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Abstract

We previously demonstrated in baboons that maternal undernutrition (MUN), achieved by 70 % of control nutrition,
impairs fetal liver function, but long-term changes associated with aging in this model remain unexplored. Here, we
assessed clinical phenotypes of liver function, mitochondrial bioenergetics, and protein abundance in adult male
and female baboons exposed to MUN during pregnancy and lactation and their control counterparts. Plasma liver
enzymes were assessed enzymatically. Liver glycogen, choline, and lipid concentrations were quantified by
magnetic resonance spectroscopy. Mitochondrial respiration in primary hepatocytes under standard culture
conditions and in response to metabolic (1 mM glucose) and oxidative (100 uM H,0,) stress were assessed with
Seahorse XFe96. Hepatocyte mitochondrial membrane potential (MMP) and protein abundance were determined
by tetramethylrhodamine ethyl ester staining and immunoblotting, respectively. Liver enzymes and metabolite
concentrations were largely unaffected by MUN, except for higher aspartate aminotransferase levels in MUN
offspring when male and female data were combined. Oxygen consumption rate, extracellular acidification rate, and
MMP were significantly higher in male MUN offspring relative to control animals under standard culture. However,
in females, cellular respiration was similar in control and MUN offspring. In response to low glucose challenge, only
control male hepatocytes were resistant to low glucose-stimulated increase in basal and ATP-linked respiration.
H,O, did not affect hepatocyte mitochondrial respiration. Protein markers of mitochondrial respiratory chain
subunits, biogenesis, dynamics, and antioxidant enzymes were unchanged. Male-specific increases in
mitochondrial bioenergetics in MUN offspring may be associated with increased energy demand in these animals.
The similarity in systemic liver parameters suggests that changes in hepatocyte bioenergetics capacity precede
detectable circulatory hepatic defects in MUN offspring and that the mitochondria may be an orchestrator of liver

programming outcome.

Keywords: developmental programming; baboons; liver; bioenergetics; hepatocytes
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1.0. Introduction

Suboptimal nutrition during the developmental period, from in utero through early life development, is common
among individuals from disadvantaged populations. Nutritional perturbations during these critical periods can
induce long-standing physiological changes that increase risk of developing chronic diseases, including metabolic
diseases, later in life. In response to nutritional stress during pregnancy, the fetus initiates adaptive processes to
ensure its survival albeit at the expense of optimal structural and functional development. The mechanisms by
which early-life exposures and challenges increase susceptibility to adult-onset diseases are not entirely clear, but
it is likely that adaptive process to ensure fetal survival likely come at the expense of optimal structural and

functional development that persist throughout life'?.

The liver has been shown to be keenly sensitive to in utero nutrient restriction®, and fetal liver size is reduced under
this challenge in various species including rats, sheep, cattle, baboons, and humans among others*®. We and
others have also reported alterations in fetal liver metabolites and gene expression patterns due to maternal

nutrient reduction®®*?,

Although several other animal models have shown association between maternal
undernutrition (MUN) and disrupted metabolism in adulthood™***, there is a need to study nonhuman primates due
to their close phylogenetic relationship and similar physiology to humans'* to bridge the translational gap in
developmental programming studies. We previously noted the emergence of insulin resistance in juvenile (3.5
years) offspring of baboons exposed to moderate MUN during pregnancy and lactation™. The liver undergoes
several functional changes during the early postnatal period before achieving full maturation'® and developmental
programming imprints persist throughout development and early adulthood of the offspring. Long-term changes

associated with aging in this model remain unexplored.

Metabolic disorders are primarily driven by disruption in energy homeostasis, of which the mitochondria can play a
key role. Mitochondria play multitude of roles in regulating energy balance including ATP production, generation of
reactive oxygen species (ROS) and regulating cellular signaling pathways, and impairment of these systems
contribute to metabolic dysfunction. Developmental programming of critical component systems such as the
mitochondria has been proposed as a cellular mechanism by which maternal effects are propagated in the offspring
given the developmental plasticity of the mitochondria and maternal imprints in the offspring mitochondrial
genome'’. Our recent study demonstrated that MUN impaired fetal mitochondrial structure and function, including
alterations in mitochondrial cristae and bioenergetics in cardiac tissue™®. Impairment in fetal mitochondrial function
is linked to compromised metabolic health in postnatal life'®, and cumulative damage to the mitochondria is
suggested to trigger the onset of many age-related diseases®™. In line with this, we have shown that MUN in
baboons drives mitochondrial bioenergetic defects that persist even to adulthood in skin-derived fibroblasts®.

