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Abstract

Human pelvic shape has undergone significant evolutionary change since the divergence
from the chimpanzee lineage. This transformation, involving the reduction of the pelvic canal
size to support bipedal locomotion, is thought to give rise to the obstetrical dilemma, a
hypothesis highlighting the mismatch between the large brain size of infants and the narrowed
birth canal in females. Empirical evidence for this classic hypothesis has been equivocal, largely
due to a lack of sample size and appropriate types of data. To elucidate the genetic underpinnings
of pelvic morphology, we applied a deep learning model to 31,115 dual-energy X-ray
absorptiometry (DXA) from the UK Biobank, extracting a set of seven pelvic proportion (PP)
phenotypes, including measures of the birth canal. All PPs were found to be highly heritable
(~25-40%) and a genome-wide association study of these traits identified 179 independent loci.
Unlike other skeletal proportions including long bone lengths, the subpubic angle associated with
the birth canal exhibits a genetic correlation between sexes significantly less than 1, in line with
sex-specific reproductive function. PPs were also left-right asymmetric but not heritable and
instead associated with handedness. We conducted phenotypic and genetic association analyses
to link PPs to 3 facets of the dilemma: locomotion, pelvic floor function and childbirth. Larger
birth canal phenotypes were associated with reduced walking pace, decreased risk of back pain,
and increased risk of hip osteoarthritis - phenotypes linked to locomotor efficiency. We also
observed that a narrower birth canal width was associated with a reduced risk of pelvic floor
disorders. When examining childbirth-related outcomes, narrower birth canal phenotypes were
associated with increased risk of emergency cesarean sections and obstructed labor due to
insufficient dilation, but not obstructed labor due to positioning of the fetus. Finally, we
examined whether the dilemma might have been alleviated through evolution. We found no
association between any PPs and gestational duration, contrary to the initial prediction by
Washburn in 1960. However, we found that the birth weight of the child, a proxy for skull and
brain size, was genetically correlated with birth canal width but not with other PPs. Collectively,
our study offers fresh insight on a 60-year-old debate in human evolutionary studies. Our results
support the idea that the obstetrical dilemma has played a central role in the co-evolution of the
human brain and pelvis, while also highlighting the potential role of associated factors such as
pelvic floor health.
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Introduction

The human skeleton has undergone significant morphological change associated with the
transition to bipedalism. Some of the most significant changes occurred in the pelvis, resulting in
a superoinferiorly short and mediolaterally flaring pelvis relative to the modern great apes (1, 2).
These features are believed to have emerged early in hominin evolution and the alteration in
pelvic anatomy allowed for the positioning of the upper body above the lower limb joints and
facilitated the maintenance of an upright posture (3). While debate continues about the details of
gait mechanics in fossil hominins (/) it is clear that the modern human pelvis is adapted to
habitual bipedality, and undergoes a specific pelvic motion during walking that is thought to
reduce energetic costs associated with bipedal locomotion (4).

The suite of adaptations for bipedality includes a reduction of the bi-acetabular distance,
minimizing pelvic rotation during bipedal movement and consequently enhancing efficiency (5).
This narrowing of the bi-acetabular distance results in a narrower birth canal, and is thought to
stand in direct opposition to the birthing of children with significantly larger brains than our
evolutionary predecessors (e.g., (6—14)). In the 1960s, this functional and evolutionary conflict
was coined the “obstetrical dilemma” by Washburn (/3). In the six decades since then, the
obstetrical dilemma has been a source of intense debate, and different studies have attempted to
examine the validity of the hypothesis through empirical data (6, /4—17). One area of contention
centers on the relationship between pelvic shape and walking efficiency or walking speed. Some
studies have found there is an association between the two (7, 18), while others have not (19—
22). Another point of debate revolves around whether differential birth canal proportions are
associated with obstruction during delivery (7—14, 17, 23-26). Recently, there has been growing
appreciation for the concept of a multifactorial pelvis, which proposes that the role of pelvic
width reduction is not just to enable bipedal locomotion, but also to reduce the risk of pelvic
floor disorders. Pelvic width reduction improves the pelvic floor's ability to support the fetus and
the inner organs, and to prevent incontinence (7, 27, 28).

In addition to debates about the association between pelvic morphology and locomotion,
childbirth, and pelvic floor function, it has been suggested that in modern humans the obstetrical
dilemma has been alleviated through evolution. Washburn's initial hypothesis proposed that
relative to the other great apes, humans experience a shorter gestation period. This enables
human infants to be born relatively earlier in development than their primate counterparts,
consequently limiting the extent of brain growth before birth and ensures that the newborn can
successfully traverse the birth canal during delivery. However, this hypothesis has been
challenged and updated in recent years, as human gestational length and newborn size have been
found to align with or exceed expectations for primates of our size, similar to the other great apes
(14, 29-31) (see (6, 7, 32) for alternate usages and historical perspectives on the term “obstetrical
dilemma”).

While different aspects of the dilemma have been tackled over the past few decades,
these previous studies suffer from several shortcomings. One issue with many studies —
particularly those involving clinical outcomes — is that measurements of pelvic dimensions were
collected externally (79, 22), which may not adequately reflect the skeletal constraints imposed,
particularly with respect to the birth canal. Another issue is that some earlier studies lack

2


https://doi.org/10.1101/2024.05.02.592256
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.02.592256; this version posted May 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

92  complete information about individual lifetime health records and are unable to distinguish
93  between fine-grained but important details such as elective and emergency C-sections. However,
94  the major challenge contributing to the ongoing debate is the limited sample size in many of
95  these studies, which often only have data on a few hundred individuals (sample sizes and
96  references of previous papers are reported in Table S1. In addition, data obtained for each study
97  1is often only capable of addressing one facet of the dilemma, as datasets examining childbirth
98  outcomes and pelvic morphology often do not include data about pelvic floor function or
99  walking speed/efficiency for the same individuals.
100
101 Finally, the underlying basis of skeletal evolution in the pelvis is genetic. While
102 functional genomic datasets examining gene expression through development as well as
103 comparative gene expression between the great apes and humans for the pelvis have yielded
104  valuable insights (33-35) study of the direct association between pelvic trait variation and
105  genetics has not yet been carried out. Thus, the genetic basis of pelvic morphology underlying
106  variation in humans or indeed any other vertebrate is largely unknown, precluding analysis of
107  natural selection on pelvic phenotypes directly at the genomic level.
108
109 Here, we applied methods in computer vision to derive a comprehensive set of seven
110  skeletal measurements of the human pelvis from full-body dual-energy X-ray absorptiometry
111  (DXA) images at biobank scale. We performed genome-wide scans on these seven phenotypes to
112 identify loci associated with variation in pelvic proportions (PPs). Using summary statistics from
113 these image-derived phenotypes (IDPs), we linked human PPs through phenotypic and genetic
114 correlation with other biobank phenotypes, with an emphasis on locomotor, pelvic floor and
115  childbirth-related outcomes.

116

117  Results
118
119 A deep learning approach to measure pelvic morphology

120 To study the genetic basis of the human pelvis, we jointly analyzed DXA and genetic
121  data from 42,284 individuals in the UK Biobank (UKB). Individuals from this dataset are

122 between 40 and 80 years old and reflect adult skeletal morphology. We report baseline

123 information about our analyzed cohort in Table S2. Using a previously published deep learning-
124  based image quality control (QC) pipeline (36), we retained only DXA images for the full body
125  which included the entire pelvis, and removed images which contained image artifacts, atypical
126  aspect ratios, and other abnormalities, retaining 39,469 images of high quality. These images
127  were then uniformly cropped and padded to focus on the pelvis for subsequent analysis

128  (Methods: 4 deep learning model to identify pelvic landmarks on DXA scans).

129 After performing image QC, we manually annotated 17 landmarks on 293 randomly

130  selected pelvic images (see Fig. S2) to train our model. To assess the accuracy of our manual

131  annotations, we re-annotated 20 images from the initial set of 293 and refined this annotation

132 through model-in-the-loop labeling (Methods: Image quality control, Fig. 1B and 1C). Our deep
133 learning model was based on a High-Resolution Network (HRNet) architecture chosen because it
134 maintains a high-resolution representation throughout the model which improves the

135  performance of landmarking for this task on benchmarking tasks. These methods were robustly
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136  applied to a similar task of identifying joints on the overall skeleton (36, 37) (Methods: /mage
137  quality control).

