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Abstract

The central nervous system can generate various behaviours, including motor responses,
which we can observe through video recordings. Recent advancements in genetics,
automated behavioural acquisition at scale, and machine learning enable us to link
behaviours to their underlying neural mechanisms causally. Moreover, in some animals,
such as the Drosophila larva, this mapping is possible at unprecedented scales of
millions of animals and single neurons, allowing us to identify the neural circuits
generating particular behaviours.

These high-throughput screening efforts are invaluable, linking the activation or
suppression of specific neurons to behavioural patterns in millions of animals. This
provides a rich dataset to explore how diverse nervous system responses can be to the
same stimuli. However, challenges remain in identifying subtle behaviours from these
large datasets, including immediate and delayed responses to neural activation or
suppression, and understanding these behaviours on a large scale. We introduce several
statistically robust methods for analyzing behavioural data in response to these
challenges: 1) A generative physical model that regularizes the inference of larval shapes
across the entire dataset. 2) An unsupervised kernel-based method for statistical testing
in learned behavioural spaces aimed at detecting subtle deviations in behaviour. 3) A
generative model for larval behavioural sequences, providing a benchmark for
identifying complex behavioural changes. 4) A comprehensive analysis technique using
suffix trees to categorize genetic lines into clusters based on common action sequences.
We showcase these methodologies through a behavioural screen focused on responses to
an air puff, analyzing data from 280,716 larvae across 568 genetic lines.

May 3, 2024


https://doi.org/10.1101/2024.05.03.591825
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.591825; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Author Summary

There is a significant gap in understanding between the architecture of neural circuits
and the mechanisms of action selection and behaviour generation. Drosophila larvae have
emerged as an ideal platform for simultaneously probing behaviour and the underlying
neuronal computation [1]. Modern genetic tools allow efficient activation or silencing of
individual and small groups of neurons. Combining these techniques with standardized
stimuli over thousands of individuals makes it possible to relate neurons to behaviour
causally. However, extracting these relationships from massive and noisy recordings
requires the development of new statistically robust approaches. We introduce a suite of
statistical methods that utilize individual behavioural data and the overarching

structure of the behavioural screen to deduce subtle behavioural changes from raw data.

Given our study’s extensive number of larvae, addressing and preempting potential
challenges in body shape recognition is critical for enhancing behaviour detection. To
this end, we have adopted a physics-informed inference model. Our first group of
techniques enables robust statistical analysis within a learned continuous behaviour
latent space, facilitating the detection of subtle behavioural shifts relative to reference
genetic lines. A second array of methods probes for subtle variations in action sequences
by comparing them to a bespoke generative model. Together, these strategies have
enabled us to construct representations of behavioural patterns specific to a lineage and
identify a roster of "hit” neurons with the potential to influence behaviour subtly.

Introduction

Animals integrate external sensory input and their internal states to generate suitable
motor responses. This involves different areas of the nervous system, ranging from areas
underlying sensory processing and higher-order processing to those governing decision
making and motor control. Furthermore, animals frequently respond to stimuli with a
sequence of actions requiring precise control of transitions between individual actions.
Different animals may react differently to the same stimulus, and the same animal can
respond variably to repeated stimuli. This probabilistic nature of responses implies
complexity and stochasticity in the behavioural choice mechanisms. The neurobiological
interactions among neurons that regulate the trade-off between action stability and
variability and control transitions between actions remain only partially understood.

Identifying the neural substrates that are responsible for behaviour generation and
selection within the nervous system is crucial. Historically, this task has been
challenging due to simultaneously manipulating neuron groups while capturing the
corresponding behaviours and the statistical complexities involved in causally linking
behavioural sequences across multiple time scales to neuronal manipulations.

The past decade has witnessed significant advancements in connecting behaviours
with neural computations. Notably, data-driven neuron-behavior mappings have been
established for Drosophila melanogaster in both its adult [2] and larval stages [3]. D.
melanogaster presents an ideal model for such studies due to its sufficiently complex yet
accessible nervous system, comprising roughly 10,000 neurons in larvae and 130,000
neurons in adults. The complete synaptic connectomes for larval (full CNS connectome)
and adult (brain) D. melanogaster are now fully mapped [4-6], providing detailed
diagrams of neuronal connections. Additionally, the D. melanogaster genome has been
extensively characterized, and the development of thousands of GAL4 lines facilitates
precise genetic manipulation [7}/8], nearly down to the level of individual neurons.

The semi-transparent cuticle of the larva enables the application of optogenetic
techniques to selectively and reproducibly activate or inactivate neurons during
behaviour across the entire nervous system [3/9]. Techniques such as the targeted
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genetic expression of tetanus neurotoxin (TNT) can also disrupt synaptic transmission
in small or individual neuron groups. High-throughput tracking with real-time
segmentation capabilities allows for recording hundreds of thousands of larvae, with
individual neurons or neuron groups being selectively activated or silenced,
constitutively or reversibly [10].

Advances in machine learning [11}/12] have recently complemented automated
behavioural analyses, and supervised [13-20] and unsupervised methods [21H29] have
been introduced alongside image feature-based approaches to identify behaviours. Some
methods can be applied broadly to various experiments after an annotation phase, like
DeepLabCut [13], or, as with some unsupervised approaches, others are more specialised
and apply to one animal in a specified behavioural paradigm [30L[31]. Supervised
techniques aim to define behaviours based on external expertise, while unsupervised
ones seek to have them naturally emerge, later undergoing post-hoc validation by
experts. Overall, the success of these methods depends on the definition of behaviours,
the amount of accessible data and its standardisation, and the variability expected
under the experimental protocol. Usually, these frameworks link sensory stimuli or
targeted neural activation to their behavioural output and are associated with statistical
testing to detect significant events.

The primary challenges posed by the behavioural recordings of larvae are linked to
the significant deformability of their bodies, the low resolution of images, which is
imposed to allow large-scale screening, the multi-temporal scales of their behavioural
dynamics, and the vast diversity of larval morphological characteristics across
populations of several hundred thousand animals. In spite of these complications, both
unsupervised [3/24] and supervised [3234] approaches have been successfully applied,
albeit with known limitations. In supervised approaches, ambiguityies in larva
behaviour prevent full consensus on behavioural ground truth. New experiments suggest
that additional actions may be required to properly describe larval behaviour, such as
its C-shape behavior before rolling |3536]. Furthermore, the diversity of larvae lengths,
speeds, variations in the recording time of the larva, and the inherent deformability of
the larva body induce challenges in estimating behaviour classification errors. Finally,
these ambiguities shift the identification of neurons of interest, i.e., neurons able to
modify the larva behaviour, towards the ones inducing large behavioural deviations.

