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Abstract 

Developmental connectomic studies have shown that the modular organization of functional 

networks in the human brain undergoes substantial reorganization with age to support cognitive 

growth. However, these studies implicitly assume that each brain region belongs to one and only 

one specific network module, ignoring the potential spatial overlap between functional modules. 

How the overlapping functional modular architecture develops and whether this development is 

related to structural signatures remain unknown. Using longitudinal multimodal structural, 

functional, and diffusion MRI data from 305 children (aged 6–14 years), we investigated the 

development of the overlapping modular architecture of functional networks, and further 

explored their structural associations. Specifically, an edge-centric network model was used to 

identify the overlapping functional modules, and the nodal overlap in module affiliations was 

quantified using the entropy measure. We showed a remarkable regional inhomogeneity in 

module overlap in children, with higher entropy in the ventral attention, somatomotor, and 

subcortical networks and lower entropy in the visual and default-mode networks. Furthermore, 

the overlapping modules developed in a linear, spatially dissociable manner from childhood to 

adolescence, with significantly reduced entropy in the prefrontal cortex and putamen and 

increased entropy in the parietal lobules. Personalized overlapping modular patterns capture 

individual brain maturity as characterized by brain age. Finally, the overlapping functional 

modules can be significantly predicted by integrating gray matter morphology and white matter 

network properties. Our findings highlight the maturation of overlapping network modules and 

their structural substrates, thereby advancing our understanding of the principles of connectome 

development. 

 

 

Keywords: brain development; connectome; overlapping modules; anatomical associations, 
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Introduction 

The period of childhood and adolescence is a stage of transition from infancy to adulthood, 

which is critical for the maturity and improvement of motor, cognitive, emotional, and social 

functions [1, 2]. During this period, the brain undergoes progressive and regressive maturation in 

its microscopic and macroscopic anatomy, such as increased myelination [3, 4], synaptic pruning 

[4-6], and cortical thinning [4, 7-9]. From the perspective of function, remarkable 

reconfigurations have also been observed for task-evoked regional activity [10, 11] and task-free 

spontaneous activity [12]. These structural and functional changes are deemed to lay the 

foundation for improvements in children’s cognitive and behavioral performance [10, 11, 13]. 

Notably, the periods of childhood and adolescence are also critical windows for the onset of 

many psychiatric disorders [14]. Exploring brain developmental principles in children and 

adolescents offers novel insights into the neural mechanism underlying not only cognitive and 

behavioral growth but also neurodevelopmental disorders. 

Over the past two decades, neuroimaging-based connectomics has provided a valuable 

framework for investigating the developmental principles of brain function [15-17]. The 

functional modular structure, which is characterized by dense within-module connections and 

sparse between-module connections, has attracted great attention [18-21]. The modular structure 

of the brain is particularly important for global network communication since it can facilitate 

efficient information segregation and integration with low wiring costs [20, 22]. Several studies 

have reported age-related changes in modular organization with development [15, 16, 23-25]. 

Specifically, functional modular organization is already present in fetuses [26] and neonates [27, 

28]; in this configuration, the modules in the primary cortex show an adult-like topography, and 

the modules in the association cortex are far from mature. The modular architecture further 

undergoes an elaborate reconfiguration from childhood to adulthood [15, 16, 23, 24]. Its spatial 

layout shifts from an anatomical proximity to a spatially distributed and functionally related 

configuration [25]. These developmental changes have been found to be related to the 

development of individual cognition and behavior, such as cognitive control [24] and general 

cognitive function [23]. 

Despite this substantial progress, previous connectome development studies have focused 

primarily on modular structure without spatial overlap (i.e., hard assignment), implicitly 

assuming that each brain node belongs to one and only one functional module. This hypothesis 

might be problematic because the modular structures of real-world networks, such as cooperation 

networks in social systems and protein networks in nature, generally show overlapping 

properties [29, 30]. This modular overlapping framework in complex networks provides 

important insight into the potential diverse functional roles of nodes in the network. Several 

recent studies have also reported overlapping modular organization in brain functional networks 

in adults [31-35], indicating that brain regions are not limited to a specific module. Specifically, 

the overlap between functional modules is spatially heterogeneous [32-35], with higher 

overlapping regions being crucial for intermodule communication [36] and global network 

efficiency [33]. The presence of overlapping modules is also related to spatial heterogeneity in 

functional diversity and neurocognitive flexibility [32, 33, 37]. However, the network growth 

principle of the overlapping modular organization in the functional connectome and its 

association with structural brain signatures remain unknown. 
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To fill these knowledge gaps, we investigated the development of the overlapping modular 

architecture of functional connectomes during childhood and adolescence and examined their 

associations with structural brain signatures using a large longitudinal multimodal neuroimaging 

dataset from 305 typically developing children (aged 6–14 years, 491 scans in total) [38, 39]. 

Specifically, we used resting-state fMRI (rsfMRI) data to investigate the development of the 

overlapping modules and structural and diffusion MRI data to reveal the underlying structural 

substrates of the overlapping modules. In the present study, we used an edge-centric module 

detection approach [40] to identify the overlapping functional modular architecture for each 

rsfMRI scan of each participant and further quantified the degree of overlap of each brain node 

in the module affiliations. We then examined development in the overlapping level of child brain 

networks at the global, system and nodal levels, and further assessed whether the spatial pattern 

of the modular overlap can predict brain maturity. Finally, we investigated the potential structural 

substrates involved in the development of overlapping functional modules. 

 

Results 

We leveraged longitudinal rsfMRI data from 305 children (aged 6-14 y, 491 scans), including 

three repeated scans from 47 children, two repeated scans from 92 children, and one scan from 

166 children (Figure 1A). For comparison purposes, we also included cross-sectional rsfMRI 

data from a group of healthy adults (n = 61, aged 18-29 y). Both children and adults were 

scanned using the same scanner with identical protocols. All MR images used here underwent 

strict quality control (for details, see Materials and Methods). We identified the overlapping 

modular architecture in individual- and group-level functional networks using an edge-centric 

modular detection algorithm [40] (Figure 1B). Briefly, we first constructed a traditional 

functional network comprising nodal regions and interregional connections (i.e., edges). Then, 

we constructed a corresponding weighted edge-based brain graph that represented the similarity 

of connectivity profiles between edges (see Materials and Methods). Finally, we identified 

module affiliations of each nodal region according to the module assignments of its edges in the 

corresponding edge graph. A measure of entropy was used to measure the extent of modular 

overlap for each node by quantifying the distribution of module affiliations of the edges attached 

to this node (Figure 1B). 

