

1 ***Peromyscus leucopus*, *Mus musculus*, and humans have distinct transcriptomic
2 responses to larval *Ixodes scapularis* bites**

3
4 Jeffrey S. Bourgeois^{*1}, Julie E. McCarthy^{*1}, Siu-Ping Turk², Quentin Bernard¹, Luke H. Clendenen¹, Gary
5 P. Wormser⁴, Luis A. Marcos⁵, Kenneth Dardick⁶, Sam R. Telford III³, Adriana R. Marques², Linden T.
6 Hu^{#,1}

7 *Co-First Authors

8 #Corresponding Author

9
10 ¹ Tufts University Lyme Disease Initiative, Department of Molecular Biology and Microbiology, Tufts University School of
Medicine, Boston, MA, USA

11 ² Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases (NIAID), NIH,
Bethesda, Maryland, USA

12 ³ Tufts University Lyme Disease Initiative, Department of Infectious Disease and Global Health, Tufts University, North
Grafton, MA, USA

13 ⁴ Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA

14 ⁵ Department of Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, Stony Brook,
University, NY, USA

15 ⁶ Mansfield Family Practice, Storrs, Connecticut, USA

16 **Abstract**

17 *Ixodes scapularis* ticks are an important vector for at least six tick-borne human pathogens, including the
18 predominant North American Lyme disease spirochete *Borrelia burgdorferi*. The ability for these ticks to
19 survive in nature is credited, in part, to their ability to feed on a variety of hosts without excessive
activation of the proinflammatory branch of the vertebrate immune system. While the ability for nymphal
ticks to feed on a variety of hosts has been well-documented, the host-parasite interactions between
larval *I. scapularis* and different vertebrate hosts is relatively unexplored. Here we report on the changes
in the vertebrate transcriptome present at the larval tick bite site using the natural *I. scapularis* host
Peromyscus leucopus deer mouse, a non-natural rodent host *Mus musculus* (BALB/c), and humans. We
note substantially less evidence of activation of canonical proinflammatory pathways in *P. leucopus*
compared to BALB/c mice and pronounced evidence of inflammation in humans. Pathway enrichment
analyses revealed a particularly strong signature of interferon gamma, tumor necrosis factor, and
interleukin 1 signaling at the BALB/c and human tick bite site. We also note that bite sites on BALB/c mice
and humans, but not deer mice, show activation of wound-healing pathways. These data provide
molecular evidence of the coevolution between larval *I. scapularis* and *P. leucopus* as well as expand our
overall understanding of *I. scapularis* feeding.

20
21 **Significance**

22 *Ixodes scapularis* tick bites expose humans to numerous diseases in North America. While larval tick
23 feeding enables pathogens to enter the tick population and eventually spread to humans, how larval ticks
24 interact with mammals has been understudied compared to other tick stages. Here we examined the
25 transcriptomic response of a natural *I. scapularis* rodent host (*Peromyscus leucopus*), a non-native *I.*
scapularis rodent host (*Mus musculus*), and an incidental host (humans). We find that there are
26 differences in how all three species respond to larval *I. scapularis*, with the natural host producing the
27 smallest transcriptomic signature of a canonical proinflammatory immune response and the incidental
28 human host producing the most robust signature of inflammation in response to the larval tick. These data
29 expand our understanding of the pressures on ticks in the wild and inform our ability to model these
30 interactions in laboratory settings.

31
32
33
34
35
36
37
38 **Key words:** Lyme disease; Tick bites, *Ixodes scapularis*, *Peromyscus leucopus*, *Mus musculus*, Human,
39 Transcriptomics, Immune Response, Wound Healing

51

52 Introduction

53 *Ixodes scapularis* (formerly *Ixodes dammini*) ticks are the most important invertebrate
54 vector of human diseases in North America [1]. These ticks are responsible for spreading most
55 cases of Lyme disease (predominantly caused by *Borrelia burgdorferi* sensu stricto in North
56 America), which affects roughly 476,000 individuals in the US yearly [2], as well as six other
57 human pathogens—*Anaplasma phagocytophilum*, *Babesia microti*, *Borrelia miyamotoi*, *Borrelia*
58 *mayonii*, *Ehrlichia muris eauclairensis* and deer tick virus/Powassan virus [3, 4]. The spread of
59 pathogens into and out of *I. scapularis* requires a variety of complex interactions to occur at the
60 skin-vector interface [1, 5]. Tick feeding can trigger immunological processes which threaten
61 the ability for the tick to survive the blood meal [6]. To prevent this, *Ixodes* ticks secrete saliva
62 into the feeding site, exposing the host to anticoagulants and immunomodulatory compounds,
63 which dampens the host immune response and ensures the tick remains attached until
64 completion of feeding [7-9]. This secretion also contributes to the spread of *B. burgdorferi* into
65 new hosts—both by providing a mechanism to exit the tick [10-12] and by dampening the
66 immune response while the pathogen establishes the infection [13-20].

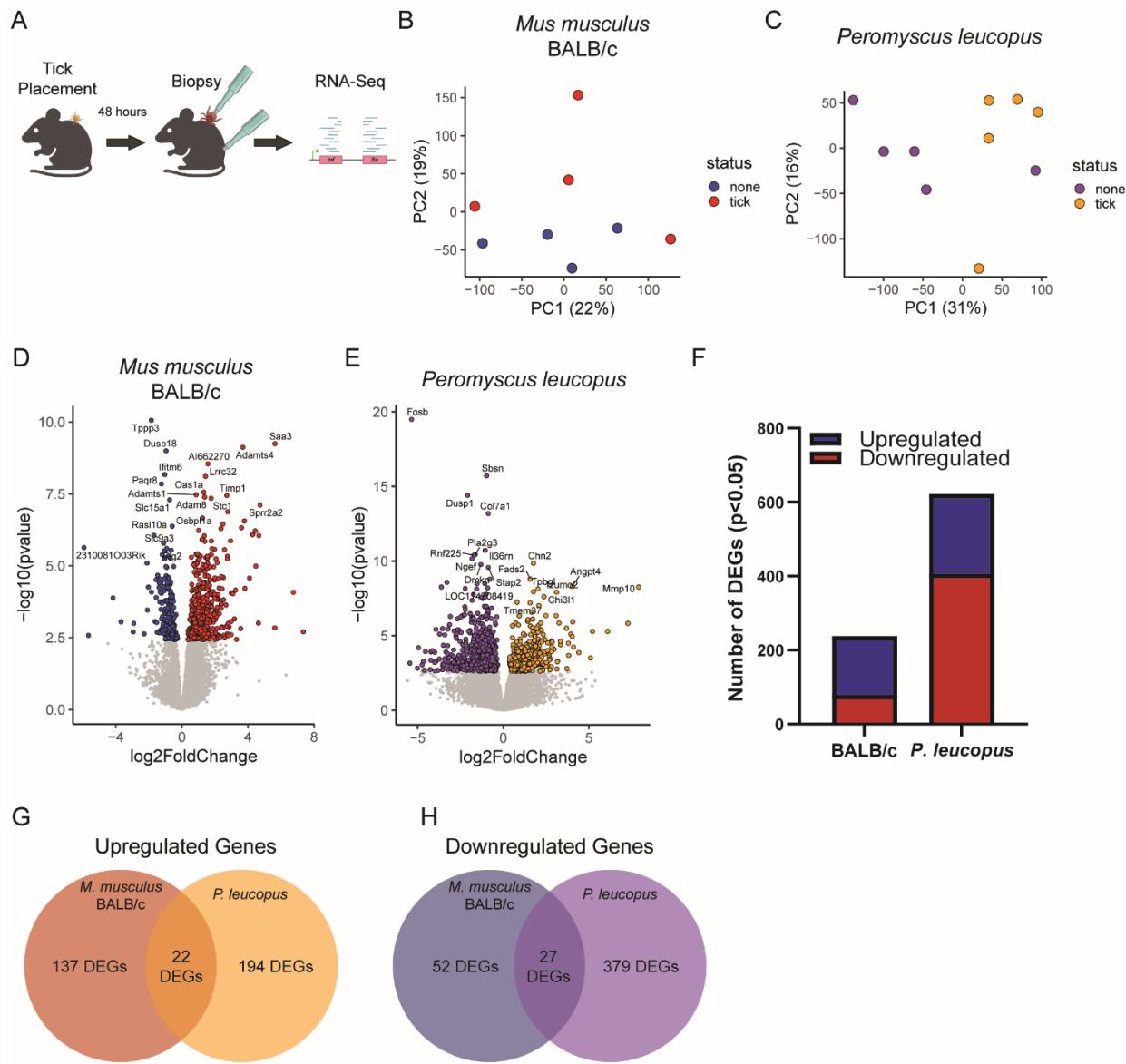
67 *I. scapularis* is a generalist parasite that successfully feeds on many hosts [21]. In line
68 with this, previous work has demonstrated that nymphal tick bites on guinea pigs (*Cavia*
69 *porcellus*), *Mus musculus*, *Peromyscus leucopus*, and humans are broadly similar at the
70 histopathological level [22-24]. However, major changes across species occur during recurrent
71 tick bites, where, for instance, guinea pigs and humans become substantially more inflamed
72 than the other species—resulting in itching, rejection of the tick, and/or reduced risk of pathogen
73 transmission [22, 24, 25]. Notably, at the transcriptional level, differences between *M. musculus*
74 (BALB/c) and *C. porcellus* immune responses to nymphal *I. scapularis* were apparent even at
75 the first feeding [24]. This demonstrates that not all *I. scapularis* hosts are equally permissive to
76 parasitization.

