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Abstract 36 

T-cells recognize antigens and induce specialized gene expression programs (GEPs) enabling 37 

functions including proliferation, cytotoxicity, and cytokine production. Traditionally, different 38 

classes of helper T-cells express mutually exclusive responses – for example, Th1, Th2, and 39 

Th17 programs. However, new single-cell RNA sequencing (scRNA-Seq) experiments have 40 

revealed a continuum of T-cell states without discrete clusters corresponding to these subsets, 41 

implying the need for new analytical frameworks. Here, we advance the characterization of T-42 

cells with T-CellAnnoTator (TCAT), a pipeline that simultaneously quantifies pre-defined GEPs 43 

capturing activation states and cellular subsets. From 1,700,000 T-cells from 700 individuals 44 

across 38 tissues and five diverse disease contexts, we discover 46 reproducible GEPs 45 

reflecting the known core functions of T-cells including proliferation, cytotoxicity, exhaustion, and 46 

T helper effector states. We experimentally characterize several novel activation programs and 47 

apply TCAT to describe T-cell activation and exhaustion in Covid-19 and cancer, providing 48 

insight into T-cell function in these diseases. 49 

 50 

 51 
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Introduction 57 

Canonically, T-cells are classified by membership in a hierarchy of discrete, mutually exclusive 58 

subsets associated with key transcription factors and surface markers. For example, expression 59 

of γδ or αꞵ T-cell receptors and CD4 or CD8 co-receptors divide T-cells into subsets recognizing 60 

different major histocompatibility complex (MHC) molecules. CD45 isoform and L-selectin 61 

expression subdivides naive and memory subsets. CD4 memory cells are further 62 

subcategorized into helper subsets, including Th1, Th2, and Th17, with distinct cytokine profiles 63 

upon activation1. 64 

 65 

Emerging evidence conflicts with this canonical model. T-cell states vary continuously2, combine 66 

additively within a cell3, and have plasticity in response to stimuli4. This may explain why single-67 

cell RNA sequencing (scRNA-Seq) typically shows a continuum of T-cell states without well-68 

delineated clusters corresponding to discrete subsets5,6. Even with incorporation of pre-defined 69 

surface protein markers based on cellular indexing of transcriptomes and epitopes by 70 

sequencing (CITE-seq)7, unbiased clustering does not yield canonical discrete T-helper 71 

subsets8. Rather, scRNA-Seq has highlighted untraditional cell populations including cytotoxic 72 

CD4+ cells9, CD8+ regulatory T-cells10 and Th1/Th17 cells11, consistent with the growing 73 

recognition of non discrete T-cell states.  74 

 75 

While hard clustering is the predominant scRNA-Seq analysis technique, it has key limitations 76 

when cell states are not discrete or mutually exclusive. A cell’s transcriptome reflects its 77 

complex identity through expression of multiple gene expression programs (GEPs) that reflect 78 

lineage, activation states, and lifecycle processes12. However, hard clustering forces cells into 79 

discrete groups that cannot easily reflect the multiplicity of GEPs they express. For example, 80 
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proliferating cells from multiple subsets may cluster together, obscuring information about their 81 

subset. Hard clustering also cannot directly model continuous expression trajectories and 82 

instead arbitrarily discretizes cells into distinct clusters. 83 

 84 

Component-based models like non-negative matrix factorization (NMF), hierarchical Poisson 85 

factorization, and SPECTRA can overcome some of these limitations of hard clustering5,13–16. 86 

These methods model GEPs as vectors of expression values for each gene, and cells as 87 

weighted mixtures of GEPs. Unlike Principal Component Analysis (PCA), NMF components 88 

have been shown to correspond to biologically distinct GEPs14. Thus, NMF can capture 89 

instances where multiple GEPs reflecting cell-type and other functional states additively 90 

contribute to a cell’s transcriptome. Furthermore, unlike cluster assignments, GEP vectors may 91 

be able to serve as a fixed coordinate system onto which new datasets can be projected, 92 

enabling reproducible comparison of GEP activity across biological contexts. Previous analyses 93 

of T-cells using component-based models have already recognized GEPs associated with T-cell 94 

activation5 and exhaustion15. 95 

 96 

We argue that scaling these approaches may further elucidate T-cell biology. First, most 97 

previous analyses have only analyzed T-cells from a small number of individual donors in a 98 

limited set of biological contexts. As a result, they have identified a modest number of GEPs. 99 

Moreover, it is essential to demonstrate the possibility of transferring GEPs identified in one 100 

dataset to new datasets. For example, it remains unclear whether reference GEPs learned in 101 

one dataset can accurately infer cell subsets, T-cell receptor (TCR)-dependent activation, and 102 

proliferation status for cells in a new dataset. 103 

 104 

Here, we present CellAnnoTator (*CAT, pronounced starCAT), an approach to score cells 105 

based on a fixed, multidataset catalog of GEPs from any tissues or cell-type (indicated by the 106 
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wildcard character “*”). We develop a catalog of GEPs reflecting the breadth of subsets, 107 

activation states, and functions within T-cells by applying consensus NMF (cNMF)14, a validated 108 

implementation of NMF, to 7 scRNA-Seq datasets, spanning 1.7 million T-cells across 38 109 

human tissues6,8,11,17–20. We observe striking concordance of many GEPs across contexts. After 110 

combining analogous GEPs, we define a final catalog of 46 consensus GEPs (cGEPs) capturing 111 

diverse features of T-cells (Figure 1A). We demonstrate *CAT by accurately inferring T-cell 112 

subsets in query datasets and quantifying rates of TCR-dependent activation and exhaustion in 113 

Covid-19 and cancer. 114 

Results 115 

1. Annotating cells with pre-defined gene expression programs 116 

We first augmented the published cNMF algorithm to enhance GEP discovery, which is the first 117 

step of *CAT (Figure 1A - top). cNMF mitigates the randomness of individual NMF runs by 118 

repeating NMF with multiple seeds and combining the results into robust estimates14. It outputs 119 

GEP spectra, with gene weights for each GEP, and usages, reflecting the GEP’s weighted 120 

contribution to each cell. For our approach, it was essential to amalgamate the inferred GEP 121 

spectra from multiple datasets. However, we found that dataset-specific batch effects could 122 

hinder the identification of reproducible GEPs. Most batch correction methods are not 123 

compatible with cNMF since they create many negative values or correct low-dimensional 124 

embeddings rather than gene-level data. We therefore used Harmony21, with modifications to 125 

produce non-negative values for gene-level data rather than principal components. We also 126 

adapted cNMF to incorporate surface proteins into the final spectra to aid in GEP interpretation 127 

without impacting GEP discovery (Methods). 128 

 129 
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Next, we developed *CAT to enable GEPs learned in a reference dataset to be transferred to 130 

previously unseen “query” datasets. Whereas cNMF simultaneously learns GEPs and scores 131 

their usage in each cell’s transcriptional profile, *CAT addresses the independent problem of 132 

quantifying the usages of a fixed set of GEPs in a new dataset, using non-negative least 133 

squares (NNLS) regression, similar to NMFproject13. The result is a vector of usages for each 134 

cell representing the relative contribution of each GEP to the cell’s profile (Figure 1A - bottom). 135 

 136 

Using NNLS to refit GEPs as we do with *CAT provides significant advantages over direct 137 

applications of cNMF or other matrix factorizations. First, *CAT uses a fixed set of GEPs from a 138 

reference, instead of discovering GEPs de novo in the query. Thus, it provides a consistent 139 

representation of cell states that can be compared across different datasets and biological 140 

contexts. Second, de novo cNMF might miss GEPs that are active in small numbers of cells, 141 

whereas *CAT can characterize activity in a query dataset with relatively few cells. Finally, *CAT 142 

is significantly faster to run than cNMF. 143 

 144 

We conducted simulations to benchmark *CAT in scenarios where the reference and query 145 

datasets have only partially overlapping GEPs (Methods). We simulated two reference datasets 146 

of 100,000 cells and a query dataset of 20,000 cells. Each cell could express up to eleven 147 

GEPs, including one of ten mutually exclusive subset GEPs and up to ten non-subset GEPs. 148 

One reference dataset included all 16 GEPs in the query data as well as four additional GEPs. 149 

The other reference dataset was missing four GEPs present in the query (Figure 1B). We then 150 

learned GEPs from each reference dataset with cNMF and fit them to the query using *CAT. 151 

The reference and query datasets shared only 90% of genes in common, as datasets rarely 152 

share all genes. 153 

 154 
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*CAT accurately inferred the usage of GEPs that overlapped between the reference and query 155 

datasets (Pearson R>0.7) (Figure 1C-D). *CAT had low predicted usage of the extra GEPs in 156 

the reference panel that were not in the query dataset (Figure S1A). Surprisingly, *CAT 157 

obtained better concordance with the simulated ground truth GEP usages than direct application 158 

of cNMF to the query (Figure 1E). This is striking because the reference GEPs had extra or 159 

missing GEPs relative to the query, and were learned on different datasets, so could incorporate 160 

dataset-specific noise. We hypothesized that *CAT’s increased performance reflected the larger 161 

reference datasets enabling more accurate GEP inference. We confirmed this by simulating 162 

multiple query datasets with between 100 and 100,000 cells. While cNMFs performance 163 

declined for small query datasets, *CATs remained constant, demonstrating that *CAT can out-164 

perform cNMF when the reference is larger than the query (Figure 1F). 165 

2. Gene expression programs for T-cell annotation 166 

We next developed a catalog of GEPs to capture T-cell states; combining these GEPs with the 167 

*CAT algorithm yields T-CellAnnoTator (TCAT). We analyzed T-cells from 7 diverse datasets 168 

including blood and tissues from healthy individuals or individuals with Covid-19, cancer, 169 

rheumatoid arthritis, or osteoarthritis (Figure 1G). After stringent quality control, there were 1.7 170 

million cells from 905 samples from 695 individuals in our analysis. To preserve dataset-specific 171 

GEPs, we applied cNMF to each batch-corrected dataset independently (Supplementary item 172 

1, Methods). 173 

 174 

We observed that GEPs were reproducible across the datasets. To quantify this, we clustered 175 

highly correlated GEPs found in different datasets (Methods). Assuming that correlated 176 

dataset-specific GEPs represented the same biological state, we defined a consensus gene 177 

expression program (cGEP) as the average of a GEP cluster. Nine cGEPs derived from a 178 

cluster of GEPs from all seven datasets (Average Pearson R=0.81) and 49 cGEPs derived from 179 
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a cluster of GEPs from two or more datasets (Average Pearson R=0.74) (Figure 2A-B, S1B). 180 

Between 68.4% and 96.8% of GEPs identified in each of the seven reference datasets clustered 181 

with at least one GEP from another reference, suggesting high reproducibility. By contrast, gene 182 

expression principal components showed limited concordance between pairs of datasets, 183 

suggesting they reflect more dataset-specific signals14 (Figure S1C). 184 

 185 

We curated a catalog of 46 cGEPs capturing diverse T-cell states, including 11 discovered only 186 

in blood datasets, seven discovered only in tissue datasets, and 28 discovered in both (Table 187 

S1, Figure 2C). This represents between 27 and 36 more programs than previous factorization 188 

analyses of T-cells13,15,16. Of these cGEPs, 43 derived from multiple datasets, while three were 189 

singletons found in a single dataset. We excluded 49 of the 52 initially identified singletons since 190 

they likely reflect dataset-specific artifacts. The three retained singletons capture disease- or 191 

tissue-specific GEPs with a biological justification. For example, the rheumatoid arthritis dataset 192 

(referred to as AMP-RA), included a GEP highly enriched for T peripheral helper cells markers 193 

(including PD-1 and CD4 protein, LAG3, and CXCL13 RNA), which is characteristic of inflamed 194 

rheumatoid arthritis synovium22 (Table S2). Similarly, the pan-cancer dataset included a cancer-195 

specific exhaustion GEP (HAVCR2, ENTPD1, LAG3) which may be especially enriched in 196 

cancer, and a GEP bearing markers for T follicular helper cells (PD-1 protein and CXCR5, IL6R, 197 

and CXCL13 RNA) which was distinct from a second Tfh-like GEP discovered in multiple non-198 

cancer tissue datasets. In addition to the main T-cell cGEPs, we identified six cGEPs 199 

corresponding to non T-cell populations including erythrocytes (HBA2, HBA1, HBB) and 200 

plasmablasts (JCHAIN, IGKC, IGKV3-20), potentially derived from doublets. We retained these 201 

cGEPs to flag doublet-associated transcriptional signals. 202 

 203 

To label cGEPs, we first examined their top weighted genes (Figure 2D, Supplementary item 204 