In this paper, we develop new statistical tests allowing the detection of neurons
inducing subtle changes in behaviour. To ensure the robustness of such finer analyses,
we first introduce a physics-informed Bayesian approach to regularise the recorded
shapes of the larvae. We then introduce two statistical approaches to provide a global
analysis of the larva behavioural screen and identify neurons able to induce subtle
variations in local behaviour or in the higher-order statistics of sequences of actions. We
apply these approaches on an entire behavioural screen and demonstrate the ability of
both approaches to detect neurons or group of neurons able to induce subtle
behavioural changes. We leverage our new approaches to provide compact
representation of lines behvioural phenotypes and

Materials and methods

Drosophila melanogaster stocks

The screen consisted of 569 GAI4 lines, as listed in Table 1. These lines were from the
Rubin collection lines (available from Bloomington stock centre) listed in S1 Data file,
each of which is associated with an image of the neuronal expression pattern shown at
flweb.janelia.org/cgi-bin/flew.cgi. In addition, we used the insertion site stocks,

w;attP2 [7], OK107GAL4, 19-12-GAL4, NompC [37], and iav-GAL4 [38]. We used the
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progeny larvae from the insertion site stock, w;;attp2, crossed to the appropriate effector
(UAS-TNT-e (II)) for silencing. The w;;attP2 were selected because they have the same
genetic background as the GAL4 tested in the screen. We used the following effector
stocks: UAS-TNT-e |39] and pJFRC12-10XUAS-IVSmyr::GFP (Bloomington stock
number: 32197).

Behavioural apparatus, experiments and screen design
Apparatus

The setup was fully described previously [10,[34] (see Fig. [I)). Briefly, it consists of a
video camera for monitoring larvae, a ring light illuminator, and custom hardware
modules for generating air puffs, controlled through the multi-worm tracker (MWT))
software [9,140].

Behavioural experiments

The experiments are fully described in [10]. Briefly, they started with collecting
embryos for 8-16 hours at 25 ° C with 65% humidity. Larvae were raised at 25 ° C with
normal cornmeal food. Foraging 3rd instar larvae were used (larvae reared 72—-84 hours
or for three days at 25 ° C). Before experiments, larvae were separated from food using
10% sucrose, scooped with a paintbrush into a sieve and washed with water. The
substrate for behavioural experiments was a 3% Bacto agar gel in 25625 cm? square
plastic dishes. Batches of approximately 50 to 100 larvae were imaged in each
behavioural assay. The larvae were left to crawl freely on an agar plate for 44 seconds
before the stimulus delivery. The air puff was delivered at the 45th second and applied
for 38 seconds. Two different stimulus intensities were considered, one at a high
intensity of 6 m/s and the other at a lower intensity of 3 m/s. In this paper, when a
result is stated without indicating a specific intensity, it must be understood that it was
obtained with the higher 6 m/s.

Screen design

The screen consisted of recordings of the behaviour of 568 GAL4 lines from the Rubin
GAL4 collection, where we constitutively silenced small subsets of neurons and
individual neurons using tetanus toxin [34L39]. We selected these lines from the entire
collection for sparse expression in the brain and ventral nerve cord of the larval CNS
and expression in the sensory neurons. Of the 569 lines tested here, several neuronal
lines were not part of the Rubin collection: we added 19-12-GAL4 and NompC-GAL4
for sensory neurons and OK107GAL4 for the mushroom body. We screened each GAL4
line in the air-puff assay described above. This article used no activation method
(optogenetic or other) since we used constitutive silencing.

Behavioural dictionary

Six stereotypical actions are commonly used to constitute the behavioral dictionary of
the larva (Fig. 1B): A: crawl, B: bend (all turning actions), C: stop (not moving), D:
hunch (fast retraction of the head) E: back crawl (crawling backwards), and F: roll
(defensive manoeuvre consisting in sliding laterally). We use the letters A-F in plots
and tables for brevity. Where these actions were needed for the analysis, we inferred
them using a combination of supervised and unsupervised machine-learning techniques
introduced in [34].
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Fig 1. (A) Behavioural set-up. The larvae move freely on an agar plate, and their
movement is recorded with an infrared camera equipped with a high-throughput
closed-loop tracker. The stimuli were an air puff (or illumination for training data). (B)
The six stereotypical actions @, associated with the larva for this experimental
paradigm. (C) Example of Neuronal expression patterns in three example lines: 11F06,
85F22, and 35G04. (D) Ethogram of larva behaviour in response to an air-puff at 45s
based on automated behavioural detection. Each line corresponds to one larva, with on
the left the Control line, attP2, and on the right R35G04. Each colour corresponds to
one of the six actions: black: crawl, red: bend, blue: stop, deep blue: hunch, and cyan:
back (no rolls were observed in these lines).
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Physics-informed regularization of larva shape

We conducted large-scale imaging by recording larvae with a wide-field view, allowing us
to analyze up to 100 larvae per plate. This approach, while time efficient, resulted in
images of lower resolution. Additionally, the vast scale of our experiments meant that
many larvae were not perfectly dried, leading to abnormal contour shapes. Impurities in
the agar further contributed to these irregularities, as illustrated in Figure 2l Such
contour abnormalities risk leading to misclassification of larval behaviour, potentially
introducing bias into subsequent statistical analyses. To address this, we developed a

regularisation procedure based on physics-informed Bayesian inference [41], which
ensures accurate representation of larval shapes.

\/ N /
\ \ — s
AN N ~ A
\ \\ Nl <
AT ‘
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to = 36s to + 1s to + 2s to + 3s to 4 4s

S W N

Fig 2. (A) Tracked contour of a noisy outline of a larva in grey and regularised contour
in orange with the head in red and the tail in black. (B) 1. Zoom on six points of the
larva contour, the contour is materialized by vectors between these points. The jth
point is named Mj, its tangent vector t;, and the curvature in the point 6;. 2. Two
outlines of a larva at time ¢ and ¢t + dt, the vectors show the movement of two points
during the time-lapse dt. 3. Arrows showing the movement of the contour points as the
surface energy is decreased. (C) Results after running the algorithm for two different
larvae at four different time steps with the old outline in black and the new one in
orange. The trajectory of the larva is drawn in black, and the centre of mass is marked

by a red dot (see also Supplementary Video 1).

Preprocessing

MWT extracts contours with a variable number of points depending on the larvae’s size
in each frame. We denote this contour by f(i) = ((4),y(4)) for ¢ € {1,2,..., Niracking }
with Niracking the number of points on the contour. We regularized the shape by fixing
the number of contour points to N = 50 coupled with a low-pass filtering. In paticular,

we generated the contours by retaining the K lowest modes of the Fourier
decomposition [42] of the recorded contour (Fig. [2A),

S, = ao(f) +I§ {ak(f) cos (kni\f) + be(f) sin (kn?\jﬂ 7
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with aj and by the Fourier coefficients,

Ntxac in, .
Zk & < 2mki ) (2)
COS s
Ntrackmg i

Ntrackzng
Ntrackmg . .
f@ . ( 2ki )
by, = sin . 3
i:zl Ntracking Ntracking ( )

We reconstructed the shape with the K = 7 lowest harmonics, a number chosen
empirically to prevent discontinuities [42]. This first reconstruction ensured screen-scale
regularisation of larvae contours regardless of their variability in size and shape.

