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Abstract

The jumping worm Amynthas tokioensis is invasive in North America, and it has been expanding
its range northward in recent years. Because low temperatures typically restrict the geographic
distribution of organisms, our goal was to characterize the cold tolerance physiology of adult
jumping worms from a site in New Brunswick, Canada (c. 45°N), with the intent of better
understanding their geographic range limits. Most of our experiments supported the conclusion
that these worms are chill-susceptible: they die during or after exposure to relatively mild low
temperatures. When gradually cooled, adult worms lost neuromuscular coordination at
approximately 0 °C and froze at a mean temperature of -4.5 °C. They did not survive freezing
and showed poor survival following 1 h exposures to 0 °C and subzero temperatures. At higher
mild temperatures (5 °C), the worms could survive short (up to 6 h) but not long (e.g., 48 h)
chilling durations. We attempted to induce improved cold tolerance via a five-week gradual
acclimation to fall-like temperatures, but fall-acclimated worms showed poor survival during and
after this acclimation. Acclimation also did not induce accumulation of glucose, a typical
cryoprotectant in earthworms. We suggest that A. tokioensis can likely persist wherever the
growing season is sufficiently warm and long enough for the adults to mature, reproduce, and lay
cocoons prior to the chilling temperatures associated with early fall. Future work examining the
cold tolerance of the overwintering cocoons will be important for fully understanding the
northern range limits of these jumping worms.
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Introduction

Amynthas tokioensis (jumping worm) is a pheretimoid earthworm (Oligochaeta:
Megascolecidae) native to East and Southeast Asia and invasive in North America (Chang et al.
2021; McAlpine et al. 2022). In their non-native habitats, A. tokioensis rapidly alter soil structure
and nutrient availability (Chang et al. 2021). Amynthas spp. were first reported in Canada in
Ontario in 2014 (c. 42°N; Reynolds 2014, 2018), and A. tokioensis has since invaded Québec

(c. 45°N; Moore and Reynolds 2024) and New Brunswick, Canada (c. 45°N; McAlpine et al.
2022). This species often co-occurs with two other invasive jumping worms, Amynthas agrestis
and Metaphire hilgendorfi (Chang et al. 2018). With their increasingly northward expansion and
substantial impacts on soil and other organisms, there is a need to increase our understanding of

the thermal limits of these jumping worms.

The thermal limits of jumping worms have been partially described, especially in relation to their
annual life cycle. Amynthas spp. overwinter as cocoons, hatch as juvenile worms in the early
spring, and mature into adults that reproduce and lay cocoons before dying in the fall (Chang et
al. 2021). Laboratory experiments have shown that cocoons of A. agrestis from Tennessee, USA
(c. 35°N) will hatch at 10 °C but not 5 °C (Blackmon et al. 2019). Juvenile Amynthas spp. have
hatched even after cocoons experience extreme low winter temperatures, e.g., below -20 °C in
Vermont, USA (c. 44°N) during the 2014 polar vortex (Gorres et al. 2016). Adult A. agrestis do
not survive prolonged (28 d) exposures to 5 °C (Tennessee population; Richardson et al. 2009),
and the abundance of adult A. agrestis in the field declines as air temperatures drop below 10°C,
with rapid decline below 5°C (Vermont population; Gorres et al. 2014, 2016). While some data

on temperature limits have been collected for A. agrestis, there is little literature on similar
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thresholds for the co-invasive A. tokioensis, and no information on the thermal limits of

Canadian populations.

The lower thermal limits of ectothermic animals can be measured in multiple ways. As
environmental temperatures decrease, animals will reach a critical thermal minimum (CTmin),
the low temperature at which voluntary movement ceases (Overgaard and MacMillan 2017).
Exposure to the CTmin is usually non-lethal (unless for prolonged periods) and lower CTmin
values are associated with increased cold tolerance (Overgaard and MacMillan 2017). As
environmental temperatures decrease below the CTmin, internal ice formation begins at the
supercooling point (SCP; Sinclair et al. 2015), although some species remain active until they
freeze (CTmin = SCP; e.g., Toxopeus et al. 2016). In addition, internal freezing may be initiated
by external factors, such as contact with environmental ice (Holmstrup 2003; Toxopeus and
Sinclair 2018). Both CTmin and SCP can vary seasonally as animals acclimatize to changing
environmental conditions, and in response to acclimation regimes in laboratories (Havird et al.
2020). For example, adult Eisenia nordenskioldi (Siberian earthworms) decrease their SCP from
-1.2 °C to -3.5 °C both naturally during the fall and when exposed to gradually decreasing
temperatures in lab (Meshcheryakova and Berman 2014). The relevance of the SCP for cold

tolerance depends on the animal’s cold tolerance strategy.