77 Relatively little attention has been paid to how any vertebrate—including humans or
78 rodents—interact with larval *I. scapularis*, though field studies have documented a strong
79 association between larvae and *P. leucopus* in the northeastern and midwestern United States
80 [21, 26-28], as well as birds and reptile hosts in the southeastern United States [21, 29, 30]. In
81 his 1989 review, Ribeiro stated that their unpublished data demonstrated that larval *I. scapularis*
82 can feed efficiently on the North American deer mouse *P. leucopus* but not on *C. porcellus* [6].
83 Similarly, larval *I. scapularis* were found to feed better on *P. leucopus* than *Microtus*
84 *pennsylvanicus* voles [31]. Larval *I. scapularis* are not infected with *B. burgdorferi* [32] and less
85 commonly bite humans compared with the nymphal stage [33]; thus they have very limited
86 direct clinical impact on patient health. However, this stage does have a major indirect impact
87 on human health by impacting *B. burgdorferi* abundance in nature—larval tick feeding is critical
88 for the continuation of the *B. burgdorferi* enzootic cycle [1].

89 In this study, we compare the transcriptomic response of two rodent models of tick
90 feeding, the natural *I. scapularis* host *P. leucopus* and the artificial *I. scapularis* host *M.*
91 *musculus* (BALB/c), to examine the transcriptomic response to larval *I. scapularis*. Pathway

92 enrichment analyses revealed activation of more proinflammatory signaling pathways in *M. musculus* than in *P. leucopus*. We also note evidence of tissue remodeling and homeostasis
93 genes activating in BALB/c rodents but not *P. leucopus*. Integration of a previously published
94 transcriptomic dataset examining the nymphal bite site in BALB/c mice demonstrated
95 considerable differences between the *M. musculus* immune response to each of these tick
96 stages, suggesting that ticks may have different capacities to suppress proinflammatory
97 pathways in different hosts across the stages in their life cycle. We also evaluated human
98 patient samples [34] to compare how the human transcriptional response compared to these
99 rodent responses. We found a strong proinflammatory immune response to larval *I. scapularis*
100 in humans, with activation of many of the same pathways (tumor necrosis factor (TNF),
101 interferon gamma (IFN- γ), interleukin 1 (IL1) signaling) as in *M. musculus*. Overall, this study
102 substantially increases our understanding of host-*Ixodes* interactions.
103

104


105 Results

106 **BALB/c mice and *Peromyscus leucopus* deermice respond differently to larval *Ixodes* 107 *scapularis***

108 In order to examine how BALB/c (n=4) and *P. leucopus* (n=5) respond to larval *I. scapularis* bites, 10 larval ticks were placed in a tick containment chamber affixed to the back of
109 each rodent. Because larval ticks do not leave a noticeable bite site after detachment on either
110 rodent, 2mm punch biopsies were taken surrounding a feeding tick at 48 hours post-placement
111 roughly one-half to three quarters of the way through feeding. Additionally, a second punch
112 biopsy was taken from a region outside the tick containment chamber as a no tick bite control
113 (**Figure 1A**).
114

115 We performed RNA sequencing on these biopsies. Principal component analysis
116 revealed that tick bite sites cluster away from unbitten skin along the second principal
117 component in BALB/c mice (**Figure 1B**) and the first principal component in *P. leucopus* (**Figure**
118 **1C**). We next performed differential gene expression analysis (**Table S1**) to examine genes that
119 were induced or suppressed ($p_{adj}<0.05$) by larval tick feeding. For all analyses, gene lists were
120 restricted to those genes that could be reliably identified across all samples—meaning across
121 different skin biopsy sites (tick bite and control) and across species (BALB/c and *P. leucopus*).
122 Differential gene expression analyses revealed that 238 genes were differentially expressed in
123 BALB/c tick bite sites (**Figure 1D**), and 622 genes were differentially expressed in *P. leucopus*
124 tick bite sites (**Figure 1E**). Examining the direction of effect, we found that most differentially
125 expressed genes in BALB/c were upregulated (159 upregulated, 79 downregulated), while most
126 genes in *P. leucopus* were downregulated (216 upregulated, 406 downregulated) (**Figure 1F**).
127 There was remarkably little overlap between the upregulated genes or downregulated genes
128 across BALB/c mice and *P. leucopus* (**Figures 1G, 1H**).
129

130

131

132 **Figure 1: BALB/c *M. musculus* and *P. leucopus* display different transcriptomic responses to bites**
133 **from larval *I. scapularis*.** (A) Schematic of larval tick placement and RNA-seq. (B,C) Principal
134 component analysis based on observed transcripts per million reads for each gene in (B) BALB/c mice or
135 (C) *P. leucopus*. (D,E) Volcano plots of differentially expressed genes in (D) BALB/c mice or (E) *P.*
136 *leucopus*. Genes with $p>0.05$ shown in gray. (F) BALB/c mice display more upregulation of genes than
137 downregulation, while *P. leucopus* display more downregulation of genes than upregulation. (G, H) Most
138 genes (G) upregulated or (H) downregulated in BALB/c or *P. leucopus* are not similarly differentially
139 expressed in the opposite rodent.

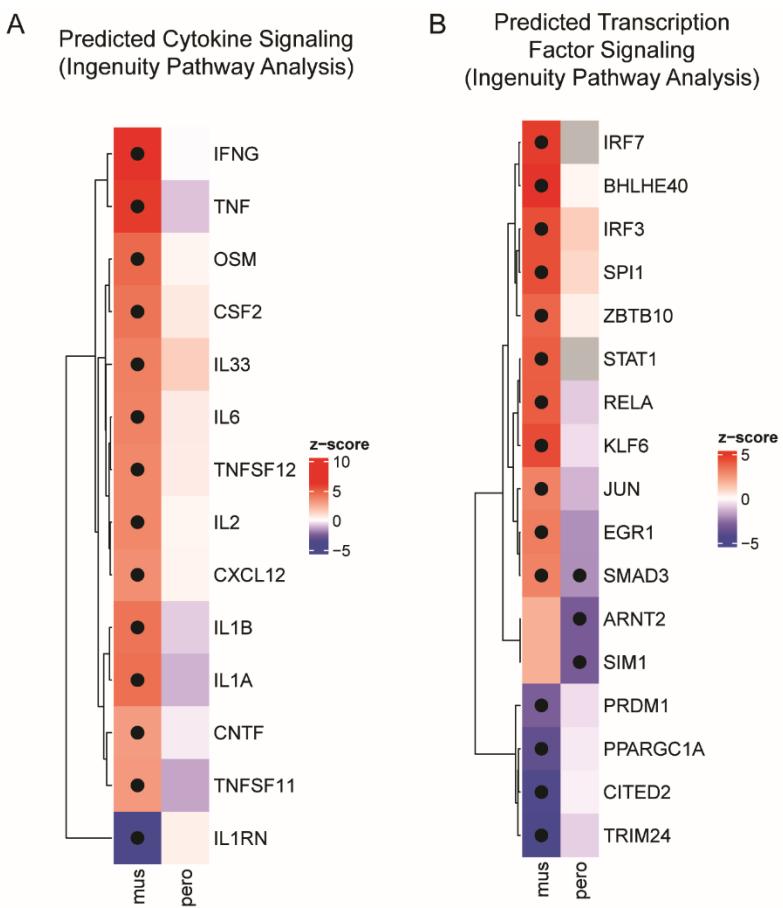
140

141 **Ingenuity Pathway Analysis reveals more proinflammatory cytokine signaling in BALB/c**
142 **mice compared to *P. leucopus* at tick bite sites**

143 The Qiagen Ingenuity Pathway Analysis (IPA) pipeline [35] can be used to identify
144 signaling pathways that show evidence of activation or suppression in response to the tick bite.
145 This program assigns pathways controlled by a given upstream regulator (e.g. cytokines,
146 transcription factors). Importantly, this is based on gene expression of genes across the entire
147 pathways, and thus these values cannot be interpreted as meaning that the upstream regulator
148 itself (e.g. *Tnf*) is upregulated or downregulated in each dataset.

149 Using this tool, we identified 48 cytokine-regulated pathways that show evidence (Z-
150 score ≥ 2) of activation and one pathway that showed evidence (Z-score ≤ -2) of suppression in
151 BALB/c (**Table S2**). In contrast three cytokine-regulated pathways showed evidence of
152 activation and two showed evidence of suppression in *P. leucopus* (**Table S2**). Of these, two
153 pathways (IFNB1 and PRL) were activated in both species. We focused our attention on the 23
154 cytokine-regulated pathways that had (1) the most significant predicted activation (Z-score > 3)
155 or repression (Z-score < -3) in at least one of the species, and (2) had at least a Z-score
156 difference of 2 between the two species (**Figure 2A**). This revealed multiple proinflammatory
157 pathways that were predicted to have substantial activation in BALB/c mice but not *P. leucopus*,
158 particularly the tumor necrosis factor (TNF) (BALB/c Z-score 6.132, *P. leucopus* Z-score -0.867)
159 and interferon-gamma (IFNG) regulated pathways (BALB/c Z-score 6.4, *P. leucopus* Z-score -
160 0.02). We also note increased predicted IL6 and IL1 signaling in BALB/c mice but not *P.*
161 *leucopus*. Conversely, BALB/c mice had substantial predicted repression of the anti-
162 inflammatory interleukin 1 receptor antagonist (IL1RN) regulated pathway, which showed no
163 evidence of regulation in *P. leucopus* (BALB/c Z-score -3.633, *P. leucopus* Z-score 0.454).
164 Together, these data suggest that the BALB/c larval *I. scapularis* shows signs of robust
165 proinflammatory cytokine signaling at the transcriptomic level that is substantially less present in
166 *P. leucopus*.