Simplified physics model of larva

We designed a minimal, effective 2D physics model to approximate the dynamical shape

of the larva. It models the larva as an elastic contour with an active membrane energy.

The total energy of the larva is the sum of the kinetic energy, the surface energy, and
the bending energy: E = E, + Es + E; (Fig. [2B.2). The kinetic energy is given by

J

Z % [2:(t) — @i (t — dt)] + [yi(t) — yi(t — dt)] (4)

dt? ’

Ey p’U(S)ZdS,

N | =

i=1

where  is the surface of the contour, p is the surface density, v(s) is the speed of the
contour in the point s, m is the total mass of the membrane, and dt is the time lapse
between images. The surface energy is

ES = / KdSQ,
Q
N

zi— 1)’ + (yi —yi1)?), (5)

with K the elastic modulus. Finally, the bending energy reads as

E, = / 2k(C — c)?ds,
Q

N
= 2k6}, (6)
=1

where k is the bending modulus, C' is the mean gurvature over the entire contour, and ¢
is the spontaneous curvature defined by ci = d— with fi the unit normal vector and €
the unit tangent vector of the contour in curvilinear coordinates. For a discrete point,

this curvature equals ¢; = 6; (see Fig. [2B.1), and we will set the mean curvature to 0.

Inference

We used Bayesian inference to infer the larva’s regularised shape
Y ={M{,M,...,My}. Its posterior distribution is given by

P(X]S) oc P(S|Z)P(%), (7)
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where P(S|X) us the likelihood of the model and P(X) is the prior which regularises the
inference by incorporating our physical model. It is given by

p(2) o e s FE(E)+E(X)] (8)

up to a normalising constant that does not influence the inference. The likelihood
enforces the proximity between the recorded contour and the inferred one according to a
quadratic loss,

’
Tl M2

P(S|S) =e =5 9)

We set A = % with no loss in generality since the absolute scale of the energy does not
impact the inference.

The log-posterior distribution thus reads

1
log(p(515)) = Bs + Eic+ By — 1 S IIM; — M| (10)

The model’s hyperparameters (m, k, and K') were set to give the three terms of the
energy similar weights. The larva’s mass was set to m = 1, the curvature coefficient to
k =1, and the elastic modulus to K = 5. In the numerical implementation, we
corrected spurious high curvature anomalies by capping the energy using
E¢ff = tanh (Ey /o) with o = 100. We used stochastic gradient descent [43] to infer the
maximum a posteriori (MAP) regularised contour . We show in Figure inferred
contours in 2 examples displaying significant anomalies. Note that while we rely solely
on the MAP of the shape in downstream analysis and not on the full posterior
distribution, it is accessible using Markov Chain Monte Carlo [43] sampling if necessary.

A continuous self-supervised representation of behaviour

We developed a continuous representation of the behaviour based on self-supervised
learning (SSL) to alleviate the need for a predefined behavioural dictionary to
characterize larvae actions. SSL is a general paradigm [44H50] in which a model is
trained using auxiliary objectives to improve the performance for downstream tasks.
The auxiliary objectives are generally constructed from the data themselves, thus
requiring no external labelling. Here, we present our implementation based on larva
positional prediction of the regularized shapes inferred as described above
(Physics-informed regularization of larva shape).

Architecture and training of the neural network

We used an autoencoder architecture comprising an encoder and a decoder, mapping
input and output data, as illustrated in Figure 3JA. The encoder takes as input a sample,
X, and maps it to a learned latent space, producing the latent representation of the
sample. The decoder takes as input a latent representation and generates a
reconstruction of the sample, Xt, in the data space. We augment the objective by
requiring the decoder to also predict the preceding and following samples, X;_; and
Xi¢4+1, forcing the neural network to encode the temporal continuity of the larvae’s
motion.

We used an epoch approach to encode the dynamics of the larva with a predefined
time interval of length 7. Unless indicated otherwise, we used 7 = 2s. In principle, 7
could range from very short durations (a few hundred ms), capturing primitive muscular
responses, to longer durations (5-10s), capturing entire sequences of actions. The choice
7 = 2s was informed by previous behaviour analysis of larvae [9,/10,34,/52] and chosen to
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Fig 3. (A) Architecture of the self-supervised predictive autoencoder. The encoder
consists of multiple convolutions with ReLU activations alternating between the spatial
and temporal axis of the data, followed by a fully connected linear layer. The decoder
consists of an upsampling linear layer matching the internal representation to the
desired shape, followed by alternating convolutions with ReLU activations. (B)
Visualization of the latent space. The 10D latent space is projected in 2D using
UMAP . The colours correspond to the discrete behaviour dictionary (black: crawl,
red: bend, green: stop, blue: hunch, cyan: back, and yellow: roll) (C) Transition
probability from one discrete state to the other as a function of the position in the latent
space: here, between run and bend. (D-F) Highlights of the behaviour geometry in the
latent space (represented in 2D using UMAP). In D run vs. bend, in E run vs. roll, and
in F hunch vs. back. (G) Cross-validated confusion matrix of random forest classifiers
using the latent representation to infer the usual discrete behaviour dictionary.

ensure capturing transitions between different actions. The autoencoder was tasked (see
Fig ) to encode the coordinates of the larva within the present epoch and to predict
the coordinates for the immediate future and past epoch (of the same duration 7). The
autoencoder was trained to minimize an L? objective on the reconstructed sequences.
The autoencoder performs both 2D-convolutions and 1-D convolutions, acting
alternately on the spatial and temporal coordinates. Hyperparameters, architecture,
and source code are provided at dedicated.github.

Datasets for training and testing

Tracking data were initially generated using MWT as described above. We
post-processed them using the pipeline introduced in ﬂgﬂ, limiting the representation of a
larva to 5 points along its anteroposterior axis ﬂgﬂ (tail, lower neck, neck, upper neck,
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head) to allow the representation to be used with very low-resolution imaging of larvae
(asin [53]).