As a follow-up to our previous studies'*****

, we utilized baboons with an average age of 15 years (approximate
human equivalent; 60 years), representing animals in or transitioning to the late stage of life, to investigate the long-
term impact of MUN on the liver at the functional and molecular level. In the present study, we assessed clinical
phenotypes of liver function by analyzing plasma changes in liver enzymes to identify functional hepatic deficits
related to MUN in the aging offspring. Additionally, we examined lipid accumulation and other metabolites in the

liver using magnetic resonance spectroscopy. Considering the possibility that subcellular changes may present
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earlier than phenotypic alterations, that is, systemic outcomes are preceded by cellular changes, we assessed

mitochondrial bioenergetics and cellular protein abundance in primary hepatocytes derived from these animals.
2.0. Methods
2.1. Animals

The Institutional Animal Care and Use Committee of Texas Biomedical Research Institute (TBRI) approved all
procedures involving animals. The animal facilities at the Southwest National Primate Research Center (SNPRC),
housed on TBRI campus are fully accredited by the Association for Assessment and Accreditation of Laboratory
Animal Care International (AAALAC), and adheres to the guidelines of the National Institutes of Health (NIH) and
the U.S. Department of Agriculture.

Details of animal husbandry and establishment of MNR model have been published previously by our group® .

Baboons (Papio sp.) were housed and maintained in a social environment and fed ad libitum with normal monkey
diet. The welfare of the animals was enhanced by providing enrichments, such as toys, food treats, and music,

which were offered daily under the supervision of the veterinary and behavioral staff at SNPRC.

The baboon colony used in this study were established more than 20 years ago. To develop the MUN cohort, age-
matched females were randomly assigned prior to breeding to control or MUN group. Control mothers had ad
libitum access to water and SNPRC biscuits (Purina Monkey Diet and Monkey Diet Jumbo, Purina LabDiets, St
Louis, MO, USA) containing 12% energy from fat, 0.29% from glucose, 0.32% from fructose, and a metabolizable
energy content of 3.07 kcal/g. MUN group were fed 70% of the feed eaten by the control females on a weight-
adjusted basis from the time of diagnosis of preghancy (~30 days gestation) for the rest of pregnancy and through
lactation. We have previously demonstrated that MUN leads to intrauterine growth restriction (IUGR) at term?*. Both
control and MUN offspring were weaned at 9 months and maintained on Purina Monkey diet through adulthood.
Animals were euthanized at ages ranging between 13 and 18 years (approximate human equivalent, 50 and 70

years).
2.2. Magnetic resonance spectroscopy

All proton magnetic resonance spectroscopy (1H-MRS) experiments were conducted on a Siemens 3T system
(Trio, Siemens Healthcare, Malvern, PA) with a transmitting body coil. The scans were carried out when the
animals were approximately 14 years old. We used straps to minimize involuntary motion during the scanning
protocols. MRI scans were performed while subjects were mechanically ventilated and under sedation according to
the following protocol: After an overnight fast (12 h), each baboon was sedated with ketamine hydrochloride (10
mg/kg i.m.) before arrival at the MRI room. Endotracheal intubation was performed using disposable cuffed tubes
(6.5 - 8.0 mm diameter) under direct laryngoscopic visualization. All animals were supported with 98 - 99.5%
fraction of inspired oxygen (FiO,) by a pressure-controlled ventilator adjusted, as necessary, to keep the oxygen

saturation >95%. The maintenance of anesthesia consisted of an inhaled isofluorane (0.5 - 1.5%) and oxygen mix.

Glycogen, choline, and lipid concentrations in the liver were quantified using single-voxel, spin echo localized 1H-
MRS?. A voxel with a volume of 12x12x12 mm?® was placed in the right posterior love of the liver. The voxel was
placed approximately 2 cm within Gleason’s capsule to avoid signal contamination from the visceral adipose

compartment. Due to the amplitude of the water resonance, two spectra were collected for each subject: a water
4
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reference (TR = 2000 ms, TE = 30 ms, NSA = 8) and a water-saturated spectrum (TR = 2000 ms, TE = 30 ms, NSA
= 16).

2.3. 1H-MRS data processing

All spectral peaks were fit using the non-linear least squares, an advanced method for the accurate, robust, and
efficient spectral fitting algorithm (AMARES) in the Java-based magnetic resonance user interface software (jMRUI

v5.2). The detailed process of analyzing 1H-MRS data has been previously described® %

. Firstly, to reduce fitting
residuals, MRS data are processed by fitting spectral peaks using the spectral-fitting algorithm in the MRS analysis
software j]MRUI. Spectra were corrected for phase offsets by applying a phase shift not exceeding £ 12 for either
the reference or unsuppressed spectra. Secondly, if any residual water resonance was present for water-
suppressed spectra, it was removed by applying the Hankel Lanczos singular value decomposition (HL-SVD) filter
with no point maxima. The reference peak was assigned to the water peak (in unsuppressed spectra). Water-
suppressed spectra were also filtered using apodization with a 3.5 Hz Gaussian. Water signals are generated from
the water-unpressed spectrum. During the jMRUI analysis, starting values and prior knowledge estimates were

25, 27, 28

applied according to previous publications . Since there is an inherent signal loss at the point of data

acquisition, glycogen, choline, and lipid signals were corrected by T2 relaxation®® %’

