bioRxiv preprint doi: https://doi.org/10.1101/2024.05.02.592195; this version posted October 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Multilevel irreversibility reveals higher-order organisation of non-equilibrium interactions in
human brain dynamics

Ramén Nartallo-Kaluarachchi'2*, Leonardo Bonetti3?, Gemma Fernandez-Rubio’, Peter
Vuust®, Gustavo Deco*>, Morten L. Kringelbach??7, Renaud Lambiotte!:8, and Alain Goriely"+
1. Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
2. Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, United Kingdom
3. Center for Music in the Brain, Aarhus University, & The Royal Academy of Music, Aarhus/Aalborg, Denmark
4. Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain
5. Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain

6. Institucio Catalana de la Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
7. Department of Psychiatry, University of Oxford, Oxford, OX3 7JX United Kingdom
8. Turing Institute, London, NW1 2DB United Kingdom
*nartallokalu@maths.ox.ac.uk, fgoriely@maths.ox.ac.uk
(Dated: October 14, 2024)

Information processing in the human brain can be modelled as a complex dynamical system operating out
of equilibrium with multiple regions interacting nonlinearly. Yet, despite extensive study of the global level
of non-equilibrium in the brain, quantifying the irreversibility of interactions among brain regions at multiple
levels remains an unresolved challenge. Here, we present the Directed Multiplex Visibility Graph Irreversibility
framework, a method for analysing neural recordings using network analysis of time-series. Our approach con-
structs directed multi-layer graphs from multivariate time-series where information about irreversibility can be
decoded from the marginal degree distributions across the layers, which each represents a variable. This frame-
work is able to quantify the irreversibility of every interaction in the complex system. Applying the method to
magnetoencephalography recordings during a long-term memory recognition task, we quantify the multivari-
ate irreversibility of interactions between brain regions and identify the combinations of regions which showed
higher levels of non-equilibrium in their interactions. For individual regions, we find higher irreversibility in
cognitive versus sensorial brain regions whilst for pairs, strong relationships are uncovered between cognitive
and sensorial pairs in the same hemisphere. For triplets and quadruplets, the most non-equilibrium interactions
are between cognitive-sensorial pairs alongside medial regions. Finally, for quintuplets, our analysis finds higher
irreversibility when the prefrontal cortex is included in the interaction. Combining these results, we show that
multilevel irreversibility offers unique insights into the higher-order, hierarchical organisation of neural dynam-

ics and presents a new perspective on the analysis of brain network dynamics.

INTRODUCTION

The human brain produces complex spatiotemporal neural
dynamics across multiple time and length scales. Abstracting
the brain as a large-scale network of discrete interacting
regions has proved fruitful in the analysis and modelling
of neural dynamics [1]. Moreover, this abstraction lends
neuroscientists the language and tools of statistical physics in
the hope of uncovering the central mechanisms driving brain
function and their links to observed neural dynamics [2, 3].
For instance, recent data captured by functional imaging
showed large scale violations of detailed balance in human
brain dynamics, suggesting that the brain is operating far from
equilibrium [4]. This fundamental observation has prompted
the development of a range of techniques to provide a measure
for the degree of non-equilibrium in neuroimaging time-series
recorded in different conditions [5—10]. These measures have
shown that the degree of non-equilibrium is elevated during
cognitive tasks [4—7] whilst reduced in both impairments of
consciousness [11], sleep [10] and Alzheimer’s disease [12],
indicating that non-equilibrium may be a key signature of
healthy consciousness and cognition in the brain [13]. Despite
this, current methods are restricted to aggregate measures of
non-equilibrium. We present a novel approach to the analysis
of non-equilibrium brain dynamics that is able to measure
the irreversibility of individual, higher-order interactions to

gain valuable insight into the organisation of neural dynamics.

The second law of thermodynamics asserts that, in the
absence of entropy sinks, the average entropy of a system
increases as time flows forwards [14, 15]. More specifically,
a system at a steady-state dissipating heat to its environment
causes an increase in entropy [16, 17]. This results in the
system breaking the detailed balance condition and results
in an asymmetry in the probability of transitioning between
system states [18]. This, in turn, yields macroscopically
irreversible trajectories from reversible microscopic forces
inducing what Eddington denoted ‘the arrow of time’ (AoT)
[19]. The rate at which a system dissipates entropy, the
‘entropy production rate’ (EPR), is a natural measure of the
degree of non-equilibrium in the stationary state, as it is zero
in equilibrium and positive out of equilibrium [20]. Results
in modern non-equilibrium thermodynamics have shown that
the EPR of a non-equilibrium system can be derived from the
irreversibility of observed trajectories [21-25]. In particular,
the EPR is given by,
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where {x(¢)}F_, and {x(7 —1)}]_, represent a trajectory and
its time-reversal, P(-) represents the ‘path probability’, the
probability of observing that specific trajectory, k is Boltz-
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FIG. 1. The DiMViGI workflow. The method is able to measure the irreversibility of each interaction in a multivariate time-series. It is
comprised of three stages, illustrated here with a random time-series of 2 variables: (a) First, we construct a 2-layer directed multiplex visibility
graph from the multivariate time-series where each layer represents a variable and each node represents a time-point. The connections are made
according to the visibility criterion defined in Eq. 7 and illustrated in Fig. 2. (b) Second, we calculate the in- and out- degree distributions
for each tuple at each level. In the 2-variable system, there are 3 such tuples: the singletons, (x}), (x2) and the pair (x1,x2). The top left/right
panels show the in- and out- degree distributions for the singletons (x1 ), (x2) respectively. The bottom two panels show the in- (Left) and out-
(Right) degree distribution of the pair (x1,x;). (c) Third, we measure the Jensen-Shannon divergence of the in- and out- degree distributions
for each tuple in the system. We show the 1-order irreversibility, 1) 0%2)_ of the singletons (x;), (x;) (top) and the 2-order irreversibility,

C(X‘ ~2) of the pair (x1,x;) (bottom).

p(x)

mann’s constant, and Dk, represents the Kullback-Leibler di-
vergence (KLD),

— | dx,
q(x) )

which measures the distance between two probability distri-
butions P and Q with densities p and g respectively [24, 25].
In the case of real-world data, trajectories are sampled
at discrete time-points forming a multivariate time-series
(MVTS), and the EPR is lower-bounded by the irreversibility
of the observed MVTS. As a result, the irreversibility of a
neural recording is a natural measure of the degree to which
the neural dynamics are out of equilibrium [13].

Dra(7110) = [ potog @

Two complimentary interpretations of the AoT in the
brain have been given. First, the hierarchical organisation
of positions in state-space, that results from asymmetrical
transition probabilities, has been linked to the dynamic
hierarchical organisation of brain regions [7, 26, 27]. Second,
the AoT has been interpreted as inducing a ‘causal flow’
in the system where some regions emerge as information
‘sources’ and others as ‘sinks’ with these relationships
identifiable from irreversibility analysis [7, 8]. These studies
for quantifying non-equilibrium in the brain approximate the
global evidence for the AoT in time-series using techniques
such as estimating transitions between coarse-grained states
[4], with time-shifted correlations [5], machine learning
[6] or with model-based approaches [7-10]. However,
the AoT and the corresponding production of entropy is a
macroscopic property of the system, emerging from interac-
tions between the microscopic variables at multiple scales.
Recent theoretical research has shown that the AoT can be

decomposed into unique contributions arising at each scale
within the system [28, 29] or into spatiotemporal modes of
oscillation [30], offering insights beyond a global level of
non-equilibrium in the brain. Motivated by these insights, we
present the Directed Multiplex Visibility Graph Irreversibility
(DiMViGI) framework, as illustrated in Fig. 1, for analysing
the irreversibility of multivariate signals at multiple levels
using network analysis of time-series, in particular the
visibility graph [31, 32]. Using the DiMViGI framework, we
investigate the irreversibility of human brain signals, captured
by magnetoencephalography (MEG), during a long-term
recognition task of musical sequences that utilised long-term
memory [33-39]. Our analysis covers all possible levels in
the system and is able to capture the higher-order organisation
of brain regional interactions yielding interpretable and novel
insights into the neural dynamics underpinning long-term
memory and auditory recognition.

QUANTIFYING THE ARROW OF TIME IN
MULTIVARIATE INTERACTIONS

As the evidence for the AoT can be inferred from the irre-
versibility of observed trajectories, we focus on the quantity,

P(I)

P 3)

c= ZP(F) log
T

where I is a stochastic trajectory, I is its time-reversal and
P(T) is the probability of observing that specific trajectory.
Eq. 3 is precisely the KLD between the forward and back-
ward path probabilities, which is a natural measure of the ir-
reversibility of a stochastic process [23]. Inspired by previous
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decompositions [28, 29], we note that individual interactions
can have differential levels of irreversibility within a glob-
ally non-equilibrium system. Our framework aims to com-
pute the irreversibility of individual k-tuples of variables in a
MVTS in order to compare interactions at each level, defined
by k. Firstly, we consider the projection of an N—dimensional
trajectory, I' = {x;(t),...,xn(t)}_,, into the portion of state-
space defined by the k-tuple of variables (x;,,...,x;, ), to be the
k-dimensional trajectory,

T0%i) = (g (1), 3, (1)} )

The DiMViGI framework then quantifies the marginal irre-
versibility of a given tuple by approximating,

P(T 7---7xik))
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using visibility graphs, as will be detailed subsequently. As a
result, we are able to identify tuples of variables whose mul-
tivariate trajectory is highly irreversible indicating a strongly
non-equilibrium interaction between the variables in this tu-
ple, which also suggests the presence of a hierarchical struc-
ture within the tuple [7].

MEASURING IRREVERSIBILITY WITH THE MULTIPLEX
VISIBILITY GRAPH

We build on the growing paradigm of network analysis of
time-series that has gained traction in the analysis of neural
signals [40, 41]. These methods are characterised by mapping
a time-series into a corresponding network. For instance, the
visibility algorithm maps a univariate time-series into a so-
called ‘visibility graph’ (VG) [31]. VGs and their variations
are a powerful model-free tool for mapping a continuous-
valued time-series into a discrete object. Their versatility,
as well as their lack of assumptions on the underlying dy-
namics, has lent them to diverse applications, in particu-
lar in neuroscience [40, 41], as well as in the calculation
of information-theoretic quantities from complex and chaotic
dynamics [42]. Explicitly, given a time-series {X;};c; with
time indices {#;};c;, where X; € R and [ is the index set, the
VG has one node for each i € I. Nodes i, j € I are connected
by an edge if the corresponding data-points (#;,X;) and (¢, X;)
are ‘mutually visible’ i.e. that they satisfy that, for any inter-
mediate data-point (#,X) withf; <1 <tj,

ti—1y

X <Xj+(Xi—Xj) (6)

tj—l‘,'.