 

Figure 1. Data information and schematic diagram of the overlapping modular architecture based on 

edge-centric module detection. (A) Age distribution of longitudinal rsfMRI scans of children. (B) (i) Left: 

traditional brain functional connectivity network. In this network, each node denotes a brain region of interest, 
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and each link denotes the interregional functional connectivity. Middle: edge graph corresponding to a given 

functional network. In this graph, each node denotes an edge in the functional network, and each link is 

defined as the similarity between edges in the connectivity profiles. Right: edge-centric module detection. 

Each edge is assigned to a specific module based on the Louvain algorithm [41]. (ii) Definition of regional 

module overlap. Each nodal region was assigned to one or more modules due to the diverse module affiliations 

of its edges. We employed a measure of entropy to quantify the extent of module overlap of each brain region 

by measuring the distribution of the module affiliations of its edges. 

 

Spatial topography of the overlapping functional modules in children and adults 

We first identified the overlapping functional modules in healthy young adults, which serves as a 

reference for exploring the development of the overlapping modules in children. We found seven 

modules in the weighted edge-based brain graph of the adult group (Figure 2A) and further 

showed the corresponding topographic distribution of each module (Figures 2B and 2C). These 

functional modules showed substantial spatial overlap, as characterized by 73% of the nodal 

regions belonging to two or more modules (Figure 2B). Module I was mainly located in the 

medial and lateral prefrontal and parietal cortex, and lateral temporal cortex; module II was 

mainly located in the primary motor and somatosensory cortices; module III was mainly located 

in the insula, supramarginal gyrus, superior temporal gyrus, and paracentral lobule; module IV 

was mainly located in the cingulate gyrus and the subcortical area; module V was located in the 

visual cortex and the superior parietal lobule; module VI was located in the middle frontal gyrus 

and superior parietal lobule; and module VII was primarily located in the temporal pole, 

hippocampus, and amygdala (Figure 2C).  

We further divided all the children’s rsfMRI scans into eight subgroups with one-year intervals, 

and the adult group was set as the ninth subgroup for comparison. We identified the overlapping 

modular architecture for each subgroup of children based on the rsfMRI data. The modules in 

each child subgroup were matched with those in the adult subgroup. In general, most functional 

modules in the child subgroups showed high spatial similarity with those in the adult subgroup 

(Pearson’s correlation rs: mean ± SD = 0.75 ± 0.02, range: 0.25-0.95) (Figure 2D). Visual 

inspection suggested that the spatial similarity with the adult group increased gradually with age 

for all modules, except module VI. For each module, the spatial distribution of nodes among 

prior functional systems [42, 43] was largely consistent across all child subgroups and the adult 

cohort (Figures 2E). Module I mainly involved the default-mode and frontoparietal systems; 

module II mainly involved the somatomotor, ventral attention, and dorsal attention systems; 

module III mainly involved the somatomotor and ventral attention systems; module IV mainly 

involved the ventral attention, frontoparietal, and default-mode systems, and the subcortical area; 

module V mainly involved the visual and dorsal attention systems; module VI mainly involved 

the visual, somatomotor, dorsal attention, and ventral attention systems; and module VII mainly 

involved the limbic and default-mode systems and the subcortical area. Interestingly, we found 

that each module mainly comprised nodal regions that belong to the functional systems along the 

adjacent hierarchy [44, 45], regardless of the subgroup. 
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Figure 2. Overlapping modular architecture of the brain functional network in the adult cohort and the 

child subgroups. (A) Modular organization in a weighted edge graph. The edges were sorted according to 

their module affiliations. Each element denotes the interedge similarity in their connectivity profiles. (B) 

Distribution of the number of nodal regions involving functional modules. Notably, 27% of the nodes belonged 

to one module, and 73% of the nodes belonged to two or more modules. (C) Topographic distribution of seven 

functional modules. For each module, nodal values represent the proportion of edges assigned to that module. 

(D) Spatial similarity of the functional module maps between the child subgroups and the adult group. The 

color and size of the dots represent the spatial similarity of functional modules between each child subgroup 

and the adult group. Larger dot sizes indicate higher spatial similarity. (E) System-dependent spatial 
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distribution of functional modules. For each functional module of each subgroup, we calculated the percentage 

of nodes distributed in eight systems, including seven functional systems and the subcortical area. Given a 

prior system, the bar chart shows the percentage of nodes located in this system for eight child subgroups with 

a one-year interval and the adult cohort. In (C) and (D), cortical data were mapped on the brain surface using 

BrainNet Viewer software [46]. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; 

LIM, limbic; FP, frontoparietal; DM, default-mode; SUB, subcortical; yrs, years.  

 

Development of the overlapping functional modules during childhood and adolescence  

We employed the mixed effect model [47, 48] to quantify the longitudinal changes in the 

overlapping modular structure during childhood and adolescence. At the global level, the number 

of modules in the edge-based brain graphs significantly decreased with age (linear model, t = -

2.09, p = 0.037), and the modularity tended to increase with age (linear model, t = 1.89, p = 

0.059) (Figure 3A). At the regional level, the spatial topography of the nodal overlap (i.e., 

entropy) of every child subgroup was highly similar to that of the adult subgroup (Pearson’s 

correlation rs ranged from 0.74 to 0.91). Specifically, for each age subgroup, regions with higher 

levels of overlap were located mainly in the insula, supramarginal gyrus, inferior frontal gyrus, 

somatosensory cortex, anterior cingulate gyrus and subcortical area (e.g., putamen), and regions 

with lower levels of overlap were located mainly in the visual cortex, angular gyrus, and 

posterior cingulate gyrus (Figure 3B). Statistical analysis revealed that seven nodal regions 

showed significant linear changes with age (pFDR corrected < 0.0014, Figure 3C). These regions 

showed dissociable age-related changes, with significant increases mainly located in the superior 

and inferior parietal lobules and the lateral prefrontal cortex and significant decreases mainly 

located in the ventral and medial prefrontal cortex and the putamen.  

