

1 **Dark exposure reduces high-frequency hearing loss in C57BL/6J mice**

2 Peter Jendrichovsky¹, Hey-Kyoung Lee^{2,3,4}, Patrick O. Kanold^{1,2,3}

3

4 ¹Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore,
5 USA.

6 ² Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, USA.

7 ³ Kavli NDI, Johns Hopkins University School of Medicine; Baltimore, USA.

8 ⁴ Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University; Baltimore, USA

9

10

11 **Corresponding author:**

12 Patrick O. Kanold,

13 Dept. of Biomedical Engineering

14 Johns Hopkins University

15 380 Miller Res. Bldg.

16 Baltimore, MD 21205 USA

17 e-mail: pkanold@jhu.edu

18 <https://orcid.org/0000-0002-7529-5435>

19

20 **Summary**

21 Plastic changes in the brain are primarily limited to early postnatal periods. Recovery of adult
22 brain plasticity is critical for the effective development of therapies. A brief (1-2 week) duration of
23 visual deprivation (dark exposure, DE) in adult mice can trigger functional plasticity of
24 thalamocortical and intracortical circuits in the primary auditory cortex suggesting improved sound
25 processing. We tested if DE enhances the ability of adult mice to detect sounds. We trained and
26 continuously evaluated the behavioral performance of mice in control and DE conditions using
27 automated home-cage training. Consistent with age-related peripheral hearing loss present in
28 C57BL/6J mice, we observed decreased performance for high-frequency sounds with age, which
29 was reduced by DE. In CBA mice with preserved peripheral hearing, we also found that DE
30 enhanced auditory performance in low and mid frequencies over time compared to the control.

31 **Introduction**

32 Plastic changes in the brain are primarily limited to early postnatal periods and have been mainly
33 studied within the same modality. Crossmodal plasticity refers to neural plasticity that allows
34 adaptation to the loss of a sensory modality. Sensory modality loss can occur during pathological
35 states of the peripheral sensory systems, such as loss of hair cells in the cochlea, resulting in
36 deafness, or damage of the eyes, resulting in blindness (1-4). Crossmodal plasticity is thought to
37 underlie the enhanced auditory abilities of the early- (1, 5-8) and late-blind (7, 9). Several circuit-
38 level plasticity changes have been observed in adult mice with temporary visual deprivation (dark
39 exposure, DE). DE in adult mice has profound effects on the primary auditory cortex, such as
40 strengthening of thalamocortical synapses (10), refinement of excitatory and inhibitory
41 intracortical circuits (11-13), and selective reduction of thalamic-reticular nucleus-mediated
42 inhibition of the auditory thalamus (14). These circuit changes correlate with changes in the
43 sound-evoked responses, such as reduced thresholds, increased gain, increased frequency
44 selectivity (10), and decorrelation of spatiotemporal population responses (15), which together
45 should lead to increased coding fidelity. We thus investigated if DE leads to improved auditory
46 ability.

47 To understand the effects of DE on auditory processing, we placed 48 C57BL/6J (C57)
48 and 48 CBA/CaJ (CBA) mice in home cages fitted with an automated auditory behavior system
49 ("ToneBox") that allowed continuous long-term observation (Fig. 1A) (16, 17). To test the effects
50 of DE, we take advantage of both the C57BL/6J mouse strain that develops progressive hearing
51 loss with age as well as CBA mice that retain normal hearing (18-24). Using the C57BL/6J strain
52 enables us to test the effects of DE on hearing frequency bands with normal (low and mid
53 frequencies) and reduced complement of hair cells (high-frequencies).

54 Once placed in the ToneBox, mice received a water reward for detecting tones from the
55 ToneBox speaker. After the tone was presented, mice had a reward window to lick the ToneBox
56 water spout. Licking was detected with a capacitive sensor. By placing multiple animals in the

57 cage, we avoided the effects of social isolation. Mice lived and performed the task in the cage
58 with no interaction with humans for the duration of the experiment, except for biweekly bedding
59 change. In the ToneBox, we continuously presented 88 different combinations of different sound
60 frequencies (11 total tones) and sound amplitudes (8 total amplitudes), which enabled us to
61 construct long-term “performance audiograms.” Figure 1B shows an example of a typical week-
62 long timeline of hit activity showing, as expected, that mice were active in the dark cycle.

63

64 **Results**

65 DE reduces the decline in performance in the high-frequency band of C57BL/6J mice.

66 Mice were 63 days old at the start of the experiment. We divided the mice of both
67 C57BL/6J and CBA lines into two groups respectively: Control (CT) and DE (8 ToneBoxes, 24
68 mice per group) (Fig. 1C). Mice were placed into the ToneBoxes for an initial 14-day habituation
69 and shaping phase to stabilize their performance (Fig. 1D). We divided the following 70-day-long
70 experiment timeline into five periods. Period I was 7 day-long while Periods II, III, IV, and V were
71 14 day-long. Periods I, III, and V were under a typical 12-hour light/dark cycle for both
72 experimental groups. In periods II and IV, the DE group was hermetically sealed from the room
73 light, while the CT group remained in the normal Light/Dark cycle. Normal circadian rhythm was
74 present throughout the experiment, including DE periods. Example recordings of hit rates from
75 the complete 77-day-long timeline are shown for all four groups: the C57BL/6J CT, CBA CT,
76 C57BL/6J DE, and CBA DE groups (Fig. S1).

77 In CT C57BL/6J ToneBoxes, we noticed that the hourly hit rates show a decrease in
78 performance for the highest frequency band (40kHz) with increasing age (Fig. 1E). We performed
79 a spot test on day 70 of the 40kHz band against performance from all other frequency bands and
80 the difference was statistically significant (*t*-test, $p = 0.0273$). This decreased performance is
81 consistent with the development of presbycusis in these mice due to peripheral hearing loss (18-
82 20). Based on ABR measurements (18-20), the onset of hearing loss in C57BL/6J mice in the

83 high frequencies is approximately at the start of Period II (Postnatal day 84, P84), consistent with
84 the decreased performance we observed. In contrast, DE C57BL/6J ToneBoxes did not show
85 decreased performance at high frequencies and only showed a slight decline later in the
86 experimental timeline (Fig. 1F). This delay in decline will be described below in detail. At day 70
87 performance was similar between groups (*t-test*, $p >> 0.05$). Consistent with preserved peripheral
88 hearing in CBA mice, the 40kHz band did not show any decline with age, and groups performed
89 similarly at day 70 (*t-test*, $p >> 0.05$) (Fig. 1G and 1H). These observations suggest that the DE
90 periods in visually deprived animals reduced the decline of the processing of high-frequency
91 sounds in C57BL/6J mice.

92

93 DE increases tone detection performance in CBA and C57BL/6J mice.

94 To first identify how animal performance varied with frequency and amplitude and to
95 investigate whether DE affected the frequency and amplitude (FxA)-dependent hit rate, we
96 calculated the ratio of hit rates between the first vs. last period hit rates for each FxA bin. We first
97 plotted these heatmaps for C57BL/6J CT and DE groups (Fig. 2A). In the CT C57BL/6J group,
98 the hit rates decreased for the whole high-frequency band across sound amplitudes (Fig. 2A,
99 black arrows, 32 & 40kHz all SPL levels). This decline in performance occurs in a similar
100 frequency band as presbycusis reported in C57BL/6J mice of this age (19). In contrast, such
101 decreased performance was not present in the C57BL/6J DE group. These results suggest that
102 DE attenuates the high-frequency-specific decline of detection performance in C57BL/6J mice.