In geometric terms, this condition is met if (#;,X;) is visible
from (z;,X;). That is, the line connecting (#;,X;) and (;,X;)
does not cross any intermediate data-points as shown in
Panel b) of Fig. 2. Trivially, each node is connected to
its neighbours whilst large positive fluctuations become
hubs with many connections due to their greater visibility.
This construction can be naturally extended to a MVTS by
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FIG. 2. Visibility graphs. An example of a visibility and a directed
visibility graph constructed from a random time-series. (a) A random
equi-spaced time-series. (b) The red lines connected data points that
mutually visible. (c) The visibility graph associated with the random
series. (d) A time-series showing visibility directed forward in time.
(e) The directed visibility graph corresponding to the above series.

considering the ‘multiplex visibility graph’® (MVG) [43].
Given a MVTS with N variables, the MVG is a multi-layer
graph, a so-called ‘multiplex’, with N independent layers
with the same node base. Applying the visibility algorithm to
each variable in turn yields a series of VGs which each define
one layer of the MVG.

We can further generalise the VG to measure irreversibility
in univariate time-series by extending the undirected VG to
a time-directed counterpart (DVG) [32, 44]. To do so, we
simply direct the edges ‘forward in time’. For example, an
edge connecting time-points #; < t; is now directed i — j (see
Panels d-e) of Fig. 2). We then decompose the degree d of a
node into the sum of the in-going and out-going degree,

d= din +d0ut~ (7)

A univariate stationary process, X(t), is time-reversible
if the trajectory {X(#1),...,X(tr)} is as probable as
{X(tr),...,.X(#1)} [45]. Therefore, in the case of a re-
versible process, the in- and out-going degree distributions
of the associated DVG should converge [32, 44]. It follows
that the level of irreversibility can be captured by measuring
the divergence between the in- and out-going degree distri-
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FIG. 3. Experimental paradigm for the collection and processing of MEG data. (a) The brain activity in 51 participants was collected
using magnetoencephalography (MEG) while they performed a long-term auditory recognition task. Participants memorised a 5 tone musical
sequence. They were then played 5 further sequences of tones that were either the original sequence or a modified version. They then were
requested to state whether the sequence belonged to the original music or was a varied version of the original sequences. In this analysis
we only consider the experimental condition where participants were played the original memorised sequence. (b) The MEG data was co-
registered with the individual anatomical MRI data, and source reconstructed using a beamforming algorithm. This procedure returned one
time-series for each of the 3559 reconstructed brain sources. Six main functional brain regions (ROIs) were derived. The neural activity for
each ROI was extracted yielding a multivariate time-series. For further details on the experimental set-up see Materials and Methods and SI.

For a comparison between experimental conditions see Bonetti et al [33].

butions. We extend this method to the case of MVTS. We
direct the edges of the MVG such that they go forward in time
yielding a directed MVG (DMVG). Since this is a multiplex
graph, we can calculate the multivariate joint, over all layers,
in- and out-going degree distributions, and all associated
marginals.

Explicitly, we consider a MVTS with N variables
and T time points, given by {X(#),...,X(¢fr)}, where
X(#) = (x1(t),....xn(t;)) € RN and construct its associated
DMVG. For a given k-tuple of variables, (njp,...,n;), we
calculate the multivariate marginal in-going and out-going
degree distributions:

Py dy), Py

in 7dk)7 (8)
,...,dy) is the probability of a node hav-
ing degree d; in layer n; for all i simultaneously. We then
compute the divergence between these particular in- and
out-going marginal distributions using Jensen-Shannon diver-
gence (JSD) (see Materials and Methods) to obtain a measure
of the k-order irreversibility,

gl = ISD(R" PG (9)
As we are considering the multivariate joint distribution, we
are quantifying irreversibility in the multivariate state-space.
Repeating this for all possible k-tuples in the system, we
quantify the relative irreversibility of each interaction at a
given level. We can repeat this process for all values of %,
thus measuring irreversibility at all levels.

In summary, the DiMViGI framework, shown in Fig. 1,
begins with a MVTS of neural activity. The series is mapped
into the associated DMVG using the visibility algorithm.
We calculate the joint in and out-degree distributions and all
the possible marginal in- and out- degree distributions. We
measure the JSD between the pairs of in- and out-marginals
for each tuple in the system to quantify the irreversibility of
that interaction. At each level k, we can then compare the

relative irreversibility of each k-order interaction to identify
the dominant irreversible interactions.

ANALYSIS OF MEG DURING LONG-TERM
RECOGNITION

We consider MEG recordings from 51 participants with
15 trials per participant source-localised into 6 regions of
interest (ROIs) collected according to the experimental
paradigm presented in Fig. 3, described in Materials and
Methods, SI and in Ref. [33]. The ROIs include the auditory
cortices in the left and right hemispheres (ACL, ACR); the
hippocampal and inferior temporal cortices in the the left and
right hemispheres (HITL, HITR) and two medial regions,
the bilateral medial cingulate gyrus (MC) and the bilateral
ventro-medial prefrontal cortex (VMPFC). Panel a) of Fig.
4 shows a schematic representation of the regions. The
participants performed an auditory recognition task during
the MEG recordings (Panel a), Fig. 3). First, they memorised
a short musical piece. Next, they were presented musical
sequences and were requested to state whether the sequence
belonged to the original music or was a varied version of the
original sequences. Since differences between experimental
conditions have been described in detail by Bonetti et al [33]
and are beyond the scope of this work, here, we consider only
one experimental condition, where participants recognised
the original, previously memorised sequences.

For each participant and trial, we construct the DMVG. Next
we estimate every marginal in- and out- degree distribution
using each DMVG as a sample and calculate the JSD. We
denote the JSD between k-dimensional degree distributions as
the k-order irreversibility. Alternatively, for each participant
in isolation, the degree distributions can be calculated using
only their associated trials to get an estimate of the k—order
irreversibility for each participant and each tuple (see SI).
However, due to the higher number of samples, the cohort-
level analysis is more robust and hence is our focus in this
report. The results of the DiIMViGI analysis are presented in
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FIG. 4. DiMViGI analysis of 6-ROI MEG recordings during a long-term memory task. The number of (*)/(f) represents the number of
standard deviations above/below the mean for a particular tuple at that level. (a) Schematic diagram showing the organisation of the ROIs in
the MEG recordings. The ROIs are ACL/R: auditory cortex left/right; MC: medial cingulate gyrus; VMPFC: ventro-medial prefrontal cortex;
HITL/R: hippocampal inferior temporal cortex left/right. Cognitive regions are in red and sensory regions in blue. (b) 1-order irreversibility
at cohort-level. At this level, we consider irreversibility of each signal in isolation. The hippocampal regions are the most irreversible whilst
the sensory regions are the most reversible. (c) 2-order irreversibility at cohort-level. The pairs that show the most irreversibility are those
that include a sensory and hippocampal pair in the same hemisphere (ACL/R, HITL/R). The most reversible pair is (ACL, ACR) which is
made up of two sensory regions. (d) 3-order irreversibility at cohort-level. The triplets that are most irreversible are those that include an
intra-hemispheric sensory and hippocampal pair as well as the prefrontal cortex (ACL/R, HITL/R, VMPFC). The most reversible contains
both hippocampal regions and the medial cingulate gyrus, (HITL, HITR, MC). (e) 4-order irreversibility at cohort-level. The quadruplets that
are most irreversible are those that include a hippocampal and sensory pair and both medial regions (ACL/R, HITL/R, MC, VMPEC) and those
that include both hippocampal regions, a sensory region and the VMPFC. The most reversible is the quadruplet that contains no medial regions.
(f) 5-order irreversibility at cohort-level. The most reversible quintuplets are those that omit a medial region, in particular the quintuplet that
omits the VMPFC.

Figure 4. We note that the darker colours represent tuples

with greater irreversibility whilst the lighter colours reflect We begin our analysis at 1-order. Whilst individual (micro-
more reversible interactions. The icon along the x-axis scopic) variables are often reversible in a non-equilibrium
indicates which tuple is being considered, with reference to complex system, the ROIs considered here reflect a very
the schematic in Panel a) of Fig. 4, with the included regions coarse parcellation of the brain. At this level, we are consider-
coloured in black. Furthermore, we highlight statistically ing each ROI, which is composed of many truly microscopic
significant tuples at each level. The number of (x)/(T) variables, in isolation and note that each one shows significant
indicates the number of standard deviations above/below the irreversibility. It is clear from Panel b) of Fig. 4, that the
k—level mean. ROIs have a clear disparity in their levels of irreversibility.
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The sensory ROIs are more reversible than the medial and
hippocampal ROIs. Furthermore, there is a skew towards the
right hemisphere being more irreversible than the left. This
result emerges consistently across all levels. Next, we con-
sider the irreversibility of pairwise interactions (k = 2). Panel
c) of Fig. 4 shows the 2-order irreversibility for all pairs.
We are able to identify strongly irreversible pairs such as
the intra-hemispheric pairs (ACL, HITL) and (ACR, HITR).
On the other hand, cross-hemispheric pairs, e.g. (ACL,
ACR), are the most reversible, indicating a lack of interaction
between them. The strong hemispheric symmetry in the
results validates the findings, as it is an expected and intuitive
observation. Panel d) of Fig. 4 shows the irreversibility for
each triplet interaction in the system. The highly irreversible
triplets are those that include a hemispheric pair alongside a
medial region, with those containing the VMPFC, a region
known to drive brain dynamics during task [46], being
particularly irreversible. Panel e) of Fig. 4 shows that the
most irreversible quadruplet interactions are composed of
a hemispheric pair alongside both medial regions as well
as those that contain (VMPFC, HITL, HITR) alongside a
sensory region. Conversely, the quadruplet containing no
medial regions, is the most reversible, and therefore has
the least interaction. This is particularly interesting as this
quadruplet is made up of the two most irreversible pairs yet
they do not appear to interact as a foursome. Therefore, this
framework is truly capturing higher-order interactions that
cannot simply be decomposed into a sum of independent
interactions of lower order. Finally, Panel f) of Fig. 4 shows
that quintuplets that contain both medial ROIs are the most
irreversible. Furthermore, the quintuplet that does not contain
the VMPFC has the most reversible interaction. Whilst we
have attempted to interpret the results from the perspective of
the hierarchical and higher-order organisation of the auditory
system, we note that outliers would be expected to arise
naturally due to statistical variation. Nevertheless, due to
the consistency of our results across levels, for example the
hemispheric symmetry that is observed at each level, such
results cannot be explained purely by chance. Furthemore, a
sub-sampling analysis shows that the error in irreversibility
measurements are typically smaller than differences between
tuples implying a range of statistically significant differences
(see SI).