At the system level, each subgroup followed a similar system-dependent pattern of nodal entropy 

(ANOVA, all ps < 0.0001 for nine subgroups) (Figure 4A). Specifically, the ventral attention and 

somatomotor regions showed greater module overlap, while the visual and default-mode regions 

showed lower module overlap. Quantitative analysis revealed that the entropy of the dorsal 

attention system significantly increased with age (linear model, t = 2.44, p = 0.015), while the 

entropy in the subcortical area significantly decreased with age (linear model, t = -3.13, p = 

0.0019, Figure 4B). 
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Figure 3. Longitudinal development of the overlapping functional modules at the global and nodal 

levels. (A) Left: Effect of age on the number of modules. Right: Age effect on modularity in edge-centric 

module detection. (B) Spatial patterns of functional module overlap across the brain for each child subgroup 

and for the adult group. (C) Spatial distribution of regions showing significant developmental changes in 

functional module overlap. Age effects are displayed in terms of T values (pFDR corrected < 0.0014). In (A) and 

(C), boxplots represent the distribution of the adult group for reference. The blue lines connecting scattered 

points represent longitudinal scans of the same child. The adjusted value denotes the measure of interest 

corrected for sex, head motion, and random age effects. yrs, years; LPFC, lateral prefrontal cortex; SPL, 

superior parietal lobule; IPL, inferior parietal lobule; MPFC, medial prefrontal cortex; VPFC, ventral 

prefrontal cortex. 
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Figure 4. Longitudinal development of the brain functional module overlaps at the system level. (A) 

Distribution of the module overlap within each functional system for each child subgroup and for the adult 

group. Given a prior system, the bar chart shows the distribution of the average entropy of this system across 

individuals for eight child subgroups with a one-year interval and the adult cohort. Here, the circle with a dot 

denotes the median, and the box denotes the interquartile range. (B) Two functional systems showing 

significant developmental changes in functional module overlap. In (B), boxplots represent the distribution of 

the adult group for reference. Short lines connecting scattered points represent longitudinal scans of the same 

child. The adjusted value denotes the measure of interest corrected for sex, head motion, and random age 

effects. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, 

frontoparietal; DM, default-mode; SUB, subcortical. 

 

Association of cognitive functions with developmental changes in overlapping modules 

We next performed a meta-analysis using the NeuroSynth database [49] to explore the potential 

cognitive significance associated with the developmental changes in network nodes in the 

overlapping modules. The statistical map of the developmental changes in nodal entropy was 

divided into 10 bins with decreasing age-related T values. We found that the nodal regions that 

increased with age (bins 0–10 and 10–20), such as the lateral prefrontal cortex, superior parietal 

lobule, and inferior parietal lobule, were mainly involved in the cognitive terms “motor 

imagery”, “visual perception”, “spatial”, and “eye movements” (Figure 5). Nodal regions 

showing decreases with age (bins 80–90 and 90–100), such as the ventral and medial prefrontal 

cortex and the putamen, were mainly associated with the cognitive terms “speech”, “word form”, 

“sound”, and “auditory”.  
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Figure 5. Cognitive function decoding of brain regions. These nodal regions were sorted in descending 

order according to the developmental changes in the functional module overlap. The results were obtained 

based on the information in the NeuroSynth meta-analytic database [49]. 

 

Predicting brain age from spatial topography of nodal overlap 

We investigated whether the spatial topography of nodal overlap in the network modules could 

be used to predict individual chronological age. Linear support vector regression (SVR) was used 

with tenfold cross-validation (Figure 6A). We found that the spatial patterns of nodal entropy 

significantly predicted individual chronological age (r = 0.37, pperm < 0.0001; Figure 6B). 

Regions with high contributions were primarily located in the dorsal attention and default-mode 

systems (Figure 6C). Furthermore, we found that the nodal contribution weights showed a 

significant positive correlation with the developmental changes in nodal entropy in terms of age-

related t values (Pearson’s correlation r = 0.46, pspin < 0.0001; Figure 6D). The significance level 

of the spatial similarity was assessed by comparing the observed value to a null distribution. This 

null distribution was created through 10,000 permutations, generating surrogate maps that 

maintained the spatial autocorrelation characteristics of the original map [50]. This result 

suggests that brain regions showing age-related changes play a crucial role in predicting 

chronological age. 
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Figure 6. Brain age prediction based on spatial patterns of nodal overlap. (A) Schematic representation of 

the SVR prediction model based on 10-fold cross-validation. (B) Accuracy for age prediction using the tenfold 

SVR model. The gray frequency polygon in the inset displays the null distribution of prediction accuracies 

based on the permutation tests (n = 10,000) by shuffling the actual ages across scans. The red line denotes the 

actual r value. (C) Spatial distributions of the nodal contribution in the prediction model. Left: Contribution 

weight at the regional level. Right: Contribution weight at the system level. Positive and negative weights were 

separately averaged within each system. (D) Left: Spatial pattern of the effect of age on nodal overlap in terms 

of T values. Right: Nodal contribution weight shows a significant positive correlation with the development of 

nodal overlap based on Pearson’s correlation analysis. Pos, positive; Neg, negative; VIS, visual; SM, 

somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default-mode; 

SUB, subcortical; SVR, support vector regression. 

 

Predicting individual nodal patterns of overlapping functional modules from structural brain 

features  

We finally investigated whether the structural features were related to the overlapping modules in 

children. In this analysis, we included 446 high-quality rsfMRI and dMRI scans from 279 

children (aged 6–14 years, F/M = 138/141), with three repeated scans from 42 children, two 

repeated scans from 83 children and one scan from 154 children. For each brain node of each 

child, we obtained five morphological measurements (cortical volume, thickness, curvature, 

folding index, and surface area) using structural MRI data and the fractional anisotropy strength 

in the white matter networks using diffusion MRI data. For each child, the linear SVR model was 

used to predict the individual spatial pattern of nodal entropy in the overlapping functional 

modules by integrating all structural brain features. Figures 7A and 7B show the prediction 

features and accuracy of a representative child’s scan. We found that the structural features 
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significantly predicted the individual spatial patterns of nodal entropy for 95% of the scans 

(424/446), with a significance level of pperm < 0.05. The prediction accuracy varied across scans 

(mean ± SD: 0.35 ± 0.10), while the maximum prediction accuracy reached 0.59 (Figure 7C). 

The prediction contributions varied across structural features, with cortical thickness showing the 

greatest contribution (Figure 7D).  

