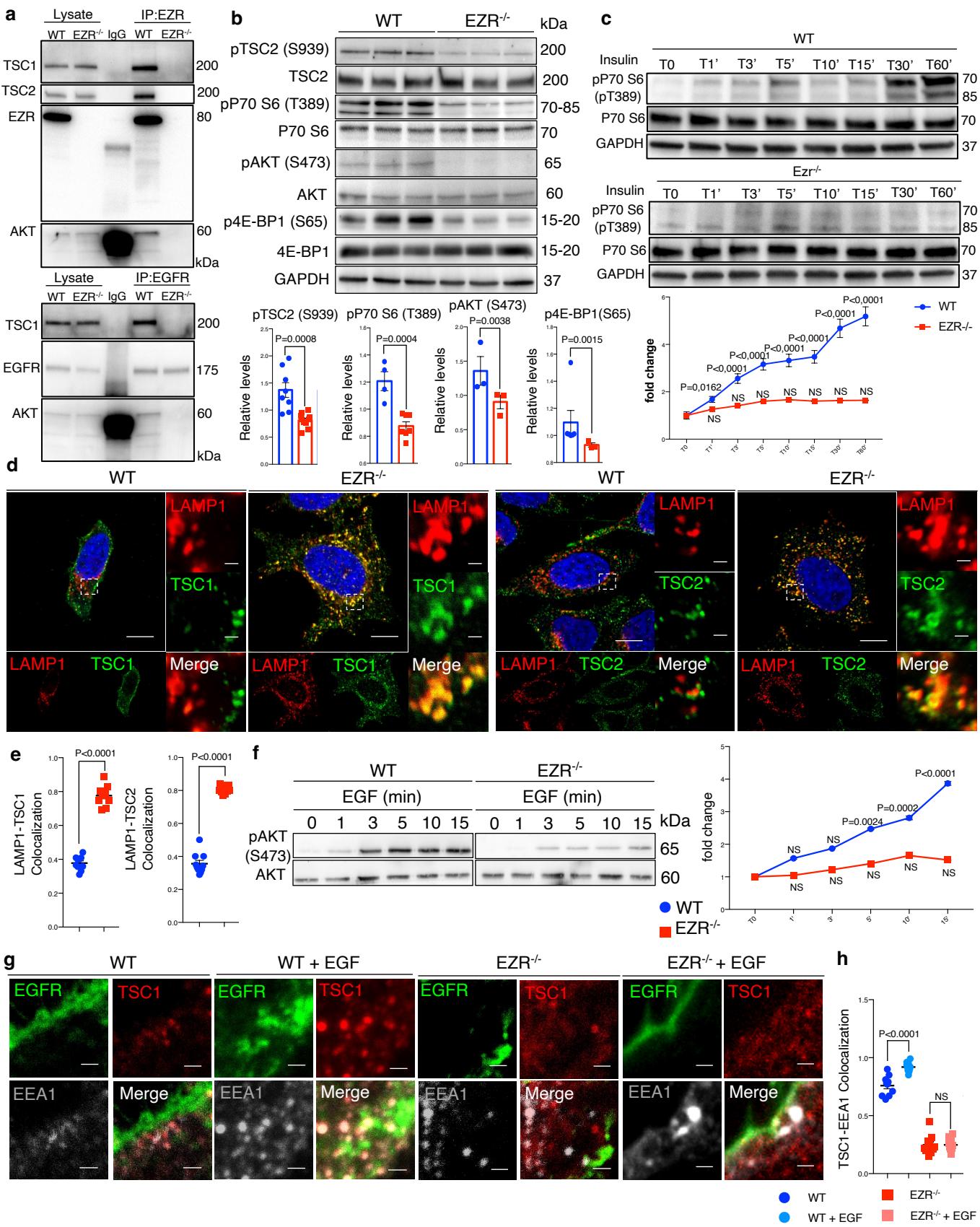

1215 Magnification from WT HeLa cells expressing EGFR-GFP, imaged by TIRF super-resolution
1216 microscopy every were imaged every 0.5 \square s for 5 min after EGF stimulation (related to Figure 5A).

