10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

35

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

1

Title

Reproducible single cell annotation of programs underlying T-cell subsets, activation states, and
functions

Authors

Dylan Kotliar'2345" Michelle Curtis?34", Ryan Agnew!234, Kathryn Weinand*2346 Aparna
Nathan'2348 Yuriy Baglaenko'’8, Yu Zhao?34, Pardis C. Sabeti*®1°, Deepak A. Rao?,
Soumya Raychaudhuri2346.f

Affiliations

1Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School,
Boston, MA 02115, USA.
2Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and

Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

®Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard
Medical School, Boston, MA 02115, USA.

4Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

SHarvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston,
MA 02115, USA.

®Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
"Center for Autoimmune Genetics and Etiology and Division of Human Genetics, Cincinnati
Children's Hospital Medical Center, Cincinnati, OH 45229, USA.

8Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45219,
USA.

Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard
University, Cambridge, MA 02138, USA.

PHoward Hughes Medical Institute, Chevy Chase, MD 20815, USA.

"These authors contributed equally

TAddress correspondence to:

Soumya Raychaudhuri

77 Avenue Louis Pasteur, Harvard New Research Building, Suite 250D
Boston, MA 02446, USA.

soumya@broadinstitute.org

617-525-4484 (tel); 617-525-4488 (fax)


https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2

Abstract

T-cells recognize antigens and induce specialized gene expression programs (GEPs) enabling
functions including proliferation, cytotoxicity, and cytokine production. Traditionally, different
classes of helper T-cells express mutually exclusive responses — for example, Thl, Th2, and
Th17 programs. However, new single-cell RNA sequencing (scRNA-Seq) experiments have
revealed a continuum of T-cell states without discrete clusters corresponding to these subsets,
implying the need for new analytical frameworks. Here, we advance the characterization of T-
cells with T-CellAnnoTator (TCAT), a pipeline that simultaneously quantifies pre-defined GEPs
capturing activation states and cellular subsets. From 1,700,000 T-cells from 700 individuals
across 38 tissues and five diverse disease contexts, we discover 46 reproducible GEPs
reflecting the known core functions of T-cells including proliferation, cytotoxicity, exhaustion, and
T helper effector states. We experimentally characterize several novel activation programs and
apply TCAT to describe T-cell activation and exhaustion in Covid-19 and cancer, providing

insight into T-cell function in these diseases.
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Introduction

Canonically, T-cells are classified by membership in a hierarchy of discrete, mutually exclusive
subsets associated with key transcription factors and surface markers. For example, expression
of yo or a3 T-cell receptors and CD4 or CD8 co-receptors divide T-cells into subsets recognizing
different major histocompatibility complex (MHC) molecules. CD45 isoform and L-selectin
expression subdivides naive and memory subsets. CD4 memory cells are further
subcategorized into helper subsets, including Thl, Th2, and Th17, with distinct cytokine profiles

upon activation?.

Emerging evidence conflicts with this canonical model. T-cell states vary continuously?, combine
additively within a cell®, and have plasticity in response to stimuli*. This may explain why single-
cell RNA sequencing (scRNA-Seq) typically shows a continuum of T-cell states without well-
delineated clusters corresponding to discrete subsets®®. Even with incorporation of pre-defined
surface protein markers based on cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq)’, unbiased clustering does not yield canonical discrete T-helper
subsets®. Rather, sScRNA-Seq has highlighted untraditional cell populations including cytotoxic
CD4+ cells®, CD8+ regulatory T-cells® and Th1/Th17 cells!!, consistent with the growing

recognition of non discrete T-cell states.

While hard clustering is the predominant scRNA-Seq analysis technique, it has key limitations
when cell states are not discrete or mutually exclusive. A cell’s transcriptome reflects its

complex identity through expression of multiple gene expression programs (GEPSs) that reflect
lineage, activation states, and lifecycle processes'?. However, hard clustering forces cells into

discrete groups that cannot easily reflect the multiplicity of GEPs they express. For example,
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81  proliferating cells from multiple subsets may cluster together, obscuring information about their

82  subset. Hard clustering also cannot directly model continuous expression trajectories and

83 instead arbitrarily discretizes cells into distinct clusters.

84

85 Component-based models like non-negative matrix factorization (NMF), hierarchical Poisson

86  factorization, and SPECTRA can overcome some of these limitations of hard clustering®*3-1¢,

87 These methods model GEPs as vectors of expression values for each gene, and cells as

88  weighted mixtures of GEPs. Unlike Principal Component Analysis (PCA), NMF components

89  have been shown to correspond to biologically distinct GEPs**. Thus, NMF can capture

90 instances where multiple GEPs reflecting cell-type and other functional states additively

91  contribute to a cell’s transcriptome. Furthermore, unlike cluster assignments, GEP vectors may

92  be able to serve as a fixed coordinate system onto which new datasets can be projected,

93  enabling reproducible comparison of GEP activity across biological contexts. Previous analyses

94  of T-cells using component-based models have already recognized GEPs associated with T-cell

95 activation® and exhaustion®.

96

97  We argue that scaling these approaches may further elucidate T-cell biology. First, most

98 previous analyses have only analyzed T-cells from a small number of individual donors in a

99 limited set of biological contexts. As a result, they have identified a modest number of GEPs.
100 Moreover, it is essential to demonstrate the possibility of transferring GEPs identified in one
101 dataset to new datasets. For example, it remains unclear whether reference GEPs learned in
102 one dataset can accurately infer cell subsets, T-cell receptor (TCR)-dependent activation, and
103  proliferation status for cells in a new dataset.
104
105 Here, we present CellAnnoTator (*CAT, pronounced starCAT), an approach to score cells

106  based on a fixed, multidataset catalog of GEPs from any tissues or cell-type (indicated by the
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107  wildcard character “*”). We develop a catalog of GEPs reflecting the breadth of subsets,

108 activation states, and functions within T-cells by applying consensus NMF (cNMF)!4, a validated
109 implementation of NMF, to 7 scRNA-Seq datasets, spanning 1.7 million T-cells across 38

110  human tissues®81117-20 We observe striking concordance of many GEPs across contexts. After

111  combining analogous GEPs, we define a final catalog of 46 consensus GEPs (cGEPSs) capturing
112  diverse features of T-cells (Figure 1A). We demonstrate *CAT by accurately inferring T-cell

113  subsets in query datasets and quantifying rates of TCR-dependent activation and exhaustion in

114 Covid-19 and cancer.

115 Results

116 1. Annotating cells with pre-defined gene expression programs

117  We first augmented the published cNMF algorithm to enhance GEP discovery, which is the first
118  step of *CAT (Figure 1A - top). cNMF mitigates the randomness of individual NMF runs by
119 repeating NMF with multiple seeds and combining the results into robust estimates4. It outputs
120  GEP spectra, with gene weights for each GEP, and usages, reflecting the GEP’s weighted

121  contribution to each cell. For our approach, it was essential to amalgamate the inferred GEP
122  spectra from multiple datasets. However, we found that dataset-specific batch effects could
123  hinder the identification of reproducible GEPs. Most batch correction methods are not

124  compatible with cNMF since they create many negative values or correct low-dimensional

125 embeddings rather than gene-level data. We therefore used Harmony??, with modifications to
126  produce non-negative values for gene-level data rather than principal components. We also
127  adapted cNMF to incorporate surface proteins into the final spectra to aid in GEP interpretation
128  without impacting GEP discovery (Methods).

129
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130 Next, we developed *CAT to enable GEPs learned in a reference dataset to be transferred to
131  previously unseen “query” datasets. Whereas cNMF simultaneously learns GEPs and scores
132  their usage in each cell’s transcriptional profile, *CAT addresses the independent problem of
133  quantifying the usages of a fixed set of GEPs in a new dataset, using non-negative least

134  squares (NNLS) regression, similar to NMFproject!®. The result is a vector of usages for each
135 cell representing the relative contribution of each GEP to the cell’s profile (Figure 1A - bottom).
136

137  Using NNLS to refit GEPs as we do with *CAT provides significant advantages over direct

138 applications of cNMF or other matrix factorizations. First, *CAT uses a fixed set of GEPs from a
139 reference, instead of discovering GEPs de novo in the query. Thus, it provides a consistent

140 representation of cell states that can be compared across different datasets and biological

141  contexts. Second, de novo cNMF might miss GEPs that are active in small numbers of cells,
142  whereas *CAT can characterize activity in a query dataset with relatively few cells. Finally, *CAT
143 s significantly faster to run than cNMF.

144

145  We conducted simulations to benchmark *CAT in scenarios where the reference and query

146  datasets have only partially overlapping GEPs (Methods). We simulated two reference datasets
147  of 100,000 cells and a query dataset of 20,000 cells. Each cell could express up to eleven

148  GEPs, including one of ten mutually exclusive subset GEPs and up to ten non-subset GEPs.
149  One reference dataset included all 16 GEPs in the query data as well as four additional GEPs.
150 The other reference dataset was missing four GEPs present in the query (Figure 1B). We then
151 learned GEPs from each reference dataset with cNMF and fit them to the query using *CAT.
152  The reference and query datasets shared only 90% of genes in common, as datasets rarely
153 share all genes.

154
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155  *CAT accurately inferred the usage of GEPs that overlapped between the reference and query
156 datasets (Pearson R>0.7) (Figure 1C-D). *CAT had low predicted usage of the extra GEPs in
157 the reference panel that were not in the query dataset (Figure S1A). Surprisingly, *CAT

158 obtained better concordance with the simulated ground truth GEP usages than direct application
159  of cNMF to the query (Figure 1E). This is striking because the reference GEPs had extra or

160 missing GEPs relative to the query, and were learned on different datasets, so could incorporate
161  dataset-specific noise. We hypothesized that *CAT’s increased performance reflected the larger
162 reference datasets enabling more accurate GEP inference. We confirmed this by simulating

163  multiple query datasets with between 100 and 100,000 cells. While cNMFs performance

164  declined for small query datasets, *CATs remained constant, demonstrating that *CAT can out-

165  perform cNMF when the reference is larger than the query (Figure 1F).

166 2. Gene expression programs for T-cell annotation

167  We next developed a catalog of GEPs to capture T-cell states; combining these GEPs with the
168  *CAT algorithm yields T-CellAnnoTator (TCAT). We analyzed T-cells from 7 diverse datasets
169 including blood and tissues from healthy individuals or individuals with Covid-19, cancer,

170  rheumatoid arthritis, or osteoarthritis (Figure 1G). After stringent quality control, there were 1.7
171  million cells from 905 samples from 695 individuals in our analysis. To preserve dataset-specific
172  GEPs, we applied cNMF to each batch-corrected dataset independently (Supplementary item
173 1, Methods).

174

175  We observed that GEPs were reproducible across the datasets. To quantify this, we clustered
176  highly correlated GEPs found in different datasets (Methods). Assuming that correlated

177  dataset-specific GEPs represented the same biological state, we defined a consensus gene
178  expression program (CGEP) as the average of a GEP cluster. Nine cGEPs derived from a

179  cluster of GEPs from all seven datasets (Average Pearson R=0.81) and 49 cGEPs derived from
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180 acluster of GEPs from two or more datasets (Average Pearson R=0.74) (Figure 2A-B, S1B).
181 Between 68.4% and 96.8% of GEPs identified in each of the seven reference datasets clustered
182  with at least one GEP from another reference, suggesting high reproducibility. By contrast, gene
183  expression principal components showed limited concordance between pairs of datasets,

184  suggesting they reflect more dataset-specific signals* (Figure S1C).

185

186  We curated a catalog of 46 cGEPs capturing diverse T-cell states, including 11 discovered only
187 in blood datasets, seven discovered only in tissue datasets, and 28 discovered in both (Table
188 S1, Figure 2C). This represents between 27 and 36 more programs than previous factorization
189  analyses of T-cells®***1¢, Of these cGEPs, 43 derived from multiple datasets, while three were
190 singletons found in a single dataset. We excluded 49 of the 52 initially identified singletons since
191 they likely reflect dataset-specific artifacts. The three retained singletons capture disease- or
192 tissue-specific GEPs with a biological justification. For example, the rheumatoid arthritis dataset
193 (referred to as AMP-RA), included a GEP highly enriched for T peripheral helper cells markers
194  (including PD-1 and CD4 protein, LAG3, and CXCL13 RNA), which is characteristic of inflamed
195 rheumatoid arthritis synovium?? (Table S2). Similarly, the pan-cancer dataset included a cancer-
196  specific exhaustion GEP (HAVCR2, ENTPD1, LAG3) which may be especially enriched in

197  cancer, and a GEP bearing markers for T follicular helper cells (PD-1 protein and CXCRS5, IL6R,
198 and CXCL13 RNA) which was distinct from a second Tfh-like GEP discovered in multiple non-
199 cancer tissue datasets. In addition to the main T-cell cGEPs, we identified six cGEPs

200 corresponding to non T-cell populations including erythrocytes (HBA2, HBA1, HBB) and

201  plasmablasts (JCHAIN, IGKC, IGKV3-20), potentially derived from doublets. We retained these
202  cGEPs to flag doublet-associated transcriptional signals.