 

Figure 7. Prediction of individual spatial patterns of nodal module overlap from structural brain 

features in children. (A) Spatial distributions of anatomical features for a representative child’s scan. (B) 

Accuracy of nodal entropy prediction for a representative child’s scan. In (A) and (B), the representative scan 

was selected as the scan that showed the highest prediction accuracy for the individual map of nodal module 

overlap. (C) Frequency polygon for prediction accuracies of all rsfMRI scans. The inset in the upper left corner 

denotes the null distribution of the prediction accuracy based on permutation tests. The red line denotes the 

95% significance level in the null distribution. (D) Prediction contribution of different structural features in the 

prediction model of all rsfMRI scans. This histogram displays the mean values of anatomical features across 

subjects, with each bar representing the average value accompanied by its standard deviation. CV, cortical 

volume; CT, cortical thickness; CC, cortical curvature; FI, folding index; SA, surface area; FA, fractional 

anisotropy. 

 

Validation results 

We further assessed the reliability of the procedure used for the estimation of nodal overlap in 

the functional module affiliations. Specifically, we re-estimated the nodal overlap in module 
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affiliations in the adult group by considering the influence of several network construction and 

analysis strategies, including i) spatial resolution of the parcellation (i.e., Schaefer-100) (Figure 

S1), ii) network thresholding strategies (i.e., 10% and 20%) (Figure S2A and S2B), iii) module 

detection algorithms (Figure S2C), and iv) measures for nodal overlap estimation (i.e., involved 

number) (Figure S2D). We found that the spatial pattern of nodal entropy remained almost 

unchanged in different cases, suggesting the reliability of the topography of the overlapping 

modular architecture. 

 

Discussion 

Using a large longitudinal multimodal MRI dataset, we revealed the development of overlapping 

functional modular organization and its potential structural substrates during childhood and 

adolescence. Specifically, the spatial distribution of the overlapping modules in children was 

highly similar to that in the adult cohort, with the ventral attention, somatomotor, and subcortical 

regions exhibiting greater overlap and the visual and default-mode regions exhibiting lower 

overlap. The developmental changes in the nodal overlap in module affiliations showed spatial 

heterogeneity, with significant decreases in the prefrontal cortex and putamen and significant 

increases in the parietal lobules. Finally, we found that spatial patterns of nodal overlap could be 

used to predict individual brain ages and were associated with both morphological and white 

matter features, particularly cortical thickness. Our findings highlighted the spatially 

inhomogeneous maturation of the overlapping modular architecture and potential structural 

substrates during childhood and adolescence, providing novel insights into the neural mechanism 

underlying individual cognitive development. 

The presence of the overlapping functional modular architecture is of great value for 

understanding the functional organization principles of the human brain [31-35]. This framework 

provides an intuitive characterization of the functional interactions between modules and the 

diverse roles of brain regions [51, 52]. Compared with previous overlapping module studies in 

adults [31-35], our study is the first to uncover overlapping functional modular organization in 

children and adolescents, extending the understanding of brain developmental principles. We 

found that each functional module comprised nodal regions involved in at least two prior 

functional systems, regardless of the age subgroup. These systems contained in the same 

functional module have usually been found to be located in adjacent functional gradients [44]. 

Taken together, these findings indicate that the overlapping modular architecture may capture 

intersystem interactions at similar hierarchical levels. Interestingly, most of the prior functional 

systems were involved in three or more overlapping modules, except for the visual and limbic 

systems, suggesting diverse functional roles or functional differentiation within each functional 

system. The default-mode regions were found to be involved in three overlapping modules (i.e., 

modules I, IV, and VII), which is in line with the previous identification of three subsystems 

within the default-mode system in both children [39] and adults [53]. From a dynamic 

perspective, functional modular organization spontaneously reconfigures on a short time scale 

(e.g., seconds) with regions switching among modules [21]. The observed spatial overlap of 

functional modules may be a summary of the dynamic reorganization at a long-term scale. 

However, the relationship between the overlapping and dynamic modular architectures warrants 

further investigation. 
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We further found that the topological distribution of the module overlap in children and 

adolescents showed an adult-like spatially inhomogeneous pattern, suggesting that the 

overlapping modular architecture is taking shape in children and adolescents. High nodal overlap 

was primarily located in the ventral attention and somatomotor regions, which is consistent with 

the findings of a recent study in adults [34]. The high nodal overlap of the ventral attention 

system may be attributable to its involvement in multiple general domain categories, as revealed 

in a meta-analytic study [51], including cognition (e.g., attention), perception (e.g., somesthesis) 

and action domains (e.g., imagination). During a movie watching task, the overlap level of the 

ventral attention system increased significantly [34], further indicating that the module overlap 

of the ventral attention system may capture regional involvement in task transitions. The high 

nodal overlap in the sensorimotor regions indicates the functional diversity of this system, which 

is consistent with its involvement in multiple modules (Figure 2E). In addition to the widely 

known sensorimotor functions [54], these regions may be involved in other cognitive functions 

or behaviors, such as attention allocation [55], speech perception [56], and emotional regulation 

[57]. 

The developmental change in the nodal overlap level (i.e., nodal entropy) showed regional 

heterogeneity. The decreased nodal overlap of subcortical areas may be explained by the 

gradually decreased involvement of the subcortical system in modules III and V, which are 

related to somatomotor, attention, and visual functions (Figure 2E). A recent study reported that 

the strength of cortico-subcortical functional connectivity varies with age, with increasing 

connections between subcortical and association regions and weakening connections between 

subcortical and primary regions [58]. The observed age-related decreased overlap of the 

subcortical regions suggested that the enhanced functional segregation between the subcortical 

area and the primary system may be more dominant. In the prefrontal cortex, we observed 

dissociable age-related changes in the extent of nodal overlap for two regions, including the 

lateral prefrontal cortex and the medial prefrontal cortex. This may be attributed to the fact that 

these two regions belong to different functional subsystems, i.e., the lateral prefrontal cortex is 

strongly connected with the default-mode system that is preferentially involved in the regulation 

of introspective processes, and the medial prefrontal cortex is strongly connected with the dorsal 

attention system that is mainly involved in the regulation of visuospatial perceptual attention 

[59]. The significant prediction of an individual’s chronological age based on nodal overlap 

patterns further demonstrated substantial changes in the overlapping modular architecture during 

childhood and adolescence. 

The functional activity of the human brain is supported and sculpted by the underlying 

anatomical structure [60]. During childhood and adolescence, both gray matter and white matter 

of the brain undergo elaborate reconfiguration. The cortical surface area gradually reaches a 

peak, and the gray matter volume of the whole brain decreases [9]. Moreover, the white matter 

volume continues to increase [9, 61]. Here, we found that these developing anatomical features 

of gray matter and white matter could be used to significantly predict the spatial patterns of 

functional module overlap at the individual level. Of all measures considered, cortical thickness 

was found to make the greatest contribution. This may be attributed to the remarkable thinning of 

cortical thickness during childhood and adolescence [9, 62, 63]. Specifically, a previous study 

has shown that the coordinated development of cortical thickness during adolescence shows a 

similar pattern of functional connectivity [64]. These results bridge a link between the 
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overlapping functional modular architecture and macroscopic anatomical features in the brain. 

