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Abstract 15 
 16 

Human pelvic shape has undergone significant evolutionary change since the divergence 17 
from the chimpanzee lineage. This transformation, involving the reduction of the pelvic canal 18 
size to support bipedal locomotion, is thought to give rise to the obstetrical dilemma, a 19 
hypothesis highlighting the mismatch between the large brain size of infants and the narrowed 20 
birth canal in females. Empirical evidence for this classic hypothesis has been equivocal, largely 21 
due to a lack of sample size and appropriate types of data. To elucidate the genetic underpinnings 22 
of pelvic morphology, we applied a deep learning model to 31,115 dual-energy X-ray 23 
absorptiometry (DXA) from the UK Biobank, extracting a set of seven pelvic proportion (PP) 24 
phenotypes, including measures of the birth canal. All PPs were found to be highly heritable 25 
(~25-40%) and a genome-wide association study of these traits identified 179 independent loci. 26 
Unlike other skeletal proportions including long bone lengths, the subpubic angle associated with 27 
the birth canal exhibits a genetic correlation between sexes significantly less than 1, in line with 28 
sex-specific reproductive function. PPs were also left-right asymmetric but not heritable and 29 
instead associated with handedness. We conducted phenotypic and genetic association analyses 30 
to link PPs to 3 facets of the dilemma: locomotion, pelvic floor function and childbirth. Larger 31 
birth canal phenotypes were associated with reduced walking pace, decreased risk of back pain, 32 
and increased risk of hip osteoarthritis - phenotypes linked to locomotor efficiency. We also 33 
observed that a narrower birth canal width was associated with a reduced risk of pelvic floor 34 
disorders. When examining childbirth-related outcomes, narrower birth canal phenotypes were 35 
associated with increased risk of emergency cesarean sections and obstructed labor due to 36 
insufficient dilation, but not obstructed labor due to positioning of the fetus. Finally, we 37 
examined whether the dilemma might have been alleviated through evolution. We found no 38 
association between any PPs and gestational duration, contrary to the initial prediction by 39 
Washburn in 1960. However, we found that the birth weight of the child, a proxy for skull and 40 
brain size, was genetically correlated with birth canal width but not with other PPs. Collectively, 41 
our study offers fresh insight on a 60-year-old debate in human evolutionary studies. Our results 42 
support the idea that the obstetrical dilemma has played a central role in the co-evolution of the 43 
human brain and pelvis, while also highlighting the potential role of associated factors such as 44 
pelvic floor health.45 
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Introduction 46 
 47 

The human skeleton has undergone significant morphological change associated with the 48 
transition to bipedalism. Some of the most significant changes occurred in the pelvis, resulting in 49 
a superoinferiorly short and mediolaterally flaring pelvis relative to the modern great apes (1, 2). 50 
These features are believed to have emerged early in hominin evolution and the alteration in 51 
pelvic anatomy allowed for the positioning of the upper body above the lower limb joints and 52 
facilitated the maintenance of an upright posture (3). While debate continues about the details of 53 
gait mechanics in fossil hominins (1) it is clear that the modern human pelvis is adapted to 54 
habitual bipedality, and undergoes a specific pelvic motion during walking that is thought to 55 
reduce energetic costs associated with bipedal locomotion (4). 56 
 57 

The suite of adaptations for bipedality includes a reduction of the bi-acetabular distance, 58 
minimizing pelvic rotation during bipedal movement and consequently enhancing efficiency (5). 59 
This narrowing of the bi-acetabular distance results in a narrower birth canal, and is thought to 60 
stand in direct opposition to the birthing of children with significantly larger brains than our 61 
evolutionary predecessors (e.g., (6–14)). In the 1960s, this functional and evolutionary conflict 62 
was coined the “obstetrical dilemma” by Washburn (13). In the six decades since then, the 63 
obstetrical dilemma has been a source of intense debate, and different studies have attempted to 64 
examine the validity of the hypothesis through empirical data (6, 14–17). One area of contention 65 
centers on the relationship between pelvic shape and walking efficiency or walking speed. Some 66 
studies have found there is an association between the two (7, 18), while others have not (19–67 
22). Another point of debate revolves around whether differential birth canal proportions are 68 
associated with obstruction during delivery (7–14, 17, 23–26). Recently, there has been growing 69 
appreciation for the concept of a multifactorial pelvis, which proposes that the role of pelvic 70 
width reduction is not just to enable bipedal locomotion, but also to reduce the risk of pelvic 71 
floor disorders. Pelvic width reduction improves the pelvic floor's ability to support the fetus and 72 
the inner organs, and to prevent incontinence (7, 27, 28). 73 
 74 

In addition to debates about the association between pelvic morphology and locomotion, 75 
childbirth, and pelvic floor function, it has been suggested that in modern humans the obstetrical 76 
dilemma has been alleviated through evolution. Washburn's initial hypothesis proposed that 77 
relative to the other great apes, humans experience a shorter gestation period. This enables 78 
human infants to be born relatively earlier in development than their primate counterparts, 79 
consequently limiting the extent of brain growth before birth and ensures that the newborn can 80 
successfully traverse the birth canal during delivery. However, this hypothesis has been 81 
challenged and updated in recent years, as human gestational length and newborn size have been 82 
found to align with or exceed expectations for primates of our size, similar to the other great apes 83 
(14, 29–31) (see (6, 7, 32) for alternate usages and historical perspectives on the term “obstetrical 84 
dilemma”). 85 
 86 

While different aspects of the dilemma have been tackled over the past few decades, 87 
these previous studies suffer from several shortcomings. One issue with many studies – 88 
particularly those involving clinical outcomes – is that measurements of pelvic dimensions were 89 
collected externally (19, 22), which may not adequately reflect the skeletal constraints imposed, 90 
particularly with respect to the birth canal. Another issue is that some earlier studies lack 91 
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complete information about individual lifetime health records and are unable to distinguish 92 
between fine-grained but important details such as elective and emergency C-sections. However, 93 
the major challenge contributing to the ongoing debate is the limited sample size in many of 94 
these studies, which often only have data on a few hundred individuals (sample sizes and 95 
references of previous papers are reported in Table S1. In addition, data obtained for each study 96 
is often only capable of addressing one facet of the dilemma, as datasets examining childbirth 97 
outcomes and pelvic morphology often do not include data about pelvic floor function or 98 
walking speed/efficiency for the same individuals. 99 

 100 
Finally, the underlying basis of skeletal evolution in the pelvis is genetic. While 101 

functional genomic datasets examining gene expression through development as well as 102 
comparative gene expression between the great apes and humans for the pelvis have yielded 103 
valuable insights (33–35) study of the direct association between pelvic trait variation and 104 
genetics has not yet been carried out. Thus, the genetic basis of pelvic morphology underlying 105 
variation in humans or indeed any other vertebrate is largely unknown, precluding analysis of 106 
natural selection on pelvic phenotypes directly at the genomic level. 107 
 108 

Here, we applied methods in computer vision to derive a comprehensive set of seven 109 
skeletal measurements of the human pelvis from full-body dual-energy X-ray absorptiometry 110 
(DXA) images at biobank scale. We performed genome-wide scans on these seven phenotypes to 111 
identify loci associated with variation in pelvic proportions (PPs). Using summary statistics from 112 
these image-derived phenotypes (IDPs), we linked human PPs through phenotypic and genetic 113 
correlation with other biobank phenotypes, with an emphasis on locomotor, pelvic floor and 114 
childbirth-related outcomes. 115 
 116 
Results 117 
 118 
A deep learning approach to measure pelvic morphology 119 

To study the genetic basis of the human pelvis, we jointly analyzed DXA and genetic 120 
data from 42,284 individuals in the UK Biobank (UKB). Individuals from this dataset are 121 
between 40 and 80 years old and reflect adult skeletal morphology. We report baseline 122 
information about our analyzed cohort in Table S2. Using a previously published deep learning-123 
based image quality control (QC) pipeline (36), we retained only DXA images for the full body 124 
which included the entire pelvis, and removed images which contained image artifacts, atypical 125 
aspect ratios, and other abnormalities, retaining 39,469 images of high quality. These images 126 
were then uniformly cropped and padded to focus on the pelvis for subsequent analysis 127 
(Methods: A deep learning model to identify pelvic landmarks on DXA scans). 128 