We can interpret this result in the context of predictive
coding and its links to sensory tasks [47—-49], as well as
through the hierarchical organisation of the auditory system.
The participants are exposed to a memorised tonal sequence
that does not deviate from their expectation of what they
were about to hear. Under the theory of predictive coding,
this would result in an adjustment of a participant’s prior
expectations, facilitated by asymmetric, hierarchical inter-
actions between brain regions at multiple levels, in order to
reinforce the prior expectations in light of the new sensory
information [50]. This in turn would lead to a cascade
of interactions between key ensembles of regions whose
function is optimised for the process of auditory recognition.
As irreversible brain dynamics stem from irreciprocal and

6

hierarchical interactions, such a mechanism results in marked
irreversibility in the emergent dynamics [7].

DISCUSSION

In this study, we describe a novel framework for measur-
ing the emergence of non-equilibrium dynamics, through
multivariate irreversibility, at multiple system levels. We are
able to capture the irreversibility of each possible interaction
in a MVTS of signals. Applying the DiMViGI framework
to neural recordings obtained during a long-term memory
recognition task, we investigate the higher-order organi-
sation, and the associated non-equilibrium interactions, of
brain regions and how they break time-reversal symmetry
during an auditory recognition task. The results clearly
show a broad distribution of irreversibility at each system
level; hence we are able identify which interactions are
particularly irreversible, which we interpret as a correlate
of a hierarchical and synergistic interaction. Furthermore,
we link irreversibility to hierarchical predictive coding and
theorise that non-equilibrium interactions could emerge as
a consequence of the modulation of prior expectations in
light of new sensory information [50]. According to the
theory of predictive coding, this might be realised through
hierarchically asymmetric interactions that, in turn, induce
the emergence of irreversibility at multiple system levels
[7, 51, 52]. Within this context, the DiMViGI framework
confirms the hierarchical organisation of the auditory system
[53-56], with reciprocal connections, such as those found
within the auditory cortex, resulting in more reversible
dynamics, and hierarchical relationships, such as those found
between the auditory cortex and the hippocampus, resulting in
markedly irreversible dynamics. Furthermore, our approach
goes beyond typical approaches to the auditory system, such
as the analysis of co-activation and functional connectivity
[57, 58] or the identification of cortical-gradient hierarchies
[33, 55], by uncovering higher-order interactions within the
auditory system between triplets and quadruplets of brain
regions. In particular, at higher-orders, irreversibility reveals
synergistic interactions between hippocampal, cingulate
gyrus and sensory regions for the distributed processing
required for audition and long-term recognition. As a result,
our approach yields insights that offer a new perspective
on the flow of information during audition. Whilst a recent
analysis of these neural recordings with standard methods
was able to identify a hierarchy of information processing in
the brain during long-term recognition [33], the introduction
of the DiIMViGI framework appears crucial to uncovering the
higher-order and non-equilibrium nature of the interactions.
Such insights are opaque to traditional analyses but emerge
from the unique lens of non-equilibrium statistical physics.

The implications of the framework and the associated
results are multi-fold.  Firstly, we go beyond aggregate
[4-7, 9, 10] or univariate [32, 44] measures of irreversibility,
expanding the exisiting quiver of techniques for studying
non-equilibrium in the brain to include a multilevel approach.
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Our technique is able to capture differences in irreversibility
across scales in continuous time-series, inspired by recent
theoretical work for binary variables [28, 29], that is non-
specific and can be applied to MVTS from any domain to
identify particular highly non-equilibrium interactions. Our
approach differs from Refs. [28, 29] as we do not attempt
to measure the unique contribution to the AoT of a specific
k-body interaction by discounting the irreversibility of all
sub-interactions contained within the tuple. Instead, we
measure the irreversibility of the tuple as a whole. In Section
6 of the SI we consider an extension of our approach to
relate our framework more closely to the approach of Refs.
[28, 29], by measuring the unique contribution of each
k—body interaction, defined recursively as,

n(xzpmmk) — g(xf17~~~’xzk) _ Z nQ_ (10)

QC{x; iy }

However, we note that the exact decomposition of the EPR
presented in Refs. [28, 29] relates to discrete, Markovian
and multi-partite dynamics and thus does not apply directly
to continuous MVTS. Moreover, in Section 5 we show that
irreversibility in our method only decomposes in the case of
independent variables.

Our framework builds on the sustained interest in iden-
tifying higher-order interactions in neural recordings and
other MVTS [59-63], particularly in information theoretic
analyses of brain data that reveal how higher-order func-
tional interactions shape neural dynamics [64-66]. Notably,
many higher-order frameworks are either computation-
ally, or by formulation, restricted to studying either triplet
[60, 61, 63, 64] or system-wide interactions [59], whilst
our results extend easily to all possible levels in the system.
Our framework attempts to bridge the broader discussion on
higher-order mechanisms and behaviours in complex systems
[67—69] with techniques from non-equilibrium thermody-
namics [20] through the quantification and interpretation of
multilevel irreversibility. Finally, our work further solidifies
the visibility algorithm, and network analysis of time-series,
as an empirically useful tool in the analysis of neural data
[40, 70].

Despite these promising results, we note some nuanced
limitations in our framework. Whilst the visibility algorithm
and the degree distribution approach reduces the dimension
of the data, we are still computing an entropy between
high-dimensional distributions which is computationally re-
strictive. This can be circumvented limiting the support of the
degree-distribution to exponentially improve computational
efficiency whilst minimally affecting numerical accuracy
(see SI). Nevertheless, analysing all possible interactions
yields a combinatorial explosion, hence we opt for a coarse,
low-dimensional, parcellation of the brain that allows us to
analyse the system at all possible levels. However, the high-
lighting of individual tuples is most meaningful when there is
a strong intuition about the nature of the interaction, which
can be only be expected in low-dimensional parcellations
where ROIs are clear, functionally-segregated brain areas.
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Additionally, we note that our measure is undirected within
the tuple, meaning we cannot identify the direction of infor-
mation flow as one can with classical measures of causality
[71, 72] or some approaches to the AoT [7, 8]. However, we
note that the AoT represents directed flow between states and
not variables, meaning it is not a direct measure of causality,
but instead capturing a distinct, but related, phenomena in
interacting dynamics. Finally, measuring the irreversibility
of finite-length time-series naturally induces a bias due
to the finite sampling of the state-space [4, 29]. In order
to validate that the measured irreversibility emerges from
non-equilibrium dynamics and not from finite-data errors, we
employed both surrogate-testing using shuffled time-series
and sub-sampling approaches to validate the significance of
our results (see SI Section 4).

A key advantage of the DiIMViGI framework is the ability to
scale between levels with a consistent approach. Strictly local
measures such as auto- and cross-correlations are limited to
individual and pairwise interactions [73, 74]. On the other
hand, simply applying global measures to each subset of
variables in the time-series, such as coarse-graining or using a
model-based measure, yields an inconsistent approach where
different tuples cannot be compared fairly. Our framework
extends consistently to all levels thus yielding directly
comparable quantities at each level.

CONCLUSIONS

In this work, we have introduced the Directed Multiplex
Visibility Graph Irreversibility framework for measuring the
irreversibility of multivariate interactions at all levels within a
system. We applied this method to neural recordings during a
long-term auditory recognition task to study the relative irre-
versibility of different interactions between brain regions. Do-
ing so, we were able to demonstrate the hierarchical, higher-
order organisation of brain dynamics during tasks. This analy-
sis suggests that reinforcement of prior expectations during an
auditory recognition task is facilitated through a hierarchy of
irreversible higher-order interactions in the brain, an observa-
tion that we link to both the mechanisms of predictive coding
and the hierarchical structure of the auditory system. Further-
more, we highlighted the particular combinations of cognitive
and sensorial regions that are preferentially recruited during
audition and long-term recognition. This framework is non-
specific and provides a general tool for investigating higher-
order interactions and non-equilibrium dynamics in MVTS
emerging from other complex systems.
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MATERIALS AND METHODS
Estimating degree distributions from finite samples

For each sample, a MVTS, we construct the DMVG, de-
fined by the multiplex adjacency matrix, A,

_{1 if i — j in layer [ (11

0 else

Then we calculate the in- and out-degree of each node in each
layer

ik Zﬂ] (12)

Ji
d{l ],out ZAU : (13)

where dlm oin dl-[l] ,out

[ respectively.

are the in-and out-degree of node i in layer

For a k—tuple (ni,...,n;), we calculate P("" )(dh...,dk)
by counting the number of nodes i, across all samples, where

4" = 4, (14)

foreachl € {1,...,k} simultaneously and for d; € {1, ..., dmax }
where dpmax 1s the maximum degree of a node in the multl-
layer graph, and then dividing through by the total number
of nodes in all samples. @ We calculate the same for

P(Elr;tlwnnw(dla dk)-

As we are using a finite number of samples, we then
perform Laplace smoothing to eliminate singularities of the
form P(x) = 0 < Q(x) for which divergence is ill-defined.
Instead of using,

N
M?
where N is the number of nodes satisfying condition 14 and M

is the total number of nodes across samples, we perform the
following replacement,

P (dy L dy) = (15)

N+1
M+dk,

max

PO (dy L dy) = (16)
Such an approach is equivalent to assuming a uniform
Bayesian prior for the degree distributions [75].

Computing Jensen-Shannon divergence

We quantify the divergence between the in- and out-degree
distributions using Jensen-Shannon divergence (JSD) which is
a symmetrised version of Kullback-Leibler divergence (KLD)
that does not suppose a model-data relationship [76]. This is
defined between two probability distributions P, Q as

J(PIQ) = 5 D(PIM) + D(QIM) (17)
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where M = 1(P+ Q) is an averaged distribution and D(-) rep-
resents the KLD, given by,

D(P|Q) = ZPI%()

18
R 00x)’ (19

As 2 represents the support of the distribution, it takes the
form {1,...,dmax }* Where k is the dimension of the probability
distributions and dy,x is the maximum degree of a node in the
multi-layer graph. For computational feasibility, dpyax can be
limited during the calculation of JSD, truncating the sum. For
5-order analysis, we limit dp,x to 75. For a systematic analysis
of the effect of degree limiting see SI.