The potential association with microscale properties (e.g., synaptic pruning and myelination) 

needs to be further illuminated. 

Several issues need to be further considered. First, inner-scan head motion introduces a spatially 

inhomogeneous bias in functional connectivity estimation, which is age dependent [65]. To 

reduce the potential influence of head motion, we included 24 head parameters, global brain 

signals, and “bad” time points during nuisance regression. The individual head motion 

parameters (i.e., mFD) were also included in the mixed effect model when assessing the age 

effects. Nevertheless, the potential influence of head movement may not have been completely 

eliminated. Second, this study used a large longitudinal dataset of children and adolescents, but 

the age range was limited to school-age children. Future studies should extend the developmental 

period of interest by adding other datasets from early childhood (even the fetal period) and late 

adolescence to chart a more complete developmental trajectory from infancy to adulthood. Third, 

the structure‒function association was established with SVR prediction analysis. It is still 

unknown how the overlapping functional modular architecture emerges from anatomical 

features. Other computational models, such as network communication models [66] and large-

scale dynamic modeling [67], may be employed to provide the mechanism underlying the brain 

structure–function relationship. Fourth, we explored the typical developmental changes in the 

overlapping modules in children and adolescents. Since adolescence is the most common period 

for the onset of mental disorders [14], the overlapping modular organization may be altered in 

individuals with neurodevelopmental disorders, such as autism spectrum disorders or attention 

deficit hyperactivity disorder. Exploring the overlapping modular organization in these disorders 

may improve the understanding of the pathological mechanism underlying atypical development. 

Finally, we employed the edge-centric module detection algorithm to detect the overlapping 

modules, which does not require a prior assumption and is intuitive for understanding multiple 

module affiliations of nodes. However, until now, there has been no gold standard for evaluating 

the quality of the detected overlapping functional modular structure in the human brain. The 

potential biological significance of the overlapping functional modular architecture warrants 

further research. 

 

Methods 

Participants 

A longitudinal multimodal MRI dataset of 360 healthy children was obtained from the Children 

School Functions and Brain Development Project (Beijing Cohort) [38, 39]. All participants were 

cognitively normal, did not use psychotropic medication or had no history of severe traumatic 

brain injury. These children underwent longitudinal rsfMRI and dMRI scans at intervals of 

approximately one year. We performed strict quality control on the rsfMRI data and excluded 

scans with field map errors, excessive head motion (see “Data Preprocessing”), excessive “bad” 

time points, or T1 artifacts. Finally, 491 scans of 305 participants (aged 6–14 years, F/M = 

143/162) remained, including three scans from 47 subjects, two scans from 92 subjects, and one 

scan from 166 children. Notably, 45 rsfMRI scans were further excluded from the subsequent 

structural association analysis due to the poor quality of the corresponding dMRI data (see “Data 
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Preprocessing”). In addition, 446 rsfMRI scans from 279 subjects (aged 6–14 years, F/M = 

138/141) were used in the structure‒function association analysis, including three scans from 42 

subjects, two scans from 83 subjects and one scan from 154 subjects. In addition, we employed 

rsfMRI scans of 61 healthy young adults (aged 18–29 years, F/M = 37/24) for comparison. All 

participants or their parents/guardians provided written informed consent, and this study was 

approved by the Ethics Committee of Beijing Normal University. 

Imaging acquisition 

Multimodal magnetic resonance images were acquired on a 3T Siemens Prisma scanner with a 

64-channel head coil at the Center for Magnetic Resonance Imaging Research at Peking 

University. Both children and adults underwent multimodal scanning using the following 

protocols. 

(i) Functional MRI. Resting-state scans were acquired using an echo-planar imaging sequence: 

repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90°, field of view (FOV) = 

224 × 224 mm2, acquisition matrix = 64 × 64, slice number = 33, and slice thickness/gap = 

3.5/0.7 mm. All participants were asked to fixate on a bright crosshair displayed in the center of 

the scanner screen. The total duration of the rsfMRI scans was eight minutes (i.e., 240 volumes). 

(ii) Field maps for functional MRI. The scans were acquired using a 2D dual gradient-echo 

sequence: TR = 400 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, flip angle = 60°, FOV = 224 × 224 

mm2, acquisition matrix = 64 × 64, slice number = 33, and slice thickness/gap = 3.5/0.7 mm. 

(iii) T1-weighted structural MRI. The scans were acquired using a sagittal 3D magnetization 

prepared rapid acquisition gradient-echo (MPRAGE) sequence: TR = 2530 ms, TE = 2.98 ms, 

flip angle = 7°, FOV = 256 × 224 mm2, acquisition matrix = 256 × 224, inversion time = 1100 

ms, slice number = 192, slice thickness = 1 mm, and bandwidth = 240 Hz/Px. 

(iv) Diffusion MRI. The scans were acquired using a high angular resolution diffusion imaging 

(HARDI) sequence: TR = 7500 ms, TE = 64 ms, flip angle = 90°, FOV = 224 × 224 mm2, 

acquisition matrix = 112 × 112, slice number = 70, slice thickness = 2 mm, and bandwidth = 

2030 Hz/Px. The complete sequence consisted of 64 diffusion-weighted directions (b-value = 

1000 s/mm2) and 10 nondiffusion-weighted directions (b-value = 0 s/mm2). 