We assigned one of the six following discrete behavioural categories to each time
point of the larva: run, bend, stop, hunch, back and roll using the pipeline of [34]. To
promote generalisation across lines and robustness regarding different morphologies,
larva coordinates were normalized such that the line average of the larva length before
sensory stimuli was equal to one. Furthermore, we centred and aligned the larva so that
their average position was zero and their average orientation along the x-axis, towards
negative x. Data were sampled from experiments in [3] and in [14|10}/34}/54]

Natural behaviour statistics are deeply imbalanced. Before the sensory input signal,
the animals are freely moving with roughly 70% run and 30% bend with occasional
stops. The sensory stimulus can generate behaviour that would not be evoked without
stimulation. All data pooled together, regardless of experimental protocols, exhibited
the following statistics with Run: 50.28%, Bend: 39.35%, Stop: 6.43%, Hunch: 0.81%,
Back: 3.06%, and Roll: 0.07%. Lexical approaches such as the one from [22], while very
efficient in analysing animal behaviour in natural settings, have challenges with such a
level of imbalance.

We used an inductive bias to train the autoencoders. Training data consisted of
100 000 samples, 10% of which were held out for validation, with 25% runs, 25% bends,
and 12,5% of each of the other four behaviours.

Genotype-level analysis
Genotype representation

To detect genotypes of interest (commonly called hits), we employ a non-parametric
statistical test within the latent behaviour space (learned as described in the section @
[continuous self-supervised representation of behaviour]). While the testing relies on the
learned behavioural space, we emphasize that other architectures and objectives (such
as [23]) may be used if they provide a sufficiently robust description of the behaviour.

Following the stimulus, we immediately embedded the 7-long windows of behaviour,
resulting in a sample of behavioural responses represented as points in the latent space.
One larva’s behavioural dynamics becomes a singular point within the latent space. A
genotype’s experimental behavioural dynamics, evaluated, for example, on 1000 larvae,
becomes a distribution of 1000 points inside the latent space. We estimated the
underlying distribution using a Gaussian kernel. Therefore, the phenotypic
characterisation of a genotype reduces to a probability distribution in the learned latent
space, so we reduce the comparison of two genotypes to a comparison of two probability
distributions in a low-dimensional space (Fig. [4A).

Kernel-based statistical testing

We used the maximum mean discrepancy [55] (MMD) to measure the distance between
distributions (Fig. ), which is efficient in detecting subtle differences between
datasets [56]. MMD was developed to perform non-parametric statistical testing
between two sets of independent observations in a metric space Z (here the latent space
Z =R'). We denote by X = {z1,...,2,,} the first set, drawn from the distribution p,
and by Y = {y1,...,yn} the second, drawn from ¢g. The goal is to test if p = g, i.e., we
seek to reject the null hypothesis that the two genotypes have similar behavioural
responses.

The MMD between two probability measures p and ¢ is defined as

MMD[F, p, g] = sup (Ex [f(2)] = Ey [f(®)]) (11)
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Fig 4. (A) Hlustration of our phenotyping modelling strategy for each genotype. From
left to right: The behaviour evolution on the experimental setup reduced to the five
tracked points of the larva, the extraction of a temporal window (shown in purple on
the ethogram as an illustration) usually after the onset of the stimuli (shown as a
vertical green line), projection of the temporal window on the latent space using the
encoder shown in Fig. 3| and reduced here to a yellow box, each point in the latent space
corresponds to one larva behaviour during the selected time window, the phenotype of
the genotype is the distribution of all the points in the latent space regularised by a
Gaussian kernel. (B) Illustration of the correspondence between statistical testing
procedures based on discrete behaviour categories with chi-squared tests and testing
procedures based on continuous behaviour with MMD. (C) Latent distributions of
behaviour (regularized by a Gaussian kernel): (C.1) of the reference line attP2 and
(C.2) of the line 10A411. (C.3) Witness function between these two latent distributions,
highlighting main behavioural differences between the lines.
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where F is a class of functions from Z to R, and E, and E, denote expectation w.r.t. p
and ¢, respectively.

When the function class is the unit ball in a reproducing kernel Hilbert space H, the
square of the MMD can be estimated directly from data samples [57]. We estimated the
squared MMD between X and Y using the unbiased estimator given by

) 1 1 2
MMD?[F, X, Y] = =) iZk(xZ,xJ) My zz’:k(y“yj) — iZk;(xz,yj),
iy i !

(12)
where k denotes the kernel operator, here a Gaussian kernel given by
k(z,y) = \/erlakcr exp(— ”;;ilrlg ). The bandwidth oy, was calibrated using the median
of the pairwise distances in the latent space of samples corresponding to the reference
line following [55].

The MMD framework provides explainability of the statistical test by enabling

identification of the variables that exhibit the greatest difference between
datasets [57,58|. It defines a particular function over the vector space that supports the
distributions, called the witness function that highlights regions where large deviations
occur, Fig. fIC. These regions can be analysed further to identify the behavioural

features associated with them.

Probabilistic generative model of action sequences

dn addition to the dictionary-free approach for behavioural analysis (see the section
[continuous self-supervised representation of behaviour) that compares various larva
genotype responses to the air-puff stimuli to the reference genotype, we developed a
structured probabilistic approach to probe higher-order behavioural patterns that
directly influence action sequences. This approach compares each genotype to a
constrained generative model with a behaviour dictionary instead of relying on direct
comparison to a reference genotype.

The sequences of actions are modelled using a time-varying continuous-time Markov
chain, built upon simple probabilistic basis functions that draw inspiration directly from
bacterial chemotaxis (see e.g. [59]). The model is parametrised by the average duration
of each action, the action’s amplitude (either the maximum asymmetry factor (an
experimentally robust proxy to the bending angle) or the velocity of the action), and
the transition probabilities between successive actions. All parameters are allowed to
vary temporally. We account for this time variation by using piecewise constant
parameters in a 6t = 1 s time windows.

We initialise the state of the larva following the stationary distribution of actions,
p(i,tp). At a given point in time ¢ (including ¢ = ¢y), the duration At of an action is
drawn from a Poisson distribution,

pi(At[t) = A (t)e DAL (13)

with 1/A;(t) the mean time spent in behaviour ¢ at time ¢. The action’s amplitude is
allowed to depend on At. For asymmetric actions (i.e., bend, hunch, and roll) the
amplitude is quantified by the “asymmetry” factor A, while for the other actions (i.e.,
run, back, and hunch) it is quantified by the velocity v. The asymmetry is defined by
A = %, with «; the angle between the segment formed by the centre and the
head of the larva and the segment formed by the centre and the tail of the larva. The
asymmetry can only take values in the [—1, 1] range. We approximate the amplitude
distributions using a kernel density estimation with a mixture of Gaussian kernels with

May 3, 2024

1281

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266


https://doi.org/10.1101/2024.05.03.591825
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.591825; this version posted May 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

uniform weights,

(o= LN (e’ 14
fl(al)* nhm;e ) ( )

where a; is the amplitude of the velocity or the asymmetry of the behaviour 4, p; j(t) is 2

the mean of jth component of the mixture, h = (%15)% is the bandwidth of the kernel, s
and o the standard deviation of the amplitudes inferred from data. We set n = 10, 269
which empirically leads to a good trade off between bias and variance. Thus, the 270
distribution is described by a 10-dimensional vector p;(¢) = (pi1(£)(t), - .., i,10(t))- m
Finally, a new action is chosen according to a first-order Markov chain parametrised by 2
the transition matrix T'(¢). Since we explicitly model action duration, self-transitions 213
are not possible and the diagonal elements of T'(t) are zero. 274