2.4. Tissue Collection

At approximately 15 years of age, male and female adult baboons were tranquilized with ketamine hydrochloride
(10 mg/kg i.m.) after an overnight fast. Three days prior to necropsy, morphometrics including body weight and
length were determined to calculate body mass index and blood samples drawn through the femoral vein to obtain
plasma for liver enzymes analyses. On the day of necropsy, tranquilized baboons were exsanguinated while still
under general anesthesia as approved by the American Veterinary Medical Association. Following failure of reflex
responses to skin pinch and eye touch stimulation, liver tissues were rapidly removed and weighed. Tissues were
collected between 8.00-10.00 AM to minimize potential variation from circadian rhythm. Left and right liver lobes
were separated apart, about 30 grams of each lobe was cut laterally closer to the caudal portion of the liver and
received into an ice-chilled 1X HBBS for subsequent hepatocyte isolation. The remaining liver portion was
immediately frozen in liquid nitrogen for other analyses as part of other investigations. All necropsies were

performed by qualified and experienced veterinarians.
2.5. Plasma liver enzyme quantification

Markers of liver function including aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine
aminotransferase (ALT) were assessed in plasma samples using the Beckman Coulter UniCel DxC 800 Synchron
Clinical System (Brea, CA, USA) along with their specific reagents from Beckman Coulter. AST, ALP, and ALT

were measured using enzymatic rate method.
2.6. Hepatocyte cultures

The two-step EGTA/collagenase perfusion techniqueso' ¥ was adapted to isolate primary hepatocytes from baboon
liver ex situ. Liver samples were processed within 1 h post collection to achieve viable hepatocytes. Two cannulae
(16g x 4in) with a 3 mm smooth olive-shaped tip were positioned to target vascular channels in the liver for
perfusion. The liver was first perfused an EGTA solution that comprised 0.14M NaCl, 50 mM KCL, 0.33 mM

5
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Na,HPO4, 0.44 mM KH,PO4, 10 mM Na-HEPES, 0.5 mM EGTA, 5 mM Glucose, and 4 mM NaHCO; with pH
adjusted to 7.2 using a Masterflex peristaltic pump (Cole-Palmer, Niles, IL, USA) set at a rate of 10 revolutions per

minute (rpm), for approximately 1 h at 37 °c¥®,

Following perfusion with the EGTA buffer, the solution was replaced with a collagenase solution which comprises
0.1 % collagenase, 5 mM CacCl,, and 4 mM NaHCO; in 1X HBSS solution (0.14 M NaCl, 50 mM KCL, 0.33 mM
Na,HPO4, 0.44 mM KH,PO4, 10 mM Na-HEPES), pH 7.5. The perfusion was maintained at a rate of 8 rpm for
approximately 1 h or until visible sign of digestion identified by liver indentation following gentle pressure or obvious
cell dissociation through the Glisson's capsule that overlays the liver. The digested liver is collected into a tissue
culture dish containing chilled Gibco’s Wiliams media that is supplemented with 5% FBS, 1% glutamine, and
antibiotics. Cell suspensions were filtered through sterile folded gauze, centrifuged at 50 g, 4°C for 5 min. The
centrifugation step was repeated twice, and the resulting hepatocytes were assessed for viability using trypan blue
dye. Cultures plates were coated with collagen (Collagen, Type 1 from rat tail, Sigma, Saint Louis, MO) diluted 1 to
50 ratio in sterile H,O prior to cell seeding. Hepatocytes were allowed to adhere overnight before further

experiments.
2.7. Seahorse mitochondrial assay

To assess cellular respiration in primary baboon hepatocytes from control and MUN baboons, we used Agilent
Seahorse XF96 Extracellular Flux Analyzer (North Billerica, MA, USA). Hepatocytes were plated in a collagen-
coated 96-well seahorse plate at a density of 40,000 cells per well. The XFe96 sensor cartridges were hydrated
overnight with HO at 37 °C and replaced with seahorse XF calibrant 1 h before the assay. Oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR) were measured under basal condition and in response to
serial injection of mitochondrial inhibitors including 1.5uM Oligomycin (to inhibit ATP synthase), 0.5 uM FCCP
(Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; a mitochondrial uncoupler to measure maximum
respiration) and 0.5 pM antimycin A and rotenone cocktail (to inhibit electron flow through the mitochondrial
electron transport chain). We also determined OCR in response to 2 h exposure to 1 mM glucose or 100 uM H,0,
to model metabolic and oxidative stress respectively prior to the seahorse assay. OCR were normalized to cell
density per well measured by a live-cell imaging system (IncuCyte S3, Santorius Corporation, Edgewood, NY,

USA). Data were processed using the Agilent wave software.
2.8. Hepatocyte mitochondrial membrane potential.

Mitochondrial membrane potential was determined using tetramethylrhodamine ethyl ester (TMRE) kit from Abcam.
TMRE is a cell-permeant dye that accumulates in active mitochondria due to their relative negative charge.
Hepatocytes (5,000 cells) were seeded in black-walled 96-well plates and incubated with media containing 200 nM
TMRE for 20 min at 37 °C. Following incubation, cells were washed with phosphate-buffered saline, and
fluorescence intensity captured using the IncuCyte (Red excitation: 567-607 nM and emission: 622-704 nM). FCCP
(20 uM) was used as internal control as it prevents TMRE staining, and its signal was used to set the minimum
intensity threshold for TMRE during data analysis. TMRE fluorescence intensity per image was normalized to

phase image area.