167


168 **Ingenuity Pathway Analysis reveals differences in activity of transcription factor
169 regulated pathways in BALB/c mice and *P. leucopus* bite sites**

170 IPA analysis revealed 41 transcription factor regulated pathways that showed evidence
171 of activation (Z-score ≥ 2) in BALB/c bite sites and 19 transcription factor regulated pathways
172 with evidence of repression (Z-score ≤ -2) (**Table S2**). There were 4 transcription factor
173 regulated pathways that showed evidence of enhanced activity in *P. leucopus* and 17 that
174 showed evidence of repression. Of these, two transcription factor regulated pathways (ETS1
175 and GATA2) were predicted to be activated in both rodents.

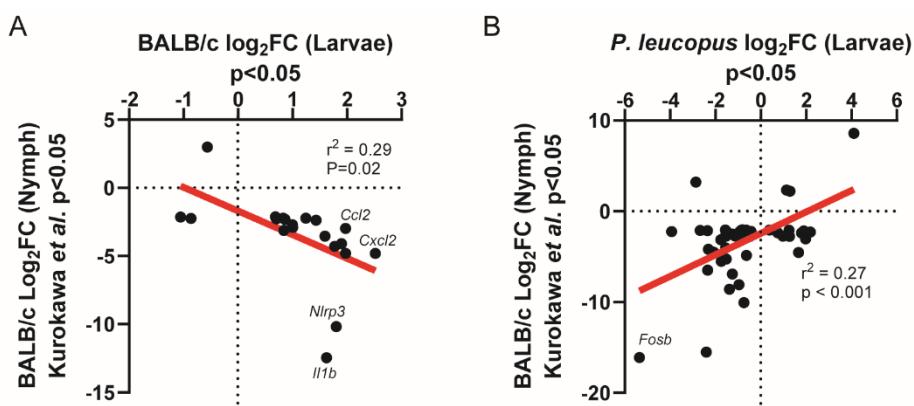
176 Similar to our cytokine regulated pathway analyses, we focused our attention to
177 transcription factor regulated pathways where we observed (1) the most significant predicted
178 activation (Z-score > 3) or repression (Z-score < -3) in at least one of the rodent species, and (2)
179 had at least a Z-score difference of 2 between the two species, which includes 37 pathways
180 (**Figure 2B**). Complementing our cytokine data, we note numerous proinflammatory pathways
181 were predicted to be activated in BALB/c but not *P. leucopus*, including IRF3 (BALB/c Z-score
182 4.35, *P. leucopus* Z-score 1.182) and RELA (BALB/c Z-score 4.04, *P. leucopus* Z-score -0.898).
183 STAT1 (BALB/c Z-score 4.001) and IRF7 (BALB/c Z-score 4.851) pathways were predicted

184 activated in BALB/c, but a Z-score could not be calculated in the *P. leucopus* dataset. Wound
185 healing pathways, including the JUN regulated pathway, were also predicted to be activated in
186 BALB/c but not *P. leucopus* (BALB/c Z-score 3.062, *P. leucopus* Z-score -1.292), which is
187 notable as the AP-1 transcription factor is suppressed during nymphal tick feeding on mice [36].
188 Other cell proliferation and wound healing pathways also appear active specifically in BALB/c,
189 including EGR1 (BALB/c Z-score 3.221, *P. leucopus* Z-score -1.993) and SMAD3 (BALB/c Z-
190 score 3.072, *P. leucopus* Z-score -2.028). Transcription factor regulated pathways that were
191 predicted suppressed in BALB/c mice but unaffected in *P. leucopus* included the HIF1A-
192 repressor CITED2 (BALB/c Z-score -4.27, *P. leucopus* Z-score -0.282) and TRIM24 (BALB/c Z-
193 score -4.33, *P. leucopus* Z-score -0.816).

194

195

196 **Figure 2: Ingenuity Pathway Analysis reveals differences in predicted pathway activation.** (A)
197 Cytokine-regulated pathways identified by QIAGEN IPA software [35] that were predicted to be
198 differentially activated (Z score greater than or equal to 3 or less than or equal to -3) in either BALB/c
199 mice or *P. leucopus* and had a Z score difference of 2 or greater between BALB/c and *P. leucopus*. (B)
200 Transcription factor-regulated pathways identified by QIAGEN IPA software [35] that were predicted to be
201 differentially activated (Z score greater than or equal to 3 or less than or equal to -3) in either BALB/c


202 mice or *P. leucopus* and had a Z score difference of two or greater between BALB/c and *P. leucopus*. For
203 A and B, color represents direction of effect (Red increased signaling, blue reduced signaling), dots
204 represent a significant p-value for pathway enrichment ($p<0.05$).

205

206 **Comparison of larval tick bite transcriptomics with past examinations of nymphal tick
207 bites**

208 Recent work by Kurokawa *et al.* examined transcriptomic changes in BALB/c skin
209 following a nymphal stage *I. scapularis* tick bite [24]. We compared our data from larval tick
210 bites with these transcriptomic data from nymphal bite sites. Surprisingly, when we examined
211 genes that are reported as differentially expressed in BALB/c in both studies, we see a negative
212 correlation ($r^2=0.29$, $p=0.02$)—with most shared differentially expressed genes that are
213 downregulated in Kurokawa *et al.* being upregulated at the larval bite site (**Figure 3A**). Notably
214 this includes proinflammatory factors *Il1b*, *Nlrp3*, *Ccl2*, and *Cxcl2*. In contrast, when comparing
215 *P. leucopus* larval bite site differentially expressed genes to BALB/c nymphal bite site
216 differentially expressed genes, a positive correlation is observed ($r^2=0.27$, $p<0.001$): most genes
217 are downregulated in both bite sites (**Figure 3B**). For instance, the AP-1 subunit *Fosb* was
218 downregulated at both the nymphal BALB/c bite site and the larval *P. leucopus* bite site.
219 Together, these results demonstrate that while we observed proinflammatory signatures in the
220 BALB/c larval tick bite site, the BALB/c nymphal tick bite site and *P. leucopus* larval bite site
221 appear to be more consistently anti-inflammatory.

222

223

224 **Figure 3: BALB/c mice, but not *P. leucopus*, display substantially different gene expression
225 patterns following a larval tick bite compared to a BALB/c nymphal tick bite.** (A,B) Comparison of
226 differentially expressed genes ($p<0.05$) in the (A) BALB/c or (B) *P. leucopus* larval tick bite site compared
227 to differentially expressed genes in the BALB/c nymphal tick bite site reported by Kurokawa *et al.* [24].
228 Statistics derived from simple linear regression and p-value describes a slope deviation from 0.

229

230 **Human larval tick bites show macroscopic and transcriptomic evidence of inflammation**

231 Together, our data suggested that larval *I. scapularis* may be better suited at
232 suppressing proinflammatory pathways in a native host (*P. leucopus*) than in a non-native host
233 (*M. musculus*). This led us to hypothesize that as hosts become more evolutionarily divergent
234 from *P. leucopus*, *I. scapularis* larvae will become less able to suppress inflammation—even on
235 hosts where nymphs are well-described as being able to feed. To test this hypothesis, we took
236 advantage of a human trial where patients with prior Lyme disease who had completed
237 antibiotic therapy were exposed to 25-30 laboratory-reared larval ticks. Skin biopsies were taken
238 before tick placement and/or after ticks were allowed to feed to repletion (NCT02446626) (**Table**
239 **1**). Unlike our rodent hosts, we routinely noted strong, macroscopic observations of
240 inflammation at the human site of larval tick feeding (**Table 1**), though we note this may have
241 been driven in part by the fact that these patients had previously been exposed to ticks in nature
242 [25].

243 We performed RNA-sequencing on biopsies that met one of the following criteria: (1)
244 there was a biopsy taken prior to tick placement and after tick removal (pre vs. post), (2) the
245 post-tick removal biopsy was collected from a subject who had at least 20 total fed ticks (Good
246 Feeding), or (3) the post-tick removal biopsy was collected from a subject who had less than 10
247 total fed ticks with less than half of those being fully fed ticks (Bad Feeding). There were 29 skin
248 biopsy samples that met these criteria and were processed for RNA sequencing, from 17
249 participants, with 1 subject having biopsies sequenced from two xenodiagnostic procedures
250 (**Table 1**). Human biopsies were taken at the end of tick feeding rather than at an intermediate
251 timepoint as was used in our rodent studies.