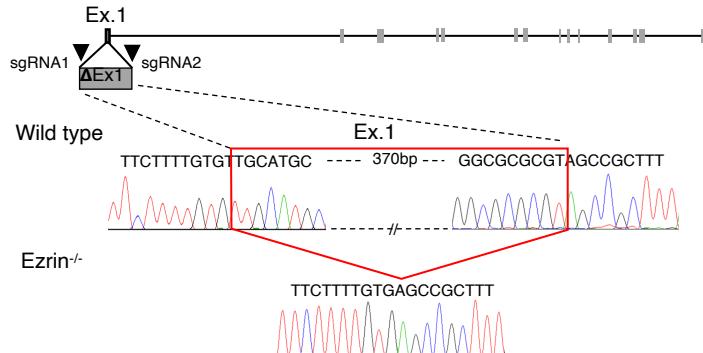
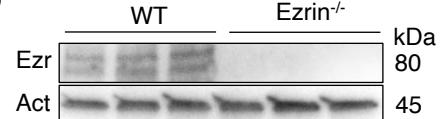
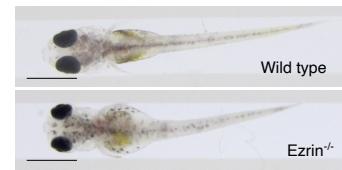
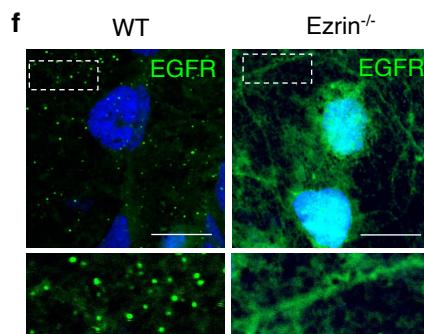
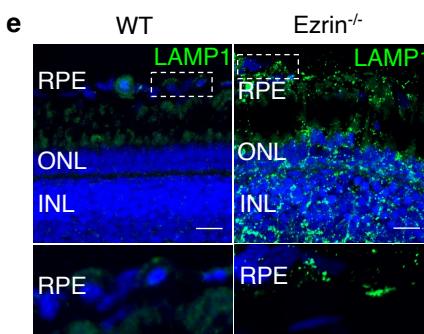
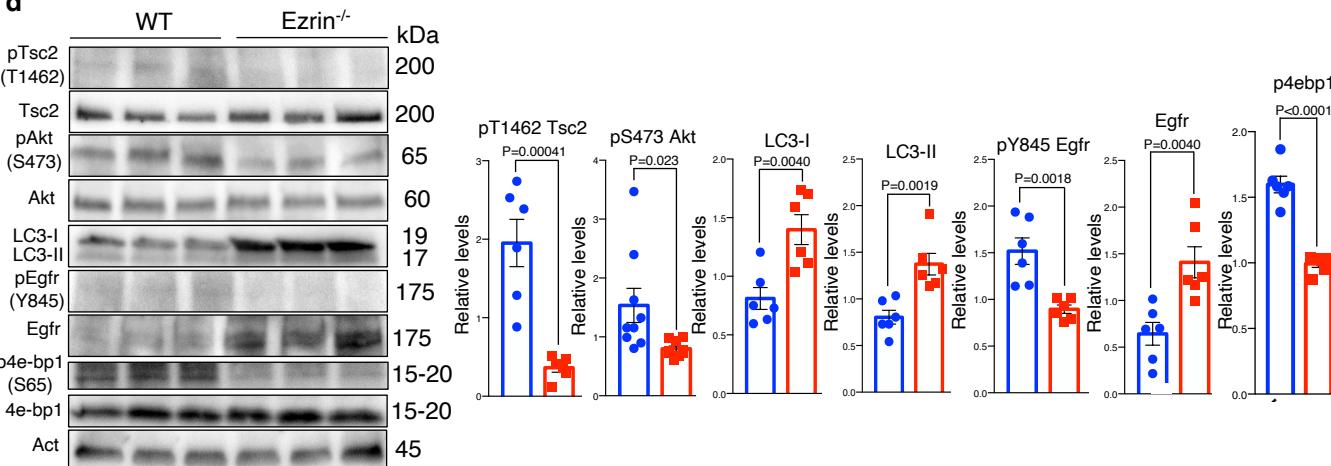
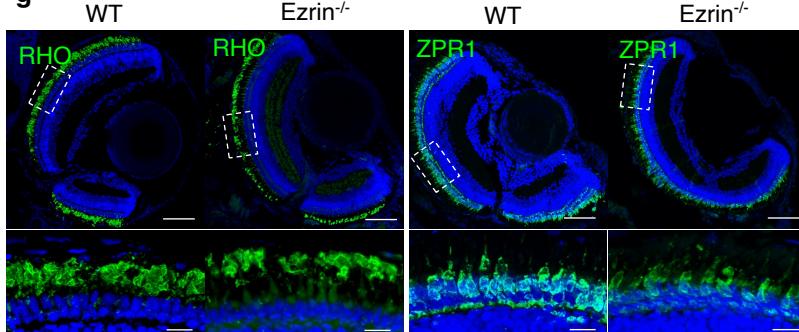
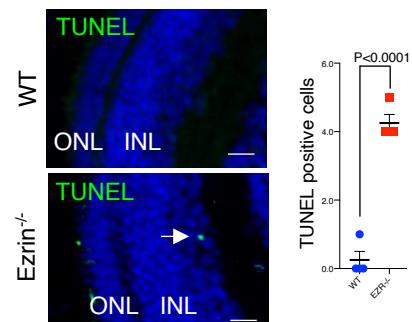