The full set of parameters to infer is (A, M, T). Here A = {\;(¢)} is the expected 2
inverse durations of each behaviour during each second. M = {p; (¢, At)} is the features s

for each action during each second knowing the duration of the action, and with 277
wi(t, At) = (i1 (0) (), .-, pi10(t)). T ={T(t)} is the set of transition matrices over 278
time, also changing each second. 219

The model’s parameters are learnt from experimental data using Bayesian inference
(see Eq. . The likelihood for one larva’s behaviour sequence can be written as

tend—ét M S
—\; (S)At X[s,s+68t) (Z:o dtp>
L(X|A,M,T) = H H [)\im(s)e im ()&, L (8) f(ammim,dtm)] =

(15)

where X = {(i1, a1, At1), ..., (ir, an, 0tar)} is the sequence of the larva’s actions, tepg 280
is the duration of the recording, X[, () is indicator function for = being in the interval  2a
[a,b), and i, is the mth action, with At,, its duration and a,, is its amplitude. The 282
products 283
We regularise the inference using the following priors on the temporal variation of  2s
the parameters: 285
e a prior enforcing the normalization of the transition matrix, 286
W(T) = e_ﬂ(zj#i Tiﬂj_l)Q; 287

e a prior reinforcing a smooth temporal variation of A, 288
m(A) =L IL, eV (s)=Xi(s+31) 1), 250

e s prior reinforcing a smooth temporal variation of M(t), 290
(M) =[[, I1. e*W(HMi(S)*l\’li(SJrét)\V)7 »o1

The maximum a posteriori values of the parameters are inferred by minimizing the
following cost function

F == [log(£(X|A, M, T)) +log(r(A, M, T))], (16)

where 7(A, M, T) = 7(A)n(M)n(T) and N is the number of larvae. We minimize this 20
function with a direct gradient descent algorithm on the entire set of behavior sequences 203

of the larvae of a single genotype. We visually represent the model in Figure [FA. 204

After inference, we generate artificial behavioural sequences from the inferred 205
parameters from our model using Monte Carlo sampling of the posterior distribution 206
and generate new artificial sequences using the procedure outlined in 207
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Fig 5. (A) Graphical representation of the probabilistic generative model showing the
temporally inhomogeneous Poisson model p; (At|t), the distribution of action amplitudes
p;(S|Tp, t), and transition probabilities to the other actions. (B) Characterisation of
behavioural responses to an air puff with the prediction of the generative model for two
lines. On top: time evolution of the larva’s actions; thin lines are the experimental
recording, and thick lines are the generative model; on the bottom, a circular plot of the
z-scores between the action sequences of the generative model and the experimental
recordings. Darker blue colours indicate larger values. The two lines are R41 D01 on top
and R38H09 on the bottom.
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We evaluated the model’s goodness of fit using the MMD and compared generated
sequences and real sequences of behaviours. For each line, we took groups of 100
random larvae, for which we calculated the probabilities of sequence occurrence. We
obtain a distance for each line corresponding to the differences between the models and
the experiments. We provide the distances in Supplementary Table 2.

We added to the global scoring performed by the MMD with sequence-based scoring,
allowing direct comparison of the probability of a defined sequence under the fitted
model and its experimental frequency. We used the z-score Z = *=* with z the
probability of the sequence under the model, v the frequency of the sequence in
experimental data and o a bootstrap estimation of the standard deviation of the sample
frequency under the generative model. We limited the analysis to sequences of 3 actions
to maintain statistical significance for most lines in the screen. Figure shows an
example of Z score for all sequences for two different lines. Although the model
reproduces the evolution of probabilities over time, some sequences on line 38H09 are
poorly described, as evidenced by their large Z score (the values of the Z scores per
sequence for certain lines are noted in Table 3.1 and Table 3.2 (during the stimulus, and
during all time)).

Clustering behavioural sequences from suffix tree representations

The total number of actions performed during this screen is roughly 1.3 million. The
scale and diversity of recorded behaviour can be exploited to identify subtle structures
in behavioural sequences by analysing the screen as a general ensemble. We used a
suffix tree representation to explore the entire screen structure and the genetic lines’
organisation. We constructed the suffix tree with Ukkonen’s algorithm [60}/61] on all
sequences of behavior of all larvae across all genetic lines. We here consider only the
sequence of categorical behavioural actions, regardless of their durations. Each sequence
is added to the suffix tree (see Fig. |§|A for a illustrative example of a tree built from just
3 different larvae). The size of the tree grows quadratically with the length of the
sequence, and the proportion of sequences common to several lines decreases accordingly.
Thus to avoid too long sequences (which would decrease statistical power due to their
multiplicity), and to focus on the biologically relevant immediate response behaviours,
we only consider behaviors occurring during the first 5 seconds after the onset of the
stimulus. (This has the additional benefit of limiting the computational burden.)

We apply the suffix tree o cluster different lines by utilizing internal nodes shared
between several lines. Here, the advantage of using a suffix tree is the ability to
compare sequences of different lengths while retaining the order of behaviors. In
particular, we compare each node of the suffix tree, examining node overlaps across
multiple lines in the suffix tree. To define a metric, we embed the behavioral sequences
of each genetic line using the Vector Space Document (VSD) model. In this case, a
document corresponds to a genetic line. We map the nodes from the common suffix tree
to an M-dimensional space in the VSD model.

In the VSD model, each genetic line, ¢, is considered as a vector in an M-dimensional
term space. We construct these vectors by the term frequency-inverse document
frequency (tf-idf) weighting scheme proposed in [62], [63]. It measures the relevance of a
word (here, a node) according to its frequency in each document (line) and in a
document collection (cluster of lines). The vector corresponding to a line [ is given by