2, Table S1-2). For example, the top 10 weighted genes in the Treg and Th2-Resting cGEPs 205 
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included the master regulators, FOXP3 and GATA3, respectively. Similarly, top weighted genes 206 

helped identify the Th2-Activated (GATA3, IL4, IL5) and Th17-Activated (IL26, IL17A, and 207 

RORC) cGEPs. Many functional cGEPs could also be readily identified, such as Heatshock 208 

(HSPA1A, HSP90AA1, HSPA1B), HLA (HLA-DRA, HLA-DRB1, CD74), Metallothionein (MT1X, 209 

MT2A, MT1E), and Actin Cytoskeleton (ACTB, ACTG1, PFN1) (Figure 2D).  210 

 211 

We also labeled cGEPs based on their ability to discriminate canonical T-cell subsets defined by 212 

manual gating on surface markers. We gated PBMC-derived T-cells from the COMBAT CITE-213 

Seq reference dataset18 and then used multivariate logistic regression to associate cGEPs with 214 

subsets (Figure S2A, Methods). cGEPs labeled as regulatory T (Treg), gamma-delta T (gdT), 215 

mucosal associated invariant T (MAIT), CD4 Naive, CD8 Naive, CD8 effector memory (CD8 216 

EM), CD4 central memory (CD4 CM), and T Effector Memory-Expressing CD45RA (TEMRA) 217 

were strongly associated with the expected manually gated populations (P-value<1x10-200,  218 

Coefficient>0.35, Figure S2B). The CD4 effector memory gated population was most strongly 219 

associated with cGEPs reflecting expected T-helper subsets labeled as Th17-Resting (CCR6, 220 

RORC, AQP3) and Th1-like (IFNG-AS1, CXCR3, and CD195 protein) (P<1x10-200 and 221 

P=4.1x10-190, coefficients 0.36 and 0.22, respectively, Figure S2B). Overall, this approach 222 

enabled identification of 17 subset-associated cGEPs (Figure 2C, Table S1).  223 

 224 

As a third strategy to label cGEPs, we used gene-set enrichment analysis with gene-sets from 225 

the gene ontology database23 and from T-cell polarization experiments24 (Methods, Table S3). 226 

We found that the Th2-Resting and Th2-Activated cGEPs were the most significantly enriched 227 

for genes upregulated following 16 hour stimulations of naive T-cells with Th2 polarizing 228 

cytokines (Fisher Exact Test OR=22.7, 16.2,  P=4.9x10-5, 1.7x10-4, respectively). Gene set 229 

analysis also helped annotate 5 cGEPs corresponding to non-T-cell specific cellular functions 230 

including early and late cell cycle S-phase (P=3x10-56  for DNA_REPLICATION and P=2x10-55 231 
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for MITOTIC_CELL_CYCLE), G2M-phase (P=9x10-74 CELL DIVISION), interferon stimulated 232 

genes (P=1x10-59  for RESPONSE TO VIRUS), and translation (P=4x10-163 for 233 

GOCC_CYTOSOLIC_RIBOSOME).  234 

 235 

Next, we identified technical artifact-associated cGEPs that correlate with low-quality cell 236 

features (Table S4). A cGEP we label Mitochondria contains top markers that are exclusively 237 

mitochondrially transcribed genes, which are frequently used to identify low-quality cells25,26; as 238 

expected, this cGEP had a high correlation with the percentage of mitochondrial reads per cell 239 

(average R=0.81 across datasets). We labeled another cGEP Poor-Quality based on its top 240 

marker gene MALAT1, a long non-coding RNA linked to poor cell viability27; this cGEP also 241 

correlated with the percentage of mitochondrial transcripts per cell (R=0.25 averaged across 242 

datasets, Figure S2C) and was inversely correlated with the percentage of protein-coding 243 

transcripts per cell (Figure S2D, average R=-0.50 across datasets). For the AMP-RA dataset, 244 

we had access to raw sequence alignment files so we could quantify the percentage of reads 245 

aligned to intergenic regions of the genome; the Poor-Quality cGEP was by far the most 246 

correlated with the percentage of intergenic reads per cell (R=0.74, Figure S2E). Its usage may 247 

be driven by higher levels of contaminating DNA or nascent RNA.  248 

 249 

Finally, we label three correlated cGEPs as immediate early gene programs (IEG1, IEG2, IEG3 250 

, pairwise R of 0.45-0.70). The top genes include canonical IEGs including FOS, JUN, and 251 

ZFP36, and these cGEPs were all enriched for a published IEG gene set28 (Fisher Exact Test 252 

P<1x10-53 ). We suspect that IEG1 represents the core pathway as it was found in 6 out of 7 253 

datasets (Figure 2C) whereas IEG2 and IEG3 represent mixtures with delayed immediate and 254 

secondary response genes. We hypothesize that these cGEPs reflect sample processing 255 

artifacts in scRNA-Seq, since IEGs are induced in as few as 30 minutes29 in response to 256 

mitogens or cell stress30, and following processing steps like tissue dissociation31,32. As 257 
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evidence of the potential technical nature of these cGEPs, we calculated their mean usage per 258 

sample in T-cells, B-cells, NK-cells and monocytes/DCs in the 3 PBMC references. We found 259 

that their average usage in T-cells correlates with their usage in other cell-types (R=0.46-0.99, 260 

average 0.77, Figure S2F, Supplementary item 3), suggesting that they are a sample-intrinsic 261 

property, which would be expected of a sample-processing effect. However, in certain contexts, 262 

these cGEPs may be biologically important.  263 

3. Benchmarking TCAT on an independent query dataset 264 

Next, we benchmarked TCAT on predicting T-cell subsets in an independent CITE-seq dataset. 265 

We analyzed 336,739 T-cells from PBMCs of 24 Covid-19-recovered and 17 healthy individuals 266 

after flu vaccination33 (Figure 3A). As ground truth, we assigned cells to one of ten subsets 267 

through manual gating of surface proteins (Figure S3A). We then predicted each subset by 268 

thresholding the corresponding subset-associated cGEP (Methods). For all 10 subsets, 269 

thresholding the single most-associated cGEP was comparable to RNA-based hard clustering, 270 

across nine different clustering resolutions. Averaged across subsets, the accuracy difference 271 

between TCAT and clustering ranged from 0.064 to -0.007 depending on the clustering 272 

resolution (Figure 3B-D). 273 

 274 

Since subsets can contain heterogeneity not captured in univariate analysis (e.g. multiple 275 

polarized populations within CD4 effector memory), we performed multivariate analysis using all 276 

cGEPs for simultaneous multi-label prediction (Methods). We trained the classifier on the 277 

COMBAT dataset and evaluated its performance on the Flu-Vaccine dataset. The classifier was 278 

more accurate than RNA clustering across all nine clustering resolutions tested, with average 279 

accuracy differences ranging from 0.10 to 0.033 (Figure 3B-C, Figure S3B-C). Thus, for 280 

PBMC-derived T-cells, TCAT can be combined with a multilabel classifier to predict subsets 281 

without requiring manual annotation. 282 
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 283 

We also compared TCAT’s subset classification accuracy against NMFproject13 and gene-sets 284 

derived from a recent NMF analysis of tumor-infiltrating T-cells16 (Methods). TCAT single cGEP 285 

and multi-label classification yielded higher area under the curve (AUC) for all lineage 286 

predictions than these other approaches (Figure S3B-C). 287 

 288 

Next, we validated TCAT’s prediction of functional cGEPs relative to common continuous 289 

metrics. Usage of the mitochondrial cGEP was highly correlated with percentage of 290 

mitochondrial reads (R = 0.88, Figure 3D). In addition, predicted cell cycle cGEP usages 291 

corresponding to the S and G2M phase were highly correlated with cell cycle scores calculated 292 

from corresponding published gene sets34,35 (R=0.75-0.81, Figure 3D).  293 

 294 

Finally, we validated prediction of T-cell polarization against expression of canonical markers. 295 

We discretized cells based on their expression of the Th1-Like, Th2-Resting, and Th17-Resting 296 

cGEPs (usage>0.1) and computed per-sample pseudobulk profiles of high and low usage cells. 297 

Th2-Resting-high samples expressed significantly more GATA3, CCR4, and PTGDR2 than Th2-298 

Resting-low samples (P<1x10-35 all, paired T-test) (Figure 3E). Th17-Resting-high samples also 299 

had increased expression of Th17 markers including CCR6, RORC, and AQP3 (P<1x10-55 all). 300 

The Th1-Like-high samples had increased expression of the Th1 markers CXCR3, IFNG-AS1, 301 

and CD195 protein (P<1x10-35 all). However, the Th1 markers IFNG and TBX21 were also 302 

expressed in Th1-Like-low samples (Figure S3D). We suspected this was due to the known 303 

expression of these genes in cytotoxic T-cells36,37. When we excluded cells high in the cytotoxic 304 

cGEP (usage>0.1) prior to pseudobulking, IFNG and TBX21 were significantly higher in Th1-305 

Like-high samples (P=8.2x10-13, P=9.6x10-47, Figure 3E, S3D). Thus, TCAT can predict T-cell 306 

polarization in query datasets. 307 
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 4. cGEPs capture multi-program identities of T-cells in scRNA-Seq 308 

Next, we illustrate how TCAT can reveal cellular heterogeneity not visible with clustering. Using 309 

the COMBAT dataset as an example, we analyzed cell cycle, a common signature that 310 

frequently obscures other aspects of proliferating cells38. In the initial publication, two clusters 311 

were annotated as proliferating CD4s and CD8s with subclusters that didn’t clearly correspond 312 

to subsets (e.g. CD4.TEFF.prolif.1, CD4.TEFF.prolif.GZMB.1). One sub-cluster labeled 313 

CD4.TEFF.prolif.MKI67lo was enriched for the myeloid doublet cGEP (Figure 4A-B) and 314 

expressed myeloid marker genes (e.g. CD14, MNDA, Supplementary item 4), illustrating how 315 

cell cycle can drive cells with distinct cell lineages to cluster together. By contrast, TCAT readily 316 

identified distinct proliferating subsets based on co-expression of cell cycle and subset cGEPs, 317 

including CD8 EMs, TEMRAs, and Treg (Figure 4C-D).  318 

 319 

Disentangling cell cycle and subset enabled us to quantify the percentage of proliferating cells 320 

per subset and disease status. We assigned cells to subsets based on their most highly used 321 

subset cGEP. This revealed increased expression of cell cycle cGEPs across many T-cell 322 

subsets in Covid-19 compared to healthy cells, in both Covid-19 datasets (Figure S4A). The 323 

most proliferative subsets in both Covid-19 and control samples expressed the T peripheral 324 

helper cGEP, reflecting an inflammatory population that was recently identified in Covid-1939. 325 

 326 

We identified other functional cGEPs that obscured T-cell subsets, akin to proliferation. Many 327 

CD4 memory subclusters in the original study were most strongly enriched for functional cGEPs 328 

such as ISG, Cytotoxicity, and Poor-Quality, rather than subset cGEPs (Figure 4B-D, 329 

Supplementary item 4). The CD4.Th.mitohi and CD4.Tem.mitohi.1 clusters were driven by 330 

high usage of the Poor-Quality cGEP and contained cells expressing multiple subset cGEPs. 331 

The CD4.TEM.IFN.resp and CD4.Th.IFN.resp clusters were both predominantly driven by the 332 
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interferon stimulated gene (ISG) cGEP. The CD4.TEM.IFN.resp cluster had high usage of the 333 

Cytotoxicity and TEMRA cGEPs while the CD4.Th.IFN.resp cluster contained cells expressing 334 

many subset cGEPs including CD4-Naive (Figure 4B, S4B). Cells with high usage of the CD4-335 

Naive cGEP expressed CD4 naive markers including CD45RA protein and SELL RNA, 336 

confirming that clustering had misclassified them as memory T-cells (Supplementary item 4).  337 

 338 

Clustering also obscured the subset of CD4 T-cells expressing the Cytotoxicity cGEP. We 339 

visualized the per-cell usage of all cGEPs in cells from the CD4 memory sub-clusters that had 340 

high Cytotoxicity cGEP usage (average cluster usage>0.1, Figure 4B). Intriguingly, these 341 

clusters contained heterogeneous cells with high usage of many subset cGEPs including CD8-342 

EM, Th1-Like, TEMRA, and gdT (Figure S4C). Pseudobulk analyses showed that cells co-343 

expressing these cGEPs (usage>0.1 for both) co-expressed the expected cytotoxicity and 344 

subset marker genes (Figure S4D). Thus, TCAT can reveal subset heterogeneity within 345 

cytotoxic T-cells. 346 

 347 

TCAT could readily annotate polarization status based on usage of the Th1-Like, Th2-Resting, 348 

and Th17-Resting cGEPs (Figure 4C). By contrast, the published clustering did not identify a 349 