The two major cold tolerance strategies of ectothermic animals are freeze tolerance and freeze
avoidance. Freeze-tolerant animals survive internal ice formation (Holmstrup and Zachariassen
1996; Toxopeus and Sinclair 2018) and temperatures below their SCP, exhibited by adults of the

earthworms E. nordenskioldi (Holmstrup et al. 1999) and Dendrobaena octaedra (Rasmussen
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and Holmstrup 2002). Freeze-tolerant earthworms often accumulate high levels of glucose as a
cryoprotectant molecule (Holmstrup et al. 1999; Slotsbo et al. 2008). Freeze-avoidant (also
called freeze-intolerant) animals physiologically suppress the SCP via accumulation of
cryoprotectants and antifreeze proteins, but will die if ice forms (i.e., at the SCP), as seen in
many terrestrial insects (Toxopeus and Sinclair 2018). Cryoprotective dehydration is an extreme
version of freeze avoidance, in which organisms avoid ice formation by substantially decreasing
their water content, a strategy used by cocoons of some earthworms (Holmstrup and Westh
1994). Animals that are not cold-tolerant are usually described as chill-susceptible, dying at mild
low temperatures above the SCP, such as the earthworms Eisenia fetida (red wrigglers;
Meshcheryakova and Berman 2014). Chill-susceptible animals may behaviourally avoid low
temperatures, for example by overwintering below the frost layer, as seen in the earthworm
Lumbricus terrestris (nightcrawlers; Nuutinen and Butt 2009). Measuring survival under both
short (e.g., 1 h) and prolonged (e.g., multiple days) exposures can provide additional insight into
cold tolerance, especially if ecologically-relevant conditions are selected (Mclintyre et al. 2023;

Lemay et al. 2024).

In this study, we characterized the thermal limits of adult A. tokioensis collected in late summer
from New Brunswick, Canada. We determined their cold tolerance strategy and survival
following exposure to acute (short) and chronic mild low temperatures. We also measured
CTmin, SCP, and tissue glucose concentrations in worms that were acclimated to summer-like or
fall-like conditions. Our results strongly suggest that adult A. tokioensis have limited cold
tolerance, and that cool fall conditions may limit their spread if adults cannot lay cocoons before

they are killed by low temperatures.
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Methods

Worm collection, identification, and acclimation

Approximately 200 adult jumping worms were collected from a residential back yard near
Oromocto, New Brunswick, Canada (45.84°N; 66.48°W) in August 2023 and transported to
Saint Francis Xavier University in Antigonish, Nova Scotia, Canada within a few hours. Jumping
worms were collected from under logs, plant pots, and other material in the yard. Adults were
distinguished from juveniles based on the presence of a clitellum. Recent research found only

A. tokioensis at this location (Bennett et al. 2024), but we also looked for spermathecal pores on
some of the collected earthworms to confirm that they were A. tokioensis (Chang et al. 2016).
Worms were subdivided into cylindrical 1 L plastic jars with screw-top lids containing 500 — 700
mL moist potting soil and dried aspen leaves (collected the previous fall in Antigonish) for food.
Lids were perforated for aeration, and the jars were placed in fine mesh bags to contain escapees.

Soil moisture and leaves were checked and topped up twice per week.

Worms were separated into three groups based on the duration and temperature exposures in lab
(Table 1). “Summer-collected” worms were used in experiments within 2 — 5 days of field
collection. “Summer-acclimated” worms were kept under summer-like conditions (room
temperature, ¢. 20 °C, and natural lighting) for three weeks prior to experiments. “Fall-
acclimated” worms were moved into a MIR-154-PA incubator (PHCbi, Chicago, IL, USA) for a
five-week fall-like acclimation in darkness prior to experiments. The fall-like acclimation started
with one week at 18 °C, and then decreased once per week to 15, 12, 10, and 8 °C to represent

average soil temperatures from late September to late October near the collection site
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(Environment Canada 2023). The samples sizes of each group and their use in subsequent

experiments are summarized in Table 1.

Table 1 Samples sizes of Amynthas tokioensis used in acclimations and experiments? for this
study, including mortality that occurred during acclimations.