138 Validation of human pelvic phenotype estimates

139

140 After training and validating the deep-learning model on the 297 manually annotated
141  images, we applied this model to predict the 17 landmarks on the rest of the 39,469 full-body
142 DXA images. We then calculated the pixel Euclidean distances between pairs of landmark

143 coordinates to ascertain six length phenotypes: pelvic width, pelvic inlet width, oblique pelvic
144 inlet width, iliac isthmus breadth, pelvic height and acetabular diameter, and one angle

145  phenotype: subpubic angle (Fig. 1A). To standardize images with varying aspect ratios, we

146  rescaled pixels into centimeters for each image resolution. This was achieved by regressing the
147  pixel height against the standing height in centimeters, as measured in the UK Biobank

148  assessments (Methods: Image standardization, Fig. S11). For all seven pelvic measurements, we
149  excluded individuals exceeding four standard deviations from the mean (Methods: Removal of
150  image outliers, Fig. S11).

151 Following outlier removal, we validated the accuracy of our measurements on the

152 remaining samples in two ways. First, we calculated the average error between labels in the
153  validation data and model performance: average error was 2 pixels across all 17 landmarks.
154  Second, we analyzed 935 individuals with repeat imaging visits at least two years apart. The
155  correlation of all pelvic length phenotypes between the first and second imaging visits was

156  greater than 0.99 (Fig. 1D). This indicates that the phenotype estimations via our deep learning
157  model are both accurate and highly replicable.

158  Human pelvic asymmetry is associated with handedness, and is not heritable

159 Next, we examined the correlation between measurements on the left and the right side of
160  the pelvis. The two phenotypes with measures on each side were iliac isthmus breath and

161  acetabular diameter. The left-right correlation for iliac isthmus breadth and acetabular diameter
162 were 0.809, and 0.894 respectively (Fig. 1E). The average difference between the measurements
163 in the iliac isthmus breadth between the left and right sides was 0.287 cm (p <2 x 10716, 95%

164  confidence interval (CI) = 0.294 to 0.280), and for acetabular diameter, it was 0.101 cm (p <2 X
165  10715,95% CI =0.093 to 0.108). Though these differences were small, we found that they were
166  replicable - left and right discrepancies in individuals across two imaging visits had Pearson

167  correlations of 0.633 and 0.407 for iliac isthmus breadth and acetabular diameter respectively
168  (Fig. 1E). This suggests that we can capture a measure of pelvic asymmetry beyond

169  measurement error. On estimating the heritability of this trait using GCTA (38) we found that it
170  was consistent with 0 (h,? for acetabular diameter discrepancy = 0.0131, SE = 0.0149, h,? for

171  iliac isthmus breadth discrepancy = 0.0275, SE = 0.0158). However, we observed a significant
172 association between pelvic asymmetry and handedness - another trait that is also not significantly
173 heritable (left-handed hy? = 0.0104, right-handed hg? = 0.0096 in 150,000 individuals). The

174  genetic correlation between acetabular diameter discrepancy and left-handedness is -0.39, and
175  with right-handedness, it is 0.34. Similarly, the genetic correlation between iliac isthmus breadth
176  discrepancy and left-handedness is 0.15, and with right-handedness, it is 0.11. In addition, we
177  regressed the left and right pelvic phenotype ratio against handedness while controlling for age
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and sex. Right-handed individuals tended to have larger right acetabular diameters than left-
handed individuals (regression p = 8.31 x 10) and larger left iliac isthmus breadth than left-
handed individuals (regression p = 0.0665). This suggests that left-right pelvic asymmetry might
be driven by left- or right-side dominance which is itself not heritable, but affect movement
patterns and consequently skeletal development.
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Fig. 1. Deep learning-based image quantification and validation (A) Deep learning-based
image landmark estimation using the HRNet architecture is shown. During this process, 293
training images manually annotated with specific landmarks were used to train the model, which
to perform automatic annotation of landmarks on the rest of images in the dataset from which
pelvic measurements were calculated. (B) Model in the loop training data workflow. The
coordinates from the 293 training images initially annotated by humans were used as a training
set to train a model that was then redeployed on the training data. This helped to remove
variation present in human labelling of the images and refined the training data itself. (C) Model
in the loop training reduces annotation variability. Light blue bar indicates the average Euclidean
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193  distances between human annotated landmarks and the model's first prediction on 58 validation
194  set images. The dark blue bar indicates the average Euclidean distance between first and second
195  model prediction on 58 validation set images. (D) Correlation of lengths measured from the first
196  and second imaging visits for the same individual. (E) The two panels on the left side show the
197  correlation between the left- and right-side measurements of the iliac isthmus breadth and

198  acetabular diameter. The two panels on the right side illustrate the correlation of the left-right
199  discrepancy in the iliac isthmus breadth and acetabular diameter between the first and second
200  imaging visit. (F) Genetic correlation between female and male pelvic phenotypes and other
201  skeletal traits including tibia, femur, torso length, forearm, and humerus. The error bars show 1
202  standard error. Heritability greater than 1 is due to small sample size. The two traits shown in red
203  on the x-axis are the only ones that are significantly different from one.

204

205  Sexual dimorphism in the genetic basis of PPs

206 The human pelvis plays a critical role in childbirth and is one of the most dimorphic

207  skeletal elements between males and females (39—417). Given the distinct functionalities between
208  male and female pelvis, we examined whether the genetic basis of our seven pelvic phenotypes
209  differed between males and females. To do so, we carried out genetic correlation analysis

210  between a GWAS carried out in males versus females. Functionally similar pelvic phenotypes,
211  such as pelvic height, exhibit similar genetic architectures between males and females, with a
212 genetic correlation of 1.03. In contrast, birth canal-related phenotypes like the subpubic angle
213 showed genetic correlations significantly divergent from 1. This difference in genetic correlation
214  isin striking contrast to virtually all other skeletal traits previously examined such as arm, leg,
215  torso, and shoulder dimensions. These other traits all showed genetic correlations not

216  significantly different from 1 in the same cohort (Fig. 1F), suggesting that sex-specific

217  reproductive requirements of the human birth canal are driving genetic differences between sexes
218  for these PP traits.

219  GWAS of human PPs

220

221 We performed GWASs using imputed genotype data in the UKB to identify variants

222  associated with each pelvic phenotype. We applied standard variant and sample QC and focused
223 our analyses on 31,115 individuals of “white British ancestry,” as defined by the UKB genetic
224  assessment, and 7.4 million common biallelic single-nucleotide polymorphisms (SNPs) with
225  minor allele frequency >1%. We used BOLT-LMM (42) to regress variants on each skeletal

226  measure using a linear mixed-model association framework. We included height as a covariate to
227  directly adjust for differences in body size between individuals and focus on skeletal proportions
228  instead of overall length. We also adjusted for body size differences in two other ways: dividing
229  each phenotype by height to generate a skeletal proportion, and including a leave one-

230  chromosome-out polygenic risk score (PRS) for height as a covariate in the GWAS (43). GWAS
231  effect sizes using either height as a covariate or height combined with the one-chromosome-out
232 PRS as a covariate were highly correlated (Pearson correlation = 0.99) (Methods: Adjusting for
233 height correlation in GWAS by adding height as covariate, Fig. S13). For downstream analyses,
234 we focused on the results from the GWAS that included height as a covariate. Notably, we show
235  that the effect sizes estimated for our PP phenotypes were uncorrelated with effect sizes from
236  height (Methods: Adjusting for height correlation in GWAS by adding height as covariate, Fig.
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237  S14, average Pearson correlation across all phenotypes = 5.67 x 107>, standard deviation =

238  0.0097), suggesting that PPs and height are distinct traits.