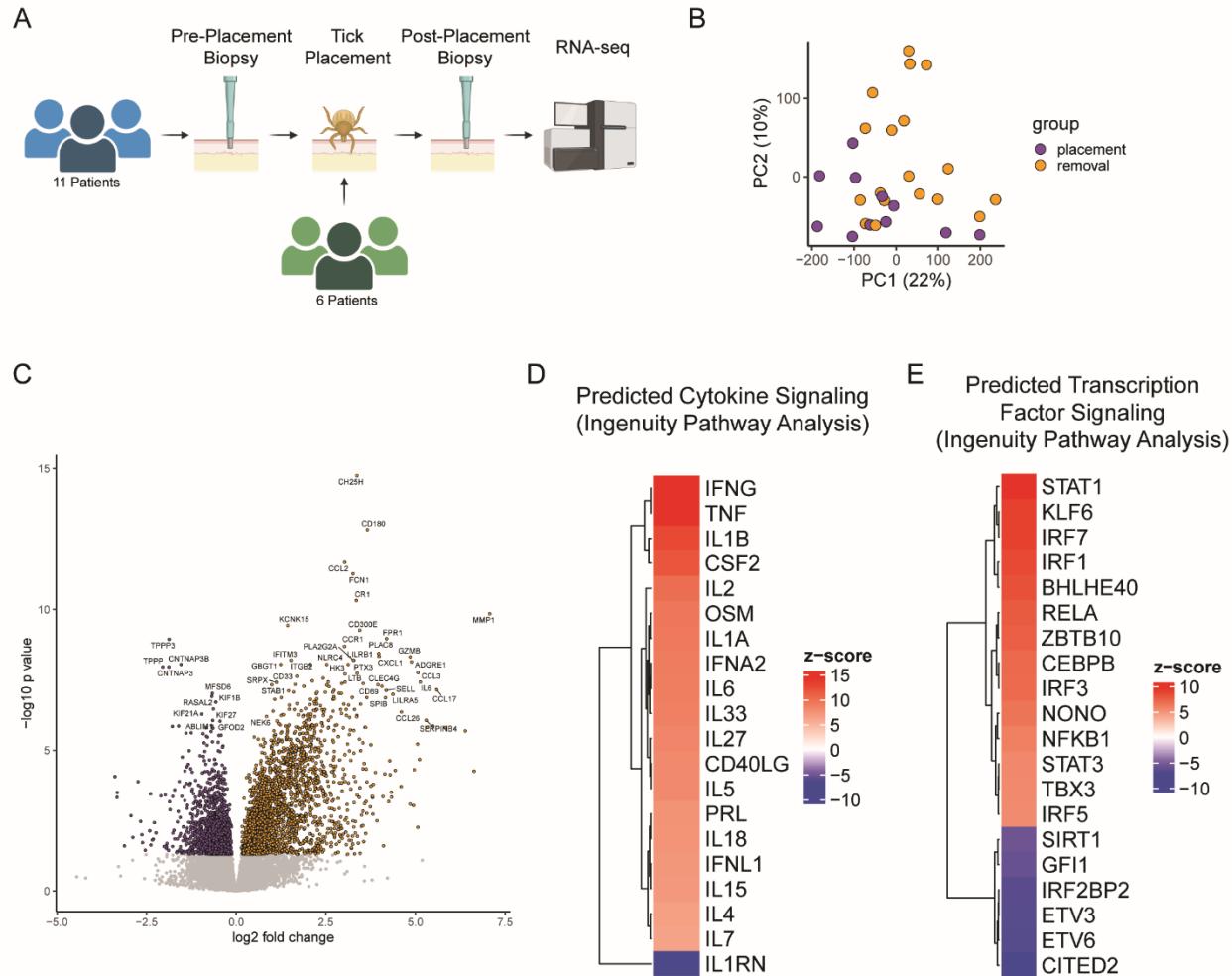
252

253

Table 1. Demographics of sequenced subjects.

Subject Code	Analysis Group-Feeding	Age	Sex	#Tick bites past 5yrs	Total # Fed Engorged	Total # Partial Fed	Total Ticks	Local reaction (definitely or probably related to the tick bite)
A001*	Good feeding	70-79	Male	5	17	4	21	None
A002	Good feeding	70-79	Female	1	17	4	21	Mild pruritus
A003	Good feeding	60-69	Female	0	16	4	20	Mild pruritus
A004	Good feeding	30-39	Male	2	21	2	23	None
A005	Good feeding	50-59	Male	1	20	8	28	Mild pruritus
A006	N/A%	60-69	Male	5	15	2	17	None
A007	N/A%	50-59	Male	1	12	3	15	None
A009	Good feeding	60-69	Female	0	12	11	23	None
B001*	Bad feeding	60-69	Female	2	3	1	4	Mild pruritus and erythema
B002	Bad feeding	70-79	Male	2	4	3	7	Mild pruritus and moderate tenderness
B003*	Bad feeding	50-59	Male	2	2	4	6	Mild pruritus
B004	Bad feeding	20-29	Female	10	2	1	3	Mild pruritus
B005**	Bad feeding	50-59	Male	0	2	7	9	Mild pruritus, pain and tenderness
B006**	N/A%	50-59	Male	0	10	3	13	Mild pruritus and tenderness
B007*	N/A%	50-59	Male	3	7	0	7	Vesicle at site
B008	N/A%	50-59	Male	1	4	10	14	Mild pruritus
B009	Bad feeding	40-49	Male	1	0	2	2	None
B010	Bad feeding	60-69	Female	3	3	4	7	Mild pruritus

* These subjects had two tick placements; this information represents the first removals for B001, B004, and B007 and second removals for A001 and B003.


**B005 and B006 are the same subject. B006 is the second tick placement/removal.

%Samples with >10 but <20 recovered fed ticks were not included for good vs bad feeding analyses

254 Skin biopsies were collected from a subset of patients prior to tick placement and all
255 patients after tick removal to examine the effects on the transcriptional profile of human skin
256 after larval tick bites (**Figure 4A**). Principal component analysis revealed samples from bitten
257 skin modestly clustered along the second principal component (**Figure 4B**). Differential gene
258 expression analysis ($p_{adj} < 0.05$) revealed 4,322 differentially expressed genes (**Figure 4C, Table**
259 **S3**), 2,686 of which were upregulated and 1,636 were downregulated.

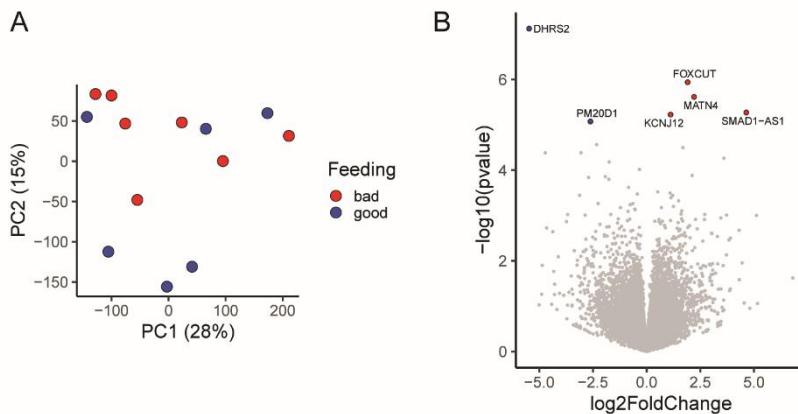
260 While there are many differences between our rodent and human patient studies that
261 make direct comparison difficult, we do note that this degree of differential expression and the
262 overall effect sizes observed are substantially larger in humans than in rodents—which aligns
263 with our hypothesis that the response to *I. scapularis* larvae is less blunted than in natural hosts.
264 Further, we noted robust evidence of inflammation, including significant upregulation of the
265 macrophage chemoattractants CCL2, CCL3 and CCL4; the monocyte chemoattractant CCL8,
266 the neutrophil chemoattractants CXCL1, CXCL2, and CXCL8, and the proinflammatory
267 cytokines IL6, IL1B, TNF, and IL32. We noted upregulation of CD14 and CD68, markers of
268 dendritic cells and macrophages, respectively. The adaptive immune system also appears to
269 play a role, with B lymphocyte attractant CXCL13, T cell markers CD4 and CD69, and T cell
270 attractants CXCL9, CXCL10, CXCL11, and CCL2 all significantly upregulated in the post-tick
271 removal samples.

272 Using IPA analysis, we observed an overall pattern of elevated proinflammatory cytokine
273 signaling in bitten human skin, including activation of TNF, IFNG, IL1, STAT3, STAT1, NfKb
274 pathways, among others (**Table S4, Figure 4D, 4E**). We also observed suppression of IL1RN
275 and CITED2 pathways. Notably, these pathways largely overlap with what we observed with
276 BALB/c, suggesting that the BALB/c response to larval *I. scapularis* may be more similar to the
277 human response than to *P. leucopus*—although the overall evidence of inflammation in the
278 human transcriptional dataset was substantially stronger. Recent work has examined the human
279 transcriptome in response to a nymphal *I. scapularis* tick bite [37] and observed upregulation of
280 IL17-mediated inflammation, which we also observed in this dataset.

281

282 **Figure 4: Transcriptomic analysis of the human larval *I. scapularis* bite site.** (A) Schematic of patient
 283 sample collection. (B) Principal component analysis based on observed transcripts per million reads for
 284 each gene in humans. (C) Volcano plot displaying differentially expressed genes in response to the larval
 285 tick bite. Genes with $p > 0.05$ are displayed in gray. (D,E) IPA analysis of the top 20 predicted differentially
 286 activated pathways regulated by (D) cytokines or (E) transcription factors following a larval tick bite in
 287 humans. All listed upstream regulators have a Z-score greater or equal to 2 or less than or equal to -2.

288


289 **Comparison of transcriptional profiles at tick bite sites between patients with high vs low**
 290 **percentage of tick feeding identifies a small set of differentially expressed genes.**

291 Our observations that human patients had differential abilities to support larval tick
 292 feeding led us to question if there were differences in transcriptional profiles which may be
 293 responsible for “good” (≥ 20 fed ticks recovered) or “bad” feeding (≤ 10 fed ticks recovered).
 294 Good and bad feeding did not correlate with number of reported tick exposures in the last five
 295 years ($p=0.2$, linear regression), pruritus ($p=0.4$, T test), or sex ($p=0.9$, T test). We compared the
 296 gene expression profiles of biopsies taken at the tick removal visit and PCA of normalized gene

297 expression data showed no distinct separation between good and bad feeding along the first
298 and second principal components (**Figure 5A**). Differential expression analysis revealed only 6
299 differentially expressed genes between feeding groups, with bad feeding as the reference group
300 (**Figure 5B, Table S3**). There were 2 genes, DHRS2 and PM20D1, which were upregulated
301 with a *p*adj value cutoff of 0.05 and 4 genes, FOXCUT, MATN4, KCNJ12, and SMAD1-AS1,
302 which were downregulated with a *p*adj cutoff of 0.05. None of these differentially expressed
303 genes have previously been implicated in a response to tick feeding and are not associated with
304 an immune response.