Number of worms Summer-collected Summer-acclimated  Fall-acclimated
Total 16 95 91
Died prior to N/A 30 71
experiments (0% mortality) (32% mortality) (78% mortality)
Used in experiments 16 (cold tolerance 32 (acute cold shock) 8 (acute cold shock)
strategy) 12 (prolonged chilling)
16 (CTminand SCP) 6 (CTmin and SCP)
5 (glucose assay) 6 (glucose assay)

4CTmin = critical thermal minimum, SCP = supercooling point

Cold tolerance strategy and low temperature tolerance

To determine the impact of cold exposure on worm survival, we conducted three types of cold
exposures. First, we determined whether summer-collected worms could survive freezing and
supercooling in a cold tolerance strategy experiment. Second, we measured survival following
exposure to a range of acute (1 h) cold shocks in summer- and fall-acclimated worms. Third, we
tracked survival of summer-acclimated worms during a prolonged (multi-day) exposure to mild

low temperatures.

To determine their cold tolerance strategy, we gradually cooled (at -0.25 °C/min) a group of
worms from room temperature (c. 20 °C) to a temperature (c. -4 °C) at which half of the worms
froze and half remained unfrozen (supercooled), and assessed survival following methods similar

to those used for insects (Sinclair et al. 2015; Li et al. 2020; Mclintyre et al. 2023; Lemay et al.
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2024). Two groups of eight worms were used, both summer-collected. Freezing was detected
based on a sudden increase in worm body temperature due to the exothermic process of ice
formation (Sinclair et al. 2015). After the cold treatment, worms were returned to room
temperature containers with moist soil and leaves for recovery. Survival was assessed as the
ability of worms to move independently or respond to gently prodding with a paintbrush 48 h
post-cold treatment. Worms were classified as freeze-tolerant if all worms (frozen and

supercooled) survived, or freeze-intolerant if only supercooled worms survived.

To conduct the cold exposure described above, we used a programmable recirculating container
with a custom attachment. Prior to the cold exposure, each worm was briefly rinsed with water,
weighed, and placed into a 50 mL Falcon tube (VWR, Toronto, ON, Canada) without soil. The
lack of soil was to ensure that freezing occurred internally, rather than due to inoculation by
external ice (e.g., in frozen soil; Holmstrup 2003; Toxopeus and Sinclair 2018). These tubes
were secured in a custom clear container, through which temperature-controlled 50% (v/v)
propylene glycol (VWR) could be circulated. The propylene glycol was cooled with an Arctic 25
programmable recirculating chiller (Thermo Fisher Scientific, Toronto, ON, Canada), and
pumped into the custom container via an EcoPlus aquarium pump (1 Fish 2 Fish, Dartmouth, NS,
Canada). The temperature in the bottom of each tube was recorded once per second viaa Type T
copper-constantan thermocouple (Omega Engineering, Norwalk, CT, USA) threaded through a
hole in the top of the Falcon tube, and interfaced with PicoLog v. 6.2.8 via a TC-8 unit (Pico

Technology, Cambridgeshire, UK).
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Survival following acute (1 h) cold shock was assessed at temperatures that encompassed 0 —
100% mortality, followed by return to room temperature for recovery. Four groups of eight
summer-acclimated worms were used — one group per temperature (-2, 0, 2, and 5 °C). In
addition, one group of eight fall-acclimated worms were exposed to 0 °C. The cold exposure was
conducted similarly to that described above, except that the temperature was not gradually
decreased; worms were transferred directly from room temperature to the cold temperature, and
then back to room temperature. In addition, we included c. 20 mL of moist potting soil in each
tube prior to cold exposure to make the environment more realistic. We performed a logistic
regression in R v4.0.3 (R Core Team 2023) to describe the relationship between temperature and
proportion survival in summer-acclimated worms. This experiment allowed us to determine
whether short exposures to temperatures above the SCP caused mortality, helping distinguish

between freeze-avoidant (high survival) and chill-susceptible (low survival) classifications.

We also assessed survival of summer-acclimated worms during a longer exposure to 5 °C, a
temperature that has previously been reported as limiting for Amynthas adults. One group of 12
worms was used, and survival was checked after 1, 3.5, 6, 24, and 48 h of chilling. The cold
exposure was conducted using a walk-in 5 °C incubator in complete darkness. Temperature was
monitored in the incubator by an iButton (iButton Link Technology, Whitewater, W1, USA).
Each worm was placed in a 50 mL Falcon tube containing c. 20 mL of moist soil and at least one
dried leaf. Each survival assessment required approximately 15 min at room temperature. We
performed a logistic regression in R v4.0.3 to describe the relationship between time at 5 °C and

proportion survival. This experiment allowed us to determine whether longer exposures to
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temperatures about the SCP caused mortality, providing further context for whether the worms

were chill-susceptible.