239

240 After generating summary statistics for each skeletal measure, we estimated SNP

241  heritability using LD Score regression (LDSC) (44) and GCTA-REML (38). All traits were
242 highly heritable, with SNP heritability between 25% and 40% for LDSC and between 17% and
243 50% for GCTA-REML (Methods: GWAS and Heritability analysis, Fig. 2B, Fig. S15). Across
244 the six pelvic phenotypes adjusted by height (pelvic width, pelvic height, iliac isthmus breath,
245  acetabular diameter, pelvic inlet width, oblique pelvic inlet length) and subpubic angle, we

246  identified 339 loci at p < 5 x 1078 and 241 loci at p < 7.14 x 107 (Bonferroni correction for
247  seven traits). Of these loci, 179 are independently significant at p <5 x 10~ (linkage

248  disequilibrium (7?) <0.1) across all seven phenotypes (119 after Bonferroni correction for seven
249  traits at p <7.14 x 107°) (Fig. 2A).

250

251  Biological insights from pelvic associations

252

253 Out of the 179 independent loci identified across GWASs (Table S11), 50 loci

254  overlapped a single protein-coding gene within each clumped region (Fig. 2B). Notably, of these
255 50 genes, 22 (or 44%) resulted in abnormal skeletal phenotypes when disrupted in mice using the
256  Human-Mouse Disease Connection database (36). Eight genes (COL11A1, NPR3, CDCS5L,

257  TNFRSFI11B, TBX5, FBNI, SMAD3, and TBX4) were associated with rare skeletal diseases in
258  humans (Table S11). In some cases, genes associated with specific PPs in our GWAS contribute
259  to human pelvic abnormalities. We found that 7BX15 and TBX4, two T-box transcription factors,
260  have been associated with differences in pelvic inlet width and pelvic height in model organisms,
261  and mutations in both the 7BX15 and TBX4 genes lead to pelvic abnormalities such as

262  hypoplasia of the pelvis and small patella syndrome (45, 46). Thus, our GWAS of PPs identifies
263  genes that were previously associated with skeletal developmental biology and Mendelian

264  skeletal phenotypes and demonstrates the potential for future functional and knockout studies.


https://doi.org/10.1101/2024.05.02.592256
http://creativecommons.org/licenses/by/4.0/

265
266

267
268
269
270
271
272

273
274
275
276
277
278
279
280
281
282

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.02.592256; this version posted May 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A @ Acetabular diameter
@ lliac isthmus breadth
O Oblique pelvic inlet length
@ Pelvic height
@ Pelvic inlet width
@ Pelvic width
O Subpubic angle

) @ ° o
8800 9 ) o3 S oo o S0at

(XS] @ - 8 N
0307 90025500% 8 3 o 2009, 9 350 [ 0400 19000 25820807 T o
FroR8FEaSQERAC i 2 o Qo2 a TS n ¢ 18589 8aowd § 3853580 [
SgxssToepsecesgs S g 3536 & £988 & S332 8@38: $ 95333532 2 s
TOnRETHGLESAAR [ H szRd3 & SE6a < duMo JESRE I TP3EIERS 3 @

—log,,(p)

Chromosome

Pelvic width

Ngnp = 35, h2=0.382 (0.0127)
A=1.17
LTBP1, SRBD1, EXOC6B,
FNDC3B, EFNB2, AKAP11,
RAD51B, BCAS3

Pelvic inlet width
Nsop = 27, h4?=0.388 (0.0127)
A=1.16

EFEMP1, DIRC3, CENPW,
ADAMTS17, ITGA11

Nenp = 11, h¢?=0.272 (0.0127) o ®
13 Newp = 68, hy>=0.401 (0.0126)
A=1.16
SLC39A8, NPR3, BMPS,
CREB5, ARHGAP22, PLCET,
EMX20S, TBX5, SMADS,
CASC20, EYA2

TBX18, BNC2, OTOG

lliac isthmus breadth
Nenp = 22, h?=0.41 (0.0127)
=1.14

ANUSF1, CYBROT, GSOME Acetabular diameter
Nawp = 29, hy=0.312 (0.0127)
A=1.13
HHIPL2, UST,
CRISPLD1, FRS2

Nawp = 17, hy?=0.255 (0.0126)
A=1.12
ROR1, CDC5L, NAVS,
CASC17

Fig. 2. Genome-wide association results. (A) Manhattan plot of a GWAS performed across six
PPs and subpubic angle; the lowest p for any trait at each SNP is annotated. Loci over the
genome-wide significance threshold that are close to only a single gene are annotated. (B)
Shown are the total number of genome-wide significant loci per trait, heritability (GCTA-
REML), A (from LDSC), and associated genes of loci that are specific to each skeletal trait
(again annotating only loci that map to a region with a protein-coding gene within 1000 kb of
each clumped region).

Genetic and phenotypic association of PPs with locomotor phenotypes

We examined how PPs were associated with walking pace, and musculoskeletal disorders
such as knee, hip, and back osteoarthritis (OA), which are degenerative conditions that arise
from lifetime cumulative effects of gait and motion. First, we used logistic regression to examine
phenotypic associations between PPs and these phenotypes (Fig. 3A) while controlling for age,
sex, weight, height, and other major risk factors for OA (Methods: Polygenic risk score (PRS)
association of skeletal phenotypes with musculoskeletal disease). After correcting for multiple
testing at an FDR < 5% across all associations, we found that one standard deviation in two birth
canal-related phenotypes was associated with increased self-reported walking pace (oblique
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283  pelvic inlet length: p = 5.3 x 107, odds ratio (OR) = 0.96; subpubic angle: p = 4.4 x 104, OR =
284  0.92) (Table S15). As a positive control, we examined another skeletal trait, leg-to-torso length,
285  which we found to be significantly positively associated with walking speed (p =2.97 x 108, OR
286  =1.08), in line with previous results and with mechanical modeling (6, 7). These results provide
287  empirical evidence that narrower birth canal proportions in humans are associated with increased
288  walking speed (phenotypic association: between oblique pelvic inlet length and walking pace: p
289 =5.31x 1073, OR = 0.96, between subpubic angle and walking pace: p = 4.89 x 10, OR = 0.92).
290  However, examining the associations with OA-related phenotypes we found that having larger
291  birth canal-related phenotypes also decreased the risk of back pain/dorsalgia (phenotypic

292  association: between oblique pelvic inlet length and dorsalgia: p = 3.45 x 1073, OR = 0.93,

293 between subpubic angle and dorsalgia: p = 3.28 x 10”7, OR = 0.82, between subpubic angle and
294  back pain: p =5.16 x 10”7, OR = 0.87) (Fig. 3A, Table S15). We also found that individuals with
295  larger birth canal phenotypes were also at increased risk of hip osteoarthritis (phenotypic

296  association: between subpubic angle and hip OA: p = 1.18 x 102, OR = 1.27) but reduced risk of
297  knee osteoarthritis (phenotypic association: between subpubic angle and knee OA: p =9.97 x 10
298  “ OR =0.83, between subpubic angle and internal derangement of knee: p =9.71 x 105, OR =
299  0.81) (Fig. 3A, Table S15).

300 To complement these phenotypic associations, we also analyzed 361,140 UKB

301  participants who had not undergone DXA imaging and were of “white British ancestry” for

302  predictive risk based on PRS derived from our GWAS on PPs for the imaged set of individuals
303  (Fig. 3B, Table S16). We generated PRS with Bayesian regression and continuous shrinkage
304  priors (47) using the significantly associated SNPs and ran a logistic regression of the generated
305  risk scores and traits, adjusting for the first 20 principal components of ancestry and imputed sex
306 as well as age, sex, weight and other major risk factors of OA (Methods: Polygenic risk score
307  (PRS) association of skeletal phenotypes with musculoskeletal disease). Our genetic association
308  analysis mirrored our phenotype association analysis and suggests that individuals with smaller
309  birth canal proportions have on average a faster walking pace, but are at the same time more

310  susceptible to back pain and strain, common consequences of bipedal locomotion due to the

311  distribution of weight on just two limbs (genetic association between leg to torso ratio and

312 walking pace: p = 1.00 x 10'3, OR = 1.03, between oblique pelvic inlet length and walking pace:
313  p=8.09 x 10* OR = 0.98, between oblique pelvic inlet length and dorsalgia: p = 1.31 x 1072,
314  OR =0.98, between pelvic inlet width and back pain: p = 1.25 x 1073, OR = 0.98, between

315  subpubic angle and dorsalgia: p = 1.02 x 10, OR = 0.97) (Fig. 3B, Table S15).