After performing image QC, we manually annotated 17 landmarks on 293 randomly 129 
selected pelvic images (see Fig. S2) to train our model. To assess the accuracy of our manual 130 
annotations, we re-annotated 20 images from the initial set of 293 and refined this annotation 131 
through model-in-the-loop labeling (Methods: Image quality control, Fig. 1B and 1C). Our deep 132 
learning model was based on a High-Resolution Network (HRNet) architecture chosen because it 133 
maintains a high-resolution representation throughout the model which improves the 134 
performance of landmarking for this task on benchmarking tasks. These methods were robustly 135 
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applied to a similar task of identifying joints on the overall skeleton (36, 37) (Methods: Image 136 
quality control).  137 

Validation of human pelvic phenotype estimates 138 
 139 

After training and validating the deep-learning model on the 297 manually annotated 140 
images, we applied this model to predict the 17 landmarks on the rest of the 39,469 full-body 141 
DXA images. We then calculated the pixel Euclidean distances between pairs of landmark 142 
coordinates to ascertain six length phenotypes: pelvic width, pelvic inlet width, oblique pelvic 143 
inlet width, iliac isthmus breadth, pelvic height and acetabular diameter, and one angle 144 
phenotype: subpubic angle (Fig. 1A). To standardize images with varying aspect ratios, we 145 
rescaled pixels into centimeters for each image resolution. This was achieved by regressing the 146 
pixel height against the standing height in centimeters, as measured in the UK Biobank 147 
assessments (Methods: Image standardization, Fig. S11). For all seven pelvic measurements, we 148 
excluded individuals exceeding four standard deviations from the mean (Methods: Removal of 149 
image outliers, Fig. S11). 150 

Following outlier removal, we validated the accuracy of our measurements on the 151 
remaining samples in two ways. First, we calculated the average error between labels in the 152 
validation data and model performance: average error was 2 pixels across all 17 landmarks. 153 
Second, we analyzed 935 individuals with repeat imaging visits at least two years apart. The 154 
correlation of all pelvic length phenotypes between the first and second imaging visits was 155 
greater than 0.99 (Fig. 1D). This indicates that the phenotype estimations via our deep learning 156 
model are both accurate and highly replicable. 157 

Human pelvic asymmetry is associated with handedness, and is not heritable 158 

Next, we examined the correlation between measurements on the left and the right side of 159 
the pelvis. The two phenotypes with measures on each side were iliac isthmus breath and 160 
acetabular diameter. The left-right correlation for iliac isthmus breadth and acetabular diameter 161 
were 0.809, and 0.894 respectively (Fig. 1E). The average difference between the measurements 162 
in the iliac isthmus breadth between the left and right sides was 0.287 cm (p < 2 × 10-16, 95% 163 
confidence interval (CI) = 0.294 to 0.280), and for acetabular diameter, it was 0.101 cm (p < 2 × 164 
10-16, 95% CI = 0.093 to 0.108). Though these differences were small, we found that they were 165 
replicable - left and right discrepancies in individuals across two imaging visits had Pearson 166 
correlations of 0.633 and 0.407 for iliac isthmus breadth and acetabular diameter respectively 167 
(Fig. 1E). This suggests that we can capture a measure of pelvic asymmetry beyond 168 
measurement error. On estimating the heritability of this trait using GCTA (38) we found that it 169 
was consistent with 0 (hg2 for acetabular diameter discrepancy = 0.0131, SE = 0.0149, hg2 for 170 
iliac isthmus breadth discrepancy = 0.0275, SE = 0.0158). However, we observed a significant 171 
association between pelvic asymmetry and handedness - another trait that is also not significantly 172 
heritable (left-handed hg2 = 0.0104, right-handed hg2 = 0.0096 in 150,000 individuals). The 173 
genetic correlation between acetabular diameter discrepancy and left-handedness is -0.39, and 174 
with right-handedness, it is 0.34. Similarly, the genetic correlation between iliac isthmus breadth 175 
discrepancy and left-handedness is 0.15, and with right-handedness, it is 0.11. In addition, we 176 
regressed the left and right pelvic phenotype ratio against handedness while controlling for age 177 
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and sex. Right-handed individuals tended to have larger right acetabular diameters than left-178 
handed individuals (regression p = 8.31 × 10-6) and larger left iliac isthmus breadth than left-179 
handed individuals (regression p = 0.0665). This suggests that left-right pelvic asymmetry might 180 
be driven by left- or right-side dominance which is itself not heritable, but affect movement 181 
patterns and consequently skeletal development. 182 

 183 
Fig. 1. Deep learning-based image quantification and validation (A) Deep learning-based 184 
image landmark estimation using the HRNet architecture is shown. During this process, 293 185 
training images manually annotated with specific landmarks were used to train the model, which 186 
to perform automatic annotation of landmarks on the rest of images in the dataset from which 187 
pelvic measurements were calculated. (B) Model in the loop training data workflow. The 188 
coordinates from the 293 training images initially annotated by humans were used as a training 189 
set to train a model that was then redeployed on the training data. This helped to remove 190 
variation present in human labelling of the images and refined the training data itself. (C) Model 191 
in the loop training reduces annotation variability. Light blue bar indicates the average Euclidean 192 
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distances between human annotated landmarks and the model's first prediction on 58 validation 193 
set images. The dark blue bar indicates the average Euclidean distance between first and second 194 
model prediction on 58 validation set images. (D) Correlation of lengths measured from the first 195 
and second imaging visits for the same individual. (E) The two panels on the left side show the 196 
correlation between the left- and right-side measurements of the iliac isthmus breadth and 197 
acetabular diameter. The two panels on the right side illustrate the correlation of the left-right 198 
discrepancy in the iliac isthmus breadth and acetabular diameter between the first and second 199 
imaging visit. (F) Genetic correlation between female and male pelvic phenotypes and other 200 
skeletal traits including tibia, femur, torso length, forearm, and humerus. The error bars show 1 201 
standard error. Heritability greater than 1 is due to small sample size. The two traits shown in red 202 
on the x-axis are the only ones that are significantly different from one. 203 
 204 
Sexual dimorphism in the genetic basis of PPs 205 

The human pelvis plays a critical role in childbirth and is one of the most dimorphic 206 
skeletal elements between males and females (39–41). Given the distinct functionalities between 207 
male and female pelvis, we examined whether the genetic basis of our seven pelvic phenotypes 208 
differed between males and females. To do so, we carried out genetic correlation analysis 209 
between a GWAS carried out in males versus females. Functionally similar pelvic phenotypes, 210 
such as pelvic height, exhibit similar genetic architectures between males and females, with a 211 
genetic correlation of 1.03. In contrast, birth canal-related phenotypes like the subpubic angle 212 
showed genetic correlations significantly divergent from 1. This difference in genetic correlation 213 
is in striking contrast to virtually all other skeletal traits previously examined such as arm, leg, 214 
torso, and shoulder dimensions. These other traits all showed genetic correlations not 215 
significantly different from 1 in the same cohort (Fig. 1F), suggesting that sex-specific 216 
reproductive requirements of the human birth canal are driving genetic differences between sexes 217 
for these PP traits. 218 

GWAS of human PPs 219 
 220 

We performed GWASs using imputed genotype data in the UKB to identify variants 221 
associated with each pelvic phenotype. We applied standard variant and sample QC and focused 222 
our analyses on 31,115 individuals of “white British ancestry,” as defined by the UKB genetic 223 
assessment, and 7.4 million common biallelic single-nucleotide polymorphisms (SNPs) with 224 
minor allele frequency >1%. We used BOLT-LMM (42) to regress variants on each skeletal 225 
measure using a linear mixed-model association framework. We included height as a covariate to 226 
directly adjust for differences in body size between individuals and focus on skeletal proportions 227 
instead of overall length. We also adjusted for body size differences in two other ways: dividing 228 
each phenotype by height to generate a skeletal proportion, and including a leave one-229 
chromosome-out polygenic risk score (PRS) for height as a covariate in the GWAS (43). GWAS 230 
effect sizes using either height as a covariate or height combined with the one-chromosome-out 231 
PRS as a covariate were highly correlated (Pearson correlation = 0.99) (Methods: Adjusting for 232 
height correlation in GWAS by adding height as covariate, Fig. S13). For downstream analyses, 233 
we focused on the results from the GWAS that included height as a covariate. Notably, we show 234 
that the effect sizes estimated for our PP phenotypes were uncorrelated with effect sizes from 235 
height (Methods: Adjusting for height correlation in GWAS by adding height as covariate, Fig. 236 
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S14, average Pearson correlation across all phenotypes = 5.67 × 10−5, standard deviation = 237 
0.0097), suggesting that PPs and height are distinct traits. 238 
 239 