Data preprocessing 

(i) Functional MRI data. The functional images of all the children were preprocessed using 

SPM12 (https://www.fil.ion.ucl.ac.uk/spm) and DPABI 3.0 [68]. First, we removed the first 10 

volumes and performed slice-timing correction. Next, we applied field map correction to reduce 

geometric distortion and realigned the volumes over time. After realignment, 94 rsfMRI scans 

were excluded due to excessive head motion with a criterion of maximum head motion > 3 mm 

or 3° or mean framewise displacement (mFD) [69] > 0.5 mm. Then, the functional images were 

coregistered with individual T1 images and spatially normalized to a custom pediatric template 

using a unified segmentation algorithm [70] with the following steps: i) individual structural 

images were initially segmented into three tissue (i.e., gray matter, white matter, and 

cerebrospinal fluid) probability maps by using the Chinese Pediatric Atlas (CHN-PD) (6–12 

years) [71] as a reference; ii) the resulting spatially normalized maps for each tissue type were 
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averaged across scans to generate the custom tissue templates; iii) individual structural images 

were segmented again using the custom tissue templates as a reference; and iv) the functional 

images were spatially normalized using the transformation parameters estimated from the second 

segmentation of structural images. For the child cohort, custom tissue maps were used to 

improve the accuracy of spatial normalization. The normalized functional images were then 

resampled into 3-mm isotropic voxels and underwent spatial smoothing using a Gaussian kernel 

(full-width at half-maximum = 4 mm), linear detrending, and nuisance signal regression. A series 

of regressors were included in the nuisance regression, including 24 head motion parameters 

[72], “bad” time points with FD above 0.5 mm, white matter signals, cerebrospinal fluid signals, 

and global brain signals. Finally, we performed temporally band-pass filtering (0.01-0.1 Hz) on 

the images. For the adult cohort, the preprocessing procedures were conducted in the same way 

as for the child cohort, except that the functional images were normalized to the Montreal 

Neurological Institute (MNI) standard space. 

(ii) T1-weighted MRI data. The T1-weighted images were preprocessed using FreeSurfer v6.0 

[73]. First, we performed intensity normalization and removed nonbrain tissue using the HD-

BET algorithm [74], during which the automatically extracted brain tissue maps replaced the 

default maps (i.e., “brainmask.mgz”) in FreeSurfer to improve accuracy. Next, we conducted 

tissue segmentation and cortical reconstruction on individual T1 images. Notably, the 

longitudinal processing stream of FreeSurfer was selected to obtain robust and reliable 

morphological measurements [75]. A trained researcher visually inspected the cortical 

reconstruction results to ensure that the correct boundaries were estimated. Finally, we obtained 

five local gray matter morphological features, including cortical volume, thickness, curvature, 

folding index, and surface area for each vertex. 

(iii) Diffusion MRI data. The diffusion images were preprocessed using MRtrix 3.0 [76], FSL 

6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), and ANTs [77]. First, the diffusion data were 

denoised, and Gibbs ringing artifacts were removed. Next, we corrected the eddy current-

induced distortions, subject movement, and signal dropout for each scan using the FSL eddy tool 

[78]. Notably, 45 rsfMRI scans were further excluded from the structure‒function association 

analysis due to missing images, excessive head motion (maximal motion > 3 mm), or 

considerable signal dropout in the corresponding diffusion images. Then, field map correction 

was employed to reduce susceptibility by using FSL (epi_reg script). Finally, B1 field 

inhomogeneity was corrected with the N4 algorithm [79]. 

Identification of the overlapping modular architecture 

We identified the overlapping modular architecture in the brain functional networks by 

employing edge-centric module detection [40] (Figure 1B). Briefly, we first constructed a 

traditional functional network comprising nodal regions and interregional connectivities (i.e., 

edges). Then, we constructed the corresponding weighted edge graph representing the similarity 

between edges. Finally, we identified the module affiliations of each nodal region according to 

the module assignments of its edges in the corresponding edge graph. 

Functional network construction. We constructed a brain functional network comprising 232 

nodal regions for each rsfMRI scan of each participant. In this functional network, cortical nodes 

were defined based on a recently developed functional parcellation comprising 200 cortical 
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regions (i.e., Schaefer-200) [80], and subcortical nodes were defined according to a subcortical 

functional parcellation comprising 32 regions [43]. We extracted the mean time series for each 

nodal region and estimated Pearson’s correlation coefficients between every pair of nodes. Then, 

a weighted functional network was obtained by thresholding the correlation matrix with a density 

of 15% (i.e., 4020 edges) to exclude potential spurious or weak correlations. Negative 

correlations were not considered due to their controversial physiological interpretations [81, 82]. 

Edge graph construction. For each functional network, we constructed a corresponding weighted 

edge graph that denoted the similarity between edges (Figure 1B). For simplicity, we considered 

only directly connected edges that shared at least one common node, and the similarity between 

edges without common nodes was assumed to be zero. The Tanimoto coefficient [30, 83] was 

used to incorporate the edge weight information. For a pair of edges eik and ejk that share a 

common node k, their similarity was defined based on the similarity in the connection profiles 

between nodes i and j: 

                                                 S(𝑒𝑖𝑘, 𝑒𝑗𝑘) =
𝑎𝑖∙𝑎𝑗

|𝑎𝑖|2+|𝑎𝑗|2−𝑎𝑖∙𝑎𝑗
,                                                 (1) 

where 𝑎𝑖 ∙ 𝑎𝑗 represents the dot product of the two vectors 𝑎𝑖 and 𝑎𝑗, and 𝑎𝑖 = (𝐴̃𝑖1, 𝐴̃𝑖2, ⋯ , 𝐴̃𝑖𝑁) 

represents a modified connectivity profile of node i. Specifically, each element 𝐴̃𝑖𝑗 is defined as 

𝐴̃𝑖𝑗 =  {
   𝐴𝑖𝑗              𝑖 ≠ 𝑗

∑ 𝐴𝑖𝑚
𝑁
𝑚=1

𝑘𝑖
      𝑖 = 𝑗

  ,                                                      (2) 

where 𝐴𝑖𝑗 is the functional connection strength between nodes i and j and ki is the number of 

edges of node i. Of note, nonzero diagonal elements were included in Eq. (2) to make the 

similarity definition, i.e., Eq. (1), applicable to extreme cases in which nodes i and j are directly 

connected. 

Identifying the overlapping modular architecture based on edge-centric module detection  

Given a functional network of interest, we first detected the modular structure in the 

corresponding edge graph and then determined the module affiliations of each nodal region 

according to the module affiliations of its edges. Here, the Louvain algorithm [41] was employed 

to detect the modular architecture in the large-scale edge graph, and each edge was assigned to a 

specific module. Each nodal region was then assigned to one or more modules due to diverse 

module affiliations of its edges, leading to spatial overlap between the functional modules. A 

nodal region whose edges were involved in two or more modules was defined as an overlapping 

region. Notably, the detected module partition in the edge graph varied slightly across each 

instance of detection due to the heuristic property of the Louvain algorithm. The module number 

of the functional network was defined as the module number that appeared most frequently 

among 100 instances, and the other measurements regarding the overlapping modular structure 

were taken as the average across 100 instances of identification. 