1217 **Video 3**

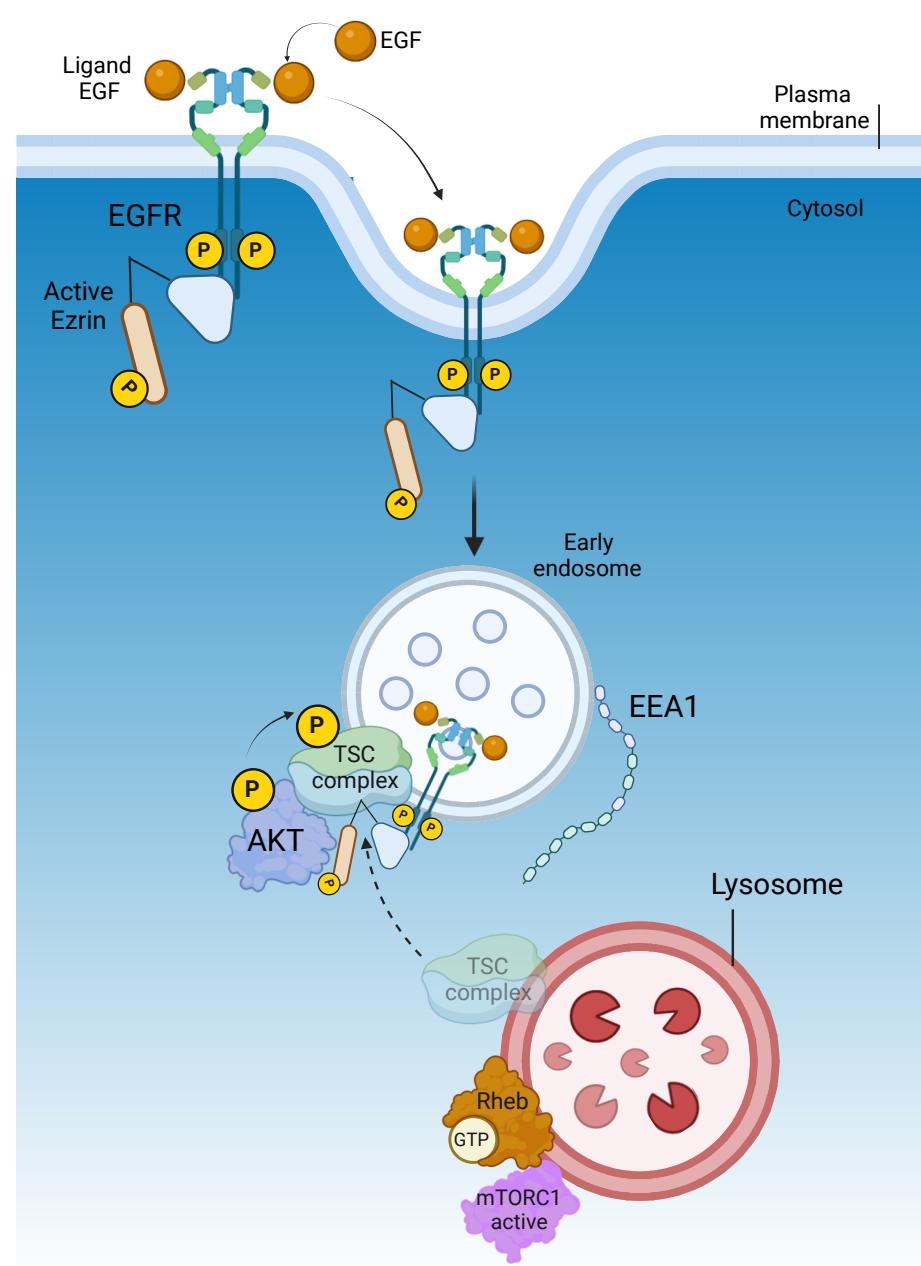
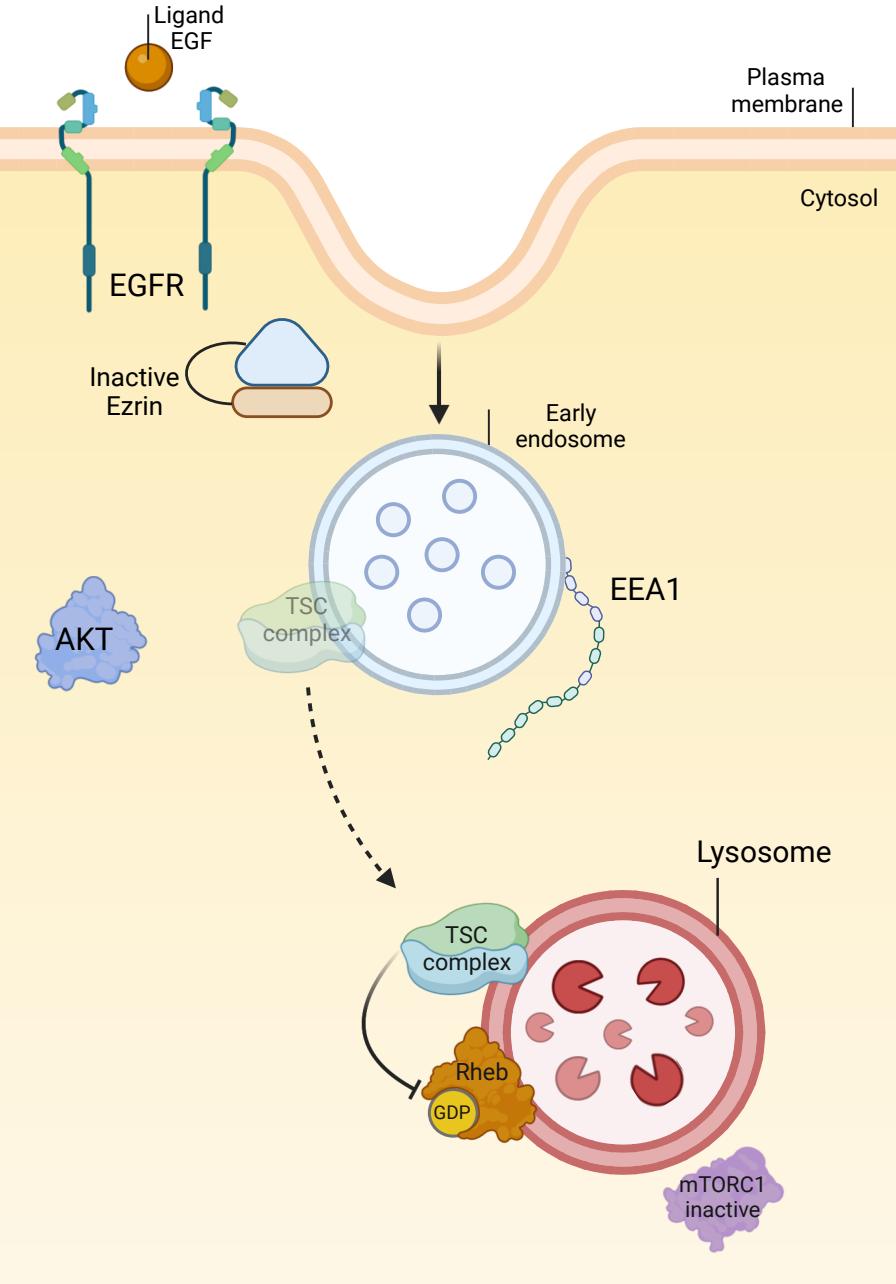






1218 EZR^{-/-} HeLa cells expressing EGFR-GFP were imaged by TIRF super-resolution microscopy every
1219 were imaged every 0.5 \square s for 5 min after EGF stimulation (related to Figure 5A).





1220 **Video 4**







1221 Magnification from EZR^{-/-} HeLa cells expressing EGFR-GFP, imaged by TIRF super-resolution
1222 microscopy every were imaged every 0.5 \square s for 5 min after EGF stimulation (related to Figure 5A).



a**b****c****d****g****h**