203

204  To label cGEPs, we first examined their top weighted genes (Figure 2D, Supplementary item

205 2, Table S1-2). For example, the top 10 weighted genes in the Treg and Th2-Resting cGEPs
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206 included the master regulators, FOXP3 and GATAS3, respectively. Similarly, top weighted genes
207  helped identify the Th2-Activated (GATAS3, IL4, IL5) and Th17-Activated (IL26, IL17A, and

208 RORC) cGEPs. Many functional cGEPs could also be readily identified, such as Heatshock
209 (HSPA1A, HSP90AAL, HSPA1B), HLA (HLA-DRA, HLA-DRB1, CD74), Metallothionein (MT1X,
210 MT2A, MT1E), and Actin Cytoskeleton (ACTB, ACTGL1, PFN1) (Figure 2D).

211

212  We also labeled cGEPs based on their ability to discriminate canonical T-cell subsets defined by
213  manual gating on surface markers. We gated PBMC-derived T-cells from the COMBAT CITE-
214  Seqreference dataset'® and then used multivariate logistic regression to associate cGEPs with
215  subsets (Figure S2A, Methods). cGEPs labeled as regulatory T (Treg), gamma-delta T (gdT),
216  mucosal associated invariant T (MAIT), CD4 Naive, CD8 Naive, CD8 effector memory (CD8
217  EM), CD4 central memory (CD4 CM), and T Effector Memory-Expressing CD45RA (TEMRA)
218  were strongly associated with the expected manually gated populations (P-value<1x102%,

219  Coefficient>0.35, Figure S2B). The CD4 effector memory gated population was most strongly
220  associated with cGEPs reflecting expected T-helper subsets labeled as Th17-Resting (CCRS6,
221 RORC, AQP3) and Th1i-like (IFNG-AS1, CXCR3, and CD195 protein) (P<1x102% and

222  P=4.1x101%, coefficients 0.36 and 0.22, respectively, Figure S2B). Overall, this approach

223  enabled identification of 17 subset-associated cGEPs (Figure 2C, Table S1).

224

225  As athird strategy to label cGEPs, we used gene-set enrichment analysis with gene-sets from
226  the gene ontology database? and from T-cell polarization experiments?* (Methods, Table S3).
227  We found that the Th2-Resting and Th2-Activated cGEPs were the most significantly enriched
228  for genes upregulated following 16 hour stimulations of naive T-cells with Th2 polarizing

229  cytokines (Fisher Exact Test OR=22.7, 16.2, P=4.9x107°, 1.7x10*, respectively). Gene set
230 analysis also helped annotate 5 cGEPs corresponding to non-T-cell specific cellular functions

231 including early and late cell cycle S-phase (P=3x10"°¢ for DNA_REPLICATION and P=2x10"
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232  for MITOTIC_CELL_CYCLE), G2M-phase (P=9x10"4 CELL DIVISION), interferon stimulated
233  genes (P=1x10"°° for RESPONSE TO VIRUS), and translation (P=4x107 for

234 GOCC_CYTOSOLIC_RIBOSOME).

235

236  Next, we identified technical artifact-associated cGEPs that correlate with low-quality cell

237  features (Table S4). A cGEP we label Mitochondria contains top markers that are exclusively
238  mitochondrially transcribed genes, which are frequently used to identify low-quality cells?>?¢; as
239  expected, this cGEP had a high correlation with the percentage of mitochondrial reads per cell
240 (average R=0.81 across datasets). We labeled another cGEP Poor-Quality based on its top
241  marker gene MALAT1, a long non-coding RNA linked to poor cell viability?; this cGEP also
242  correlated with the percentage of mitochondrial transcripts per cell (R=0.25 averaged across
243  datasets, Figure S2C) and was inversely correlated with the percentage of protein-coding

244  transcripts per cell (Figure S2D, average R=-0.50 across datasets). For the AMP-RA dataset,
245  we had access to raw sequence alignment files so we could quantify the percentage of reads
246  aligned to intergenic regions of the genome; the Poor-Quality cGEP was by far the most

247  correlated with the percentage of intergenic reads per cell (R=0.74, Figure S2E). Its usage may
248  be driven by higher levels of contaminating DNA or nascent RNA.

249

250 Finally, we label three correlated cGEPs as immediate early gene programs (IEG1, IEG2, IEG3
251 | pairwise R of 0.45-0.70). The top genes include canonical IEGs including FOS, JUN, and

252  ZFP36, and these cGEPs were all enriched for a published IEG gene set?® (Fisher Exact Test
253  P<1x10%%). We suspect that IEG1 represents the core pathway as it was found in 6 out of 7
254  datasets (Figure 2C) whereas IEG2 and IEG3 represent mixtures with delayed immediate and
255  secondary response genes. We hypothesize that these cGEPs reflect sample processing

256 artifacts in sScRNA-Seq, since IEGs are induced in as few as 30 minutes?® in response to

257  mitogens or cell stress®, and following processing steps like tissue dissociation312, As
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258 evidence of the potential technical nature of these cGEPSs, we calculated their mean usage per
259  sample in T-cells, B-cells, NK-cells and monocytes/DCs in the 3 PBMC references. We found
260 that their average usage in T-cells correlates with their usage in other cell-types (R=0.46-0.99,
261 average 0.77, Figure S2F, Supplementary item 3), suggesting that they are a sample-intrinsic
262  property, which would be expected of a sample-processing effect. However, in certain contexts,

263  these cGEPs may be biologically important.

264 3. Benchmarking TCAT on an independent query dataset

265  Next, we benchmarked TCAT on predicting T-cell subsets in an independent CITE-seq dataset.
266  We analyzed 336,739 T-cells from PBMCs of 24 Covid-19-recovered and 17 healthy individuals
267 after flu vaccination® (Figure 3A). As ground truth, we assigned cells to one of ten subsets

268 through manual gating of surface proteins (Figure S3A). We then predicted each subset by
269 thresholding the corresponding subset-associated cGEP (Methods). For all 10 subsets,

270 thresholding the single most-associated cGEP was comparable to RNA-based hard clustering,
271  across nine different clustering resolutions. Averaged across subsets, the accuracy difference
272  between TCAT and clustering ranged from 0.064 to -0.007 depending on the clustering

273  resolution (Figure 3B-D).

274

275  Since subsets can contain heterogeneity not captured in univariate analysis (e.g. multiple

276  polarized populations within CD4 effector memory), we performed multivariate analysis using all
277  cGEPs for simultaneous multi-label prediction (Methods). We trained the classifier on the

278 COMBAT dataset and evaluated its performance on the Flu-Vaccine dataset. The classifier was
279  more accurate than RNA clustering across all nine clustering resolutions tested, with average
280 accuracy differences ranging from 0.10 to 0.033 (Figure 3B-C, Figure S3B-C). Thus, for

281  PBMC-derived T-cells, TCAT can be combined with a multilabel classifier to predict subsets

282  without requiring manual annotation.
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283

284  We also compared TCAT's subset classification accuracy against NMFproject®® and gene-sets
285 derived from a recent NMF analysis of tumor-infiltrating T-cells'® (Methods). TCAT single cGEP
286  and multi-label classification yielded higher area under the curve (AUC) for all lineage

287  predictions than these other approaches (Figure S3B-C).

288

289  Next, we validated TCAT’s prediction of functional cGEPs relative to common continuous

290 metrics. Usage of the mitochondrial cGEP was highly correlated with percentage of

291 mitochondrial reads (R = 0.88, Figure 3D). In addition, predicted cell cycle cGEP usages

292  corresponding to the S and G2M phase were highly correlated with cell cycle scores calculated
293  from corresponding published gene sets34% (R=0.75-0.81, Figure 3D).

294

295  Finally, we validated prediction of T-cell polarization against expression of canonical markers.
296  We discretized cells based on their expression of the Th1-Like, Th2-Resting, and Th17-Resting
297  cGEPs (usage>0.1) and computed per-sample pseudobulk profiles of high and low usage cells.
298 Th2-Resting-high samples expressed significantly more GATA3, CCR4, and PTGDR2 than Th2-
299  Resting-low samples (P<1x10-® all, paired T-test) (Figure 3E). Th17-Resting-high samples also
300 had increased expression of Th17 markers including CCR6, RORC, and AQP3 (P<1x10* all).
301  The Thl-Like-high samples had increased expression of the Thl markers CXCR3, IFNG-AS1,
302 and CD195 protein (P<1x10% all). However, the Thl markers IFNG and TBX21 were also

303  expressed in Thl-Like-low samples (Figure S3D). We suspected this was due to the known
304  expression of these genes in cytotoxic T-cells®3’. When we excluded cells high in the cytotoxic
305 cGEP (usage>0.1) prior to pseudobulking, IFNG and TBX21 were significantly higher in Thl-
306  Like-high samples (P=8.2x10*3, P=9.6x10#, Figure 3E, S3D). Thus, TCAT can predict T-cell

307  polarization in query datasets.
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308 4. cGEPs capture multi-program identities of T-cells in sScCRNA-Seq

309  Next, we illustrate how TCAT can reveal cellular heterogeneity not visible with clustering. Using
310 the COMBAT dataset as an example, we analyzed cell cycle, a common signature that

311 frequently obscures other aspects of proliferating cells®®. In the initial publication, two clusters
312  were annotated as proliferating CD4s and CD8s with subclusters that didn’t clearly correspond
313  to subsets (e.g. CD4.TEFF.prolif.1, CD4.TEFF.prolif. GZMB.1). One sub-cluster labeled

314  CDA4.TEFF.prolif. MKI67lo was enriched for the myeloid doublet cGEP (Figure 4A-B) and

315  expressed myeloid marker genes (e.g. CD14, MNDA, Supplementary item 4), illustrating how
316 cell cycle can drive cells with distinct cell lineages to cluster together. By contrast, TCAT readily
317 identified distinct proliferating subsets based on co-expression of cell cycle and subset cGEPs,
318 including CD8 EMs, TEMRAs, and Treg (Figure 4C-D).

319

320 Disentangling cell cycle and subset enabled us to quantify the percentage of proliferating cells
321 per subset and disease status. We assigned cells to subsets based on their most highly used
322  subset cGEP. This revealed increased expression of cell cycle cGEPs across many T-cell

323  subsets in Covid-19 compared to healthy cells, in both Covid-19 datasets (Figure S4A). The
324  most proliferative subsets in both Covid-19 and control samples expressed the T peripheral
325 helper cGEP, reflecting an inflammatory population that was recently identified in Covid-19%.
326

327  We identified other functional cGEPs that obscured T-cell subsets, akin to proliferation. Many
328 CD4 memory subclusters in the original study were most strongly enriched for functional cGEPs
329 such as ISG, Cytotoxicity, and Poor-Quality, rather than subset cGEPs (Figure 4B-D,

330 Supplementary item 4). The CD4.Th.mitohi and CD4.Tem.mitohi.1 clusters were driven by
331  high usage of the Poor-Quality cGEP and contained cells expressing multiple subset cGEPs.

332 The CD4.TEM.IFN.resp and CD4.Th.IFN.resp clusters were both predominantly driven by the
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333 interferon stimulated gene (ISG) cGEP. The CD4.TEM.IFN.resp cluster had high usage of the
334  Cytotoxicity and TEMRA cGEPs while the CD4.Th.IFN.resp cluster contained cells expressing
335 many subset cGEPs including CD4-Naive (Figure 4B, S4B). Cells with high usage of the CD4-
336  Naive cGEP expressed CD4 naive markers including CD45RA protein and SELL RNA,

337  confirming that clustering had misclassified them as memory T-cells (Supplementary item 4).
338

339  Clustering also obscured the subset of CD4 T-cells expressing the Cytotoxicity cGEP. We

340 visualized the per-cell usage of all cGEPs in cells from the CD4 memory sub-clusters that had
341 high Cytotoxicity cGEP usage (average cluster usage>0.1, Figure 4B). Intriguingly, these

342  clusters contained heterogeneous cells with high usage of many subset cGEPs including CD8-
343 EM, Thl-Like, TEMRA, and gdT (Figure S4C). Pseudobulk analyses showed that cells co-
344  expressing these cGEPs (usage>0.1 for both) co-expressed the expected cytotoxicity and

345  subset marker genes (Figure S4D). Thus, TCAT can reveal subset heterogeneity within

346  cytotoxic T-cells.