316  Genetic and phenotypic association of PPs with pelvic floor function

317 Next, we combined all incontinence-related phenotypes from the ICD10 record, including
318  stress incontinence (N39.3), other specified urinary incontinence (N39.4), fecal incontinence

319  (R15), and unspecified urinary incontinence (R32), into a single binary phenotype. We

320  conducted a GWAS restricted to female individuals who were imaged and computed a PRS for
321  approximately 200,000 females of “white British ancestry”” who were independent from the

322  GWAS set. 18,020 individuals out of the 200,000 individuals had one of these incontinence

323 phenotypes. We then regressed binary incidence of genital prolapse and incontinence against

324  PRS for all female pelvic traits, controlling for the number of live births and age (Methods:

325  Polygenic risk score (PRS) association of skeletal phenotypes with musculoskeletal disease). Out
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326  of the various PPs the only significantly positive association we observed was with the width of
327  the birth canal (between pelvic inlet with and genital prolapse: p = 4.3 x 104, OR = 1.04,

328  between pelvic inlet with and incontinence: p = 4.2 x 1073, OR = 1.03) (Fig. 3C, Table S17).

329  These results offer support for the multifactorial pelvic hypothesis, suggesting that a narrower
330  birth canal improves pelvic floor function. Pelvic floor function is critical in assisting bladder
331 and bowel control and evacuation as well as in supporting the fetus during pregnancy - a function
332 thought to be more critical in upright humans than in quadrupeds (7).
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333  Fig. 3. Association between pelvic traits, pain phenotypes, musculoskeletal diseases as well
334  as walking pace. (A) Phenotypic associations from logistic regression analyses of

335  musculoskeletal disease traits, self-reported pain and walking pace on PPs. (B) PRS associations
336  between musculoskeletal disease traits, walking pace and PPs. (C) PRS associations between
337  pelvic floor disorders and PPs. For (A), (B) and (C), associations that are significant after False
338  Discovery Rate (FDR) correction are annotated with an asterisk (*). ORs for the phenotypic

339  associations and PRS are shown in colors, and the p-values are represented by size. The number
340 notations in parentheses are the ICD-10 codes associated with each disease: M54—Dorsalgia,
341  MlIl6—Coxarthrosis (arthrosis of hip), M17—Gonarthrosis (arthrosis of knee), M23—Internal

342 derangement of knee, N81-Female genital prolapse.

343

344  Genetic association of PPs with childbirth-related outcomes

345

346 Finally, we examined outcomes associated with obstructed labor, which is thought to be

347  more common in humans than any other modern primate species (9). Obstructed labor affects
348  around sixteen percent of deliveries today and has been a major cause of maternal and fetal death
349  throughout human history, which suggests it might play a major role in human evolution through
350  natural selection (48, 49). First, we focused on cesarean sections (C-sections) reported in the UK
351 Biobank. To avoid confounding effects due to elective C-sections, we focused on emergency C-
352 sections which are routinely performed in cases of obstruction. We conducted PRS association
353  analysis and found that narrower birth canals were associated with increased risk of emergency
354  C-sections (p =0.0108, OR = 0.92). As childbirth-related outcomes were available only for a
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355  small portion of individuals in the UK Biobank (<10% of all individuals) we also examined

356  outcomes in the FinnGen's data set for delivery-related traits. We identified a significant genetic
357  correlation between birth canal traits and labor obstructions due to maternal pelvic abnormalities,
358  of which a major component is dilation width (Methods: Genetic correlation of skeletal

359  proportions with pregnancy phenotypes, Fig. 4B, Table S18). However, we saw no association
360  between obstructed labor due to malpresentation of the fetus and pelvic traits (Fig. 4B, Table
361  S18). As the position of the fetus can vary independently of the skeletal structure of the pelvis,
362  this childbirth outcome serves as a negative control for this analysis. Combining both types of
363  analysis, our results suggest strong associations between the size of the birth canal and the

364  chance of obstruction during labor.

365

366  Evolutionary escape

367

368 Finally, we investigated associations that might help explain how the obstetrical dilemma

369  may have been alleviated in recent human evolution. First, we examined whether gestation

370  length in humans is shorter than other primates of comparable body size, following from

371  Washburn’s proposed that the relatively large-brained human infant must be delivered before its
372  head reaches a volume that cannot pass through the pelvic canal (/3, 50, 57). However, we found
373  no association between gestational duration and any PP, including those associated with the birth
374  canal (Fig. 4C, Table S17). This result is in line with more recent data on a fairly large dataset of
375  great apes suggesting that human children are not born significantly earlier than those of the

376  other apes (14, 29-31). However, we did see a significant correlation between the proportional
377  width of the birth canal and neonatal birth weight - a proxy for neonatal head size (correlation
378  coefficient ~ 0.7 (52)) (Fig. 4C, Table S17). This suggests that natural selection might have led
379  to genetic correlation between pelvic and head proportions, potentially reducing labor

380  obstruction (41, 53).
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Fig. 4. Association between pelvic traits and childbirth-related outcomes. (A) PRS
associations between pelvic traits and emergency cesarean section. (B) Genetic correlations
between pelvic traits and obstructed labor, including obstructed labor due to malposition and
malpresentation of fetus and obstructed labor due to maternal pelvic abnormality. (C) PRS
associations between pelvic traits and evolutionary escape variables, including child birth weight
and gestation duration. For (A), (B), and (C), associations that are significant after FDR
correction are marked with an asterisk. Odds Ratios (ORs) for the PRS associations and genetic
correlations are presented in various colors, and the p-values are indicated by size.

Discussion

In this study, we used deep learning to understand the genetic basis of skeletal elements
that make up human PPs using DXA imaging data in a large population-based biobank. We
found sex-specific differences in genetic architecture as well as differences in pelvic symmetry
that were associated with handedness. We identified 179 independent genetic loci associated
with PPs. We then examined different facets of the obstetrical dilemma, namely the relationship
between PPs and locomotor, pelvic floor and childbirth-related outcomes. Lastly, we analyzed
possible ways in which evolution and natural selection might have alleviated the dilemma by
looking at genetic correlations between gestational period and child birth weight and pelvic
proportions.

In previous work on the obstetrical dilemma, studies have examined locomotor outcomes

that are associated with efficiency and energy use rather than speed. Here we did not have access
to energetics, but we did have access to outcomes associated with walking speed and OA which
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406  relate to gait efficiency accumulated over a lifetime. While self-reported walking pace may not
407  seem an ideal measure of walking speed, several lines of evidence suggest that it is a reliable
408  measure of actual walking pace. First, self-reported walking pace is highly heritable (54).

409  Second, it is associated with muscle strength and declines with BMI and age in line with

410  expectations (53, 56). It is also associated with several disorders that are known to hinder

411  locomotion, including hip osteoarthritis, the leading cause of adult disability in the United States
412 (57-59). Finally, self-reported walking pace has been directly correlated with measured walking
413  pace in a reasonable sample size study and within the Biobank (60, 61). It has also been

414  correlated with mean accelerometer assessed activity (62).

415

416 Our results on locomotion were heavily mixed, with larger birth canal phenotypes related
417  to lower walking speed, reduced risk of back pain and knee OA, but increased risk of hip OA.
418  However, our results provide significant evidence for other facets of the dilemma associated with
419  pelvic floor function and childbirth. Specifically, we show that larger birth canal phenotypes are
420  associated with increased risk of pelvic floor disorders, but at the same time reduced risk of

421  obstruction during labor - two phenotypes that have direct impacts on human evolution due to
422  intense natural selection acting on them. We also investigated several leading hypotheses about
423  how the dilemma could have been alleviated over evolutionary time. Our data does not provide
424  support for the idea that gestational duration has decreased to accommodate birthing large-

425  brained infants - we observed no correlation between any PPs and gestational duration. However,
426  our results indicate that there is a genetic correlation between PPs only related to birth canal

427  width and child head size (which we obtain using birth weight as a proxy phenotype (52)).

428  Across all the skeletal traits we examined, the significantly reduced genetic correlation observed
429  between males and females exclusively for birth canal phenotypes also suggests that sexual

430  dimorphism in these traits may have arisen through natural selection in response to different

431  functional constraints.