Magnetoencephalography (MEG) data
Farticipants

The participant cohort consisted of 83 healthy volunteers
made up of 33 males and 50 females with ages in the range 18
to 63 and a mean age of 28.76 £ 8.06. The 51 participants in-
cluded in this analysis included 22 males and 29 females with
ages in the range 18 to 63 and a mean age of 27.57 &+ 7.13.
Participants were recruited in Denmark, came from Western
countries, reported normal hearing and gave informed consent
before the experiment. The project was approved by the Insti-
tutional Review Board (IRB) of Aarhus University (case num-
ber: DNC-IRB-2020-006) and experimental procedures com-
plied with the Declaration of Helsinki — Ethical Principles for
Medical Research. After pre-processing, the 51 participants
with at least 15 non-discarded trials in the first experimen-
tal condition were included in the analysis. Only trials where
participants correctly identified the sequence were included.
For those participants with more than 15 trials, 15 trials were
randomly sampled.

Experimental stimuli and design

We employed an old/new paradigm auditory recognition
task [33, 35, 36, 38]. Participants listened to a short musi-
cal piece twice and asked to memorise it to the best of their
ability. The piece was the first four bars of the right-hand part
of Johann Sebastian Bach’s Prelude No. 2 in C Minor, BWV
847. Next, participants listened to 135 five-tone musical se-
quences, corresponding to 27 trials in 5 experimental condi-
tions, of 1750 ms each and were requested to indicate if the
sequence belonged to the original music or was a variation.
Differences between experimental conditions have been de-
scribed in detail by Bonetti et al [33]. We consider one exper-
imental condition, where participants recognised the original,
previously memorised sequences.

Data acquisition

MEG recordings were taken in a magnetically shielded
room at Aarhus University Hospital, Aarhus, Denmark using
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an Elekta Neuromag TRIUX MEG scanner with 306 channels
(Elekta Neuromag, Helsinki, Finland). The sampling rate was
1000 Hz with analogue filtering of 0.1-330 Hz. For further
details on the data acquisition see SI.

MEG pre-processing

First, raw MEG sensor data was processed by MaxFilter
[77] to attenuate external interferences. We then applied sig-
nal space separation (for parameters see SI). Then the data was
converted into Statistical Parametric Mapping (SPM) format,
preprocessed and analyzed in MATLAB (MathWorks, Nat-
ick, MA, USA) using in-house codes and the Oxford Centre
for Human Brain Activity (OHBA) Software Library (OSL)
[78]. The continuous MEG data was visually inspected and
large artefacts were removed using OSL. Less than 0.1% of
the collected data was removed. Next, independent compo-
nent analysis (ICA) was implemented to discard artefacts in
the brain data from heart-beats and eye-blinks (for details see
SI) [79]. Lastly, the signal was epoched in 135 trials, 27 tri-
als for each of 5 experimental conditions and the mean signal
recorded in the baseline (the post-stimulus brain signal) was
removed. Each resulting trial lasted 4400 ms plus 100 ms of
baseline time.

Source reconstruction

We employed the beamforming method to spatially localise
the MEG signal [80]. For details on the beamforming algo-
rithm and the implementation see SI.

Code and data availability

The code used to implement the DiMViGI framework will
be made available at https://github.com/rnartallo/
multilevelirreversibility upon acceptance.

The in-house code used for MEG pre-processing is available
at https://github.com/leonardob92/LBPD-1.0.
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The multimodal neuroimaging data analysed here is available
upon reasonable request.
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Supplementary Information: Multilevel irreversibility reveals higher-order organisation of non-equilibrium
interactions in human brain dynamics

I. INTRODUCTION

In this supporting information, we provide additional results and analysis not included in the main manuscript. This supporting
information is organised as follows. In Section II, we show the results of the directed multiplex visibility graph irreversibility
(DiMViGI) framework applied to data from individual participants to produce distributions of participant spread for the irre-
versibility of each tuple, rather than the cohort-level analysis presented in the main manuscript. We assess the significance of
the differences between tuples using pairwise ¢ —tests and one-way ANOVAs. Moreover, we calculate the correlations between
the cohort and participant level analysis. In Section III, we further validate the significance of the results obtained at the partic-
ipant level by shuffling the time-series to produce surrogate data. We show that shuffling restores detailed balance and that the
irreversibility of the true signals is significantly higher than the surrogate data. This indicates that the measured irreversibility is
due to the non-equilibrium dynamics present in the time-series and not bias from finite data. In Section IV, we employ a second
method to correct for biases stemming from ‘finite’ data. We use sub-sampling to estimate the irreversibility for various fractions
of our data. We show that our results are robust to various sub-samplings of the data. Additionally, this produces a distribution
of the irreversibility measurement, which we use to validate that the relative error in our measurement is significantly lower than
the difference between tuples. Next, in Section V, we show that the DiMViGI framework factorises for independent variables,
theoretically validating the argument that it captures ‘true’ higher-order interactions. Using the factorisation, in Section VI, we
are able to define the unique irreversibility generated by a higher order interaction by removing the lower-level interactions. We
compare this to the ‘combined’ results presented in the manuscript. In Section VII, we validate that our method captures a corre-
late of the entropy production rate by using simulated data from four specific examples of the multivariate Ornstein-Uhlenbeck
process. In Section VIII, we investigate the effect on the results of limiting the maximum degree in the support of the distribu-
tions, an approach that improves computational efficiency whilst only minimally reducing accuracy. In Section IX, we discuss
the definitions of entropy production rate for Markovian and non-Markovian dynamics. In Section X we present a comprehen-
sive description of the experimental paradigm and the techniques used to record and pre-process the magnetoencephalography
(MEG) data. In Section XI, we present an evaluation of the signal quality and signal to noise ratio as well as visualisations of
baseline activity. Finally, in Section XII, we compare the results of applying our analysis to the full epoch, as presented in the
paper and the rest of the SI, as well as an epoch with the pre-stimulus baseline removed and an epoch with both the pre-stimulus
and post-task reset to baseline removed. We use quadruplets as an example, and show that the results are equivalent.

II. THE DIMVIGI FRAMEWORK APPLIED TO PARTICIPANT-LEVEL DATA

In this section we show the results of applying the DiMViGI framework to data at the participant-level and obtain distributions
for the irreversibility of each tuple. As mentioned in the main manuscript, we analysed MEG recordings from 51 participants
with 15 trials per participant. In the cohort-level analysis presented in the main manuscript, we constructed the in- and
out-degree distributions using 51 x 15 = 765 samples of the multiplex network. In order to examine the spread between
participants, we repeat the same analysis for each participant in isolation, using only the 15 associated trials. As a result the
degree distributions are much more poorly estimated and produce much higher divergences. Nevertheless, we are able to
quantify the irreversibility of each tuple of brain regions for each participant and examine the distribution.

Figure 1 shows the results of the DiMViGI analysis for the participant-level data distributions of the irreversibility for
each tuple in each level. Panel a) shows the schematic representation of the 6 regions of interest (ROIs) that correspond to
variables in the multivariate time-series. The icons on the x-axis of the subsequent panels indicate which ROIs are included in
each tuple. Panels b-f) show the participant-level distributions for 1-5 order respectively. We run one-way ANOVAs and find
that, at each level 1-3, the tuple is a significant predictor of irreversibility (p < 0.00001). In addition, we run paired t—tests to
see which tuples at each level are significantly different in a pairwise comparison applying a Bonferroni correction for multiple
comparisons at each level k [1]. Figure 2 displays the significance results of the pairwise #—tests. The corrected significance
of each comparison is denoted as follows: (ns) if p > 0.05; (*) if p < 0.05; (¥*) if p < 0.01; (***) if p < 0.001 and (¥**%*) if
p < 0.0001. Figure 2 shows that at level 1, the difference between each tuple in pairwise comparison is significant (p < 0.0001).
In addition, it shows that at levels 2-5, there is a mixture of significant and not significant differences depending on the number
of ROIs in common between the compared tuples.

Finally, we compare the participant-level analysis to the cohort-level analysis by calculating the ranking of tuples at each level
for each participant and comparing it to the cohort-level ranking, using Spearman’s p. In addition, for each participant at each
level, we calculate Pearson’s r (correlation coefficient) between the participant level and the cohort level. Panel a) of Fig 3
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FIG. 1. Participant distribution of irreversibility for each tuple. a) Schematic representation of the 6 brain regions of interest (ROIs) in the
MEG recordings. The icon in the following panels indicates which regions are included in each tuple. b) 1-order irreversibility distribution
for each ROI in isolation. The results follow the same hierarchy as the cohort-level analysis in the main manuscript. c) 2-order irreversibility
distribution for each pairs of ROIs. d) 3-order irreversibility distribution for each triplet of ROIs. e) 4-order irreversibility distribution for each
quadruplet of ROIs. f) 5-order irreversibility distribution for each quintuplet of ROIs.
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FIG. 2. Results of pairwise r—tests (paired) between all pairs of k-tuples at each order k with a Bonferroni correction for multiple comparisons
[1]. The corrected significance of each comparison is denoted as follows: (ns) if p > 0.05; (*) if p < 0.05; (**) if p < 0.01; (***) if p < 0.001
and (****) if p < 0.0001. Panel a) shows a schematic representation of the 6 brain regions of interest (ROIs) in the MEG recordings. The

remaining panels show the results for b) singletons, c¢) pairs, d) triplets, e) quadruplets, f) quintuplets. There is a mixture of significant and not
significant differences depending on the number of ROIs in common between the compared tuples
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FIG. 3. Correlations between participant and cohort level results. a) Spearman’s p coefficient for the ranking of tuples at each level for each
participant when compared to the ranking obtained from the cohort-level analysis. b) Pearson’s r correlation coefficient for the measurements
of tuples at each level for each participant when compared to the measurements obtained from the cohort-level analysis. The figure shows
that at lower orders, the participant distributions agree more closely with the cohort-level analysis. However, at higher orders, the degree
distributions are more poorly estimated leading to low agreement between the cohort and participant-level analysis.

shows the p for each participant at each level when compared to the cohort-level ranking. Panel b) of Fig 3 shows the r for
each participant at each level when compared to the cohort-level measurements. Both show that at lower orders (1-3), the
measurements, and rankings, obtained from the participants in isolation agree closely with the cohort-level results. However,
at higher order (4-5), the low number of samples, 15, in the participant-level analysis is not enough to accurately estimate
the high-dimensional degree distributions leading to a lack of agreement between the well-estimated cohort analysis and the
poorly-estimated participant analysis.
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III. VALIDATION OF RESULTS AGAINST SURROGATE DATA FROM SHUFFLING TIME-SERIES

When measuring information-theoretic quantities from finite-length series, a bias is introduced. Finite-length time-series have
a level of irreversibility that emerges from their finiteness as opposed to the temporal organisation of the data [2, 3]. In order to
validate that the measured irreversibilities are significant and therefore emerge from the temporal structure of the data, we must
compare them to surrogate data. When generating surrogate data, we aim to break the temporal correlations and restore detailed
balance. In order to do this, we randomly shuffled the time-series in time. This means that the number of occurrences of each
state remains the same as the original data, but the sequence of states is now randomised thereby restoring detailed balance, as
shown by Lynn et al [3]. The irreversibility measured in the shuffled time-series is an estimate of the ‘noise-floor’ which stems
from finiteness of the series. If the irreversibility of the true signal is significantly higher than the noise floor, then this is due to
the system violating detailed balance in the underlying dynamics.