347

348  TCAT could readily annotate polarization status based on usage of the Thl-Like, Th2-Resting,
349 and Thl7-Resting cGEPs (Figure 4C). By contrast, the published clustering did not identify a
350 Th2 cluster, and clusters annotated as Th1l and Th17 were only identified with a high clustering
351  resolution resulting in 243 clusters, likely due to other conflating signals. As expected, there was
352  significant enrichment between cells annotated as Thl by clustering and high Thl-Like cGEP
353 usage, as well as Th17 clustering and high Th17-Resting cGEP usage (P<1x10 for both,
354  fisher exact test).

355

356 However, TCAT additionally identified expression of polarization cGEPs outside of the CD4
357 memory compartment (Figure 4E). We annotated polarization across manually gated T-cell

358  subsets with a usage threshold>0.1. As a control, we confirmed that the Treg cGEP was highly
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359 enriched in the Treg gate, with an average of 88.1% of gated Tregs expressing the cGEP,

360 compared to 5.3% for the next highest population. Similarly, the Th17-Resting cGEP was most
361 enriched in the expected CD4 EM (22.1%) and CD4 CM (10.7%) populations compared to only
362  3.5% for MAITs, the next highest. Surprisingly, the Th2-Resting cGEP was most commonly

363  assigned within the CD8 CM (19.8%), CD4 CM (12.8%), and CD4/CD8 Double Positive (12.8%)
364  populations. The Thl-Like cGEP was also used by CD8 T-cells; it was most prevalent within the
365 CD8 CM (15.7%), CD4 EM (14.7%), CD8 EM (14.4%), and MAIT populations (12.3%). The

366 calculated subset polarization proportions were highly correlated between the COMBAT and
367 Flu-Vaccine datasets, the two datasets with the best quality manual gating (R>0.9, P<5.5x10°
368 for all three, Figure S4E). Furthermore, cells assigned to each polarization had high usage of
369 the expected marker genes for that polarization, irrespective of whether they were CD4+ or

370 CD8+ (Figure S4F). These findings support the emerging recognition of polarized CD8 T-cell

371  populations* and illustrate how these populations are easily revealed by TCAT.

372 5. cGEPs associated with TCR-dependent activation

373
374  Next we identified cGEPs induced following antigen recognition by the TCR. To do so, we

375 developed AIM-Seq (Activation-Induced Marker (AIM) assay followed by scRNA-Seq), an assay
376  to profile T-cells after antigen stimulus (Figure 5A-D). We collected PBMCs from 5 genome-
377  wide genotyped healthy donors and stimulated them for 24 hours using a pool of 176 peptide
378 antigens from common pathogens (CEFX, JPT)*! and anti-CD28/CD49d co-stimulation. Using
379 flow cytometry, we separated T-cells expressing activation-induced markers (OX40 and PD-L1
380 for CD4s*?, CD137 for CD8s*, AIM-positive) from unactivated cells (negative for these markers,
381  AlM-negative). As a negative control, we activated cells non-specifically with anti-CD28/CD49d

382  costimulation without peptides (Mock). We labeled cells from these conditions with hashtag
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383 antibodies and pooled them for single-cell RNA, CITE, and TCR repertoire sequencing

384  (Methods).

385

386  As expected, CEFX stimulated CD4 and CD3+CD4- (hereafter labeled CD8) T-cells contained
387  higher proportions of AIM-positive cells than mock (Figure 5B, S5A). 4.21% of CD4 T-cells and
388  2.45% of CD8s were AlM-positive, compared to 0.049% and 0.54% of mock-stimulated CD4
389 and CDS8 T-cells, respectively.

390

391 The CITE-Seq data showed that AIM-positive cells expressed additional surface activation

392  markers including CD54, CD25, CD71, and CD69 beyond the sorting markers (T-test P<1x10
393 2% Figure S5C-E). Moreover, AIM-positive cells were significantly depleted of naive T-cells (P=
394  0.027 and P=8.6x10*, for CD4 and CDS8, respectively) and enriched for Tregs, CD4 central and
395 effector memory populations (P =0.00064, 0.0044 and 0.054, respectively, Figure S5F). This is
396  unsurprising as the peptide pool is derived from common pathogens and prior memory is

397  expected. However, 11.8% of the AIM-positive cells were CD4 naive and 1.4% were CD8 naive,
398 indicating we could detect both memory and naive cell responses.

399

400 Next, we identified cGEPs associated with antigen-specific activation in this assay. We used
401  pseudobulk sample-level regression to identify cGEPs upregulated in AIM-positive cells relative
402  to AlM-negatives (Methods). This identified 24 significant positively associated cGEPs (false
403  discovery rate (FDR) corrected P < 0.05), including two that are milieu regulated (l.e. non TCR-
404  dependent), five representing enriched subsets, and 17 functional cGEPs (Figure 5E, S5G).
405

406  The two milieu mediated cGEPSs, Interferon Stimulated Gene (ISG) and Metallothionein, were
407  significantly upregulated in both AIM-negative and AIM-positive cells relative to mock (ISG: AIM-

408 negative - P=8.9x107, AIM-positive - P=3.1x10°; Metallothionein: AIM-negative - P=1.5x1073,


https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

17

409  AlM-positive - P=3.3x107?). Interferon is a secreted cytokine that can activate nearby cells

410 independent of TCR-activation to induce the ISG cGEP. Shifting extracellular cytokine or ion
411  concentrations may similarly induce TCR-independent upregulation of the metallothionein

412  cGEP*.

413

414  Five subset-associated cGEPs were increased in AIM-positive cells relative to AIM-negatives
415  (Thl7-Resting, Treg, Tph, Th22, and Tth-2) and 3 were increased in AIM-negatives (CD8-
416 Naive, CD4-Naive, and Thl-like) (Table S5). These associations likely reflect differential

417  abundance of cell populations rather than upregulation of the cGEPs, consistent with the

418 manual gating results (Figure S5E).

419

420 The remaining 17 AlM-associated programs are functional cGEPs including many with well-
421  known links to TCR-stimulation. Six of these are not T-cell specific, namely the three cell cycle
422  cGEPs* (P<3.6x10%), actin cytoskeleton*® (P=3.3x10%), heatshock*"*® (P=1.7x10"), and MHC
423  class 1I*° (P=0.012).

424

425  Excluding these leaves 11 functional AIM-associated cGEPs that may be specific to T-cell
426  activation. These include CTLA4/CD38 (P=9.7x107°), ICOS/CD38 (P=1.5x10°), NME1/FABP5
427  (P=2.0x10%), OX40/EBI3 (P=2.6x107), Multi-cytokine (P=5.4x107), Exhaustion (P=9.3x10),
428  TIMD4/TIM3 (P=5.0x10"), Th2-Activated (P=5.9x10%), Th17-Activated (P=2.1x107?) and

429 BCL2/FAM13A (P=4.3x1023). We highlight 4 of these cGEPs here. CTLA4/CD38 showed the
430 most upregulation in Tregs and CD4 memory cells (Figure 5F) and is characterized by CD278
431 and CD38 protein levels as well as the anti-inflammatory genes CTLA4 and IL10. ICOS/CD38
432  has similar top markers including CD278, CD71, and CD38 but shows broad upregulation

433  across naive T-cells and CD4 memory cells. The OX40/EBI3 cGEP includes many of the

434  activation-induced markers used to define AIM positivity in the first place including TNFRSF4
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435  which encodes OX40 and IL2RA which encodes CD25. TIMD4/TIM3 is most expressed in

436  MAIT, gdT, and CD8 memory T-cells and is characterized by expression of activation markers
437  (CD38 protein and RNA) and cytotoxicity genes (GZMB, GZMA, GNLY), and likely represents a
438  cytotoxic activation response.

439

440 We hypothesized that AIM-associated cGEPs would be enriched in proliferating cells in vivo
441  since proliferation is a core response to TCR activation. To test this, we performed pseudobulk
442  sample-level association tests to identify cGEPs with higher usage in proliferating cells (sum of
443  cell cycle cGEPs>0.1) than non-proliferating cells (sum<0.1, Methods). The results were highly
444  concordant across datasets (Table S6, Supplementary item 5). 15 cGEPs were significantly
445  upregulated with proliferation in at least four out of six datasets. Meta-analysis across datasets
446 identified 12 functional cGEPs (including the three cell cycle cGEPs) and two subset cGEPs
447  (Thl7-Activated and Tph) that were significantly associated with proliferation (Figure S5H).
448  Consistent with our hypothesis, 14 of 15 proliferation-associated cGEPs (including the 3 cell
449  cycle cGEPs) were upregulated with AIM positivity (Fisher exact test P=2.1x10°). Thus, the
450 AlM-associated cGEPs are associated with proliferation in vivo, consistent with a role

451 downstream of TCR activation.

452 6. Annotating antigen-dependent activation in vivo

453  Next, we developed a per-cell antigen-specific activation (ASA) score to identify and

454  characterize TCR-activated T-cells in disease. We used forward stepwise selection to select
455  AlM-associated cGEPs that predicted co-expression of the activation markers CD71 and CD95
456 in the COMBAT and Flu-Vaccine datasets (Methods). These markers show sustained

457  upregulation within less than 24 hours of TCR activation®°-°3, were upregulated in the AIM-

458  positive cells (Figure S5D-F), and had high quality across subsets in both datasets (Figure


https://paperpile.com/c/UtqVAI/1QnH+SlqK+M9cm+CPWU
https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

19

459  S6A). Stepwise optimization defined ASA as the sum of four cGEPs — TIMD4/TIM3,

460 ICOS/CD38, CTLA4/CD38, and OX40/EBI3 (Figure S6B, Methods).

461

462  ASA accurately classified T-cells with CD71/CD95 co-expression suggestive of TCR-activation,
463  yielding AUCs of 0.920 and 0.818 in the COMBAT and Flu-Vaccine datasets (Figure S6C-D). It
464  also predicted AIM positivity with an AUC of 0.828 in the AIM-Seq assay (Figure S6E) and was
465  correlated with other surface markers of activation (e.g. R=0.43 (CD69) and 0.52 (CD25),

466  P<1x10%% Supplementary item 6). For cases where a discrete label is preferable to a

467 continuous score, we picked an ASA threshold of 0.0625 based on the trade-off between

468  sensitivity and specificity (Figure S6C-E). With this threshold, ASA annotated 76.7% of

469 CD71+CD95+ and 5.2% of non-CD71/CD95 double positive T-cells in the COMBAT dataset
470  (Figure 6A). In the AIM-Seq dataset, ASA annotated 60.6%, 7.0%, and 3.2% of stimulated AIM-
471  positive, stimulated AIM-negative, and mock stimulated cells, respectively (Figure 6B).

472

473  As proliferation is a core response to activation, we found high ASA in proliferating T-cell

474  clusters (Figure 6E-F) and significant overlap of ASA-high and proliferating cells (specifically,
475  cells with summed cell cycle usage > 0.1, Fisher Exact OR 2.8-58.8, P<1x101%, Figure S6F -
476  left). However, across reference datasets, substantially more cells were annotated as ASA-high
477  than proliferating (P=8.8x101%, paired T-test, Figure 6H). Consistent with this, correlation

478  between summed cell cycle cGEP usage and ASA was relatively low (mean=0.15) (Figure S6F
479  -right). Thus, while proliferation and antigen-specific activation overlap to some extent, ASA
480  offers greater sensitivity for classifying TCR-activation.

481

482  As clonal expansion often follows TCR activation, we tested whether high clonality was

483  associated with ASA in Covid-19 patients. ASA-high cells were more likely to be clonal, i.e. have

484  a TCR found in multiple cells from the same sample (Fisher Exact Test: COMBAT OR=2.50,
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485  UK-Covid OR=2.28, P< 1x101% for both). Binarized ASA and cell cycle status were

486  independently associated with clonality in a multivariate logistic regression (ASA Beta = 0.45,
487  0.50; Cell cycle Beta = 0.66, 0.52 in COMBAT and UK-Covid respectively, P<1x1022,

488 Methods). Furthermore, the absolute number of cells sharing a TCR sequence in a sample was
489  significantly higher in ASA-high than ASA-low cells (Mann Whitney U test P<1x101%, both

490 datasets, Figure 6C, S6G).