(= {w(1,0),w(2,0), (M, )}, (17)
where w(i, £) is the weight applied to each node ¢ in document ¢, defined by the tf-idf,

w(i,1) = log[l + t£(i,1)] log[(1 + N/df (¢)]. (18)
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Fig 6. A. Schema of a suffix tree for three larvae performing three different sequences.
Larva 1: ABA, Larva 2: BAC, Larva 3: BD, the seven paths from the root to the leaves
correspond to the seven suffixes: A, BA, ABA, AC, BAC, D and BD. Each node shared
by at least two larvae is shown in circles: A, B and BA. B. Hierarchical clustering based
on the cosine similarity between the suffix tree vectors of each genetic line. Each colour
is associated with a different cluster. C. Distance matrix representing the squared MMD
between all lines from the inactivation screen, computed on a 10D learned latent space
for a 2-second time window. D. 2D representation of the geometric relationships
between lines, obtained using supervised UMAP, encoded by the distance matrix. The
bar plot associated with each cluster represents the average variation of behaviour
during the 2-second window in the six actions behaviour dictionary. The thickness of
the lines linking the cluster is associated with the coupling between the clusters. E. The
z-score average between data and generated sequences, as well as the overall lines, is
divided by the standard deviation of these z-score distributions. We display only the 30
highest values. F. The 17 sequences of nodes with the highest frequency of occurrence
for each of the eight clusters.
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Here N is the number of lines, tf(7,£) is the frequency of the ith node in the line ¢, and
df (i) is the number of lines containing the ith node. The frequency is given by

tf(i,0) = K,—i, where n; is the number of larvae that pass through this node 7 and Ny is
the number of total larvae in the line /. We obtain a vector for each line, with a weight
term for each node. We calculate a square distance matrix from these vectors containing
the pairwise distances between the vectors of the genetic lines. We measure the distance
between two vectors & and w’ as the cosine similarity since it’s more robust to the
variability in the number of larvae per line compared to the Euclidean distance,

W w

d(@, W) =1- (19)

llewll [l ]l
We apply hierarchical clustering to the distance matrix to group the genetic lines
according to their behaviour sequences (Fig. [6]B).

Results

We applied our methods to generate behavioural phenotypic descriptions that are
crucial for understanding both the global scale (across the entire screen) and the local
scale (at the level of individual genotypes). We constructed a distance matrix
encompassing all lines by analyzing the distribution of genetic lines within the latent
space. To achieve a geometric perspective on the relationships between various
genotypes at a large scale, we calculated the pairwise Maximum Mean Discrepancy
(MMD) distance matrix. Our approach involved a two-step process: calculating the
MMD distance matrix for all lines and then embedding the genotypes into a
high-dimensional geometric space through multi-dimensional scaling. This space,
another latent space, represents the probabilistic reactions to stimuli at the genetic line
level. Using hierarchical clustering with Ward’s linkage method, we visualized this latent
space (referenced as Fig. |§|D)7 identifying five contiguous regions. For a conventional
representation of the primary behaviour statistics, we calculated and compared the
average behaviour histograms for lines within each region against the overall average
behaviour histogram derived from this geometric framework. Additionally, we explored
the interrelations among these regions using supervised Uniform Manifold
Approximation and Projection (UMAP) for dimensionality reduction. This process
resulted in each subregion being represented as a separate connected component in a 2D
space. We also illustrated the total connectivity between each region, quantified by the
sum of edge weights in the graph created through the UMAP algorithm, shown in
dashed grey lines with widths proportional to the logarithm of the connectivity.

The scope of the screen, combined with the variety of genetic lines and behaviours,

facilitates the categorization of larval dynamics into clusters and sequences of behaviours.

By employing hierarchical clustering on the representation vectors of nodes within the
suffix tree — which captures both the frequency of a sequence’s occurrence and the
number of lines displaying it — we can depict the principal families of larval behaviours
in response to this sensory stimulation paradigm (Fig. @F) This approach reveals the
larvae’s reactions to airflow natural stimuli, notably bending movements. A distinction
emerges between response families characterized by the hunch (head retraction) and
repetitive transitions between back movements and bends and those characterized by
rapid escape involving running phases, stopping phases, and then swiftly resuming
running and bending cycles. The latter represents the baseline behaviour of larvae

placed on a 2D agar plate without a specific task, likely engaging in foraging behaviour.

Globally, the generative model allows for identifying behavioural sequences that are

most likely unable to be described by a time-inhomogeneous Markov model (see Fig. @E)

These sequences, where back and hunch are often represented, are associated with the
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larvae avoidance manoeuvres. Numerous questions remain regarding how behavioural
sequences are encoded and their neural implementation. Similarly, encoding the
duration of these behaviour motifs needs to be investigated as some lines, for example ,
will exhibit 1 or 2 repetitions of the (back, bend) motifs while in others, for example .

Our principal finding comprises a catalogue of genetic lines exhibiting subtle
behavioural modifications, as identified through statistical testing within the
behavioural latent space and via the Bayesian generative model for action sequences.
The genetic lines pinpointed by our methodologies are detailed in the Supplementary
Information, with specific examples illustrated in Figure []] We present the reference
line alongside two instances of lines identified through the Maximum Mean Discrepancy
(MMD) method and two others recognized by the generative Bayesian model. Both
techniques have considerably broadened the spectrum of lines of interest by their
capacity to pinpoint behavioural evolution that is not overtly manifested by significant
changes in individual actions, either through their emergence or absence, as noted in
[34]. Accordingly, each method uncovers two distinct sets of characteristics. Intricate
patterns distinguish the lines newly identified by the MMD method (Fig.[7D) in the
witness function landscape, indicating alterations across multiple behavioural domains.
Not all these modifications align with the behaviours defined by the discrete action
dictionary.

The new lines identified by the generative probabilistic model are characterized by
longer-term effects on action sequences, as illustrated in Figure (these lines are listed
in Supplementary Table 5). Our findings reveal that these lines display variations in the
global proportions of specific sequences of three actions despite having average
probabilities of individual actions comparable to the reference line. For sequences
beyond three actions, the statistical significance of the findings could not be guaranteed
across all lines. The newly detected lines were discovered across a broad range of the
screen in clusters defined by either the suffix tree representation or the MMD-based
distance matrix, as shown in Figure [7F-G.

Our methods successfully identified nearly all the hits previously reported by Masson
et al. (2020) [34] as strong hits (Table 4). However, some hits (listed in Supplementary
Table 6) are no longer classified as such according to the more stringent criteria of our
two new approaches. There are several factors contributing to their reclassification. In
many instances, transitioning to a definition of behaviours within a continuous latent
space—and away from the discrete categorization of behaviour—eliminates strict
boundaries, leading to a loss of significance under the current methodology. It is
important to note that different conceptualizations of behaviour may yield varied
criteria for significance. An increase in the sample size of larvae from these lines will be
crucial in determining whether they still qualify as hits under these revised definitions.

