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Abstract

Soybean (Glycine max) and common bean (Phaseolus vulgaris) diverged approximately 19 million
years ago. While these species share a whole-genome duplication (WGD), the Glycine lineage
experienced a second, independent WGD. Despite the significance of these WGDs, their impact on
gene families related to oil-traits remains poorly understood. Here, we report an in-depth
investigation of oil-related gene families in soybean, common bean, and twenty-eight other legume
species. We adopted a systematic approach that included transcriptome and co-expression analysis,
identification of orthologous groups, gene duplication modes and evolutionary rates, and family
expansions and contractions. We curated a list of oil candidate genes and found that 91.5% of the
families containing these genes expanded in soybean in comparison to common bean. Notably, we
observed an expansion of triacylglycerol (TAG) biosynthesis (~3:1) and an erosion of TAG degradation
(~1.4:1) families in soybean in comparison to common bean. In addition, TAG degradation genes
were two-fold more expressed in common bean than in soybean, suggesting that oil degradation is
also important for the sharply contrasting seed oil contents in these species. We found 17
transcription factor hub genes that are likely regulators of lipid metabolism. Finally, we inferred
expanded and contracted families and correlated these patterns with oil content found in different
legume species. In summary, our results do not only shed light on the evolution of oil metabolism
genes in soybean, but also present multifactorial evidence supporting the prioritization of candidates
for crop improvement.
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1. Introduction

The Fabaceae family (legumes) is a large group of flowering plants, with around 19,500 species. This
family is remarkably diverse and stands out as the second most economically important family of
crop plants after grasses (Azani et al. 2017; Thorne 2002). The notable grain legumes — such as
chickpea (Cicer arietinum), pea (Pisum sativum), peanut (Arachis hypogaea), common bean
(Phaseolus vulgaris), and soybean (Glycine max) — play a critical role in human and animal nutrition,
as well as in industrial applications. For example, peanut and soybean are rich in oil and protein,
while pea and common bean are rich in starch and protein (Aziziaram et al. 2021; Pattee et al. 1983;
Shen, Hong, and Li 2022; Yao et al. 2020). Interestingly, oil content among legume species can vary
dramatically, from ~2% to ~50% in common bean and peanut, respectively. Despite the differences in
seed oil content, soybean and common bean are related crops that diverged approximately ~19
million years ago (mya) (Lavin, Herendeen, and Wojciechowski 2005; StefanoviC et al. 2009). These
species shared a whole-genome duplication event (WGD, also referred to as polyploidization) ~58
mya, while a second WGD (~13 mya) occurred in the common ancestor of the Glycine genus, making
soybean a suitable model for investigating the effects of WGD on gene family evolution (Shoemaker,
Schlueter, and Doyle 2006).

Gene and genome duplications have been extensively associated with plant adaptation and
diversification (Van de Peer, Mizrachi, and Marchal 2017; Zhuang et al. 2022). Gene duplication may
occur through mechanisms such as WGDs or small-scale duplications (SSD) (Ren et al. 2018; Flagel
and Wendel 2009). WGDs also played a role in the domestication of plants that eventually became
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modern crops, such as wheat and maize (Carretero-Paulet and Van de Peer 2020; Hake and
Ross-lbarra 2015; Rahman et al. 2020). WGDs are typically followed by genome fractionation and
rearrangement, restoring bivalent chromosome pairing and disomic inheritance — a process also
known as diploidization (Z. Li et al. 2021). Intriguingly, the prevalence of WGDs is significantly greater
in plants than in other lineages of multicellular organisms (Panchy, Lehti-Shiu, and Shiu 2016). Gene
duplicates that survive diploidization form families and often diverge at the sequence, epigenetic,
and transcriptional levels (Freeling 2009), resulting in neofunctionalization or subfunctionalization.
Neofunctionalization involves the acquisition of new functions, while subfunctionalization results in
the division of the original function of the gene ancestor among its copies (Freeling 2009; Freeling,
Scanlon, and Fowler 2015). Over time, gene families can gain or lose genes, generating a wealth of
genetic material for adaptation (Cheng et al. 2018; Moharana and Venancio 2020; Renny-Byfield and
Wendel 2014; Soltis et al. 2009). A comprehensive analysis of gene family evolution and expression
data can contribute to the selection of candidates to improve oil-related traits. A remarkable
example was the development of a lipoxygenase-free soybean, leading to improvements in the
palatability of soybean oil and protein products. This advancement was achieved through the
implementation of a pooled CRISPR-Cas9 system specifically targeting three soybean lipoxygenase
genes from a set of 36 previously reported candidates (J. Wang et al. 2020; H. Song et al. 2016).

Although substantial efforts have been dedicated to the investigation of pivotal genes
involved in oil content and quality (Borisjuk et al. 2005; B. Chen et al. 2020; Kanai et al. 2019;
Li-Beisson et al. 2017; L. Lu et al. 2021; X. Lu et al. 2016; Manan et al. 2017; Marchive et al. 2014;
Meinke, Chen, and Beachy 1981; Nguyen et al. 2016; Pham, Shannon, and Bilyeu 2012; Sandhu et al.
2007; Turquetti-Moraes et al. 2022), the evolution of these gene families and how WGDs shaped
them remain largely unexplored. In the present study, we have undertaken an in-depth exploration
of gene families associated with oil traits in legumes, with particular emphasis in soybean. We
observed that the increase in soybean oil content was deeply impacted by the expansion of gene
families shared with common bean. In addition, we hypothesize that most genes associated with
lipid and fatty acid (FA) metabolism reverted to single copy after the ~58 mya WGD and duplicated at
the ~13 mya WGD. In contrast, genes responsible for regulatory functions were often retained as
duplicates in both species after the ~58 mya WGD and duplicated again in the ~13 mya WGD.
Further, TAG degradation genes were two-fold more expressed in common bean than in soybean.
Co-expression analysis uncovered 17 transcription factor (TF) hub genes that are strong candidate
regulators of lipid metabolism. Finally, we inferred expanded and contracted orthologous groups and
correlated these patterns with the oil contents found in different legume species. Our study expands
the knowledge of several metabolic pathways, pinpoint key TFs, and show evidence for novel gene
candidates involved in oil biosynthesis. Together, the results presented here also bear the potential
to have practical applications by presenting the most promising targets to improve soybean oil
content and quality according to the current landscape of genomics data.