After generating summary statistics for each skeletal measure, we estimated SNP 240 
heritability using LD Score regression (LDSC) (44) and GCTA-REML (38). All traits were 241 
highly heritable, with SNP heritability between 25% and 40% for LDSC and between 17% and 242 
50% for GCTA-REML (Methods: GWAS and Heritability analysis, Fig. 2B, Fig. S15). Across 243 
the six pelvic phenotypes adjusted by height (pelvic width, pelvic height, iliac isthmus breath, 244 
acetabular diameter, pelvic inlet width, oblique pelvic inlet length) and subpubic angle, we 245 
identified 339 loci at p < 5 × 10−8 and 241 loci at p < 7.14 × 10−9 (Bonferroni correction for 246 
seven traits). Of these loci, 179 are independently significant at p < 5 × 10−8 (linkage 247 
disequilibrium (r2) < 0.1) across all seven phenotypes (119 after Bonferroni correction for seven 248 
traits at p < 7.14 × 10−9) (Fig. 2A). 249 
 250 
Biological insights from pelvic associations 251 
 252 

Out of the 179 independent loci identified across GWASs (Table S11), 50 loci 253 
overlapped a single protein-coding gene within each clumped region (Fig. 2B). Notably, of these 254 
50 genes, 22 (or 44%) resulted in abnormal skeletal phenotypes when disrupted in mice using the 255 
Human-Mouse Disease Connection database (36). Eight genes (COL11A1, NPR3, CDC5L, 256 
TNFRSF11B, TBX5, FBN1, SMAD3, and TBX4) were associated with rare skeletal diseases in 257 
humans (Table S11). In some cases, genes associated with specific PPs in our GWAS contribute 258 
to human pelvic abnormalities. We found that TBX15 and TBX4, two T-box transcription factors, 259 
have been associated with differences in pelvic inlet width and pelvic height in model organisms, 260 
and mutations in both the TBX15 and TBX4 genes lead to pelvic abnormalities such as 261 
hypoplasia of the pelvis and small patella syndrome (45, 46). Thus, our GWAS of PPs identifies 262 
genes that were previously associated with skeletal developmental biology and Mendelian 263 
skeletal phenotypes and demonstrates the potential for future functional and knockout studies. 264 
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 265 
Fig. 2. Genome-wide association results. (A) Manhattan plot of a GWAS performed across six 266 
PPs and subpubic angle; the lowest p for any trait at each SNP is annotated. Loci over the 267 
genome-wide significance threshold that are close to only a single gene are annotated. (B) 268 
Shown are the total number of genome-wide significant loci per trait, heritability (GCTA-269 
REML), λ (from LDSC), and associated genes of loci that are specific to each skeletal trait 270 
(again annotating only loci that map to a region with a protein-coding gene within 1000 kb of 271 
each clumped region). 272 

Genetic and phenotypic association of PPs with locomotor phenotypes 273 
 274 

We examined how PPs were associated with walking pace, and musculoskeletal disorders 275 
such as knee, hip, and back osteoarthritis (OA), which are degenerative conditions that arise 276 
from lifetime cumulative effects of gait and motion. First, we used logistic regression to examine 277 
phenotypic associations between PPs and these phenotypes (Fig. 3A) while controlling for age, 278 
sex, weight, height, and other major risk factors for OA (Methods: Polygenic risk score (PRS) 279 
association of skeletal phenotypes with musculoskeletal disease). After correcting for multiple 280 
testing at an FDR < 5% across all associations, we found that one standard deviation in two birth 281 
canal-related phenotypes was associated with increased self-reported walking pace (oblique 282 
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pelvic inlet length: p = 5.3 × 10-3, odds ratio (OR) = 0.96; subpubic angle: p = 4.4 × 10-4, OR = 283 
0.92) (Table S15). As a positive control, we examined another skeletal trait, leg-to-torso length, 284 
which we found to be significantly positively associated with walking speed (p = 2.97 × 10-8, OR 285 
= 1.08), in line with previous results and with mechanical modeling (6, 7). These results provide 286 
empirical evidence that narrower birth canal proportions in humans are associated with increased 287 
walking speed (phenotypic association: between oblique pelvic inlet length and walking pace: p 288 
= 5.31 × 10-3, OR = 0.96, between subpubic angle and walking pace: p = 4.89 × 10-4, OR = 0.92). 289 
However, examining the associations with OA-related phenotypes we found that having larger 290 
birth canal-related phenotypes also decreased the risk of back pain/dorsalgia (phenotypic 291 
association: between oblique pelvic inlet length and dorsalgia: p = 3.45 × 10-3, OR = 0.93, 292 
between subpubic angle and dorsalgia: p =  3.28 × 10-7, OR = 0.82, between subpubic angle and 293 
back pain: p = 5.16 × 10-7, OR = 0.87) (Fig. 3A, Table S15). We also found that individuals with 294 
larger birth canal phenotypes were also at increased risk of hip osteoarthritis (phenotypic 295 
association: between subpubic angle and hip OA: p = 1.18 × 10-2, OR = 1.27) but reduced risk of 296 
knee osteoarthritis (phenotypic association: between subpubic angle and knee OA: p = 9.97 × 10-297 
4, OR = 0.83, between subpubic angle and internal derangement of knee: p = 9.71 × 10-5, OR = 298 
0.81) (Fig. 3A, Table S15). 299 

To complement these phenotypic associations, we also analyzed 361,140 UKB 300 
participants who had not undergone DXA imaging and were of “white British ancestry” for 301 
predictive risk based on PRS derived from our GWAS on PPs for the imaged set of individuals 302 
(Fig. 3B, Table S16). We generated PRS with Bayesian regression and continuous shrinkage 303 
priors (47) using the significantly associated SNPs and ran a logistic regression of the generated 304 
risk scores and traits, adjusting for the first 20 principal components of ancestry and imputed sex 305 
as well as age, sex, weight and other major risk factors of OA (Methods: Polygenic risk score 306 
(PRS) association of skeletal phenotypes with musculoskeletal disease). Our genetic association 307 
analysis mirrored our phenotype association analysis and suggests that individuals with smaller 308 
birth canal proportions have on average a faster walking pace, but are at the same time more 309 
susceptible to back pain and strain, common consequences of bipedal locomotion due to the 310 
distribution of weight on just two limbs (genetic association between leg to torso ratio and 311 
walking pace: p = 1.00 × 10-13, OR = 1.03, between oblique pelvic inlet length and walking pace: 312 
p = 8.09 × 10-4, OR = 0.98, between oblique pelvic inlet length and dorsalgia: p = 1.31 × 10-2, 313 
OR = 0.98, between pelvic inlet width and back pain: p = 1.25 × 10-3, OR = 0.98, between 314 
subpubic angle and dorsalgia: p = 1.02 × 10-4, OR = 0.97) (Fig. 3B, Table S15). 315 

Genetic and phenotypic association of PPs with pelvic floor function 316 

Next, we combined all incontinence-related phenotypes from the ICD10 record, including 317 
stress incontinence (N39.3), other specified urinary incontinence (N39.4), fecal incontinence 318 
(R15), and unspecified urinary incontinence (R32), into a single binary phenotype. We 319 
conducted a GWAS restricted to female individuals who were imaged and computed a PRS for 320 
approximately 200,000 females of “white British ancestry” who were independent from the 321 
GWAS set. 18,020 individuals out of the 200,000 individuals had one of these incontinence 322 
phenotypes. We then regressed binary incidence of genital prolapse and incontinence against 323 
PRS for all female pelvic traits, controlling for the number of live births and age (Methods: 324 
Polygenic risk score (PRS) association of skeletal phenotypes with musculoskeletal disease). Out 325 
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of the various PPs the only significantly positive association we observed was with the width of 326 
the birth canal (between pelvic inlet with and genital prolapse: p = 4.3 × 10-4, OR = 1.04, 327 
between pelvic inlet with and incontinence: p = 4.2 × 10-3, OR = 1.03) (Fig. 3C, Table S17). 328 
These results offer support for the multifactorial pelvic hypothesis, suggesting that a narrower 329 
birth canal improves pelvic floor function. Pelvic floor function is critical in assisting bladder 330 
and bowel control and evacuation as well as in supporting the fetus during pregnancy - a function 331 
thought to be more critical in upright humans than in quadrupeds (7). 332 

