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Abstract

Developmental connectomic studies have shown that the modular organization of functional
networks in the human brain undergoes substantial reorganization with age to support cognitive
growth. However, these studies implicitly assume that each brain region belongs to one and only
one specific network module, ignoring the potential spatial overlap between functional modules.
How the overlapping functional modular architecture develops and whether this development is
related to structural signatures remain unknown. Using longitudinal multimodal structural,
functional, and diffusion MRI data from 305 children (aged 614 years), we investigated the
development of the overlapping modular architecture of functional networks, and further
explored their structural associations. Specifically, an edge-centric network model was used to
identify the overlapping functional modules, and the nodal overlap in module affiliations was
quantified using the entropy measure. We showed a remarkable regional inhomogeneity in
module overlap in children, with higher entropy in the ventral attention, somatomotor, and
subcortical networks and lower entropy in the visual and default-mode networks. Furthermore,
the overlapping modules developed in a linear, spatially dissociable manner from childhood to
adolescence, with significantly reduced entropy in the prefrontal cortex and putamen and
increased entropy in the parietal lobules. Personalized overlapping modular patterns capture
individual brain maturity as characterized by brain age. Finally, the overlapping functional
modules can be significantly predicted by integrating gray matter morphology and white matter
network properties. Our findings highlight the maturation of overlapping network modules and
their structural substrates, thereby advancing our understanding of the principles of connectome
development.

Keywords: brain development; connectome; overlapping modules; anatomical associations,
resting-state fMRI
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Introduction

The period of childhood and adolescence is a stage of transition from infancy to adulthood,
which is critical for the maturity and improvement of motor, cognitive, emotional, and social
functions [1, 2]. During this period, the brain undergoes progressive and regressive maturation in
its microscopic and macroscopic anatomy, such as increased myelination [3, 4], synaptic pruning
[4-6], and cortical thinning [4, 7-9]. From the perspective of function, remarkable
reconfigurations have also been observed for task-evoked regional activity [10, 11] and task-free
spontaneous activity [12]. These structural and functional changes are deemed to lay the
foundation for improvements in children’s cognitive and behavioral performance [10, 11, 13].
Notably, the periods of childhood and adolescence are also critical windows for the onset of
many psychiatric disorders [14]. Exploring brain developmental principles in children and
adolescents offers novel insights into the neural mechanism underlying not only cognitive and
behavioral growth but also neurodevelopmental disorders.

Over the past two decades, neuroimaging-based connectomics has provided a valuable
framework for investigating the developmental principles of brain function [15-17]. The
functional modular structure, which is characterized by dense within-module connections and
sparse between-module connections, has attracted great attention [18-21]. The modular structure
of the brain is particularly important for global network communication since it can facilitate
efficient information segregation and integration with low wiring costs [20, 22]. Several studies
have reported age-related changes in modular organization with development [15, 16, 23-25].
Specifically, functional modular organization is already present in fetuses [26] and neonates [27,
28]; in this configuration, the modules in the primary cortex show an adult-like topography, and
the modules in the association cortex are far from mature. The modular architecture further
undergoes an elaborate reconfiguration from childhood to adulthood [15, 16, 23, 24]. Its spatial
layout shifts from an anatomical proximity to a spatially distributed and functionally related
configuration [25]. These developmental changes have been found to be related to the
development of individual cognition and behavior, such as cognitive control [24] and general
cognitive function [23].

Despite this substantial progress, previous connectome development studies have focused
primarily on modular structure without spatial overlap (i.e., hard assignment), implicitly
assuming that each brain node belongs to one and only one functional module. This hypothesis
might be problematic because the modular structures of real-world networks, such as cooperation
networks in social systems and protein networks in nature, generally show overlapping
properties [29, 30]. This modular overlapping framework in complex networks provides
important insight into the potential diverse functional roles of nodes in the network. Several
recent studies have also reported overlapping modular organization in brain functional networks
in adults [31-35], indicating that brain regions are not limited to a specific module. Specifically,
the overlap between functional modules is spatially heterogeneous [32-35], with higher
overlapping regions being crucial for intermodule communication [36] and global network
efficiency [33]. The presence of overlapping modules is also related to spatial heterogeneity in
functional diversity and neurocognitive flexibility [32, 33, 37]. However, the network growth
principle of the overlapping modular organization in the functional connectome and its
association with structural brain signatures remain unknown.
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To fill these knowledge gaps, we investigated the development of the overlapping modular
architecture of functional connectomes during childhood and adolescence and examined their
associations with structural brain signatures using a large longitudinal multimodal neuroimaging
dataset from 305 typically developing children (aged 614 years, 491 scans in total) [38, 39].
Specifically, we used resting-state fMRI (rsfMRI) data to investigate the development of the
overlapping modules and structural and diffusion MRI data to reveal the underlying structural
substrates of the overlapping modules. In the present study, we used an edge-centric module
detection approach [40] to identify the overlapping functional modular architecture for each
rsfMRI scan of each participant and further quantified the degree of overlap of each brain node
in the module affiliations. We then examined development in the overlapping level of child brain
networks at the global, system and nodal levels, and further assessed whether the spatial pattern
of the modular overlap can predict brain maturity. Finally, we investigated the potential structural
substrates involved in the development of overlapping functional modules.