Other common approaches for generating surrogate time-series such as phase randomisation or Fourier transform surro-
gates preserve the temporal structure of the time-series and are therefore unsuitable for this application [4, 5].

Figure 4 shows the comparison of the measurements in the original MEG time-series and its randomly shuffled surro-
gate. For each tuplet the difference between the shuffled and original time-series is significant (p < 0.0001). This shows that
the irreversibility measured using the DiMViGI framework is a significant statistical feature of the multivariate time-series as
the shuffled data is measured to be far more reversible using the DiMViGI framework.

IV. ESTIMATING FINITE-DATA ERRORS USING SUB-SAMPLING

In addition to shuffling the time-series, another approach for estimating errors that arise from finite-data, is to employ a
sub-sampling approach [2, 3, 6]. As the DiMViGI framework, when applied to all participants, calculates a single quantity for
the irreversibility of each tuple, we need to estimate the size of the error as well as how this error evolves with the amount of
data that is available. To do this, we consider the relationship between irreversibility and the inverse-data-fraction (IDF) which
is 1 divided by the fraction of the data that is used to estimate the irreversibility. We do so by randomly sampling (without
replacement) 12 and then 9 trials per participant in a hierarchical fashion, meaning 9 are chosen from the 12 which are chosen
from the 15. Whilst keeping the contribution of each participant equal, this allows us to calculate the irreversibility using
fractions 1, 0.8, 0.6 and of the full dataset corresponding to IDF=1, 1.25 and 1.67 respectively. Importantly, there are many ways
to sub-sample the data which allows one to obtain a number of different estimates, and thus an uncertainty measure, for the
irreversibility at IDF=1.25 and 1.67. In the following analysis, we use 20 random sub-samplings. Some studies in neural spike
trains linearly extrapolate this to the infinite data limit, corresponding to IDF=0 [6—10]. However, we find that the relationship
between irreversibility under DiMViGI and IDF is nonlinear. Therefore this extrapolation may yield nonphysical (negative)
values of irreversibility and thus is not suited for our analysis. We note that such analysis is often useful when attempting to
measure the frue value of a quantity in particular units, for comparison to other experiments. In our study, the measurements
obtained by DiMViGI are relative quantities, to be compared within a given level k.

Figure S5 shows the results of sub-sampling at order 1. Panels a) and c) show that the 1-order irreversibilities measured
at IDF = 1.25 and 1.67 agree closely with IDF =1, the results in the main manuscript. Furthemore, panels b) and d) show the
pairwise comparisons between the distributions of irreversibility measured for each ROI at both IDF= 1.25 and 1.67 (paired
t—test, BC). We find each comparison is significant (¥****, p < 0.0001) indicating that the differences between ROIs are much
larger than the errors in the measured irreversibility. Figures S6, S7 show similar results at order 2, pairs of regions, and order 3,
triplets, where pairwise comparison shows a range of significant differences. Figures S8 & S9 show that the results for orders 4
& 5, quadruplets and quintuplets, agree between IDF=1 and IDF=1.25, 1.67. Furthermore, we find that most quadruplets and all
quintuplets have significantly different levels of irreversibility. These results suggest that biases and errors in the irreversibility
measurements are typically smaller than differences in measurements between tuples and further validates our approach of
identifying particularly (ir)reversible tuples. We note that the quintuplet analysis for the sub-sampling uses degree-limiting
with a maximum degree of 45, which, as shown in Section 8, minimally affects the results whilst improving the computational
efficiency.

V. THE DIMVIGI FRAMEWORK FACTORISES FOR INDEPENDENT VARIABLES

To illustrate that the DiMViGI framework indeed can differentiate higher order interactions from the composition of lower
order ones, we consider the framework applied to a k-tuple of variables, (xi,...x;). First we assume that x; is independent
of (x2,...,x;) and show that we can write the irreversibility of the k—tuple as the sum of the irreversibility of x; plus the
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FIG. 4. Comparison of original neural recording against surrogate data obtained via shuffling the time-series in time. The difference between
the original and shuffled data for each tuple at each level is significant. We label (****) if p < 0.0001. a) 1-order irreversibility is significant
(p < 0.0001) for each ROI when compared to shuffled data. b) 2-order irreversibility is significant (p < 0.0001) for each pair of ROIs when
compared to shuffled data. c) 3-order irreversibility is significant (p < 0.0001) for each triplet of ROIs when compared to shuffled data. d)
4-order irreversibility is significant (p < 0.0001) for each quadruplet of ROIs when compared to shuffled data. e) 5-order irreversibility is
significant (p < 0.0001) for each quintuplet of ROIs when compared to shuffled data. f) Schematic representation of the 6 brain regions of
interest (ROIs) in the MEG recordings. The icon in the preceding panels indicates which regions are included in each tuple.
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irreversibility of the (k— 1)—tuple (x2, ...,x; ). Inductively, we can show that the DiIMViGI framework factorises for independent
variables meaning that the irreversibility of their interaction is merely the sum of the irreversibility of each variable in isolation.
This validates that the framework is truly capturing multilevel irreversibility.

Consider (xi,...,x;) such that x; is independent of the other variables. As x; is independent, the edges in the associated
layer of the multiplex network are also independent. As a result, the joint (in- and out-) degree distribution of the multiplex
factorises as follows,

P(dy,....dx) = P(d\)P(dy, ...,dy). (D

Under the DiMViGI framework, we quantify the irreversibility of the tuplet as

W) = JSD (P (dy, .-, di ), Pout (1 -, i), )
Pin(dlw--;dk) Pout(dla--~>dk)
- Po(dy,....dy) log 2 EL 0 0k) Pou(dy, ..., dy ) log ~20 82 0k) 3)
dlgdk m( 1 k) gP*(d],...,dk) dl;dk out( 1 k) g P*(dl,...,dk) (

where P* := %(Pin + Poyt). We focus first on the term concerning the in-degree distribution and use the independence of x; and
the properties of logarithms to factorise and simplify this expression,

Pu(dy, ..., dx) P (dy)Pn(da, ... dx)
Po(dy,....dy ) log 2l Gk Po(d))Po(da, ....d;) 1o 4)
dl;dk m( 1 k) gP*(d],...,dk) dl;dk m( 1) m( 2 k) gP*(dl)P*(dz,...,dk)
Pin(d27'~'7dk) Pm(dl)
- Po(d))Po(da, i) (1 1 5
d]gdk n( 1) m( 2 k) ( o8 P*(dzv---adk) * o8 P*(dl) ( )
I)in(dZa"'vdk) Pin(dl)
- Pu(da, ..., dy) log 22220k N p (1) 1o . (6)
dzgdk 1n( 2 k) gP*(d2,7dk) ; 1n( 1) gP*(d1>

By symmetry the same is true for the term concerning the out-degree distribution. Substituting in the simplified expression, we
get

gW) — JSD(Py(da, .., di ) Pout (das - di)) + ISD(Pin (d1 ), Pouwt (d1)), 7
= gb2mm) 4 zt), (8)

This indicates that in this k-dimensional system that does not contain a genuine k-order interaction, the irreversibility of the
k—tuple simply decomposes into the sum of non-independent tuples. By induction, for a k—tuple where all variables are inde-
pendent, the irreversibility fully decomposes into the sum of the 1-order irreversibilities,

=~

C:.(xl ..... Xi) — ;-’(Xi)' (9)
i=1

VI. UNIQUE CONTRIBUTIONS FROM HIGHER ORDER INTERACTIONS

In our analysis, we have considered the irreversibility of multilevel interactions. However, for a given k—order interac-
tion, we have measured the irreversibility of the combined k—tuple. This is in contrast with the ‘unique’ irreversibility that is
contributed purely by the k-body interaction, discounting the j—body interactions for j < k that are included within this k—tuple.

Within the theory of higher order interactions, this distinction represents the difference between a hyper-graphical struc-
ture and a simplicial complex [11]. In the former, a k-body interaction does not comprise of lower-order components, whereas
in the latter, every lower order relationship must exist to define a higher order one i.e. a 3—order triangle relationship requires
all the edges of the triangle to be included.

Within the lens of irreversibility, we note that the decomposition proposed by Lynn et al [6, 12] specifically considers
the unique contributions to the global irreversibility. Alternatively, in the manuscript, we present a method that captures the
irreversibility of path projected into the portion of state-space defined by a tuple,

P(rG%))

P(F/(xl,...,xk))’ (10)

g(x|,.4.,xk) — Z P(F(xl,...,xk))log
1 -Xk)
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which is not equivalent to the unique contribution. In this section, we relate our framework more closely, but still not equivalently,
to the decomposition in Ref. [12] by measuring the unique contribution of the k-body interaction to g(’“'v""xk). We do this by

recursively subtracting the irreversibility of sub-tuples Q C {xi,...,x; }, from the quantity g(xl %) In such a way we define the
unique contribution to the ¢*1-*) of the k—body interaction (xi,...,x;) as
n(xlv-uxk) — Q(Xu---mc) _ Z nQ, (1)
QC{xy,. 0 }

which is calculable by noting that 17()"') = g("i). We are able to show that, using this framework, the results are highly corre-
lated, indicating that higher order interactions dominate the irreversibility in these large-scale neural recordings. This stands
in contrast with results obtained in spike-train data that indicate that, at the neuronal level, pairwise interactions dominate [6, 12].