305

306

307

308 **Figure 5: There are limited transcriptional differences between humans that had good and bad**
309 **larval tick feeding.** (A) Principal component analysis fails to separate individuals that had good feeding
310 (≥ 20 fed ticks) or bad feeding (≤ 10 fed ticks) based on observed transcripts per million reads for each
311 gene. (B) Volcano plot displaying differentially expressed genes in individuals that had good or bad
312 feeding. Bad feeding was used as the reference dataset for differential expression. Genes with $p > 0.05$
313 are displayed in gray.

314

315 Discussion:

316 In this study we observed divergent transcriptomic responses to bites from larval *I.*
317 *scapularis* by *P. leucopus*, *M. musculus*, and humans. We specifically noted that *P. leucopus*
318 display less evidence of skin inflammation based on the transcriptome than *M. musculus*, with
319 humans showing far more skin inflammation than either rodent species. Importantly, however,
320 there are several caveats to directly comparing the human results to those from the rodent
321 studies. First, the humans participating in this study had varying levels of past tick exposure
322 (Table 1), whereas the rodents studied were naive to tick bites, a difference which might explain
323 the enhanced inflammatory response in human patients. Second, past work has demonstrated
324 that the *P. leucopus* nymphal tick bite site becomes more inflamed over time [22], and thus the
325 differences between the rodent hosts and humans may have been reduced if ticks had been
326 allowed to feed to completion on rodent hosts, as they were on humans. However, because

327 larvae do not leave any evidence of feeding on rodent skin, it is not possible to identify the bite
328 site to perform the skin biopsy following completion of feeding. Despite these limitations, these
329 data provide the first insight into comparative vertebrate immune responses to bites from larval
330 *I. scapularis*.

331 We consider there to be two ways to interpret the lack of evidence of proinflammatory
332 cytokine signatures in *P. leucopus*. The first hypothesis is that larval ticks are able to escape
333 detection by the immune system during feeding—while *M. musculus* and humans are able to
334 detect the larval tick bite and respond. An alternative explanation is that larval are able to exploit
335 homeostatic immune processes and/or feedback loops (reviewed [38, 39]) in *P. leucopus* but
336 not *M. musculus* or humans. In this second explanation the *P. leucopus* immune system could
337 be responding to the tick bite as strongly as it does in *M. musculus* or humans but the
338 processes that become active are very different. While we do not detect evidence of the latter in
339 our RNA-sequencing dataset, we note that subtle changes in anti-inflammatory factors, cellular
340 metabolism [40], or tissue resident macrophages [41] could be difficult to detect by bulk RNA-
341 sequencing while having major impacts. This highlights the need for additional studies
342 leveraging more sensitive tools, including single cell RNA-sequencing.

343 Regardless of whether larval ticks use stealth or recruitment of homeostatic processes to
344 feed on competent hosts, there have been two non-mutually exclusive hypotheses proposed to
345 describe host-susceptibility [6]. The first is that permissive hosts have immune systems which
346 are intrinsically conducive/non-responsive to tick feeding. The second is that the tick is well-
347 suited through its salivary proteins to manipulate certain host responses locally. One
348 interpretation of our data may be that saliva at different stages of tick development (larvae vs
349 nymph) may impact host responses differently. This could be the result of different salivary
350 protein content or saliva abundance—particularly given the small size of larval ticks and low
351 volume of their secreted saliva compared to nymphal ticks. The former could be impacted by
352 differences in the tick responses to different blood sources. The composition of *I. scapularis*
353 saliva has been found to change based on the host on which it is feeding, with *C. porcellus*, but
354 not *M. musculus*, inducing salivary protein expression that, in turn, drives IL-4 production in
355 murine splenocytes [42]. Nevertheless, nymphal ticks appear capable of circumventing innate
356 immunity in *P. leucopus*, *M. musculus*, and humans, larvae appear to display some host
357 specificity in their capacity to blunt immune responses. We do note that while we see
358 differences in inflammation, these data should not be misinterpreted: *I. scapularis* larvae can
359 feed on all three hosts. It will be interesting to examine whether other wildlife species display
360 differential immune responses to larval tick feeding and whether this contributes to feeding
361 success. Additionally, in this study BALB/c mice were used as representative *M. musculus* mice,
362 however, additional studies may examine whether there are differences in *M. musculus*
363 responses to larval ticks if different strains and/or outbred mice are used.

364 These data add to a growing number of reports [43, 44] that bring into question whether
365 *M. musculus* is a useful model for modeling the North American *B. burgdorferi* enzootic cycle
366 [1]—the cycle through which the spirochete transitions between vertebrate and invertebrate host
367 in nature. While *B. burgdorferi* can cycle through *M. musculus*—particularly in Europe, the
368 predominant reservoirs in North America are *P. leucopus* and shrews [26, 45-47]. The New
369 World *Peromyscus* deer mouse is approximately 25 million years diverged from the Eurasian

370 *Mus* mouse [48], meaning these species have undergone substantial independent evolution and
371 that there has been ample opportunity for *I. scapularis* to coevolve with *P. leucopus*. While
372 previous studies have focused on differences in how these rodents interact with *B. burgdorferi*
373 [43, 44], here we suggest that *P. leucopus* and *M. musculus* also have highly distinct cutaneous
374 transcriptome responses to larval *I. scapularis* tick bites. Thus, while *M. musculus* has served as
375 a very useful model for studying human Lyme disease severity and susceptibility, studies
376 focused on the North American enzootic cycle should prioritize using natural reservoir species.

377 Our data comparing hosts with “good” or “bad” tick feeding do not support an association
378 between tick feeding success and proinflammatory transcriptomic responses in humans. There
379 are numerous alternative explanations for variable feeding success independent of host
380 immunity. In the 4-6 days between tick placement and tick removal visits, subjects were asked
381 to keep the dressing surrounding the ticks dry and are asked not to wear strong smelling
382 perfumes or lotions, but subject non-compliance in any of these areas could contribute to
383 decreases in duration of tick feeding. Additionally, larval tick handling by physicians during the
384 clinical trial was variable, and accidental damage of ticks during placement on patients is
385 possible. Further, our protocol for collecting the skin biopsies did not capture the participants
386 with the worst feeding, as skin biopsies were only collected from subjects with at least one fed
387 tick.

388 In conclusion, these findings provide new insights into divergent host responses to larval
389 *I. scapularis* tick feeding. We anticipate that these findings may serve as a launching point to
390 identify potential pharmacologic interventions to disrupt larval tick feeding in nature. Disrupting
391 this stage of the *Ixodes* life cycle not only prevents development of ticks and further
392 reproduction, but blocks tick acquisition of enzootic-cycling pathogens and eventual spillover
393 into humans. Further studies may examine how this skin inflammation affects the tick-host-
394 pathogen interface during enzootic cycling. Curiously, despite observing a stronger
395 proinflammatory response here at the larval tick-*M. musculus* interface, past work demonstrates
396 that *B. burgdorferi* is actually more readily transmitted from *M. musculus* to larval *I. scapularis*
397 than from *P. leucopus* to *I. scapularis* [43, 49]. Thus, the enhanced inflammation we observed at
398 the *M. musculus* larval tick bite apparently does not impair transmission of the spirochete to new
399 invertebrate hosts.

400

401 Acknowledgments

402 This study was funded by the National Institutes of Health (JSB was supported by
403 F32AI179104; LTH by R01AI152210, U01AI109656, and R21AI146841; SRT by R01AI137424
404 and U01AI109656). It was also supported in part by the Division of Intramural Research,
405 National Institute of Allergy and Infectious Diseases, National Institutes of Health (SPT, AM).
406 We thank all members of the Hu lab and Joao Pedra for helpful discussions throughout the
407 preparation of this manuscript. We thank Tufts Comparative Medical Services for enabling these
408 experiments. RNA sequencing analyses were made possible by the Tufts High Performance
409 Computing Cluster (<https://it.tufts.edu/high-performance-computing>). Figures 1A and 4A were
410 generated using BioRender.com.

411

412 **Disclosures**

413 Dr. Wormser reports receiving research grants from Biopeptides, Corp. and Pfizer, Inc. He has
414 been an expert witness in malpractice cases involving Lyme disease and is an unpaid board
415 member of the non-profit American Lyme Disease Foundation.

416

417 **Supplemental Materials Legends**

418 Table S1: DESeq2 analysis of BALB/c *M. musculus* and *P. leucopus* gene expression following
419 larval tick bite.

420 Table S2: QIAGEN IPA analysis of BALB/c *M. musculus* and *P. leucopus* signaling following
421 larval tick bite.

422 Table S3: DESeq2 analysis of human gene expression following larval tick bite. Data contain
423 two analyses: Pre- and Post-tick placement and good (>20 fed ticks) vs bad (<10 fed ticks)
424 feeding.

425 Table S4: QIAGEN IPA analysis of human signaling following larval tick bite.

426

427 **Materials and Methods**

428 **Rodent Maintenance, Use, and Ethical Statement**

429 All animal procedures were approved by the Tufts University-Tufts Medical Center Institutional
430 Animal Care and Use Committee (IACUC, Protocol #B2021-84). Euthanasia was performed in
431 accordance with guidelines provided by the American Veterinary Medical Association (AVMA)
432 and was approved by the Tufts University IACUC. Rodents were maintained by the Tufts
433 Comparative Medicine Services. The *P. leucopus* colony was started by Dr. Sam Telford using
434 wild captured rodents from the northeastern and midwestern United States. The colony has
435 been closed since 1994, held in microisolator cages, and is specific pathogen free (regular
436 sentinel testing). BALB/c mice were obtained from Charles River Laboratories (Strain Code
437 028).

438 Equal numbers of male and female rodents were used at the beginning of the experiment,
439 however, variable rates of successful recovery of ticks and/or RNA led to sex-imbalance: Two
440 male and three female *P. leucopus* were used in the study; One male and three female BALB/c
441 mice were used.