Results

We leveraged longitudinal rsfMRI data from 305 children (aged 6-14 y, 491 scans), including
three repeated scans from 47 children, two repeated scans from 92 children, and one scan from
166 children (Figure 1A). For comparison purposes, we also included cross-sectional rsfMRI
data from a group of healthy adults (n = 61, aged 18-29 y). Both children and adults were
scanned using the same scanner with identical protocols. All MR images used here underwent
strict quality control (for details, see Materials and Methods). We identified the overlapping
modular architecture in individual- and group-level functional networks using an edge-centric
modular detection algorithm [40] (Figure 1B). Briefly, we first constructed a traditional
functional network comprising nodal regions and interregional connections (i.e., edges). Then,
we constructed a corresponding weighted edge-based brain graph that represented the similarity
of connectivity profiles between edges (see Materials and Methods). Finally, we identified
module affiliations of each nodal region according to the module assignments of its edges in the
corresponding edge graph. A measure of entropy was used to measure the extent of modular
overlap for each node by quantifying the distribution of module affiliations of the edges attached
to this node (Figure 1B).
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Figure 1. Data information and schematic diagram of the overlapping modular architecture based on
edge-centric module detection. (A) Age distribution of longitudinal rsfMRI scans of children. (B) (i) Left:
traditional brain functional connectivity network. In this network, each node denotes a brain region of interest,
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and each link denotes the interregional functional connectivity. Middle: edge graph corresponding to a given
functional network. In this graph, each node denotes an edge in the functional network, and each link is
defined as the similarity between edges in the connectivity profiles. Right: edge-centric module detection.
Each edge is assigned to a specific module based on the Louvain algorithm [41]. (ii) Definition of regional
module overlap. Each nodal region was assigned to one or more modules due to the diverse module affiliations
of its edges. We employed a measure of entropy to quantify the extent of module overlap of each brain region
by measuring the distribution of the module affiliations of its edges.

Spatial topography of the overlapping functional modules in children and adults

We first identified the overlapping functional modules in healthy young adults, which serves as a
reference for exploring the development of the overlapping modules in children. We found seven
modules in the weighted edge-based brain graph of the adult group (Figure 2A) and further
showed the corresponding topographic distribution of each module (Figures 2B and 2C). These
functional modules showed substantial spatial overlap, as characterized by 73% of the nodal
regions belonging to two or more modules (Figure 2B). Module I was mainly located in the
medial and lateral prefrontal and parietal cortex, and lateral temporal cortex; module II was
mainly located in the primary motor and somatosensory cortices; module III was mainly located
in the insula, supramarginal gyrus, superior temporal gyrus, and paracentral lobule; module IV
was mainly located in the cingulate gyrus and the subcortical area; module V was located in the
visual cortex and the superior parietal lobule; module VI was located in the middle frontal gyrus
and superior parietal lobule; and module VII was primarily located in the temporal pole,
hippocampus, and amygdala (Figure 2C).

We further divided all the children’s rsfMRI scans into eight subgroups with one-year intervals,
and the adult group was set as the ninth subgroup for comparison. We identified the overlapping
modular architecture for each subgroup of children based on the rsfMRI data. The modules in
each child subgroup were matched with those in the adult subgroup. In general, most functional
modules in the child subgroups showed high spatial similarity with those in the adult subgroup
(Pearson’s correlation 7s: mean + SD = 0.75 £+ 0.02, range: 0.25-0.95) (Figure 2D). Visual
inspection suggested that the spatial similarity with the adult group increased gradually with age
for all modules, except module VI. For each module, the spatial distribution of nodes among
prior functional systems [42, 43] was largely consistent across all child subgroups and the adult
cohort (Figures 2E). Module I mainly involved the default-mode and frontoparietal systems;
module II mainly involved the somatomotor, ventral attention, and dorsal attention systems;
module IIT mainly involved the somatomotor and ventral attention systems; module IV mainly
involved the ventral attention, frontoparietal, and default-mode systems, and the subcortical area;
module V mainly involved the visual and dorsal attention systems; module VI mainly involved
the visual, somatomotor, dorsal attention, and ventral attention systems; and module VII mainly
involved the limbic and default-mode systems and the subcortical area. Interestingly, we found
that each module mainly comprised nodal regions that belong to the functional systems along the
adjacent hierarchy [44, 45], regardless of the subgroup.
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Figure 2. Overlapping modular architecture of the brain functional network in the adult cohort and the
child subgroups. (A) Modular organization in a weighted edge graph. The edges were sorted according to
their module affiliations. Each element denotes the interedge similarity in their connectivity profiles. (B)
Distribution of the number of nodal regions involving functional modules. Notably, 27% of the nodes belonged
to one module, and 73% of the nodes belonged to two or more modules. (C) Topographic distribution of seven
functional modules. For each module, nodal values represent the proportion of edges assigned to that module.
(D) Spatial similarity of the functional module maps between the child subgroups and the adult group. The
color and size of the dots represent the spatial similarity of functional modules between each child subgroup
and the adult group. Larger dot sizes indicate higher spatial similarity. (E) System-dependent spatial
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distribution of functional modules. For each functional module of each subgroup, we calculated the percentage
of nodes distributed in eight systems, including seven functional systems and the subcortical area. Given a
prior system, the bar chart shows the percentage of nodes located in this system for eight child subgroups with
a one-year interval and the adult cohort. In (C) and (D), cortical data were mapped on the brain surface using
BrainNet Viewer software [46]. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention;
LIM, limbic; FP, frontoparietal, DM, default-mode; SUB, subcortical; yrs, years.

Development of the overlapping functional modules during childhood and adolescence

We employed the mixed effect model [47, 48] to quantify the longitudinal changes in the
overlapping modular structure during childhood and adolescence. At the global level, the number
of modules in the edge-based brain graphs significantly decreased with age (linear model, ¢ = -
2.09, p = 0.037), and the modularity tended to increase with age (linear model, t=1.89, p =
0.059) (Figure 3A). At the regional level, the spatial topography of the nodal overlap (i.e.,
entropy) of every child subgroup was highly similar to that of the adult subgroup (Pearson’s
correlation rs ranged from 0.74 to 0.91). Specifically, for each age subgroup, regions with higher
levels of overlap were located mainly in the insula, supramarginal gyrus, inferior frontal gyrus,
somatosensory cortex, anterior cingulate gyrus and subcortical area (e.g., putamen), and regions
with lower levels of overlap were located mainly in the visual cortex, angular gyrus, and
posterior cingulate gyrus (Figure 3B). Statistical analysis revealed that seven nodal regions
showed significant linear changes with age (prpr correciea < 0.0014, Figure 3C). These regions
showed dissociable age-related changes, with significant increases mainly located in the superior
and inferior parietal lobules and the lateral prefrontal cortex and significant decreases mainly
located in the ventral and medial prefrontal cortex and the putamen.