Topography analysis of the overlapping modular architecture at the group level 

To illustrate the spatial patterns of the overlapping modular structure at different ages, we 
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detected the modular architecture at the group level. All the children’s rsfMRI scans were 

divided into eight subgroups with one-year intervals, and the adult group was set as the ninth 

subgroup for comparison. A group-level weighted functional network was constructed for each 

subgroup by averaging individual functional correlation matrices followed by network 

thresholding (i.e., density = 15%). Then, we detected the modular structure in the corresponding 

edge graph for each subgroup with 100 instances of module detection. To obtain a stable module 

division, we conducted the following two steps: i) computed the module co-occurrence matrix 

between each pair of edges [84], wherein each element denoted the proportion of instances in 

which a pair of edges were assigned to the same module; and ii) applied the modular detection 

algorithm to the module co-occurrence matrix 100 times. We iterated these two steps until the 

module partition remained unchanged across multiple instances. The final version of the module 

partition of edges was used to infer the overlapping modular architecture of the functional 

network. 

Considering the spatial overlap of functional modules, we obtained a spatial map for each 

functional module separately. Nodal values in the map denote the proportion of edges assigned to 

this module. To compare the modules observed in each child subgroup with those in adults, we 

further matched the functional module maps between the adult subgroup and all the child 

subgroups. Given a module map of interest in the adult group, a matching module map was 

selected as the map showing the maximal similarity for each child subgroup. The spatial 

similarity between two maps was calculated as the Pearson’s correlation coefficient across nodal 

regions. 

To further assess the functional system dependence of the overlapping modular structure, we 

mapped each cortical or subcortical node to one of the prior functional systems, including the 

visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, and default-mode 

systems [42] and the subcortical area [43]. For each module, we quantified its spatial pattern by 

estimating the percentage of nodes distributed in each functional system. 

Measure of the extent of module overlap in brain regions 

Given an overlapping modular architecture, a node may be involved in multiple modules due to 

the diverse module affiliations of its edges. Here, entropy was used to measure the extent of 

nodal overlap by quantifying the distribution of module affiliations of edges attached to a node 

(Figure 1B). Given a node i, the entropy [34] was defined as 

𝐻𝑖 = − ∑ 𝑝𝑖𝑘log2
𝑛
𝑘=1 𝑝𝑖𝑘,                                                     (3) 

where n is the number of modules involved with this node, pik represents the proportion of its 

edges participating in module k, and ∑ 𝑝𝑖𝑘 = 1𝑛
𝑘=1 . Nodal entropy was further normalized to a 

range of 0 to 1 by dividing it by log2n [34]. A higher normalized entropy value indicates greater 

overlap, suggesting that the distribution of edges among different modules is more homogeneous 

and diverse. For each scan of each participant, we obtained a nodal module overlap map in terms 

of nodal entropy. 

To illustrate the patterns of nodal overlap at different ages, a group-level entropy map was 

separately generated for each child subgroup and the adult group by averaging individual entropy 
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maps within the subgroup. Then, we estimated the spatial similarity of the entropy maps between 

each of the child subgroups and the adult subgroup by calculating Pearson’s correlation 

coefficients across nodal regions. We further employed one-way analysis of variance (ANOVA) 

models to explore whether the nodal overlap level was functional system-dependent for each 

subgroup. The functional systems were defined based on the prior seven functional systems [42] 

and the subcortical area [43]. 

Analysis of developmental changes in the overlapping modular architecture 

To explore the developmental changes in the overlapping modular architecture, we assessed the 

effects of age on a series of brain measures, including the modular number, the modularity of the 

edge graph, and the nodal overlap level, in terms of entropy values at the system and nodal 

levels. For each brain measure of interest, the age effects were estimated by using a mixed effect 

model [47, 48]. The mixed model is suitable for a longitudinal dataset with irregular intervals 

between measurements and is applicable to cases of missing time points. The model parameters 

were estimated with the maximum likelihood method. Considering the potential linear and 

quadratic age effects, we employed both the linear model and the quadratic model of the age 

effects. The optimal model was selected for each brain measure based on the Akaike information 

criterion (AIC) [85]. Sex and the in-scanner head motion parameter (i.e., mFD) were included as 

covariates within each model. 

The linear model was defined as 

𝑦𝑖𝑗 = 𝛽0 + 𝑏i + (𝛽age + 𝑏age,i)ageij + 𝛽sexsexi + 𝛽mFDmFDij + 𝜀ij.            (4) 

        The quadratic model was defined as 

𝑦ij = 𝛽0 + 𝑏i + (𝛽age1 + 𝑏age,i1)ageij + (𝛽age2 + 𝑏age,i2)ageij
2 + 𝛽sexsexi + 𝛽mFDmFDij + 𝜀ij. 

(5) 

In these equations, yij represents the brain measure of subject i at the jth scan, 𝛽𝑎𝑔𝑒 represents the 

fixed effect, bage,i represents the random effect, and 𝜀𝑖𝑗 represents the residual. For the nodal and 

system-level analyses, the significance level of the results was corrected for multiple 

comparisons across nodes using the false discovery rate (FDR) method [86]. 

Associations between cognitive functions and developmental changes in nodal overlap 

To explore the cognitive significance of developmental changes in nodal overlap, we performed 

a meta-analysis using the NeuroSynth database (www.neurosynth.org) [49]. We first sorted the 

developmental changes in nodal entropy (i.e., t values) in decreasing order and then divided the 

brain map into 10 bins (i.e., 10% apart as a box). Each bin was binarized to generate a brain 

mask. Next, we calculated the Pearson’s correlations between each mask and all the cognitive 

term maps available in the database. We selected the top two associated cognitive terms for each 

mask and removed six overlapping terms among the 10 masks. Finally, 14 cognitive terms were 

used to depict the distribution of cognitive functions across different levels of developmental 

changes. 
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Predicting brain age from spatial patterns of nodal overlap 