Critical thermal minimum (CTmin) and supercooling point (SCP)

To determine the impact of acclimation on cold tolerance, we measured CTmin and SCP in both
summer-acclimated and fall-acclimated worms using a gradual chilling protocol. Using similar
methods as described above, we cooled (at -0.25 °C/min) groups of 6 to 8 worms from 20 °C (if
summer-acclimated) or 8 °C (if fall-acclimated) to a temperature (c. -6 °C) at which all the
worms froze. Prior to the cold exposure, worms were weighed, rinsed, and placed into tubes that
did not contain soil, as we needed to observe worm movement. Each worm was observed for
activity once every 3 min, and the CTmin was defined as the highest temperature at which
voluntary movement ceased for at least 9 min (three observation periods). Voluntary movement
included whole body movement (e.g., climbing the sides of the tube), and small movements
(e.g., of mouthparts) that indicated some part of the neuromuscular system was functional.
Cooling continued below the CTmin until the SCP was reached, i.e., the lowest temperature prior
to the exotherm associated with internal ice formation (Sinclair et al., 2015). Because activity
and freezing can be impacted by mass, we used ANCOVAs in R v4.0.3 with mass as a covariate

to determine the effect of acclimation on CTmin and SCP.

Worm homogenization and glucose assays

To investigate a biochemical correlate of cold tolerance, we determined concentrations of the
potential cryoprotectant glucose in homogenates of whole worms that were summer-acclimated
or fall-acclimated, but never exposed to a cold treatment. First, five summer-acclimated worms

and six fall-acclimated worms were rinsed with water, flash-frozen in liquid nitrogen in 15 mL

10
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Falcon tubes, and stored for up to three weeks at -80 °C. Worms were then partially thawed on
ice, dissected in a petri plate to remove gut contents (which appeared to inhibit the glucose assay
in a pilot experiment), and cut into pieces c. 1 cm long. We reweighed the tissues in a 15 mL
Falcon tube (one per worm), and added 10 mL of Tris-buffered saline (TBS; 5 mM Tris; 137
mM NaCl; 2.7 mM KCI, pH 6.6) per gram of worm tissue. We used a Power Gen 125
Homogenizer (Thermo Fisher Scientific) two to three times for 10 s at 18000 rpm to homogenize
the tissues of each worm. To create a cell-free extract, we centrifuged the homogenate for 5 min
at 3000 x g at 4 °C, and then centrifuged 1 mL of the resulting supernatant for 30 min at 3000 x

gat4-°C.

We performed glucose assays using the Glucose Assay Reagent (Sigma Aldrich, Toronto, ON,
Canada) according to the manufacturer’s instructions and as described previously (Toxopeus et
al. 2019a). Briefly, we prepared glucose standards in TBS ranging from 0.01 to 0.16 mg/mL via
a 2-fold dilution series. We diluted cell-free homogenates 1:1 with TBS, and then incubated
these samples (and the standards) at 70 °C for 10 min to denature any endogenous enzymes,
followed by centrifugation for 3 min at 20,000 x g at room temperature to pellet any precipitated
proteins. 90 uL Glucose Assay Reagent and 10 pL sample or standard were pipetted in triplicate
into a 96-well spectrophotometer plate. The plate was sealed with Parafilm, followed by mixing
of the plate for 30 s on low in a SpectraMax iD5 (Molecular Devices), and incubation of the
plate at room temperature for 20 min. The Parafilm was then removed, followed by reading
absorbance at 340 nm. The concentration of glucose in each sample was determined by
comparison to the standard curve. We compared the glucose concentrations of summer- and fall-

acclimated worms using a Welch’s t-test in R v4.0.3.

11
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Data and code availability
All figures were produced in R v4.0.3. All data and code for statistical analysis and figure

generation are available at https://github.com/jtoxopeus/jumping-worm-cold-tolerance.