At the system level, each subgroup followed a similar system-dependent pattern of nodal entropy
(ANOVA, all ps <0.0001 for nine subgroups) (Figure 4A). Specifically, the ventral attention and
somatomotor regions showed greater module overlap, while the visual and default-mode regions
showed lower module overlap. Quantitative analysis revealed that the entropy of the dorsal
attention system significantly increased with age (linear model,  =2.44, p = 0.015), while the
entropy in the subcortical area significantly decreased with age (linear model, 1 =-3.13, p =
0.0019, Figure 4B).
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Figure 3. Longitudinal development of the overlapping functional modules at the global and nodal
levels. (A) Left: Effect of age on the number of modules. Right: Age effect on modularity in edge-centric
module detection. (B) Spatial patterns of functional module overlap across the brain for each child subgroup
and for the adult group. (C) Spatial distribution of regions showing significant developmental changes in
functional module overlap. Age effects are displayed in terms of T values (prpr correcrea < 0.0014). In (A) and
(C), boxplots represent the distribution of the adult group for reference. The blue lines connecting scattered
points represent longitudinal scans of the same child. The adjusted value denotes the measure of interest
corrected for sex, head motion, and random age effects. yrs, years; LPFC, lateral prefrontal cortex; SPL,
superior parietal lobule; IPL, inferior parietal lobule; MPFC, medial prefrontal cortex; VPFC, ventral
prefrontal cortex.
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Figure 4. Longitudinal development of the brain functional module overlaps at the system level. (A)
Distribution of the module overlap within each functional system for each child subgroup and for the adult
group. Given a prior system, the bar chart shows the distribution of the average entropy of this system across
individuals for eight child subgroups with a one-year interval and the adult cohort. Here, the circle with a dot
denotes the median, and the box denotes the interquartile range. (B) Two functional systems showing
significant developmental changes in functional module overlap. In (B), boxplots represent the distribution of
the adult group for reference. Short lines connecting scattered points represent longitudinal scans of the same
child. The adjusted value denotes the measure of interest corrected for sex, head motion, and random age
effects. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP,
frontoparietal, DM, default-mode; SUB, subcortical.

Association of cognitive functions with developmental changes in overlapping modules

We next performed a meta-analysis using the NeuroSynth database [49] to explore the potential
cognitive significance associated with the developmental changes in network nodes in the
overlapping modules. The statistical map of the developmental changes in nodal entropy was
divided into 10 bins with decreasing age-related 7 values. We found that the nodal regions that
increased with age (bins 0—10 and 10-20), such as the lateral prefrontal cortex, superior parietal
lobule, and inferior parietal lobule, were mainly involved in the cognitive terms “motor
imagery”, “visual perception”, “spatial”, and “eye movements” (Figure 5). Nodal regions
showing decreases with age (bins 80-90 and 90-100), such as the ventral and medial prefrontal
cortex and the putamen, were mainly associated with the cognitive terms “speech”, “word form”,

“sound”, and ““auditory”.
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Figure 5. Cognitive function decoding of brain regions. These nodal regions were sorted in descending
order according to the developmental changes in the functional module overlap. The results were obtained
based on the information in the NeuroSynth meta-analytic database [49].

Predicting brain age from spatial topography of nodal overlap

We investigated whether the spatial topography of nodal overlap in the network modules could
be used to predict individual chronological age. Linear support vector regression (SVR) was used
with tenfold cross-validation (Figure 6A). We found that the spatial patterns of nodal entropy
significantly predicted individual chronological age (» = 0.37, pperm < 0.0001; Figure 6B).
Regions with high contributions were primarily located in the dorsal attention and default-mode
systems (Figure 6C). Furthermore, we found that the nodal contribution weights showed a
significant positive correlation with the developmental changes in nodal entropy in terms of age-
related ¢ values (Pearson’s correlation 7 = 0.46, pspin < 0.0001; Figure 6D). The significance level
of the spatial similarity was assessed by comparing the observed value to a null distribution. This
null distribution was created through 10,000 permutations, generating surrogate maps that
maintained the spatial autocorrelation characteristics of the original map [50]. This result
suggests that brain regions showing age-related changes play a crucial role in predicting
chronological age.
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Figure 6. Brain age prediction based on spatial patterns of nodal overlap. (A) Schematic representation of
the SVR prediction model based on 10-fold cross-validation. (B) Accuracy for age prediction using the tenfold
SVR model. The gray frequency polygon in the inset displays the null distribution of prediction accuracies
based on the permutation tests (z = 10,000) by shuffling the actual ages across scans. The red line denotes the
actual r value. (C) Spatial distributions of the nodal contribution in the prediction model. Left: Contribution
weight at the regional level. Right: Contribution weight at the system level. Positive and negative weights were
separately averaged within each system. (D) Left: Spatial pattern of the effect of age on nodal overlap in terms
of T values. Right: Nodal contribution weight shows a significant positive correlation with the development of
nodal overlap based on Pearson’s correlation analysis. Pos, positive; Neg, negative; VIS, visual; SM,
somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal, DM, default-mode;
SUB, subcortical; SVR, support vector regression.

Predicting individual nodal patterns of overlapping functional modules from structural brain
features

We finally investigated whether the structural features were related to the overlapping modules in
children. In this analysis, we included 446 high-quality rsfMRI and dMRI scans from 279
children (aged 614 years, F/M = 138/141), with three repeated scans from 42 children, two
repeated scans from 83 children and one scan from 154 children. For each brain node of each
child, we obtained five morphological measurements (cortical volume, thickness, curvature,
folding index, and surface area) using structural MRI data and the fractional anisotropy strength
in the white matter networks using diffusion MRI data. For each child, the linear SVR model was
used to predict the individual spatial pattern of nodal entropy in the overlapping functional
modules by integrating all structural brain features. Figures 7A and 7B show the prediction
features and accuracy of a representative child’s scan. We found that the structural features
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significantly predicted the individual spatial patterns of nodal entropy for 95% of the scans
(424/446), with a significance level of pperm < 0.05. The prediction accuracy varied across scans
(mean £+ SD: 0.35 &+ 0.10), while the maximum prediction accuracy reached 0.59 (Figure 7C).
The prediction contributions varied across structural features, with cortical thickness showing the

greatest contribution (Figure 7D).
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Figure 7. Prediction of individual spatial patterns of nodal module overlap from structural brain
features in children. (A) Spatial distributions of anatomical features for a representative child’s scan. (B)
Accuracy of nodal entropy prediction for a representative child’s scan. In (A) and (B), the representative scan
was selected as the scan that showed the highest prediction accuracy for the individual map of nodal module
overlap. (C) Frequency polygon for prediction accuracies of all rsfMRI scans. The inset in the upper left corner
denotes the null distribution of the prediction accuracy based on permutation tests. The red line denotes the
95% significance level in the null distribution. (D) Prediction contribution of different structural features in the
prediction model of all rsfMRI scans. This histogram displays the mean values of anatomical features across
subjects, with each bar representing the average value accompanied by its standard deviation. CV, cortical
volume; CT, cortical thickness; CC, cortical curvature; FI, folding index; SA, surface area; FA, fractional

anisotropy.