2.9. Hepatocyte protein expression by immunoblotting
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Cell homogenates for immunoblotting were prepared using commercially available RIPA buffer (Thermo Scientific,
Waltham, MA, USA). The concentration of protein in the homogenates was determined by colorimetric protein
assay>. Equal amounts of protein extract (15 pg) were separated by SDS- polyacrylamide gel electrophoresis (5 %
staking and 12 % resolving gel) and transferred to a nitrocellulose membrane. Antibodies for individual components
of the mitochondrial electron transport chain (ETC) complexes |-V (NDFUB8, SDHB, UQCRC2, MTCO1 and
ATP5a), mitofusin 1 (MFN 1), dynamin-related protein 1 (Drpl), optic atrophy protein 1 (OPAl),
peroxisome proliferator-activated receptor-gamma coactivator 1l-alpha (PGCla), catalase and superoxide
dismutase 2 (SOD2), were incubated overnight in 2% BSA at 4°C. ETC complexes antibodies were assayed
together as part of total OXPHOS antibody cocktail. Other primary antibody details are provided in table 1. Protein
bands for each sample were visualized using LI-COR imaging system after 1 h incubation with LI-COR IRDye®
800CW goat anti-mouse and anti-rabbit secondary antibodies (LI-COR Biosciences, Lincoln, NE, USA). All

immunoblots were quantified using LI-COR Image Studio Lite software.

Table 1: Primary antibodies for immunoblotting

Antibody Dilution ratio Company Cat #
Total OXPHOS 1:2,000 Abcam ab110411
MFN1 1:1,000 Abcam ab221661
Drpl 1:1,000 Cell Signaling 8570
OPA1 1:1,000 Cell Signaling 80471
PGCla 1:500 Cell Signaling 2173
Catalase 1:1,000 Cell Signaling 14097
SOD2 1:1,000 Abcam ab13533
Vinculin 1: 10,000 Cell Signaling 4650

2.9. Statistical analysis

Data were analyzed by two-way analysis of variance (ANOVA) followed by Tukey post hoc test for multiple
comparison and unpaired t-test when comparing effects between two groups. The ANOVA was weighted using
SEM to account for variability in technical replicates. We did not observe any significant variation in hepatocyte data
generated from the left and right liver lobe and were therefore pooled for subsequent analyses. Control male and
female baboons were aged between 13.6-18.0 and 13.3-16.5 years, respectively, while MUN baboons were aged
13.7-16.2 years for males and 13.3-16.5 years for females. Data are presented as mean [ . SEM; p<0.05 is

considered statistically significant. All analyses were carried out using GraphPad prism 9.

3.0. Results

3.1 Liver metabolites
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The concentrations of glycogen, choline and lipid in the liver measured by 1H-MRS were similar in both male and
female MUN offspring when compared to their control counterparts. When male and female data were combined,
the levels of these liver metabolites remained comparable between control and MUN baboons. Liver lipid
concentration tended to be higher in control (p=0.095) relative to MUN baboons though these did not reach

statistical significance (Fig. 1).
3.2. Anthropometric variables and relative liver weight

Animals used in this study were aged-matched and there was no effect of MUN on body weight or body mass index
(BMI) at this stage in later life. Overall, male baboon body weight was significantly higher than female in both
control and MUN offspring. This sex-related difference in body weight is a well-recognized physiological factor. The
relative liver weight, determined by the ratio of liver weight to body weight was similar between MUN and control

offspring (Table 2).

Table 2: Anthropometric measures and relative liver weight in adult control and MUN baboons

Group CTR MUN ANOVA
M F M F

Subject total 7 10 6 7

Age (year) 16.4+ 0.6 15.6 + 0.5 15.1+0.5 14.2+05 NS

Weight (kg) 26.7+1.6 18.6+1.3 30.8+1.3 18.8+1.2 M > F*

BMI (kg/m?) 17.9+0.8 15.8+0.7 203+1.0 17.0+1.2 NS

Relative liver weight (%) 1.60 £ 0.07 1.59 +0.07 1.39+0.10 1.66+0.26 NS

~*p < 0.05; NS, not significant. Abbreviations: CTR; control offspring, MUN; maternal undernutrition offspring

3.3. Liver enzymes

We compared plasma concentrations of AST, ALP, and ALT between control and MUN offspring as markers of liver
function to determine the long-term impact of developmental undernutrition in adulthood. There were no significant
differences in plasma liver enzyme levels between the groups when analyzed by sex independently. However,
combined male and female data of control and MUN offspring showed significantly higher AST concentrations in

MUN compared to control while ALP and ALT concentrations remained similar (Fig. 2).
3.4. Hepatocyte number and viability.

We next asked whether MUN had affects in adults at the hepatic cellular level using isolated hepatocytes from
these animals to determine if MUN induce changes in cell physiology using readouts of cell viability and
mitochondrial function (discussed below). Figure 3 shows that the number of live hepatocytes per gram of liver

tissue as well as hepatocyte viability were similar between control and MUN baboons.