Th2 cluster, and clusters annotated as Th1 and Th17 were only identified with a high clustering 350 

resolution resulting in 243 clusters, likely due to other conflating signals. As expected, there was 351 

significant enrichment between cells annotated as Th1 by clustering and high Th1-Like cGEP 352 

usage, as well as Th17 clustering and high Th17-Resting cGEP usage (P<1x10-100 for both, 353 

fisher exact test). 354 

  355 

However, TCAT additionally identified expression of polarization cGEPs outside of the CD4 356 

memory compartment (Figure 4E). We annotated polarization across manually gated T-cell 357 

subsets with a usage threshold>0.1. As a control, we confirmed that the Treg cGEP was highly 358 
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enriched in the Treg gate, with an average of 88.1% of gated Tregs expressing the cGEP, 359 

compared to 5.3% for the next highest population. Similarly, the Th17-Resting cGEP was most 360 

enriched in the expected CD4 EM (22.1%) and CD4 CM (10.7%) populations compared to only 361 

3.5% for MAITs, the next highest. Surprisingly, the Th2-Resting cGEP was most commonly 362 

assigned within the CD8 CM (19.8%), CD4 CM (12.8%), and CD4/CD8 Double Positive (12.8%) 363 

populations. The Th1-Like cGEP was also used by CD8 T-cells; it was most prevalent within the 364 

CD8 CM (15.7%), CD4 EM (14.7%), CD8 EM (14.4%), and MAIT populations (12.3%). The 365 

calculated subset polarization proportions were highly correlated between the COMBAT and 366 

Flu-Vaccine datasets, the two datasets with the best quality manual gating (R>0.9, P<5.5x10 -5 367 

for all three, Figure S4E). Furthermore, cells assigned to each polarization had high usage of 368 

the expected marker genes for that polarization, irrespective of whether they were CD4+ or 369 

CD8+ (Figure S4F). These findings support the emerging recognition of polarized CD8 T-cell 370 

populations40 and illustrate how these populations are easily revealed by TCAT.  371 

5. cGEPs associated with TCR-dependent activation 372 

 373 

Next we identified cGEPs induced following antigen recognition by the TCR. To do so, we 374 

developed AIM-Seq (Activation-Induced Marker (AIM) assay followed by scRNA-Seq), an assay 375 

to profile T-cells after antigen stimulus (Figure 5A-D). We collected PBMCs from 5 genome-376 

wide genotyped healthy donors and stimulated them for 24 hours using a pool of 176 peptide 377 

antigens from common pathogens (CEFX, JPT)41 and anti-CD28/CD49d co-stimulation. Using 378 

flow cytometry, we separated T-cells expressing activation-induced markers (OX40 and PD-L1 379 

for CD4s42, CD137 for CD8s43, AIM-positive) from unactivated cells (negative for these markers, 380 

AIM-negative). As a negative control, we activated cells non-specifically with anti-CD28/CD49d 381 

costimulation without peptides (Mock). We labeled cells from these conditions with hashtag 382 
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antibodies and pooled them for single-cell RNA, CITE, and TCR repertoire sequencing 383 

(Methods).  384 

 385 

As expected, CEFX stimulated CD4 and CD3+CD4- (hereafter labeled CD8) T-cells contained 386 

higher proportions of AIM-positive cells than mock (Figure 5B, S5A). 4.21% of CD4 T-cells and 387 

2.45% of CD8s were AIM-positive, compared to 0.049% and 0.54% of mock-stimulated CD4 388 

and CD8 T-cells, respectively.  389 

 390 

The CITE-Seq data showed that AIM-positive cells expressed additional surface activation 391 

markers including CD54, CD25, CD71, and CD69 beyond the sorting markers (T-test P<1x10-392 

200, Figure S5C-E). Moreover, AIM-positive cells were significantly depleted of naive T-cells (P=393 

0.027 and P=8.6x10-4, for CD4 and CD8, respectively) and enriched for Tregs, CD4 central and 394 

effector memory populations (P =0.00064, 0.0044 and 0.054, respectively, Figure S5F). This is 395 

unsurprising as the peptide pool is derived from common pathogens and prior memory is 396 

expected. However, 11.8% of the AIM-positive cells were CD4 naive and 1.4% were CD8 naive, 397 

indicating we could detect both memory and naive cell responses.  398 

 399 

Next, we identified cGEPs associated with antigen-specific activation in this assay. We used 400 

pseudobulk sample-level regression to identify cGEPs upregulated in AIM-positive cells relative 401 

to AIM-negatives (Methods). This identified 24 significant positively associated cGEPs (false 402 

discovery rate (FDR) corrected P < 0.05), including two that are milieu regulated (I.e. non TCR-403 

dependent), five representing enriched subsets, and 17 functional cGEPs (Figure 5E, S5G). 404 

 405 

The two milieu mediated cGEPs, Interferon Stimulated Gene (ISG) and Metallothionein, were 406 

significantly upregulated in both AIM-negative and AIM-positive cells relative to mock (ISG: AIM-407 

negative - P=8.9x10-7, AIM-positive - P=3.1x10-5; Metallothionein: AIM-negative - P=1.5x10-3, 408 
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AIM-positive - P=3.3x10-9). Interferon is a secreted cytokine that can activate nearby cells 409 

independent of TCR-activation to induce the ISG cGEP. Shifting extracellular cytokine or ion 410 

concentrations may similarly induce TCR-independent upregulation of the metallothionein 411 

cGEP44.  412 

 413 

Five subset-associated cGEPs were increased in AIM-positive cells relative to AIM-negatives 414 

(Th17-Resting, Treg, Tph, Th22, and Tfh-2) and 3 were increased in AIM-negatives (CD8-415 

Naive, CD4-Naive, and Th1-like) (Table S5). These associations likely reflect differential 416 

abundance of cell populations rather than upregulation of the cGEPs, consistent with the 417 

manual gating results (Figure S5E).  418 

 419 

The remaining 17 AIM-associated programs are functional cGEPs including many with well-420 

known links to TCR-stimulation. Six of these are not T-cell specific, namely the three cell cycle 421 

cGEPs45 (P<3.6x10-4), actin cytoskeleton46 (P=3.3x10-8), heatshock47,48 (P=1.7x10-7), and MHC 422 

class II49 (P=0.012). 423 

 424 

Excluding these leaves 11 functional AIM-associated cGEPs that may be specific to T-cell 425 

activation. These include CTLA4/CD38 (P=9.7x10-9), ICOS/CD38 (P=1.5x10-6), NME1/FABP5 426 

(P=2.0x10-6), OX40/EBI3 (P=2.6x10-5), Multi-cytokine (P=5.4x10-5), Exhaustion (P=9.3x10-5), 427 

TIMD4/TIM3 (P=5.0x10-4), Th2-Activated (P=5.9x10-4), Th17-Activated (P=2.1x10-3) and 428 

BCL2/FAM13A (P=4.3x10-3). We highlight 4 of these cGEPs here. CTLA4/CD38 showed the 429 

most upregulation in Tregs and CD4 memory cells (Figure 5F) and is characterized by CD278 430 

and CD38 protein levels as well as the anti-inflammatory genes CTLA4 and IL10. ICOS/CD38 431 

has similar top markers including CD278, CD71, and CD38 but shows broad upregulation 432 

across naive T-cells and CD4 memory cells. The OX40/EBI3 cGEP includes many of the 433 

activation-induced markers used to define AIM positivity in the first place including TNFRSF4 434 
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which encodes OX40 and IL2RA which encodes CD25. TIMD4/TIM3 is most expressed in 435 

MAIT, gdT, and CD8 memory T-cells and is characterized by expression of activation markers 436 

(CD38 protein and RNA) and cytotoxicity genes (GZMB, GZMA, GNLY), and likely represents a 437 

cytotoxic activation response. 438 

 439 

We hypothesized that AIM-associated cGEPs would be enriched in proliferating cells in vivo 440 

since proliferation is a core response to TCR activation. To test this, we performed pseudobulk 441 

sample-level association tests to identify cGEPs with higher usage in proliferating cells (sum of 442 

cell cycle cGEPs>0.1) than non-proliferating cells (sum<0.1, Methods). The results were highly 443 

concordant across datasets (Table S6, Supplementary item 5). 15 cGEPs were significantly 444 

upregulated with proliferation in at least four out of six datasets. Meta-analysis across datasets 445 

identified 12 functional cGEPs (including the three cell cycle cGEPs) and two subset cGEPs 446 

(Th17-Activated and Tph) that were significantly associated with proliferation (Figure S5H). 447 

Consistent with our hypothesis, 14 of 15 proliferation-associated cGEPs (including the 3 cell 448 

cycle cGEPs) were upregulated with AIM positivity (Fisher exact test P=2.1x10-5). Thus, the 449 

AIM-associated cGEPs are associated with proliferation in vivo, consistent with a role 450 

downstream of TCR activation. 451 

6. Annotating antigen-dependent activation in vivo 452 

Next, we developed a per-cell antigen-specific activation (ASA) score to identify and 453 

characterize TCR-activated T-cells in disease. We used forward stepwise selection to select 454 

AIM-associated cGEPs that predicted co-expression of the activation markers CD71 and CD95 455 

in the COMBAT and Flu-Vaccine datasets (Methods). These markers show sustained 456 

upregulation within less than 24 hours of TCR activation50–53, were upregulated in the AIM-457 

positive cells (Figure S5D-F), and had high quality across subsets in both datasets (Figure 458 
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S6A). Stepwise optimization defined ASA as the sum of four cGEPs – TIMD4/TIM3, 459 

ICOS/CD38, CTLA4/CD38, and OX40/EBI3 (Figure S6B, Methods).  460 

 461 

ASA accurately classified T-cells with CD71/CD95 co-expression suggestive of TCR-activation, 462 

yielding AUCs of 0.920 and 0.818 in the COMBAT and Flu-Vaccine datasets (Figure S6C-D). It 463 

also predicted AIM positivity with an AUC of 0.828 in the AIM-Seq assay (Figure S6E) and was 464 

correlated with other surface markers of activation (e.g. R=0.43 (CD69) and 0.52 (CD25), 465 

P<1x10-100, Supplementary item 6). For cases where a discrete label is preferable to a 466 

continuous score, we picked an ASA threshold of 0.0625 based on the trade-off between 467 

sensitivity and specificity (Figure S6C-E). With this threshold, ASA annotated 76.7% of 468 

CD71+CD95+ and 5.2% of non-CD71/CD95 double positive T-cells in the COMBAT dataset 469 

(Figure 6A). In the AIM-Seq dataset, ASA annotated 60.6%, 7.0%, and 3.2% of stimulated AIM-470 

positive, stimulated AIM-negative, and mock stimulated cells, respectively (Figure 6B).  471 

 472 

As proliferation is a core response to activation, we found high ASA in proliferating T-cell 473 

clusters (Figure 6E-F) and significant overlap of ASA-high and proliferating cells (specifically, 474 

cells with summed cell cycle usage > 0.1, Fisher Exact OR 2.8-58.8, P<1x10-100, Figure S6F - 475 

left). However, across reference datasets, substantially more cells were annotated as ASA-high 476 

than proliferating (P=8.8x10-189, paired T-test, Figure 6H). Consistent with this, correlation 477 

between summed cell cycle cGEP usage and ASA was relatively low (mean=0.15) (Figure S6F 478 

- right). Thus, while proliferation and antigen-specific activation overlap to some extent, ASA 479 

offers greater sensitivity for classifying TCR-activation.  480 

 481 

As clonal expansion often follows TCR activation, we tested whether high clonality was 482 

associated with ASA in Covid-19 patients. ASA-high cells were more likely to be clonal, i.e. have 483 

a TCR found in multiple cells from the same sample (Fisher Exact Test: COMBAT OR=2.50, 484 
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UK-Covid OR=2.28, P< 1x10-100 for both). Binarized ASA and cell cycle status were 485 

independently associated with clonality in a multivariate logistic regression (ASA Beta = 0.45,  486 

0.50; Cell cycle Beta = 0.66, 0.52 in COMBAT and UK-Covid respectively, P<1x10-22, 487 

Methods). Furthermore, the absolute number of cells sharing a TCR sequence in a sample was 488 

significantly higher in ASA-high than ASA-low cells (Mann Whitney U test P<1x10-100, both 489 

datasets, Figure 6C, S6G).  490 

 491 

Next, we evaluated how ASA varied between Covid-19 and healthy samples across T-cell 492 

subsets. The percentage of activated (I.e. ASA positive) conventional T-cells varied widely 493 

across samples, between 2.7%-41.2% (mean 10.3%) and 4.9%-44.7% (mean 22.1%), in the 494 

COMBAT and UK-Covid datasets, respectively (Figure 6D). Activation rates were significantly 495 

higher in conventional T-cells in Covid-19 samples than in healthy controls (COMBAT P=1.9x10-496 