Validation results

We further assessed the reliability of the procedure used for the estimation of nodal overlap in
the functional module affiliations. Specifically, we re-estimated the nodal overlap in module
12
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affiliations in the adult group by considering the influence of several network construction and
analysis strategies, including 1) spatial resolution of the parcellation (i.e., Schaefer-100) (Figure
S1), i1) network thresholding strategies (i.e., 10% and 20%) (Figure S2A and S2B), iii) module
detection algorithms (Figure S2C), and iv) measures for nodal overlap estimation (i.e., involved
number) (Figure S2D). We found that the spatial pattern of nodal entropy remained almost
unchanged in different cases, suggesting the reliability of the topography of the overlapping
modular architecture.

Discussion

Using a large longitudinal multimodal MRI dataset, we revealed the development of overlapping
functional modular organization and its potential structural substrates during childhood and
adolescence. Specifically, the spatial distribution of the overlapping modules in children was
highly similar to that in the adult cohort, with the ventral attention, somatomotor, and subcortical
regions exhibiting greater overlap and the visual and default-mode regions exhibiting lower
overlap. The developmental changes in the nodal overlap in module affiliations showed spatial
heterogeneity, with significant decreases in the prefrontal cortex and putamen and significant
increases in the parietal lobules. Finally, we found that spatial patterns of nodal overlap could be
used to predict individual brain ages and were associated with both morphological and white
matter features, particularly cortical thickness. Our findings highlighted the spatially
inhomogeneous maturation of the overlapping modular architecture and potential structural
substrates during childhood and adolescence, providing novel insights into the neural mechanism
underlying individual cognitive development.

The presence of the overlapping functional modular architecture is of great value for
understanding the functional organization principles of the human brain [31-35]. This framework
provides an intuitive characterization of the functional interactions between modules and the
diverse roles of brain regions [51, 52]. Compared with previous overlapping module studies in
adults [31-35], our study is the first to uncover overlapping functional modular organization in
children and adolescents, extending the understanding of brain developmental principles. We
found that each functional module comprised nodal regions involved in at least two prior
functional systems, regardless of the age subgroup. These systems contained in the same
functional module have usually been found to be located in adjacent functional gradients [44].
Taken together, these findings indicate that the overlapping modular architecture may capture
intersystem interactions at similar hierarchical levels. Interestingly, most of the prior functional
systems were involved in three or more overlapping modules, except for the visual and limbic
systems, suggesting diverse functional roles or functional differentiation within each functional
system. The default-mode regions were found to be involved in three overlapping modules (i.e.,
modules I, IV, and VII), which is in line with the previous identification of three subsystems
within the default-mode system in both children [39] and adults [53]. From a dynamic
perspective, functional modular organization spontaneously reconfigures on a short time scale
(e.g., seconds) with regions switching among modules [21]. The observed spatial overlap of
functional modules may be a summary of the dynamic reorganization at a long-term scale.
However, the relationship between the overlapping and dynamic modular architectures warrants
further investigation.
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We further found that the topological distribution of the module overlap in children and
adolescents showed an adult-like spatially inhomogeneous pattern, suggesting that the
overlapping modular architecture is taking shape in children and adolescents. High nodal overlap
was primarily located in the ventral attention and somatomotor regions, which is consistent with
the findings of a recent study in adults [34]. The high nodal overlap of the ventral attention
system may be attributable to its involvement in multiple general domain categories, as revealed
in a meta-analytic study [51], including cognition (e.g., attention), perception (e.g., somesthesis)
and action domains (e.g., imagination). During a movie watching task, the overlap level of the
ventral attention system increased significantly [34], further indicating that the module overlap
of the ventral attention system may capture regional involvement in task transitions. The high
nodal overlap in the sensorimotor regions indicates the functional diversity of this system, which
is consistent with its involvement in multiple modules (Figure 2E). In addition to the widely
known sensorimotor functions [54], these regions may be involved in other cognitive functions
or behaviors, such as attention allocation [55], speech perception [56], and emotional regulation
[57].

The developmental change in the nodal overlap level (i.e., nodal entropy) showed regional
heterogeneity. The decreased nodal overlap of subcortical areas may be explained by the
gradually decreased involvement of the subcortical system in modules III and V, which are
related to somatomotor, attention, and visual functions (Figure 2E). A recent study reported that
the strength of cortico-subcortical functional connectivity varies with age, with increasing
connections between subcortical and association regions and weakening connections between
subcortical and primary regions [58]. The observed age-related decreased overlap of the
subcortical regions suggested that the enhanced functional segregation between the subcortical
area and the primary system may be more dominant. In the prefrontal cortex, we observed
dissociable age-related changes in the extent of nodal overlap for two regions, including the
lateral prefrontal cortex and the medial prefrontal cortex. This may be attributed to the fact that
these two regions belong to different functional subsystems, i.e., the lateral prefrontal cortex is
strongly connected with the default-mode system that is preferentially involved in the regulation
of introspective processes, and the medial prefrontal cortex is strongly connected with the dorsal
attention system that is mainly involved in the regulation of visuospatial perceptual attention
[59]. The significant prediction of an individual’s chronological age based on nodal overlap
patterns further demonstrated substantial changes in the overlapping modular architecture during
childhood and adolescence.