Fig. 3. Association between pelvic traits, pain phenotypes, musculoskeletal diseases as well 333 
as walking pace. (A) Phenotypic associations from logistic regression analyses of 334 
musculoskeletal disease traits, self-reported pain and walking pace on PPs. (B) PRS associations 335 
between musculoskeletal disease traits, walking pace and PPs. (C) PRS associations between 336 
pelvic floor disorders and PPs. For (A), (B) and (C), associations that are significant after False 337 
Discovery Rate (FDR) correction are annotated with an asterisk (*). ORs for the phenotypic 338 
associations and PRS are shown in colors, and the p-values are represented by size. The number 339 
notations in parentheses are the ICD-10 codes associated with each disease: M54–Dorsalgia, 340 
M16–Coxarthrosis (arthrosis of hip), M17–Gonarthrosis (arthrosis of knee), M23–Internal 341 
derangement of knee, N81–Female genital prolapse. 342 
 343 
Genetic association of PPs with childbirth-related outcomes 344 
 345 

Finally, we examined outcomes associated with obstructed labor, which is thought to be 346 
more common in humans than any other modern primate species (9). Obstructed labor affects 347 
around sixteen percent of deliveries today and has been a major cause of maternal and fetal death 348 
throughout human history, which suggests it might play a major role in human evolution through 349 
natural selection (48, 49). First, we focused on cesarean sections (C-sections) reported in the UK 350 
Biobank. To avoid confounding effects due to elective C-sections, we focused on emergency C-351 
sections which are routinely performed in cases of obstruction. We conducted PRS association 352 
analysis and found that narrower birth canals were associated with increased risk of emergency 353 
C-sections (p = 0.0108, OR = 0.92). As childbirth-related outcomes were available only for a 354 

−log10(p−value)

1

2

≥ 3

0.8

0.9

1

1.1

1.2
Odds Ratio

Phenotypic association PRS associationA

Leg:torso

Acetabular diameter

Iliac isthmus breadth

Pelvic height

Pelvic width

Subpubic angle

Pelvic inlet width

Oblique pelvic inlet length

D
or

sa
lg

ia
 (M

54
)

Ba
ck

 p
ai

n

H
ip

 O
A 

(M
16

)

Kn
ee

 O
A 

(M
17

)

Kn
ee

 p
ai

n

In
te

rn
al

 d
er

an
ge

m
en

t o
f k

ne
e 

(M
23

)

W
al

ki
ng

 p
ac

e

H
ip

 p
ai

n

Leg:torso

Acetabular diameter

Iliac isthmus breadth

Pelvic height

Pelvic width

Subpubic angle

Pelvic inlet width

Oblique pelvic inlet length

D
or

sa
lg

ia
 (M

54
)

Ba
ck

 p
ai

n

H
ip

 O
A 

(M
16

)

Kn
ee

 O
A 

(M
17

)

Kn
ee

 p
ai

n

In
te

rn
al

 d
er

an
ge

m
en

t o
f k

ne
e 

(M
23

)

W
al

ki
ng

 p
ac

e

H
ip

 p
ai

n

B

Acetabular diameter

Iliac isthmus breadth

Pelvic height

Pelvic width

Subpubic angle

Pelvic inlet width

Oblique pelvic inlet length

G
en

ita
l p

ro
la

ps
e 

(N
81

)

In
co

nt
in

en
ce

Female PRS associationC

B
irt

h 
ca

na
l p

he
no

ty
pe

s
.CC-BY 4.0 International licenseavailable under a

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.02.592256doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.02.592256
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

11 

small portion of individuals in the UK Biobank (<10% of all individuals) we also examined 355 
outcomes in the FinnGen's data set for delivery-related traits. We identified a significant genetic 356 
correlation between birth canal traits and labor obstructions due to maternal pelvic abnormalities, 357 
of which a major component is dilation width (Methods: Genetic correlation of skeletal 358 
proportions with pregnancy phenotypes, Fig. 4B, Table S18). However, we saw no association 359 
between obstructed labor due to malpresentation of the fetus and pelvic traits (Fig. 4B, Table 360 
S18). As the position of the fetus can vary independently of the skeletal structure of the pelvis, 361 
this childbirth outcome serves as a negative control for this analysis. Combining both types of 362 
analysis, our results suggest strong associations between the size of the birth canal and the 363 
chance of obstruction during labor. 364 
 365 
Evolutionary escape 366 
 367 

Finally, we investigated associations that might help explain how the obstetrical dilemma 368 
may have been alleviated in recent human evolution. First, we examined whether gestation 369 
length in humans is shorter than other primates of comparable body size, following from 370 
Washburn’s proposed that the relatively large-brained human infant must be delivered before its 371 
head reaches a volume that cannot pass through the pelvic canal (13, 50, 51). However, we found 372 
no association between gestational duration and any PP, including those associated with the birth 373 
canal (Fig. 4C, Table S17). This result is in line with more recent data on a fairly large dataset of 374 
great apes suggesting that human children are not born significantly earlier than those of the 375 
other apes (14, 29–31). However, we did see a significant correlation between the proportional 376 
width of the birth canal and neonatal birth weight - a proxy for neonatal head size (correlation 377 
coefficient ~ 0.7 (52)) (Fig. 4C, Table S17). This suggests that natural selection might have led 378 
to genetic correlation between pelvic and head proportions, potentially reducing labor 379 
obstruction (41, 53). 380 
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 381 
Fig. 4. Association between pelvic traits and childbirth-related outcomes. (A) PRS 382 
associations between pelvic traits and emergency cesarean section. (B) Genetic correlations 383 
between pelvic traits and obstructed labor, including obstructed labor due to malposition and 384 
malpresentation of fetus and obstructed labor due to maternal pelvic abnormality. (C) PRS 385 
associations between pelvic traits and evolutionary escape variables, including child birth weight 386 
and gestation duration. For (A), (B), and (C), associations that are significant after FDR 387 
correction are marked with an asterisk. Odds Ratios (ORs) for the PRS associations and genetic 388 
correlations are presented in various colors, and the p-values are indicated by size. 389 

 390 
Discussion 391 
 392 

In this study, we used deep learning to understand the genetic basis of skeletal elements 393 
that make up human PPs using DXA imaging data in a large population-based biobank. We 394 
found sex-specific differences in genetic architecture as well as differences in pelvic symmetry 395 
that were associated with handedness. We identified 179 independent genetic loci associated 396 
with PPs. We then examined different facets of the obstetrical dilemma, namely the relationship 397 
between PPs and locomotor, pelvic floor and childbirth-related outcomes. Lastly, we analyzed 398 
possible ways in which evolution and natural selection might have alleviated the dilemma by 399 
looking at genetic correlations between gestational period and child birth weight and pelvic 400 
proportions. 401 
 402 
 In previous work on the obstetrical dilemma, studies have examined locomotor outcomes 403 
that are associated with efficiency and energy use rather than speed. Here we did not have access 404 
to energetics, but we did have access to outcomes associated with walking speed and OA which 405 
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relate to gait efficiency accumulated over a lifetime. While self-reported walking pace may not 406 
seem an ideal measure of walking speed, several lines of evidence suggest that it is a reliable 407 
measure of actual walking pace. First, self-reported walking pace is highly heritable (54). 408 
Second, it is associated with muscle strength and declines with BMI and age in line with 409 
expectations (55, 56). It is also associated with several disorders that are known to hinder 410 
locomotion, including hip osteoarthritis, the leading cause of adult disability in the United States 411 
(57–59). Finally, self-reported walking pace has been directly correlated with measured walking 412 
pace in a reasonable sample size study and within the Biobank (60, 61). It has also been 413 
correlated with mean accelerometer assessed activity (62). 414 
 415 