432

433 Beyond increasing the sample size by multiple orders of magnitude relative to previous
434  studies that have examined this hypothesis, and presenting high quality measurement of the

435  human pelvic form, our work is also one of the few studies to integrate data from locomotor,
436  childbirth and pelvic floor outcomes all on the same participants. However, a limitation of our
437  study is that we only had individuals aged between 40-80 years old. It has been suggested that
438  age is a source of variation in PPs, and that changes in functional constraints throughout parts of
439  the reproductive lifespan is another means by which the dilemma could be alleviated (63).

440  However, we did not have access to data from individuals from earlier ages to examine this

441  hypothesis.

442

443 Taken together, our work combines, imaging, genetic, health record and survey data on
444  biobank scale data to re-examine a 60 year old theory of human evolution that is standardly

445  taught in textbooks. Our results provide major empirical support for several classical theories
446  obstetrical dilemma related to locomotion and childbirth, but perhaps for the first time provides
447  evidence for the role of associated factors such as pelvic floor health.

448
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449  Materials and Methods

450
451  UKB participants and dataset
452 All analyses were conducted with data from the UKB unless otherwise stated. The UKB

453  is arichly phenotyped, prospective, population-based cohort that recruited 500,000 individuals
454  aged 40—69 in the UK via mailer from 2006 to 2010 (64). In total, we analyzed 487,283

455  participants with genetic data who had not withdrawn consent as of May 4, 2022, out of which
456 42,284 had available DXA imaging data. Access was provided under application number 65439.
457  The baseline participants metadata including age and sex and other variables related to our study
458  are in Table S2.

459
460  Dual-energy X-ray absorptiometry (DXA) imaging
461 The UKB has released DXA imaging data for a total of 50,000 participants as part of

462  bulk data field ID (FID) 20158. The DXA images were collected using an iDXA instrument

463  (GE-Lunar, Madison, WI). A series of 8 images were taken for each patient: two whole body
464  images - one of the skeleton and one of the adipose tissue, the lumbar spine, the lateral spine

465  from L4 to T4, each knee, and each hip. Dual-energy X-ray absorptiometry (DXA) images were
466  downloaded from the UKB bulk data FID 20158. The bulk download resulted in 42,284 zip files,
467  each corresponding to a specific patient identifier otherwise known as each patient’s EID, and
468  each file contained several DXA images of the patient as described above. All images were

469  exported and stored as DICOM files which were later converted to high-resolution JPEG files for
470  image analysis and quantification.

471
472  Phenotype and clinical data acquisition
473 Self-reported usual walking pace was obtained from UK Biobank under FID 924, and we

474  combined slow pace and steady average pace to increase the sample size in that category. The
475  binary classification of patient disease phenotypes was obtained from a combination of primary
476  and secondary ICD-10 codes (FID 41270) and the non-cancer self-assessment (FID 20002). Self-
477  assessment codes were translated to three-character ICD-10 codes (Coding 609) and ICD-10

478  codes were truncated to only the initial three characters. Patients received one if a disease code
479  appeared in either self-assessment visit or their hospital records and zero otherwise. The

480  phenotypes related to pelvic floor disorders are derived from ICD-10 codes, specifically

481  including incontinence (stress incontinence ICD-10 code: N39.3, other specified urinary

482  incontinence ICD-10 code: N39.4, fecal incontinence ICD-10 code: R15, and unspecified urinary
483  incontinence ICD-10 code: R32) and genital prolapse (ICD-10 code: N81). As the incontinence
484  phenotypes are very specific and each category of incontinence has only limited data, we

485  combined all incontinence phenotype categories into a single binary phenotype. Table S12 and
486  Table S13 contain all ICD-10 and FID codes we used in our analysis.

487
488  Computing infrastructure
489 All analysis was carried out on the Corral and Frontera system of the Texas Advanced

490  Computing Cluster. The deep learning analysis was carried out on NVIDIA Quadro RTX 5000
491  GPUs using the CUDA version 11.1 toolkit.

492

493  Image quality control
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494 Each individual in the UKBiobank had a DXA image folder containing up to 8 different
495  body parts. In order to check the labels of these body parts that were defined using their file

496  name, we built a convolutional neural network (CNN) to sort the images by body part through
497  the use of a multiclass classification model using a previously published protocol (36). After

498  sorting and removal of images, we were left with 42,228 full skeleton X-rays (Table S3). After
499  we determined the final set of full body X-ray images, we performed additional quality control to
500 remove images that were poorly cropped and had other artifacts. To do this we utilized another
501  deep learning classifier also described in (36). Removal of all the cropped images resulted in a
502  total of 39,644 full-body images that we used for analysis (Table S3).

503
504 Image standardization
505 From the pool of remaining full-body X-ray images, we discovered that the images varied

506  in both pixel dimension and background. Broadly, the images fell into two main categories: (a)
507  images that were on a black background with sizes between 600-800 by 270 pixels and (b)

508 images on a white background with sizes between 930-945 by 300-370 pixels. The overall

509  distribution of images by pixel ratio and an example of each type of image are shown in Table
510  S7 and Fig. S1. To process these images and remove the effects of scaling and resolution change
511  during the deep learning process, we chose to pad all the images to be of consistent size. We
512 removed images that had sizes far out of the normal range and processed each of the two

513  categories of images separately. The black background images were padded equally on all sides
514  of the image to a final resolution size of 816 x 288 pixels while the white background images
515  were padded in the same fashion to a resolution size of 960 x 384 pixels. We carried this out by
516  converting each individual DICOM file obtained from the UKB into numpy arrays and added
517  additional rows and columns of black or white pixels as appropriate using standard functions
518  from numpy (65), scipy (66), and skimage (67). These final resolution sizes were chosen based
519  onimage size requirements for our deep learning model for landmarking and image

520  quantification. Padding and removing individuals with sizes that did not fit into the two major
521  categories resulted in a final total of 39,469 images - 21,981 images of 816 x 288 and 17,488
522 images of 960 x 384. In our deep learning model for landmarking, we trained using images

523  across both pixel ratios. Despite variations in size and background, the images shared many
524  features, being skeleton X-ray images. Using both pixel ratios enriched the training set,

525  enhancing prediction accuracy.
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526
527  Fig. S1. Types of DXA images acquired from the UKB. (Left) Image of patient imaged on

528  white background. (Right) Image of patient imaged on black background. Relative sizes of
529  images are true to scale.

530
531  Manual annotation of human pelvic landmarks
532 To train our deep learning model, we manually annotated a total of 293 images (with 146

533  images padded to 960 x 384 pixels on a white background, and 147 images padded to 816 x 288
534  pixels on a black background). Of these, 239 images were randomly allocated for training and
535  the rest are used for validation. Out of the 293 total images, 10 images were duplicated in each of
536  the image sizes to measure the replicability of our process. We used a single human annotator for
537  all training data and provided an initial dataset of 313 (293+2 X 10 duplicate images) without the
538 annotator's knowledge. We used a standard annotation scheme in computer vision, the Common
539  Objects in Common (COCO) (68) scheme which provides a rubric for joint landmark estimation
540  on the human body. The positions in the pelvis we chose to annotate were the: iliac crest

541  posterior left/right, iliac crest anterolateral left/right, iliac body lateral left/right, pelvic inlet

542  left/right, acetabulum posterosuperior left/right, acetabulum anteroinferior left/rightischiopubic
543  ramus inferior left/right, pubic tubercle, and pubic symphysis inferior. An example of the

544  annotation of one image is shown in Fig. S2 with landmarks placed at each of the locations listed
545  above.
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Sacrum midline

lliac crest posterior right lliac crest posterior left

lliac crest anterolateral right lliac crest anterolateral left
Pelvic inlet right Pelvic inlet left
lliac body lateral right lliac body lateral left
Acetabulum posterosuperior right Acetabulum posterosuperior left
Acetabulum anteroinferior right Acetabulum anteroinferior left

Ischiopubic ramus inferior right Ischiopubic ramus inferior left

Pubic symphysis inferior

Fig. S2. The 17 Pelvic landmarks and their corresponding names.