2. Results and discussion

2.1 Soybean genes involved in oil traits belong to families shared with common bean

We selected 2,176 soybean genes related to oil traits as a reference to find candidate homologous
gene families (Supplementary Table 1; see materials and methods). This set of genes, henceforth


https://www.zotero.org/google-docs/?9O1qvx
https://www.zotero.org/google-docs/?9O1qvx
https://www.zotero.org/google-docs/?ruucJP
https://www.zotero.org/google-docs/?LbOXDo
https://www.zotero.org/google-docs/?UMwOtH
https://www.zotero.org/google-docs/?O3lYl3
https://www.zotero.org/google-docs/?O3lYl3
https://www.zotero.org/google-docs/?lJ79sr
https://www.zotero.org/google-docs/?lJ79sr
https://www.zotero.org/google-docs/?TOD9Ij
https://www.zotero.org/google-docs/?JZ1eFF
https://www.zotero.org/google-docs/?JZ1eFF
https://www.zotero.org/google-docs/?JZ1eFF
https://www.zotero.org/google-docs/?JZ1eFF
https://doi.org/10.1101/2024.05.02.592228
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.02.592228; this version posted May 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

called oil genes, are distributed along 567 soybean homologous families, out of which 562 contain at
least one common bean homolog (Supplementary Table 2). Only five families do not have a common
bean homolog (HOMO05D015518, HOMO05D006604, HOMO05D031525, HOMO05D130031, and
HOMO05D039847) and include some genes (e.g. Glyma.02G006100, Glyma.02G281500,
Glyma.08G064400, Glyma.16G133700, and Glyma.20G068000) reported as candidates to improve oil
quality in soybean (Niu et al. 2020) (Supplementary Table 1; Supplementary Figure 1). These results
indicate that the basic genetic machinery responsible for oil accumulation in soybean was already
present in its last common ancestor shared with common bean, strongly suggesting that oil richness
was acquired via expansions or contractions of extant gene families, mutations, and changes in
transcriptional and epigenetic regulation, which were at least partially influenced by anthropogenic
processes such as domestication and breeding (Turquetti-Moraes et al. 2022; J. Wang et al. 2020; M.
Zhang et al. 2022).

About 14.57% (7,706 of 52,872) of the soybean genes and 15.44% (4,236 of 27,433) of the
common bean genes belong to oil homologous families (Supplementary Table 3). These genes are
enriched in functional terms related to metabolism and regulation of gene expression in both species
(Supplementary Table 4), particularly TFs (e.g. GmDof4: Glyma.17G081800, GmDof11:
Glyma.13G329000, GmMYB73: Glyma.06G303100, GmDREBL: Glyma.12G103100); response to
oxidative stress (e.g. peroxidases: Glyma.19G066200, Glyma.07G263000); and metabolism of lipid
and FAs (e.g. phospholipase: Glyma.03G159000, desaturase: Glyma.13G038600). Interestingly, the
overexpression of GmMYB73 promotes lipid accumulation in soybean and its ectopic expression with
other TFs (GmDof4, GmDof11, and GmDREBL) increased seed size/weight in transgenic Arabidopsis
(Duan et al. 2023; Y.-F. Liu et al. 2014). In addition, 259 and 42 GO or Interpro terms were enriched
only in soybean and common bean, respectively. For example, in soybean, we observed enrichment
of terms including lipid glycosylation, FA and lipid metabolic process, and TAG biosynthetic process.
On the other hand, in common bean, we found enrichment for lipid transport, microtubule
nucleation and polymerization, and protein domains of lipoxygenases (Supplementary Table 4).

We investigated changes in sizes of the 562 gene families containing soybean and common
bean genes (Figure 1). Using soybean as a reference, 2.1% (12), 91.5% (514), and 6.4% (36) of the
families lost, gained, and had their sizes unchanged (i.e. neutral), respectively (Supplementary Table
2). Loss families were enriched in lipid metabolic process, especially to protein domains related to
phospholipase/lysophospholipase. Neutral families were enriched in primary metabolic process,
proteolysis, phospholipid biosynthetic processes, lipoate metabolic processes, lipid transport, and
some enzyme domains or subunits (e.g. biotinyl protein ligase, FA desaturase, and seed storage
helical domain) (Supplementary table 5). In gain families, by far the major group, we identified two
scenarios: 25.5% (131 families) exhibited one common bean gene to two or more in soybean (1:2+),
while 74.5% (383 families) had at least two common bean genes to three or more soybean homologs
(2:3+). In summary, 1:2+ families were enriched in lipid and FA metabolism genes, while those
families with duplications in common bean and new duplications in soybean (2:3+) were enriched in
regulatory processes (e.g. gene expression and RNA metabolism) and response to stress
(Supplementary Table 2; Supplementary Table 5). The 1:2+ families showed one peak in lower K,
values, while the 2:3+ families had two peaks. The peaks in both distributions correspond to the
expected WGD K, ages (Figure 1). Hence, we propose that most genes associated with lipid and FA
metabolism (enriched in 1:2+ families) reverted to single copy after the ~58 mya WGD and duplicated
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at the ~13 mya WGD. In contrast, genes responsible for regulatory functions (enriched in 2:3+
families) were often retained as duplicates in both species after the ~58 mya WGD and duplicated
again in the ~13 mya WGD. Although one cannot rule out the possibility of extreme sequence
divergence and neofunctionalization, these results corroborate our hypothesis that the increase in oil
content in soybean was deeply impacted by gene families shared with common bean that
independently expanded in the Glycine WGD event .
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Figure 1. Number of soybean and common bean oil-related genes in different relative family size categories.
Inset: number of families in each category. The two categories of gain families (1:2+ and 2:3+) are highlighted,
alongside their respective K density plots. Gain: families with more genes in soybean (Gma) than in common
bean (Pvu). Loss: families with less genes in Gma than in Pvu. Neutral: families with the same number of genes
in both species.

2.2 Candidate oil families and expression patterns of genes from triacylglycerol (TAG) pathways

In plants, TAGs can be synthesized by two distinct routes. The classical Kennedy pathway involves the
sequential acylation of glycerol-3-phosphate (G3P) (Figure 2.A). G3P is activated through acylation by
acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT), leading to the formation of lysophosphatidic
acid (LPA); another acyl group is added to LPA by acyl-CoA:lysophosphatidic acid acyltransferase
(LPAAT), forming phosphatidic acid (PA). PA is then dephosphorylated by PA phosphatase (PAP),
leading to the formation of diacylglycerol (DAG). Finally, acyl-CoA:diacylglycerol acyltransferase
(DGAT) adds the third acyl group to DAG, forming TAG. Alternatively, TAGs can be synthesized
through the complex pathway, in which DAG originates from preexisting membrane lipids such as
phosphatidylcholine (PC) through different pathways (Figure 2.A) (Bates 2016; Bates et al. 2009;
Bates, Stymne, and Ohlrogge 2013). Over 90% of the acyl chains esterified to the glycerol backbone
in developing soybean embryos originate from the complex pathway (Bates et al. 2009; Bates and
Browse 2012). Hence, manipulating FA composition and seed oil content in soybean requires a deep


https://www.zotero.org/google-docs/?2hu8bz
https://www.zotero.org/google-docs/?2hu8bz
https://www.zotero.org/google-docs/?4Z8BEh
https://www.zotero.org/google-docs/?4Z8BEh
https://doi.org/10.1101/2024.05.02.592228
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.02.592228; this version posted May 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