The functional activity of the human brain is supported and sculpted by the underlying
anatomical structure [60]. During childhood and adolescence, both gray matter and white matter
of the brain undergo elaborate reconfiguration. The cortical surface area gradually reaches a
peak, and the gray matter volume of the whole brain decreases [9]. Moreover, the white matter
volume continues to increase [9, 61]. Here, we found that these developing anatomical features
of gray matter and white matter could be used to significantly predict the spatial patterns of
functional module overlap at the individual level. Of all measures considered, cortical thickness
was found to make the greatest contribution. This may be attributed to the remarkable thinning of
cortical thickness during childhood and adolescence [9, 62, 63]. Specifically, a previous study
has shown that the coordinated development of cortical thickness during adolescence shows a
similar pattern of functional connectivity [64]. These results bridge a link between the
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overlapping functional modular architecture and macroscopic anatomical features in the brain.
The potential association with microscale properties (e.g., synaptic pruning and myelination)
needs to be further illuminated.

Several issues need to be further considered. First, inner-scan head motion introduces a spatially
inhomogeneous bias in functional connectivity estimation, which is age dependent [65]. To
reduce the potential influence of head motion, we included 24 head parameters, global brain
signals, and “bad” time points during nuisance regression. The individual head motion
parameters (i.e., mFD) were also included in the mixed effect model when assessing the age
effects. Nevertheless, the potential influence of head movement may not have been completely
eliminated. Second, this study used a large longitudinal dataset of children and adolescents, but
the age range was limited to school-age children. Future studies should extend the developmental
period of interest by adding other datasets from early childhood (even the fetal period) and late
adolescence to chart a more complete developmental trajectory from infancy to adulthood. Third,
the structure—function association was established with SVR prediction analysis. It is still
unknown how the overlapping functional modular architecture emerges from anatomical
features. Other computational models, such as network communication models [66] and large-
scale dynamic modeling [67], may be employed to provide the mechanism underlying the brain
structure—function relationship. Fourth, we explored the typical developmental changes in the
overlapping modules in children and adolescents. Since adolescence is the most common period
for the onset of mental disorders [14], the overlapping modular organization may be altered in
individuals with neurodevelopmental disorders, such as autism spectrum disorders or attention
deficit hyperactivity disorder. Exploring the overlapping modular organization in these disorders
may improve the understanding of the pathological mechanism underlying atypical development.
Finally, we employed the edge-centric module detection algorithm to detect the overlapping
modules, which does not require a prior assumption and is intuitive for understanding multiple
module affiliations of nodes. However, until now, there has been no gold standard for evaluating
the quality of the detected overlapping functional modular structure in the human brain. The
potential biological significance of the overlapping functional modular architecture warrants
further research.

Methods
Participants

A longitudinal multimodal MRI dataset of 360 healthy children was obtained from the Children
School Functions and Brain Development Project (Beijing Cohort) [38, 39]. All participants were
cognitively normal, did not use psychotropic medication or had no history of severe traumatic
brain injury. These children underwent longitudinal rstMRI and dMRI scans at intervals of
approximately one year. We performed strict quality control on the rsfMRI data and excluded
scans with field map errors, excessive head motion (see “Data Preprocessing”), excessive “bad”
time points, or T1 artifacts. Finally, 491 scans of 305 participants (aged 6—14 years, F/M =
143/162) remained, including three scans from 47 subjects, two scans from 92 subjects, and one
scan from 166 children. Notably, 45 rsfMRI scans were further excluded from the subsequent
structural association analysis due to the poor quality of the corresponding dMRI data (see “Data
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Preprocessing”). In addition, 446 rsfMRI scans from 279 subjects (aged 614 years, F/M =
138/141) were used in the structure—function association analysis, including three scans from 42
subjects, two scans from 83 subjects and one scan from 154 subjects. In addition, we employed
rsfMRI scans of 61 healthy young adults (aged 18-29 years, F/M = 37/24) for comparison. All
participants or their parents/guardians provided written informed consent, and this study was
approved by the Ethics Committee of Beijing Normal University.

Imaging acquisition

Multimodal magnetic resonance images were acquired on a 3T Siemens Prisma scanner with a
64-channel head coil at the Center for Magnetic Resonance Imaging Research at Peking
University. Both children and adults underwent multimodal scanning using the following
protocols.

(i) Functional MRI. Resting-state scans were acquired using an echo-planar imaging sequence:
repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90°, field of view (FOV) =
224 x 224 mm?, acquisition matrix = 64 x 64, slice number = 33, and slice thickness/gap =
3.5/0.7 mm. All participants were asked to fixate on a bright crosshair displayed in the center of
the scanner screen. The total duration of the rsfMRI scans was eight minutes (i.e., 240 volumes).

(ii) Field maps for functional MRI. The scans were acquired using a 2D dual gradient-echo
sequence: TR =400 ms, TE1 =4.92 ms, TE2 = 7.38 ms, flip angle = 60°, FOV = 224 x 224
mm?, acquisition matrix = 64 x 64, slice number = 33, and slice thickness/gap = 3.5/0.7 mm.

(iii) T1-weighted structural MRI. The scans were acquired using a sagittal 3D magnetization
prepared rapid acquisition gradient-echo (MPRAGE) sequence: TR = 2530 ms, TE =2.98 ms,
flip angle = 7°, FOV = 256 x 224 mm?, acquisition matrix = 256 x 224, inversion time = 1100
ms, slice number = 192, slice thickness = 1 mm, and bandwidth = 240 Hz/Px.

(iv) Diffusion MRI. The scans were acquired using a high angular resolution diffusion imaging
(HARDI) sequence: TR = 7500 ms, TE = 64 ms, flip angle = 90°, FOV = 224 x 224 mm?,
acquisition matrix = 112 x 112, slice number = 70, slice thickness = 2 mm, and bandwidth =
2030 Hz/Px. The complete sequence consisted of 64 diffusion-weighted directions (b-value =
1000 s/mm?) and 10 nondiffusion-weighted directions (b-value = 0 s/mm?).