In this study, we extended the behavioural paradigms to include a subset of lines
(referenced in Table 7) to examine their behavioural responses to varying levels of air
puff intensity. As previously reported, larvae exhibit different behaviours in response to
lower stimulus intensities, such as fewer hunches, bends, and backups, and an increase
in stops and crawls [34] (see Fig. . Figure [§| presents two lines that demonstrate
distinct phenotypic variations in their modulation of behavioural responses to different
air puff intensities. The first line, R68B05 (shown in column 2 of Fig. , shows a
phenotypic difference between the intensities—displaying more pronounced hunching in
response to high intensity and less at low intensity compared to the reference. This
results in a greater disparity in hunch response probabilities between low and high
stimuli compared to the control, suggesting that neurons in this line may play a role in
modulating control and maintaining a stable range of behavioural responses regardless
of stimulus intensity. The second line, R20F11 (illustrated in Fig. |8 column 2), exhibits
a consistent phenotype across both intensity levels, indicating an absence of behavioural
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Fig 7. Samples of genetic lines of interest, ”"Hits”, with their characterisation. These
lines lead to subtle modifications of behaviour and were not detected by previous
approaches. We present four new hits: two hits associated with complex alterations of
the learned latent space and two lines associated with strong sequence deviations from
the generative model and the reference. The columns correspond to 1. control line
attP2, 2. R68B06, 3. R5TF07, 4. R18A10, 5. R38H09. Row A: Light microscopy
images of larval brains expressing the selected GAL4 line. Note that there is no picture
for attP2 as it is the reference and thus labels no neurons. Row B: Fraction of
behaviour during 2 seconds after the stimuli projected onto the six action dictionary.
Row C: Latent normalized distribution of behaviour of the lines, during 2 seconds after
the stimuli, with in red the distribution of the reference and in blue the distribution of
the hits line. Row D: Witness function between latent distributions highlighting the
main sources of behavioural differences between the lines. Note the complex patterns in
the latent space, showing these hits don’t stem from simple variations in one action.
Row E: z-score of sequences of three actions between generative and experiment
sequences. Row F: Position of the reference and hits lines in the 2D representation of
the geometric relationships between lines encoded by the distance matrix (shown in
Fig @D,E) Row G: Position of the reference and hit lines in the hierarchical clustering
tree (shown here in circular form).
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modulation based on stimulus intensity (Fig. ) Neurons in these lines might thus be
implicated in encoding stimulus intensity and/or regulating the behavioural response in
a stimulus-intensity-dependent manner. Our new methods further supports this
phenotypic distinction; the witness function uncovers a significant difference in response
to high versus low intensity for one protocol compared to the reference, whereas the
other displays minimal variation. We can subsequently locate the positions of these two
protocols within the latent space and the suffix tree of action sequencesa.

1 2 3
Control R68B05 R20F11
A
B
C
D
E

Fig 8. Two genetic lines of interest, each subjected to two different stimulus intensities:
high intensity as previously illustrated, and low intensity, involving a less powerful air
puff. We provide characterizations of each line and protocol. The columns correspond
to (1) the control line, (2) R68B05 and (3) R20F'11. Row A displays light microscopy
images of larval brains expressing the selected GAL4 lines. In Row B, the fraction of
behaviour during the 2 seconds following the stimuli is projected onto the six-action
dictionary, with high intensity in plain colour and low intensity in dashed lines. Row C,
the witness function between latent distributions, highlights the main sources of
behavioural differences between the two protocols for the control and the two lines. Row
D, the position of high intensity in red and low intensity in blue in the 2D representation
of the geometric relationships between lines, encoded by the distance matrix (as shown
in Fig. 7C). In Row E, the position of high intensity in red and low intensity in blue is
displayed in the hierarchical clustering tree (presented here in circular form)
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Discussion

The swift progress in large-scale behavioural studies, complemented by neural
manipulations and recordings, paves the way for establishing causal connections
between behaviour and its neural underpinnings. Although various statistical methods
can identify immediate and pronounced deviations, detecting subtler variations remains
challenging. These minor deviations may stem from nuanced behavioural changes that
are difficult to detect or from modulations happening across challenging-to-capture
timescales.

Our ability to detect such nuanced modulations arises from our decision to simplify
behavioural quantification into two distinct measurements. In the first approach, we
linked behavioural features with the mechanical consistency of larval movements. We
then reduce the dynamics of population action over a set time scale, representing it as a
distribution within a learned latent space. Thanks to the low dimensionality of our
latent space, we employed robust kernel-based statistical tests. As a result, our
detection of subtle behavioural responses outperformed those based on dictionary-based
projections. It allowed the extension of behaviour detection at the frontier of ambiguous
actions to the expert eye. Hence, the complex patterns exhibited by the witness
function (examples shown in Fig. [7|C) for these lines of interest often include the
boundaries between previously described discrete behaviours (see Fig. [3)).

We developed a streamlined self-supervised method to encode actions in a
continuous latent space, employing a compact neural network. This approach is
adaptable to various architectures, enabling the creation of a meaningful, continuous
latent space. It can also be integrated with different interpretations of what constitutes
a behaviour or an action. In that sense, approaches looking for underlying behavioural
structures in the spatiotemporal dynamics of postural movement data, [21}24}26], in
the latent structure of animal motion prediction [23], or in continuous latent spaces
compressing raw video of behaviour |27] could be directly patched into our procedure.
In this context, the primary limitation arises from statistical testing. As the
dimensionality of the latent space increases, so does the risk of anomalies [64-68], a
phenomenon known as the curse of dimensionality.

The approach could be extended to larger timescales without retraining but simply
by encoding more significant epochs into multiple points, then defining a distribution on
the latent space and comparing conditions using MMD-based statistical testing.
However, since the ordering of these points would not be represented, long-time window
encoding will lose resolution in the temporal sequences of action and, thus, part of the
relevant information. Although Maximum Mean Discrepancy (MMD) exhibits some
resilience against the escalation in data dimensions |[57./69], the finite number of genetic
lines and corresponding larvae implies that a lower-dimensional latent space would
enhance the statistical significance of the analysis.

The neural circuitry underlying individual actions and sequences of actions remains
partially understood and modelled. There are ongoing debates [70H77| regarding the

mechanisms of action initiation, temporal stability, and the transition into new actions.

These discussions revolve around whether these processes are localized in specialized
centres with centralized competition or are distributed throughout the nervous system.
Similarly, there is active debate about the control mechanisms governing the sequence of
actions, with models such as chains of disinhibitory loops [10], parallel queuing |78§],
ramp-to-threshold [79,80], and synaptic chains [81,/82] under consideration. Our second
approach focuses on uncovering complex correlations within the structure of action
sequences at the population level. Although behaviour alone may not conclusively
pinpoint the neural mechanisms responsible for generating sequences, complexities
observable at the population scale—like non-Markovian characteristics or high-order
correlations—may offer clues about the neurons that orchestrate these dynamics in
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sequence generation.