3.5. Hepatocyte bioenergetics
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We assessed hepatocyte bioenergetics using a mitochondrial stress test and show that OCR and ECAR were
significantly higher in female-derived hepatocytes compared to males in control offspring. However, in MUN
offspring there were no sex-differences in OCR and ECAR between male and female suggesting perhaps that
early-life nutrient reduction may affect hepatic respiration sexual dimorphism. OCR parameters including basal
respiration, ATP-linked respiration, maximal respiration, and spare respiratory capacity and ECAR were similar
between in control and MUN female offspring. However, in male offspring, these parameters were significantly
higher in hepatocytes from MUN offspring compared to hepatocytes from control animals (Fig. 4 a-d). Thus, MUN
appears to have a male-specific effect on hepatic mitochondrial bioenergetics. The ratio of OCR to ECAR was also
similar between the experimental groups (Fig. 4 e and f) suggesting no dramatic changes in mitochondrial fuel

preference.

Mitochondrial membrane potential (MMP) was also significantly affected by MUN in isolated hepatocytes. Samples
from MUN female offspring exhibit lower MMP when compared to their control counterparts, whereas in males,
MMP was higher in MUN animals compared to controls. The MMP data correspond somewhat to the differences
observed in OCR between MUN and control baboons, particularly in males. Additionally, we noted higher MMP in

control females relative to males whereas the opposite was observed in MUN animals (Fig. 4 g).
3.6. Hepatocyte bioenergetics in response to low glucose and H,0,

We next asked whether MUN affected the response of hepatocytes from adult offspring to metabolic challenge in
culture. In female-derived samples, hepatocytes exposed to low glucose (1mM) exhibited a significantly increased
basal and ATP-linked respiration relative to standard glucose conditions in both control and MUN. However,
maximum respiration and energy reserve were reduced in response to low glucose. These changes were observed
in both control and MUN offspring suggesting MUN did not affect hepatocyte response to metabolic challenge in

females (Fig. 5 a-d).

Unlike in females, male-derived hepatocytes showed low glucose-stimulated increase in basal and ATP-linked
respiration only in MUN offspring. One interpretation is that increased OCR in MUN baboons might represent an
increased energy demand in these cells under challenge. Hepatocytes from male MUN offspring also showed
reduced maximal respiration following low glucose exposure. Low glucose challenge also ablated the difference in
spare respiratory capacity we report between MUN and control hepatocytes under standard culture conditions (Fig.
5 e-f).

We also asked whether exposing hepatocytes to H,O, (an inducer of oxidative stress) would reveal differences in
bioenergetic response between control and MUN. However, this challenge did not significantly affect hepatocyte
respiration except for a reduction in basal respiration in female MUN group following exposure to H,O,
(Supplemental Fig. 1). Furthermore, low glucose or 100 uM H,0, elicited nearly identical changes in mitochondrial

membrane potential similar to untreated cells in control and MUN baboons of both sexes (Supplemental Fig. 2).
3.7. Protein expression

We asked if the differences in bioenergetics in hepatocytes might be explained by mitochondrial content
differences. The levels of OXPHOS proteins; complex | (NDUFB8), complex Il (SDHB), complex 11l (UQCRC2),

complex IV (MTCOL1), and complex V (ATP5q) in isolated hepatocytes were not different between control and
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MUN offspring of both sexes (Fig. 7). This suggests the differences in bioenergetics we report is likely not related to
mitochondrial abundance in these cell lines. Consistent with mitochondrial content, mitochondrial fusion proteins
(MFN1 and OPA1l) and fission protein (Drpl) were similar between the groups (Fig. 8 a-e). The marker of
mitochondrial biogenesis (PGC1a) was also unchanged (Fig 8. f and h). The protein levels of antioxidant enzymes;
catalase and SOD2 were not also altered in both male and female MUN baboons relative to their aged-matched

controls.

4.0. Discussion

Our study shows that developmental programming imprints in baboons are notably evident at the cellular level,
even in late adulthood, with primary hepatocytes derived from male MUN offspring highly sensitive to modulators of
the mitochondrial electron transport chain, resulting in elevated OCR parameters relative to control offspring but
without major changes to systemic liver function. The observed sexual dimorphism in mitochondrial OCR is
consistent with the predominantly male-centric effect of programming in several metabolic studies. We previously
reported male specific effects of MUN on genes regulating hepatic energy metabolism in fetal baboon liver and
adipose tissue. Postnatally, MUN also induces pericardial adiposity in 6-year-old male offspring but not in
females®. Increased serum level of total cholesterol and low-density lipoprotein were also observed only in male
MUN offspring at 9 years of age®. This study adds to the male-specific effects of MUN on mitochondrial
bioenergetic parameters in hepatocytes derived from the aging offspring. Baboon lifespan has been reported as 11

or 21 years®®**

and thus, the animals used in this study aged between 13 and 18 years represent the transition
period from mid- to late-life. Another interesting finding from this study is that mitochondrial OCR parameters are
higher in female derived hepatocytes compared to male in control baboons, which agrees with other studies using
liver tissue in mice®. It is not clear if this observation relates to estrogen signaling and translates to any protective
effect in the female, in line with estrogen protective role against hepatic steatosis®. In male and female MUN
offspring, we did not observe any sex differences, suggesting MUN abrogated this sexual dimorphism in

mitochondrial respiration.