103 We next investigated if there was an overall decreased performance in CT C57BL/6J mice
104 compared to DE mice. We calculated the total hit rates by merging all FxA bins in a given period,
105 which gave us a rough measure of change in overall tone detection performance, independent of
106 the tested stimulus (Fig. 2B, left). The changes in total hit rates in CT and DE C57BL/6J mice
107 were similar (CT: $-0.53\% \pm 10.06\%$ SEM, DE: $+2.91\% \pm 2.19\%$ SEM, *t-test*, $p = 0.7428$). This
108 indicates that the overall performance of CT and DE mice was similar. Given that hit rates

109 decreased for high frequencies in CT mice, this suggests that CT mice have relatively more hits
110 at lower frequencies. In contrast, in C57BL/6J DE mice high-frequency performance is preserved.

111 Together, these results suggest CT C57BL/6J mice show decreased hit rates for high
112 frequencies and an increased hit rate at lower frequencies while in DE C57BL/6J mice high-
113 frequency performance is preserved.

114 We next analyzed the rate-of-change audiograms for the CBA CT and DE groups (Fig.
115 2C). In contrast to C57BL/6J mice CT CBA mice do not show decreased performance at high
116 frequencies. However, after DE we observed a widespread increase in hit rates (Fig. 2C). In the
117 CBA DE group hit rates increased by $+9.00\% \pm 4.60\%$ SEM while in the CBA CT group hit rates
118 decreased by $-4.15\% \pm 6.49\%$ (Fig. 2D, left; *t-test*, $p = 0.1205$). While this difference is not
119 significant when summed over the whole frequency spectrum, qualitative inspection suggests that
120 the frequency band-specific performance in low and mid frequencies is enhanced by DE.

121 To examine band-specific performance for both C57BL/6J and CBA groups in detail we
122 analyzed the relationship between sound amplitude and hit rates in each frequency band. All trials
123 for the C57BL/6J CT group were first binned based on the sound amplitude parameter, and the
124 global correlation coefficient was calculated to be 0.9679 ± 0.0058 SEM, while the remaining three
125 groups followed a similar pattern. We thus used linear regression analysis to test whether the
126 slope (gain, abbr. SL) of this relationship and/or baseline performance (intercept, abbr. IC) is
127 changed after DE for C57BL/6J mice (Fig. 2E) and CBA mice (Fig. 2F). We used linear regression
128 model fitting to estimate the parameters of the linear fit for each frequency band and each group.
129 These linear fit estimates, together with 95% confidence intervals (CI) are shown as lines in
130 respective colors (fit) and 95% CI as shaded areas for plots in both subpanels. To determine if
131 these model estimates differ, the difference between the two groups was also fitted and tested for
132 the significance of parameters using a Multiple comparison correction (Bejnamini & Hochberg
133 false discovery rate procedure (25)). In Fig. 2E and 2F, we plot results for 8kHz and 40kHz bands,
134 and the statistics for the remaining frequency bands are given in Table S1. First, this analysis

135 confirms our visual observation of a major decline in the 40kHz band for the C57BL/6J group in
136 Fig. 2A where IC of CT and DE fits differed significantly (F -test, $p = 0.0027$). Secondly, the
137 frequency band-specific comparisons for CBA mice show differences of the intercept parameter
138 between the two groups for several low- and mid-frequency bands (4kHz: $p = 0.0115$; 6.3kHz: p
139 = 0.0014; 8kHz shown in Fig. 3B: $p = 0.0079$; 10kHz: $p = 0.0005$; 12.5kHz: $p = 0.0107$; 16kHz: p
140 = 0.0071; 25.0kHz: $p = 0.0107$; all other n.s. bands in Table S1). These rate-of-change
141 audiograms suggest that DE increased the total period hit rate across a broad frequency range in
142 CBA mice.

143 Together, these results suggest that DE increases performance on an auditory detection
144 task in both CBA and C57BL/6J mice. However, the details in which DE benefits audition seem
145 to differ between the two models: We hypothesize that in CBA mice with preserved hearing DE
146 facilitates the improvement of tone detections across frequency ranges, while in C57BL/6J DE
147 allows compensation to attenuate the age-dependent high-frequency hearing loss.

148

149 DE delays the effects of presbycusis in C57BL/6J mice by 12 days.

150 Our results suggest that C57BL/6J DE mice have higher behavioral performance at high
151 sound frequencies compared to CT at the end of our experimental time window. We next aimed
152 to identify the detailed behavioral time courses of these performance differences. We thus
153 analyzed the changes in the sound-frequency-dependent performance in the CT and DE groups
154 over time. For each ToneBox we calculated the normalized hit rate (NHR) for each stimulus
155 (frequency & amplitude, FxA) condition in each hourly time bin for the entire 63 days of the
156 experiment. We normalized the stimulus-specific (FxA) hit rates to the total hit rate of a given
157 ToneBox for the same period across all conditions, meaning that the ToneBox with the normalized
158 hit rate of 1 for a given FxA band had the same hit rate as all the FxA bands combined. This
159 normalization enabled us to investigate the distribution of hit preference and ability across the
160 sound spectrum. To minimize the effects of the 24-hour circadian rhythm, we averaged these

161 normalized hit rates for both the CT and DE groups with a moving 168-hour window. NHR activity
162 for C57BL/6J mice is shown for 4, 8, and 40kHz bands (Fig. 3A) and all remaining frequency
163 bands (Fig. S2A). In C57BL/6J CT cages, a drop of the NHR for the 40kHz band is present starting
164 around Day 40. In the C57BL/6J DE group, a much weaker drop is present at much older ages
165 (Fig. 3A, right). To better define this difference in the onsets of performance decline for CT and
166 DE groups, we defined the onset of decline as the first day when mean performance drops two
167 standard deviations below baseline performance from period I. Respective days are labeled with
168 colored arrows on the x-axis. This difference turned out to be 12 days (Day 45 vs 57). For the
169 4kHz and 8kHz bands, no decreases in NHR were observed. Thus, DE delays the development
170 of the behavioral effects of high-frequency hearing loss in C57BL/6J mice. Notably, significant
171 differences in the 8kHz band were observed during period one around days 14-20. This was likely
172 due to group fluctuations in the shaping phase and these differences ceased after day 20. Lastly,
173 there was an increased preference for 4 and 6.3kHz bands in the CT group (Fig. S2) that occurred
174 at the same time as the decline of the 40kHz band of this group. As discussed above, these
175 increases were likely the compensation for lost ability in the 40kHz band.

176 In contrast to C57BL/6J mice, CBA mice do not suffer from any systemic peripheral
177 hearing loss at this age. Consistent with this, our analysis shows that CBA CT and DE mice do
178 not show differences in NHR in the 4, 8, and 40kHz bands (Fig. 3B) and all other frequencies (Fig.
179 S2B). These results confirm that frequency preferences in CBA mice did not change with DE as
180 was the case in the C57BL/6J group. Thus, the increase in absolute hit rates we observe in CBA
181 mice (Fig. 2C, D) is relatively widespread across the frequency spectrum.

182 Together, these results support our hypothesis that DE selectively increases the relative
183 performance of C57BL/6J mice at high frequencies while providing a more general benefit across
184 a wide range of frequency spectrum in CBA mice.