442

443 **Rodent Tick Infestation**

444 A heated 1:4 mixture of melted beeswax to rosin gum mixture was used to attach a modified
445 microcentrifuge tube lined with mesh between the shaved shoulder blades of each rodent. Ten

446 *I. scapularis* larvae (National Tick Research and Education Resource, Oklahoma State
447 University) were placed inside the mesh cap. Mice were singly housed in cages surrounded by
448 a water moat for 48 hours. The tick containment chamber was carefully removed, and a 2-mm
449 punch biopsy was taken surrounding a single feeding tick and transferred immediately to
450 RNAlater, stored overnight at room temperature, and then frozen at -80°C until use. Biopsies
451 were intentionally restricted to regions away from the edge of the tick containment chamber
452 where damage from removal could skew results. A second biopsy was taken on the outside of
453 the tick containment chamber as a matched control.

454

455 **Human subjects**

456 The subjects described in this study were enrolled in the Xenodiagnosis After Antibiotic
457 Treatment for Lyme Disease clinical study (NCT02446626). The study was approved by the
458 Institutional Review Boards at each center and written informed consent was obtained from all
459 participants. Participants were enrolled at Tufts University in Boston, Massachusetts; National
460 Institutes of Health in Bethesda, Maryland; Mansfield Family Practice in Storrs, Connecticut, and
461 Stony Brook University in Stony Brook, New York. Sequencing of banked biopsy samples was
462 approved by Tufts University Institutional Review Board.

463

464 **Human Tick preparation, placement, and removal**

465 Larval *Ixodes scapularis* ticks were reared at a central facility and provided to each of the testing
466 centers. Tick placement and removal was performed as described by Turk et al [50]. For some
467 participants in the Post Treatment Lyme Disease Syndrome group, punch skin biopsies were
468 taken at a control site prior to tick placement and for all participants, biopsies were taken at the
469 completion of tick feeding, at the site of a tick bite.

470

471 **Rodent RNA Library Preparation and RNA sequencing**

472 After all rodent samples were collected as described above, samples were thawed on ice,
473 transferred to QIAzol, and bead beaten with a 6.35 mm chrome steel bead (Biospec Products)
474 for two cycles of two minutes each at an oscillation frequency of 30/second using a TissueLyser
475 II (Qiagen). RNA was extracted using the miRNeasy mini kit (Qiagen), with the modification that
476 two RWT washes were performed. gDNA was digested using TURBO DNase (Invitrogen) and
477 RNA was repurified using the RNeasy MinElute Cleanup Kit (Qiagen). Purified RNA was
478 submitted to Azenta Life Sciences/Genewiz for library preparation and sequencing (Illumina
479 HiSeq 2x150bp).

480

481 **Human RNA Library Preparation and RNA sequencing**

482 2mm skin biopsies from subjects were stored in RNAlater overnight at room temperature and
483 then frozen at -80°C until use. Samples were homogenized under liquid nitrogen using a mortar

484 and pestle. Tissues were then resuspended in 1 mL of lysis buffer from the RNeasy Fibrous
485 Tissue Mini Kit (Qiagen) and processed as per the manufacturer's protocol. Ribosomal RNA
486 was depleted and RNA-seq libraries were prepared by Tufts University Core Facility.
487 Sequencing of 50bp single end reads was performed on a HiSeq 2500.

488

489 **RNA-seq Analysis**

490 Reads were mapped to *P. leucopus* (GCF_004664715.2) [44], *M. musculus* (GRCm39), or
491 human genomes (GRCh38.98) using STAR version 2.6.1 [51] and gene expression was
492 summarized using RSEM version 1.3.1 [52]. Principal component analysis was performed using
493 the R Bioconductor PCAtools package (R version 4.3.1) [53]. Differential expression analysis
494 was performed using DEseq2 (R version 4.3.1) [54]. Genes with low expression were removed
495 based on their normalized read counts. Genes with greater than 10 read counts were kept.
496 DEGs were identified using an adjusted p-value cutoff of 0.05. Genes with no expression and T
497 cell receptor genes were removed prior to plotting. Heatmaps and clustering, based on
498 Euclidean distance, were generated using the ComplexHeatmap package (R version 4.3.1) [55].
499 Pathway analysis was performed with the use of QIAGEN Ingenuity Pathway Analysis (QIAGEN
500 Inc., <https://digitalinsights.qiagen.com/IPA>) [35]. IPA used differentially expressed genes from
501 the DESeq2 differential expression analysis with $p_{adj} \leq 0.05$.

502

503 **Data Availability**

504 Rodent sequencing data are deposited in GEO (GSE266088) and data from the human clinical
505 trial will be available in dbGaP (phs003314.v1.p1).

506

507 **References**

- 508 1. Radolf, J.D., et al., *Of ticks, mice and men: understanding the dual-host lifestyle of Lyme*
509 *disease spirochaetes*. Nat Rev Microbiol, 2012. **10**(2): p. 87-99.
- 510 2. Kugeler, K.J., et al., *Estimating the Frequency of Lyme Disease Diagnoses, United*
511 *States, 2010-2018*. Emerg Infect Dis, 2021. **27**(2): p. 616-619.
- 512 3. Barbour, A.G., *Infection resistance and tolerance in Peromyscus spp., natural reservoirs*
513 *of microbes that are virulent for humans*. Semin Cell Dev Biol, 2017. **61**: p. 115-122.
- 514 4. Eisen, R.J. and L. Eisen, *The Blacklegged Tick, Ixodes scapularis: An Increasing Public*
515 *Health Concern*. Trends Parasitol, 2018. **34**(4): p. 295-309.
- 516 5. Simo, L., et al., *The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding*
517 *and Pathogen Transmission*. Front Cell Infect Microbiol, 2017. **7**: p. 281.
- 518 6. Ribeiro, J.M., *Role of saliva in tick/host interactions*. Exp Appl Acarol, 1989. **7**(1): p. 15-
519 20.
- 520 7. Wikle, S., *Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick*
521 *countermeasures, and a suitable environment for pathogen establishment*. Front
522 *Microbiol*, 2013. **4**: p. 337.
- 523 8. Kazimirova, M. and I. Stibranova, *Tick salivary compounds: their role in modulation of*
524 *host defences and pathogen transmission*. Front Cell Infect Microbiol, 2013. **3**: p. 43.

525 9. Francischetti, I.M., et al., *The role of saliva in tick feeding*. Front Biosci (Landmark Ed),
526 2009. **14**: p. 2051-88.

527 10. Piesman, J., J.R. Oliver, and R.J. Sinsky, *Growth kinetics of the Lyme disease*
528 *spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini)*. Am J Trop Med Hyg,
529 1990. **42**(4): p. 352-7.

530 11. De Silva, A.M. and E. Fikrig, *Growth and migration of Borrelia burgdorferi in Ixodes ticks*
531 *during blood feeding*. Am J Trop Med Hyg, 1995. **53**(4): p. 397-404.

532 12. Ribeiro, J.M., et al., *Dissemination and salivary delivery of Lyme disease spirochetes in*
533 *vector ticks (Acari: Ixodidae)*. J Med Entomol, 1987. **24**(2): p. 201-5.

534 13. Kitsou, C., E. Fikrig, and U. Pal, *Tick host immunity: vector immunomodulation and*
535 *acquired tick resistance*. Trends Immunol, 2021. **42**(7): p. 554-574.

536 14. Ramamoorthi, N., et al., *The Lyme disease agent exploits a tick protein to infect the*
537 *mammalian host*. Nature, 2005. **436**(7050): p. 573-7.

538 15. Schuijt, T.J., et al., *The tick salivary protein Salp15 inhibits the killing of serum-sensitive*
539 *Borrelia burgdorferi sensu lato isolates*. Infect Immun, 2008. **76**(7): p. 2888-94.

540 16. Anguita, J., et al., *Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell*
541 *activation*. Immunity, 2002. **16**(6): p. 849-59.

542 17. Schuijt, T.J., et al., *A tick mannose-binding lectin inhibitor interferes with the vertebrate*
543 *complement cascade to enhance transmission of the lyme disease agent*. Cell Host
544 Microbe, 2011. **10**(2): p. 136-46.

545 18. Nguyen, T.T., et al., *A tick saliva serpin, IxsS17 inhibits host innate immune system*
546 *proteases and enhances host colonization by Lyme disease agent*. PLoS Pathog, 2024.
547 **20**(2): p. e1012032.

548 19. Tang, X., et al., *A tick C1q protein alters infectivity of the Lyme disease agent by*
549 *modulating interferon gamma*. Cell Rep, 2022. **41**(8): p. 111673.

550 20. Kurokawa, C., et al., *Interactions between Borrelia burgdorferi and ticks*. Nat Rev
551 Microbiol, 2020. **18**(10): p. 587-600.

552 21. Keirans, J.E., et al., *Ixodes (Ixodes) scapularis (Acari:Ixodidae): redescription of all*
553 *active stages, distribution, hosts, geographical variation, and medical and veterinary*
554 *importance*. J Med Entomol, 1996. **33**(3): p. 297-318.

555 22. Anderson, J.M., et al., *Ticks, Ixodes scapularis, Feed Repeatedly on White-Footed Mice*
556 *despite Strong Inflammatory Response: An Expanding Paradigm for Understanding*
557 *Tick-Host Interactions*. Front Immunol, 2017. **8**: p. 1784.

558 23. Krause, P.J., et al., *Dermatologic changes induced by repeated Ixodes scapularis bites*
559 *and implications for prevention of tick-borne infection*. Vector Borne Zoonotic Dis, 2009.
560 **9**(6): p. 603-10.

561 24. Kurokawa, C., et al., *Repeat tick exposure elicits distinct immune responses in guinea*
562 *pigs and mice*. Ticks Tick Borne Dis, 2020. **11**(6): p. 101529.