Replicability Assessment

We measured the replicability of our annotations by taking the Euclidean distance of
pixels between the corresponding key points across 10 randomly selected images that were
duplicated amongst both of the 816 x 288 and 960 % 384 image set without knowledge of
whether the image was a duplicate. Our replication analysis of 20 duplicate images was under 8
pixels across the different points that were estimated. Across the body parts, the farthest
deviation across annotations was seen in the iliac body lateral, but the mean replicability across
20 images was under 2 pixels for all of the pelvic landmarks (Fig. S3).
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558  Fig. S3. Annotation Error in Human Pelvic Landmarks. The blue points depict the Euclidean
559  distances of specific landmarks between replicate annotations from 10 images of the 816 x 288
560  setand 10 images of the 960 x 384 set. The red points indicate the mean Euclidean distance for
561  each landmark, while the red error bars represent the standard deviation for these distances.

562 A deep learning model to identify pelvic landmarks on DXA scans

563 To determine the coordinates of all landmarks across 39,469 images, we initially adjusted
564  the DXA images of both sizes, 816 x 288 and 960 x 384, to a uniform dimension of 256 x 256
565  pixels for the pelvis area by applying central cropping and padding. For the upper and lower

566  body sections, the images were resized to 608 % 608 pixels. Subsequently, 235 images

567  (approximately 80% of the total) were allocated to the training set, with the remaining 58 images
568  set aside for validation. To enhance the training set and to improve the model's ability to

569  generalize, we applied image transformations including rotation and warping.

570
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571 To perform landmarking we used an HRNet architecture based network (69) preserves
572 high-resolution representations throughout its processing, leading to more accurate estimations
573 (refer to Fig. S3). Our previous work demonstrated that using a pre-trained HRNet on large

574  human pose estimation tasks, further refined with fine-tuning, results in more precise predictions
575  (36). Consequently, we utilized the pre-trained HRNet architecture (Fig. S4), adopting a heatmap
576  size of 64 x 64 for the 256 x 256 pelvis images and 152 x 152 for the 608 % 608 images of the
577  upper and lower body. The batch sizes were set to 16 for pelvis images and 8 for upper and lower
578  body images.

579

580 Initially, our model was trained with 235 manually annotated images. After fine-tuning
581  over 100 epochs using these images and their manually annotated coordinates, we noticed a

582  minimal reduction in loss beyond the 20th epoch (as shown in Fig. S5), indicating that 100

583  epochs were adequate for model convergence. The model's performance was then assessed using
584  the remaining 20% of annotated images. According to Fig. S7, the mean Euclidean distance error
585  between the human annotation and model prediction was below 2 pixels, similar to the error in
586  human annotation (Fig. S3). It is notable that certain landmarks, specifically the ischiopubic

587  ramus inferior (left and right) and the iliac crest posterior (left and right), exhibited larger

588  discrepancies between human annotations and model predictions (Fig. S6), a variance also

589  observed in repeated manual annotations (Fig. S3), highlighting these landmarks as challenging
590  for human annotators as well.

591

592 We then applied the model to predict landmarks on all remaining images. Initial visual
593  assessments of the model's predictions on original DXA images suggested greater precision

594  compared to human annotations. To explore this observation, we conducted a validation study,
595  selecting a new set of 293 images from both white and black background sets, ensuring they

596  were not part of the initial training set. These images were split into new training and validation
597  sets, maintaining an 80:20 ratio. Training the model anew with these sets and the same

598  architecture and hyperparameters led to faster convergence and slightly lower loss, suggesting
599  the model's predicted coordinates might be less noisy than manual annotations (as indicated in
600  Fig. S7). Comparisons between human and model-predicted annotations revealed that the

601  Euclidean distance for all 17 landmarks between the first and second model predictions was

602  significantly smaller than the distance between manual annotations and the first model

603  predictions, reducing the average Euclidean distance to less than one pixel (Fig. 1C, Fig. S6,
604  Table S5).

605

606 We further deployed this twice-trained, optimized model on a comprehensive set of

607 39,469 full-body DXA images from the UK Biobank. Additionally, we compared this model's
608  performance to that of a previous study's model (36), particularly assessing the correlation

609  between left and right arm length ratios across two imaging visits (Fig. S7). Despite using the
610  same annotated coordinates for model training, our current model showed a significantly higher
611  correlation between imaging visits than our previous model. However, we noticed repeated

612  application of this strategy (outlined in Fig. 1B) did not yield significant improvements in model
613  accuracy (Fig. S8), suggesting that an additional round of training was useful to reduce the

614  variation in manual annotation to a minimum.

615

616
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617  Fig. S4. HRNet deep learning architecture. High-Resolution Network (HRNet) architecture

618  maintains parallel high to low-resolution subnetworks.
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620  Fig. S5. Training logs of HRNet with two different training sets.
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621
622  Fig. S6. Model prediction error. Light blue box plots indicate the Euclidean distance between

623  manually annotated coordinates and HRNet prediction results based on these coordinates across
624 18 human pelvis landmarks. Dark blue box plots indicate the Euclidean distance between HRNet
625  prediction results based on previous predicted coordinates across 17 human pelvis landmarks.
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627  Fig. S7. Model Comparison. The left panel displays the scatter plot of the left-to-right arm ratio
628  from two imaging visits using HRNet, sourced from (36). The right panel shows the scatter plot
629  of the same ratio from two imaging visits but using our optimized HRNet model.
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631  Fig. S8. Model prediction accuracy across multiple repeat training.
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632 A major issue in combining our analysis across input pixel ratios was that these pixel

633  ratios represented different resolution scalings, perhaps due to distances that the scanner was
634  held above the patient (Fig. S9). That is, in one image a pixel could represent 0.44 cm and in
635  another 0.46 cm. To control for this scaling issue and to standardize the images, we chose to

636  regress height measured directly on our image using the midpoint of the eyes and the midpoint of
637  the two ankle landmarks that could be taken across all image pixel ratios and overall height (FID
638  50) computed externally from the UKB (Fig. S10, Table S7). While the height measure we

639  utilized did not include the forehead, it was a relative measure that we used to obtain a scaling
640  factor for each image pixel ratio that we could for normalization. Measurement error of

641  individuals either in our image-based height measure or as reported in the UKB is not expected
642  to affect our conversion from pixels to cms as we are regressing over many individuals.

643  Importantly, we validated this regression and normalization using duplicate individuals taken by
644  different scanners, imaging modes and technicians (Fig. 1D, 1E).
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647  Fig. S9. DXA images from the UKB that have undergone different image scaling. Example
648  of two individuals who were measured to be the same height in the FID 50 in the UKB (overall
649  height) but pixel-based measurements of one image were considerably smaller than the other due

650  to image scaling/resolution differences.

651
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652
653  Fig. S10. A linear regression of image-measured height against UKB-measured height. For

654  each image pixel-ratio, we regressed height measured in the UKB with height we calculated in
655  pixels from the DXA scan. This provided a conversion from pixels to cm that we used as a
656  normalization factor to correct for differences in resolution.

657
658  Obtaining skeletal element length measures
659 From each of the 17 landmarks, we generated a total of one angle measure and seven

660  skeletal length measures (Fig. 1) in pixels which we converted to centimeters using coefficients
661  from the regressions with height. We averaged iliac isthmus breadth and acetabular diameter
662  across the left and right sides of the pelvis for all analyses. For all measurements, the phenotype
663  values are shown in Table S8, and the mean and standard deviations are shown in Table S9.
664

665  Participant data quality control

666 For all of the following analyses, we filtered the participants with correctly labeled full
667  body DXA images (FID 20158 and 12254) to just Caucasian individuals (FID 22006) from the
668  white British population as determined by genetic PCA (FID 21000). We removed individuals
669  whose reported sex (FID 31) did not match genetic sex (FID 22001), had evidence of aneuploidy
670  on the sex chromosomes (FID 222019), were outliers of heterozygosity or genotype missingness
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671  rates as determined by UKB quality control of sample processing and preparation of DNA for
672  genotyping (FID 22027), had individual missingness rates of more than 2% (FID 22005), or

673  more than nine third-degree relatives or any of unknown kinship (FID 22021). We also removed
674  individuals whose standing height (FID50) and weight (FID21002) didn’t recorded in their

675  imaging visit. In total 30,370 individuals remained.