7, UK-Covid P=1.5x10-6), even in CD4+ and CD8+ T-cells separately (Figure S6H-J). Activation 497 

rates were similar between CD4s and CD8s (median activation of 8.3%, 21.8% for CD4s and 498 

7.8%, 21.7% for CD8s in COMBAT and UK-Covid). By contrast, there was greater Treg 499 

activation in both healthy and Covid-19 samples, with a median of 33.6 and 35.3% of cells 500 

activated in COMBAT and UK-Covid (Figure S6J). This coincided with substantial overlap of 501 

ASA with the Treg cluster (Figure 6E-F). Tregs were the most ASA-enriched subset in healthy 502 

control samples in the COMBAT (OR=11.4, P<1x10-100) and Flu-Vaccine datasets (OR=4.1, 503 

P<1x10-10) (Figure 6G). Outside of acute infection, we would expect Tregs to be actively 504 

suppressing inappropriate activation. By contrast, in acute Covid-19 samples, we saw less 505 

enrichment for Tregs (OR=4.8 down from 11.4) and more for CD8 central memory (OR=4.8), 506 

CD8 effector memory (OR=2.8), and double negative populations (OR=3.1), reflecting the 507 

antiviral response (all P<1x10-10).  508 

 509 
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Next, we quantified levels of T-cell exhaustion and activation per sample and subset within the 510 

pan-cancer dataset. CD4 conventional T-cell (CD4 Conv) activation rates varied widely across 511 

and between tumor types (Figure 6I). The highest rates of activation were in esophageal cancer 512 

(ESCA - median 48.0%) and the lowest were in bladder cancer (BC - median 5.4%, Figure 6I - 513 

left). As expected, there was minimal exhaustion usage by CD4 Convs across cancer types54 514 

but highly variable levels of CD8 conventional T-cell (CD8 Conv) exhaustion (Figure 6I - 515 

middle). The percentage of activated CD4 Convs and CD8 Convs was correlated (R=0.70, 516 

P=2.6x10-9). In addition, CD4 conv activation was somewhat correlated with CD8 Conv 517 

exhaustion (R=0.38, P=4.0x10-3, Figure S6K). CD4 Treg activation levels were higher in healthy 518 

tissues and tumors than CD4 and CD8 Conv T-cells (Figure S6L). In addition, Treg activation 519 

was significantly higher in thyroid cancer (P=3.0x10-6) and esophageal cancer (P=0.0045) 520 

relative to matched normal tissues. 521 

 522 

Observing that many tumor-infiltrating T-cells had both low ASA and exhaustion usage, we 523 

defined bystanders as cells with summed ASA and exhaustion usage below 0.0625. The 524 

percentage of CD4 bystanders varied widely by cancer from 42.0% (esophageal) to 91.2% 525 

(bladder) and CD8 bystanders varied similarly from 35.5% (endometrial) to 90.1% (bladder).  526 

 527 

Within tumor samples, we tested which T-cell subset cGEPs were enriched for bystanders 528 

(Figure 6J). The most bystander-enriched subsets were CD4-Naive (OR=15.9), Th2-Resting 529 

(OR=10.6), Th1-like (OR=7.3), MAIT (OR=4.42), and CD8-Naive (OR=4.03) (Fisher Exact Test 530 

P< 1x10-100 for all comparisons). The subsets most depleted of bystanders were also those most 531 

enriched for activation, namely Tph (OR=0.19), Treg (OR=0.23), and CD8-Trm (OR=0.61) 532 

(P<1x10-21, all comparisons). These analyses illustrate how TCAT and ASA scoring can 533 

facilitate exploration of disease.  534 
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7. Identifying disease-associated cGEPs 535 

Next, we associated cGEPs with sample-level disease phenotypes in infection, autoimmunity, 536 

and cancer (Table S7). First, we tested cGEP associations with Covid-19 (Methods). We 537 

applied ordinary least squares using psuedobulk sample-level features to two PBMC-derived T-538 

cell datasets: UK-Covid (80 Covid-19, 21 healthy donors, Figure 7A) and COMBAT (77 Covid-539 

19, 10 healthy donors, Figure 7B). We observed overall concordant cGEP associations 540 

(Pearson R=0.64, P=2.8x10-7, Figure 7C). Consistent with the key role of interferon in viral 541 

infections17,18, ISG was the most positively upregulated cGEP in both datasets (FDR-corrected 542 

P, denoted as Q<0.05). AIM-associated functional cGEPs were up-regulated in acute Covid-19, 543 

consistent with viral activation of T-cells. These included exhaustion, cell cycle, TIMD4/TIM3, 544 

OX40/EBI3, NME1/FABP5, and CTLA4/CD38 (Q<0.05 for both datasets). We also found 545 

increased Tph cGEP usage in Covid-19 relative to controls (Q<1x10-8 for both datasets), 546 

consistent with recent demonstration of increased abundance of this subset in infection39. An 547 

intriguing novel finding is that the Th1-like cGEP was significantly negatively associated with 548 

Covid-19 in both datasets (Q<1x10-4). This negative association was seen within manually 549 

gated CD4 memory (Q=1.1x10-4) and CD4 effector memory subsets (Q=4.5x10-6), suggesting it 550 

is not due to differential abundance of circulating memory CD4 T-cells. Consistent with this, 551 

pseudobulk expression of the Th1 markers CXCR3 RNA and protein levels were significantly 552 

lower in Covid-19 samples relative to controls (P=8.1x10-7 and 0.010 respectively, COMBAT). 553 

Immediate early gene cGEPs (IEG1, IEG2, IEG3) were also significantly associated with Covid-554 

19 in the COMBAT dataset (FDR-corrected P<1x10-5) but not in the UK-Covid dataset (P>0.5), 555 

perhaps related to sample processing differences (see section 2). 556 

 557 

Next, we identified cGEPs associated with inflamed synovial tissue in rheumatoid arthritis (RA) 558 

using the AMP-RA dataset, which includes synovial biopsies from 70 RA and 8 osteoarthritis 559 
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(OA) patients (Figure 7D)20. Ten out of the eleven significantly associated cGEPs were AIM-560 

associated, including the metallothionein (Q=2.9x10-5), ISG (Q=0.0020), Tph (Q=0.0020), HLA 561 

(Q=4.9x10-5), ICOS/CD38 (Q=0.00010), Exhaustion (Q=0.041), and cell cycle (Q<.05 for all 562 

three). Of note, Metallothionein was shown to be increased in the plasma of RA patients and 563 

within the synovia of mouse models of RA55. The Tph association is consistent with prior 564 

observations by us and others of Tph enrichment within RA synovia22. The Th22 cGEP was also 565 

associated with RA (Q=0.0027), confirming a prior observation of increased Th22 cell 566 

abundance in RA synovia, where they may stimulate osteoclasts56.  567 

 568 

Lastly, we identified cGEPs associated with T-cells in tumors relative to matched healthy tissues 569 

(Figure 7E). We utilized a pan-cancer dataset containing 89 tumor and 47 matched normal 570 

samples from 13 cancer types. First, we analyzed all samples together, controlling for tumor 571 

type and sequencing technology as fixed effects. The Treg cGEP was the most strongly 572 

associated, consistent with the known importance of Tregs in tumors (Q=7.4x10 -12)57. The 573 

exhaustion and ISG cGEPs were also strongly associated with cancer, as expected (Q=8.5x10 -6 574 

and 9.3x10-6, respectively)58,59. There was also substantial upregulation of AIM-associated 575 

functional cGEPs, including CTLA4/CD38 (Q=1.3x10-9), TIMD4/TIM3 (Q=1.3x10-9), and 576 

OX40/EBI3 (Q=4.9x10-9). Overall, 17 of the 21 significantly upregulated cGEPs in tumor-577 

infiltrating T-cells were AIM-associated (Fisher exact test P=7.4x10-6).  578 

 579 

We also separately tested for cGEP association in each of the six cancer types with at least two 580 

normal and two tumor samples (Methods). The results were highly concordant across cancers 581 

(P<.05, sign test, for 14 out of 15 pairs of tumor types, Figure 7F). For example, the Treg, 582 

Exhaustion, and CTLA4/CD38 cGEPs were significantly upregulated in all six tumor types 583 

tested (P<.05). However, some signals were more specific. The Th17-Activated cGEP was only 584 

significant in thyroid and hepatocellular carcinoma (P=5.3x10-6 and P=0.013), while the Th2-585 
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Activated cGEP was upregulated in esophageal, uterine, thyroid and hepatocellular carcinoma 586 

(P=0.023, P=0.023, P=0.00057, P=0.0019). 587 

 588 

Surprisingly, the Tfh-2 and Tph cGEPs were both upregulated in cancer (Q=3.6x10-4, Q=3.3x10-589 

10). T follicular helper (Tfh) and T peripheral helpers (Tph) are CXCL13-producing CD4 subsets 590 

that recruit B-cells and aid in antibody production. Tfhs are found primarily in lymphoid organs 591 

and Tphs are predominantly in inflamed tissues60, including likely within tumors61.  592 

 593 

Consistent with functional Tph activity, the expression of the B-cell chemoattractant CXCL13 594 

was highly correlated with average Tph cGEP usage across samples (R=0.67, P=1.2x10 -30, 595 

Figure S7A). This correlation was stronger in tumor (R=0.69, P=1.2x10-13) than normal samples 596 

(R=0.34, P=0.021). We hypothesized that average Tph usage would correlate with plasma cell 597 

abundance in tumors. To test this, we re-analyzed a published pan-cancer dataset containing 598 

other cell-types besides T-cells from 148 primary tumors, 53 matched adjacent tissues, and 25 599 

healthy donor samples62. Tph usage and CXCL13 expression remained correlated in this 600 

dataset (R=0.67, P=1.2x10-30, Figure S7B). Average Tph, Tfh-1, and Tfh-2 cGEP usage were 601 

significantly correlated with plasma cell percentage within the tumors (Spearman ρ=0.23, 0.34, 602 

0.28, respectively, P<1x10-2, Figure S7C). In a multivariate regression across all samples, Tfh-1 603 

and Tph usage were independently associated with plasma cell abundance (P=0.042, P=0.051 604 

respectively). Subsetting to non-tumor samples, Tfh-1 and Tfh-2 remained statistically 605 

significant (P=0.017, P=0.027, respectively), but Tph was no longer significant (P=0.351). These 606 

findings suggest that Tph cells are functional within tumors and are associated with increased 607 

abundance of plasma cells.  608 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.592310doi: bioRxiv preprint 

https://paperpile.com/c/UtqVAI/rIhQ
https://paperpile.com/c/UtqVAI/ryUe
https://paperpile.com/c/UtqVAI/JcC4
https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

Discussion 609 

Here, we introduced CellAnnoTator (abbreviated *CAT) for annotating scRNA-Seq data with 610 

predefined GEPs. *CAT exploits the observation that functionally informative GEPs learned by 611 

cNMF are reproducible across different datasets and contexts (Figure 2). This enables GEPs 612 

identified across multiple reference datasets to aid in interpreting new datasets.  We 613 

demonstrated *CAT with a GEP catalog derived from T-cells across diverse tissues and 614 

diseases, yielding T-Cell AnnoTator (TCAT). We meta-analyzed a range of reference datasets, 615 

obtaining the most comprehensive T-cell GEP catalog to date, including 16 subset-associated, 616 

five technical artifact, and 25 functional programs. 617 

 618 

TCAT demonstrated key advantages over clustering of T-cells. First, it simultaneously 619 

annotated functional and subset GEPs within the same cells, disentangling signals that 620 

clustering conflated (Figure 4). Second, TCAT out-performed RNA-based clustering for 621 

annotation of T-cell subsets without requiring manual curation of the cluster labels (Figure 3). 622 

Third, TCAT cGEP activity could be assessed across diverse disease states (Figure 7). TCAT 623 

also improved upon prior matrix factorizations of T-cells by yielding a more comprehensive 624 

catalog of T-cell GEPs. It was faster than running de novo matrix factorization, avoided the need 625 

to manually re-label GEPs, and increased accuracy for smaller datasets (Figure 1C-F).  626 

 627 

TCAT explained why traditional T-cell subsets have been challenging to identify in scRNA-Seq. 628 

T-cell transcriptional clusters were heavily influenced by many non-subset GEPs, including 629 

technical artifacts, cell cycle, interferon response, and cytotoxicity (Figure 4). TCAT overcame 630 

this by annotating subset-associated cGEPs in parallel with functional cGEPs. In addition, TCAT 631 

revealed how cGEPs can be expressed in different contexts. For example, the cytotoxic cGEP 632 
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was expressed in multiple subsets, and polarization cGEPs were expressed in both CD4 and 633 

CD8 T-cells (Figure 4E, S4). There has recently been increased recognition of polarized CD8 634 

populations such as Tc2 which can secrete cytokines typically associated with Th2-polarized 635 