understanding of these pathways. Furthermore, given its paleopolyploid genome, pinpointing the
paralogs that are truly involved in seed lipid metabolism imposes an additional layer of complexity.
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Figure 2. Major enzymes involved in DAG/TAG synthesis and degradation. A. Reactions involved in TAG
degradation and formation from FAs. Blue: Kennedy pathway (gray arrows indicate the source of FA to feed the
pathway). Green: complex pathway; the dashed arrow indicates a reaction PLD-PAP to form DAG from PC; the
arrows from CPT and PDCT indicate a reversible reaction for the formation of PC-derived DAG. Orange: TAG
degradation pathway. B. Expression of soybean and common bean genes encoding enzymes in each step of the
pathways from panel A. Asterisks (*) denote unannotated genes from the HOMO5D000792 family, which
comprises genes associated with TAG synthesis and degradation pathways. C. Venn diagram of gene counts in
TAG homologous families and their seed expression in Gma and Pvu. Abbreviations: G3P: glycerol-3-phosphate;
GPAT: acyl-CoA glycerol-3-phosphate acyltransferase; LPA: lysophosphatidic acid; LPAAT: acyl-CoA
lysophosphatidic acid acyltransferase; PA: phosphatidic acid; PAP: phosphatidic acid phosphatase; DAG:
diacylglycerol; DAG1: DAG from the Kennedy pathway; DAG2: PC-derived DAG; DGAT: acyl-CoA diacylglycerol
acyltransferase; TAG, triacylglycerol; PC Pool: phosphatidylcholine pool; PLC: phospholipase C; PLD:
phospholipase D; CPT: cytidine diphosphate-choline diacylglycerol cholinephosphotransferase; PDCT:
phosphatidylcholine  diacylglycerol  cholinephosphotransferase;  PDAT: phospholipid  diacylglycerol
acyltransferase; TGL1: triacylglycerol lipase; HSL: hormone-sensitive lipase; 2-MAG: 2-monoacylglycerol
acylhydrolase; FA: fatty acid; Pvu: common bean; Gma: soybean; TPM: transcripts per million; Seed-H: heart
stage seeds (~7 mg); Seed-1: state 1 seeds (~50 mg) ; Seed-2: stage 2 seeds (~150 mg). TAG Syn: TAG synthesis
pathway; TAG Deg: TAG degradation pathway; SE: seed expression (>=1 TPM); SE 8 TPM: seed expression (>=8
TPM). The genes in this heatmap can be found in Supplementary Table 7 and Supplementary Table 8. Venn
diagram was generated using Venn diagram (https://bioinformatics.psb.ugent.be/webtools/Venn/).
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By meticulously curating homologous families from SoyCyc TAG pathway genes
(soybase.org), we found 352 TAG genes in soybean (Supplementary Table 6), which are distributed in
43 families. These families include 204 and 116 genes with seed expression (TPM > 1) in soybean and
common bean, respectively (Figure 2.B, Supplementary Table 7, Supplementary Table 8). We found
one familyy, HOMO5D000792, comprising genes belonging to TAG synthesis (e.g. DGAT:
Glyma.16G051200, Glyma.16G051300) and degradation (e.g. 2-MAG: Glyma.03G243700,
Glyma.19G241200). Other five HOMO05D000792 members that are expressed in seeds encode WD
repeat-containing proteins with unknown functions (e.g. Glyma.19G241800, Glyma.03G244500,
Glyma.10G159000, Phvul.006G097800, and Phvul.006G098200). We kept these five genes in both
TAG biosynthesis and degradation pathways (asterisk marks in Figure 2.B, Supplementary Table 7 and
Supplementary Table 8).

The families encoding enzymes from each step of the TAG pathways presented at least one
gene with expression of ~10 TPM in soybean seeds, except for phospholipid diacylglycerol
acyltransferase (PDAT) (Figure 2.B). Thus, in order to select the most promising candidate genes, we
adopted a threshold of 8 TPM (Supplementary Figure 2), which allowed us to find 33 and 11 (~3:1)
TAG synthesis and 30 and 21 (~1.4:1) TAG degradation genes expressed in soybean and common
bean seeds, respectively (Figure 2.C, Supplementary Table 7 and Supplementary Table 8). These
results suggest both a relative expansion in the TAG biosynthesis and an erosion of TAG degradation
components in soybean when compared to common bean, even if we consider the 2:1 ratio
expected because of the ~13 mya WGD. We also analyzed the expression of these genes in all plant
parts (Supplementary Figure 3, Supplementary Figure 4). Four GmGPATs and only one PvGPAT had at
least 8 TPM in seeds (Glyma.07G069700, Glyma.05G131100, Glyma.08G085800, Glyma.09G119200,
Phvul.010G099700) (Figure 2.B). Liu et al. showed that only GmGPAT9-2 (Glyma.09G119200) out of
sixteen tested GmGPATs with high acyltransferase activity may not play a direct role in TAG
formation. However, they found that seed-specific expression of GmGPAT9-2 in Arabidopsis increased
the proportion of arachidic acid (C20:0) and erucic acid (C22:1) without an increase in the total oil
content (H. Liu et al. 2022). Except for Glyma.08G085800, the GmGPATs mentioned above were
corroborated by Liu et al. However, we found that this gene is highly expressed in seeds, specially in
embryo and cotyledons (Figure 2.B, Supplementary Table 7), supporting its role in TAG synthesis.

In a second group of transferases, LPAATs regulate the synthesis of PA, an intermediate in the
formation of membrane, signaling, and storage lipids (Kim and Wang 2020). From the four GmLPAATs
reported here (Figure 2.B, Supplementary Table 7), Glyma.10G095500 was highly expressed in
cotyledons, corroborating previous studies (X. Wang et al. 2019). Glyma.02G181300 and
Glyma.12G163500 are within QTL associated to phosphatidylcholine (qPC-2.1) and
phosphatidylinositol (qPI-12.1), respectively (Anshu et al. 2022) (Supplementary Table 7). Finally,
DGAT forms an ester linkage between a fatty acyl-CoA and the DAG free hydroxyl group (G. Chen et
al. 2022). From a set of 26 recently studied GmDGATs (S. Zhao et al. 2023), we found six showing high
expression in seeds (Glyma.16G051200, Glyma.01G156000, Glyma.16G115700, Glyma.13G118300,
Glyma.09G065300, and Glyma.13G106100). All these GmDGATs appear to be involved in TAG
assembly, although DGAT1s such as GMDGAT1A (Glyma.13G106100) and GMDGATI1C
(Glyma.09G065300) influence oil content and quality more prominently (Torabi et al. 2021; J. Zhao et
al. 2019).
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The complex pathway for DAG/TAG synthesis (Figure 2.A) is influenced by phospholipase C
(PLC), phospholipase D (PLD) associated with PAPs (PA phosphatase), PDAT, and CPT or
phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT). PLC hydrolyzes PC to DAG and
phosphocholine, while PLD hydrolyses the choline head-group of PC and forms PA, an intermediate
to the synthesis of other phospholipids. Subsequently, PAP removes the phosphate head-group of PA,
converting it to DAG (Figure 2.A) (Bates, Stymne, and Ohlrogge 2013; Lee et al. 2011; W. Yang et al.
2017; Wakelam 1998). In soybean seeds, PLD is generally more expressed than PLC (Figure 2.B),
although the PLCs Glyma.04G196700 and Glyma.06G169100 may be relevant candidates due to their
endosperm expression (Figure 2.B). From the six GmPLD genes analyzed here (Glyma.01G162100,
Glyma.07G031100, Glyma.08G211700, Glyma.11G081500, Glyma.13G364900, Glyma.15G267200),
PLDa1l (Glyma.13G364900) is a promising target considering its high expression in cotyledons (~20
TPM). Further, suppression of PLDa in soybean results in decreased levels of polyunsaturated FAs in
TAG (Lee et al. 2011), suggesting a flow from PC to TAG via PLD-PAP without PDCT. In addition,
GmPLDa3 is also highly expressed in seeds (Glyma.08G211700: cotyledon expression of ~28 TPM)
and was reported as associated with malate (J.-Y. Liu, Li, et al. 2020). Considering the expression of
GmPAPs (Figure 2, Supplementary Figure 3) we suggest Glyma.10G270000 as a promising candidate
to integrate this route.