We note that this approach captures the unique contributions of k-body interactions by considering the following
M) =t vie {1, N}, (12)

i.e. the combined and unique irreversibility at 1-order is equivalent. Next we note that for two independent variables, the
irreversibility factorises, under the DiMViGI framework,

clixi) = n@i) 4 (), (13)
For independent variables x;,x;, we expect n (xixj) =, Therefore, it is natural to define,
nWii) = i) _ ) (), (14)

which is positive for correlated variables and vanishes for independent variables. By definition, it captures the irreversibility of
the pairwise interaction, discounting the singleton dynamics. In this fashion, we can recursively calculate the unique contribu-
tions at k-order using the unique contributions at j-order for 1 < j < k. Concretely, we have,

n(XIVH’Xk) — g(xl,‘..,xk) _ Z ng (15)
QC{xl,...,xk}

Figure 10 shows the contrast between the unique and combined irreversibilities for tuples at levels k = 2,3, 4 at the cohort-level.
We do not consider 1-order as the unique and combined values are equivalent. Furthermore, we cannot consider k = 5 as we
employ degree-limiting (see Section VIII) for computational efficiency at this level. As a result, we consciously underestimate
the irreversibility at 5-order which leads to negative values when inputting these measurements into equation 15. Panel a) of Fig
10 shows a small level of contrast between the unique and combined pairwise dynamics. This indicates that the irreversibility of
pairwise interactions dominates the irreversibility of singleton dynamics. Furthermore the general hierarchy is preserved. Panels
b-c) show similar results with increasing levels of contrast. However, this increasing contrast is due to the combinatorics of higher
order interactions. In particular, as we increase the level k, we are subtracting more terms when isolating the unique contribution.
However, this difference is overstated, as panel d) shows that the correlation between unique and combined measurements is
almost perfect. This indicates that at a given level k, the k-body interaction dominates the lower level interactions and contributes
the most to the irreversibility. This result is both a consequence of the method, and the spatially-coarse, low-dimensional data
under consideration. It further suggests that, whilst the DiMViGI framework can be used to compare irreversibility between
levels, it is most useful for comparing tuples within a given level.

VII. VALIDATION USING SIMULATED DATA FROM THE MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS

Next, we aim to validate our technique against simulated time-series. We choose the multivariate Ornstein-Uhlenbeck as
this is one of the few models that has a known rate of entropy production [13]. Furthermore, this model has been fit to neural
recordings in the past in order to estimate the entropy production rate [14].

A. Multivariate Ornstein-Uhlenbeck process

The Orstein-Uhlenbeck process models the velocity of a particle in Brownian motion [15]. In its generalised multivariate
form, we consider N particles with coupled stochastic dynamics given by the equation,

dX(t) = —BX(t) dt+n(1), (16)
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where X (t) € RV, The friction —B € RV*V is a stable matrix, meaning that every eigenvalue has strictly negative real part. The
additive noise, n(t), is Gaussian and has covariance D € RN*N|

(n()n' () =2D5(t—1"). (17)

D is a symmetric, positive definite matrix, and so we can calculate L, its Cholesky decomposition, where L satisfies D = LLT
and L is lower triangular [13]. As a result, we can write the system as a Langevin equation,

dX (1) = —BX(t) dt + L dw (), (18)

where W (¢) represents a N-dimensional Wiener process with independent components. The individual trajectories of a mOU are
always reversible, yet at the macroscopic level, irreversibility can emerge. The macroscopic process is known to be reversible if
BD is symmetric i.e.,

BD=DB'. (19)

Note that D is always symmetric, whereas, in general, B is not. Furthermore, the covariance, S, of the stationary state can be
defined implicitly in terms of B and D by the Lyapunov equation,

BS+SB' =2D. (20)
In the case that the process is reversible, we can use the criterion (19) to write .S explicitly,
S=B"'D. (21)

In the case that the process is irreversible, obtaining an explicit form for .S is not as simple. Instead, we parameterise the level
of asymmetry using the Onsager matrix of kinetic coefficients and a matrix @, that represents the asymmetry,

L=BS=D+Q, (22)
L'=SB"=D-qQ. (23)

As shown in [13], the entropy production rate for the multivariate Ornstein-Uhlenbeck process can be written in terms of the
matrices B, D and Q. The rate of entropy production is given by,

®=(B'D'B)=—-(D'BQ). (24)
Clearly, when the process is reversible, ¢ = 0 and thus @ = 0. In general, the matrices S and Q cannot be determined in closed

form and so ® does not have a closed form expression. However, in the case N = 2 or in the presence of appropriate symmetries
in the matrices B and D, a closed form expression can be derived for & [13].

1. Thecase N =2

In the case N = 2, the Lyapunov equation (20) has a closed form solution, and therefore the entropy production rate can be
explicitly expressed as a function of the entries of B and D [13].

a b\, _(uw
(2% po(7) o5

In this case, the rate of entropy production is given explicitly by the formula,

Consider the matrices,

(cu—bv+(d—a)w)?

D= 26
(a+d)(uv—w?) (26)

Clearly we have @ = 0 if and only if the reversibility criterion,
cu—bv+(d—a)w=0, (27)

is satisfied [13].
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2. Cyclic symmetry

Consider the situation where the variables live on a ring with N sites where the dynamics are invariant to translations of the
ring. This results in the matrices B and D being circulant, i.e.

b() b] bN—l do d1 dN_1
be] b() bez dn_1 d() ... dy_o
B=| . . .| D=| . . . (28)
by by ... b di dy ... dp
As D is assumed to be symmetric, this imposes the additional restriction that dy_; = d;. In this case, the rate of entropy
production has a closed form expression,
N=1(3(5))2
=Y Sl (29)
i=o R(bi)

where (Do, ...,by_1) is the discrete Fourier transform of the vector (by, ...,by_1), 3(-) represents the imaginary part of a number
and R(-) represents the real part [13]. Recall that for a circulant matrix, the Fourier modes of (by, ...,by—1) coincide with the
eigenvectors of B.

B. Example processes validating the DiMViGI framework

Using the cases where we can calculate the explicit rate of entropy production, such as those detailed above, we can construct
example processes and compare the measurements from our technique to the global rate of irreversibility. Figure 11 shows the
results of these numerical experiments.

1. Example 1

We first consider Example 1, a 2-dimensional process with friction and noise given by,

41 1+525 1
B:< ); D:( w1 ) (30)
21 1 1+ 2x+1
This gives rate of entropy production,
4x?
b=_—"+ 31
52x+2)’ D)

which vanishes for x = 0, corresponding to a reversible process. Furthermore, as x increases from 0, the rate of entropy
production grows linearly with x.

We numerically sample paths from this process for values x = 0,0.5,1,...,10 using an Euler-Maruyama scheme. We
sample paths of length 7 = 500 with a time-step of Az = 0.01 and keep only the last 2000 time-steps of the process, to avoid
boundary effects.

As shown in Panel a) Fig. 11, we can see that the first order irreversibility captured by the DiMViGI techniques shows
no correlation with the global rate of entropy production. This is because individual trajectories of the mOU are reversible. As
a result, what is plotted is numerical error associated with finite trajectories which has no correlation with the parameters or
®. On the other hand, the second order irreversibility of the pair (x;,x;) is capturing the global rate of entropy production as
this interaction produces all the entropy in the system. As a result we can see the strong linear correlation between the 2-order
irreversibility and .
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2. Example 2
We consider Example 2, a circulant 3-dimensional process with a strong triplet interaction,

1 a —a 211
B=|—-a 1 a |; D=(|121]. (32)

a —a 1 112

This gives rate of entropy production,

d = 6a°. (33)

Fora=0.5,1,...,8.5, we sample paths with the same methods as before and estimate the irreversibility of the interactions in the
system.

As shown in Panel b) of Fig. 11, the individual trajectories are again uncorrelated with the global rate as they are re-
versible. Both the pair and triplet dynamics are strongly correlated with the global rate of entropy production. Whilst we do

not know how much each pair contributes to ®, the circular symmetry of the process suggests the dynamics of pairs should be
identical, which we see here.

3. Example 3

We consider Example 3, a circular 3-dimensional process with only pairwise drift interactions, given by,

1
B=|a
0

QI = O

a 211

0]; D=|121 (34)
1 112

which, again, gives rate of entropy production,

d = 64°. (35)

Paths are sampled for value @ = 0.1,0.2,...,1.8. Whilst each component is only coupled to itself and one other component
directly in the drift matrix, it is coupled to the entire system via the noise matrix and indirectly via the dynamics of the other
components. For example, even though x, does not appear in the drift term for x;, they are correlated through shared noise and
via x3. For this reason, the difference between Example 2 and Example 3 is not extreme. As can be seen in Panel c) of Fig.
11, we get almost identical dynamics of the measure. Whilst, we aim to distinguish between Example 2 and Example 3, by
restricting to pairwise or triplet dynamics, we note that the mOU is a linear system that can be decomposed into its pairwise
interactions, meaning it cannot produce genuine higher order effects [11]. However, we are restricted in this analysis to this
model as the explicit entropy production rate is known.

4. Example 4

We consider Example 4 which is 4-dimensional and non-circulant. As a result, we no longer have the exact solution for the
entropy production rate and must estimate this quantity numerically. Example 4 has drift and covariance,

@ a 0 0 2111
a a® 0 0 1211

B=lo o2 a4l P=l1121 (36)
0 0 a & 1112

This system is interacting as a 4-dimensional system as it is coupled through the noise dynamics. However, in the drift term we
have two subsystems where (x1,x;) interact strongly as do (x3,x4), but these pairs are drift-wise disjoint. In order to numerically
estimate the entropy production rate, we estimate the covariance matrix from the sampled paths,

S=(x,x"). (37
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Next, we can calculate the asymmetric part of the Onsager matrix,
1 T
QZE(BS—SB ) (38)
which can be used to calculate the entropy production rate,
®=—-(D'BQ). (39)

We sample paths for values a = 2.5,2.7,...,4.9, but we do not know how @ scales with a. Panel d) of Fig. 11 is harder to
interpret than for the previous examples, as the numerical approach produces greater variance in the plot. However, we plot
least-square regression lines for each tuple. At 1-order, the lines are almost flat, as expected as there should be no correlation
between the reversible individual trajectories and the underlying rate of entropy production. At 2-order, we have the most
important result, which is that whilst the reversibility of all pairs scales with entropy production, the strongly interacting pairs
(x1,x2) and (x3,x4), the upper two lines, are more irreversible. At 3-order, all the interactions produce almost identical amounts
of irreversibility, which is to be expected as each triplet contains a strongly interacting pair and one component from the other
pair, leading to a symmetry in the dynamics. Finally, the irreversibly of the quadruplet, the entire system, scales linearly with
the underlying entropy production rate.

We note that the mOU is not a truly higher-order system as it is linear and the interactions can be seen as pairwise, but
we are restricted to this model as it has a known rate of entropy production and producing continuous dynamics. Other
techniques have validated their techniques on chaotic processes [16] or symbolic dynamics i.e. Ising model [3]. However,
deterministic chaos and thermodynamic irreversibility are not equivalent. Furthermore, these processes do not allow one to
scale the number of variables, nor the level of irreversibility, arbitrarily. On the other hand, by varying the thermodynamic
temperature, one can vary the irreversibility of the Ising model, but the visibility graph is designed to capture correlations in
continuous rather than binary series yielding this model unsuitable. For this reason, we opt exclusively for the mOU as studied
here.