While most liver metabolic markers we examined were unaffected by MUN at the time of sampling, the changes in
hepatocyte mitochondrial respiration may indicate a tendency for metabolic alterations particularly in the male
animals. We view the similarity in liver metabolic phenotypes between MUN and control offspring as adaptive which
could be altered in the presence of a second physiological insult overlaid on the perinatal exposure in adulthood.
An adaptive response to poor perinatal nutrition triggers susceptibility to metabolic diseases in adulthood especially
following exposures to nutritional challenge later in life. For example, postnatal catch-up growth following IUGR
leads to obesity especially when the offspring are fed a hypercaloric diet*’. Our study model did not incorporate any
secondary challenge following the perinatal nutrient reduction but focused on the long-term perpetuation of
programming effect, thus outcomes are representative of basal effects. However, our low glucose metabolic

challenge results in hepatocytes are consistent with this idea.

We previously reported that MUN leads to reduced fetal liver weight, changes in fetal liver metabolites, smaller
body weight at birth, juvenile prediabetic phenotype and altered lipid metabolism in young adulthood "'®**%

There are few studies on the long-term impact of MUN on liver function in precocial species and to our knowledge,
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none specifically in aging NHP such as baboons, which share 96% genetic homology with humans*. Our study
model could therefore address many confounding factors in human studies that limit clear delineation of the impact
of MUN on liver function separate from secondary metabolic challenges like obesogenic feeding in adulthood. For
example, in a Chinese famine cohort study, fetal and infant exposure to famine was linked to an increased risk of
fatty liver disease in female offspring five decades later. However, these subjects were also obese, and the
contribution of obesity in adulthood was not factored into the analyses*. Similarly, participants from the Helsinki
Birth Cohort who were smaller during early childhood exhibited an elevated risk of fatty liver disease in adulthood
but as obese subjects®. Thus, the relationship between early-life malnutrition and risk of hepatic disease,
independent of adult overweight/obesity, remains unclear. In the present study, MUN offspring maintained similar
body weight as control offspring, despite early postnatal catch-up grovvth23 and we did not see any clinical features
of hepatic dysfunction in the MUN offspring; liver weight, hepatic glycogen, choline, and lipid content were similar to
control offspring. Plasma markers of liver function were also unchanged except for higher AST levels in MUN
offspring when male and female data were combined. Our results suggest that independent of an additional
metabolic insult in adulthood, there are no signs of liver disease in aging MUN baboon offspring, despite potential

cellular metabolic differences.

In a previous study by our group on the effects of MUN on liver function in aging sheep™, we observed that a 50 %
nutrient restriction during early pregnancy did not alter liver weight in the female offspring at 6 years of age,
average lifespan of a sheep is 7 years®, while liver glycogen content only tended to be greater in the MUN
offspring compared to control. Meanwhile, the MUN offspring had elevated hepatic lipid levels and low expression
of peroxisome proliferator-activated receptor-y (PPARY), a transcriptional regulator that modulates fat metabolism.
Additionally, they had higher body weight compared to the control group**, suggesting a potential link between
disturbance to liver metabolic function in MUN offspring and the occurrence of obesity. A different group
demonstrated that MUN during early pregnancy in sheep resulted in small liver size in middle-aged male offspring,
independent of changes to total body mass'. The changes in liver mass parallel a significant reduction in
hepatocyte growth factor genes in the liver of the same animals. Even in the same species, there are variability in
programming outcome on liver function likely due to the type of nutritional constraint, sex, body weight status and

age at examination.

Early studies have demonstrated the hepatic mitochondrial dysfunction precedes the development of non-alcoholic
fatty liver diseases®. Thus, animals can present normal circulatory metabolic phenotype concurrently with altered
hepatic mitochondrial structure and function. We view the mitochondria as an early target organelle of
developmental programming because the broad range of phenotypes of adverse perinatal exposures suggest the
involvement of a common or integrative mechanism across different cells and tissues than individual molecular
markers. Mitochondrial vulnerability to damage begins early. Mitochondria of fertilized oocytes are susceptible to
damage from poor gestational conditions, these mitochondrial defects persist into fetal and postnatal life and are

linked to increased risk of diseases including metabolic disorders™®*"*°

. We previously demonstrated that MUN
during pregnhancy increases activity of the fetal hypothalamic-pituitary-adrenal axis, evidenced by high cortisol and
ACTH concentrations in near-term baboons™. Further, we have observed a rise in local cortisol production in male
fetal liver under MUN conditions®. This hormonal milieu may contribute to programmed changes in liver

mitochondria, potentially influencing hepatocyte bioenergetic capacity in adulthood, as demonstrated in this study.
11
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Mitochondria participate in stress responses, with glucocorticoid receptors also expressed within the
mitochondria®". In response to stress, cells consume more energy to maintain their viability, either for the synthesis
of biomolecules required for growth or protective efficiency such as repair of cellular damage and return to

homeostasis®***

. The higher OCR parameters in hepatocytes derived from male MUN offspring under standard cell
culture conditions may reflect an adaptive response from perinatal nutritional exposure resulting in elevated energy
demand to meet cellular processes such as gene transcription and translation which may be at a higher metabolic

cost due to programming.