491

492  Next, we evaluated how ASA varied between Covid-19 and healthy samples across T-cell

493  subsets. The percentage of activated (l.e. ASA positive) conventional T-cells varied widely

494  across samples, between 2.7%-41.2% (mean 10.3%) and 4.9%-44.7% (mean 22.1%), in the
495 COMBAT and UK-Covid datasets, respectively (Figure 6D). Activation rates were significantly
496  higher in conventional T-cells in Covid-19 samples than in healthy controls (COMBAT P=1.9x10"
497 7, UK-Covid P=1.5x10"%), even in CD4+ and CD8+ T-cells separately (Figure S6H-J). Activation
498 rates were similar between CD4s and CD8s (median activation of 8.3%, 21.8% for CD4s and
499  7.8%, 21.7% for CD8s in COMBAT and UK-Covid). By contrast, there was greater Treg

500 activation in both healthy and Covid-19 samples, with a median of 33.6 and 35.3% of cells

501 activated in COMBAT and UK-Covid (Figure S6J). This coincided with substantial overlap of
502  ASA with the Treg cluster (Figure 6E-F). Tregs were the most ASA-enriched subset in healthy
503  control samples in the COMBAT (OR=11.4, P<1x10%) and Flu-Vaccine datasets (OR=4.1,
504 P<1x1079) (Figure 6G). Outside of acute infection, we would expect Tregs to be actively

505 suppressing inappropriate activation. By contrast, in acute Covid-19 samples, we saw less

506  enrichment for Tregs (OR=4.8 down from 11.4) and more for CD8 central memory (OR=4.8),
507 CD8 effector memory (OR=2.8), and double negative populations (OR=3.1), reflecting the

508 antiviral response (all P<1x101°).

509


https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

21

510 Next, we quantified levels of T-cell exhaustion and activation per sample and subset within the
511  pan-cancer dataset. CD4 conventional T-cell (CD4 Conv) activation rates varied widely across
512  and between tumor types (Figure 61). The highest rates of activation were in esophageal cancer
513 (ESCA - median 48.0%) and the lowest were in bladder cancer (BC - median 5.4%, Figure 6l -
514 left). As expected, there was minimal exhaustion usage by CD4 Convs across cancer types®
515  but highly variable levels of CD8 conventional T-cell (CD8 Conv) exhaustion (Figure 6l -

516 middle). The percentage of activated CD4 Convs and CD8 Convs was correlated (R=0.70,

517 P=2.6x10?). In addition, CD4 conv activation was somewhat correlated with CD8 Conv

518 exhaustion (R=0.38, P=4.0x103, Figure S6K). CD4 Treg activation levels were higher in healthy
519 tissues and tumors than CD4 and CD8 Conv T-cells (Figure S6L). In addition, Treg activation
520  was significantly higher in thyroid cancer (P=3.0x10-6) and esophageal cancer (P=0.0045)

521 relative to matched normal tissues.

522

523  Observing that many tumor-infiltrating T-cells had both low ASA and exhaustion usage, we

524  defined bystanders as cells with summed ASA and exhaustion usage below 0.0625. The

525  percentage of CD4 bystanders varied widely by cancer from 42.0% (esophageal) to 91.2%

526  (bladder) and CD8 bystanders varied similarly from 35.5% (endometrial) to 90.1% (bladder).
527

528  Within tumor samples, we tested which T-cell subset cGEPs were enriched for bystanders

529  (Figure 6J). The most bystander-enriched subsets were CD4-Naive (OR=15.9), Th2-Resting
530 (OR=10.6), Thl-like (OR=7.3), MAIT (OR=4.42), and CD8-Naive (OR=4.03) (Fisher Exact Test
531 P< 1x10'%for all comparisons). The subsets most depleted of bystanders were also those most
532  enriched for activation, namely Tph (OR=0.19), Treg (OR=0.23), and CD8-Trm (OR=0.61)

533  (P<1x10?%, all comparisons). These analyses illustrate how TCAT and ASA scoring can

534 facilitate exploration of disease.
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535 7. ldentifying disease-associated cGEPs

536  Next, we associated cGEPs with sample-level disease phenotypes in infection, autoimmunity,
537 and cancer (Table S7). First, we tested cGEP associations with Covid-19 (Methods). We

538 applied ordinary least squares using psuedobulk sample-level features to two PBMC-derived T-
539 cell datasets: UK-Covid (80 Covid-19, 21 healthy donors, Figure 7A) and COMBAT (77 Covid-
540 19, 10 healthy donors, Figure 7B). We observed overall concordant cGEP associations

541  (Pearson R=0.64, P=2.8x107, Figure 7C). Consistent with the key role of interferon in viral

542  infections!”!8, ISG was the most positively upregulated cGEP in both datasets (FDR-corrected
543 P, denoted as Q<0.05). AIM-associated functional cGEPs were up-regulated in acute Covid-19,
544 consistent with viral activation of T-cells. These included exhaustion, cell cycle, TIMD4/TIMS3,
545  OX40/EBI3, NME1/FABP5, and CTLA4/CD38 (Q<0.05 for both datasets). We also found

546 increased Tph cGEP usage in Covid-19 relative to controls (Q<1x10? for both datasets),

547  consistent with recent demonstration of increased abundance of this subset in infection*°. An
548 intriguing novel finding is that the Th1l-like cGEP was significantly negatively associated with
549  Covid-19 in both datasets (Q<1x10#). This negative association was seen within manually

550 gated CD4 memory (Q=1.1x10"*) and CD4 effector memory subsets (Q=4.5x107%), suggesting it
551 is not due to differential abundance of circulating memory CD4 T-cells. Consistent with this,
552  pseudobulk expression of the Thl markers CXCR3 RNA and protein levels were significantly
553 lower in Covid-19 samples relative to controls (P=8.1x10" and 0.010 respectively, COMBAT).
554  Immediate early gene cGEPs (IEG1, IEG2, IEG3) were also significantly associated with Covid-
555 19 in the COMBAT dataset (FDR-corrected P<1x107®) but not in the UK-Covid dataset (P>0.5),
556  perhaps related to sample processing differences (see section 2).

557

558  Next, we identified cGEPs associated with inflamed synovial tissue in rheumatoid arthritis (RA)

559  using the AMP-RA dataset, which includes synovial biopsies from 70 RA and 8 osteoarthritis
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560 (OA) patients (Figure 7D)?°. Ten out of the eleven significantly associated cGEPs were AIM-
561  associated, including the metallothionein (Q=2.9x10®), ISG (Q=0.0020), Tph (Q=0.0020), HLA
562  (Q=4.9x10%), ICOS/CD38 (Q=0.00010), Exhaustion (Q=0.041), and cell cycle (Q<.05 for all

563 three). Of note, Metallothionein was shown to be increased in the plasma of RA patients and
564  within the synovia of mouse models of RA®®. The Tph association is consistent with prior

565  observations by us and others of Tph enrichment within RA synovia??. The Th22 cGEP was also
566  associated with RA (Q=0.0027), confirming a prior observation of increased Th22 cell

567 abundance in RA synovia, where they may stimulate osteoclasts®®.

568

569 Lastly, we identified cGEPs associated with T-cells in tumors relative to matched healthy tissues
570 (Figure 7E). We utilized a pan-cancer dataset containing 89 tumor and 47 matched normal

571  samples from 13 cancer types. First, we analyzed all samples together, controlling for tumor
572  type and sequencing technology as fixed effects. The Treg cGEP was the most strongly

573  associated, consistent with the known importance of Tregs in tumors (Q=7.4x107%)%". The

574  exhaustion and ISG cGEPs were also strongly associated with cancer, as expected (Q=8.5x10°
575 and 9.3x10°°, respectively)®®°°, There was also substantial upregulation of AIM-associated

576  functional cGEPSs, including CTLA4/CD38 (Q=1.3x10°), TIMD4/TIM3 (Q=1.3x10°), and

577  OX40/EBI3 (Q=4.9x10°). Overall, 17 of the 21 significantly upregulated cGEPs in tumor-

578 infiltrating T-cells were AIM-associated (Fisher exact test P=7.4x10%).

579

580 We also separately tested for cGEP association in each of the six cancer types with at least two
581 normal and two tumor samples (Methods). The results were highly concordant across cancers
582  (P<.05, sign test, for 14 out of 15 pairs of tumor types, Figure 7F). For example, the Treg,

583  Exhaustion, and CTLA4/CD38 cGEPs were significantly upregulated in all six tumor types

584 tested (P<.05). However, some signals were more specific. The Th17-Activated cGEP was only

585  significant in thyroid and hepatocellular carcinoma (P=5.3x10° and P=0.013), while the Th2-
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586  Activated cGEP was upregulated in esophageal, uterine, thyroid and hepatocellular carcinoma
587  (P=0.023, P=0.023, P=0.00057, P=0.0019).

588

589  Surprisingly, the Tfh-2 and Tph cGEPs were both upregulated in cancer (Q=3.6x10*, Q=3.3x10"
590 19, T follicular helper (Tfh) and T peripheral helpers (Tph) are CXCL13-producing CD4 subsets
591 thatrecruit B-cells and aid in antibody production. Tfhs are found primarily in lymphoid organs
592  and Tphs are predominantly in inflamed tissues®, including likely within tumors®?.

593

594  Consistent with functional Tph activity, the expression of the B-cell chemoattractant CXCL13
595  was highly correlated with average Tph cGEP usage across samples (R=0.67, P=1.2x10-%°,

596  Figure S7A). This correlation was stronger in tumor (R=0.69, P=1.2x10*®) than normal samples
597 (R=0.34, P=0.021). We hypothesized that average Tph usage would correlate with plasma cell
598 abundance in tumors. To test this, we re-analyzed a published pan-cancer dataset containing
599  other cell-types besides T-cells from 148 primary tumors, 53 matched adjacent tissues, and 25
600 healthy donor samples®?. Tph usage and CXCL13 expression remained correlated in this

601 dataset (R=0.67, P=1.2x10%, Figure S7B). Average Tph, Tfh-1, and Tfh-2 cGEP usage were
602  significantly correlated with plasma cell percentage within the tumors (Spearman p=0.23, 0.34,
603  0.28, respectively, P<1x10?, Figure S7C). In a multivariate regression across all samples, Tfh-1
604 and Tph usage were independently associated with plasma cell abundance (P=0.042, P=0.051
605 respectively). Subsetting to non-tumor samples, Tfh-1 and Tfh-2 remained statistically

606 significant (P=0.017, P=0.027, respectively), but Tph was no longer significant (P=0.351). These
607  findings suggest that Tph cells are functional within tumors and are associated with increased

608 abundance of plasma cells.
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609 Discussion

610 Here, we introduced CellAnnoTator (abbreviated *CAT) for annotating sScCRNA-Seq data with
611 predefined GEPs. *CAT exploits the observation that functionally informative GEPs learned by
612  cNMF are reproducible across different datasets and contexts (Figure 2). This enables GEPs
613 identified across multiple reference datasets to aid in interpreting new datasets. We

614 demonstrated *CAT with a GEP catalog derived from T-cells across diverse tissues and

615  diseases, yielding T-Cell AnnoTator (TCAT). We meta-analyzed a range of reference datasets,
616  obtaining the most comprehensive T-cell GEP catalog to date, including 16 subset-associated,
617 five technical artifact, and 25 functional programs.

618

619 TCAT demonstrated key advantages over clustering of T-cells. First, it simultaneously

620 annotated functional and subset GEPs within the same cells, disentangling signals that

621 clustering conflated (Figure 4). Second, TCAT out-performed RNA-based clustering for

622  annotation of T-cell subsets without requiring manual curation of the cluster labels (Figure 3).
623  Third, TCAT cGEP activity could be assessed across diverse disease states (Figure 7). TCAT
624  also improved upon prior matrix factorizations of T-cells by yielding a more comprehensive
625 catalog of T-cell GEPs. It was faster than running de novo matrix factorization, avoided the need
626  to manually re-label GEPs, and increased accuracy for smaller datasets (Figure 1C-F).

627

628  TCAT explained why traditional T-cell subsets have been challenging to identify in SCRNA-Seq.
629  T-cell transcriptional clusters were heavily influenced by many non-subset GEPs, including
630 technical artifacts, cell cycle, interferon response, and cytotoxicity (Figure 4). TCAT overcame
631  this by annotating subset-associated cGEPs in parallel with functional cGEPs. In addition, TCAT

632 revealed how cGEPs can be expressed in different contexts. For example, the cytotoxic cGEP
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633  was expressed in multiple subsets, and polarization cGEPs were expressed in both CD4 and
634 CD8 T-cells (Figure 4E, S4). There has recently been increased recognition of polarized CD8
635  populations such as Tc2 which can secrete cytokines typically associated with Th2-polarized
636 CD4 memory T-cells®®. TCAT helped reveal these overlooked populations in sScRNA-Seq data.
637

638  TCAT also highlighted the growing recognition of T peripheral helper (Tph) cells in disease. The
639  Tph cGEP was significantly associated with Rheumatoid Arthritis (RA), Covid-19, and Cancer
640  (Figure 6). While the association with RA was expected since Tph cells were discovered there,
641 and recent data has identified Tph cells in Covid-19%, the association with cancer is less well
642  established®. Tph usage was associated with expression of CXCL13 and plasma cell

643  abundance in tumors, suggesting Tph cells may drive lymphoid aggregation.