Other potential routes for DAG2/TAG formation involves the reverse activity (i.e. PC to DAG)
of PDCT or amino alcohol phosphotransferase (AAPT) also known as cytidine
diphosphate-choline:diacylglycerol cholinephosphotransferase (CPT). These enzymes synthesize
unique DAG and PC molecular species. PDCT catalyzes the interconversion between PC and DAG,
contributing to the enrichment of polyunsaturated FAs in TAGs. The conversion of PC to DAG varies
even between closely related species. PDCT transfers ~40% of oleic acid from PC to DAG in
Arabidopsis against ~18.2% in canola (S. Bai et al. 2020; C. Lu et al. 2009). We propose the GmPDCTs
Glyma.07G029800 and Glyma.08G213100 as interesting candidates because of their high expression
in seeds (Supplementary Table 7). CPTs GmAAPT1 (Glyma.02G128300) and GmAAPT2
(Glyma.12G081900) were recently reported as crucial enzymes in TAG metabolism (Y. Bai et al. 2021),
which is in line with the high GmAAPT2 expression in seeds. Finally, in addition to DGAT, PDAT is also
involved in TAG assembly. GmPDAT (Glyma.13G108100) catalyzes the transfer of a FA moiety from
the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-DAG, forming TAG and a
lysophospholipid (Pan, Peng, and Weselake 2015). PDATs often have contrasting expression profiles
in different plant species (Torabi et al. 2021; Pan, Peng, and Weselake 2015). For example, PDAT was
more expressed in plants that accumulate epoxy and hydroxy FAs (e.g. Vernonia galamensis and
Erysimum lagascae) than in soybean and Arabidopsis (R. Li, Yu, and Hildebrand 2010). GmPDAT has
been reported as associated with acyl-lipid metabolism and likely interacts with GmDGAT1 (Xu et al.
2018), although further studies are warranted to better understand this interaction and its roles in
TAG synthesis (J.-Y. Liu, Zhang, et al. 2020).

TAG degradation during seed development is also important for the oil content of mature
seeds (Ding et al. 2019). Strikingly, TAG degradation genes exhibited significantly higher expression
levels in common bean (mean ~47 TPM) than in soybean (mean ~19 TPM). Furthermore, these genes
exhibit high expression levels even in the early stages of seed development. We have identified TAG
degradation genes that could be tested in soybean, out of which we highlight GmTGL1s
(Glyma.01G067200, Glyma.02G043300, Glyma.06G294900, Glyma.04G255500, and
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Glyma.09G233900) (Supplementary Figure 3). In common bean, certain TGL1 genes, such as
Phvul.001G168200, Phvul.011G003600, Phvul.011G088700, Phvul.005G114300, and
Phvul.010G098300 were highly expressed in seeds (Supplementary Figure 4). Notably,
Phvul.011G003600 demonstrated consistently high expression across all seed stages. These findings
suggest that the high expression of TAG degradation genes is a key factor to the lower oil
accumulation in common bean. In conclusion, achieving high TAG levels in seeds requires an intricate
system involving reduced TAG degradation, increased de novo FA synthesis, increased DAG
production, and a flow from PC to combine saturated and unsaturated chains. Investigating the
concerted action of these genes is key for enhancing oil content and quality in soybean seeds.

2.3 Identification of oil candidate genes with high expression in seeds

In addition to the detailed TAG pathways reported above, we applied the same threshold of 8 TPM in
seeds to mine new genes potentially involved in oil metabolism. Approximately 50.7%
(17,086/33,684) and 50.2% (8,941/17,805) of the genes expressed in seeds or seed subregions (i.e.,
endosperm, cotyledon, embryo or seed coat) showed at least 8 TPM in soybean and common bean,
respectively (Supplementary Table 9, Supplementary Table 10). Expectedly, these genes are enriched
in the metabolism of various molecules such as nitrogen, peptide, amino acid, ribose phosphate,
nucleotide, ATP, as well as in translational elongation, protein transport, and gene expression. Out of
the 17,086 genes highly expressed in soybean seeds, 562 were seed-specific and are enriched in
defense responses and negative regulation of protein metabolic processes (e.g. proteolysis and
peptidase activity), essential during seed development and other processes (Santamaria et al. 2014)
(Supplementary Table 11). Considering only genes from candidate oil homologous families, we found
1.64 times more soybean (2,356) than common bean (1,436) genes expressed in seeds
(Supplementary Table 9, Supplementary Table 10). These genes are distributed in 510 homologous
families that can be classified in three categories: |. 402 families with at least one member expressed
in soybean and common bean; Il. 90 families with members expressed in soybean but not in
common bean and; Illl. 18 families with members expressed in common bean but not in soybean
(Supplementary Table 12).

The 402 homologous families from category | comprise 2,198 and 1,413 genes expressed in
soybean and common bean, respectively. These families are enriched in a myriad of functions
(Supplementary Table 11) and also encompass strong candidates for oil accumulation, such as
GmSEIPIN1A (Glyma.09G250400), involved in TAG accumulation and lipid droplet assembly,
maintenance, and proliferation (Pyc et al. 2021; Qi et al. 2023; Taurino et al. 2018).