VIII. VARYING THE MAXIMUM DEGREE IN THE SUPPORT OF THE DEGREE DISTRIBUTIONS

The DiMViGI framework projects the high-dimensional, continuous state-space of the multivariate time-series into a
discrete and low-dimensional representation using the visibility graph, thus reducing the computational cost of calculating
information-theoretic quantities [17, 18]. However, the combinatorial complexity of considering every possible tuple in a system
can be restrictive. Furthermore, estimating high-dimensional degree distributions can also be computationally demanding in
terms of computer memory. A simple method for improving the memory efficiency of the DiMViGI framework is to cap the
maximum degree in the support of the degree distribution. The degree distribution of the visibility graph typically decays
exponentially as the degree increases [17, 19, 20]. As a result, when limiting the degree, we are removing minimal information.
Moreover, a k-dimensional distribution with maximum degree diax contains dX . entries. Therefore, degree-limiting has an
exponential reduction in the memory usage of the DiMViGI implementation. In our analysis presented in the main manuscript,
we employed degree limiting in the case of kK = 5, where we enforced dpmax = 75. In this section, we present a systematic
analysis of the effect of degree limiting for each tuple at each level. We implement this limiting by enforcing that if a node has
a degree greater than dnax, We set its degree to drnax in the distribution.

First, we note that, in practice, the restriction causes us to underestimate the irreversibility of the tuple. However, this is
not mathematically guaranteed. For a tuple, (xi,...,x;), we denote the irreversibility with full support to be g@%) and the
irreversibility with limited support to be g(’” %) Therefore, the difference is,

A — g(xl,....,xk) _ é(xl..“,xk). (40)

The sign of A reflects whether we are over or underestimating the irreversibility using the limited support. We recall the definition
of JSD between distributions P and Q,

J(PIQ) = S D(PIM) + D(QlM) (41)

where M = 1 (P + Q) is an averaged distribution and D(-) represents the KLD, given by,

D(P|Q)= Y P(x ﬂx) (42)

xeZ )
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Therefore,
1 w P Pou
A= 3 ) Pn log =+ Pout log (43)
d :Jmax"‘lv-"vdk:‘imax"'l
1 Pout 13 13
+5 Y PR log ? o+ Powlog o — Plog -5 — Pourlog —5* =1, (44)

dij=dmax for some i

where Py, Py are the in- and out-degree distributions with the full support; P, B, are the in- and out-degree distributions with
the limited support and P*, P* are the averaged in-out distributions. In other words, the limited and full degree distributions
overlap for all degrees d < dax and therefore cancel when we take the difference. By truncating the distribution we are
neglecting a number of positive terms from the full support. However, we must also consider that these edges have not been
simply deleted, but are now included in overestimating the probability that a node has degree dpay, hence P and P differ when a
node has degree dax in sOme layer. We can rewrite A as,

1 P,
A=A-3 Yy Pmlog = +Poutlog Pmlog ¢~ Paulog 7 | (45)

di=dpax for some i

where A > 0. Therefore, if the subtracted sum is less than A, we will underestimate the irreversibility, but if it greater than A
we will overestimate the irreversibility. As shown in Figure 12, in practice, we consistently underestimate the irreversibility by
limiting the degree, indicating that A is much larger than the subtracted term.

Figure 12 shows a systematic variation of the maximum degree. We perform the analysis with dmax = Odmax and a € [0,1],
where dnax 1s the maximum degree of the full multiplex visibility graph (MVG) from the data for k = 1,...,4 and dpax = 75
for k=5. We vary oo = 0,0.1,...,0.9,1 and calculate the irreversibility of each tuple using the DiMViGI framework but
with restricted degree distribution. In addition, we also show, for each value of o, the Pearson correlation coefficient, r, and
Spearman’s rank, p, between the limited and full support values at each level. Panels a-e) show the effect on the irreversibilities
of k-tuples with k = 1,...,5 respectively and panel f) recalls the schematic representation of the regions of interest. For
each level, the irreversibility monotonically increases as we increase ¢, confirming that degree-limiting underestimates the
irreversibility. For lower orders (1-2), we see that the increase is linear. In particular, for the pairwise results, to get a strong
correlation with the full support irreverisibility, one needs to use a large proportion of the dpax. On the other hand, for the
higher orders (3-5), the increase is sigmoidal. Panels c-e) indicate that even limiting to half of the maximum degree is sufficient
for an almost perfect correlation with the original results. For order 4-5, we see that this also captures approximately 90% of
the irreversibility. With an exponentially smaller distribution, one can capture almost equivalent information. This analysis
indicates that degree limiting is a very practical and useful tool to maximise the memory efficiency of the DiMViGI framework
at higher orders.

IX. FORMULATIONS OF THE ENTROPY PRODUCTION RATE FOR MARKOVIAN AND NON-MARKOVIAN SYSTEMS

For certain systems in a stationary state, the entropy production rate (EPR) can be explicitly formulated.

In the case of discrete time, discrete space, Markovian dynamics, the entropy production rate simplifies to,
c= ZP,, log ” (46)
ij

where P;; is the join transition probability, P(x, 41 = j,x; = i) [3].

For [—order Markovian dynamics, the rate of entropy production is given by,

Py
Z le, - log Px1 ,x1+17 (47)

)C|7 X4 Xl415---5X1

where Py, is the probability of observing the exact sequence of states x,...,x;11 [3].

..... XI4+1
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For a general system with discrete states in discrete time, the rate of entropy production of a single trajectory is given
by,

1

=Y, Paglog (48)

X1y Xt ]

o = lim
t—o0

T
=

where Py, is the probability of observing the exact sequence of states xi, ..., x4+ [3].

yeeerXrt1

For continuous time Markovian dynamics, the time-dependent rate of entropy production is given by,

1 p,-(t)w,-j
)= — (t - —p(t =11 LA 49
olt) 2;[1’:( Jwij—pj(t)wji]log (0w (49)
where p;(t) is the instantaneous probability distribution and w;; are the transition rates [21].
For Markovian dynamics in continuous space and time, given by the Langevin equation,
X =A(x,1) +B(x,1) - 1(1), (50)
we can write an equivalent Fokker-Planck equation,
atp(xat) = —Vj(x,1) (51)
Ji(x 1) = Ai(x, 0)p(x,1) = Y V(Dij(x,)p(x,1)), (52)
J
where,
1 T
D(x,t) = EB(x,t)B(X,t) . (53)
Following [22], the time-dependent entropy production rate is given by,
o(t) = [ xF(x.0j(x.1). (54)
where,
T -1
t)D(x,t
F(x,t) = M (55)

X. EXPERIMENTAL PARADIGM AND MEG RECORDINGS

In this section, we provide additional information about the experimental paradigm, acquisition and pre-processing of the
MEG recordings.

A. Experimental paradigm

We employed an old/new paradigm auditory recognition task [23-28]. Participants listened the first four bars of the right-
hand part of Johann Sebastian Bach’s Prelude No. 2 in C Minor, BWV 847, twice and were asked to memorise it to the best
of their ability. Next, participants listened to 135 five-tone musical sequences, corresponding to 27 trials in 5 experimental
conditions, of 1750 ms each and were requested to indicate if the sequence belonged to the original music or was a variation.
The experimental conditions corresponded to systematic variations on the position of the first varied tone in the sequence. For a
detailed description and analysis of the different experimental conditions, see Bonetti et al [23]. We consider one experimental
condition, where participants recognised the original, previously memorised sequences.
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B. Data acquisition

The MEG recordings were taken in a magnetically shielded room at Aarhus Univeristy Hospital (AUH), Aarhus, Denmark
on an Elekta Neuromag TRIUX MEG scanner with 306 channels (Elekta Neuromag, Helsinki, Finland). The sampling rate
was 1000 Hz with analogue filtering of 0.1-330 Hz. Before taking the recordings, we registered the head shape of participants
and the position of four Head Position Indicator (HPI) coils with respect to three anatomical landmarks using a 3D digitiser
(Polhemus Fastrak, Colchester, VT, USA). We used this recording to co-register MRI scans with the MEG recordings. During
the MEG recordings, the HPI coils continuously registered the localisation of the participant’s head which was then used for
movement correction. Furthermore, heartbeats and eye-blinks were recorded with two sets of bipolar electrodes which were
then used, further along the pre-processing pipeline, to remove artefacts from the MEG recordings. The MRI scans were taken
on a CE-approved 3T Siemens MRI-scanner at AUH. The MRI data consisted of structural T1 (mprage with fat saturation) with
a spatial resolution of 1.0 x 1.0 x 1.0 mm and the following sequence parameters: echo time (TE) = 2.61 ms, repetition time
(TR) = 2300 ms, reconstructed matrix size = 256 x 256, echo spacing = 7.6 ms, bandwidth = 290 Hz/Px. The MRI and MEG
recordings were acquired on two separate days.

C. MEG data pre-processing

Firstly, the raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was pre-processed using MaxFilter to
attenuate external interferences [29]. Next, signal space separation was applied with MaxFilter parameters: spatiotemporal
signal space separation [SSS], down-sample from 1000Hz to 250Hz, movement compensation using cHPI coils [default step
size: 10 ms], correlation limit between inner and outer subspaces used to reject overlapping intersecting inner/outer signals
during spatiotemporal SSS: 0.98). Then the data was converted into Statistical Parametric Mapping (SPM) formatting and
further pre-processed in MATLAB (MathWorks, Natick, MA, USA) using in-house-built codes (LBPD, available at https:
//github.com/leonardob92/LBPD-1.0.git) and the Oxford Centre for Human Brain Activity (OHBA) Software Library
(OSL) (available at https://ohba-analysis.github.io/osl-docs/) [30]. OSL is freely available software that builds
on the Fieldtrip [31], FSL [32], and SPM [33] toolboxes. Next the continuous MEG data was visually inspected and large
artefacts were removed. This removal discarded less than 0.1% of the data. Independent component analyses (ICA) were used to
removed artefacts stemming from heart-beats and eye-blinks [34]. Firstly, the original signal was decomposed into independent
components. Next, we isolated and discarded the components that picked up activity from eye-blinks and heartbeats. Then the
signal was rebuilt using the remaining components. Lastly, the signal was epoched into 135 trials, 27 trials in 5 experimental
conditions, and the mean baseline signal, obtained from the post-stimulus brain signal, was removed. Each resulting trial lasted
4500 ms, made up of 4400 ms plus 100 ms of baseline time.

D. Source reconstruction

Whilst MEG recordings have excellent temporal resolution when compared to other imaging modalities, one must employ
source-reconstruction to spatially locate activity in the brain. We employed the beam-forming algorithm [35-37] implemented
in both in-house codes and OSL, SPM and FieldTrip.

In the following, we give a thorough description of the inverse model employed in the beam-forming algorithm. The
algorithm is made up of two steps: (1) designing a forward model, (2) computing the inverse solution.