CD4 memory T-cells40. TCAT helped reveal these overlooked populations in scRNA-Seq data. 636 

 637 

TCAT also highlighted the growing recognition of T peripheral helper (Tph) cells in disease. The 638 

Tph cGEP was significantly associated with Rheumatoid Arthritis (RA), Covid-19, and Cancer 639 

(Figure 6). While the association with RA was expected since Tph cells were discovered there, 640 

and recent data has identified Tph cells in Covid-1939, the association with cancer is less well 641 

established63. Tph usage was associated with expression of CXCL13 and plasma cell 642 

abundance in tumors, suggesting Tph cells may drive lymphoid aggregation. 643 

 644 

We also demonstrated that many cGEPs were induced following a TCR-dependent activation 645 

stimulus using the novel AIM-Seq assay (Figure 5). AIM-Seq produces TCR and CITE-Seq 646 

profiles for T-cells that are labeled based on their response to activation-induced marker 647 

assays. This identified 24 cGEPs associated with TCR-dependent activation, including 11 that 648 

may reflect context-dependent activation responses such as Th17-activated in Th17-polarized 649 

cells and CTLA4/CD38 in Tregs. Many of the AIM-associated GEPs were strongly associated 650 

with Covid-19, rheumatoid arthritis, and cancer, consistent with the importance of TCR-651 

dependent activation in these diseases (Figure 6).  652 

 653 

We aggregated several AIM-associated cGEPs into an antigen-specific activation (ASA) score 654 

to compare activation rates across diseases and cell subsets. This revealed impressive 655 

variability in the percentage of activated and exhausted CD4 and CD8 T-cells within and 656 

between different tumor types (Figure 7). In all tumor types, many T-cells lacked activation or 657 

exhaustion signatures and were labeled as bystanders. Bystanders were enriched for naive and 658 
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unconventional T-cell subsets, whereas activated cells were enriched for Treg, Tph, and 659 

resident memory subsets. This approach shows how TCAT can aid in characterizing activation 660 

and exhaustion in vivo.  661 

 662 

We highlight some current limitations of TCAT. First, TCAT’s output can be non-sparse, leading 663 

to non-zero usage of cGEPs contributing little biological function. This necessitates the use of 664 

thresholds balancing sensitivity and specificity to decide if a cGEP is active in a cell. For 665 

example, annotating TCR-activation or polarization currently relies on score thresholds. This 666 

limitation can be mitigated by algorithmic improvements that increase TCAT’s sparsity. Second, 667 

several cGEPs lack a clear interpretation, or may be redundant with other cGEPs in the catalog. 668 

For example, three cGEPs labeled IEG1-IEG3 are strongly enriched for immediate early genes. 669 

We used reproducibility of spectra across multiple datasets to enrich for biologically meaningful 670 

GEPs. As more datasets get incorporated, we anticipate increasing robustness of the catalog. 671 

Furthermore, new experimental perturbation datasets can facilitate linkage of cGEPs with 672 

upstream regulators to aid in interpretation.  673 

 674 

We demonstrated application of *CAT to T-cells, but it is equally applicable to other cell types or 675 

tissues. We make the *CAT software publicly available and have created a repository to host 676 

cGEP catalogs, enabling easy application to new datasets. Furthermore, users studying other 677 

tissues and cell-types can contribute their own catalogs to the repository. We envision this as a 678 

resource akin to the molecular signatures database (MSigDB)64,65 , but hosting GEPs for 679 

annotation of scRNA-Seq data rather than gene-sets for enrichment testing. We hope it will aid 680 

in comprehensive identification of GEPs underlying cell behavior across tissues and diseases.  681 
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Methods 682 

Materials and reagents 683 

 684 

 685 

Reagent or Resource Source Identifier 

XVIVO15 culture media Lonza Catalog #: 02-060Q 

RPMI 1640 Medium ThermoFisher Catalog #: 11875093 

Benzonase Nuclease Sigma Aldrich CAS #: 9025-65-4 

Anti-CD28 antibody Biolegend Catalog #: 302933 
RRID: AB_11150591 

Anti-CD49d antibody Biolegend Catalog #: 304339 
RRID: AB_2810443 

Human TruStain FcX™ 
(Fc Receptor Blocking 
Solution) 

Biolegend Catalog #: 422302 
RRID: AB_2818986 

Zombie Yellow™ 
Fixable Viability Kit 

Biolegend Catalog #: 423104 

TotalSeq™-C Human 
Universal Cocktail, V1.0 

Biolegend Catalog #: 399905 

Human TOTAL-SeqC 
Repertoire (5') Hashing 
Antibodies 

BioLegend Catalog #: 394661, 394663, 394665 

Anti-CD3-BV421 (SK7) Biolegend Catalog #: 344833 
RRID: AB_2565674 

Anti-CD134-PE  
(Ber-ACT35) 

Biolegend Catalog #: 350003 
RRID: AB_10641708 

Anti-CD274-BV785 
(29E.2A3) 

Biolegend Catalog #: 329735 
RRID: AB_2629581 

Anti-CD137-APC 
(4-B4-1) 

Biolegend Catalog #: 309809 
RRID: AB_830671 

Anti-CD4-FITC 
(RPA-T4) 

Biolegend Catalog #: 300505 
RRID: AB_314073 
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Chromium Next GEM 

Single Cell 5' Kit v2, 16 

rxns 

10X Catalog #:1000263 

Dual Index Kit TN Set A, 

96 rxn 

10X Catalog #: 1000250 

Chromium Next GEM 

Chip K Single Cell Kit, 

48 rxns   

10X Catalog #: 1000286 

Chromium Single Cell 

Human TCR 

Amplification Kit, 16 rxns   

10X Catalog #: 1000252 

Library Construction Kit, 

16 rxns  

10X Catalog #: 1000190 

5' Feature Barcode Kit, 

16 rxns  

10X Catalog #: 1000256 

 686 

 687 

 688 

CellAnnoTator (*CAT) Algorithm 689 

 690 

Whereas cNMF learns both GEPs and their usage in cells, *CAT has the simpler problem of 691 

fitting the usage for a fixed set of GEPs. Specifically cNMF runs NMF multiple times, each time 692 

solving the following optimization: 693 

 694 

𝐴𝑟𝑔𝑀𝑖𝑛𝐺,𝑈 | 𝑋 −  𝑈𝐺|𝐹 where 𝑈 ≥  0, 𝐺 ≥  0 695 

 696 

where 𝑋 is a NxH matrix of N cells by the top H overdispersed genes, 𝑈 is a learned NxK matrix 697 

of the usages of K GEPs in each cell, and 𝐺 is a learned KxH matrix where each row encodes 698 

the relative contribution of each highly variable gene in a GEP. H is usually a parameter set to 699 

~2000 overdispersed genes. | |𝐹 denotes the Frobenius norm. 𝑋 includes variance-normalized 700 

overdispersed genes to ensure biologically informative genes are included and contribute 701 
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similar amounts of information even when they may be expressed on different scales. For 702 

cNMF, the optimization is solved multiple times and the resulting 𝐺 matrices are concatenated, 703 

filtered, and clustered to determine a final average estimate of 𝐺. Ultimately cNMF refits the 704 

GEP spectra into two separate representations, one reflecting the average expression of the 705 

GEP and units of transcripts per million 𝐺𝑡𝑝𝑚  and on in Z-scored units used to define marker 706 

genes 𝐺 𝑠𝑐𝑜𝑟𝑒𝑠 (see Kotliar et, al., 201914 for details). 707 

 708 

Analogously, *CAT takes a fixed catalog of GEPs as input, denoted as 𝐺∗, and a new query 709 

dataset 𝑋𝑞𝑢𝑒𝑟𝑦  and solves the optimization: 710 

 711 

𝐴𝑟𝑔𝑀𝑖𝑛 𝑈 | 𝑋
𝑞𝑢𝑒𝑟𝑦  −  𝑈𝐺∗|𝐹 where 𝑈 ≥  0 712 

The columns of 𝑋𝑞𝑢𝑒𝑟𝑦  and 𝐺∗correspond to a pre-specified set of overdispersed genes. 713 

Analogous to cNMF, we use gene-wise standard-deviation-normalized counts for 𝑋𝑞𝑢𝑒𝑟𝑦 . See 714 

below for how 𝐺∗ is calculated for T-CellAnnoTator. We solve for 𝑈 with non-negative least 715 

squares using the NMF package in scikit-learn version 1.1.366 with 𝐺∗ fixed. We use the 716 

Frobenius error, the multiplicative update (“mu”) solver, tolerance of 1x10 -4, and max iterations 717 

of 1000. We then row-normalize the 𝑈 matrix so that each cell’s aggregate usage across all K 718 

GEPs sums to 1. 719 

 720 

Dataset pre-processing and batch-effect correction 721 

 722 

To generate the input matrix for cNMF for each dataset, we first filtered genes detected in fewer 723 

than 10 cells and cells with fewer than 500 unique molecular identifiers (UMIs). We also 724 

excluded antibody-derived tags (ADTs) and genes containing a period in their gene name. We 725 

subsequently subsetted the data to the top 2000 most overdispersed genes, identified by the 726 
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“seurat_v3” algorithm as implemented in Scanpy35. Next, we scaled each gene to unit variance. 727 

To avoid outliers with excessively high values, we calculated the 99.99th percentile value across 728 

all cells and genes and set this as a ceiling. We denote this matrix as 𝑋𝑟𝑎𝑤. 729 

 730 

We used an adapted version of harmonypy to correct batch effect and other technical variables 731 

from 𝑋𝑟𝑎𝑤 prior to cNMF21. For this, we computed Harmony’s maximum diversity clustering 732 

matrix from principal components calculated from a normalized version of 𝑋 which we label 733 

𝑋𝑛𝑜𝑟𝑚. Specifically, to compute 𝑋𝑛𝑜𝑟𝑚, we started from the same initial gene list described 734 

above but first normalized the rows of the matrix so that each cell’s counts sum to 10,000 735 

(TP10K normalization). We then subsetted to the top 2000 overdispersed genes, and scaled 736 

each column (gene) to unit variance, resulting in 𝑋𝑛𝑜𝑟𝑚. We then performed principal 737 

component analysis (PCA) on 𝑋𝑛𝑜𝑟𝑚 and supplied those principal components to the 738 

run_harmony function of harmonypy. We then used the mixture of experts model correction, 739 

implemented in harmonypy with the computed maximum diversity clustering matrix, but instead 740 

of correcting the PCs using this model, as standard Harmony does, we corrected 𝑋𝑟𝑎𝑤. This 741 

creates a small amount of variability around 0 for the smallest values in 𝑋𝑟𝑎𝑤. We therefore set 742 

a floor of 0, resulting in the corrected matrix 𝑋𝑐 used as the count matrix for cNMF.  743 

 744 

Consensus non-negative matrix factorization (cNMF) 745 

 746 

We ran cNMF on the batch-corrected 𝑋𝑐 matrix which only includes the top 2000 overdispersed 747 

RNA genes. Spectra for the resulting GEPs were then refit by cNMF including all genes that 748 

passed the initial set of filters including ADTs. Specifically, RNA counts were normalized to sum 749 

to 10,000, and ADT counts were separately normalized to sum to 10,000 and the combined 750 

matrix was passed as the –tpm argument for cNMF. Thus the GEP spectra output by cNMF 751 

incorporate ADTs and genes not included in the 2000 overdispersed genes. 752 
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 753 

cNMF was run for each dataset with the number of components (K) varying between 15 and 55 754 

and with 20 iterations. The final number of NMF components used for each dataset, K*, was 755 

chosen by visualizing the trade-off between reconstruction error and stability for these runs 756 

(Supplementary item 1). Once K* was selected, we ran cNMF a final time with only this value 757 

for K and with 200 iterations to generate the final GEP spectra estimates.  758 

 759 

Constructing a catalog of consensus GEPs (cGEPs) 760 

 761 

Next, we identified consensus GEP spectra – I.e. the average of correlated GEP spectra 762 

identified by cNMF in different datasets. Normalized input GEP vectors, denoted as g i, were 763 

computed by starting from the spectra_tpm output from cNMF, renormalizing each vector to 764 

sum to 106, and then dividing each element by the standard deviation of the corresponding gene 765 

in the –tpm input to cNMF.  Then, we created an undirected graph where the 267 GEPs 766 

identified across all reference datasets were represented as nodes g1 … g267. We drew edges, 767 

denoted as Ei,j connecting a pair of GEPs gi and gj if the following criteria were met: 768 

 769 

1. gi and gj were from different datasets 770 

2. Rij  > 0.5 where Rij denotes the Pearson correlation between gi and gj. For computing Rij , 771 

gi and gj were subset to the union of the overdispersed genes for each dataset.  772 