Data preprocessing

(i) Functional MRI data. The functional images of all the children were preprocessed using
SPM12 (https://www.fil.ion.ucl.ac.uk/spm) and DPABI 3.0 [68]. First, we removed the first 10
volumes and performed slice-timing correction. Next, we applied field map correction to reduce
geometric distortion and realigned the volumes over time. After realignment, 94 rsfMRI scans
were excluded due to excessive head motion with a criterion of maximum head motion > 3 mm
or 3° or mean framewise displacement (mFD) [69] > 0.5 mm. Then, the functional images were
coregistered with individual T1 images and spatially normalized to a custom pediatric template
using a unified segmentation algorithm [70] with the following steps: 1) individual structural
images were initially segmented into three tissue (i.e., gray matter, white matter, and
cerebrospinal fluid) probability maps by using the Chinese Pediatric Atlas (CHN-PD) (6-12
years) [71] as a reference; 1i) the resulting spatially normalized maps for each tissue type were
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averaged across scans to generate the custom tissue templates; iii) individual structural images
were segmented again using the custom tissue templates as a reference; and iv) the functional
images were spatially normalized using the transformation parameters estimated from the second
segmentation of structural images. For the child cohort, custom tissue maps were used to
improve the accuracy of spatial normalization. The normalized functional images were then
resampled into 3-mm isotropic voxels and underwent spatial smoothing using a Gaussian kernel
(full-width at half-maximum = 4 mm), linear detrending, and nuisance signal regression. A series
of regressors were included in the nuisance regression, including 24 head motion parameters
[72], “bad” time points with FD above 0.5 mm, white matter signals, cerebrospinal fluid signals,
and global brain signals. Finally, we performed temporally band-pass filtering (0.01-0.1 Hz) on
the images. For the adult cohort, the preprocessing procedures were conducted in the same way
as for the child cohort, except that the functional images were normalized to the Montreal
Neurological Institute (MNI) standard space.

(ii) T1-weighted MRI data. The T1-weighted images were preprocessed using FreeSurfer v6.0
[73]. First, we performed intensity normalization and removed nonbrain tissue using the HD-
BET algorithm [74], during which the automatically extracted brain tissue maps replaced the
default maps (i.e., “brainmask.mgz”) in FreeSurfer to improve accuracy. Next, we conducted
tissue segmentation and cortical reconstruction on individual T1 images. Notably, the
longitudinal processing stream of FreeSurfer was selected to obtain robust and reliable
morphological measurements [75]. A trained researcher visually inspected the cortical
reconstruction results to ensure that the correct boundaries were estimated. Finally, we obtained
five local gray matter morphological features, including cortical volume, thickness, curvature,
folding index, and surface area for each vertex.

(iii) Diffusion MRI data. The diffusion images were preprocessed using MRtrix 3.0 [76], FSL
6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), and ANTs [77]. First, the diffusion data were
denoised, and Gibbs ringing artifacts were removed. Next, we corrected the eddy current-
induced distortions, subject movement, and signal dropout for each scan using the FSL eddy tool
[78]. Notably, 45 rstMRI scans were further excluded from the structure—function association
analysis due to missing images, excessive head motion (maximal motion > 3 mm), or
considerable signal dropout in the corresponding diffusion images. Then, field map correction
was employed to reduce susceptibility by using FSL (epi_reg script). Finally, B1 field
inhomogeneity was corrected with the N4 algorithm [79].

Identification of the overlapping modular architecture

We identified the overlapping modular architecture in the brain functional networks by
employing edge-centric module detection [40] (Figure 1B). Briefly, we first constructed a
traditional functional network comprising nodal regions and interregional connectivities (i.e.,
edges). Then, we constructed the corresponding weighted edge graph representing the similarity
between edges. Finally, we identified the module affiliations of each nodal region according to
the module assignments of its edges in the corresponding edge graph.

Functional network construction. We constructed a brain functional network comprising 232
nodal regions for each rsfMRI scan of each participant. In this functional network, cortical nodes
were defined based on a recently developed functional parcellation comprising 200 cortical
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regions (i.e., Schaefer-200) [80], and subcortical nodes were defined according to a subcortical
functional parcellation comprising 32 regions [43]. We extracted the mean time series for each
nodal region and estimated Pearson’s correlation coefficients between every pair of nodes. Then,
a weighted functional network was obtained by thresholding the correlation matrix with a density
of 15% (i.e., 4020 edges) to exclude potential spurious or weak correlations. Negative
correlations were not considered due to their controversial physiological interpretations [81, 82].

Edge graph construction. For each functional network, we constructed a corresponding weighted
edge graph that denoted the similarity between edges (Figure 1B). For simplicity, we considered
only directly connected edges that shared at least one common node, and the similarity between
edges without common nodes was assumed to be zero. The Tanimoto coefficient [30, 83] was
used to incorporate the edge weight information. For a pair of edges eix and ej; that share a
common node k, their similarity was defined based on the similarity in the connection profiles
between nodes i and j:

ai-aj

(e &) = fariasparey @
where a; - a; represents the dot product of the two vectors a; and a;, and a; = (A1, Ainy -+ Aiy)

represents a modified connectivity profile of node i. Specifically, each element 4; j is defined as

Ajj I #]j

where A;; is the functional connection strength between nodes i and j and ; is the number of
edges of node i. Of note, nonzero diagonal elements were included in Eq. (2) to make the
similarity definition, i.e., Eq. (1), applicable to extreme cases in which nodes i and j are directly
connected.

Identifying the overlapping modular architecture based on edge-centric module detection

Given a functional network of interest, we first detected the modular structure in the
corresponding edge graph and then determined the module affiliations of each nodal region
according to the module affiliations of its edges. Here, the Louvain algorithm [41] was employed
to detect the modular architecture in the large-scale edge graph, and each edge was assigned to a
specific module. Each nodal region was then assigned to one or more modules due to diverse
module affiliations of its edges, leading to spatial overlap between the functional modules. A
nodal region whose edges were involved in two or more modules was defined as an overlapping
region. Notably, the detected module partition in the edge graph varied slightly across each
instance of detection due to the heuristic property of the Louvain algorithm. The module number
of the functional network was defined as the module number that appeared most frequently
among 100 instances, and the other measurements regarding the overlapping modular structure
were taken as the average across 100 instances of identification.