185

186 The effect of DE on performance is present across sound amplitudes.

187 So far, we have lumped the performance at all sound amplitudes. We next evaluated if the
188 increased performance of C57BL/6J DE mice was present at all sound amplitudes. We thus
189 computed performance audiograms. We averaged cage NHRs for each period and plotted
190 smoothed heatmaps for Period I and V of the C57BL/6J CT and DE groups (Fig. 4A; see Fig. S3
191 for data from all periods). The interquartile range (IQR) contours for high-frequency bands differ
192 between C57BL/6J CT and C57BL/6J DE, and the CT group shows a shift of the IQR contours
193 toward lower frequencies. To evaluate this further, we plotted the ratios of C57BL/6J DE vs. CT
194 NHR (Fig. 4A bottom). The results from the C57BL/6J group indicate that DE effects are present
195 across high-frequency bands (32 and 40kHz). A similar analysis from the CBA group shows very
196 stable audiograms where the contours of the audiograms of the NHRs are nearly identical for
197 Periods I and V (Fig 4B; see Fig. S4 for data from all periods). This is also visible in the ratios of
198 CBA DE vs. CBA CT NHR (Fig. 4B bottom) where only minor differences are observed. We will
199 next quantify these differences in detail.

200 DE enhancement across performance levels suggested that DE had effects across tone
201 amplitudes. We thus next investigated the DE enhancement effect in the amplitude domain by
202 plotting the NHRs of the FxA bands along the amplitude dimension for two frequency bands of
203 the C57BL/6J group from the period I and V: 8 and 40kHz, comparing the relationship between
204 sound amplitude and NHR with our linear regression model as previously done on raw hit rate
205 ratios in Fig. 2E and F (Fig. 5A; see Fig. S5A for data from all periods and frequencies).

206 As can be seen from Fig. S5A and Table S1, the significance of the difference between
207 CT and DE groups for C57BL/6J mice is restricted to only 4 cases, 8kHz band in Period I that
208 likely originated in group-wide fluctuations of performance in late days of the training (*F*-test,
209 $p=0.0465$), 40kHz band for Period IV and V that signifies the rescuing effects of DE on 40kHz
210 band (*F*-test, P.IV: $p = 0.0003$; P.V: $p < 0.0001$, and, lastly, 4kHz band in Period V which is
211 compensatory effect of lost performance in the 40kHz band during the same period. For the last
212 case, the slope parameter was also significant, meaning that CT mice increased their 4kHz band

213 performance with increased gain compared to the DE group (F-test, IC: $p = 0.0082$; SL: $p =$
214 0.0117). In contrast, the CBA group revealed no significant differences between the two models
215 (Fig. 5B and Fig. S5) for any frequency band or period (See Table S1).

216 Together, these analyses suggest that DE-induced auditory behavioral enhancement
217 seen in the C57BL/6J group leads to decreased thresholds across the high-frequency spectrum
218 after the onset of hearing loss.

219

220 The effect of DE emerges gradually.

221 We next investigated in detail the time course of the effects of DE. We thus generated NHR across
222 the experimental periods for all stimulus combinations for both the C57BL/6J CT, C57BL/6J DE,
223 CBA CT, and CBA DE groups and consequently plotted the ratios of CT vs. DE for both the
224 C57BL/6J group (Fig. 6A) and CBA group (Fig. 6B). This analysis shows that the onset of DE
225 enhancement for the C57BL/6J group emerged around day 40 for the softest high-frequency
226 sounds and that improvements in the 32kHz bin emerged at around day 60. Given that day 40
227 was between our first and second DE periods, these data suggest that the first DE period could
228 already have a long-lasting effect on tone detection performance.

229 To test if a single period of DE could have a preventative effect, we trained an additional
230 cohort of C57BL/6J animals starting at P84 up to P140 (4 cages). Then, we performed two weeks
231 of DE timed to match Period IV in a postnatal reference. A single period of DE also resulted in
232 preventing the decreased performance in the 40kHz band (Fig. S6). Thus, a single period of DE
233 was able to reduce the effect of presbycusis.

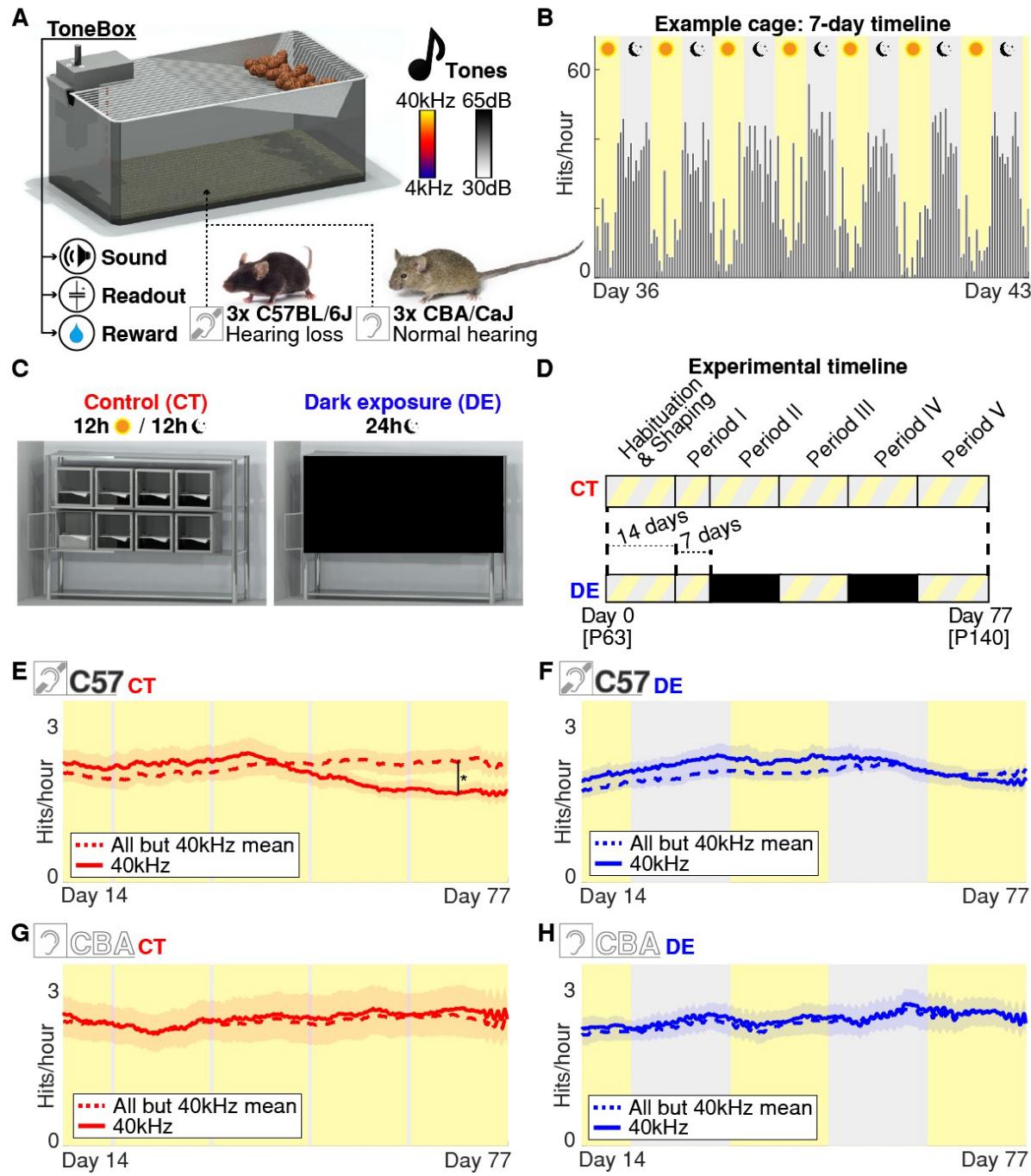
234

235 **Discussion**

236 Our results show that temporary visual deprivation via DE in adults enhances the behavioral
237 performance of C57BL/6J mice in tone detection tasks in high-frequency bands where the effects
238 of presbycusis are usually evident. Additionally, we observed broad increases in the performance

239 of low and mid frequencies in CBA mice that do not suffer from any systemic hearing loss at this
240 age.