Alternatively, the higher OCR in male MUN hepatocytes may indicate a state of programmed hypermetabolism, that
is, increased resting energy expenditure® to maintain normal liver function following perinatal challenge. This
energy budget may drive the similarity we observed in liver metabolites and markers of liver function at the
systemic level between control and MUN offspring, albeit at a high energetic cost. The increased OCR is consistent
with and corresponds to higher MMP; measured by accumulation of fluorescent cation TMRE within the
mitochondrial matrix. The magnitude of MMP increase in male MUN offspring relative to control offspring suggests
mitochondrial hyperpolarization likely due to hyperactivity of the proton pump in the mitochondrial respiratory chain.
Mitochondrial hyperpolarization is associated with excessive ROS production which eventually triggers cell death®.
It is important to note that changes in cell volume may influence TMRE fluorescence intensity. Since we normalized
signals with cell area, changes in cell structure are unlikely to influence TMRE signals in our study. A sustained
hypermetabolic state along with increased ROS production may eventually overwhelm defense capability of the
antioxidant system, indicating potential for increased vulnerability to ‘wear-and-tear’ in the male MUN offspring.
Moreso, stress-induced hypermetabolism has been reported to accelerate rates of agingSS. Although, we did not
measure ROS activity in the hepatocytes, the similar level of antioxidant proteins in both control and MUN offspring
suggest the buffering capacity against oxidative stress may be lower in male MUN offspring. A related study also
demonstrated that prenatal exposure to maternal stress is associated with higher leukocyte mitochondrial content
and bioenergetic capacity in the offspring56, highlighting the potential significance of bioenergetic capacity among
other mitochondrial phenotypes (e.g. mitochondrial biogenesis) in developmental programming. The similarity in
protein markers of ETC subunits (complex I-V), mitochondrial biogenesis (PGCla) and mitochondrial dynamics
(MFN1, OPA1, and Drpl) between the experimental groups suggests that mitochondrial protein content or
remodeling of mitochondrial network through fusion and fission processes does not contribute to the increased

bioenergetic capacity of the male MUN offspring.

Similar to other reports showing increased cellular OCR in response to acute low glucose exposure57, basal and
ATP-linked respiration in male MUN hepatocytes were further elevated by low glucose exposure, while control
males were unaffected, which may indicate adaptation to metabolic challenge in control males. We can as well
speculate that the high basal and ATP-linked OCR mimics a stress response to meet increased energy demand. It
could also be related to oxidation of other fuel substrates like lipids in the absence of glucose, to sustain cell
viability. The latter is more plausible since it has been demonstrated that low glucose increases dependency on
fatty acid oxidation for basal mitochondrial metabolism®®. Comparing this low glucose-stimulated increase in OCR
parameters with the higher OCR in MUN male hepatocytes cultured in standard glucose media, fits the narrative
that a similar mechanism that enhances basal respiration under low glucose raises hepatocyte respiration of male

MUN offspring under standard culture conditions and thus represent stress responses. In females, low-glucose
12
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stimulated increase in basal and ATP-linked OCR were similar in control and MUN offspring, corroborating the
perpetuation of male-specific effects in response to metabolic challenge. However, despite the stimulation of basal
OCR by low glucose, energy reserve was drastically reduced following the metabolic stress, suggesting low
glucose limits achievable maximal respiration. This reduction in energy reserve following exposure to low glucose is
consistent with other studies™. In relation to oxidative stress challenge, we did not find major changes to the pattern
of cellular respiration between the groups when hepatocytes were exposed to H,O,, which may relate to the

concentration of H,O, we tested.

In our baboon MUN model, aging male MUN offspring exhibit changes in mitochondrial bioenergetic parameters
without concurrent systemic liver function alterations. This supports the idea that hepatic mitochondrial dysfunction
may precede detectable circulatory defects*®. There is a potential to detect hepatic defects if our study had more
sample size as the combination of male and female data showed a significant increase in AST level in MUN
offspring. Overall, this study suggests that changes to mitochondrial function may be an orchestrator of

programming effect on liver function in adulthood.
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Figure Legends

Fig. 1: Liver metabolites in control and MUN baboon offspring. Liver metabolites were determined by magnetic
resonance spectroscopy in female and male subjects from control and MUN groups (a) Liver glycogen
concentration. (b) Liver choline concentration. (c) Liver lipid concentration. (d) Liver glycogen concentration for
combined sexes (b) Liver choline concentration for combined sexes. (c) Liver lipid concentration for combined
sexes. Black bars represent control baboons while clear bars are MUN baboons. Each dot represents an individual
animal. Data are expressed as mean + SEM, sample size and age range (control; n=10 for females, 12.4-
16.4 years, 6 for males, 12.1-17.2, MUN; n=7 for females, 12.3-14.7 years, 6 for males, 12.4-15.0 years). For
interaction of sex and treatment, data were analyzed by two-way ANOVA, while student’s t-test was used for

treatment group comparison using GraphPad prism 9. Abbreviations: CTR; Control, MUN; maternal undernutrition.