Topography analysis of the overlapping modular architecture at the group level

To illustrate the spatial patterns of the overlapping modular structure at different ages, we
18
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detected the modular architecture at the group level. All the children’s rsfMRI scans were
divided into eight subgroups with one-year intervals, and the adult group was set as the ninth
subgroup for comparison. A group-level weighted functional network was constructed for each
subgroup by averaging individual functional correlation matrices followed by network
thresholding (i.e., density = 15%). Then, we detected the modular structure in the corresponding
edge graph for each subgroup with 100 instances of module detection. To obtain a stable module
division, we conducted the following two steps: 1) computed the module co-occurrence matrix
between each pair of edges [84], wherein each element denoted the proportion of instances in
which a pair of edges were assigned to the same module; and ii) applied the modular detection
algorithm to the module co-occurrence matrix 100 times. We iterated these two steps until the
module partition remained unchanged across multiple instances. The final version of the module
partition of edges was used to infer the overlapping modular architecture of the functional
network.

Considering the spatial overlap of functional modules, we obtained a spatial map for each
functional module separately. Nodal values in the map denote the proportion of edges assigned to
this module. To compare the modules observed in each child subgroup with those in adults, we
further matched the functional module maps between the adult subgroup and all the child
subgroups. Given a module map of interest in the adult group, a matching module map was
selected as the map showing the maximal similarity for each child subgroup. The spatial
similarity between two maps was calculated as the Pearson’s correlation coefficient across nodal
regions.

To further assess the functional system dependence of the overlapping modular structure, we
mapped each cortical or subcortical node to one of the prior functional systems, including the
visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default-mode
systems [42] and the subcortical area [43]. For each module, we quantified its spatial pattern by
estimating the percentage of nodes distributed in each functional system.

Measure of the extent of module overlap in brain regions

Given an overlapping modular architecture, a node may be involved in multiple modules due to
the diverse module affiliations of its edges. Here, entropy was used to measure the extent of
nodal overlap by quantifying the distribution of module affiliations of edges attached to a node
(Figure 1B). Given a node i, the entropy [34] was defined as

H; = — Y-1pixlogs pik, 3)

where 7 is the number of modules involved with this node, pix represents the proportion of its
edges participating in module &, and Y}, p;x = 1. Nodal entropy was further normalized to a
range of 0 to 1 by dividing it by logon [34]. A higher normalized entropy value indicates greater
overlap, suggesting that the distribution of edges among different modules is more homogeneous
and diverse. For each scan of each participant, we obtained a nodal module overlap map in terms
of nodal entropy.

To illustrate the patterns of nodal overlap at different ages, a group-level entropy map was
separately generated for each child subgroup and the adult group by averaging individual entropy
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maps within the subgroup. Then, we estimated the spatial similarity of the entropy maps between
each of the child subgroups and the adult subgroup by calculating Pearson’s correlation
coefficients across nodal regions. We further employed one-way analysis of variance (ANOVA)
models to explore whether the nodal overlap level was functional system-dependent for each
subgroup. The functional systems were defined based on the prior seven functional systems [42]
and the subcortical area [43].

Analysis of developmental changes in the overlapping modular architecture

To explore the developmental changes in the overlapping modular architecture, we assessed the
effects of age on a series of brain measures, including the modular number, the modularity of the
edge graph, and the nodal overlap level, in terms of entropy values at the system and nodal
levels. For each brain measure of interest, the age effects were estimated by using a mixed effect
model [47, 48]. The mixed model is suitable for a longitudinal dataset with irregular intervals
between measurements and is applicable to cases of missing time points. The model parameters
were estimated with the maximum likelihood method. Considering the potential linear and
quadratic age effects, we employed both the linear model and the quadratic model of the age
effects. The optimal model was selected for each brain measure based on the Akaike information
criterion (AIC) [85]. Sex and the in-scanner head motion parameter (i.e., mFD) were included as
covariates within each model.

The linear model was defined as
Yij = Bo + b; + (.Bage + bage,i)ageij + BsexSeX + ﬁmFDmFDij + &jj. 4)

The quadratic model was defined as
2
yi]’ = ﬁO + bi + (ﬂagel + bage,il)ageij + (ﬁagez + bage,iz)ageij + ,Bsexsexi + ,BmFDmFDij + Eij-

)

In these equations, y;; represents the brain measure of subject 7 at the jth scan, f,,, represents the
fixed effect, bage,i represents the random effect, and ¢;; represents the residual. For the nodal and

system-level analyses, the significance level of the results was corrected for multiple
comparisons across nodes using the false discovery rate (FDR) method [86].

Associations between cognitive functions and developmental changes in nodal overlap

To explore the cognitive significance of developmental changes in nodal overlap, we performed
a meta-analysis using the NeuroSynth database (www.neurosynth.org) [49]. We first sorted the
developmental changes in nodal entropy (i.e., ¢ values) in decreasing order and then divided the
brain map into 10 bins (i.e., 10% apart as a box). Each bin was binarized to generate a brain
mask. Next, we calculated the Pearson’s correlations between each mask and all the cognitive
term maps available in the database. We selected the top two associated cognitive terms for each
mask and removed six overlapping terms among the 10 masks. Finally, 14 cognitive terms were
used to depict the distribution of cognitive functions across different levels of developmental
changes.
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Predicting brain age from spatial patterns of nodal overlap