Our results on locomotion were heavily mixed, with larger birth canal phenotypes related 416 
to lower walking speed, reduced risk of back pain and knee OA, but increased risk of hip OA. 417 
However, our results provide significant evidence for other facets of the dilemma associated with 418 
pelvic floor function and childbirth. Specifically, we show that larger birth canal phenotypes are 419 
associated with increased risk of pelvic floor disorders, but at the same time reduced risk of 420 
obstruction during labor - two phenotypes that have direct impacts on human evolution due to 421 
intense natural selection acting on them. We also investigated several leading hypotheses about 422 
how the dilemma could have been alleviated over evolutionary time. Our data does not provide 423 
support for the idea that gestational duration has decreased to accommodate birthing large-424 
brained infants - we observed no correlation between any PPs and gestational duration. However, 425 
our results indicate that there is a genetic correlation between PPs only related to birth canal 426 
width and child head size (which we obtain using birth weight as a proxy phenotype (52)). 427 
Across all the skeletal traits we examined, the significantly reduced genetic correlation observed 428 
between males and females exclusively for birth canal phenotypes also suggests that sexual 429 
dimorphism in these traits may have arisen through natural selection in response to different 430 
functional constraints. 431 
 432 
 Beyond increasing the sample size by multiple orders of magnitude relative to previous 433 
studies that have examined this hypothesis, and presenting high quality measurement of the 434 
human pelvic form, our work is also one of the few studies to integrate data from locomotor, 435 
childbirth and pelvic floor outcomes all on the same participants. However, a limitation of our 436 
study is that we only had individuals aged between 40-80 years old. It has been suggested that 437 
age is a source of variation in PPs, and that changes in functional constraints throughout parts of 438 
the reproductive lifespan is another means by which the dilemma could be alleviated (63). 439 
However, we did not have access to data from individuals from earlier ages to examine this 440 
hypothesis. 441 
 442 
 Taken together, our work combines, imaging, genetic, health record and survey data on 443 
biobank scale data to re-examine a 60 year old theory of human evolution that is standardly 444 
taught in textbooks. Our results provide major empirical support for several classical theories 445 
obstetrical dilemma related to locomotion and childbirth, but perhaps for the first time provides 446 
evidence for the role of associated factors such as pelvic floor health. 447 

448 
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Materials and Methods 449 
 450 
UKB participants and dataset 451 

All analyses were conducted with data from the UKB unless otherwise stated. The UKB 452 
is a richly phenotyped, prospective, population-based cohort that recruited 500,000 individuals 453 
aged 40–69 in the UK via mailer from 2006 to 2010 (64). In total, we analyzed 487,283 454 
participants with genetic data who had not withdrawn consent as of May 4, 2022, out of which 455 
42,284 had available DXA imaging data. Access was provided under application number 65439. 456 
The baseline participants metadata including age and sex and other variables related to our study 457 
are in Table S2. 458 
 459 
Dual-energy X-ray absorptiometry (DXA) imaging  460 

The UKB has released DXA imaging data for a total of 50,000 participants as part of 461 
bulk data field ID (FID) 20158. The DXA images were collected using an iDXA instrument 462 
(GE-Lunar, Madison, WI). A series of 8 images were taken for each patient: two whole body 463 
images - one of the skeleton and one of the adipose tissue, the lumbar spine, the lateral spine 464 
from L4 to T4, each knee, and each hip. Dual-energy X-ray absorptiometry (DXA) images were 465 
downloaded from the UKB bulk data FID 20158. The bulk download resulted in 42,284 zip files, 466 
each corresponding to a specific patient identifier otherwise known as each patient’s EID, and 467 
each file contained several DXA images of the patient as described above. All images were 468 
exported and stored as DICOM files which were later converted to high-resolution JPEG files for 469 
image analysis and quantification.  470 
 471 
Phenotype and clinical data acquisition  472 
 Self-reported usual walking pace was obtained from UK Biobank under FID 924, and we 473 
combined slow pace and steady average pace to increase the sample size in that category. The 474 
binary classification of patient disease phenotypes was obtained from a combination of primary 475 
and secondary ICD-10 codes (FID 41270) and the non-cancer self-assessment (FID 20002). Self-476 
assessment codes were translated to three-character ICD-10 codes (Coding 609) and ICD-10 477 
codes were truncated to only the initial three characters. Patients received one if a disease code 478 
appeared in either self-assessment visit or their hospital records and zero otherwise. The 479 
phenotypes related to pelvic floor disorders are derived from ICD-10 codes, specifically 480 
including incontinence (stress incontinence ICD-10 code: N39.3, other specified urinary 481 
incontinence ICD-10 code: N39.4, fecal incontinence ICD-10 code: R15, and unspecified urinary 482 
incontinence ICD-10 code: R32) and genital prolapse (ICD-10 code: N81). As the incontinence 483 
phenotypes are very specific and each category of incontinence has only limited data, we 484 
combined all incontinence phenotype categories into a single binary phenotype. Table S12 and 485 
Table S13 contain all ICD-10 and FID codes we used in our analysis. 486 
 487 
Computing infrastructure 488 

All analysis was carried out on the Corral and Frontera system of the Texas Advanced 489 
Computing Cluster. The deep learning analysis was carried out on NVIDIA Quadro RTX 5000 490 
GPUs using the CUDA version 11.1 toolkit. 491 
 492 
Image quality control 493 
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Each individual in the UKBiobank had a DXA image folder containing up to 8 different 494 
body parts. In order to check the labels of these body parts that were defined using their file 495 
name, we built a convolutional neural network (CNN) to sort the images by body part through 496 
the use of a multiclass classification model using a previously published protocol (36). After 497 
sorting and removal of images, we were left with 42,228 full skeleton X-rays (Table S3). After 498 
we determined the final set of full body X-ray images, we performed additional quality control to 499 
remove images that were poorly cropped and had other artifacts. To do this we utilized another 500 
deep learning classifier also described in (36). Removal of all the cropped images resulted in a 501 
total of 39,644 full-body images that we used for analysis (Table S3).  502 
 503 
Image standardization 504 

From the pool of remaining full-body X-ray images, we discovered that the images varied 505 
in both pixel dimension and background. Broadly, the images fell into two main categories: (a) 506 
images that were on a black background with sizes between 600-800 by 270 pixels and (b) 507 
images on a white background with sizes between 930-945 by 300-370 pixels. The overall 508 
distribution of images by pixel ratio and an example of each type of image are shown in Table 509 
S7 and Fig. S1. To process these images and remove the effects of scaling and resolution change 510 
during the deep learning process, we chose to pad all the images to be of consistent size. We 511 
removed images that had sizes far out of the normal range and processed each of the two 512 
categories of images separately. The black background images were padded equally on all sides 513 
of the image to a final resolution size of 816 × 288 pixels while the white background images 514 
were padded in the same fashion to a resolution size of 960 × 384 pixels. We carried this out by 515 
converting each individual DICOM file obtained from the UKB into numpy arrays and added 516 
additional rows and columns of black or white pixels as appropriate using standard functions 517 
from numpy (65), scipy (66), and skimage (67). These final resolution sizes were chosen based 518 
on image size requirements for our deep learning model for landmarking and image 519 
quantification. Padding and removing individuals with sizes that did not fit into the two major 520 
categories resulted in a final total of 39,469 images - 21,981 images of 816 × 288 and 17,488 521 
images of 960 × 384. In our deep learning model for landmarking, we trained using images 522 
across both pixel ratios. Despite variations in size and background, the images shared many 523 
features, being skeleton X-ray images. Using both pixel ratios enriched the training set, 524 
enhancing prediction accuracy. 525 
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 526 
Fig. S1. Types of DXA images acquired from the UKB. (Left) Image of patient imaged on 527 
white background. (Right) Image of patient imaged on black background. Relative sizes of 528 
images are true to scale. 529 

 530 
Manual annotation of human pelvic landmarks 531 

To train our deep learning model, we manually annotated a total of 293 images (with 146 532 
images padded to 960 × 384 pixels on a white background, and 147 images padded to 816 × 288 533 
pixels on a black background). Of these, 239 images were randomly allocated for training and 534 
the rest are used for validation. Out of the 293 total images, 10 images were duplicated in each of 535 
the image sizes to measure the replicability of our process. We used a single human annotator for 536 
all training data and provided an initial dataset of 313 (293+2 × 10 duplicate images) without the 537 
annotator's knowledge. We used a standard annotation scheme in computer vision, the Common 538 
Objects in Common (COCO) (68) scheme which provides a rubric for joint landmark estimation 539 
on the human body. The positions in the pelvis we chose to annotate were the: iliac crest 540 
posterior left/right, iliac crest anterolateral left/right, iliac body lateral left/right, pelvic inlet 541 
left/right, acetabulum posterosuperior left/right, acetabulum anteroinferior left/rightischiopubic 542 
ramus inferior left/right, pubic tubercle, and pubic symphysis inferior. An example of the 543 
annotation of one image is shown in Fig. S2 with landmarks placed at each of the locations listed 544 
above.  545 
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 546 
Fig. S2. The 17 Pelvic landmarks and their corresponding names. 547 