In our second approach, we utilize the structured framework of a tractable
probabilistic generative model to explore complexities in action sequences. This model
is a foundation for contrasting a group of larvae against a corresponding constrained
reference model, eliminating the need for an external reference line for comparison. Our
method is adept at identifying complex temporal variations in sequences at the
population level, thanks to analysing higher-order correlations within these sequences
and comparing them against the constraints of the generative model. In this setup, the
future state of an individual is determined solely by its current state, which is in line
with a Markov model. The model also incorporates variability through a potentially
time-varying effective action rate. This approach has enabled the identification of
genetic lines where the time-evolving probabilities of actions align with experimental
data, albeit with limitations. For instance, it does not account for the frequencies of
sequences of three actions, among others. Thus, these identified ”hit” lines reveal
limitations in capturing certain aspects of action sequence generation when simplifying
the dynamics to an inhomogeneous Markovian Poisson model.

The intricacies of behaviour and its connection to neural computations, whether in
specialized circuits or distributed across the nervous system, cannot be fully understood
through a single method or confined to a particular time scale. However, we can identify
meaningful behavioural characteristics by integrating multiple methods that utilize both
local and global data at the level of individual animals and across populations and by
spanning various time scales. These characteristics can then be compiled into
behavioural identity documents for individual neurons and neuronal clusters (refer to
Fig.[7). By merging these detailed profiles with connectome data [4] and neural
recordings, we can hasten the discovery of circuits responsible for decision-making and
the subtle nuances in their output.

Supporting information

Latent space
New behaviours

We tested the capacity of the latent space to represent new actions beyond the six
classical ones [10[34]. We show two examples of possible new action categories in
Figure [0] namely C-shape (in A) and head-tail (in B). In the former, the larva takes the
shape of a C with variable time spent in that state. It is observed, for example, prior to
rolling. The larva exhibits hunch-like motion in the latter with rapid head and tail
retraction. It is observed, for example, following air flow puffs.

Exploring the Latent Space

Beyond the usual dictionary of larval actions and behaviour, the latent representation
can be explored without labels.

Clustering the latent space. While clustering is not necessary for our analysis
approaches, discrete behaviour description can be instrumental in describing larva
dynamics.

We used the persistence-based clustering algorithm ToMATo [83]. The algorithm
requires an estimate of the density at the data points and the pairwise distances matrix
between them to perform the clustering. The clustering joins a mode-seeking phase
based on a graph-based hill-climbing scheme and a topological persistence merging

May 3, 2024

22 /31]

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532


https://doi.org/10.1101/2024.05.03.591825
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.03.591825; this version posted May 5, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

A

Fig 9. Latent representations of C-shape (A)and Head-tail (B). (A) C-shapes: deep

blue, rolls: yellow. (B) Head-tails: deep blue, backs: light blue.

phase in the density map. Clustering was performed on the combined training and

validation dataset.

In ToMATo [83], the number of clusters is controlled by a merging threshold, the
minimum prominence a local peak must attain to be considered significant. A common
practice to define the number of clusters is to use the gap statistic [84]. Instead of

setting the number of clusters, we designed a graphical interface to examine the

hierarchy dynamically. Interestingly, as in 3], one of the clusters identified through this
procedure captures an anomaly in the larva tracking where the head and the tail are

suddenly swapped.

Interface to navigate the latent space We developed a software tool which allows
for interaction and visualization of the cluster hierarchy, a visualisation of the 2D
projection of the latent space, and generation of video data representing the samples in

each cluster (see Fig. [10).

= =

e

Previou:

=
A

Fig 10. Interface of the latent space navigation software: the clustering tree, the
portion of the latent space selected, and examples of larva dynamical actions belonging
to this cluster. Supplementary Videos 2. provides a video showing interaction with the

software.

By interacting with the tree on the top left, we can choose a particular cluster to
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visualize. The cluster node and its children are then highlighted in the tree, while the
corresponding data points are highlighted in the 2D projection on the top right.
Samples from the cluster are displayed at the bottom of the interface. Various display
settings can be used, such as the display of the outlines or the midlines of the recorded
larva contours. The larva’s head is highlighted in red, while the trace of its midpoint is
plotted in blue. Finally, the depth of the cluster tree can be varied.

To declutter the tree view, the user can interactively fold a cluster, hiding all of its
children from view, if they consider the distinctions between the different children
clusters irrelevant. Note that these merges need not be consistent with the merging
criterion of ToMATo, leaving the researcher with all the freedom to merge clusters, with
the limitation that cluster merges must respect the tree structure.

Screen scale cluster definition

The screen can be used to define relevant cluster numbers. After computing the
complete cluster hierarchy and associating each genotype to all clusters, we can prune
the hierarchy to ensure that all clusters have at least one genotype belonging to them
that is different from other clusters.

Generative model
To generate the numerical sequences of actions, we rewrite the likelihood shown in

Eq.[15] as

Send K

cexiam 1) =TT [T ([Aim(s)eAm(s)AtT%MH(S) Flamlps, dtm)r“’”m“

s=0 k=0 m

Oyt dty—(k+Ks)ADO((k+Ks)At—37"  dt,)

(20)

In this form,
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Algorithm 1 MCMC to generate behavioural sequences

Tond > Duration of simulation (in seconds)

K

> Number of time step per second

i < random.categorical(initial probabilities) > Initialise the larva’s action
sequence <« | |
for s =0 to Typq do

for k =0to K do
dt «+ dt+ k
if random.uniform([0, 1]) < (1 — e~ *($)A%) then

for n =0 to 10 do
append random.normal(u; (s, dt))) to features
end for
a <random.choice(features)
append (i,dt,a) to sequence
i «+—random.choice([0, . . ., Niehaviour), weights = T;i(s))
dt <0
features < [ |
end if
end for

end for
return sequence

Likelihood ratio test

We employ a likelihood ratio test that compares the lines to the reference line to detect
behavioural modifications of genetic lines. The test statistic is given by

/\LR =-2 log[l(Alinea Mlinea Tline) - Z(Arefa Mrefa Tref)]a (21)

where [ is the logarithm of the maximized likelihood function £. This test is made
possible as the generative model provides a tractable likelihood.

Tables

Table 1. List of lines studied.

Table 2. A table presenting the estimated square of the latent space Maximum
Mean Discrepancy (MMD) with the corresponding bootstraped p-values for all
lines, complemented by a calculation of the distance between generative and
experimental sequences.

Table 3.1 and Table 3.2. Z scores comparing action sequences from the generative
model to experimental recordings obtained respectively during the stimulus and at
all times.

Table 4. A table presenting the estimated square of the latent space Maximum
Mean Discrepancy (MMD) and the distance between generative and experimental
sequences for lines previously identified as hits, as cited in [34], and confirmed as
such with this analysis.

Table 5. A table providing the list of new hits detected by the two new
approaches.
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e Table 6. A table providing the few genetic lines that were detected as hits in [34]
and that no longer are hits with this analysis.

e Table 7. A table detailing the estimated square of the latent space Maximum
Mean Discrepancy (MMD) with the corresponding bootstraped p-values,
complemented by a calculation of the distance between generative and
experimental sequences for lines with low and high intensity of the stimulus.
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