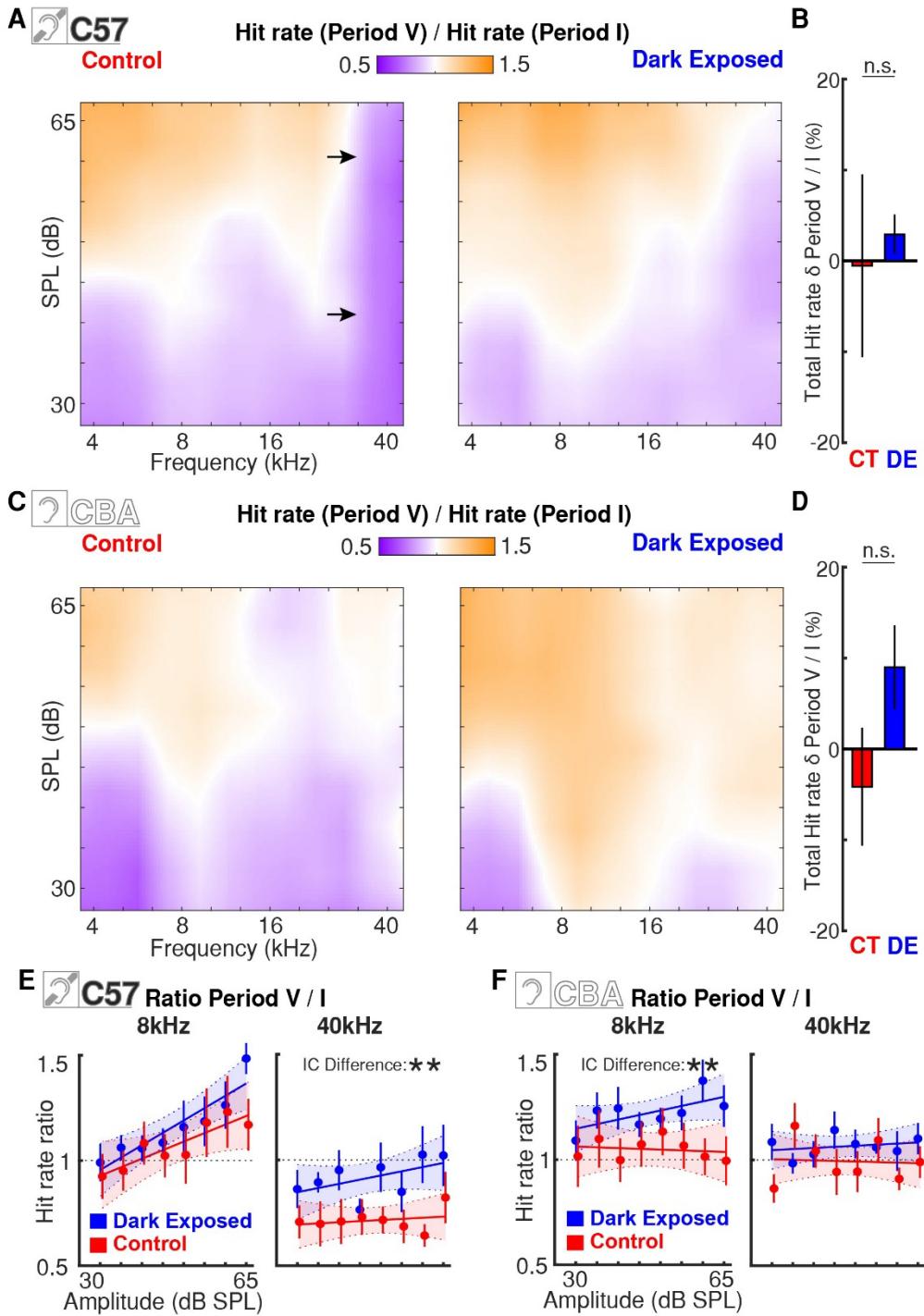
241 Our automated design allowed us to gather hundreds of thousands of trials per cage.
242 Because of the minimalistic impact of the experiment design on mice's daily routine, we eliminated
243 several confounds commonly appearing in rodent behavior studies, such as repeated handling of
244 animals (26). The hearing of both C57BL/6J and CBA mouse lines was previously studied
245 extensively by several methods, most notably auditory brainstem response (ABRs) (19, 20, 22).
246 Threshold intensity shifts caused by presbycusis in C57BL/6J mice were observed as early as
247 P30 (27). While we did not measure the ABRs of individual mice, our experimental design
248 minimized variability. First, we used large cohorts of animals enabled by our automatic system.
249 Second, all animals were subject to the same developmental conditions until they were distributed
250 to two experimental groups at the same age (P63) before the start of the experiment. Third,
251 animals were group-housed in the ToneBox, thus each ToneBox recording represents a
252 composite of the performances of the three individual mice within a given cage. This within-cage
253 averaging further reduced the effect of the population variability on the hearing capabilities of
254 individual animals.


255 While we here use a tone-detection task, the circuit and functional changes of DE are
256 widespread and include the sharpening of tuning curves (10). We predict that DE affects a variety
257 of auditory tasks. Indeed, training on auditory temporal discrimination tasks can also improve
258 spectral tuning (28), suggesting that mechanisms engaged by training are affecting general sound
259 processing. Given that DE has an effect on thalamic (14), thalamocortical (10), and intracortical
260 (11-13) auditory circuits we expect that performance in a variety of auditory tasks is improved.
261 Our data show an enhancement of the performance at high frequencies in C57BL/6J mice. This
262 enhancement is consistent with the increased number of neurons responsive to high frequencies
263 after DE in C57BL/6J mice (15).

264 C57BL/6J mice have early onset of presbycusis – gradual age-related hearing loss,
265 evident in ABRs, otoacoustic emissions, and startle behavior for the high-frequency range starting
266 around 10 weeks of age (18-20). When mice reached an age corresponding to when high-
267 frequency ABR hearing threshold shifts were evident in this strain (19), we observed a decline in
268 performance in our operant conditioning task in the high-frequency band. We noted that Control
269 mice show an increase in the relative amount of hits to low frequencies, indicating that they shift
270 their behavior to relatively “easier” stimuli to keep their water consumption constant. In contrast,
271 DE mice showed better performance at high frequencies. What mechanism could underlie this
272 improved performance? Hearing loss in C57BL/6J is caused by degeneration of the cochlea and
273 this degeneration starts at high frequencies (22-24). Such degeneration results in reduced
274 ascending sound-evoked activity and subsequently reduced activation of the auditory cortex for
275 high-frequency stimuli (29). Mechanistically, our behavioral data could be explained by the circuit
276 level plasticity we reported in previous studies. DE induces an increase in the strength of auditory
277 thalamocortical synapses (10), which can counteract the reduced afferent drive which leads to
278 enhanced sensitivity and increased responsiveness to sound stimuli in the thalamocortical
279 recipient layers of the auditory cortex (10). Consistent with the increase in thalamocortical
280 synaptic gain, we observed that DE leads to a steep increase in firing rates with changes in sound
281 amplitudes (10). Intracortical circuits and thalamic circuits can alter gain and adult DE has been
282 shown to affect both. After DE, ascending and recurrent intracortical circuits change synaptic
283 strength (11-13), and refine their connections, leading to a more efficient information transmission
284 (12). In addition to changes on the cortical and thalamocortical level, DE reduces inhibition from
285 the thalamic reticular nucleus to the auditory thalamus, enhancing the ascending transmission of
286 sound information through the thalamus (14). DE could also have effects on spectral contrast
287 tuning sensitivity (30). As previously shown, DE induces decorrelation of the sound-evoked
288 population activity in A1 which can lead to increased encoding fidelity of represented stimuli in
289 the cortex (15, 31). Together, all these circuit changes, both at the thalamic and cortical levels,