644

645 We also demonstrated that many cGEPs were induced following a TCR-dependent activation
646  stimulus using the novel AIM-Seq assay (Figure 5). AIM-Seq produces TCR and CITE-Seq
647  profiles for T-cells that are labeled based on their response to activation-induced marker

648  assays. This identified 24 cGEPs associated with TCR-dependent activation, including 11 that
649  may reflect context-dependent activation responses such as Thl7-activated in Th17-polarized
650 cells and CTLA4/CD38 in Tregs. Many of the AIM-associated GEPs were strongly associated
651  with Covid-19, rheumatoid arthritis, and cancer, consistent with the importance of TCR-

652  dependent activation in these diseases (Figure 6).

653

654  We aggregated several AIM-associated cGEPs into an antigen-specific activation (ASA) score
655  to compare activation rates across diseases and cell subsets. This revealed impressive

656  variability in the percentage of activated and exhausted CD4 and CD8 T-cells within and

657  between different tumor types (Figure 7). In all tumor types, many T-cells lacked activation or

658 exhaustion signatures and were labeled as bystanders. Bystanders were enriched for naive and


https://paperpile.com/c/UtqVAI/v8Xn
https://paperpile.com/c/UtqVAI/642b
https://paperpile.com/c/UtqVAI/1iBT
https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

27

659 unconventional T-cell subsets, whereas activated cells were enriched for Treg, Tph, and

660 resident memory subsets. This approach shows how TCAT can aid in characterizing activation
661  and exhaustion in vivo.

662

663  We highlight some current limitations of TCAT. First, TCAT's output can be non-sparse, leading
664  to non-zero usage of cGEPs contributing little biological function. This necessitates the use of
665 thresholds balancing sensitivity and specificity to decide if a cGEP is active in a cell. For

666 example, annotating TCR-activation or polarization currently relies on score thresholds. This
667 limitation can be mitigated by algorithmic improvements that increase TCAT’s sparsity. Second,
668  several cGEPs lack a clear interpretation, or may be redundant with other cGEPs in the catalog.
669  For example, three cGEPs labeled IEG1-IEG3 are strongly enriched for immediate early genes.
670  We used reproducibility of spectra across multiple datasets to enrich for biologically meaningful
671 GEPs. As more datasets get incorporated, we anticipate increasing robustness of the catalog.
672  Furthermore, new experimental perturbation datasets can facilitate linkage of cGEPs with

673  upstream regulators to aid in interpretation.

674

675 We demonstrated application of *CAT to T-cells, but it is equally applicable to other cell types or
676  tissues. We make the *CAT software publicly available and have created a repository to host
677  cGEP catalogs, enabling easy application to new datasets. Furthermore, users studying other
678  tissues and cell-types can contribute their own catalogs to the repository. We envision this as a
679  resource akin to the molecular signatures database (MSigDB)®4%° | but hosting GEPs for

680  annotation of SCRNA-Seq data rather than gene-sets for enrichment testing. We hope it will aid

681  in comprehensive identification of GEPs underlying cell behavior across tissues and diseases.
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Reagent or Resource Source Identifier
XVIVO15 culture media | Lonza Catalog #: 02-060Q
RPMI 1640 Medium ThermoFisher | Catalog #: 11875093
Benzonase Nuclease Sigma Aldrich CAS #: 9025-65-4
Anti-CD28 antibody Biolegend Catalog #: 302933
RRID: AB_11150591
Anti-CD49d antibody Biolegend Catalog #: 304339
RRID: AB_2810443
Human TruStain FcX™ | Biolegend Catalog #: 422302
(Fc Receptor Blocking RRID: AB_2818986
Solution)
Zombie Yellow™ Biolegend Catalog #: 423104
Fixable Viability Kit
TotalSeq™-C Human Biolegend Catalog #: 399905
Universal Cocktail, V1.0
Human TOTAL-SeqC BioLegend Catalog #: 394661, 394663, 394665
Repertoire (5') Hashing
Antibodies
Anti-CD3-BVv421 (SK7) | Biolegend Catalog #: 344833
RRID: AB_2565674
Anti-CD134-PE Biolegend Catalog #: 350003
(Ber-ACT35) RRID: AB_10641708
Anti-CD274-BV785 Biolegend Catalog #: 329735
(29E.2A3) RRID: AB_2629581
Anti-CD137-APC Biolegend Catalog #: 309809
(4-B4-1) RRID: AB_830671
Anti-CD4-FITC Biolegend Catalog #: 300505
(RPA-T4) RRID: AB_314073
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Chromium Next GEM 10X Catalog #:1000263
Single Cell 5' Kit v2, 16
rxns

Dual Index Kit TN Set A, | 10X Catalog #: 1000250
96 rxn

Chromium Next GEM 10X Catalog #: 1000286
Chip K Single Cell Kit,
48 rxns

Chromium Single Cell 10X Catalog #: 1000252
Human TCR
Amplification Kit, 16 rxns

Library Construction Kit, | 10X Catalog #: 1000190
16 rxns

5' Feature Barcode Kit, 10X Catalog #: 1000256
16 rxns

CellAnnoTator (*CAT) Algorithm

Whereas cNMF learns both GEPs and their usage in cells, *CAT has the simpler problem of
fitting the usage for a fixed set of GEPs. Specifically cNMF runs NMF multiple times, each time

solving the following optimization:

ArgMing y| X — UG|pwhereU > 0,6 = 0

where X is a NxH matrix of N cells by the top H overdispersed genes, U is a learned NxK matrix
of the usages of K GEPs in each cell, and G is a learned KxH matrix where each row encodes
the relative contribution of each highly variable gene in a GEP. H is usually a parameter set to
~2000 overdispersed genes. | | denotes the Frobenius norm. X includes variance-normalized

overdispersed genes to ensure biologically informative genes are included and contribute
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702  similar amounts of information even when they may be expressed on different scales. For

703  cNMF, the optimization is solved multiple times and the resulting G matrices are concatenated,
704  filtered, and clustered to determine a final average estimate of G. Ultimately cNMF refits the
705  GEP spectra into two separate representations, one reflecting the average expression of the
706  GEP and units of transcripts per million G**™ and on in Z-scored units used to define marker
707  genes G557 (see Kotliar et, al., 20191 for details).

708

709  Analogously, *CAT takes a fixed catalog of GEPs as input, denoted as G*, and a new query
710 dataset X9“¢"Y and solves the optimization:

711

712 ArgMin, | XY — UG*|p where U = 0

713  The columns of X9“€™Y and G *correspond to a pre-specified set of overdispersed genes.

714  Analogous to cNMF, we use gene-wise standard-deviation-normalized counts for X9%4€™, See
715  below for how G* is calculated for T-CellAnnoTator. We solve for U with non-negative least
716  squares using the NMF package in scikit-learn version 1.1.3% with G* fixed. We use the

717  Frobenius error, the multiplicative update (“mu”) solver, tolerance of 1x10#, and max iterations
718  of 1000. We then row-normalize the U matrix so that each cell’'s aggregate usage across all K
719 GEPssumsto 1.

720

721  Dataset pre-processing and batch-effect correction

722

723  To generate the input matrix for cNMF for each dataset, we first filtered genes detected in fewer
724  than 10 cells and cells with fewer than 500 unigue molecular identifiers (UMIs). We also

725  excluded antibody-derived tags (ADTs) and genes containing a period in their gene name. We

726  subsequently subsetted the data to the top 2000 most overdispersed genes, identified by the
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727  “seurat_v3” algorithm as implemented in Scanpy®. Next, we scaled each gene to unit variance.
728  To avoid outliers with excessively high values, we calculated the 99.99th percentile value across
729  all cells and genes and set this as a ceiling. We denote this matrix as X"".

730

731  We used an adapted version of harmonypy to correct batch effect and other technical variables
732 from X" prior to cNMF?L, For this, we computed Harmony’s maximum diversity clustering
733  matrix from principal components calculated from a normalized version of X which we label
734  Xx"orm_ Specifically, to compute X™°"™, we started from the same initial gene list described

735  above but first normalized the rows of the matrix so that each cell’s counts sum to 10,000

736  (TP1OK normalization). We then subsetted to the top 2000 overdispersed genes, and scaled
737  each column (gene) to unit variance, resulting in X™°™™_ We then performed principal

738 component analysis (PCA) on X™"™ and supplied those principal components to the

739  run_harmony function of harmonypy. We then used the mixture of experts model correction,
740  implemented in harmonypy with the computed maximum diversity clustering matrix, but instead
741  of correcting the PCs using this model, as standard Harmony does, we corrected X"*". This
742  creates a small amount of variability around O for the smallest values in X"". We therefore set
743  afloor of 0, resulting in the corrected matrix X¢ used as the count matrix for cNMF.

744

745  Consensus non-negative matrix factorization (cCNMF)

746
747  We ran cNMF on the batch-corrected X¢ matrix which only includes the top 2000 overdispersed

748  RNA genes. Spectra for the resulting GEPs were then refit by cNMF including all genes that
749  passed the initial set of filters including ADTs. Specifically, RNA counts were normalized to sum
750 to 10,000, and ADT counts were separately normalized to sum to 10,000 and the combined
751 matrix was passed as the —tpm argument for cNMF. Thus the GEP spectra output by cNMF

752  incorporate ADTs and genes not included in the 2000 overdispersed genes.


https://paperpile.com/c/UtqVAI/PZaG
https://paperpile.com/c/UtqVAI/C9aR
https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

32

753

754  cNMF was run for each dataset with the number of components (K) varying between 15 and 55
755  and with 20 iterations. The final number of NMF components used for each dataset, K*, was
756  chosen by visualizing the trade-off between reconstruction error and stability for these runs
757  (Supplementary item 1). Once K* was selected, we ran cNMF a final time with only this value
758  for K and with 200 iterations to generate the final GEP spectra estimates.

759

760 Constructing a catalog of consensus GEPs (cGEPSs)

761

762  Next, we identified consensus GEP spectra — |.e. the average of correlated GEP spectra

763 identified by cNMF in different datasets. Normalized input GEP vectors, denoted as g;, were
764  computed by starting from the spectra_tpm output from cNMF, renormalizing each vector to
765 sum to 10°, and then dividing each element by the standard deviation of the corresponding gene
766  inthe —tpm input to cNMF. Then, we created an undirected graph where the 267 GEPs

767 identified across all reference datasets were represented as nodes g ... gz67. We drew edges,

768  denoted as E;jconnecting a pair of GEPs gi and g; if the following criteria were met:

769

770 1. giand g; were from different datasets

771 2. Rj > 0.5 where Rjdenotes the Pearson correlation between g; and g;. For computing R;,
772 gi and gjwere subset to the union of the overdispersed genes for each dataset.

773 3. giwas among the top seven most correlated GEPs with g;, and g; was among the top
774 seven most correlated GEPs with g; with correlation defined as in 2.

775

776  Next, we initialized a set for each GEP: x1 = {01} ... X267 = {Q267}. We then iterated through all
777  edges E;jjin the graph in order of decreasing R; and merged the sets x; and x; into a new set x;; =

778  {gi, gj}. If either g or gjwere already members of a merged set from previous merges, we
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779  merged their containing sets only if at least two thirds of the GEP pairs in the resulting

780  consensus set were connected by edges. For example, if there is an edge Esgand gais already
781 merged into a set{g:, 92, g4}, then we only merged {g1, g2, g4} and {go} if there were also

782  edges Eigand Ezg. This resulted in 52 merged sets and 52 unmerged “singleton” sets. We
783 filtered 49 of the 52 singletons and retained 3 that had a biological explanation for being

784  identified in only one dataset.

785

786  Lastly, we subset each GEP to the union of overdispersed genes across all 7 reference

787  datasets that were present in all dataset and obtained the final consensus GEPs by taking the
788 element-wise average GEPs in each merged set. This matrix was used as the reference for
789  TCAT. For marker gene analyses (e.g. Figure 2B, D, Supplementary Item 2), we element-wise
790 averaged the Z-score representation of GEPs output by cNMF for GEPs in a consensus set.
791

792  Simulation analysis

793

794  We adapted the scsim simulation framework described in the cNMF publication* and based on
795 Splatter®” into a new iteration, scsim2. Like with scsim, we distinguished between subset GEPs
796  which are mutually exclusive and non-subset or “activity” GEPs which are not. For the original
797  scsim framework, cells used one of multiple subset GEPs and potentially used a single activity
798 GEP. We adapted scsim to allow cells to use anywhere from none to all of the activity GEPs in
799  addition to their single subset GEP. We kept the Splatter parameters used in the cNMF

800  publication to describe the distribution of gene expression data: mean_rate=7.68,

801 mean_shape=0.34, libloc=7.64, libscale=0.78, expoutprob=0.00286, expoutloc=6.15,

802  expoutscale=0.49, diffexpprob=.025, diffexpdownprob=.025, diffexploc=1.0, diffexpscale=1.0,
803  bcv_dispersion=0.448, bcv_dof=22.087.