The second category comprises 90 families containing genes expressed in soybean but not in
common bean seeds. These genes emerge as promising candidates to account for the contrasting
lipid contents found in soybean and common bean. Interestingly, these families are enriched in
various lipid metabolism processes (e.g. phospholipid/glycerol acyltransferase and CDP-alcohol
phosphatidyltransferase) (Supplementary Table 11). Although most of these genes are expressed in
different plant parts, 24 are predominantly expressed in seeds and seed subregions, including lipases
(Glyma.03G256900 and Glyma.19G255100), Zinc-finger-CW domain proteins (Glyma.14G204400 and
Glyma.18G052100), and a sterol dehydrogenase (Glyma.06G058200) (Supplementary Figure 5). In
addition, these families also comprise poorly characterized genes (HOMO05D015518:
Glyma.20G068000, HOMO5D025622: Glyma.05G011200, HOMO05D031525: Glyma.08G064400,
HOMO05D039847: Glyma.02G281500, HOM05D130031: Glyma.02G006100) reported as candidates to


https://www.zotero.org/google-docs/?Pflmoe
https://www.zotero.org/google-docs/?J218HY
https://doi.org/10.1101/2024.05.02.592228
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.02.592228; this version posted May 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

improve oil content and quality (Niu et al. 2020; Fang et al. 2017) (Supplementary Figure 5). Together,
these results support the recruitment of multiple genes to soybean seed metabolism after the split
between soybean and common bean.

The third category comprises 18 homologous families with genes expressed in common bean
but not in soybean seeds (Supplementary Figure 6). For example, the TFs Phvul.007G171333,
Phvul.006G179900, and Phvul.009G149200 are highly expressed in the heart seed stage. The
phosphatidylinositol PLC (Phvul.009G025300), associated with plant immunity (Tasma et al. 2008),
also appears to play roles throughout seed development. In general, genes from this category
suggest a deviation from TAG storage (Supplementary Figure 6). For example, Phvul.002G054200
encodes an enzyme with domains associated with wax ester synthesis and acyl group transfer,
supporting a role in lipid modification instead of FA storage. These genes may drive FA metabolism
towards structural lipid modification or secondary metabolism rather than storage.

About 3.5% (83) of the soybean oil candidate genes showed seed specific expression
(Supplementary Table 9). In order to have a more conservative estimate, we retrieved the tissue
specificity metrics from a broader and more heterogeneous set of samples available at the Soybean
Expression Atlas (Almeida-Silva, Pedrosa-Silva, and Venancio 2023). These 83 genes were enriched in
protein domains such as GDSL lipase/esterase and MADS-box TFs (Figure 3, Supplementary Table 11).
GDSL-type esterase/lipase proteins belong to the SGNH hydrolase superfamily that can hydrolyze
various substrates, including thioesters, acyl esters, phospholipids, and amino acids (Akoh et al. 2004;
Su et al. 2020). Out of the 194 previously identified GmGDSL-type genes (Su et al. 2020), eight were
found here as seed-specific and are strong candidates to improve oil content (Figure 3). MADS-box
TFs are widely known for their roles in flowering, growth, and development (Shu et al. 2013; Zeng et
al. 2018). Thirteen GmMADS-box TFs were preferentially expressed in seeds (Figure 3). Studies in
Arabidopsis and oil palm (Elaeis guineensis Jacq.) support MADS-box TFs as important regulators of
lipid metabolism and responsible for a decreased accumulation of polyunsaturated fatty acids (S.-Y. Li
et al. 2020; Sun et al. 2020). GDSL and MADS-box genes account for 25.3% of the soybean
seed-specific genes with at least 8 TPM. Interestingly, the MADS-box Glyma.04G257100 clusters with
the sucrose/hexose transporter GmSWEET24/GmSWEET10b (Glyma.08G183500) (Figure 3), known
to influence the distribution of sugars from the seed coat to the embryo and playing a crucial role in
key soybean seed traits, such as size, oil and protein contents (S. Wang et al. 2020; S. Lu et al. 2022).
We also found seed-specific expression of GmMSWEET23 (Glyma.08G077200), GmSWEET4
(Glyma.04G198400), and GMSWEET39/GmSWEET10a (Glyma.15G049200), which were also
associated with seed oil and protein content (Hooker et al. 2022; C. Liu et al. 2023; H. Yang et al.
2019; Boyang, Wenlong, and Caiying 2023). Finally, we highlight the seed-specific expression of the
gibberellin  20-oxidases (GMGA200X) Glyma.03G019800 and Glyma.07G081700 (Figure 3).
GmGA200X overexpression in A. thaliana has been shown to increase seed weight and oil (X. Lu et
al. 2016). In this context, it is important to mention that seed size and weight have been related to oil
content and several genes associated with these traits have been identified in soybean (Alam et al.
2022; ). Li et al. 2019).
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Figure 3. Expression of oil candidate genes with preferential expression in seeds. Tissue specificity metrics were
obtained from the Soybean Expression Atlas (Almeida-Silva, Pedrosa-Silva, and Venancio 2023). Annotations
were retrieved from Phytozome (V13) and Soybase.org. TPM: transcripts per million. Black circle marks the
cluster with the GmSWEET24 and MADS-box genes discussed in the text.
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2.4 Co-expression network of soybean genes with high seed expression from gain families

Aiming to better characterize novel seed oil genes, we used BioNERO (Almeida-Silva and Venancio
2022)(see methods for details) to compute a co-expression network (Almeida-Silva et al. 2020;
Schaefer, Michno, and Myers 2017) of the gain-family genes with at least 8 TPM in seeds. Out of the
2,269 input genes, 92.9% (2,107) were distributed across 12 co-expression modules (Supplementary
Figure 7). Except for the green module, we observed functional enrichment in all other modules:
signal transduction and molecular transport, such as lipid transport (blue); cellular process,
particularly photosynthesis and oil body stabilization (grey); cellular stress responses (greenyellow,
brown); gene expression regulation (purple, magenta); multicellular organism development, cellular
signaling and cytoskeletal dynamics. (tan, light green, dark red); protein processes/activity (light
yellow); and lipid and FA metabolism (cyan); (Supplementary Table 13).

The cyan module comprises 33 TFs (Supplementary table 14) and important genes involved
in seed oil quality and accumulation, such as GmFATA1A (Glyma.18G167300), GmFATA1B
(Glyma.08G349200), GmMDGATIC (Glyma.09G065300), biotin  carboxyl carrier protein
(Glyma.18G243500, Glyma.09G248900), biotin carboxylase (Glyma.08G027600, Glyma.05G221100),
ketoacyl-ACP  synthase (KASI: Glyma.08G084300; KASIl: Glyma.17G047000; KAS |lll:
Glyma.09G277400), and Long-chain  Acyl-Coa  Synthetase (LACS: Glyma.06G112900,
Glyma.13G079900, Glyma.20G060100) (Torabi et al. 2021; X. Wang et al. 2019). Glyma.07G110900
and Glyma.06G122600 encode a cytochrome P450 and an alcohol dehydrogenase, respectively. A
previous study suggested that relative expression of these two genes promote the synthesis of
linolenic acid in mature soybean seeds (X. Wang et al. 2019). In addition, we encountered four
unannotated genes (Glyma.12G105300, Glyma.10G277900, Glyma.04G044200, and
Glyma.05G141600) with potential activity in lipid metabolism (Supplementary Table 14).