290 enhance the transmission of the weakened high-frequency ascending signals to the auditory
291 cortex and lead to an increased representation of high-frequency tones in the auditory cortex after
292 DE (15). This potentiation of the feedforward circuit and refinement of the intracortical circuit could
293 allow better detection and sharper tuning needed to allow the processing of reduced auditory
294 signals arising from age-related peripheral hearing loss. We reason that these extensive circuit
295 changes compensate for decreased ascending drive and lead to the observed reduced behavioral
296 performance declines after DE.

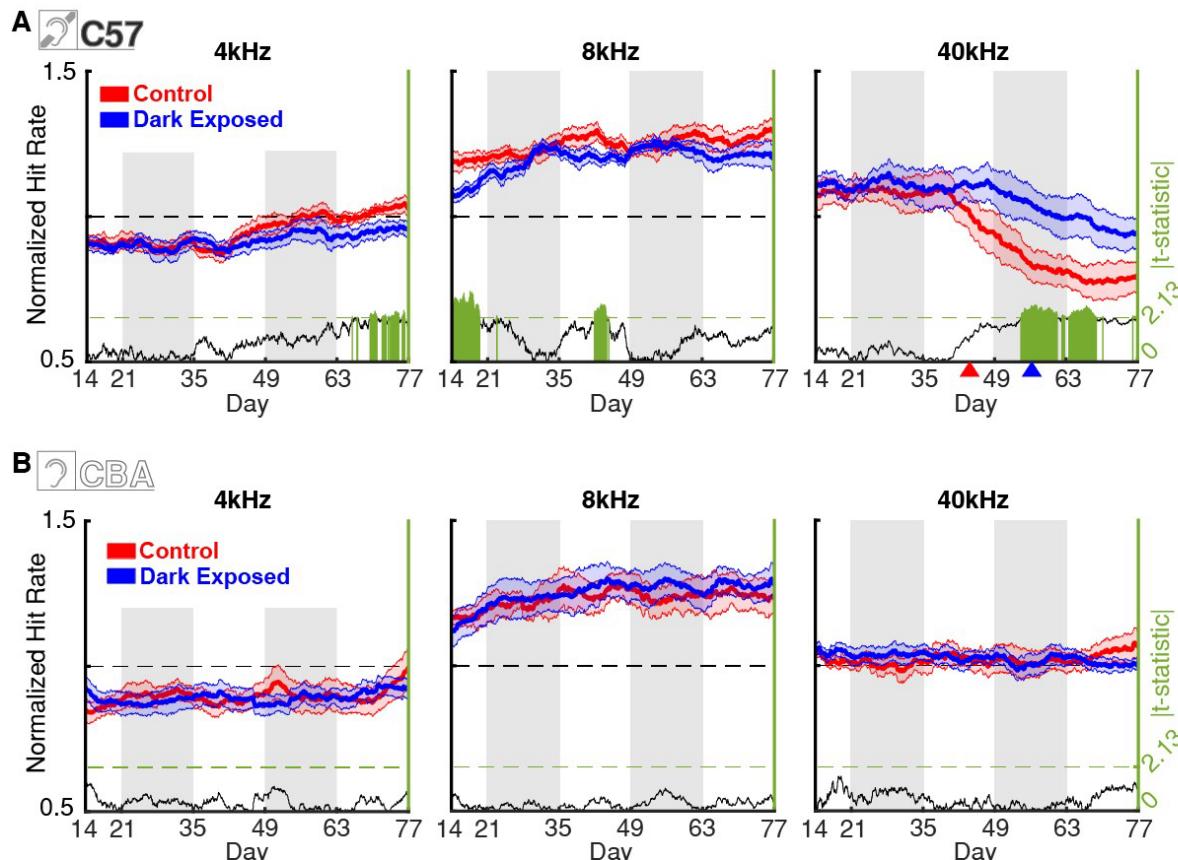
297 Studies investigating early and life-long visual deprivations have shown various functional
298 and circuit changes that can give rise to improved auditory performance (32-34). We find that DE
299 can also induce such changes in adult animals. The changes we here see with DE improve
300 auditory behavior in a model of presbycusis is consistent with the idea that the behavioral deficits
301 in presbycusis are not solely due to loss of inner hair cells in the cochlea but also due to changes
302 in the brain. Indeed, the aging auditory cortex in CBA mice that do not suffer from peripheral
303 hearing loss also shows altered sound-evoked activity, such as increased correlations and
304 reduced ability to control activity correlations (35, 36). Our observation of increased hit rates in
305 DE CBA mice across low- and mid-frequencies is consistent with these findings. In conclusion,
306 this study suggests that the changes in central auditory processing lead to the increased ability
307 of animals to perform auditory tasks after DE. Furthermore, our data collectively suggest that DE
308 could be a simple method to reduce some of the effects of central aging and enhance the efficacy
309 of auditory performance with cochlear implants.


310

313 **Figure 1: DE reduces loss of detection performance for high-frequency tones.**

314 **(A)** Automated home-cage training system with ToneBox. Tones are randomly presented from 4-
 315 40kHz and 30-65dB amplitude. Three animals were placed in each training cage, either C57BL/6J
 316 or CBA mice. These groups are labeled with a crossed-out ear pictogram for the C57BL/6J group
 317 and a non-crossed-out ear pictogram to label the CBA group. This notation is used for all figures.