804
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805  For figure 1, we simulated 10 subset GEPs and 10 activity GEPs based on 10,000 total genes.
806 The extra-GEP reference included all 20, the missing-GEP reference included 6 of the subset
807 GEPs and 6 of the non-subset GEPs, and the query dataset included 8 subset GEPs and 8 non-
808 subset GEPs. Each dataset consisted of 9000 genes, randomly sampled from the 10,000. Each
809 cell was randomly assigned a subset GEP with uniform probability (shown in the UMAP in figure
810 3B), and each cell randomly selected whether it expressed each activity GEP with probability of
811  0.3. The degree of usage of each activity GEP was sampled uniformly between 0.1 and 0.7. If
812 the sum of the activity GEPs exceeded 0.8 for a cell, they were renormalized to sum to 0.8.

813  Thus each cell's usage of its subset GEP always exceeded 0.2. We simulated 100,000 cells
814  each for the extra-GEP and missing GEP references. We simulated multiple query datasets
815 containing 100, 500, 1000, 5000, 10,000, 20,000, 50,000, or 100,000 cells.

816

817  We subsequently ran cNMF using 1000 overdispersed genes, 20 iterations,

818 local_neighborhood_size=0.3 and density_threshold=0.15. We used K=20, K=12, and K=16 for
819 the extra-GEP reference, missing-GEP reference, and query datasets respectively. We then
820 used *CAT to fit the usage of the reference GEPs on the query dataset. To evaluate the

821 performance of *CAT and cNMF, we calculated the Pearson correlation of the inferred GEP

822  usage with the simulated ground truth usage.

823

824  Gene-set enrichment analysis

825

826  We used Fisher Exact Test in Python’s Scipy library to associate cGEPs with gene sets. For the
827  T-cell polarization dataset?* we defined polarization gene sets as genes that had FDR-corrected
828  P-value < 0.05 and fold change > 2 with the stimulation condition. We excluded genes with

829 FDR-corrected P-value between 0.05 and 0.2 and fold-change>1, as many of these are up-

830 regulated by the stimulation but just did not reach FDR significance. We also obtained literature
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831 gene sets corresponding to immediate early genes?® and gene ontologies?%8, We tested these
832 literature gene-sets for enrichments with gene sets derived from the Z-score representation of
833 cGEPs based on a score threshold of 0.015, which corresponded to the 99th percentile across
834  all genes and cGEPs. We then tested for association using Fisher’'s Exact Test as implemented
835 in scipy.stats in Python.

836

837 Manual subset gating analysis

838

839  We library-size normalized antibody derived tag (ADT) protein measurements to sum to 104
840 (TP10K) and applied the centered log ratio (CLR) transformation. We then scaled each protein
841 to unit variance, and truncated at 15 to remove excessively high outliers. Next, we performed
842  principal component analysis (PCA) and ran batch correction using harmonypy with the same
843  batch features as for cNMF. We then computed the K-nearest neighbor graph with K=5

844  neighbors, using the Harmony-corrected principal components. We then smoothed the

845  normalized protein estimates using MAGIC®® using the K-nearest neighbor graph computed
846  above and the diffusion operator powered to t=3.

847

848  We gated canonical T-cell subsets using the smoothed normalized ADTs. First, we gated

849 gamma-delta (y0) T-cells using expression of V62 TCR. Then, we separated MAIT cells using
850 expression of CD161 and TCR Va 7.2. We then used CD4 and CD8 to separate CD4

851 (CD4+CD8-), CD8 (CD4-CD8+), double positive (DP) (CD4+CD8-), and double negative (DN)
852  (CD4-CD8-) T-cells. We then subset to CD4 T-cells and gated regulatory T-cells (Tregs) using
853  expression of CD25 and CD39. Of the remaining CD4 T-cells, we used CD62L and CD45RA to
854  define CD4 Naive (CD62L+CD45RA+), CD4 Central Memory (CD62L+CD45RA-), CD4 Effector
855 Memory (CD62L-CD45RA-), and CD4 TEMRA (CD62L-CD45RA+) populations. For the CD8 T-

856  cells, we similarly used CD62L and CD45RA to define CD8 Naive (CD62L+CD45RA+), CD8
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857  Central Memory (CD62L+CD45RA-), CD8 Effector Memory (CD62L-CD45RA-), and CD8

858 TEMRA (CD62L-CD45RA+) populations.

859

860  T-cell subset classification benchmarking analyses

861 We used T-cell subsets defined by manual gating of ADTs in the Flu-Vaccine dataset as ground
862  truth for prediction. For single cGEP prediction, we ran TCAT to predict cGEP usage, and

863 identified the cGEP that best predicted the lineage based on area under the curve (AUC).

864

865 We also used all of the cGEP simultaneously to perform simultaneous multi-label prediction. We
866  scaled the normalized usages for all cGEPs to zero mean and unit variance. Using COMBAT as
867  atraining dataset, we trained a multinomial logistic regression using scikit-learn® version 1.0.2
868  with Ibfgs solver to predict gated subset from usages. Model weights were adjusted by the

869 inverse of subset size using class_weight="balanced”, allowing subsets with different cell counts
870  to contribute to the model equally. We excluded CD4 TEMRA, double negative, and double

871  positive subsets from this analysis due to low cell counts in both the training and testing

872  datasets. We evaluated this model in the independent Flu-Vaccine query dataset.

873

874  Analogous comparisons were made using GEPs from Yasumizu et. al, 2024 fit to the data using
875 the NMFproject software!®. We also obtained gene sets derived from NMF analyses of T-cell in
876  a pan-cancer dataset'®. To assess the ability of these gene sets to predict gated subsets, we
877  used the score_genes function in Scanpy®® on data normalized following the standard pipeline
878 (library size normalizing to TP10K, log transformation, scaling each each gene to unit variance).
879  We then assigning each subset to the gene set that yielded the maximal AUC.

880

881 To evaluate clustering, we first normalized the data as above, and subset to highly variable

882  genes using the highly_variable_genes function in Scanpy with default parameters. We then ran
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883  principal component analysis (PCA) and Harmony batch correction of the PCs?!. We then

884  computed the K nearest neighbor graph using 31 harmony-corrected PCs and 30 nearest

885  neighbors. We then performed Leiden clustering” with resolution parameters ranging from 0.25
886 to 2.25 increasing by 0.25. For each clustering resolution, we performed a greedy search to
887  assign clusters to manually gated subsets based on maximization of the balanced accuracy (l.e.
888 the average recall across all subsets). In each iteration, we considered all unassigned clusters
889  and possible gated subset assignments, and selected the cluster and assignment that most
890 increased the overall balanced accuracy. When no remaining cluster assignments would

891 increase the balanced accuracy, we assigned the cluster to a subset that least decreased the
892  balanced accuracy. We continued this process until each cluster was assigned to a subset.

893

894  Activation Induced Marker assay followed by scRNA-Seq (AIM-Seq)

895

896  PBMCs were quickly thawed and placed in pre-warmed xVIVO15 cell culture medium (Lonza)
897  supplemented with 5% heat-inactivated FBS. To reduce cell clumping, PBMCs were incubated
898 in xVIVO15 containing 50 U/mL of benzonase nuclease (Sigma-Aldrich) for 15 minutes at 37
899 degrees and filtered using a 70 um cell strainer. Washed and nuclease treated cells were

900 seeded in a 96 well cell culture plate at a concentration of 2.5 x 10%/mL. Peptide stimulations
901  were performed using the CEFX Ultra SuperStim Pool (JPT Peptide Technologies, Product
902 Code: PM-CEFX-1) at a final concentration of 1.25 pug/mL per peptide for 22 hours at 37

903 degrees and 5% CO,. Recombinant anti-CD28 and anti-CD49d antibodies (BioLegend) were
904 added at a final concentration of 5 pg/mL and 0.625 pg/mL, respectively, to provide co-

905 stimulation for peptide reactive T-cells. Separately mock-stimulated cells were treated with anti-
906 CD28 and anti-CD49d antibodies at the same concentration.

907
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908 Peptide responsive T-cells were detected by the expression of the surface activation markers
909 PD-L1, OX40, and CD137 via flow cytometry. Following the stimulation, peptide treated and
910 mock-stimulated cells were washed in cell staining buffer (PBS + 2mM EDTA + 2% FBS) to end
911  the stimulation. Fc receptor blocking was performed using a 1:50 dilution of Human TruStain
912 FcX (Biolegend) in cell staining buffer for 10 minutes at 4 degrees. Cell viability staining was
913  performed using a 1:500 dilution of Zombie Yellow Fixable Viability Dye (BioLegend) prepared
914  in PBS for 30 minutes at 4 degrees. Surface staining was performed using 1:100 dilutions of
915 BV421 conjugated anti-CD3, FITC conjugated anti-CD4, BV786 conjugated anti-PD-L1, PE
916  conjugated anti-OX40, and APC conjugated anti-CD137 (BioLegend) for 25 minutes at 4

917  degrees in cell staining buffer. Following cell staining, antigen reactive and non-reactive T-cells
918 were identified using a BD FACSAria Il cell sorter and collected in cRPMI medium (100 U/mL
919  penicillin-streptomycin + 2 mM L-glutamine + 10 mM HEPES + 0.1 mM non-essential amino
920 acids + 1 mM sodium pyruvate + .05 mM 2-Mercaptoethanol) supplemented with 20% FBS.
921  Sorted T-cell populations were then labeled with 75 uL of TotalSeq oligo conjugated hashing
922  antibody mix, incubated for 30 minutes at 4 degrees with gentle mixing after 15 minutes, and
923  pooled in equal quantities. Staining with the TotalSeq-C Human Universal Cocktail (BioLegend)
924  was then performed according to the manufacturer's instructions. The cells were then

925  resuspended in PBS supplemented with .04% FBS at a final concentration of 500 cells/pL and
926  submitted for single-cell profiling on the Chromium Next GEM instrument. Library preparation
927  was completed for the hashtag oligos, single-cell rna-seq, cite-seq, and TCR-repertoire

928 sequencing following the manufacturer’s instructions.

929

930 We collected AIM-Seq data from two separate 10X runs. In the first experiment, PBMCs from
931 three donors were processed independently as described above and were pooled together after
932 fluorescence activated cell sorting (FACS). In the second run, PBMCs from four donors, two of

933  which overlapped with the first run, were stimulated separately and pooled prior to FACS.
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934

935 Preprocessing the AIM-Seq dataset

936 The AIM-Seq data was processed using Cell Ranger version 6.1.1 with default parameters and
937 alignment to hg38 reference genome. The donor of origin for each cell was determined using
938 Demuxlet version 1.0 with doublet-prior of 0.17. Cells with null or ambiguous demuxlet result,
939 fewer than 10 counts of the hashtag oligos, or fewer than 50 total RNA counts were filtered. To
940 account for staining differences between the hashtag oligos and different sequencing depths of
941  the two 10X runs, the counts for each hashtag oligo in each 10X run were scaled to have the
942 same median value. Next we added a pseudocount to the hashtag oligo counts and log10

943 transformed this data. Then we ran Gaussian Mixture models separately for each hashtag oligo
944  with K=2 clusters. Each cell was assigned to a single condition if it was in the high cluster for
945  one oligo and the low clusters for all others, a doublet if it was in the high cluster for more than
946  one oligo, or an empty droplet if it was in the low cluster for all oligos. Empty droplets or

947  doublets based on the hashtag oligo clustering were filtered, as were doublets based on

948 demuxlet. Genes detected in fewer than 10 cells were filtered prior to running TCAT.

949

950 cGEP associations with AIM-positivity, proliferation, and disease

951
952  To associate cGEPs with the AIM-Seq stimulus, we first ran TCAT to fit the usages of the

953 cGEPs in the AIM-Seq dataset. We then computed the average usage of each cGEP in cells
954  from each sort condition in each donor. We created two dummy variables, the first indicating
955  whether a sample was treated with CEFX or Mock, and the second indicating whether a CEFX-
956 treated sample was AlIM-positive or not. We fit these two variables and an intercept to average
957  cGEP usage in the sample. cGEPs associated with the CEFX-or-Mock dummy variable were
958 labeled milieu-associated while cGEPs positively associated with the AIM-positive dummy were

959 labeled AIM-associated.
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960

961 To associate cGEPs with proliferation, we defined cells as proliferating or non-proliferating in
962 each dataset by setting a threshold of 0.1 on the sum of the three cell cycle cGEPs, S-phase,
963 late S-phase, and G2M-phase. We then computed the mean usage of each cGEP per sample
964  separately in high cell-cycle (sum usage > 0.1) and low cell-cycle (sum usage < 0.1) cells. We
965 filtered samples that did not have at least 10 high cell-cycle cells and 100 low cell-cycle cells.
966  Then, for each cGEP, we performed a two-sample T-test paired by individual (ttest_rel in Scipy,
967  default parameters) between average cGEP usage for high and low cell-cycle cells. We meta-
968 analyzed P-values across datasets using Fisher’'s Method (combine_pvalues in Scipy).