563 25. Burke, G., et al., *Hypersensitivity to ticks and Lyme disease risk*. Emerg Infect Dis, 2005.
564 **11**(1): p. 36-41.

565 26. Goethert, H.K., et al., *Host-utilization differences between larval and nymphal deer ticks*
566 *in northeastern U.S. sites enzootic for Borrelia burgdorferi sensu stricto*. Ticks Tick
567 Borne Dis, 2023. **14**(6): p. 102230.

568 27. Piesman, J. and A. Spielman, *Host-Associations and Seasonal Abundance of Immature*
569 *Ixodes dammini1 in Southeastern Massachusetts2*. Annals of the Entomological Society
570 of America, 1979. **72**(6): p. 829-832.

571 28. Godsey, M.S., Jr., et al., *Lyme disease ecology in Wisconsin: distribution and host*
572 *preferences of Ixodes dammini, and prevalence of antibody to Borrelia burgdorferi in*
573 *small mammals*. Am J Trop Med Hyg, 1987. **37**(1): p. 180-7.

574 29. Kollars, T.M., Jr., et al., *Seasonal activity and host associations of Ixodes scapularis*
575 *(Acari: Ixodidae) in southeastern Missouri*. J Med Entomol, 1999. **36**(6): p. 720-6.

576 30. Ginsberg, H.S., et al., *Selective Host Attachment by Ixodes scapularis (Acari: Ixodidae):*
577 *Tick-Lizard Associations in the Southeastern United States.* J Med Entomol, 2022. **59**(1):
578 p. 267-272.

579 31. Davidar, P., M. Wilson, and J.M. Ribeiro, *Differential distribution of immature Ixodes*
580 *dammini (Acari: Ixodidae) on rodent hosts.* J Parasitol, 1989. **75**(6): p. 898-904.

581 32. Rollend, L., D. Fish, and J.E. Childs, *Transovarial transmission of Borrelia spirochetes*
582 *by Ixodes scapularis: a summary of the literature and recent observations.* Ticks Tick
583 Borne Dis, 2013. **4**(1-2): p. 46-51.

584 33. Xu, G., et al., *Human-Biting Ixodes Ticks and Pathogen Prevalence from California,*
585 *Oregon, and Washington.* Vector Borne Zoonotic Dis, 2019. **19**(2): p. 106-114.

586 34. Marques, A., et al., *Xenodiagnosis to detect Borrelia burgdorferi infection: a first-in-*
587 *human study.* Clin Infect Dis, 2014. **58**(7): p. 937-45.

588 35. Kramer, A., et al., *Causal analysis approaches in Ingenuity Pathway Analysis.*
589 Bioinformatics, 2014. **30**(4): p. 523-30.

590 36. Marnin, L., et al., *Tick extracellular vesicles impair epidermal homeostasis through*
591 *immune-epithelial networks during hematophagy.* bioRxiv, 2023.

592 37. Tang, X., et al., *Bulk and single-nucleus RNA sequencing highlight immune pathways*
593 *induced in individuals during an Ixodes scapularis tick bite.* Infect Immun, 2023. **91**(11):
594 p. e0028223.

595 38. Medzhitov, R., *The spectrum of inflammatory responses.* Science, 2021. **374**(6571): p.
596 1070-1075.

597 39. Meizlish, M.L., et al., *Tissue Homeostasis and Inflammation.* Annu Rev Immunol, 2021.
598 **39**: p. 557-581.

599 40. Eming, S.A., P.J. Murray, and E.J. Pearce, *Metabolic orchestration of the wound healing*
600 *response.* Cell Metab, 2021. **33**(9): p. 1726-1743.

601 41. Zhao, J., I. Andreev, and H.M. Silva, *Resident tissue macrophages: Key coordinators of*
602 *tissue homeostasis beyond immunity.* Sci Immunol, 2024. **9**(94): p. eadd1967.

603 42. Narasimhan, S., et al., *Host-specific expression of Ixodes scapularis salivary genes.*
604 Ticks Tick Borne Dis, 2019. **10**(2): p. 386-397.

605 43. Bourgeois, J.S., et al., *Comparative reservoir competence of Peromyscus*
606 *leucopus and mouse models for Borrelia burgdorferi B31.* bioRxiv,
607 2023: p. 2023.09.28.559638.

608 44. Long, A.D., et al., *The genome of Peromyscus leucopus, natural host for Lyme disease*
609 *and other emerging infections.* Sci Adv, 2019. **5**(7): p. eaaw6441.

610 45. LoGiudice, K., et al., *The ecology of infectious disease: effects of host diversity and*
611 *community composition on Lyme disease risk.* Proc Natl Acad Sci U S A, 2003. **100**(2):
612 p. 567-71.

613 46. Goethert, H.K., et al., *Retrotransposon-Based Blood Meal Analysis of Nymphal Deer*
614 *Ticks Demonstrates Spatiotemporal Diversity of Borrelia burgdorferi and Babesia microti*
615 *Reservoirs.* Appl Environ Microbiol, 2021. **87**(2).

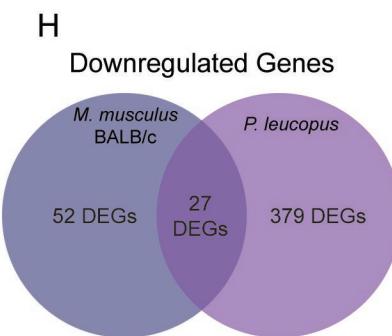
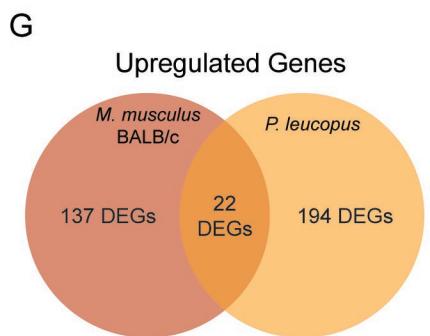
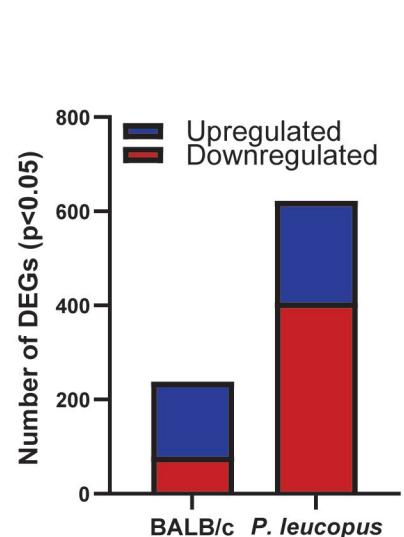
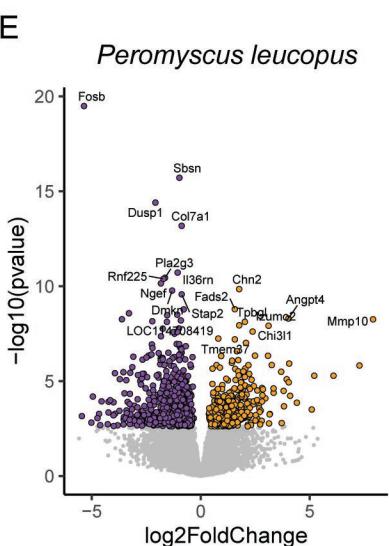
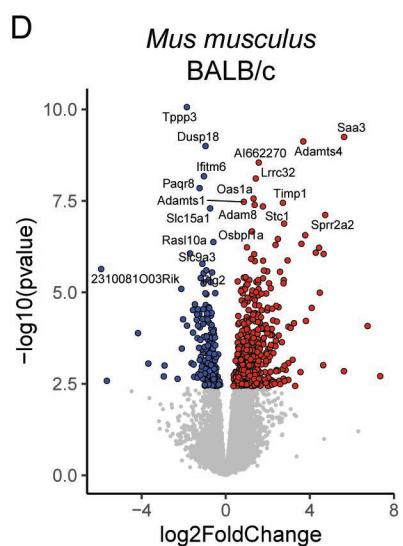
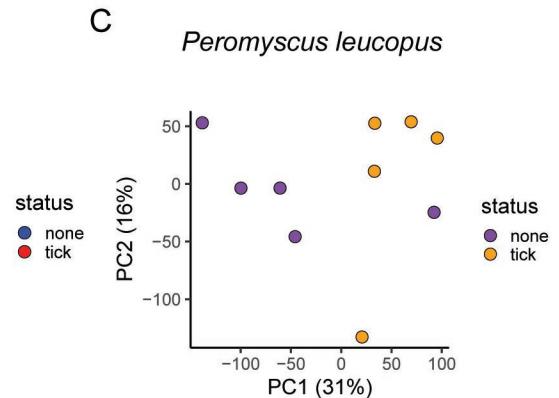
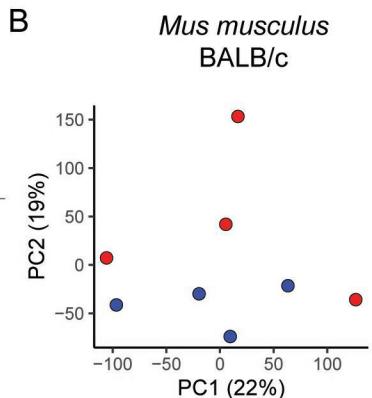
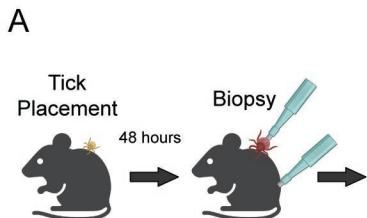
616 47. Tsao, J.I., et al., *An ecological approach to preventing human infection: vaccinating wild*
617 *mouse reservoirs intervenes in the Lyme disease cycle.* Proc Natl Acad Sci U S A, 2004.
618 **101**(52): p. 18159-64.