Aiming to identify genes that may play significant roles in oil regulation and synthesis we
analyzed modules that exhibit closest co-expression with the cyan module, i.e., darkred, green, and
magenta (Supplementary Figure 8). We identified 15, 6 and 19 TF families containing 63, 8 and 52
genes distributed in darkred, green and magenta modules, respectively (Supplementary Table 14).
Approximately 25% (31) of them (Glyma.02G016100, Glyma.02G274600, Glyma.02G303800,
Glyma.04G010300, Glyma.04G044900, Glyma.04G050300, Glyma.05G098200, Glyma.05G140400,
Glyma.05G175600, Glyma.06G079800, Glyma.08G132800, Glyma.08G360200, Glyma.09G241800,
Glyma.10G016500, Glyma.11G242200, Glyma.12G040600, Glyma.13G153200, Glyma.13G202300,
Glyma.14G041500, Glyma.14G071400, Glyma.14G205600, Glyma.16G011200, Glyma.16G012600,
Glyma.16G152700, Glyma.17G096700, Glyma.17G132600, Glyma.17G157600, Glyma.17G174900,
Glyma.18G014900, Glyma.19G022200, Glyma.20G200500) were previously reported as candidates
for oil accumulation (Niu et al. 2020). Interestingly, within the magenta module, we found two NF-Y
TFs (Glyma.12G236800 and Glyma.13G202300) as potential regulators of seed traits. Although NF-Y
TFs are important for oil biosynthesis in E. guineensis (Yeap et al. 2017), their roles in soybean lipid
metabolism remain unclear. Understanding the effects of gene silencing on TF regulation is also
important. For example, we found five TFs (Glyma.01G081100, Glyma.04G010300,
Glyma.14G112400, Glyma.17G096700; in darkred and Glyma.16G179900; in magenta) potentially
regulated by DNA methylation during seed maturation (An et al. 2017).
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We identified 189 hubs (Supplementary Table 14), of which 3.17% (6) are involved in TAG
pathways (GmGPAT: Glyma.07G069700, GmPLD: Glyma.07G031100, PLDa1l: Glyma.13G364900, and
TGL1: Glyma.14G050600, Glyma.20G127800). The WD-repeat Glyma.03G244500 discussed in section
2.2 was also found as a hub and showed a remarkable expression correlation (~0.8) with DGAT2A
(Glyma.01G156000) (Supplementary Table 15). A recent study showed that DGAT2A enhances oil and
linoleic acid contents in soybean seeds (Jing et al. 2021), highlighting the potential involvement of
Glyma.03G244500 in TAG synthesis. In addition, we found three hubs encoding proteins of unknown
function in the modules blue (Glyma.11G222000), green (Glyma.10G222300), and greenyellow
(Glyma.13G092300), all connected to TFs and lipid metabolism genes (Supplementary Table 15).
Interestingly, Glyma.13G092300 was previously reported as a candidate to improve oil quality (Niu et
al. 2020). This gene is connected with MOTHER-OF-FT-AND-TFL1 (GmMFT: Glyma.05G244100;
Supplementary Figure 9), which was proposed as a major gene of the classical QTL gOil-5-1 that
regulates seed oil and protein content (Fang et al. 2017; J. Huang et al. 2020; Zhou et al. 2015; Cai et
al. 2023). The connections of these three hubs with relevant genes to lipid metabolism and TFs
support their importance in oil-related traits. Finally, we found 17 TF hub genes belonging to ten
families, which might constitute bona-fide regulators of transcriptional programs involved in oil
accumulation (Supplementary Table 14).

2.5 Conservation of oil candidate genes in legumes

We employed Orthofinder (Emms and Kelly 2019) to investigate the conservation of candidate genes
across 30 legume species (Table 2, Supplementary Table 16). Approximately 94.7%
(1,086,739/1,147,876) of the legume genes are distributed in 46,003 orthologous groups (OGs).
Around 5.5% (63,594) of the genes are distributed in 12,249 species-specific OGs (Supplementary
Table 16, Supplementary Table 17). M. truncatula, P. sativum, L. japonicus, A. hypogaea, and S. tora
had the greatest frequencies of species specific OGs, while A. hypogaea, A. ipaensis, and L.
angustifolius exhibited the highest frequencies of species-specific duplications (Supplementary
Figure 10).

We used the 2,269 soybean gain-family genes with at least 8 TPM in seeds as references to
find 1,104 candidate OGs containing 67,577 genes. In general, approximately 47.7% (527) of the OGs
are shared by all species (Supplementary Table 18). Expectedly, these core legume genes are
enriched in essential metabolic pathways such as phosphatidate metabolism, glycolysis, tricarboxylic
citric acid (TCA) cycle, ureide biosynthesis, and other energy metabolism pathways. The remaining
52.3% (577) OGs are enriched in stress response signaling, antioxidant defense mechanisms, and
synthesis of bioactive compounds with potential medicinal applications, such as divinyl ether,
chlorogenic acid, and justicidin (Grechkin 2002; A. Gupta et al. 2022; Hemmati and Seradj 2016)
(Supplementary Table 19).

Three OGs (0G0045944, 0G0035121 and 0G0018534) contained genes only from two
species known for their high oil content, namely soybean and peanut. The genes in these OGs are
annotated as amidases (0G0045944: Glyma.08G054300, Glyma.08G197900); and auxin response
factor - ARF (OG003512: Glyma.07G134900, AVLU3S; and 0G0018534: Glyma.12G153700, AQQ3NO,
FQOW8IJ, K35AKO0, MJ6K6I, NZ22HG, RIMX1M, RZFM32, YBANLA, YS88LH, YTF73Z). Interestingly, auxin
can alter FA content and composition in soybean and microalgae (W. Liu, Hildebrand, and Collins
1995; Jusoh et al. 2015). Thus, these ARF genes into 0G003512 and 0G0018534 may be candidates
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to influence seed development and oil content. We also investigated the 1,104 OGs mentioned
above for the presence of TAG pathway genes. We found 2,397 genes distributed across 41 OGs, out
of which 19 are shared by all species (Supplementary Table 18). Among OGs not shared by all
species, 0G0027103 and 0G0018208 contain fewer than 10 species. 0G0027103, with HSL genes, is
specific to G.soja and G.max; while 0G0018208, with PLD genes, is specific to A. hypogaea, C.
fasciculata, G. soja, L. japonicus, M. truncatula, N. schottii, P. sativum and G. max.

Table 2. Plant species used in this study, genome information and data source.