The forward model is a theoretical model that considers each brain source as a voxel/active source. The model de-
scribes how the strength of each dipole would be reflected onto each of the MEG sensors. We employed magnetometer channels
and an 8-mm grid, which returned 3559 dipole locations (voxels) within the whole brain. We co-registered the individual,
structural T1 data with the fiducial points and then computed a forward model by adopting the ‘Single Shelf” method [38]. This
outputs the so-called ‘leadfield’ model which is an S x M matrix, L, where S is the number of sources and M is the number
of MEG channels. In three cases, the structural T1 was not available and so we performed the leadfield computation with the
‘MNI152-T1 with 8-mm spatial resolution’ template.

Next, we used the beam-forming algorithm to compute the inverse solution. By sequentially applying a set of weights
to the source locations, the algorithm can isolate the contribution of each source to the activity recorded by each MEG channel
at each time-point of the recording. We summarise the beamforming algorithm in the following steps.
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Firstly, the data recorded by the MEG sensors B at time ¢ is described by the equation,
B, =LO;+vV (56)

where L is the leadfield model, Q is the ‘dipole matrix’ which carries the activity of each dipole over time and Vv is noise [36].
The aim is to compute Q by solving the inverse problem. In the beam-forming algorithm, weights are computed and then applied
to B, i.e. for a single dipole, g, we have,

g =W'B,. (57)

Beam-forming computes weights, W,,, for each brain source n using the covariance matrix of the MEG sensors, C, calculated on
the continuous signal with all trials concatenated, in the following fashion,

W, = (L cL,) "L et (58)

Following Nolte [38], the computation of the leadfield method was performed for three orientations of each brain source. Using
singular value decomposition (SVD), the three orientations were reduced to one,

L=SVD(L'c'L)™!, (59)

a common technique for simplifying beam-forming output [39, 40]. Here, L represents the leadfield model with three
orientations. Lastly, the obtained weights were applied to each brain source at each time-point and normalised according to
Luckhoo et al [40]. In addition to individual trials, the weights were applied to averaged neural activity over all trials. The
procedure returned a time-series for each of the 3559 brain sources for each trial, referred to as the ‘neural activity index’. The
sign ambiguity of the evoked responses time series was adjusted for each brain source using its sign in correspondence with the
N100 response to the first tone of the auditory sequences (see Refs. [23, 25-27]).

Finally, the 3559 voxels obtained through source reconstruction were reduced to six functional brain parcels (or regions
of interest (ROIs)) that roughly correspond to auditory cortices in the left and right hemispheres (ACL, ACR); the hippocampal
and inferior temporal cortices in the left and right hemispheres (HITL, HITR) and two medial regions, the bilateral medial
cingulate gyrus (MC) and the bilateral ventro-medial prefrontal cortex (VMPFC). Our ROIs were taken from the prior study
which used this dataset to reveal the event-related neural responses underlying auditory recognition [23]. In said study, an
extensive description and validation of these functionally derived ROIs is provided. Moreover, the study showed the consistency
of the results when comparing these ROIs with ROIs taken from the well-known Automated Anatomical Labelling (AAL)
parcellation and encompassing bilateral Heschl’s gyri, bilateral hippocampi and medial and anterior cingulate cortex. The data
was analysed at a temporal resolution of 4 ms so the resulting multivariate time-series was of dimension 6 x 1026 (variables X
time-points).

XI. SIGNAL QUALITY AND SIGNAL TO NOISE RATIO IN MEG RECORDINGS

In this experimental paradigm, 135 trials were performed per participant for 83 participants, corresponding to 27 trials and 5
experimental conditions [23]. In this study, we focused on a single experimental condition. Furthermore, as analysis is restricted
to participants who correctly indicated that the piece of music had not been altered, this means that each participant had a
unique number of successful, usable trials up to a maximum of 27. We considered data from the 51 participants who had at
least 15 successful, usable trials out of the total 83 participants. For those participants who had more than 15 successful trials,
we then randomly sampled 15 trials in order to have an equal contribution from each participant, allowing for the participant
level analysis presented in Sec. II. Recommendations for trial counts in an MEG paradigm differ by task, but 40-100 trials is
often considered a sensible range [41]. In order to validate our choice to use 15 trials, even for participants who had a larger
number of available trials, we consider the participant-trial-averaged signal shown in panel a) of Figure 13. The 6 panels
show the average signal of each region, indicated by the schematic representation. The blue lines represent the data used
in this study, taken by first averaging over the 15 trials per participant and then averaging over all participants. The shading
represents the standard error of each participant compared to the mean signal. The yellow dashed lines represent the mean
signal using the total available data with a custom number of trials per participant, with a minimum of 15 and a maximum
of 27. This figure highlights the strong neural response associated with this task-paradigm, as found in previous studies
[23-28]. Further, the strong similarity between the yellow and blue signals indicates that opting for a smaller number of trials
in order to have the same contribution from each participant, does not result in a decrease in signal quality or signal to noise ratio.

In panel b) of Figure 13, we extend this analysis by focusing on the pre-stimulus time, where the red line indicates the
stimulus-time. Panel b) shows that the recordings contain a ‘clean’ baseline level of activity with small fluctuations around 0,
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followed by a strong response after the stimulus.

Each recording contains an epoch of 1026 time-points representing 0.1 seconds of baseline time, followed by a 4 sec-
ond of active period. The full epoch was considered in the analysis. For further discussion of the paradigm and the associated
data see Ref. [23].

XII. EPOCH COMPARISON

In both the main manuscript and the SI, in order to use the maximum amount of data, we analyse the full epoch of 4.1 seconds,
made up of 0.1 seconds of pre-stimulus baseline time and the following 4 seconds of post-stimulus activity. Alternative choices
for a suitable epoch are to remove the pre-stimulus baseline of 0.1 seconds and/or to remove the final few seconds of activity
where it appears the activity returns to baseline [23]. In order to validate that our results hold irrespective of this choice of epoch,
we consider the results of the method applied to three different epochs:

1. Full epoch: This is the epoch considered in the main manuscript and the SI (bar this section), which includes 4.1 seconds
of activity including 0.1 seconds of pre-stimulus baseline.

2. Baseline removed: This epoch contains only the 4 seconds of activity post-stimulus i.e. with the baseline removed.

3. Baseline removed / Reset removed: This epoch contains 2.5 seconds of activity, from time 0 to 2.5 i.e. with both the
baseline and the subsequent reset to baseline removed.

Figure 14 shows the 4-order irreversibilities applied to the three epoch choices. Panel a) shows that using a shorter epoch results
in elevated irreversibility measurements, but that the relative behaviour remains the same. Furthermore, the correlations between
the results for each epoch are almost perfect with r = 1.00 (3 s.f, ****) between Full and Baseline removed, r = 0.927 (3 s.f,
#k%%) between Full and Baseline removed/Reset removed and r = 0.926 (3 s.f, ****) between Baseline removed and Baseline
removed/Reset removed. Therefore the choice of any sensible epoch has minimal impact on the relative results.
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FIG. 5. Sub-sampling for estimation of finite-data errors at order 1. a) A comparison between the original results at IDF=1 and the
results at 20 samples at IDF=1.25 (12/15 trials). We find that the results are highly correlated indicating that our method is robust to different
amounts of data. b) Bonferroni-corrected paired ¢—tests show that each pairwise comparison is significant (****,p < 0.0001), indicating
that the differences in irreversibilities are far beyond noise-level. ¢) A comparison between the original results at IDF=1 and the results at
20 samples at IDF=1.67 (9/15 trials). We find that the results are highly correlated. d) Bonferroni-corrected paired ¢ —tests show that each

pairwise comparison is significant (¥***, p < 0.0001).
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2,3,4. a) k = 2. As the irreversibility of the pairwise interactions is much larger than the individual trajectories, the unique and combined
irreversibilities are very similar. b) kK = 3. Whilst there is some contrast between the unique and combined irreversibilities, the general hierarchy
is preserved. c¢) k = 4. Again there is some contrast between the unique and combined irreversibilities with the general hierarchy being
preserved. d) We show the almost perfect correlation between the unique and combined irreversibilities at each level. This indicates that the
k—order interactions dominate the irreversibility at level k and suggest little difference when considering unique or combined irreversibilities.
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FIG. 11. Validation of the DiMViGI framework using simulated data from the mOU. a) Example 1 - a 2-dimensional process. The pairwise
irreversibility scales with the global rate ®, whilst the individual variables do not. b) Example 2 - a 3 dimensional process with drift-disjoint
pairs. The pairs and triplet irreversibilities scale with the global rate ¢ whilst the individual trajectories do not. ¢) Example 3 - a 3 dimensional
process with 3 way interactions in the drift and noise. The pairs and triplet irreversibilities scale with the global rate & whilst the individual
trajectories do not. d) Example 4 - a 4 dimensional process with 2 strongly interacting pairs. The global rate ® is estimated numerically
producing variance in the plot so we plot least-square regressions. The pairs and triplets and quadruplet irreversibilities scale with the global
rate @ whilst the individual trajectories do not. Notably, the strongly interacting pairs (x,x;) and (x3,x4) have a higher level of irreversibilities
than the other pairs.
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FIG. 12. Systematic analysis of the effect of degree-limiting on the irreversibility of each tuple. Panels a-e) show the proportion of irreversibility
captured with degree limited to dmax = Ctdmax for o € [0,1]. Using a limited degree underestimates the irreversibility of the tuple. In addition
a-e) show the correlation between the limited degree results at each level, and the full degree results. For higher orders, degree limiting is
shown to lose minimal information, both in terms of the correlations between tuples and absolute values. This indicates that is is a valuable
technique for maximising the efficiency of the DiMViGI framework. Panel f) recalls the schematic representation for the tuples in the legends.
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FIG. 13. Signal visualisation. a) The 6 panels represent the averaged signal for each of the ROIs, represented by the schematic diagram. The
blue lines represent the averaged signal of the data used in this analysis. This is obtained by averaging the signal for each participant over their
associated 15 trials. Next, we average over all participants, measuring the standard error for each participant compared to the mean. The red
line contains the same analysis but using all possible trials for each participant, between 15 and 27 trials. b) Each pane represents the signal of
each participant as well as the mean, of the data used in this study, focused on the baseline, prestimulus time. The red line denotes the stimulus
time. The small random fluctuations before the stimulus time indicate a ‘clean’ baseline.
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FIG. 14. Epoch comparison. a) The results of the 4-order irreversibilities for each of the three choices of epoch yield very similar results.
The overall level of irreversibility is elevated for the shortest epoch. b) The correlations between the results for each epoch length are almost
perfect suggesting that each choice yields equivalent results.
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