3. gi was among the top seven most correlated GEPs with gj, and gj was among the top 773 

seven most correlated GEPs with gi with correlation defined as in 2.  774 

 775 

Next, we initialized a set for each GEP: x1 = {g1} … x267 = {g267}. We then iterated through all 776 

edges Ei,j in the graph in order of decreasing Rij and merged the sets xi and xj into a new set xi,j = 777 

{gi , gj}. If either gi or gj were already members of a merged set from previous merges, we 778 
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merged their containing sets only if at least two thirds of the GEP pairs in the resulting 779 

consensus set were connected by edges. For example, if there is an edge E4,9 and g4 is already 780 

merged into a set {g1 , g2 , g4}, then we only merged {g1 , g2 , g4} and {g9} if there were also 781 

edges E1,9 and E2,9. This resulted in 52 merged sets and 52 unmerged “singleton” sets. We 782 

filtered 49 of the 52 singletons and retained 3 that had a biological explanation for being 783 

identified in only one dataset. 784 

 785 

Lastly, we subset each GEP to the union of overdispersed genes across all 7 reference 786 

datasets that were present in all dataset and obtained the final consensus GEPs by taking the 787 

element-wise average GEPs in each merged set. This matrix was used as the reference for 788 

TCAT. For marker gene analyses (e.g. Figure 2B, D, Supplementary Item 2), we element-wise 789 

averaged the Z-score representation of GEPs output by cNMF for GEPs in a consensus set. 790 

 791 

Simulation analysis 792 

 793 

We adapted the scsim simulation framework described in the cNMF publication14 and based on 794 

Splatter67 into a new iteration, scsim2. Like with scsim, we distinguished between subset GEPs 795 

which are mutually exclusive and non-subset or “activity” GEPs which are not. For the original 796 

scsim framework, cells used one of multiple subset GEPs and potentially used a single activity 797 

GEP. We adapted scsim to allow cells to use anywhere from none to all of the activity GEPs in 798 

addition to their single subset GEP. We kept the Splatter parameters used in the cNMF 799 

publication to describe the distribution of gene expression data: mean_rate=7.68, 800 

mean_shape=0.34, libloc=7.64, libscale=0.78, expoutprob=0.00286, expoutloc=6.15, 801 

expoutscale=0.49, diffexpprob=.025, diffexpdownprob=.025, diffexploc=1.0, diffexpscale=1.0, 802 

bcv_dispersion=0.448, bcv_dof=22.087.  803 

 804 
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For figure 1, we simulated 10 subset GEPs and 10 activity GEPs based on 10,000 total genes. 805 

The extra-GEP reference included all 20, the missing-GEP reference included 6 of the subset 806 

GEPs and 6 of the non-subset GEPs, and the query dataset included 8 subset GEPs and 8 non-807 

subset GEPs. Each dataset consisted of 9000 genes, randomly sampled from the 10,000. Each 808 

cell was randomly assigned a subset GEP with uniform probability (shown in the UMAP in figure 809 

3B), and each cell randomly selected whether it expressed each activity GEP with probability of 810 

0.3. The degree of usage of each activity GEP was sampled uniformly between 0.1 and 0.7. If 811 

the sum of the activity GEPs exceeded 0.8 for a cell, they were renormalized to sum to 0.8. 812 

Thus each cell’s usage of its subset GEP always exceeded 0.2. We simulated 100,000 cells 813 

each for the extra-GEP and missing GEP references. We simulated multiple query datasets 814 

containing 100, 500, 1000, 5000, 10,000, 20,000, 50,000, or 100,000 cells. 815 

 816 

We subsequently ran cNMF using 1000 overdispersed genes, 20 iterations, 817 

local_neighborhood_size=0.3 and density_threshold=0.15. We used K=20, K=12, and K=16 for 818 

the extra-GEP reference, missing-GEP reference, and query datasets respectively. We then 819 

used *CAT to fit the usage of the reference GEPs on the query dataset. To evaluate the 820 

performance of *CAT and cNMF, we calculated the Pearson correlation of the inferred GEP 821 

usage with the simulated ground truth usage. 822 

 823 

Gene-set enrichment analysis 824 

 825 

We used Fisher Exact Test in Python’s Scipy library to associate cGEPs with gene sets. For the 826 

T-cell polarization dataset24 we defined polarization gene sets as genes that had FDR-corrected 827 

P-value < 0.05 and fold change > 2 with the stimulation condition. We excluded genes with 828 

FDR-corrected P-value between 0.05 and 0.2 and fold-change>1, as many of these are up-829 

regulated by the stimulation but just did not reach FDR significance. We also obtained literature 830 
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gene sets corresponding to immediate early genes28 and gene ontologies23,68. We tested these 831 

literature gene-sets for enrichments with gene sets derived from the Z-score representation of 832 

cGEPs based on a score threshold of 0.015, which corresponded to the 99th percentile across 833 

all genes and cGEPs. We then tested for association using Fisher’s Exact Test as implemented 834 

in scipy.stats in Python. 835 

 836 

Manual subset gating analysis  837 

 838 

We library-size normalized antibody derived tag (ADT) protein measurements to sum to 104 839 

(TP10K) and applied the centered log ratio (CLR) transformation. We then scaled each protein 840 

to unit variance, and truncated at 15 to remove excessively high outliers. Next, we performed 841 

principal component analysis (PCA) and ran batch correction using harmonypy with the same 842 

batch features as for cNMF. We then computed the K-nearest neighbor graph with K=5 843 

neighbors, using the Harmony-corrected principal components. We then smoothed the 844 

normalized protein estimates using MAGIC69 using the K-nearest neighbor graph computed 845 

above and the diffusion operator powered to t=3. 846 

 847 

We gated canonical T-cell subsets using the smoothed normalized ADTs. First, we gated 848 

gamma-delta (γδ) T-cells using expression of Vδ2 TCR. Then, we separated MAIT cells using 849 

expression of CD161 and TCR Vα 7.2. We then used CD4 and CD8 to separate CD4 850 

(CD4+CD8-), CD8 (CD4-CD8+), double positive (DP) (CD4+CD8-), and double negative (DN) 851 

(CD4-CD8-) T-cells. We then subset to CD4 T-cells and gated regulatory T-cells (Tregs) using 852 

expression of CD25 and CD39. Of the remaining CD4 T-cells, we used CD62L and CD45RA to 853 

define CD4 Naive (CD62L+CD45RA+), CD4 Central Memory (CD62L+CD45RA-), CD4 Effector 854 

Memory (CD62L-CD45RA-), and CD4 TEMRA (CD62L-CD45RA+) populations. For the CD8 T-855 

cells, we similarly used CD62L and CD45RA to define CD8 Naive (CD62L+CD45RA+), CD8 856 
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Central Memory (CD62L+CD45RA-), CD8 Effector Memory (CD62L-CD45RA-), and CD8 857 

TEMRA (CD62L-CD45RA+) populations.  858 

 859 

T-cell subset classification benchmarking analyses 860 

We used T-cell subsets defined by manual gating of ADTs in the Flu-Vaccine dataset as ground 861 

truth for prediction. For single cGEP prediction, we ran TCAT to predict cGEP usage, and 862 

identified the cGEP that best predicted the lineage based on area under the curve (AUC). 863 

 864 

We also used all of the cGEP simultaneously to perform simultaneous multi-label prediction. We 865 

scaled the normalized usages for all cGEPs to zero mean and unit variance. Using COMBAT as 866 

a training dataset, we trained a multinomial logistic regression using scikit-learn66 version 1.0.2 867 

with lbfgs solver to predict gated subset from usages. Model weights were adjusted by the 868 

inverse of subset size using class_weight=“balanced”, allowing subsets with different cell counts 869 

to contribute to the model equally. We excluded CD4 TEMRA, double negative, and double 870 

positive subsets from this analysis due to low cell counts in both the training and testing 871 

datasets. We evaluated this model in the independent Flu-Vaccine query dataset.  872 

 873 

Analogous comparisons were made using GEPs from Yasumizu et. al, 2024 fit to the data using 874 

the NMFproject software13. We also obtained gene sets derived from NMF analyses of T-cell in 875 

a pan-cancer dataset16. To assess the ability of these gene sets to predict gated subsets, we 876 

used the score_genes function in Scanpy35 on data normalized following the standard pipeline 877 

(library size normalizing to TP10K, log transformation, scaling each each gene to unit variance). 878 

We then assigning each subset to the gene set that yielded the maximal AUC. 879 

 880 

To evaluate clustering, we first normalized the data as above, and subset to highly variable 881 

genes using the highly_variable_genes function in Scanpy with default parameters. We then ran 882 
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principal component analysis (PCA) and Harmony batch correction of the PCs21. We then 883 

computed the K nearest neighbor graph using 31 harmony-corrected PCs and 30 nearest 884 

neighbors. We then performed Leiden clustering70 with resolution parameters ranging from 0.25 885 

to 2.25 increasing by 0.25. For each clustering resolution, we performed a greedy search to 886 

assign clusters to manually gated subsets based on maximization of the balanced accuracy (I.e. 887 

the average recall across all subsets). In each iteration, we considered all unassigned clusters 888 

and possible gated subset assignments, and selected the cluster and assignment that most 889 

increased the overall balanced accuracy. When no remaining cluster assignments would 890 

increase the balanced accuracy, we assigned the cluster to a subset that least decreased the 891 

balanced accuracy. We continued this process until each cluster was assigned to a subset. 892 

 893 

Activation Induced Marker assay followed by scRNA-Seq (AIM-Seq)  894 

 895 

PBMCs were quickly thawed and placed in pre-warmed xVIVO15 cell culture medium (Lonza) 896 

supplemented with 5% heat-inactivated FBS. To reduce cell clumping, PBMCs were incubated 897 

in xVIVO15 containing 50 U/mL of benzonase nuclease (Sigma-Aldrich) for 15 minutes at 37 898 

degrees and filtered using a 70 µm cell strainer. Washed and nuclease treated cells were 899 

seeded in a 96 well cell culture plate at a concentration of 2.5 x 106/mL. Peptide stimulations 900 

were performed using the CEFX Ultra SuperStim Pool (JPT Peptide Technologies, Product 901 

Code: PM-CEFX-1) at a final concentration of 1.25 µg/mL per peptide for 22 hours at 37 902 

degrees and 5% CO2. Recombinant anti-CD28 and anti-CD49d antibodies (BioLegend) were 903 

added at a final concentration of 5 µg/mL and 0.625 µg/mL, respectively, to provide co-904 

stimulation for peptide reactive T-cells. Separately mock-stimulated cells were treated with anti-905 

CD28 and anti-CD49d antibodies at the same concentration.  906 

 907 
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Peptide responsive T-cells were detected by the expression of the surface activation markers 908 

PD-L1, OX40, and CD137 via flow cytometry. Following the stimulation, peptide treated and 909 

mock-stimulated cells were washed in cell staining buffer (PBS + 2mM EDTA + 2% FBS) to end 910 

the stimulation. Fc receptor blocking was performed using a 1:50 dilution of Human TruStain 911 

FcX (Biolegend) in cell staining buffer for 10 minutes at 4 degrees. Cell viability staining was 912 

performed using a 1:500 dilution of Zombie Yellow Fixable Viability Dye (BioLegend) prepared 913 

in PBS for 30 minutes at 4 degrees. Surface staining was performed using 1:100 dilutions of 914 

BV421 conjugated anti-CD3, FITC conjugated anti-CD4, BV786 conjugated anti-PD-L1, PE 915 

conjugated anti-OX40, and APC conjugated anti-CD137 (BioLegend) for 25 minutes at 4 916 

degrees in cell staining buffer. Following cell staining, antigen reactive and non-reactive T-cells 917 

were identified using a BD FACSAria II cell sorter and collected in cRPMI medium (100 U/mL 918 

penicillin-streptomycin + 2 mM L-glutamine + 10 mM HEPES + 0.1 mM non-essential amino 919 

acids + 1 mM sodium pyruvate + .05 mM 2-Mercaptoethanol) supplemented with 20% FBS. 920 

Sorted T-cell populations were then labeled with 75 uL of TotalSeq oligo conjugated hashing 921 

antibody mix, incubated for 30 minutes at 4 degrees with gentle mixing after 15 minutes, and 922 

pooled in equal quantities. Staining with the TotalSeq-C Human Universal Cocktail (BioLegend) 923 

was then performed according to the manufacturer's instructions. The cells were then 924 

resuspended in PBS supplemented with .04% FBS at a final concentration of 500 cells/µL and 925 

submitted for single-cell profiling on the Chromium Next GEM instrument. Library preparation 926 

was completed for the hashtag oligos, single-cell rna-seq, cite-seq, and TCR-repertoire 927 

sequencing following the manufacturer’s instructions. 928 

 929 

We collected AIM-Seq data from two separate 10X runs. In the first experiment, PBMCs from 930 

three donors were processed independently as described above and were pooled together after 931 

fluorescence activated cell sorting (FACS). In the second run, PBMCs from four donors, two of 932 

which overlapped with the first run, were stimulated separately and pooled prior to FACS.  933 
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 934 