Species Assembly Genome size  Publication Database
Arachis duranensis V2.0 1.25Gb (Garg et al. 2022) Legumepedia
Arachis hypogaea V1.0 2.7Gb (Bertioli et al. 2016) Phytozome 13
Arachis ipaensis V1.0 1.56 Gb (Q. Lu et al. 2018) DRYAD
Cajanus cajan V2.0 833 Mb (Garg et al. 2022) Legumepedia
Cercis canadensis Vi 342 Mb (Griesmann et al. 2018)  GigaDB
Chamaecrista fasciculata Vi 429 Mb (Griesmann et al. 2018)  GigaDB
Cicer arietinum V2.0 738 Mb (Garg et al. 2022) Legum i
Cicer reticulatum _ 416 Mb (S. Gupta et al. 2017) NCBI
Faidherbia albida _ 654 Mb (Chang et al. 2019) GigaDB
Glycine max V4.0 978 Mb (Schmutz et al. 2010) Phytozome 13
Glycine soja V1.1 985 Mb (Valliyodan et al. 2019)  Phytozome 13
Lablab purpureus _ 615 Mb (Chang et al. 2019) GigaDB
Lotus japonicus V3.0 472 Mb (Sato et al. 2008) Kazusa
Lupinus albus Vi 450 Mb (Hufnagel et al. 2020) Phytozome 13
Lupinus angustifolius V1.0 924 Mb (Hane et al. 2017) NCBI
Medicago truncatula V4.0 411 Mb (Tang et al. 2014) Phytozome 13
Mimosa pudica V1 557 Mb (Griesmann et al. 2018)  GigaDB
Nissolia schottii V1 466 Mb (Griesmann et al. 2018)  GigaDB
(Moghaddam et al.
Phaseolus acutifolius V1.0 512 Mb 2021) Phvtozome 13
Phaseolus lunatus Vi 546 Mb _ Phytozome 13
Phaseolus vulgaris V2.0 537 Mb _ Phytozome 13
Pisum sativum Vi 4 Gb (Kreplak et al. 2019) URGI/INRA
Senna tora Vi 547 Mb (S-H. Kang et al. 2020)  NCBI
Spatholobus suberectus V1 793 Mb (Qin et al. 2019) NCBI
Trifolium pratense V2 345 Mb (De Vega et al. 2015) Phytozome 13
Trifolium subterraneum V2.0 540 Mb (Garg et al. 2022) Legumepedia
Vigna angularis V1.1 466 Mb (K. Yang et al. 2015) NCBI
Vigna radiata Vi 463 Mb (Y. J. Kang et al. 2014) NCBI
Vigna subterranea _ 535 Mb (Chang et al. 2019) GigaDB
Vigna unguiculata V1.2 519 Mb (Lonardi et al. 2019) Phytozome 13
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We found 46 OGs containing genes with seed-specific expression in soybean, of which 25 are
shared by all species (Supplementary Table 20) and associated with regulatory processes (e.g.:
metabolic, biosynthetic, and transcriptional), while the remaining 21 are enriched in lipoxygenases,
divinyl ether biosynthesis, oleosin, SWEET transporters, among others (Supplementary Table 21).
Some studies indicate that lipoxygenases in mature seeds produce conjugated unsaturated FA
hydroperoxides, resulting in volatile compounds linked to the undesirable beany flavor (Rackis, Sessa,
and Honig 1979; J. Wang et al. 2020). Other studies suggest that SWEET transporters significantly
influence seed oil and protein contents (Duan et al. 2023; S. Wang et al. 2020). These results provide
some genes that are likely involved in FA oxidation and nutrient uptake, which are important for seed
quality and nutritional diversity found in legumes.

Finally, we employed CAFE5 (Mendes et al. 2020), a method based on gene birth (1) and
death (u) rates, to investigate size changes in OGs. We ran CAFE only with the 1,104 OGs containing
at least one of the 2,269 gain-family genes with a minimum expression of 8 TPM in seeds. From these
0Gs, 163 had significant contractions or expansions (p-value < 0.05, Figure 6). Out of these, 105 are
shared by all species (Supplementary Table 18) and contain soybean genes related to lipid
metabolism. Notable examples of these OGs include: 0G0000430 (NADP-malic enzyme - NADP-ME:
Glyma.13G354900; Glyma.15G019300), 0G0000544 (GmbZIP123: Glyma.06G010200), 0G0000840
(GMSWEET: Glyma.08G183500; Glyma.15G049200), 0G0002123 (GmDGAT: Glyma.09G065300;
Glyma.13G106100), and OG0000341 (containing the MADS box Glyma.04G257100, indicated here
as a promising regulator of FA metabolism) (Torabi et al. 2021; S. Wang et al. 2020; Morley et al.
2023; Q.-X. Song et al. 2013). Conversely, among the remaining 58 OGs, we observed 0G0006371
and 0G0015023 containing genes from only 17 and 21 species, respectively. In 0G0006371 we found
Glyma.05G011200, an unannotated gene preferentially expressed in seed, flower, and nodule
(Supplementary Figure 5). In 0G0015023 we found Glyma.05G140300, a gene that encodes a small
subunit of serine palmitoyltransferase-like (SPT-like) that is highly expressed in seeds. The SPT
complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis (M. Chen et al. 2006; P.
Liu et al. 2023). In general, lipid metabolism genes related to adaptive responses including signaling
and response biotic and abiotic stresses are found in OGs not shared by all species.
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Figure 6. Species tree summarizing the number of orthogroups from gain families (~8 TPM) with significant
(p-value < 0.05) expansion or contraction across 30 legume species. Gain families are those with more genes in
soybean than in common bean. Red and blue triangles refer to nodes/leaves with more expansions and
contractions, respectively. The drops represent seed oil content in each species: Low: below 4.9%; Medium:
between 5% and 10%; High: more than 10%. Oil content source: A. duranensis (L. Huang et al. 2012); A.
hypogaea (Shasidhar et al. 2017); A. ipaensis (Grosso, Nepote, and Guzman 2000); C. cajan (Sharma, Nidhi, and
Preeti 2011); C. canadensis (Duke and Ayensu 1985); C. arietinum (Zia-Ul-Haq et al. 2007); F. albida (Hassan,
Umar, and Yuguda 2007); G.max (Patil et al. 2018); G. soja (Patil et al. 2018); L. purpureus (Hossain et al. 2016);
L. japonicus (Dam et al. 2009); L. albus (Bhardwaj, Hamama, and van Santen 2004); L. angustifolius
(Lemus-Conejo et al. 2023); M. truncatula (Y. Song et al. 2017); M. pudica (Grygier et al. 2022); P. acutifolius
(Bhardwaj, Hamama, and van Santen 2004); P. lunatus (Palupi et al. 2022); P. vulgaris (Sutivisedsak et al. 2011);
P. sativum (Asen et al. 2023); V. angularis (Shweta and Katoch 2014); V. radiata (Zia-Ul-Haq, Ahmad, and Igbal
2008); V. subterranea (Minka and Bruneteau 2000); V. unguiculata (Perchuk et al. 2020). The CAFE plot was
generated with cafeplotter ( https://github.com/moshi4/CafePlotter).
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3. Conclusion

The intricate history of plant WGD and the retention of multiple gene copies pose a considerable
challenge in pinpointing the causative genes for specific traits. We employed a comprehensive
approach for the investigation of gene families related to oil traits, using gene expression and
co-expression, conservation and mutation rates. We identified soybean and common bean genes
involved in TAG pathways, unveiled novel candidates and explored their expression and functional
divergence in seeds, shedding light on their roles in lipid metabolism. Our findings do not only
contribute to understanding the genetic mechanisms governing lipid metabolism, but also provide
valuable leads for targeted genome editing for crop improvement and biotechnology (Figure 3,
Supplementary Table 22).