 548 
Replicability Assessment 549 

We measured the replicability of our annotations by taking the Euclidean distance of 550 
pixels between the corresponding key points across 10 randomly selected images that were 551 
duplicated amongst both of the 816 × 288 and 960 × 384 image set without knowledge of 552 
whether the image was a duplicate. Our replication analysis of 20 duplicate images was under 8 553 
pixels across the different points that were estimated. Across the body parts, the farthest 554 
deviation across annotations was seen in the iliac body lateral, but the mean replicability across 555 
20 images was under 2 pixels for all of the pelvic landmarks (Fig. S3).  556 
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 557 
Fig. S3. Annotation Error in Human Pelvic Landmarks. The blue points depict the Euclidean 558 
distances of specific landmarks between replicate annotations from 10 images of the 816 × 288 559 
set and 10 images of the 960 × 384 set. The red points indicate the mean Euclidean distance for 560 
each landmark, while the red error bars represent the standard deviation for these distances. 561 

A deep learning model to identify pelvic landmarks on DXA scans 562 
To determine the coordinates of all landmarks across 39,469 images, we initially adjusted 563 

the DXA images of both sizes, 816 × 288 and 960 × 384, to a uniform dimension of 256 × 256 564 
pixels for the pelvis area by applying central cropping and padding. For the upper and lower 565 
body sections, the images were resized to 608 × 608 pixels. Subsequently, 235 images 566 
(approximately 80% of the total) were allocated to the training set, with the remaining 58 images 567 
set aside for validation. To enhance the training set and to improve the model's ability to 568 
generalize, we applied image transformations including rotation and warping.  569 
 570 
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To perform landmarking we used an HRNet architecture based network (69) preserves 571 
high-resolution representations throughout its processing, leading to more accurate estimations 572 
(refer to Fig. S3). Our previous work demonstrated that using a pre-trained HRNet on large 573 
human pose estimation tasks, further refined with fine-tuning, results in more precise predictions 574 
(36). Consequently, we utilized the pre-trained HRNet architecture (Fig. S4), adopting a heatmap 575 
size of 64 × 64 for the 256 × 256 pelvis images and 152 × 152 for the 608 × 608 images of the 576 
upper and lower body. The batch sizes were set to 16 for pelvis images and 8 for upper and lower 577 
body images. 578 

 579 
Initially, our model was trained with 235 manually annotated images. After fine-tuning 580 

over 100 epochs using these images and their manually annotated coordinates, we noticed a 581 
minimal reduction in loss beyond the 20th epoch (as shown in Fig. S5), indicating that 100 582 
epochs were adequate for model convergence. The model's performance was then assessed using 583 
the remaining 20% of annotated images. According to Fig. S7, the mean Euclidean distance error 584 
between the human annotation and model prediction was below 2 pixels, similar to the error in 585 
human annotation (Fig. S3). It is notable that certain landmarks, specifically the ischiopubic 586 
ramus inferior (left and right) and the iliac crest posterior (left and right), exhibited larger 587 
discrepancies between human annotations and model predictions (Fig. S6), a variance also 588 
observed in repeated manual annotations (Fig. S3), highlighting these landmarks as challenging 589 
for human annotators as well. 590 

 591 
We then applied the model to predict landmarks on all remaining images. Initial visual 592 

assessments of the model's predictions on original DXA images suggested greater precision 593 
compared to human annotations. To explore this observation, we conducted a validation study, 594 
selecting a new set of 293 images from both white and black background sets, ensuring they 595 
were not part of the initial training set. These images were split into new training and validation 596 
sets, maintaining an 80:20 ratio. Training the model anew with these sets and the same 597 
architecture and hyperparameters led to faster convergence and slightly lower loss, suggesting 598 
the model's predicted coordinates might be less noisy than manual annotations (as indicated in 599 
Fig. S7). Comparisons between human and model-predicted annotations revealed that the 600 
Euclidean distance for all 17 landmarks between the first and second model predictions was 601 
significantly smaller than the distance between manual annotations and the first model 602 
predictions, reducing the average Euclidean distance to less than one pixel (Fig. 1C, Fig. S6, 603 
Table S5). 604 

 605 
We further deployed this twice-trained, optimized model on a comprehensive set of 606 

39,469 full-body DXA images from the UK Biobank. Additionally, we compared this model's 607 
performance to that of a previous study's model (36), particularly assessing the correlation 608 
between left and right arm length ratios across two imaging visits (Fig. S7). Despite using the 609 
same annotated coordinates for model training, our current model showed a significantly higher 610 
correlation between imaging visits than our previous model. However, we noticed repeated 611 
application of this strategy (outlined in Fig. 1B) did not yield significant improvements in model 612 
accuracy (Fig. S8), suggesting that an additional round of training was useful to reduce the 613 
variation in manual annotation to a minimum. 614 
 615 
 616 
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Fig. S4. HRNet deep learning architecture. High-Resolution Network (HRNet) architecture 617 
maintains parallel high to low-resolution subnetworks. 618 

 619 
Fig. S5. Training logs of HRNet with two different training sets.  620 
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 621 
Fig. S6. Model prediction error. Light blue box plots indicate the Euclidean distance between 622 
manually annotated coordinates and HRNet prediction results based on these coordinates across 623 
18 human pelvis landmarks. Dark blue box plots indicate the Euclidean distance between HRNet 624 
prediction results based on previous predicted coordinates across 17 human pelvis landmarks. 625 

 626 
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Fig. S7. Model Comparison. The left panel displays the scatter plot of the left-to-right arm ratio 627 
from two imaging visits using HRNet, sourced from (36). The right panel shows the scatter plot 628 
of the same ratio from two imaging visits but using our optimized HRNet model. 629 

 630 
Fig. S8. Model prediction accuracy across multiple repeat training. 631 

A major issue in combining our analysis across input pixel ratios was that these pixel 632 
ratios represented different resolution scalings, perhaps due to distances that the scanner was 633 
held above the patient (Fig. S9). That is, in one image a pixel could represent 0.44 cm and in 634 
another 0.46 cm. To control for this scaling issue and to standardize the images, we chose to 635 
regress height measured directly on our image using the midpoint of the eyes and the midpoint of 636 
the two ankle landmarks that could be taken across all image pixel ratios and overall height (FID 637 
50) computed externally from the UKB (Fig. S10, Table S7). While the height measure we 638 
utilized did not include the forehead, it was a relative measure that we used to obtain a scaling 639 
factor for each image pixel ratio that we could for normalization. Measurement error of 640 
individuals either in our image-based height measure or as reported in the UKB is not expected 641 
to affect our conversion from pixels to cms as we are regressing over many individuals. 642 
Importantly, we validated this regression and normalization using duplicate individuals taken by 643 
different scanners, imaging modes and technicians (Fig. 1D, 1E). 644 
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 645 
 646 
Fig. S9. DXA images from the UKB that have undergone different image scaling. Example 647 
of two individuals who were measured to be the same height in the FID 50 in the UKB (overall 648 
height) but pixel-based measurements of one image were considerably smaller than the other due 649 
to image scaling/resolution differences. 650 

 651 
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 652 
Fig. S10. A linear regression of image-measured height against UKB-measured height. For 653 
each image pixel-ratio, we regressed height measured in the UKB with height we calculated in 654 
pixels from the DXA scan. This provided a conversion from pixels to cm that we used as a 655 
normalization factor to correct for differences in resolution. 656 

 657 
Obtaining skeletal element length measures 658 

From each of the 17 landmarks, we generated a total of one angle measure and seven 659 
skeletal length measures (Fig. 1) in pixels which we converted to centimeters using coefficients 660 
from the regressions with height. We averaged iliac isthmus breadth and acetabular diameter 661 
across the left and right sides of the pelvis for all analyses. For all measurements, the phenotype 662 
values are shown in Table S8, and the mean and standard deviations are shown in Table S9. 663 

 664 
Participant data quality control 665 

For all of the following analyses, we filtered the participants with correctly labeled full 666 
body DXA images (FID 20158 and 12254) to just Caucasian individuals (FID 22006) from the 667 
white British population as determined by genetic PCA (FID 21000). We removed individuals 668 
whose reported sex (FID 31) did not match genetic sex (FID 22001), had evidence of aneuploidy 669 
on the sex chromosomes (FID 222019), were outliers of heterozygosity or genotype missingness 670 
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rates as determined by UKB quality control of sample processing and preparation of DNA for 671 
genotyping (FID 22027), had individual missingness rates of more than 2% (FID 22005), or 672 
more than nine third-degree relatives or any of unknown kinship (FID 22021). We also removed 673 
individuals whose standing height (FID50) and weight (FID21002) didn’t recorded in their 674 
imaging visit. In total 30,370 individuals remained.  675 