676
677 Removal of image outliers
678 We removed individuals who were more than 4 standard deviations from the mean for

679  any imaging-derived phenotype from the analysis. In total 31,115 individuals remained (Table
680  S4). Examination of these outliers by comparing left and right symmetry as well as comparison
681  of other body proportions revealed a heterogeneous set of issues that were associated with the
682  poor prediction by our deep learning model. In some cases, individuals had a limb, or another
683  body part amputated. Some poorly classified images were individuals who had had major hip or
684  knee replacement surgery or had various implants that were causing incorrect model landmark
685  prediction. Another class of outlier images was those that were too poor in quality for any

686  landmarking of any of the points on the image or had abnormal pelvis shape perhaps due to a
687  mendelian disorder (Fig. S11).

688

689
690  Fig. S11. Examples of individuals with normal and abnormal pelvic morphology. Left panel

691 - normal morphology, right panel - pelvis with highly atypical morphology.

692
693  Correlations of pelvic left and right discrepancy with handedness
694 Upon examining Fig. 1E, we observed significant differences between the left and right-

695  side measurements for iliac isthmus breadth and acetabular diameter. Given that the discrepancy
696  between these left and right measurements consistently appeared in two separate imaging visits,
697  this is unlikely to be due to random error/noise in model prediction. To investigate whether this
698 left-right discrepancy is associated with handedness, we calculated the ratio between the left and
699  right-side measurements. We then conducted t-test analyses on the ratio of each phenotype to
700  examine differences in these ratios based on handedness (as indicated by FID1707). These

701  analyses were restricted to white British patients.

702
703  Phenotypic comparison between males and females
704 For each length phenotype, including pelvic height, pelvic width, iliac isthmus breadth,

705  acetabular diameter, pelvic inlet width, and oblique pelvic inlet length, we regressed out standing
706  height and compared the residuals obtained from the regression analysis between males and

707  females. All six length phenotypes and one angle phenotype showed significant differences

708  between males and females in a t-test (Fig. S12).
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710  Fig. S12. Phenotypic comparison between males and females morphology.
711
712 Genetic data quality control
713 Imputed genetic data for 487,253 individuals was downloaded from UKB for

714 chromosomes 1 through 22 (FID 22828) then filtered to the quality-controlled subset using

715  PLINK2 (70). All duplicate single nucleotide polymorphisms (SNPs) were excluded (--rm-dup
716  'exclude-all') and restricted to only biallelic sites (--snps-only 'just-acgt') with a maximum of 2
717  alleles (--max-alleles 2), a minor allele frequency of 1% (--maf 0.01), and genotype missingness
718  no more than 2% (--maxMissingPerSnp 0.02). In total 8,638,168 SNPs remained in the imputed
719  dataset. Non-imputed genetic data (genotype calls, FID 22418) did not contain duplicate or

720  multiallelic SNPs but were filtered to the quality-controlled subset; 652,408 SNPs remained.

721

722 Adjusting for height correlation in GWAS by adding height as covariate

723 A major issue in carrying out GWAS for phenotypes such as ours where we would like to
724 control for height is the potential for confounding due to the adjustment. McCaw et al. highlight
725  the pitfalls in GWAS of ratio traits and describe ways to reduce this confounding (43). Following
726  their pipeline, we carried out GWAS, adjusting not only for height but also for leave-one-

727  chromosome-out (LOCO) polygenic scores (PGS) of height. Briefly, we first performed GWAS
728  on approximately 370k white British individuals without imaging data using PLINK (70).

729  Second, we estimated LOCO-PGS for each individual with imaging data for each chromosome
730  using Bayesian regression with continuous shrinkage priors (47), employing associated single
731  nucleotide polymorphisms from HapMap3. In total, each individual received 22 LOCO-PGS one
732 for each chromosome. Third, we randomly split 30k imaged individuals into two groups, with
733 each group containing around 15k individuals, and conducted two GWAS models for each

734 chromosome. These models adjusted for the first 20 principal components, age, sex, height, and,
735  optionally, the corresponding LOCO-PGS as covariates. Finally, we concatenated all

736 chromosomes' GWAS summary statistics. In examining the effect sizes across all manners of
737  carrying out the analyses, we found that results (p < 5 x 10%) adjusted for and not adjusted for
738  LOCO-PGS were very similar in the split-sample study (Fig. S13), suggesting that the genetic
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739  component of collider bias is minimal. In Fig. S12 we present an image of the correlation of
740  effect sizes for only a single trait but the results of all traits ranged in correlation between 0.959
741 10 0.989. To provide additional confirmation of reduced confounding with the adjustment for
742 height, we compared the effect size correlation between snps at p < 5 x 10 for height and a
743 specific trait (without adjusting for LOCO-PGS) and observed that effect sizes estimated for
744  height and the SNP effect size of a specific trait were completely uncorrelated (Fig. S14). This
745  further indicates that the results of the GWAS we conduct for particular pelvic proportions are
746  largely independent of height.
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747
748  Fig. S13. Two GWAS model comparison. To compare with or without adjusting for LOCO-

749 PGS we compared the effect size correlation between two separate samples with the same or
750  different GWAS models with SNP p < 5 x 10, Here we only show one randomly picked trait
751  birth canal width, but we observed similar signals for all traits.
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754  Fig. S14. SNP effect size correlation between height and birth canal width.

755
756  GWAS and Heritability analysis
757 GWAS was performed with BOLT-LMM (47). LD Score v1.0.1 was used to compute

758  linkage disequilibrium regression scores per chromosome with a window size of 1 ¢cM (44).

759  PLINK2 --indep-pairwise with a window size of 100 kb, a step size of 1, and an 1? threshold of
760 0.6 was used to create a list of 986,812 SNPs used as random effects in BOLT-LMM. Covariates
761  were the first 20 genetic principal components provided by UKB (FID 22009), sex (FID 31), age
762  (FID 21003), age-squared, sex multiplied by age, sex multiplied by age-squared, and standing
763  height (FID 50). In addition, the DXA scanner’s serial number and the software version used to
764  process images were combined into one covariate, resulting in 5 factor levels.

765

766 SNPs in each resulting GWAS were clumped in PLINK using --clump with a

767  significance threshold of 5.0 x 1078, a secondary significance threshold of 1.0 x 10 for clumped
768  SNPs, an 12 threshold of 0.1, and a window of 1 Mb. SNPs were assigned to genes with --

769  clumpverbose --clump-range glist-hg19 downloaded from PLINK gene range lists (7/). The

770  genomic inflation factor of each phenotype was assessed in R version 4.2.1 as the ratio of the
771  median of the observed chi-squared distribution (an output of BOLT-LMM --verbose) to the
772  expected median of the chi-squared distribution with one degree of freedom.

773

774 We created the genetic relationship matrix for our quality-controlled subset but without
775  any related individuals and a minor allele frequency of 0.01, then ran GCTA for each phenotype
776  pair with the first ten genetic principal components provided by UKB (FID 22009).

777

778 The heritability of each phenotype was assessed with European HapMap3 SNPs using
779  GCTA (38) with the same covariates as GWAS, excluding age-squared and sex by age-squared.
780  We also estimated heritability using LDSC (44) and found similar heritabilities (20-50%) (Fig.
781  S15, Table S10).

782
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784  Fig. S15. Heritability estimated in GCTA and LDSC.
785
786  Sex-specific analysis
787 We performed a GWAS independently in males and females using the same process and

788  covariates we used in the combined GWAS analysis in the previous section. Subsequently, we
789  used LDSC to carry out genetic correlation analysis between GWAS conducted in males and

790  females. As depicted in Fig. 1F, outer pelvic morphology, such as pelvic height, had genetic

791  correlation consistent with 1. However, phenotypes related to the birth canal, such as pelvic inlet
792  width, oblique pelvic inlet length, and subpubic angle, exhibit differences significantly different
793  from 1. This aligns well with previous studies, underscoring the functional importance in females
794  to accommodate childbirth.