We used linear support vector regression (SVR) with tenfold cross-validation to test whether 

individual spatial patterns of nodal overlap could be used to predict a participant’s chronological 

age. The nodal entropy map was set as features for each participant. First, all the entropy maps 

were divided into ten subsets with similar age distributions. This division strategy is better than 

the random splitting method, which can reduce the sampling bias among the subsets [87, 88]. Of 

the ten subsets, one was designated as the testing set, and the remaining nine subsets were used 

as the training set. Next, we linearly scaled each feature across individuals between zero and one 

in the training set and applied the estimated scaling parameters to the testing set. Then, we 

trained the prediction model for individual chronological ages based on the training set. Finally, 

we quantified the prediction accuracy by calculating the Pearson’s correlation coefficients 

between the predicted scores (i.e., ages) obtained from the SVR model and the actual scores (i.e., 

chronological age). To assess the statistical significance of the prediction accuracy, we generated 

a null distribution of accuracy based on permutation tests (n = 10,000) by shuffling the actual 

scores across scans. To reduce the influence of confounding factors, we further corrected for sex, 

in-scanner head motion (i.e., mFD), and random age effects from the nodal entropy values prior 

to the prediction analysis. To determine the contribution of nodal features to the prediction 

model, we trained another SVR model using all the participants to improve the estimation 

accuracy [87, 88]. The resulting regression coefficients were regarded as the weights denoting 

the importance of all features. To further clarify the system dependence of the weights, we also 

classified the nodal weights into eight functional systems, including seven cortical functional 

systems [42] and the subcortical area [43]. The positive and negative weights were separately 

averaged within each system. Here, the SVR model was implemented using the LIBSVM 

toolbox in MATLAB with the default parameters (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) 

[89]. 

Analysis of nodal integrity in the white matter structural network 

In addition to local morphological measures, we also considered the potential influence of nodal 

integrity in the white matter structural network. Structural networks were generated from the 

preprocessed diffusion images using DSI Studio (http://dsi-studio.labsolver. org). First, we 

tracked the fasciculus and obtained diffusion anisotropy parameters (i.e., fractional anisotropy, 

FA). Specifically, we employed the generalized q-sampling imaging (GQI) algorithm [90] with a 

diffusion sampling length ratio of 1.25 for deterministic tractography. The Otsu threshold was 

0.6. The tracking procedure was terminated if the turning angle was > 45° or if the fibers reached 

the borders of the cerebrospinal fluid or subcortical areas. Ten million streamlines were 

generated with a step size of 0.625 mm, and only tracts with a length between 6~250 mm were 

retained for subsequent analysis. Next, the reconstructed streamlines were projected to the 

Schaefer-200 atlas, which has been registered to the native space. Finally, we calculated the FA 

values between every pair of nodes (i.e., the mean FA values along all reconstructed streamlines 

between two nodes) and further summed the FA values between a node and all the other nodes. 

This metric was defined as nodal FA strength, which indicates the microstructural integrity of the 

fiber bundles attached to a node [91]. 

Predicting individual nodal overlap maps from structural features 
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To evaluate whether the spatial pattern of the nodal overlap maps was associated with anatomical 

architecture, we performed a prediction analysis based on the SVR model for each scan of each 

participant. We considered five morphological measurements (cortical volume, thickness, 

curvature, folding index, and surface area) in the gray matter and the FA strength in the white 

matter. For each node, morphological features were extracted as the average value within the 

nodal region based on the Schaefer-200 atlas, which has been registered to the native space. The 

prediction was conducted using the same framework as that used in the age prediction mentioned 

above. Tenfold cross-validation was also used here. In each validation instance, ten percent of the 

nodal regions were designated as the testing set, and the remaining nodes were set as the training 

set. We predicted nodal entropy values for each scan by integrating anatomical features from 

both gray matter and white matter. To assess the statistical significance of the prediction 

accuracy, we generated a null distribution of accuracy using permutation tests (n = 100) by 

shuffling the actual entropy across nodes for each scan, thus leading to 100 × 446 (scans) 

permutation instances in total. The 95% significance level was determined according to the null 

distribution containing all 44,600 instances. To assess the prediction contribution of anatomical 

features, we trained another SVR model for each scan using all the nodal regions in the whole 

brain to improve estimation accuracy [87, 88]. The resulting regression coefficients were 

regarded as the weights denoting the importance of all features. 

Validation analyses 

To ensure the reliability and robustness of the topography of the overlapping modular 

architecture, we investigated the potential influence of several network construction and analysis 

strategies in the adult cohort. Specifically, we examined the potential influence of functional 

parcellation on the nodal definition, network thresholding strategy, edge module detection 

algorithm, and nodal overlap estimation. First, we analyzed the spatial resolution of the 

functional parcellation. For the main analysis, we constructed a brain functional network 

comprising 200 cortical regions [80] and 32 subcortical regions [43]. To further validate the 

influence of spatial resolution, we reconstructed whole-brain functional networks, during which 

the cortical nodes were defined based on the Scheafer-100 atlas, which comprises 100 cortical 

regions [80]. Second, we examined the network thresholding density by obtaining weighted 

functional networks using two other network densities (i.e., 10% and 20%). Third, we explored 

the influence of the module detection algorithm. In addition to the Louvain algorithm [41], we 

employed the eigenspectral analysis method [92] to detect the modular structure of the edge 

graph. Finally, we quantified the nodal overlap level by considering the number of modules 

involved, which provides a more intuitive understanding. For each nodal region, we calculated 

the involved module number as the number of modules involved in its edges. The larger the 

involved number, the higher the nodal overlap in module affiliations. 
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Supplementary Information 

 

 

 
 

Figure S1. The spatial patterns of the nodal module overlap at different spatial resolutions. For the adult 

group, the overlapping modular architecture was separately detected in the group-level functional networks 

obtained from different functional parcellations. (A) Nodal overlap in the functional networks with coarse 

parcellation. This network comprised 100 cortical nodes obtained from the Schaefer-100 atlas (Schaefer et al., 

2018) and 32 subcortical regions (Tian et al., 2020). (B) Nodal overlap in the functional networks with a fine 

parcellation (i.e., main results). This network comprised 200 cortical nodes obtained from the Schaefer-200 

atlas (Schaefer et al., 2018) and 32 subcortical regions (Tian et al., 2020). (C) Extent of nodal overlap for eight 

systems at different spatial resolutions. Similar distributions of nodal overlap were observed between the two 

parcellations. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, 

frontoparietal; DM, default-mode; SUB, subcortical. 
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Figure S2. The spatial patterns of the nodal module overlap under different network analysis strategies 

and their relationships with the main results. (A) Network density of 10% for functional network 

construction. (B) Network density of 20% for functional network construction. (C) Eigenspectral analysis for 

module detection in the edge graph. (D) The number of involved modules used to quantify the extent of nodal 

module overlap. (E) Main result as a reference. In each case, all the network construction and analysis 

strategies were set to be the same as those in the main analysis, except for the strategy of interest. All 
correlations were assessed with Pearson’s correlation across nodal regions. 
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