 676 
Removal of image outliers 677 

We removed individuals who were more than 4 standard deviations from the mean for 678 
any imaging-derived phenotype from the analysis. In total 31,115 individuals remained (Table 679 
S4). Examination of these outliers by comparing left and right symmetry as well as comparison 680 
of other body proportions revealed a heterogeneous set of issues that were associated with the 681 
poor prediction by our deep learning model. In some cases, individuals had a limb, or another 682 
body part amputated. Some poorly classified images were individuals who had had major hip or 683 
knee replacement surgery or had various implants that were causing incorrect model landmark 684 
prediction. Another class of outlier images was those that were too poor in quality for any 685 
landmarking of any of the points on the image or had abnormal pelvis shape perhaps due to a 686 
mendelian disorder (Fig. S11). 687 

 688 

 689 
Fig. S11. Examples of individuals with normal and abnormal pelvic morphology. Left panel 690 
- normal morphology, right panel - pelvis with highly atypical morphology. 691 

 692 
Correlations of pelvic left and right discrepancy with handedness 693 

Upon examining Fig. 1E, we observed significant differences between the left and right-694 
side measurements for iliac isthmus breadth and acetabular diameter. Given that the discrepancy 695 
between these left and right measurements consistently appeared in two separate imaging visits, 696 
this is unlikely to be due to random error/noise in model prediction. To investigate whether this 697 
left-right discrepancy is associated with handedness, we calculated the ratio between the left and 698 
right-side measurements. We then conducted t-test analyses on the ratio of each phenotype to 699 
examine differences in these ratios based on handedness (as indicated by FID1707). These 700 
analyses were restricted to white British patients. 701 
 702 
Phenotypic comparison between males and females 703 
 For each length phenotype, including pelvic height, pelvic width, iliac isthmus breadth, 704 
acetabular diameter, pelvic inlet width, and oblique pelvic inlet length, we regressed out standing 705 
height and compared the residuals obtained from the regression analysis between males and 706 
females. All six length phenotypes and one angle phenotype showed significant differences 707 
between males and females in a t-test (Fig. S12). 708 
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 709 
Fig. S12. Phenotypic comparison between males and females morphology. 710 

 711 
Genetic data quality control 712 

Imputed genetic data for 487,253 individuals was downloaded from UKB for 713 
chromosomes 1 through 22 (FID 22828) then filtered to the quality-controlled subset using 714 
PLINK2 (70). All duplicate single nucleotide polymorphisms (SNPs) were excluded (--rm-dup 715 
'exclude-all') and restricted to only biallelic sites (--snps-only 'just-acgt') with a maximum of 2 716 
alleles (--max-alleles 2), a minor allele frequency of 1% (--maf 0.01), and genotype missingness 717 
no more than 2% (--maxMissingPerSnp 0.02). In total 8,638,168 SNPs remained in the imputed 718 
dataset. Non-imputed genetic data (genotype calls, FID 22418) did not contain duplicate or 719 
multiallelic SNPs but were filtered to the quality-controlled subset; 652,408 SNPs remained. 720 
 721 
Adjusting for height correlation in GWAS by adding height as covariate 722 

A major issue in carrying out GWAS for phenotypes such as ours where we would like to 723 
control for height is the potential for confounding due to the adjustment. McCaw et al. highlight 724 
the pitfalls in GWAS of ratio traits and describe ways to reduce this confounding (43). Following 725 
their pipeline, we carried out GWAS, adjusting not only for height but also for leave-one-726 
chromosome-out (LOCO) polygenic scores (PGS) of height. Briefly, we first performed GWAS 727 
on approximately 370k white British individuals without imaging data using PLINK (70). 728 
Second, we estimated LOCO-PGS for each individual with imaging data for each chromosome 729 
using Bayesian regression with continuous shrinkage priors (47), employing associated single 730 
nucleotide polymorphisms from HapMap3. In total, each individual received 22 LOCO-PGS one 731 
for each chromosome. Third, we randomly split 30k imaged individuals into two groups, with 732 
each group containing around 15k individuals, and conducted two GWAS models for each 733 
chromosome. These models adjusted for the first 20 principal components, age, sex, height, and, 734 
optionally, the corresponding LOCO-PGS as covariates. Finally, we concatenated all 735 
chromosomes' GWAS summary statistics. In examining the effect sizes across all manners of 736 
carrying out the analyses, we found that results (p < 5 × 10-4) adjusted for and not adjusted for 737 
LOCO-PGS were very similar in the split-sample study (Fig. S13), suggesting that the genetic 738 
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component of collider bias is minimal. In Fig. S12 we present an image of the correlation of 739 
effect sizes for only a single trait but the results of all traits ranged in correlation between 0.959 740 
to 0.989. To provide additional confirmation of reduced confounding with the adjustment for 741 
height, we compared the effect size correlation between snps at p < 5 × 10-4 for height and a 742 
specific trait (without adjusting for LOCO-PGS) and observed that effect sizes estimated for 743 
height and the SNP effect size of a specific trait were completely uncorrelated (Fig. S14). This 744 
further indicates that the results of the GWAS we conduct for particular pelvic proportions are 745 
largely independent of height. 746 

 747 
Fig. S13. Two GWAS model comparison. To compare with or without adjusting for LOCO-748 
PGS we compared the effect size correlation between two separate samples with the same or 749 
different GWAS models with SNP p < 5 × 10-4. Here we only show one randomly picked trait 750 
birth canal width, but we observed similar signals for all traits. 751 
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 752 

 753 
Fig. S14. SNP effect size correlation between height and birth canal width. 754 

 755 
GWAS and Heritability analysis 756 

GWAS was performed with BOLT-LMM (47). LD Score v1.0.1 was used to compute 757 
linkage disequilibrium regression scores per chromosome with a window size of 1 cM (44). 758 
PLINK2 --indep-pairwise with a window size of 100 kb, a step size of 1, and an r2 threshold of 759 
0.6 was used to create a list of 986,812 SNPs used as random effects in BOLT-LMM. Covariates 760 
were the first 20 genetic principal components provided by UKB (FID 22009), sex (FID 31), age 761 
(FID 21003), age-squared, sex multiplied by age, sex multiplied by age-squared, and standing 762 
height (FID 50). In addition, the DXA scanner’s serial number and the software version used to 763 
process images were combined into one covariate, resulting in 5 factor levels. 764 

 765 
SNPs in each resulting GWAS were clumped in PLINK using --clump with a 766 

significance threshold of 5.0 × 10-8, a secondary significance threshold of 1.0 × 10-4 for clumped 767 
SNPs, an r2 threshold of 0.1, and a window of 1 Mb. SNPs were assigned to genes with --768 
clumpverbose --clump-range glist-hg19 downloaded from PLINK gene range lists (71). The 769 
genomic inflation factor of each phenotype was assessed in R version 4.2.1 as the ratio of the 770 
median of the observed chi-squared distribution (an output of BOLT-LMM --verbose) to the 771 
expected median of the chi-squared distribution with one degree of freedom. 772 

 773 
We created the genetic relationship matrix for our quality-controlled subset but without 774 

any related individuals and a minor allele frequency of 0.01, then ran GCTA for each phenotype 775 
pair with the first ten genetic principal components provided by UKB (FID 22009). 776 

 777 
The heritability of each phenotype was assessed with European HapMap3 SNPs using 778 

GCTA (38) with the same covariates as GWAS, excluding age-squared and sex by age-squared. 779 
We also estimated heritability using LDSC (44) and found similar heritabilities (20-50%) (Fig. 780 
S15, Table S10). 781 

 782 
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 783 
Fig. S15. Heritability estimated in GCTA and LDSC. 784 

 785 
Sex-specific analysis 786 

We performed a GWAS independently in males and females using the same process and 787 
covariates we used in the combined GWAS analysis in the previous section. Subsequently, we 788 
used LDSC to carry out genetic correlation analysis between GWAS conducted in males and 789 
females. As depicted in Fig. 1F, outer pelvic morphology, such as pelvic height, had genetic 790 
correlation consistent with 1. However, phenotypes related to the birth canal, such as pelvic inlet 791 
width, oblique pelvic inlet length, and subpubic angle, exhibit differences significantly different 792 
from 1. This aligns well with previous studies, underscoring the functional importance in females 793 
to accommodate childbirth. 794 