795

796 To determine if any sex-specific loci were present in our pelvic phenotypes, we also

797  carried out additional GWAS in PLINK involving a Sex-Genotype interaction for each SP on our
798  original population of 31,115 individuals to determine loci with sex-specific effects. Across all
799  the traits that we examined we did not find evidence for interaction at any locus which would
800  signify sex-specificity. However, we note that this lack of evidence could possibly be due to

801  reduced power for detecting interaction effects at this sample size. We also report the summary
802  statistics for this GWAS with interactions along with the other GWAS that we performed in the
803  Supplementary Data.

804
805  Clumping and identification of genes associated with loci
806 To obtain a set of independent SNPs associated with each PP phenotype, we first

807  performed clumping analysis for each phenotype using plink and assigned SNPs to genes with --
808  clump-verbose --clump-range glist-hg19 with an r> window of 0.1 and a 1 Mb threshold of
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809  physical distance for clumping. We downloaded gene ranges from plink for hgl19 (72).
810  Following clumping, we looked at a subset of 7 phenotypes and combined the significant SNPs
811  across the chosen phenotypes resulting in 339 unique SNPs.

812
813  Functional mapping and gene enrichment analysis
814 We ran FUMA (73) without any predefined lead SNPs on a sample size of 31,115

815  individuals. GENE2FUNC was run with all types of genes selected as background genes using
816  Ensembl v92 with GTEx v8 gene expression data sets and we set window sizes 10 kb for both
817  upstream and downstream (Fig. S16, Table S19).
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818
819  Fig. S16. MAGMA gene property analysis with GTEx 8 and image-derived phenotypes

820 GWAS

821
822  Transcriptome analysis
823 To explore the genetic underpinnings of pelvis-related phenotypes in relation to specific

824  developmental stages of the human pelvis, we sought enrichment of genes associated with our
825  GWAS results for pelvis-related phenotypes in gene expression data across four distinct

826  developmental stages of the human pelvis during the embryonic period, as detailed in (33). Our
827  primary objective was to discern which developmental stage (ES3, E54, E57, or E59) might be
828  linked to changes in pelvis shape. We downloaded RNA-Seq data for human embryonic pelvises
829  at different developmental stages from the GEO data repository (GSE165930). Subsequently, we
830  converted gene names to Ensembl gene IDs using the biomaRt package (version 2.52.0) in R. To
831  compute the relative gene expression level for a specific subelement at a particular

832  developmental stage, we subtracted the average expression from other stages for that specific
833  subelement and from other subelements across different stages. Following this, we conducted a
834 MAGMA gene property analysis to assess enrichment between genes expressed during specific
835  developmental stages and our phenotypes. However, our analysis did not reveal any significant
836  enrichment for any developmental stage in our GWAS after adjusting for multiple comparisons
837  using FDR correction for both the number of traits and developmental stages (Fig. S17, Table
838  S20). In a subsequent approach, we combined data from different developmental stages to
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839 investigate potential associations between pelvis-related phenotypes and specific pelvis

840  subelements. We determined the relative expression of specific subelements by subtracting the
841  average expression of other subelements. Another round of MAGMA gene property analysis
842  revealed a significant effect between the Ilium and pelvic inlet width, as well as between the
843  Acetabulum and subpubic angle, after FDR correction (Fig. S18, Table S21).

MAGMA with pelvic subelements RNA-Seq
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844
845  Fig. S17. MAGMA gene property analysis with pelvis subelements in different
846  developmental stages ATAC-Seq and image-derived phenotypes GWAS
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847
848  Fig. S18. MAGMA gene property analysis with pelvis subelements ATAC-Seq and image-

849  derived phenotypes GWAS

850
851  Phenotypic association of skeletal phenotypes with musculoskeletal disease
852 To examine correlations between our pelvis phenotypes with musculoskeletal disease,

853  musculoskeletal or connective tissue diseases related to the hip, knee, and back we obtained data
854  from UKB Chapter XIII (FID 41270) ICD-10 codes as well as self-reported pain phenotypes
855  (FID 6159) for the hip, knee and back. We then regressed the binary outcome of disease or

856  reported pain against pelvis phenotypes controlling for clinically relevant covariates that are

857  known to affect OA (74) including age, sex, diet, BMI, and other factors. A full list of variables
858  we controlled for are reported in Table S14. After running the regressions, we used Bonferroni
859  correction for significance at the level of the total number of disease/pain traits multiplied by the
860  total number of skeletal phenotypes.

861
862  Polygenic risk score (PRS) association of skeletal phenotypes with musculoskeletal disease
863 This analysis only utilized the ~370,000 white British individuals who were not included

864  in our imaging dataset for which GWAS was conducted. We generated PRS for each of the

865  generated traits with Bayesian regression and continuous shrinkage priors (47) using the

866  associated single nucleotide polymorphisms from HapMap3. We ran a logistic or linear

867  regression of the PRS on traits across all individuals, adjusting for weight, household income,
868  non-insulin-dependent diabetes mellitus (ICD-10 code: E11), depressive episode (ICD-10 code:
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869  F32), recurrent depressive disorder (ICD-10 code: F33), chronic ischaemic heart disease (ICD-10
870  code: 125), smoking status (FID 20116), and sleep duration (FID 1160). For female PRS
871  regression we also adjusted for the number of live births (FID 2734).

872
873  Genetic correlation of skeletal proportions with pregnancy phenotypes
874 We utilized cross-trait LD score regression

875  (https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation) for estimating genetic
876  correlations between each of our pelvis-related phenotypes and case-control pregnancy

877  phenotypes from the Finngen (https://www.finngen.fi/en/access_results) by using GWAS

878  summary statistics.

879

880

881  Supplementary Tables

882

883  Table S1 - Previous studies have attempted to test the obstetrical dilemma hypothesis.

884  This table contains the papers involved in the debate on the obstetrical dilemma.

885  Table S2 - GWAS population summary

886  This table contains summary data on the population subset used in our GWAS from the UKB.

887  Table S3 - Initial deep learning QC

888  This table contains the number of patients removed from each QC step before landmark

889  estimation.
890

891  Table S4 - Image filtering

892  This table contains the number of patients excluded at each step of quality control following
893  landmark estimation.

894  Table S5 - Human annotation vs model prediction

895  This table contains the error between human annotation and the first model prediction, as well as
896  the error between the first model prediction and the second model prediction.

897  Table S6 - Image pixel data

898  This table contains the number of full-body skeletal DXA images for each pixel aspect ratio in
899  the UKB.

900  Table S7 - Image scaling coefficient

901  This table contains the scaling factor estimated from the regression analysis, which is used to
902  convert pixels to centimeters.

903  Table S8 - 7 Pelvic phenotype values across 39413 individuals

904  This table contains a list of all generated IDPs.
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905  Table S9 - Pelvic phenotypes summary

906  This table contains the basic statistics of IDPs.
907
908  Table S10 - GCTA and LDSC heritability estimation

909  This table contains the heritability for each IDP as determined by GCTA.

910  Table S11 - Clumped independent SNPs and corresponding genes

911  This table contains output from PLINK --clump ranges command including lead SNP, p-value,
912 the number of kilobases in each clump, gene mapping for each clump range as well as whether
913  the single clump range genes are related to known mouse phenotypes and rare human disease.
914

915  Table S12 - ICD10 Codes

916  This table contains all ICD10 codes used in our analyses.

917  Table S13 - UKB phenotypes FID

918  This table contains the FID of each UKB trait used in our analyses.
919  Table S14 - Association analysis covariates

920  This table contains the list of covariates used in our regression analyses and the FID from the
921 UKB

922

923 Table S15 - Phenotypic association results

924 This table contains the results from the phenotypic association analysis.
925
926  Table S16 - PRS association results

927  This table contains the results from the PRS association analysis.
928
929  Table S17 - Female PRS association results

930  This table contains the results from the female PRS association analysis.
931  Table S18 - Female genetic correlation results

932 This table contains the results from the female genetic correlation analysis.
933  Table S19 - MAGMA with GTEx v8

934  This table contains the results from the MAGMA analysis with gene expression data from GTEx
935 8.

936  Table S20 - MAGMA analysis across pelvic subelements across different time points
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937  This table contains the results from the MAGMA analysis with gene expression data from
938  different parts of the pelvis across different development time points.

939  Table S21 - MAGMA analysis across pelvic subelements

940  This table contains the results from the MAGMA analysis with gene expression data from
941  different parts of the pelvis.
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