Fig. 2: Plasma enzyme levels in control and MUN baboon offspring. (a) Aspartate aminotransferase levels in female
and male subjects in the control and MUN groups. (b) Alkaline phosphatase levels in control and MUN baboons of
both sexes. (c) Alanine transaminase levels in female and male baboons from control and MUN groups. (d)
Aspartate aminotransferase levels for combined sexes in control and MUN groups. (e) Alkaline phosphatase levels
for combined sexes in control and MUN groups. (f) Alanine transaminase levels for combined sexes in control and
MUN groups. Black bars are for control baboons while clear bars are MUN baboons. Each dot represents an
individual animal. Data are expressed as mean + SEM, sample size (control; n=10 for females, 6 for males, MUN;
n=7 for females, 6 for males). Age range: Control female and male baboons; 13.3-17.8 and 13.6-18.0 respectively,
MUN females; 13.1-16.0 years, MUN males; 13.4-16.0 years. Two-way ANOVA was used determine sex and
treatment interactions. When sexes were combined, difference between control and MUN baboons were

determined by student’s t-test using GraphPad prism 9.

Fig. 3: Viability of hepatocytes derived from control and MUN baboon offspring. (2) Number of live hepatocytes per
gram of liver tissue (b) Hepatocyte viability. Data from left and right liver lobes were combined given that there were
no lobe-specific differences. Each dot represents data point from individual liver lobes of each animal. Sample size;

control females, n=6, control males, n=6, MUN females, n=6, MUN males, n=5.

Fig. 4: Cellular respiration in control and MUN baboon offspring. Oxygen consumption rate (OCR) and extracellular
acidification rate in hepatocytes derived from MUN baboons and their control counterparts. OCR response to
mitochondrial modulators such as oligomycin, FCCP and rotenone/antimycin were used to ATP-linked, and
maximal respiration. Tetramethylrhodamine ethyl ester (TMRE) based assay was used to determine mitochondrial
membrane potential (a) Basal respiration. (b) ATP-linked respiration. (¢) Maximal respiration. (d) Spare respiratory
capacity. (e) Basal ECAR. (f) Basal OCR to ECAR ratio. (g) Mitochondrial membrane potential. Data were
expressed as mean + SEM, with left and right liver hepatocyte data combined. OCR and ECAR were from 4 to 6
replicate samples and were measured using a seahorse XFe96 flux analyzer. OCR and ECAR data were
normalized to cell density determined by a live-cell imager (IncuCyte). Seahorse assay sample size; control
females, n=6, control males, n=5, MUN females, n=6, MUN males, n=4. TMRE assay sample size: control females,

n=6, control males, n=3, MUN females, n=4, MUN males, n=4.

Fig. 5: Cellular respiration in response to metabolic stress in control and MUN baboon offspring. Hepatocytes
derived from male and female baboons in control and MUN groups were exposed to low glucose media (1 mM) for
20
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2 h to model metabolic stress prior to mitochondrial stress test. Standard hepatocyte culture media contains 11.1
mM glucose. (a) Female basal respiration. (b) Female ATP-linked respiration. (c) Female maximal respiration. (d)
Female spare respiratory capacity. (e) Male basal respiration. (f) Male ATP-linked respiration. (g) Male maximal
respiration. (h) Male spare respiratory capacity. Data were expressed as mean + SEM, with left and right liver
hepatocyte data combined. OCR were from 4 to 6 replicate samples and were measured using a seahorse XFe96
flux analyzer. OCR and ECAR data were normalized to cell density. Sample size; control females, n=6, control

males, n=5, MUN females, n=6, MUN males, n=4.

Fig. 6: Mitochondrial electron transport chain subunits protein abundance in hepatocytes of control and MUN
baboon offspring. Bar graphs present average normalized level of indicated mitochondrial subunit protein
expression + standard error of mean (SEM). Black bars represent control baboons while clear bars are MUN
baboons. (a) Complex | (NDFUBS8) protein expression (b) Complex Il (SDHB) expression (c) Complex Il
(UQCRC2) protein expression (d) Complex IV,MTCOL1 protein expression. (e) Complex V (ATP5a) protein
expression (f) Representative photomicrograph of protein expressions in hepatocytes of control and MUN animals.
Immunoblotting data are from left liver lobe hepatocyte. Sample size; control females, n=6, control males, n=5,
MUN females, n=6, MUN males, n=5.

Fig. 7: Levels of mitochondrial and antioxidant proteins in hepatocytes of control and MUN baboon offspring. Bar
graphs present average normalized level of indicated mitochondrial subunit protein expression + standard error of
mean (SEM) determined by immunoblotting. (a) MFN | (b) OPA1 (c) Photomicrograph of MFN1 protein bands (d)
Photomicrograph of OPAL1 protein bands (e) Drpl (f) PGCla (g) Photomicrograph of Drpl protein bands (h)
Photomicrograph of PGCla protein bands (i) Catalase (j) SOD2 (g) Photomicrograph of catalase and SOD2 protein
bands. Immunoblotting data are from left liver lobe hepatocyte. Sample size; control females, n=6, control males,
n=5, MUN females, n=6, MUN males, n=>5.
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