969

970 To associate cGEPs with sample-level disease phenotypes, we calculated the average usage of
971 each cGEP in each sample for a given dataset. We then used ordinary least squares regression
972 to find cGEPs with higher average usage in disease samples than controls, controlling for

973 sample-level batch variables as covariates. For all datasets, disease status was modeled as a
974  binary dummy variable, and an intercept was included. For UK-Covid, the processing site was
975 included as dummy variable covariates. For COMBAT, sequencing pool, and processing

976 institute were included as dummy variable covariates. For the Pan-cancer dataset, all cancer
977  types were initially included in the analysis and dummy variable covariates were included for
978 tissue of origin. In addition, sequencing technology was included as a dummy variables. When
979  there were multiple tumor samples or matched normal samples from the same donor, we

980 retained only the duplicate sample with the most cells prior to the regression.

981

982  For all association tests, we performed FDR-correction of the P-values using the Benjamini
983 Hochberg method (fdrcorrection in Statsmodels with method="indep").

984


https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

41

985 Defining the antigen-specific activation (ASA) score

986

987 We used CD71+CD95+ surface protein co-expression in the COMBAT and Flu-Vaccine

988 datasets as an in vivo correlate of TCR activation to help prioritize AIM-associated cGEPs for

989 predicting TCR-activated cells. First we preprocessed the ADT surface proteins in these

990 datasets as described in the manual subset gating section. We then subsetted cells by their

991 manual gating-defined broad cell types (CD4 Conv, CD4 Treg, CD8 Conv, other) and gated

992 CD71+CD95+ cells separately for each cell type as the response feature to be predicted by

993  AlM-associated cGEPs.

994

995 We then performed forward stepwise selection, evaluating how well the summation of usages of

996  different combinations of AIM-associated cGEPs would predict CD71+CD95+ gating. At each

997  stage, the per-cell ASA score was computed as the sum of normalized usages of cGEPs in the

998  predictive set. At each forward step, we determined which cGEP should be added to the

999  predictive set based on which would most improve the average AUC across the Flu-Vaccine
1000 and COMBAT datasets. We used a reduction in AUC in both datasets as the stopping criterion
1001 for adding cGEPs. We considered all AIM-associated cGEPs identified in section 6 as
1002 candidates for this, excluding those known to have a broader function outside of T-cell activation
1003 (e.g. cytoskeleton, metallothionein, cell cycle) and those reflecting activation-associated T-cell
1004  subsets (Tph and Th17-Activated). We also excluded Exhaustion from the ASA score as it
1005 reflects a distinct inhibitory response to antigen-stimulation that users may wish to annotate
1006  separately.

1007
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1008 Code availability
1009 The code for CellAnnotator (starCAT) is available at
1010  https://github.com/immunogenomics/starCAT. The analysis scripts used in this paper are

1011 available at https://github.com/immunogenomics/TCAT_analysis.
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1028

1029 Tables/Legends

1030 Table S1. cGEP Summary. Summary of cGEPs including their full name, abbreviated name,
1031 assigned class, top 3 most strongly associated genes, and which datasets it was derived from.
1032

1033 Table S2. Marker genes. Top 200 marker genes associated with each cGEP, colored by their
1034  strength of association with the cGEP, based on the average gene score.

1035

1036 Table S3. Gene-set enrichment. The “GO_Enrichment” tab includes the top 10 associated
1037 gene sets for each cGEP including the GEP name, gene-set name, fisher exact test odds ratio,
1038 and P-value. The subsequent tabs include the same information but for enrichment tests for
1039 gene sets defined from a dataset that polarized T-cells for either 16 hours (16h) or 5 days (5d)
1040 starting from either naive (TN) or memory T-cells (TM)?*. The tab name indicates the stimulation
1041  conditions.

1042

1043 Table S4. Correlation with cell quality features. Each tab includes the Pearson correlation of
1044  each cGEP’s usage (rows) with different per-cell quality features (tab names) for each dataset
1045  (columns). MitoFrac denotes the % of unique molecular identifiers from MT- genes.

1046 RNA_Detected denotes the number of unique genes detected per cell. RNA_Count denotes the
1047  number of unigue molecular identifiers per cell. PCFrac denotes the percentage of unique

1048 molecular identifiers that are assigned to a protein coding gene in Gencode version 44.

1049
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1050 Table S5. AIM-Seq association. Provides regression coefficients and P-values for the

1051  association between cGEP usage and binary variables reflecting CEFX vs. mock stimulation or
1052  AIM-positive vs. AIM-negative. Coef. represents the regression coefficient, P represents the P-
1053 value, and Q represents the FDR-corrected P-value.

1054

1055 Table S6. Association with proliferation. T-statistics, P-values, and log, odds ratios for the
1056 paired T-test of proliferating and non-proliferating T-cells in each dataset (tabs). For the meta-
1057 analysis across datasets it provides the Fisher's method combined P-value and the average log.
1058  odds ratio.

1059

1060 Table S7. Association with disease. ordinary least squares regression coefficients (Beta), P-
1061 values (P), FDR-corrected Q-values (Q), and average fold changes (FC) for phenotype

1062  associations shown in Figure 7. Each tab represents a different phenotype.

1063

1064
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46
1067
1068  Figure 1. Overview of CellAnnoTator (*CAT). (A) Schematic of the *CellAnnoTator (*CAT)
1069 pipeline. (B) Schematic of simulation strategy (left) with resulting Uniform Manifold
1070  Approximation and Projection (UMAP) plot (right). Cells are colored by lineage gene expression
1071  program (GEP). (C-E) Pearson correlation of ground truth simulated usages of each GEP
1072  (columns) vs inferred usages (rows) for *CAT with the 20 GEP reference (C), *CAT with the 12
1073  GEP reference (D) or cNMF of the query with 16 inferred components (E). (F) Pearson
1074  correlation of ground truth and inferred usages by *CAT and cNMF for different query dataset
1075  sizes. Marker represents mean and error bars represent range. (G) Summary of reference
1076  datasets including number of individual donors (x-axis), number of cells (y-axis), and tissue
1077  source (dot color). Phenotypes are listed below the dataset names.
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Figure 2. Cataloging consensus gene expression programs (GEPs) across datasets. (A)
Pairwise correlations of GEPs discovered across reference datasets with insets for consensus
GEPs derived from all seven references. Inset row and column orders are the same for all
cGEPs. (B) Scatter plots of selected correlated GEP pairs. X and Y axis labels indicate the
datasets the GEP was found in (P<1x101% for all correlations). (C) Heatmap of cGEPs (rows)
and which datasets the comprising GEPs were found in (columns). Green boxes indicate a GEP
was found in a dataset. Colorbar indicates the cGEP’s assigned class. cGEPs corresponding to
non T-cell lineages were excluded. (D) Marker genes for selected example cGEPs in cNMF

gene score units.
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1097 Figure 3. Benchmarking T-CellAnnoTator on a query dataset. (A) UMAP of the Flu-Vaccine
1098 dataset colored by the manually gating shown in Figure S4A. (B) Same UMAP as (A) but
1099 demonstrating prediction of manual gating of Treg and CD8 EM populations with the most
1100 associated individual cGEP (usage > 0.025), the multilabel classifier based on multiple cGEPs,
1101  or Ledien clustering with resolution 1.0. (C) Comparison of balanced accuracy for prediction of
1102  manually gated subsets, including clustering with multiple Leiden resolution parameters. (D)
1103  Usage of the mitochondria cGEP against the percentage of mitochondrial reads per cell (left).
1104  Usage of the CellCycle-S (middle) and CellCycle-G2M (right) cGEPs against the S and G2M
1105  scores output by Scanpy’s score_genes_cell_cycle function with published proliferation gene
1106  sets®t. (E) Heatmap of pseudobulk expression in cGEP-high and low cells, per sample. Samples
1107 are normalized by library size and expression is z-scored across rows.
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52

1130 Figure 4. Comparing TCAT to clustering in the COMBAT dataset.

1131  (A) UMAP of T-cells showing published sub-clusters of clusters annotated as CD4 memory with
1132  other clusters shown in gray. (B) Average usage of selected cGEPs across CD4 memaory
1133  subclusters. (C) Same UMAP as (A) but colored by usage of selected subset, functional, and
1134  artifact cGEPs usage. Intensities are averaged over 20 nearest neighbors to reduce

1135 overplotting. (D) Usage of selected cGEPs in cells with high or low usage of cell cycle GEPs.
1136  Cells are grouped by their most highly used subset GEPs.(E) Percentage of cells within each
1137 manual gate assigned to each polarization (usage > 0.1). Bar represents the average and
1138  whiskers represents the 95% confidence interval, across samples.
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1151 Figure 5. Identifying cGEPs associated with TCR-dependent activation. (A) Schematic of
1152  AIM-Seq. (B) FACS experiment from an AIM-Seq run showing surface activation markers in
1153 CD3+CD4+ and CD3+CD4- gated populations with the gates used for AIM-positive (+), AIM-
1154  negative (-) and Mock (M) populations. (C-D) UMAP of AIM-Seq dataset colored by sorting
1155  condition (C) or manually gated population (D). (E) cGEP association with AIM-positive

1156 samples. X-axis shows the mean Log, ratio of average usages. Y-axis shows the -Logio P-
1157 value. cGEPs are labeled by assigned category. (F) Average usage of selected Aim-associated
1158 cGEPsin +, -, and U cells from different gated subsets. Boxes represent interquartile range.
1159  Error bars represent 95th percentiles.

1160

1161

1162
1163
1164


https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

1165

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

C
COMBAT
100 A
2
8 751
k]
€ 50 A
[0
o
& 25
0_
Activated  Not-activ.
N=19158 N=237581
F

Published Clustering

UMAP2

UMAP1

% per individual by cohort

A B
COMBAT AlM-Seq
76.7% cells 5.2% cells
08 X 4 60.6% cells  7.0% cells 3.2% cells
acuvlated activated 0.5 1 activated activated acti:ated
i i 1 :
206 : o 04 l . .
I} . .
? ., G 03+ : :
04
< < H i
t’é) ) 0.2
0.2 - <
0.1 A
0.0 4 0.0 4
1 ! T T T
CD71+CD95+ Other + B U
Activated)  (Unactivated -
(Actival eéati; nactivated) Condition
D 9 E
o ASA Score
% ASA+ T-cells per individual by cohort
50
P=12%107 P=1.6x10"°
, 401 * e Covid-19 .
< e Healthy >
0 A
< 30 A !?
8 20+ |
e
101 b
2 i
0 T T
COMBAT UK-Covid g
Dataset 3
UMAP1 000 016
G H
ASA enrichment by subset
S COMBAT-Covid-19
£ COMBAT-Healthy log20R %07
5 Sparks-Control l 2 8 40
% Sparks-D0 - 00 ‘S
& Sparks-D1 ._ my =20
S !
3 Sparks-D28 [ <. 041&
1 I I 1 | 1 1 1 T
§Z33833%533:88¢8 :
F s oo ==2222 o
[ala] QaqQ Wi s o =
O o oo ELaad <
Qoo
OO
| Gated Lineage
CD4 Conv CD4 Conv CD4 Conv
100 . e Tumor ‘_- * ?.’
+ 75 S e Match norm. g_ @ $g m,
< . | = :
2 so 3 AR
< :
b o ->C< CF -
S 25 1 | o
: b =i °\
0 - ¢ o 088 80 §o B0 8o oo -
T T T T T T T T T T T T T T T T T T T T
COQL<COO COOL<LCOO CO0LC<LOO
pgegeT® gBo29Ea gHgQQEa
w S [N = w S a - w S a =
CD8 Conv CD8 Conv CD8 Conv
100 g g
E o E ’ - .‘é.
75 G < H
5 5 . = .g
& &5 g T oo o]
© 17
<° . ->C< ‘ . 5‘ o
S~ 25 v . @i4e, d vy
AT TNEIRRE
0 g e | 80T, e
T T T T T T T T T T T T T T T T T T T T T
COOCLOO OOV COO0LLOO
OwooOooxam OwoOoOoxam Owoooxm
DOITLI ®»OITLI NOILI
w > a = w S a = w S o=
Tumor type Tumor type Tumor type