We used linear support vector regression (SVR) with tenfold cross-validation to test whether
individual spatial patterns of nodal overlap could be used to predict a participant’s chronological
age. The nodal entropy map was set as features for each participant. First, all the entropy maps
were divided into ten subsets with similar age distributions. This division strategy is better than
the random splitting method, which can reduce the sampling bias among the subsets [87, 88]. Of
the ten subsets, one was designated as the testing set, and the remaining nine subsets were used
as the training set. Next, we linearly scaled each feature across individuals between zero and one
in the training set and applied the estimated scaling parameters to the testing set. Then, we
trained the prediction model for individual chronological ages based on the training set. Finally,
we quantified the prediction accuracy by calculating the Pearson’s correlation coefficients
between the predicted scores (i.e., ages) obtained from the SVR model and the actual scores (i.e.,
chronological age). To assess the statistical significance of the prediction accuracy, we generated
a null distribution of accuracy based on permutation tests (n = 10,000) by shuftling the actual
scores across scans. To reduce the influence of confounding factors, we further corrected for sex,
in-scanner head motion (i.e., mFD), and random age effects from the nodal entropy values prior
to the prediction analysis. To determine the contribution of nodal features to the prediction
model, we trained another SVR model using all the participants to improve the estimation
accuracy [87, 88]. The resulting regression coefficients were regarded as the weights denoting
the importance of all features. To further clarify the system dependence of the weights, we also
classified the nodal weights into eight functional systems, including seven cortical functional
systems [42] and the subcortical area [43]. The positive and negative weights were separately
averaged within each system. Here, the SVR model was implemented using the LIBSVM
toolbox in MATLAB with the default parameters (https://www.csie.ntu.edu.tw/~cjlin/libsvm/)
[89].

Analysis of nodal integrity in the white matter structural network

In addition to local morphological measures, we also considered the potential influence of nodal
integrity in the white matter structural network. Structural networks were generated from the
preprocessed diffusion images using DSI Studio (http://dsi-studio.labsolver. org). First, we
tracked the fasciculus and obtained diffusion anisotropy parameters (i.e., fractional anisotropy,
FA). Specifically, we employed the generalized q-sampling imaging (GQI) algorithm [90] with a
diffusion sampling length ratio of 1.25 for deterministic tractography. The Otsu threshold was
0.6. The tracking procedure was terminated if the turning angle was > 45° or if the fibers reached
the borders of the cerebrospinal fluid or subcortical areas. Ten million streamlines were
generated with a step size of 0.625 mm, and only tracts with a length between 6~250 mm were
retained for subsequent analysis. Next, the reconstructed streamlines were projected to the
Schaefer-200 atlas, which has been registered to the native space. Finally, we calculated the FA
values between every pair of nodes (i.e., the mean FA values along all reconstructed streamlines
between two nodes) and further summed the FA values between a node and all the other nodes.
This metric was defined as nodal FA strength, which indicates the microstructural integrity of the
fiber bundles attached to a node [91].

Predicting individual nodal overlap maps from structural features
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To evaluate whether the spatial pattern of the nodal overlap maps was associated with anatomical
architecture, we performed a prediction analysis based on the SVR model for each scan of each
participant. We considered five morphological measurements (cortical volume, thickness,
curvature, folding index, and surface area) in the gray matter and the FA strength in the white
matter. For each node, morphological features were extracted as the average value within the
nodal region based on the Schaefer-200 atlas, which has been registered to the native space. The
prediction was conducted using the same framework as that used in the age prediction mentioned
above. Tenfold cross-validation was also used here. In each validation instance, ten percent of the
nodal regions were designated as the testing set, and the remaining nodes were set as the training
set. We predicted nodal entropy values for each scan by integrating anatomical features from
both gray matter and white matter. To assess the statistical significance of the prediction
accuracy, we generated a null distribution of accuracy using permutation tests (z = 100) by
shuffling the actual entropy across nodes for each scan, thus leading to 100 x 446 (scans)
permutation instances in total. The 95% significance level was determined according to the null
distribution containing all 44,600 instances. To assess the prediction contribution of anatomical
features, we trained another SVR model for each scan using all the nodal regions in the whole
brain to improve estimation accuracy [87, 88]. The resulting regression coefficients were
regarded as the weights denoting the importance of all features.

Validation analyses

To ensure the reliability and robustness of the topography of the overlapping modular
architecture, we investigated the potential influence of several network construction and analysis
strategies in the adult cohort. Specifically, we examined the potential influence of functional
parcellation on the nodal definition, network thresholding strategy, edge module detection
algorithm, and nodal overlap estimation. First, we analyzed the spatial resolution of the
functional parcellation. For the main analysis, we constructed a brain functional network
comprising 200 cortical regions [80] and 32 subcortical regions [43]. To further validate the
influence of spatial resolution, we reconstructed whole-brain functional networks, during which
the cortical nodes were defined based on the Scheafer-100 atlas, which comprises 100 cortical
regions [80]. Second, we examined the network thresholding density by obtaining weighted
functional networks using two other network densities (i.e., 10% and 20%). Third, we explored
the influence of the module detection algorithm. In addition to the Louvain algorithm [41], we
employed the eigenspectral analysis method [92] to detect the modular structure of the edge
graph. Finally, we quantified the nodal overlap level by considering the number of modules
involved, which provides a more intuitive understanding. For each nodal region, we calculated
the involved module number as the number of modules involved in its edges. The larger the
involved number, the higher the nodal overlap in module affiliations.
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Figure S1. The spatial patterns of the nodal module overlap at different spatial resolutions. For the adult
group, the overlapping modular architecture was separately detected in the group-level functional networks
obtained from different functional parcellations. (A) Nodal overlap in the functional networks with coarse
parcellation. This network comprised 100 cortical nodes obtained from the Schaefer-100 atlas (Schaefer et al.,
2018) and 32 subcortical regions (Tian et al., 2020). (B) Nodal overlap in the functional networks with a fine
parcellation (i.e., main results). This network comprised 200 cortical nodes obtained from the Schaefer-200
atlas (Schaefer et al., 2018) and 32 subcortical regions (Tian et al., 2020). (C) Extent of nodal overlap for eight
systems at different spatial resolutions. Similar distributions of nodal overlap were observed between the two
parcellations. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP,

frontoparietal, DM, default-mode; SUB, subcortical.
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Figure S2. The spatial patterns of the nodal module overlap under different network analysis strategies
and their relationships with the main results. (A) Network density of 10% for functional network
construction. (B) Network density of 20% for functional network construction. (C) Eigenspectral analysis for
module detection in the edge graph. (D) The number of involved modules used to quantify the extent of nodal
module overlap. (E) Main result as a reference. In each case, all the network construction and analysis
strategies were set to be the same as those in the main analysis, except for the strategy of interest. All
correlations were assessed with Pearson’s correlation across nodal regions.
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