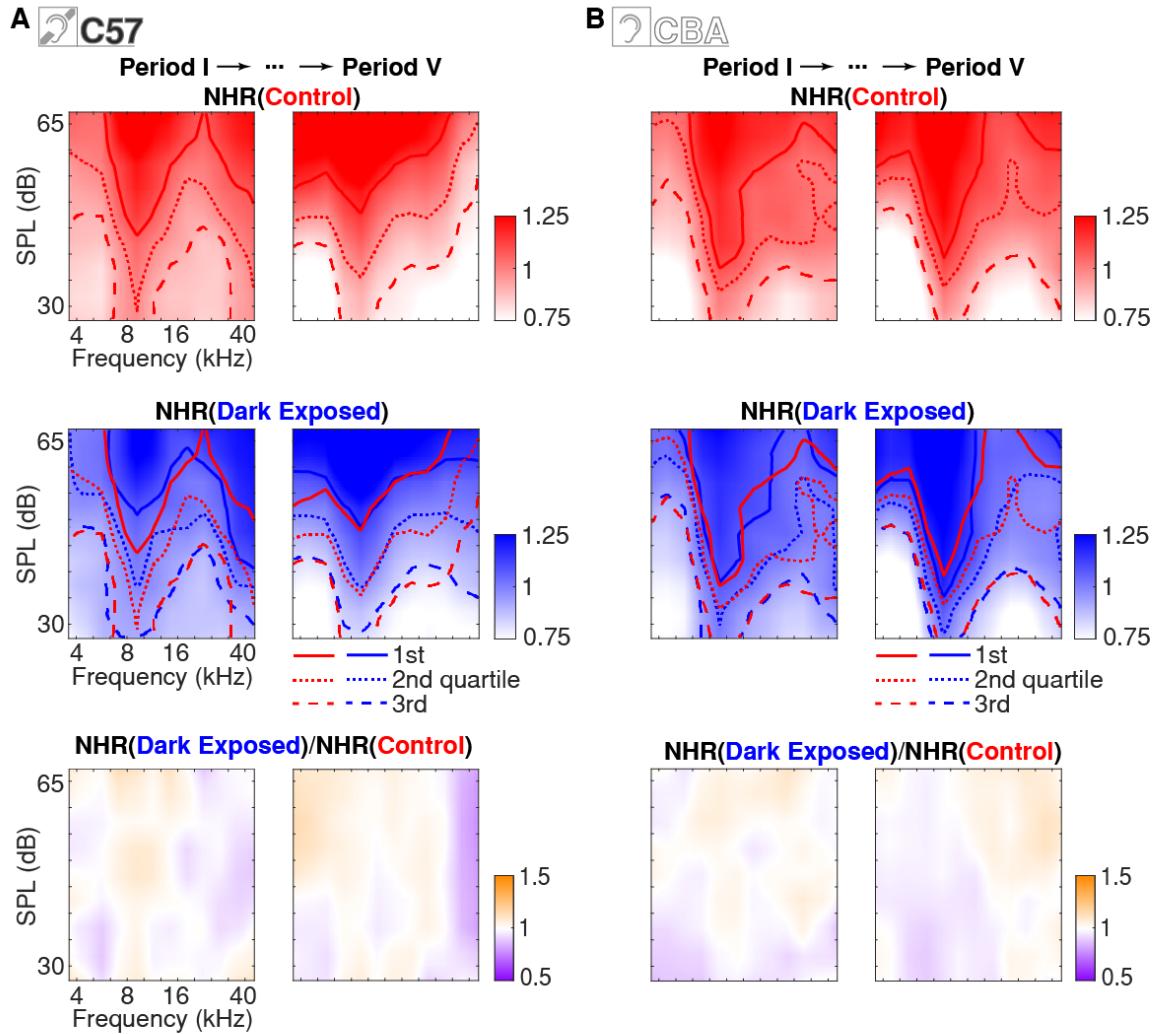
318 **(B)** Example performance during one week. Gray bars indicate the hit rate within each hourly time
319 bin. **(C)** 8 ToneBoxes under control 12h/12h light/dark conditions or during DE. **(D)** Experimental
320 timeline. DE cohort receives two 2-week DE periods (II & IV). Animals begin the Habituation and
321 Shaping phase at postnatal day 63 (P63). **(E, F)** Moving average hit rates for 40kHz or all other
322 tones for C57BL/6J CT and DE groups (N=8 for both). The black line in (E) on day 70 shows the
323 difference between the two observed means and this difference is statistically significant (*t*-test,
324 $p < 0.05$). Data averaged over all sound amplitude levels. **(G, H)** Same as in (E, F) but for CBA
325 CT and DE groups (N=8 for both).



326

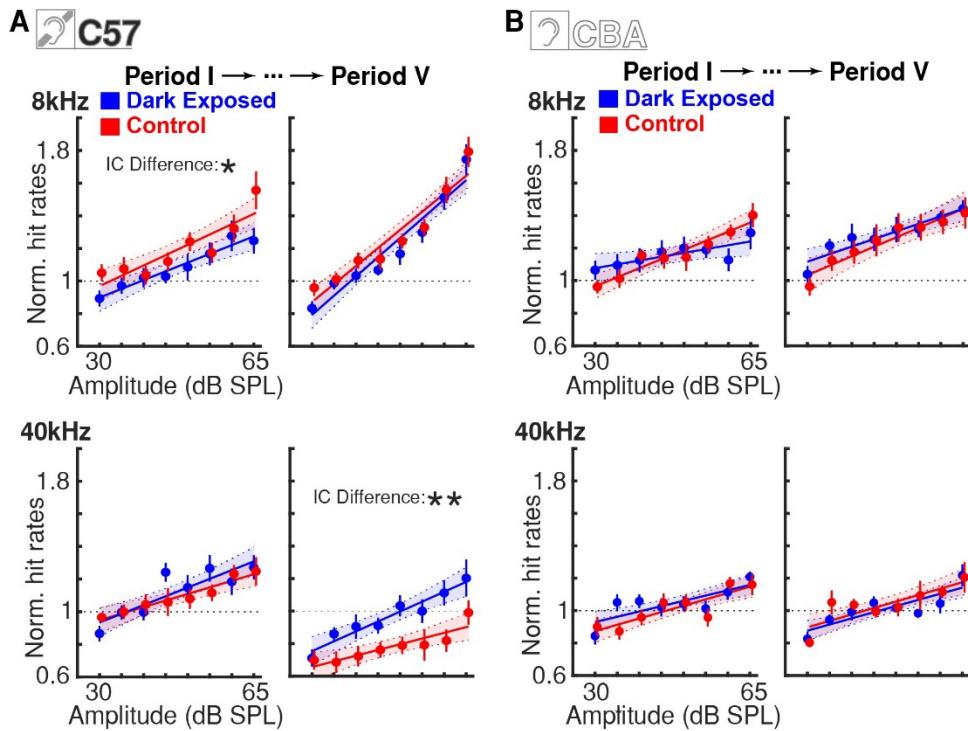
327 **Figure 2: DE causes broad increases in performance in CBA and C57BL/6J mice.**

328 **(A)** Rate-of-change audiograms for the CT (Left) and DE (Right) C57BL/6J groups. Black arrows
 329 indicate the area of high-frequency band performance which significantly deteriorated throughout
 330 the experiment. **(B)** Bar plot showing the average change of total period hit rates between periods
 331 I and V. Red C57BL/6J CT, Blue DE C57BL/6J group. Black lines indicate SEM. 'n.s.', '*' indicate
 332 statistical significance (*t*-test, non-significant, $p < 0.05$ respectively). **(C)** Rate-of-change


333 audiograms for the CT (Left) and DE (Right) CBA groups. **(D)** Same as in B, but for CBA CT and
334 CBA DE groups. **(E)** Scatter points show hit rate ratios for 8kHz and 40kHz as a function of
335 amplitude in the C57BL/6J CT (red) and DE (blue) groups between Periods I and V. Vertical lines
336 show SEM. Scatter points are overlapped with linear regression model fit in matching colors.
337 Shaded areas are 95% confidence intervals of the fit. Intercept (IC) or slope (SL) Difference
338 appears if the *p*-value of the *F*-test showed significance for either parameter of the group
339 difference linear fit model (*F*-test, Benjamini & Hochberg false discovery rate procedure applied.
340 Does not appear for non-significant, * for *p* < 0.05, & ** for *p* < 0.01). Dashed black horizontal
341 lines outline an NHR level of 1. Dashed black horizontal lines outline hit rate ratio 1 (Where mean
342 performance in both periods was the same) **(F)** Same as in (E) but for CBA CT and DE groups.