COMBAT == -

00000 00000000V OOOO

55

Clone
size
1.0
20
3.0
4.0
5.0

Cluster
CD4.NAIVE
CD4.TCM
CD4.TEFF
CD4.TEFF prolif
CD4. TEMITEMRA
CD4.TREG
CD8.NAIVE
CD8.TCM
CD8.TCM.CCLS
CD8.TEFF
CD8.TEFF.prolif
CD8.TEM
CD8.TEMRA
CD8.TREG
CD8.mitohi
DN
bP
GDT.VD2
GDT.VD2neg
MAIT

ASA+
Cell Cycle +

AILE
el b — — - e
T T T T T T T
= =} S’ (] § b [0}
£ 3234 3 % & %
S ¢ =K o F 8
§ > < 8 >
a a T
Dataset
J
Bystander enrichment in tumors
<
14
O o~ o
o~
Qo
-~
o~ o
I
LI B . B SR P R
DV QO =<
>wx>—-ué-w
2bx>Zop
3¢5 =Fary
TNED [
[atlata) =
oF © =

Assigned lineage cGEP


https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.592310; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

56

1166  Figure 6. Annotating antigen-specific activation (ASA) in vivo. (A) Box plot of ASA score for
1167  cells stratified as activated (CD71+CD95+) or not activated. (B) Same as (A) but for AIM-Seq
1168  with cells stratified by sort condition. (C) Clonality in manually gated conventional CD4 and CD8
1169 T-cells annotated as activated (ASA>0.065) or not activated (ASA<0.065). Clonality is defined
1170 asthe number of cells in the same sample with an identical alpha and beta CDR3 amino acid
1171  sequence. (D) Percentage of activated CD4 and CD8 convs (ASA>0.065) in Covid-19 and
1172  healthy control samples, by cohort. (E-F) UMAP of the COMBAT dataset colored by ASA score
1173  or low-resolution published clustering. (G) Logio odds ratio for 2x2 association of ASA positivity
1174  and manual gating subset assignment. * indicates P-value<0.05. (H) Percentage of activated
1175  (ASA>0.065) or proliferating (sum of cell cycle cGEPs>0.1) cells per sample across datasets.
1176  Boxes represent the interquartile range and whiskers represent 95% quantile range. (l)

1177  Percentage of activated, exhausted (exhaustion cGEP usage>0.065), or bystander (ASA +
1178 exhaustion usage<0.065) T-cells in CD4 and CD8 Convs, per sample stratified by tumor type
1179  and corresponding healthy tissues. (J) Log. odds ratio for enrichment of bystander T-cells by

1180 subset cGEP assignment. Error bars represent 95% confidence intervals.
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1185 Figure 7. cGEPs association with disease. (A-B) Associations of cGEP usage with Covid-19
1186  status for UK-Covid and COMBAT datasets. X-axis shows the regression coefficient. Y-axis
1187  shows the -Log10 FDR-corrected Q-value. (C) Scatter plot of regression coefficients from (A)
1188 and (B). (D-E) Same as (A) but comparing synovial T-cells from patients with Rheumatoid
1189  Arthritis and Osteoarthritis, or from tumors and healthy adjacent tumors. (F) Regression

1190 coefficients for tumor vs. normal samples for each tissue of origin. * denotes P<.05 for the
1191  corresponding coefficient. Cancer type abbreviations are: bladder cancer (BC), esophageal
1192  cancer (ESCA), hepatocellular carcinoma (HCC), renal cell carcinoma (RC), thyroid carcinoma

1193 (THCA), and endometrial cancer (UCEC).
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1202 Figure S1. Characterizing *CAT. (A) *CAT predicted GEP usage for cells that use a GEPs with
1203  ground-truth usage>0.2, 0.1-0.2, or 0. Also shows the predicted usage for GEPs present in the
1204 reference data that are not present in the query (labeled unused GEP). (B) Number of GEPs
1205 identified in each dataset. The color indicates whether each GEP clustered with one or more
1206  GEPs from another dataset as part of a consensus GEP (purple, red, or green), did not cluster
1207  with a GEP from another dataset but was kept in the catalog as a dataset-specific GEP

1208 (orange), or did not cluster with a GEP from another dataset and was filtered (blue). (C)

1209  Absolute value of Pearson correlation of spectra learned by cNMF (top) or PCA (bottom)

1210 between different pairs of datasets. PCs are learned on the same matrices of batch-corrected
1211  matrices used for cNMF. Mean correlation refers to the mean value along the matrix diagonal,
1212  which corresponds to pairs of components with highest correlation across the two datasets.
1213
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1224  Figure S2. Annotating cGEPs. (A) Manual gating of COMBAT dataset using smoothed surface
1225  protein antibody-derived tag (ADTSs). (B) Multivariate logistic regression coefficients of cGEPs
1226  (columns) against manually gated populations (rows). For visualization, the minimum value is
1227  thresholded to 0 and the maximum is threshold to 1.25. Seven selected non-subset cGEPs are
1228 shown on the right as examples. (C) Pearson correlation of cGEPs with percentage of

1229  mitochondrial transcript per cell, for each dataset. All cGEPs excluding Mito and Poor-Quality
1230 areincluded in the “Other” column. P-values are from a Ranksum test of the selected cGEP
1231  against the Other cGEPs. (D) Same as (C) but showing correlation with the percentage of UMIs
1232  assigned to protein coding genes. (E) Scatter plot of the proportion of UMIs mapping to

1233 intergenic regions in the genome against Poor-Quality cGEP usage for cells in the AMP-RA
1234  dataset. (F) Correlation of per-sample average cGEP usage in T-cells with that in B-cells, NK-
1235 cells for the 3 immediate early gene cGEPs, in the COMBAT, UK-Covid, and HIV-Vaccine
1236  datasets.
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Figure S3. Benchmarking CellAnnoTator on simulated and real datasets. (A) Manual
gating for the Flu-Vaccine dataset analogous to Figure S2A. (B) Receiver operator curves
(ROCs) for prediction of manually gated subset based on a single most associated subset (dark
blue), TCAT multilabel prediction (light blue), analogous predictions using the single most
associated NMF component published in Yasumizu et al., 20243, or using gene sets from NMF
components in Gavish et al., 2023°. Individual points show accuracies of discrete predictions
based on cGEP multilabel regression, or clustering with the leiden resolution specified in the
legend. (C) Areas under the curve (AUC) from receiver operator curves in (B). (D) Heatmap of
pseudobulk expression in Thl-Like-high and low cells, per sample. Cytotoxic-high cells are
included (left) and filtered (right). Sample expression is normalized by library size and z-scored

across rows, separately for the two filtering conditions.
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1264  Figure S4. Comparing TCAT with COMBAT dataset clustering. (A) Fraction of proliferating
1265 cells (cell cycle usage>0.1) assigned to each subset based on the most highly used subset-
1266  associated GEPs, for cells from Covid-19 or healthy donors in the two Covid-19 datasets. Error
1267  bars represent 95% bootstrap confidence intervals. (B) Usage of selected cGEPs (columns) in
1268 cells (rows) grouped by maximum subset cGEP. Cells are drawn from subclusters with high
1269 usage of the ISG cGEP, indicated in the colorbar. (C) Same as (B) but only showing cells from
1270  subclusters with high cytotoxicity cGEP usage. (D) Heatmap of pseudobulk expression of

1271  marker genes in cytotoxic-high and low cells and subset cGEP high and low cells, per sample.
1272  Expression is normalized by library size and z-scored across rows. (E) Average fraction of
1273  polarized cells (usage>0.1) per gated subset, across samples, within COMBAT and Flu-Vaccine
1274  datasets. (F) Heatmap of pseudobulk expression of marker genes in polarization-high and low
1275 cells, separately for gated CD4 and CD8s T-cells, per sample. Sample expression is normalized
1276 Dby library size and z-scored across rows, for each polarization.
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1280 Figure S5. Identifying activation associated cGEPs with AIM-Seq. (A-B) Flow cytometry
1281  data of CD3+CD4+ and CD3+CD4- gated populations for 3 donor samples for CEFX and mock
1282  conditions. (C-E) Activation-induced marker (AIM) surface protein expression based on CITE-
1283  Seqfor CD4+, CD8+, and Treg subsets, stratified by sort condition. Boxes represent

1284 interquartile range and whiskers represent 95% percentiles. (F) Percentage of each sample
1285 assigned to each subset based on manual gating, colored by stimulation condition. * indicates t-
1286  test P<.05 comparing + and U. (G) Average cGEP usage in each donor and condition, for AIM-
1287 associated cGEPs. (H) Paired t-test of pseudobulk cGEP usage in high and low cell cycle usage
1288 cells (threshold 0.1) from each sample. X-axis shows the mean Log ratio of average usages
1289  across datasets. Y-axis shows the -Logio P-value. Statistically significant and positively

1290 associated cGEPs are indicated in red.
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1312 Figure S6. Annotating antigen-specific activation in vivo. (A) Definition of activation used for
1313 training the antigen-specific activation (ASA) score in the COMBAT dataset for manually gated
1314  subsets. (B) AUC estimates averaged for predicting CD71/CD95 co-expression based on

1315 summation of cGEPs sequentially added to the score from left to right. (C-D) Receiver operator
1316  curve (ROC) for ASA prediction of CD71/CD95-based activation labels, with various thresholds
1317 denoted as colored points. (E) ROC for ASA prediction of AIM-positivity in the AIM-Seq dataset.
1318 (F) Left - Odds ratio of enrichment between proliferation (aggregate cell cycle cGEP usage>0.1)
1319 and activation (ASA>0.065) for each dataset. Error bars denote 95% confidence intervals. Right
1320 - Pearson correlation between ASA and aggregate cell cycle cGEP usage with colors mapping
1321 to dataset. (G) Clonality in manually gated conventional CD4 and CD8 T-cells annotated as
1322  activated (ASA>0.065) or not activated (ASA<0.065). Clonality is defined as the number of cells
1323 in the same sample with an identical alpha and beta CDR3 amino acid sequence. (H-J)

1324 Percentage of activated CD4 convs, CD8 convs, and Tregs based on ASA>0.065 in Covid-19
1325 and healthy control samples from COMBAT and UK-Covid datasets. (K) Percentage of activated
1326  conventional CD4 T-cells (ASA>0.065) versus percentage of activated or exhausted

1327  (exhaustion usage>0.065) conventional CD8 T-cells across tumor samples. (L) Percentage of
1328 activated, exhausted, or bystander (ASA + exhaustion usage<0.065) Tregs in tumors and match
1329 normal samples.
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1340

1341  Figure S7. Identifying cGEPs associated with disease phenotypes. (A-B) Average usage of
1342  the T peripheral helper (Tph) cGEP compared to average CXCL13 expression from T-cells
1343  within tumors and matched normal tissue samples in Pan-cancer reference and Luo et al.,
1344  2022%2. Trend lines show the regression coefficients fit for tumors and normal samples

1345 separately (D-F) Percentage of cells annotated as plasma cells against the average Tph, Tfh-1,
1346  or Tfh-2 usage within T-cells from tumor samples in Luo et al., 2022°2,
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1372 Supplementary item 1. K selection plots for consensus NMF runs on reference datasets.

1373  Vertical line denotes the selected number of components.
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Supplementary item 2. Example marker genes for all cGEPs. Color indicates average cNMF
gene score units which denotes how much 1 additional count of usage of the cGEP would be

expected to increase expression of the gene in Z-scored units.
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Supplementary item 3.

Immediate early gene usage across circulating blood cell types.

Average per-sample usage of each IEG cGEP in T-cells versus monocytes and dendritic cells,

NK cells, or B-cells, in the three reference PBMC datasets.
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Supplementary item 4. Characterization of COMBAT dataset clustering. (A) Violin plot for

myeloid cell marker genes in cells originally annotated as CD4 memory T-cells broken out by

the CD4.TEFF.prolif. MKI67lo subcluster, or all other subclusters combined. (B) Usage of the

ISG, Cytotoxic, and Poor-quality cGEPs in cells stratified by their CD4 memory subcluster. (C)

Expression of CD4 naive marker genes in cells initially clustered as CD4 memories (blue and

orange boxes) or CD4 naives (green cluster). Cells initially clustered as CD4 memory are

stratified by their usage of the CD4 naive cGEP with a threshold of 0.1.
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1418 Supplementary item 5. cGEP associations with proliferation across datasets. (A) Gating
1419  strategy to identify CD3+ CD4+ and CD3+ CD4- populations in the AIM-Seq experiment. (B)
1420 Heatmap of the average Log2 ratio of mean usage in proliferating cells (usage>0.1 of

1421  proliferation GEPs) and non-proliferating cells (usage<0.1) for all GEPs (rows) and datasets
1422  (columns). An absolute value ceiling of 6 is used to aid visualization. * indicates paired t-test
1423 P<.05.
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Supplementary item 6. Antigen-specific activation (ASA) score correlation with surface protein

activation markers in the AIM-Seq dataset.
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