4. Materials and methods
4.1 Selection of genes related to oil traits and enrichment analysis

We assembled a comprehensive dataset of soybean genes linked to oil traits from various sources:
Aralip (McGlew et al. 2015), SoyCyc (v.9.0): diacylglycerol and triacylglycerol biosynthesis; and
triacylglycerol degradation (Brown et al. 2021), and genes known for their involvement in lipid
metabolism, obtained from the Mapman database, accessed via PLAZA Dicots 5.0 (Van Bel et al.
2022). These lists were supplemented with genes obtained through a systematic manual curation
(Supplementary Table 1). This compilation resulted in a comprehensive collection of 2,176 soybean
genes potentially associated with oil traits. The complete collection of homologous gene families
were obtained from PLAZA 5.0, allowing the identification of 567 families containing potential oil
genes. When considering the presence of homologs within these families, we expanded this set to
7,706 and 4,236 soybean and common bean candidate genes, respectively. Enrichment analyses for
GO terms and conserved protein  domains was performed in  PhytoMine
(https://phytozome.jgi.doe.gov/phytomine/begin.do), using Benjamini-Hochberg multiple testing

correction (max p-value: 0.05) and the following background sets: genes in oil-candidate homologous
families (Supplementary Table 4 and Supplementary Table 5); all genes expressed in seeds with ~1
TPM (Supplementary Table 11); gain-family genes with at least 8 TPM (Supplementary Table 13); all
soybean protein-coding genes (Supplementary Table 19 and Supplementary Table 21).

4.2 RNA-seq data and gene expression analysis

We conducted a meticulous selection of RNA-Seq samples from the Soybean Expression Atlas
(https://soyatlas.venanciogroup.uenf.br/) (Almeida-Silva, Pedrosa-Silva, and Venancio 2023). To

ensure the selection of relevant samples, a filtering process was carried out using the following
criteria to exclude samples that originated from: 1) indeterminate plant parts (e.g. whole plant,
seedling, and unknown); 2) transgenic or mutant plants; 3) cultivars other than Williams 82 and; 4)
specific treatments (e.g. exposure to biotic and abiotic stresses). Exceptions for criteria 2 and 3 above
include samples from mutants and varieties that exhibited specific advantages in the context of oil
biosynthesis (e.g. Seed _jack GmZF351, Seed jack_GmZF352, seed Thorne wt r5 r6 and
seed_gmOleol). This systematic curation resulted in a list of 605 samples (Supplementary table 23).
Gene expression estimates were retrieved in TPM. We used the median TPM to investigate the gene
expression patterns across the diverse array of samples. We also retrieved the tissue specificity index
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Tau (1) (Kryuchkova-Mostacci and Robinson-Rechavi 2017; Yanai et al. 2005) available in the Soybean
Expression Atlas (https://soyatlas.venanciogroup.uenf.br/). Expression data of P. vulgaris was
obtained from public data PVGEA (O’Rourke et al. 2014). Expression levels were classified as low
(TPM between 1 and 5), medium (TPM between 5 and 10), and high (TPM greater than 10).

4.3 Gene coexpression analysis

We used the R package BioNERO (Almeida-Silva and Venancio 2022) to construct a coexpression
network of gain-family genes with at least 8 TPM in seeds. Data preprocessing included replacing
missing values with 0, removal of non-expressed genes (median minimal expression = 1), removal
outlying samples using the BioNero standard method (i.e. standardized connectivity - Z.K < 2), and
adjusting for confounding artifacts to avoid spurious correlations. This process resulted in the
exclusion of 35 samples. We used the WGCNA algorithm (Langfelder and Horvath 2008; B. Zhang and
Horvath 2005) to compute the gene coexpression network. Hub genes were identified by combining
two metrics: correlation of a gene to its module eigengene (module membership > 0.8) and sum of
connection weights of a gene to all other genes in the module (degree; top 10% genes with highest
degree). Network plots were generated using Cytoscape (Shannon et al. 2003).

4.4 Analysis of duplicated gene pairs

Protein sequences (.faa) and annotation data (.gff3) from Soybean (G. max, Wm82.a4.v1) and
Common Bean (P. vulgaris, V2.1) were obtained from PLAZA 5.0 and Phytozome V12, respectively
(Goodstein et al. 2012; Van Bel et al. 2022). Pairwise comparisons of soybean and common bean
predicted proteins were conducted with Diamond 0.9.14 (Buchfink, Reuter, and Drost 2021). We
used the DupGen Finder tool (Qiao et al. 2019) to classify gene duplication modes in one of five
categories: dispersed (DD), proximal (PD), tandem (TD), transposed (TRD), and WGD (Supplementary
Table 24). We computed nonsynonymous substitutions per nonsynonymous site (K,), synonymous
substitutions per synonymous site (K,), and the K /K ratio for all identified gene pairs with the
calculate_Ka_Ks_pipeline script (Qiao et al. 2019). K, peaks were predicted using the doubletrouble R
package (Almeida-Silva and Van de Peer 2024).

4.5 Analysis of legume orthogroups

A diverse collection of proteome datasets spanning 30 distinct legume species gathered from
Phytozome (V12/V13) (Goodstein et al. 2012), PLAZA 5.0 (VanBel et al. 2022), GigaDB
(http://gigadb.org/), Kazuza genome database (Shirasawa et al. 2014), DRYAD (Vision 2010) and
Legumepedia (Garg et al. 2022). When multiple splicing isoforms were present for a gene, only the
longest isoform was retained. We used OrthoFinder 2.5.2 (Emms and Kelly 2019) to infer OGs using
the parameters -S diamond-ultra-sens (Buchfink, Reuter, and Drost 2021), -M msa, and -T iqtree
(igtree.org). Orthofinder results were explored using the cogeqc R/Bioconductor package
(Almeida-Silva and Van de Peer 2023). We used CAFE5 (Mendes et al. 2020) to find expansions and
contractions in the OGs (-k 3). As input, we used a time-calibrated ultrametric species tree (Kumar et
al. 2022) and the gene counts from each species in each OG. The time-calibrated species tree was
calculated using the script make_ultrametric.py based on the SpeciesTree-rooted from Orthofinder
and root age (-r 68) available in TimeTree (Kumar et al. 2022). Large OGs indicated by CAFE5 were
removed. The key parameters lambda (A) and mi (i) were estimated by running CAFE 50 times. The
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selection of optimal parameters was guided by the best maximum-likelihood estimate. CAFE results
were visualized using the cafeplotter tool (https://github.com/moshi4/CafePlotter).
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