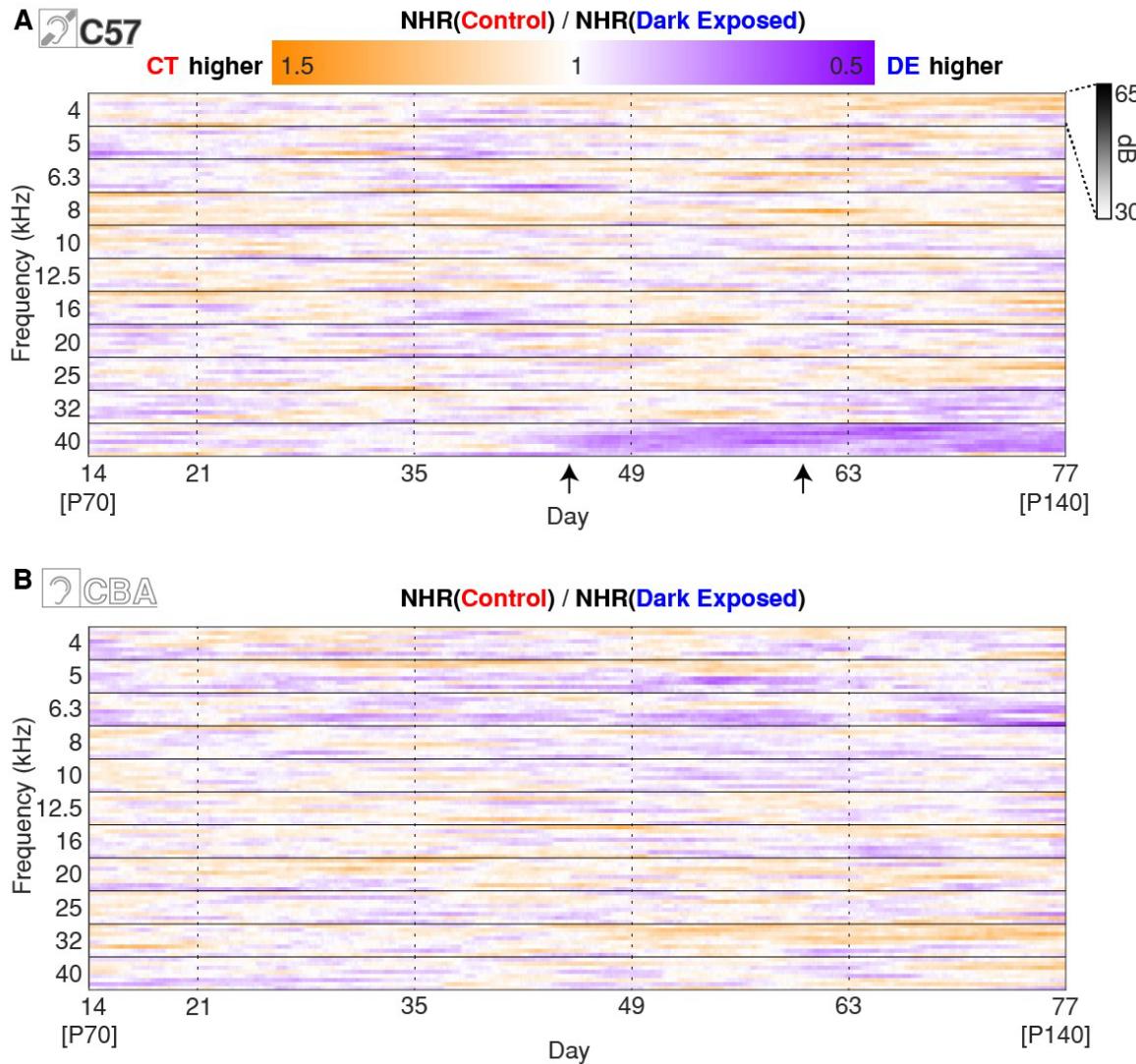
343

344 **Figure 3: Rescuing effects of DE emerge in Period 3 of the C57BL/6J group.**


345 **(A)** (Left axis) Normalized hit rates for 4kHz, 8kHz, and 40kHz tones for CT C57BL/6J (red) and
346 DE C57BL/6J (blue) ToneBoxes. Data averaged over all SPL levels. The shaded error bar
347 represents the standard error of the mean. Red and blue arrowheads in the right panel for 40kHz
348 mark the point in the timeline (days 45 and 57) where mean NHR deviated from the baseline by
349 two standard deviations for CT and DE groups respectively. (Right axis) The absolute value of t -
350 statistic from a two-sample t -test, if the t -test was performed at a given point in time. Green bars
351 show data points of statistical significance (t -test, $p < 0.05$). **(B)** Same as in (A), but for the CBA
352 CT and DE groups.
353

354

355 **Figure 4: Frequency-amplitude-dependent performance is not altered by DE in CBA mice.**
356 **(A)** Normalized hit rate audiograms for all stimulus conditions for periods I (left) and V (right) of
357 the C57BL/6J CT group (upper row) and C57BL/6J DE group (middle row). Dashed lines indicate
358 quartiles of smoothed NHR. Red IQR lines for the DE group are plotted as CT reference. (lower
359 row) The ratio of normalized hit rates between CT and DE C57BL/6J. **(B)** Same as in (A) but for
360 the CBA CT and DE groups.


361

362

363 **Figure 5: DE performance increases are multiplicative across levels.**

364 **(A)** Scatter points show normalized hit rates for 8kHz and 40kHz as a function of amplitude in the
365 C57BL/6J CT (red) and DE (blue) group during Period I (left column) and Period V (right column).
366 Vertical lines show SEM. Scatter points are overlapped with linear regression model fit in
367 matching colors. Shaded areas are 95% confidence intervals of the fit. Intercept (IC) or slope (SL)
368 Difference appears if the p -value of the F -test showed significance for either parameter of the
369 group difference linear fit model (F -test, Benjamini & Hochberg false discovery rate procedure
370 applied. Does not appear for non-significant, * for $p < 0.05$, & ** for $p < 0.01$). Dashed black
371 horizontal lines outline an NHR level of 1. **(B)** Same as in (A) but for CBA CT and DE groups.

372

373 **Figure 6: DE performance for quietest high-frequency tones increases after the first DE**
374 **period.**

375 **(A)** The ratio of hit rates between CT and DE for all stimulus combinations of the C57BL/6J group.
376 Arrows: Differences for 40kHz emerge after day 40, while differences for 32kHz emerge around
377 day 65. Dashed vertical lines mark the individual periods.
378 **(B)** Same as in (A) but for the CBA group.