Preprocessing the AIM-Seq dataset 935 

The AIM-Seq data was processed using Cell Ranger version 6.1.1 with default parameters and 936 

alignment to hg38 reference genome. The donor of origin for each cell was determined using 937 

Demuxlet version 1.0 with doublet-prior of 0.171. Cells with null or ambiguous demuxlet result, 938 

fewer than 10 counts of the hashtag oligos, or fewer than 50 total RNA counts were filtered. To 939 

account for staining differences between the hashtag oligos and different sequencing depths of 940 

the two 10X runs, the counts for each hashtag oligo in each 10X run were scaled to have the 941 

same median value. Next we added a pseudocount to the hashtag oligo counts and log10 942 

transformed this data. Then we ran Gaussian Mixture models separately for each hashtag oligo 943 

with K=2 clusters. Each cell was assigned to a single condition if it was in the high cluster for 944 

one oligo and the low clusters for all others, a doublet if it was in the high cluster for more than 945 

one oligo, or an empty droplet if it was in the low cluster for all oligos. Empty droplets or 946 

doublets based on the hashtag oligo clustering were filtered, as were doublets based on 947 

demuxlet. Genes detected in fewer than 10 cells were filtered prior to running TCAT. 948 

 949 

cGEP associations with AIM-positivity, proliferation, and disease 950 

 951 

To associate cGEPs with the AIM-Seq stimulus, we first ran TCAT to fit the usages of the 952 

cGEPs in the AIM-Seq dataset. We then computed the average usage of each cGEP in cells 953 

from each sort condition in each donor. We created two dummy variables, the first indicating 954 

whether a sample was treated with CEFX or Mock, and the second indicating whether a CEFX-955 

treated sample was AIM-positive or not. We fit these two variables and an intercept to average 956 

cGEP usage in the sample. cGEPs associated with the CEFX-or-Mock dummy variable were 957 

labeled milieu-associated while cGEPs positively associated with the AIM-positive dummy were 958 

labeled AIM-associated.  959 
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 960 

To associate cGEPs with proliferation, we defined cells as proliferating or non-proliferating in 961 

each dataset by setting a threshold of 0.1 on the sum of the three cell cycle cGEPs, S-phase, 962 

late S-phase, and G2M-phase. We then computed the mean usage of each cGEP per sample 963 

separately in high cell-cycle (sum usage > 0.1) and low cell-cycle (sum usage < 0.1) cells. We 964 

filtered samples that did not have at least 10 high cell-cycle cells and 100 low cell-cycle cells. 965 

Then, for each cGEP, we performed a two-sample T-test paired by individual (ttest_rel in Scipy, 966 

default parameters) between average cGEP usage for high and low cell-cycle cells. We meta-967 

analyzed P-values across datasets using Fisher’s Method (combine_pvalues in Scipy). 968 

 969 

To associate cGEPs with sample-level disease phenotypes, we calculated the average usage of 970 

each cGEP in each sample for a given dataset. We then used ordinary least squares regression 971 

to find cGEPs with higher average usage in disease samples than controls, controlling for 972 

sample-level batch variables as covariates. For all datasets, disease status was modeled as a 973 

binary dummy variable, and an intercept was included. For UK-Covid, the processing site was 974 

included as dummy variable covariates. For COMBAT, sequencing pool, and processing 975 

institute were included as dummy variable covariates. For the Pan-cancer dataset, all cancer 976 

types were initially included in the analysis and dummy variable covariates were included for 977 

tissue of origin. In addition, sequencing technology was included as a dummy variables. When 978 

there were multiple tumor samples or matched normal samples from the same donor, we 979 

retained only the duplicate sample with the most cells prior to the regression. 980 

 981 

For all association tests, we performed FDR-correction of the P-values using the Benjamini 982 

Hochberg method (fdrcorrection in Statsmodels with method='indep').  983 

 984 
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Defining the antigen-specific activation (ASA) score 985 

 986 

We used CD71+CD95+ surface protein co-expression in the COMBAT and Flu-Vaccine 987 

datasets as an in vivo correlate of TCR activation to help prioritize AIM-associated cGEPs for 988 

predicting TCR-activated cells. First we preprocessed the ADT surface proteins in these 989 

datasets as described in the manual subset gating section. We then subsetted cells by their 990 

manual gating-defined broad cell types (CD4 Conv, CD4 Treg, CD8 Conv, other) and gated 991 

CD71+CD95+ cells separately for each cell type as the response feature to be predicted by 992 

AIM-associated cGEPs. 993 

 994 

We then performed forward stepwise selection, evaluating how well the summation of usages of 995 

different combinations of AIM-associated cGEPs would predict CD71+CD95+ gating. At each 996 

stage, the per-cell ASA score was computed as the sum of normalized usages of cGEPs in the 997 

predictive set. At each forward step, we determined which cGEP should be added to the 998 

predictive set based on which would most improve the average AUC across the Flu-Vaccine 999 

and COMBAT datasets. We used a reduction in AUC in both datasets as the stopping criterion 1000 

for adding cGEPs. We considered all AIM-associated cGEPs identified in section 6 as 1001 

candidates for this, excluding those known to have a broader function outside of T-cell activation 1002 

(e.g. cytoskeleton, metallothionein, cell cycle) and those reflecting activation-associated T-cell 1003 

subsets (Tph and Th17-Activated). We also excluded Exhaustion from the ASA score as it 1004 

reflects a distinct inhibitory response to antigen-stimulation that users may wish to annotate 1005 

separately. 1006 

 1007 
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Code availability 1008 

The code for CellAnnotator (starCAT) is available at 1009 

https://github.com/immunogenomics/starCAT. The analysis scripts used in this paper are 1010 

available at https://github.com/immunogenomics/TCAT_analysis. 1011 
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 1028 

Tables / Legends 1029 

Table S1. cGEP Summary. Summary of cGEPs including their full name, abbreviated name, 1030 

assigned class, top 3 most strongly associated genes, and which datasets it was derived from.  1031 

 1032 

Table S2. Marker genes. Top 200 marker genes associated with each cGEP, colored by their 1033 

strength of association with the cGEP, based on the average gene score.  1034 

 1035 

Table S3. Gene-set enrichment. The “GO_Enrichment” tab includes the top 10 associated 1036 

gene sets for each cGEP including the GEP name, gene-set name, fisher exact test odds ratio, 1037 

and P-value. The subsequent tabs include the same information but for enrichment tests for 1038 

gene sets defined from a dataset that polarized T-cells for either 16 hours (16h) or 5 days (5d) 1039 

starting from either naive (TN) or memory T-cells (TM)24. The tab name indicates the stimulation 1040 

conditions.  1041 

 1042 

Table S4. Correlation with cell quality features. Each tab includes the Pearson correlation of 1043 

each cGEP’s usage (rows) with different per-cell quality features (tab names) for each dataset 1044 

(columns). MitoFrac denotes the % of unique molecular identifiers from MT- genes. 1045 

RNA_Detected denotes the number of unique genes detected per cell. RNA_Count denotes the 1046 

number of unique molecular identifiers per cell. PCFrac denotes the percentage of unique 1047 

molecular identifiers that are assigned to a protein coding gene in Gencode version 44. 1048 

 1049 
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Table S5. AIM-Seq association. Provides regression coefficients and P-values for the 1050 

association between cGEP usage and binary variables reflecting CEFX vs. mock stimulation or 1051 

AIM-positive vs. AIM-negative. Coef. represents the regression coefficient, P represents the P-1052 

value, and Q represents the FDR-corrected P-value. 1053 

 1054 

Table S6. Association with proliferation. T-statistics, P-values, and log2 odds ratios for the 1055 

paired T-test of proliferating and non-proliferating T-cells in each dataset (tabs). For the meta-1056 

analysis across datasets it provides the Fisher’s method combined P-value and the average log2 1057 

odds ratio.  1058 

 1059 

Table S7. Association with disease. ordinary least squares regression coefficients (Beta), P-1060 

values (P), FDR-corrected Q-values (Q), and average fold changes (FC) for phenotype 1061 

associations shown in Figure 7. Each tab represents a different phenotype.  1062 
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Figures / Legends1065 
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 1067 

Figure 1. Overview of CellAnnoTator (*CAT). (A) Schematic of the *CellAnnoTator (*CAT) 1068 

pipeline. (B) Schematic of simulation strategy (left) with resulting Uniform Manifold 1069 

Approximation and Projection (UMAP) plot (right). Cells are colored by lineage gene expression 1070 

program (GEP). (C-E) Pearson correlation of ground truth simulated usages of each GEP 1071 

(columns) vs inferred usages (rows) for *CAT with the 20 GEP reference (C), *CAT with the 12 1072 

GEP reference (D) or cNMF of the query with 16 inferred components (E). (F) Pearson 1073 

correlation of ground truth and inferred usages by *CAT and cNMF for different query dataset 1074 

sizes. Marker represents mean and error bars represent range. (G) Summary of reference 1075 

datasets including number of individual donors (x-axis), number of cells (y-axis), and tissue 1076 

source (dot color). Phenotypes are listed below the dataset names.  1077 
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Figure 2. Cataloging consensus gene expression programs (GEPs) across datasets. (A) 1086 

Pairwise correlations of GEPs discovered across reference datasets with insets for consensus 1087 

GEPs derived from all seven references. Inset row and column orders are the same for all 1088 

cGEPs. (B) Scatter plots of selected correlated GEP pairs. X and Y axis labels indicate the 1089 

datasets the GEP was found in (P<1x10-100 for all correlations). (C) Heatmap of cGEPs (rows) 1090 

and which datasets the comprising GEPs were found in (columns). Green boxes indicate a GEP 1091 

was found in a dataset. Colorbar indicates the cGEP’s assigned class. cGEPs corresponding to 1092 

non T-cell lineages were excluded. (D) Marker genes for selected example cGEPs in cNMF 1093 

gene score units.  1094 
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50 

Figure 3. Benchmarking T-CellAnnoTator on a query dataset. (A) UMAP of the Flu-Vaccine 1097 

dataset colored by the manually gating shown in Figure S4A. (B) Same UMAP as (A) but 1098 

demonstrating prediction of manual gating of Treg and CD8 EM populations with the most 1099 

associated individual cGEP (usage > 0.025), the multilabel classifier based on multiple cGEPs, 1100 

or Ledien clustering with resolution 1.0. (C) Comparison of balanced accuracy for prediction of 1101 

manually gated subsets, including clustering with multiple Leiden resolution parameters. (D) 1102 

Usage of the mitochondria cGEP against the percentage of mitochondrial reads per cell (left). 1103 

Usage of the CellCycle-S (middle) and CellCycle-G2M (right) cGEPs against the S and G2M 1104 

scores output by Scanpy’s score_genes_cell_cycle function with published proliferation gene 1105 

sets34. (E) Heatmap of pseudobulk expression in cGEP-high and low cells, per sample. Samples 1106 

are normalized by library size and expression is z-scored across rows. 1107 
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Figure 4. Comparing TCAT to clustering in the COMBAT dataset.  1130 

(A) UMAP of T-cells showing published sub-clusters of clusters annotated as CD4 memory with 1131 

other clusters shown in gray. (B) Average usage of selected cGEPs across CD4 memory 1132 

subclusters. (C) Same UMAP as (A) but colored by usage of selected subset, functional, and 1133 

artifact cGEPs usage. Intensities are averaged over 20 nearest neighbors to reduce 1134 

overplotting. (D) Usage of selected cGEPs in cells with high or low usage of cell cycle GEPs. 1135 

Cells are grouped by their most highly used subset GEPs.(E) Percentage of cells within each 1136 

manual gate assigned to each polarization (usage > 0.1). Bar represents the average and 1137 

whiskers represents the 95% confidence interval, across samples. 1138 
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Figure 5. Identifying cGEPs associated with TCR-dependent activation. (A) Schematic of 1151 

AIM-Seq. (B) FACS experiment from an AIM-Seq run showing surface activation markers in 1152 

CD3+CD4+ and CD3+CD4- gated populations with the gates used for AIM-positive (+), AIM-1153 

negative (-) and Mock (M)  populations. (C-D) UMAP of AIM-Seq dataset colored by sorting 1154 

condition (C) or manually gated population (D).  (E) cGEP association with AIM-positive 1155 

samples. X-axis shows the mean Log2 ratio of average usages. Y-axis shows the -Log10 P-1156 

value. cGEPs are labeled by assigned category. (F) Average usage of selected Aim-associated 1157 

cGEPs in +, -, and U cells from different gated subsets. Boxes represent interquartile range. 1158 