619 48. Stepan, S., R. Adkins, and J. Anderson, *Phylogeny and divergence-date estimates of*
620 *rapid radiations in muroid rodents based on multiple nuclear genes.* Syst Biol, 2004.
621 **53**(4): p. 533-53.

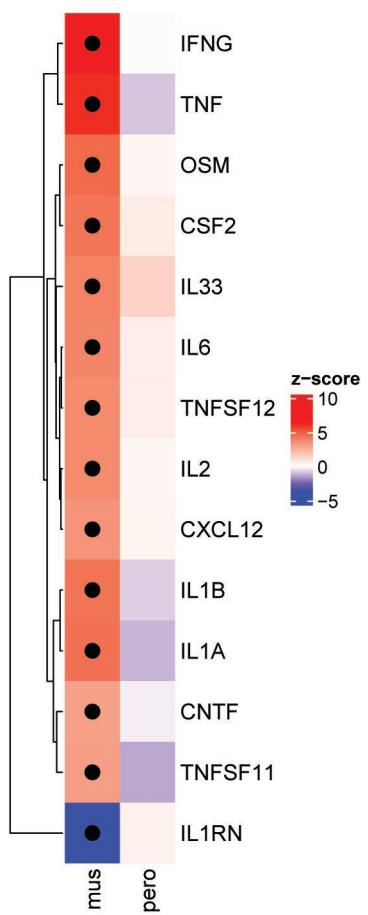
622 49. Hanincova, K., et al., *Fitness variation of Borrelia burgdorferi sensu stricto strains in*
623 *mice.* Appl Environ Microbiol, 2008. **74**(1): p. 153-7.

624 50. Turk, S.P., A. Eschman, and A. Marques, *A Model for Experimental Exposure of*
625 *Humans to Larval Ixodes scapularis Ticks.* J Vis Exp, 2023(202).

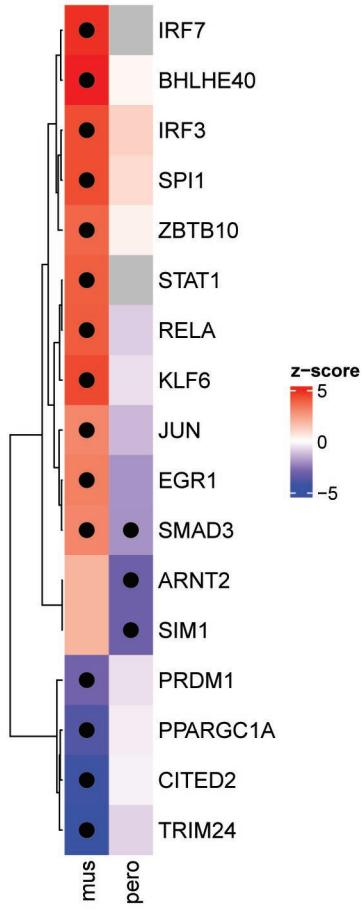
626 51. Dobin, A., et al., *STAR: ultrafast universal RNA-seq aligner*. Bioinformatics, 2013. **29**(1):
627 p. 15-21.









628 52. Li, B. and C.N. Dewey, *RSEM: accurate transcript quantification from RNA-Seq data*
629 *with or without a reference genome*. BMC Bioinformatics, 2011. **12**: p. 323.

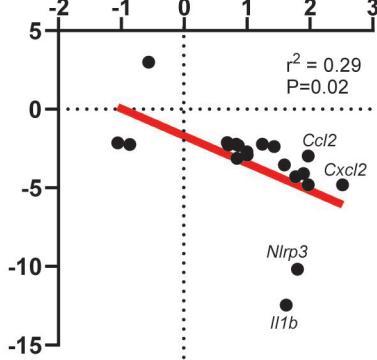
630 53. Blighe K, L.A., *PCAtools: Everything Principal Components Analysis*. 2023.


631 54. Love, M.I., W. Huber, and S. Anders, *Moderated estimation of fold change and*
632 *dispersion for RNA-seq data with DESeq2*. Genome Biol, 2014. **15**(12): p. 550.

633 55. Gu, Z., R. Eils, and M. Schlesner, *Complex heatmaps reveal patterns and correlations in*
634 *multidimensional genomic data*. Bioinformatics, 2016. **32**(18): p. 2847-9.


635

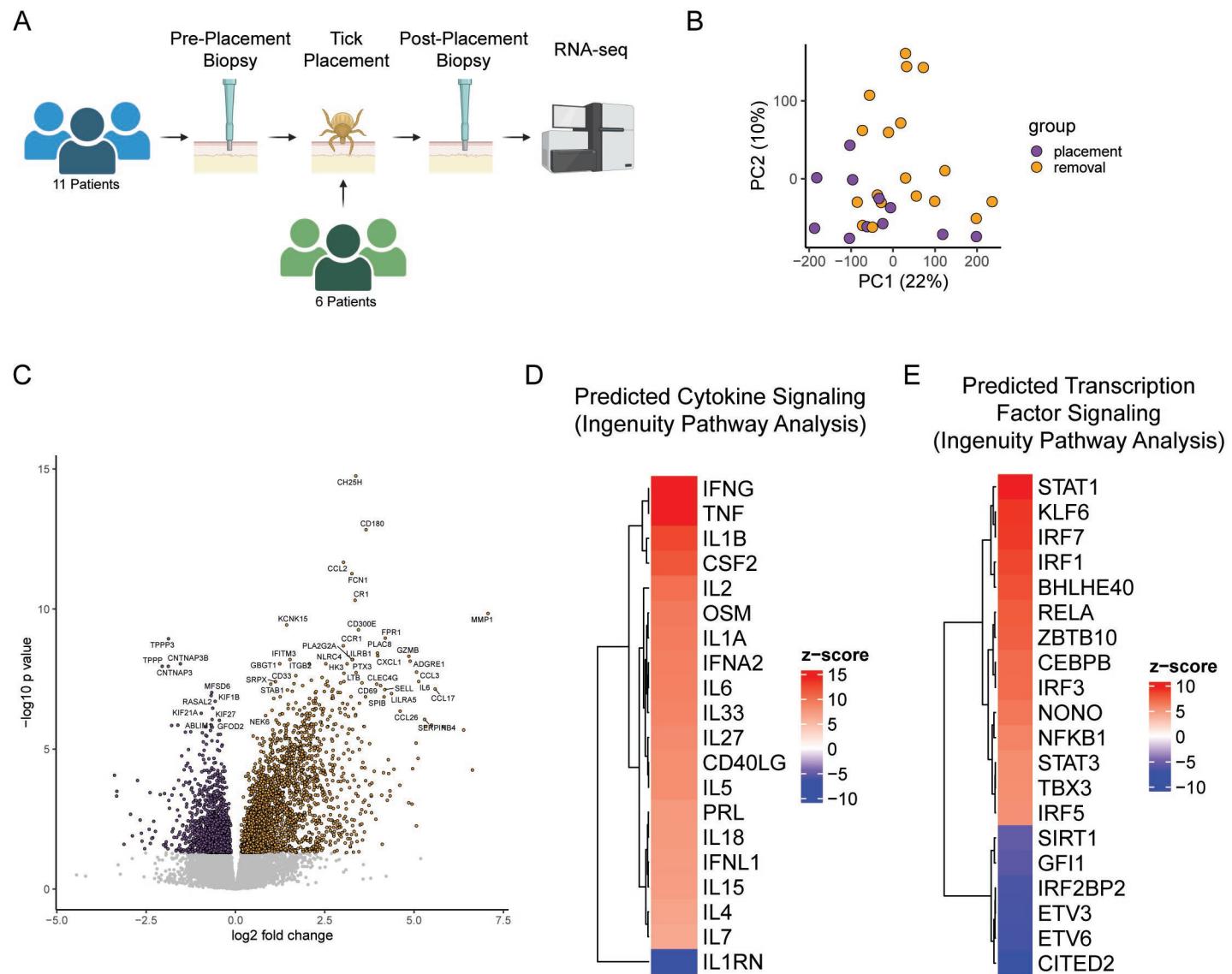
A Predicted Cytokine Signaling
(Ingenuity Pathway Analysis)

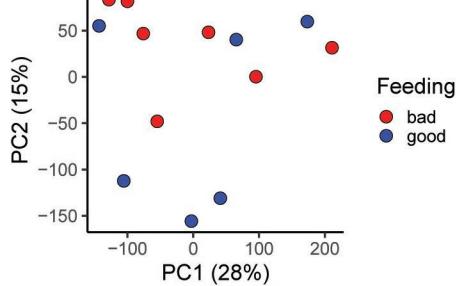
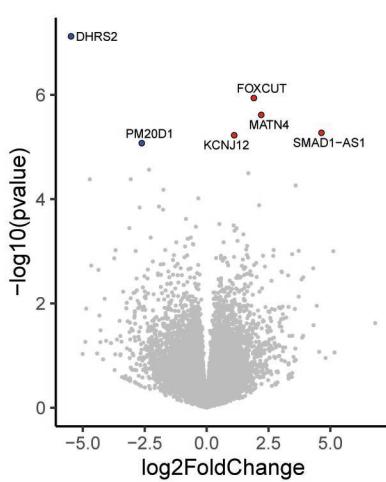

B Predicted Transcription
Factor Signaling
(Ingenuity Pathway Analysis)

A

BALB/c log₂FC (Larvae)

p<0.05


BALB/c Log₂FC (Nymph)
Kurokawa et al. p<0.05



B

P. leucopus log₂FC (Larvae)

p<0.05

BALB/c Log₂FC (Nymph)
Kurokawa et al. p<0.05

A**B**