379 **References**

- 380 1. D. H. Ashmead *et al.*, Spatial hearing in children with visual disabilities. *Perception* **27**,
381 105-122 (1998).
- 382 2. C. J. Sabourin, Y. Merrikhi, S. G. Lomber, Do blind people hear better? *Trends Cogn Sci*
383 **26**, 999-1012 (2022).
- 384 3. A. K. Singh, F. Phillips, L. B. Merabet, P. Sinha, Why Does the Cortex Reorganize after
385 Sensory Loss? *Trends Cogn Sci* **22**, 569-582 (2018).
- 386 4. M. Teichert, J. Bolz, How Senses Work Together: Cross-Modal Interactions between
387 Primary Sensory Cortices. *Neural Plast* **2018**, 5380921 (2018).
- 388 5. A. Dufour, Y. Gerard, Improved auditory spatial sensitivity in near-sighted subjects. *Brain*
389 *Res Cogn Brain Res* **10**, 159-165 (2000).
- 390 6. N. Lessard, M. Pare, F. Lepore, M. Lassonde, Early-blind human subjects localize sound
391 sources better than sighted subjects. *Nature* **395**, 278-280 (1998).
- 392 7. P. Voss *et al.*, Early- and late-onset blind individuals show supra-normal auditory abilities
393 in far-space. *Curr Biol* **14**, 1734-1738 (2004).
- 394 8. F. Gougoux *et al.*, Neuropsychology: pitch discrimination in the early blind. *Nature* **430**,
395 309 (2004).
- 396 9. C. Holig, J. Focker, A. Best, B. Roder, C. Buchel, Crossmodal plasticity in the fusiform
397 gyrus of late blind individuals during voice recognition. *Neuroimage* **103**, 374-382 (2014).
- 398 10. E. Petrus *et al.*, Crossmodal induction of thalamocortical potentiation leads to enhanced
399 information processing in the auditory cortex. *Neuron* **81**, 664-673 (2014).
- 400 11. E. Petrus *et al.*, Vision loss shifts the balance of feedforward and intracortical circuits in
401 opposite directions in mouse primary auditory and visual cortices. *J Neurosci* **35**, 8790-
402 8801 (2015).
- 403 12. X. Meng, J. P. Kao, H. K. Lee, P. O. Kanold, Visual Deprivation Causes Refinement of
404 Intracortical Circuits in the Auditory Cortex. *Cell Rep* **12**, 955-964 (2015).
- 405 13. X. Meng, J. P. Kao, H. K. Lee, P. O. Kanold, Intracortical Circuits in Thalamorecipient
406 Layers of Auditory Cortex Refine after Visual Deprivation. *eNeuro* **4** (2017).
- 407 14. J. L. Whitt *et al.*, Visual Deprivation Selectively Reduces Thalamic Reticular Nucleus-
408 Mediated Inhibition of the Auditory Thalamus in Adults. *J Neurosci* **42**, 7921-7930
409 (2022).
- 410 15. K. Solarana, J. Liu, Z. Bowen, H. K. Lee, P. O. Kanold, Temporary Visual Deprivation
411 Causes Decorrelation of Spatiotemporal Population Responses in Adult Mouse Auditory
412 Cortex. *eNeuro* **6** (2019).
- 413 16. N. A. Francis, K. Bohlke, P. O. Kanold, Automated Behavioral Experiments in Mice
414 Reveal Periodic Cycles of Task Engagement within Circadian Rhythms. *eNeuro* **6**
415 (2019).
- 416 17. N. A. Francis, P. O. Kanold, Automated Operant Conditioning in the Mouse Home Cage.
417 *Frontiers in neural circuits* **11**, 10 (2017).
- 418 18. K. Parham, Distortion product otoacoustic emissions in the C57BL/6J mouse model of
419 age-related hearing loss. *Hear Res* **112**, 216-234 (1997).
- 420 19. J. R. Ison, P. D. Allen, W. E. O'Neill, Age-related hearing loss in C57BL/6J mice has
421 both frequency-specific and non-frequency-specific components that produce a
422 hyperacusis-like exaggeration of the acoustic startle reflex. *J Assoc Res Otolaryngol* **8**,
423 539-550 (2007).
- 424 20. Q. Zhang *et al.*, Identifying microRNAs involved in degeneration of the organ of corti
425 during age-related hearing loss. *PLoS One* **8**, e62786 (2013).
- 426 21. J. F. Willott, S. Carlson, H. Chen, Prepulse inhibition of the startle response in mice:
427 relationship to hearing loss and auditory system plasticity. *Behav Neurosci* **108**, 703-713
428 (1994).

- 429 22. K. R. Johnson *et al.*, Effects of Cdh23 single nucleotide substitutions on age-related
430 hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. *Sci
431 Rep* **7**, 44450 (2017).
- 432 23. S. N. Park *et al.*, Comparison of cochlear morphology and apoptosis in mouse models of
433 presbycusis. *Clin Exp Otorhinolaryngol* **3**, 126-135 (2010).
- 434 24. V. P. Spongr, D. G. Flood, R. D. Frisina, R. J. Salvi, Quantitative measures of hair cell
435 loss in CBA and C57BL/6 mice throughout their life spans. *J Acoust Soc Am* **101**, 3546-
436 3553 (1997).
- 437 25. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and
438 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B
439 (Methodological)* **57**, 289-300 (1995).
- 440 26. J. P. Balcombe, N. D. Barnard, C. Sandusky, Laboratory routines cause animal stress.
441 *Contemp Top Lab Anim Sci* **43**, 42-51 (2004).
- 442 27. S. Allan, P. Rémy, Age-related changes in the C57BL/6J mouse cochlea. I. Physiological
443 findings. *Developmental Brain Research* **2**, 65-75 (1981).
- 444 28. Y. Cheng *et al.*, Positive impacts of early auditory training on cortical processing at an
445 older age. *Proc Natl Acad Sci U S A* **114**, 6364-6369 (2017).
- 446 29. J. F. Willott, Effects of aging, hearing loss, and anatomical location on thresholds of
447 inferior colliculus neurons in C57BL/6 and CBA mice. *J Neurophysiol* **56**, 391-408
448 (1986).
- 449 30. D. L. Barbour, X. Wang, Contrast tuning in auditory cortex. *Science* **299**, 1073-1075
450 (2003).
- 451 31. B. B. Averbeck, P. E. Latham, A. Pouget, Neural correlations, population coding and
452 computation. *Nat Rev Neurosci* **7**, 358-366 (2006).
- 453 32. J. P. Rauschecker, M. Korte, Auditory compensation for early blindness in cat cerebral
454 cortex. *J Neurosci* **13**, 4538-4548 (1993).
- 455 33. J. U. Henschke *et al.*, Early sensory experience influences the development of
456 multisensory thalamocortical and intracortical connections of primary sensory cortices.
457 *Brain Struct Funct* **223**, 1165-1190 (2018).
- 458 34. J. P. Rauschecker, U. Kniepert, Auditory localization behaviour in visually deprived cats.
459 *Eur J Neurosci* **6**, 149-160 (1994).
- 460 35. K. Shilling-Scrivo, J. Mittelstadt, P. O. Kanold, Altered Response Dynamics and
461 Increased Population Correlation to Tonal Stimuli Embedded in Noise in Aging Auditory
462 Cortex. *J Neurosci* **41**, 9650-9668 (2021).
- 463 36. K. Shilling-Scrivo, J. Mittelstadt, P. O. Kanold, Decreased Modulation of Population
464 Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection
465 Performance in Old Mice. *J Neurosci* **42**, 9278-9292 (2022).
- 466

467

468 Acknowledgments

469 We thank members of the Kanold lab for their comments on the manuscript.

470 We thank Dr. Behtash Babadi for his advice regarding interpreting the results of the manuscript.

471 **Conflict of interest:** The authors declare no competing financial interests.

472 **Funding:** Supported by NIH R01DC018790 (POK, HKL)

473 **Author contributions:**

474 Conceptualization: POK, HKL, PJ

475 Methodology: PJ, POK

476 Investigation: PJ

477 Visualization: PJ, POK

478 Funding acquisition: POK, HKL

479 Project administration: PJ, POK

480 Supervision: POK

481 Writing – original draft: PJ, POK

482 Writing – review & editing: PJ, HKL, POK

483

484 **Data and materials availability:** All data supporting the findings from this study will be available

485 upon publication at the Johns Hopkins Data Archive (<https://archive.data.jhu.edu>).

486 **Supplementary Materials**

487 Materials and Methods

488 Supplementary Figures S1-S6

489 Supplementary Table S1