 795 
To determine if any sex-specific loci were present in our pelvic phenotypes, we also 796 

carried out additional GWAS in PLINK involving a Sex-Genotype interaction for each SP on our 797 
original population of 31,115 individuals to determine loci with sex-specific effects. Across all 798 
the traits that we examined we did not find evidence for interaction at any locus which would 799 
signify sex-specificity. However, we note that this lack of evidence could possibly be due to 800 
reduced power for detecting interaction effects at this sample size. We also report the summary 801 
statistics for this GWAS with interactions along with the other GWAS that we performed in the 802 
Supplementary Data. 803 
 804 
Clumping and identification of genes associated with loci 805 

To obtain a set of independent SNPs associated with each PP phenotype, we first 806 
performed clumping analysis for each phenotype using plink and assigned SNPs to genes with --807 
clump-verbose --clump-range glist-hg19 with an r2 window of 0.1 and a 1 Mb threshold of 808 
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physical distance for clumping. We downloaded gene ranges from plink for hg19 (72). 809 
Following clumping, we looked at a subset of 7 phenotypes and combined the significant SNPs 810 
across the chosen phenotypes resulting in 339 unique SNPs.  811 
 812 
Functional mapping and gene enrichment analysis 813 

We ran FUMA (73) without any predefined lead SNPs on a sample size of 31,115 814 
individuals. GENE2FUNC was run with all types of genes selected as background genes using 815 
Ensembl v92 with GTEx v8 gene expression data sets and we set window sizes 10 kb for both 816 
upstream and downstream (Fig. S16, Table S19). 817 

 818 
Fig. S16. MAGMA gene property analysis with GTEx 8 and image-derived phenotypes 819 
GWAS 820 

 821 
Transcriptome analysis 822 

To explore the genetic underpinnings of pelvis-related phenotypes in relation to specific 823 
developmental stages of the human pelvis, we sought enrichment of genes associated with our 824 
GWAS results for pelvis-related phenotypes in gene expression data across four distinct 825 
developmental stages of the human pelvis during the embryonic period, as detailed in (33). Our 826 
primary objective was to discern which developmental stage (E53, E54, E57, or E59) might be 827 
linked to changes in pelvis shape. We downloaded RNA-Seq data for human embryonic pelvises 828 
at different developmental stages from the GEO data repository (GSE165930). Subsequently, we 829 
converted gene names to Ensembl gene IDs using the biomaRt package (version 2.52.0) in R. To 830 
compute the relative gene expression level for a specific subelement at a particular 831 
developmental stage, we subtracted the average expression from other stages for that specific 832 
subelement and from other subelements across different stages. Following this, we conducted a 833 
MAGMA gene property analysis to assess enrichment between genes expressed during specific 834 
developmental stages and our phenotypes. However, our analysis did not reveal any significant 835 
enrichment for any developmental stage in our GWAS after adjusting for multiple comparisons 836 
using FDR correction for both the number of traits and developmental stages (Fig. S17, Table 837 
S20). In a subsequent approach, we combined data from different developmental stages to 838 
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investigate potential associations between pelvis-related phenotypes and specific pelvis 839 
subelements. We determined the relative expression of specific subelements by subtracting the 840 
average expression of other subelements. Another round of MAGMA gene property analysis 841 
revealed a significant effect between the Ilium and pelvic inlet width, as well as between the 842 
Acetabulum and subpubic angle, after FDR correction (Fig. S18, Table S21). 843 

 844 
Fig. S17. MAGMA gene property analysis with pelvis subelements in different 845 
developmental stages ATAC-Seq and image-derived phenotypes GWAS 846 
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 847 
Fig. S18. MAGMA gene property analysis with pelvis subelements ATAC-Seq and image-848 
derived phenotypes GWAS 849 

 850 
Phenotypic association of skeletal phenotypes with musculoskeletal disease 851 

To examine correlations between our pelvis phenotypes with musculoskeletal disease, 852 
musculoskeletal or connective tissue diseases related to the hip, knee, and back we obtained data 853 
from UKB Chapter XIII (FID 41270) ICD-10 codes as well as self-reported pain phenotypes 854 
(FID 6159) for the hip, knee and back. We then regressed the binary outcome of disease or 855 
reported pain against pelvis phenotypes controlling for clinically relevant covariates that are 856 
known to affect OA (74) including age, sex, diet, BMI, and other factors. A full list of variables 857 
we controlled for are reported in Table S14. After running the regressions, we used Bonferroni 858 
correction for significance at the level of the total number of disease/pain traits multiplied by the 859 
total number of skeletal phenotypes.  860 

 861 
Polygenic risk score (PRS) association of skeletal phenotypes with musculoskeletal disease 862 

This analysis only utilized the ~370,000 white British individuals who were not included 863 
in our imaging dataset for which GWAS was conducted. We generated PRS for each of the 864 
generated traits with Bayesian regression and continuous shrinkage priors (47) using the 865 
associated single nucleotide polymorphisms from HapMap3. We ran a logistic or linear 866 
regression of the PRS on traits across all individuals, adjusting for weight, household income, 867 
non-insulin-dependent diabetes mellitus (ICD-10 code: E11), depressive episode (ICD-10 code: 868 
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F32), recurrent depressive disorder (ICD-10 code: F33), chronic ischaemic heart disease (ICD-10 869 
code: I25), smoking status (FID 20116), and sleep duration (FID 1160). For female PRS 870 
regression we also adjusted for the number of live births (FID 2734). 871 

 872 
Genetic correlation of skeletal proportions with pregnancy phenotypes  873 

We utilized cross-trait LD score regression 874 
(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation) for estimating genetic 875 
correlations between each of our pelvis-related phenotypes and case-control pregnancy 876 
phenotypes from the Finngen (https://www.finngen.fi/en/access_results) by using GWAS 877 
summary statistics.  878 
 879 
 880 
Supplementary Tables 881 
 882 
Table S1 - Previous studies have attempted to test the obstetrical dilemma hypothesis. 883 
This table contains the papers involved in the debate on the obstetrical dilemma. 884 

Table S2 - GWAS population summary 885 

This table contains summary data on the population subset used in our GWAS from the UKB. 886 

Table S3 - Initial deep learning QC 887 

This table contains the number of patients removed from each QC step before landmark 888 
estimation. 889 
 890 
Table S4 - Image filtering 891 

This table contains the number of patients excluded at each step of quality control following 892 
landmark estimation. 893 

Table S5 - Human annotation vs model prediction 894 

This table contains the error between human annotation and the first model prediction, as well as 895 
the error between the first model prediction and the second model prediction. 896 

Table S6 - Image pixel data 897 

This table contains the number of full-body skeletal DXA images for each pixel aspect ratio in 898 
the UKB. 899 

Table S7 - Image scaling coefficient 900 

This table contains the scaling factor estimated from the regression analysis, which is used to 901 
convert pixels to centimeters. 902 

Table S8 - 7 Pelvic phenotype values across 39413 individuals 903 

This table contains a list of all generated IDPs. 904 
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Table S9 - Pelvic phenotypes summary 905 

This table contains the basic statistics of IDPs. 906 
 907 
Table S10 - GCTA and LDSC heritability estimation 908 

This table contains the heritability for each IDP as determined by GCTA. 909 

Table S11 - Clumped independent SNPs and corresponding genes 910 

This table contains output from PLINK --clump ranges command including lead SNP, p-value, 911 
the number of kilobases in each clump, gene mapping for each clump range as well as whether 912 
the single clump range genes are related to known mouse phenotypes and rare human disease. 913 
 914 
Table S12 - ICD10 Codes 915 

This table contains all ICD10 codes used in our analyses. 916 

Table S13 - UKB phenotypes FID 917 

This table contains the FID of each UKB trait used in our analyses. 918 

Table S14 - Association analysis covariates 919 

This table contains the list of covariates used in our regression analyses and the FID from the 920 
UKB 921 
 922 
Table S15 - Phenotypic association results 923 

This table contains the results from the phenotypic association analysis. 924 
 925 
Table S16 - PRS association results 926 

This table contains the results from the PRS association analysis. 927 
 928 
Table S17 - Female PRS association results 929 

This table contains the results from the female PRS association analysis. 930 

Table S18 - Female genetic correlation results 931 

This table contains the results from the female genetic correlation analysis. 932 

Table S19 - MAGMA with GTEx v8 933 

This table contains the results from the MAGMA analysis with gene expression data from GTEx 934 
v8. 935 

Table S20 - MAGMA analysis across pelvic subelements across different time points 936 
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This table contains the results from the MAGMA analysis with gene expression data from 937 
different parts of the pelvis across different development time points. 938 

Table S21 - MAGMA analysis across pelvic subelements 939 

This table contains the results from the MAGMA analysis with gene expression data from 940 
different parts of the pelvis. 941 
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