Error bars represent 95th percentiles.  1159 
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Figure 6. Annotating antigen-specific activation (ASA) in vivo. (A) Box plot of ASA score for 1166 

cells stratified as activated (CD71+CD95+) or not activated. (B) Same as (A) but for AIM-Seq 1167 

with cells stratified by sort condition. (C) Clonality in manually gated conventional CD4 and CD8 1168 

T-cells annotated as activated (ASA>0.065) or not activated (ASA<0.065). Clonality is defined 1169 

as the number of cells in the same sample with an identical alpha and beta CDR3 amino acid 1170 

sequence. (D) Percentage of activated CD4 and CD8 convs (ASA>0.065) in Covid-19 and 1171 

healthy control samples, by cohort. (E-F) UMAP of the COMBAT dataset colored by ASA score 1172 

or low-resolution published clustering. (G) Log10 odds ratio for 2x2 association of ASA positivity 1173 

and manual gating subset assignment. * indicates P-value<0.05. (H) Percentage of activated 1174 

(ASA>0.065) or proliferating (sum of cell cycle cGEPs>0.1) cells per sample across datasets. 1175 

Boxes represent the interquartile range and whiskers represent 95% quantile range. (I) 1176 

Percentage of activated, exhausted (exhaustion cGEP usage>0.065), or bystander (ASA + 1177 

exhaustion usage<0.065) T-cells in CD4 and CD8 Convs, per sample stratified by tumor type 1178 

and corresponding healthy tissues. (J) Log2 odds ratio for enrichment of bystander T-cells by 1179 

subset cGEP assignment. Error bars represent 95% confidence intervals.  1180 
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Figure 7. cGEPs association with disease. (A-B)  Associations of cGEP usage with Covid-19 1185 

status for UK-Covid and COMBAT datasets. X-axis shows the regression coefficient. Y-axis 1186 

shows the -Log10 FDR-corrected Q-value. (C) Scatter plot of regression coefficients from (A) 1187 

and (B). (D-E) Same as (A) but comparing synovial T-cells from patients with Rheumatoid 1188 

Arthritis and Osteoarthritis, or from tumors and healthy adjacent tumors. (F) Regression 1189 

coefficients for tumor vs. normal samples for each tissue of origin. * denotes P<.05 for the 1190 

corresponding coefficient. Cancer type abbreviations are: bladder cancer (BC), esophageal 1191 

cancer (ESCA), hepatocellular carcinoma (HCC), renal cell carcinoma (RC), thyroid carcinoma 1192 

(THCA), and endometrial cancer (UCEC).  1193 
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Figure S1. Characterizing *CAT. (A) *CAT predicted GEP usage for cells that use a GEPs with 1202 

ground-truth usage>0.2, 0.1-0.2, or 0. Also shows the predicted usage for GEPs present in the 1203 

reference data that are not present in the query (labeled unused GEP). (B) Number of GEPs 1204 

identified in each dataset. The color indicates whether each GEP clustered with one or more 1205 

GEPs from another dataset as part of a consensus GEP (purple, red, or green), did not cluster 1206 

with a GEP from another dataset but was kept in the catalog as a dataset-specific GEP 1207 

(orange), or did not cluster with a GEP from another dataset and was filtered (blue). (C) 1208 

Absolute value of Pearson correlation of spectra learned by cNMF (top) or PCA (bottom) 1209 

between different pairs of datasets. PCs are learned on the same matrices of batch-corrected 1210 

matrices used for cNMF. Mean correlation refers to the mean value along the matrix diagonal, 1211 

which corresponds to pairs of components with highest correlation across the two datasets. 1212 

 1213 

 1214 

 1215 

 1216 

 1217 

 1218 

 1219 

 1220 

 1221 

 1222 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.592310doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/


61 

 1223 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.03.592310doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.03.592310
http://creativecommons.org/licenses/by-nc-nd/4.0/


62 

Figure S2. Annotating cGEPs. (A) Manual gating of COMBAT dataset using smoothed surface 1224 

protein antibody-derived tag (ADTs). (B) Multivariate logistic regression coefficients of cGEPs 1225 

(columns) against manually gated populations (rows). For visualization, the minimum value is 1226 

thresholded to 0 and the maximum is threshold to 1.25. Seven selected non-subset cGEPs are 1227 

shown on the right as examples. (C) Pearson correlation of cGEPs with percentage of 1228 

mitochondrial transcript per cell, for each dataset. All cGEPs excluding Mito and Poor-Quality 1229 

are included in the “Other” column. P-values are from a Ranksum test of the selected cGEP 1230 

against the Other cGEPs. (D) Same as (C) but showing correlation with the percentage of UMIs 1231 

assigned to protein coding genes. (E) Scatter plot of the proportion of UMIs mapping to 1232 

intergenic regions in the genome against Poor-Quality cGEP usage for cells in the AMP-RA 1233 

dataset. (F) Correlation of per-sample average cGEP usage in T-cells with that in B-cells, NK-1234 

cells for the 3 immediate early gene cGEPs, in the COMBAT, UK-Covid, and HIV-Vaccine 1235 

datasets. 1236 
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Figure S3. Benchmarking CellAnnoTator on simulated and real datasets. (A) Manual 1239 

gating for the Flu-Vaccine dataset analogous to Figure S2A. (B) Receiver operator curves 1240 

(ROCs) for prediction of manually gated subset based on a single most associated subset (dark 1241 

blue), TCAT multilabel prediction (light blue), analogous predictions using the single most 1242 

associated NMF component published in Yasumizu et al., 202413, or using gene sets from NMF 1243 

components in Gavish et al., 202316. Individual points show accuracies of discrete predictions 1244 

based on cGEP multilabel regression, or clustering with the leiden resolution specified in the 1245 

legend. (C) Areas under the curve (AUC) from receiver operator curves in (B). (D) Heatmap of 1246 

pseudobulk expression in Th1-Like-high and low cells, per sample. Cytotoxic-high cells are 1247 

included (left) and filtered (right). Sample expression is normalized by library size and z-scored 1248 

across rows, separately for the two filtering conditions. 1249 
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Figure S4. Comparing TCAT with COMBAT dataset clustering. (A) Fraction of proliferating 1264 

cells (cell cycle usage>0.1) assigned to each subset based on the most highly used subset-1265 

associated GEPs, for cells from Covid-19 or healthy donors in the two Covid-19 datasets. Error 1266 

bars represent 95% bootstrap confidence intervals. (B) Usage of selected cGEPs (columns) in 1267 

cells (rows) grouped by maximum subset cGEP. Cells are drawn from subclusters with high 1268 

usage of the ISG cGEP, indicated in the colorbar. (C) Same as (B) but only showing cells from 1269 

subclusters with high cytotoxicity cGEP usage. (D) Heatmap of pseudobulk expression of 1270 

marker genes in cytotoxic-high and low cells and subset cGEP high and low cells, per sample. 1271 

Expression is normalized by library size and z-scored across rows. (E) Average fraction of 1272 

polarized cells (usage>0.1) per gated subset, across samples, within COMBAT and Flu-Vaccine 1273 

datasets. (F) Heatmap of pseudobulk expression of marker genes in polarization-high and low 1274 

cells, separately for gated CD4 and CD8s T-cells, per sample. Sample expression is normalized 1275 

by library size and z-scored across rows, for each polarization. 1276 
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Figure S5. Identifying activation associated cGEPs with AIM-Seq. (A-B) Flow cytometry 1280 

data of CD3+CD4+ and CD3+CD4- gated populations for 3 donor samples for CEFX and mock 1281 

conditions. (C-E) Activation-induced marker (AIM) surface protein expression based on CITE-1282 

Seq for CD4+, CD8+, and Treg subsets, stratified by sort condition. Boxes represent 1283 

interquartile range and whiskers represent 95% percentiles. (F) Percentage of each sample 1284 

assigned to each subset based on manual gating, colored by stimulation condition. * indicates t-1285 

test P<.05 comparing + and U. (G) Average cGEP usage in each donor and condition, for AIM-1286 

associated cGEPs. (H) Paired t-test of pseudobulk cGEP usage in high and low cell cycle usage 1287 

cells (threshold 0.1) from each sample. X-axis shows the mean Log2 ratio of average usages 1288 

across datasets. Y-axis shows the -Log10 P-value. Statistically significant and positively 1289 

associated cGEPs are indicated in red. 1290 
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Figure S6. Annotating antigen-specific activation in vivo. (A) Definition of activation used for 1312 

training the antigen-specific activation (ASA) score in the COMBAT dataset for manually gated 1313 

subsets. (B) AUC estimates averaged for predicting CD71/CD95 co-expression based on 1314 

summation of cGEPs sequentially added to the score from left to right. (C-D) Receiver operator 1315 

curve (ROC) for ASA prediction of CD71/CD95-based activation labels, with various thresholds 1316 

denoted as colored points. (E) ROC for ASA prediction of AIM-positivity in the AIM-Seq dataset. 1317 

(F) Left - Odds ratio of enrichment between proliferation (aggregate cell cycle cGEP usage>0.1) 1318 

and activation (ASA>0.065) for each dataset. Error bars denote 95% confidence intervals. Right 1319 

- Pearson correlation between ASA and aggregate cell cycle cGEP usage with colors mapping 1320 

to dataset. (G) Clonality in manually gated conventional CD4 and CD8 T-cells annotated as 1321 

activated (ASA>0.065) or not activated (ASA<0.065). Clonality is defined as the number of cells 1322 

in the same sample with an identical alpha and beta CDR3 amino acid sequence. (H-J) 1323 

Percentage of activated CD4 convs, CD8 convs, and Tregs based on ASA>0.065 in Covid-19 1324 

and healthy control samples from COMBAT and UK-Covid datasets. (K) Percentage of activated 1325 

conventional CD4 T-cells (ASA>0.065) versus percentage of activated or exhausted 1326 

(exhaustion usage>0.065) conventional CD8 T-cells across tumor samples. (L) Percentage of 1327 

activated, exhausted, or bystander (ASA + exhaustion usage<0.065) Tregs in tumors and match 1328 

normal samples.  1329 
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 1339 
 1340 

Figure S7. Identifying cGEPs associated with disease phenotypes. (A-B) Average usage of 1341 

the T peripheral helper (Tph) cGEP compared to average CXCL13 expression from T-cells 1342 

within tumors and matched normal tissue samples in Pan-cancer reference and Luo et al., 1343 

202262. Trend lines show the regression coefficients fit for tumors and normal samples 1344 

separately (D-F) Percentage of cells annotated as plasma cells against the average Tph, Tfh-1, 1345 

or Tfh-2 usage within T-cells from tumor samples in Luo et al., 202262. 1346 
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Supplementary Item Figures / Legends 1351 
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Supplementary item 1. K selection plots for consensus NMF runs on reference datasets. 1372 

Vertical line denotes the selected number of components.  1373 
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 1375 

 1376 

Supplementary item 2. Example marker genes for all cGEPs. Color indicates average cNMF 1377 

gene score units which denotes how much 1 additional count of usage of the cGEP would be 1378 

expected to increase expression of the gene in Z-scored units.  1379 
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 1394 
Supplementary item 3. Immediate early gene usage across circulating blood cell types. 1395 

Average per-sample usage of each IEG cGEP in T-cells versus monocytes and dendritic cells, 1396 

NK cells, or B-cells, in the three reference PBMC datasets.  1397 
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 1404 
 1405 

Supplementary item 4. Characterization of COMBAT dataset clustering. (A) Violin plot for 1406 

myeloid cell marker genes in cells originally annotated as CD4 memory T-cells broken out by 1407 

the CD4.TEFF.prolif.MKI67lo subcluster, or all other subclusters combined. (B) Usage of the 1408 

ISG, Cytotoxic, and Poor-quality cGEPs in cells stratified by their CD4 memory subcluster. (C) 1409 

Expression of CD4 naive marker genes in cells initially clustered as CD4 memories (blue and 1410 

orange boxes) or CD4 naives (green cluster). Cells initially clustered as CD4 memory are 1411 

stratified by their usage of the CD4 naive cGEP with a threshold of 0.1.  1412 

 1413 
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Supplementary item 5. cGEP associations with proliferation across datasets. (A) Gating 1418 

strategy to identify CD3+ CD4+ and CD3+ CD4- populations in the AIM-Seq experiment. (B) 1419 

Heatmap of the average Log2 ratio of mean usage in proliferating cells (usage>0.1 of 1420 

proliferation GEPs) and non-proliferating cells (usage<0.1) for all GEPs (rows) and datasets 1421 

(columns). An absolute value ceiling of 6 is used to aid visualization. * indicates paired t-test 1422 

P<.05.  1423 
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 1444 
Supplementary item 6. Antigen-specific activation (ASA) score correlation with surface protein 1445 

activation markers in the AIM-Seq dataset. 1446 
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