Results

Amynthas tokioensis are chill-susceptible

Overall, adult A. tokioensis collected during the summer showed poor cold tolerance. We can
conclude they were freeze-intolerant because worms gradually cooled to their SCP (i.e., those
that froze) died, while supercooled (never frozen) worms exposed to the same temperature
survived (Table 2), and indeed were active within minutes of being returned to room
temperature. When summer-acclimated worms were exposed to mild low temperatures for
durations of 1 h, survival was low (< 50%) at 0 °C and below (Fig. 1A). In addition, survivors
from the 0 °C treatment did not regain full motility, but could respond to prodding. However, a
short exposure to 2 °C or 5 °C was non-lethal (Fig. 1A), and worms regained full motility. When
summer-acclimated worms were exposed to 5 °C for longer durations, survival was high during
the first 6 h of exposure, but dropped to almost zero after 24 h, and all worms were dead after 48

h (Fig. 1B). We therefore conclude that adult A. tokioensis are chill-susceptible.

Table 2 Survival and mass of summer-collected Amynthas tokioensis cooled to the same low
temperature (c. -4°C) at which half of them froze and half remained unfrozen (supercooled).

Metric Frozen Supercooled
Number of worms 8 8
Number of worms 0 8

that survived

Average mass + s.e. 0.93+0.12 0.86+0.08
of worms (g)

12
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Fig. 1 Survival of summer-acclimated Amynthas tokioensis following exposure to various cold
treatments. (A) Each group of 8 worms was cold-shocked for 1 h at one of the indicated
temperature. (B) One group of 12 worms was kept at 5 °C for up to 48 h, and checked for
survival at several time points. Grey lines are based on the logistic regression for each dataset.
Temperature significantly impacted survival (regression; P = 0.006). Time at 5 °C did not have a
statistical impact on survival (regression; P > 0.05). Errors bars represent standard error of
proportion.

Amynthas tokioensis do not acclimate well to fall-like conditions

When we exposed A. tokioensis to fall-like conditions, the worms did not become more cold-
tolerant. Most worms died during the fall-like acclimation (mortality of 78%), while most worms
lived during the summer-like acclimation (mortality of 32%; Table 1). Fall-acclimation treatment
was associated with a minor decrease in CTmin compared to the summer-acclimation treatment
(Fig. 2A; ANCOVA: Mass P =0.92; Acclimation P = 0.021). Therefore, fall-acclimated worms
(mean CTmin =-0.77 °C) could remain active at temperatures c. 1 °C lower than that of
summer-acclimated worms (mean CTmin = 0.63 °C). However, when we exposed six fall-
acclimated worms to 0 °C for 1 h, all of them died, exhibiting worse cold tolerance than the
summer-collected worms (compare to Fig. 1A). There was no difference in the SCP of fall-

acclimated and summer-acclimated worms (mean SCPs = -4.63 °C and -4.37 °C, respectively),
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although there was an effect of worm mass on SCP (Fig. 2A, ANCOVA: Mass P =0.043;
Acclimation P = 0.499). Finally, fall-like acclimation didn’t induce an increase in concentration
of glucose, a known cryoprotectant in worms (Fig. 2B, Welch’s t-test: P = 0.941). Therefore,
most of our data support the conclusion that the worms were unable to improve their cold

tolerance physiology in response to mild decreases in temperature that would be expected during

the fall season.
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g 8 2
2 2
(0]
[eR [0
5 g 1
= -4 - =]
O]
=6 T T 0 T T
CTmin SCP Summer Fall
Cold tolerance metric Treatment

Fig. 2 Cold tolerance and cryoprotectant concentrations of summer-acclimated and fall-
acclimated Amynthas tokioensis. (A) A group of 16 (summer) and 6 (fall) worms were gradually
chilled to determine the temperature at which voluntary movement ceased (CTmin) and internal
ice formation began (SCP). (B) Glucose concentration in whole worms (without gut contents)
was determined for 5 (summer) and 6 (fall) worms direct from their acclimation conditions.
Thick lines represent median, while the bottom and top of the box indicate the first and third
quartiles. Whiskers extend to the minimum and maximum y-values. Asterisks indicate a

significant difference between summer and fall worms based on ANCOVAs for CTmin and SCP,
or Welch’s t-test for glucose concentrations.
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Discussion

Our study is the first to thoroughly characterize the cold tolerance physiology of adult

A. tokioensis. When gradually cooled, they lost neuromuscular coordination at c. 0 °C, so in their
natural environment we would expect these worms to behaviourally avoid temperatures below

0 °C as much as possible (Holmstrup 2003). In the absence of soil, the worms froze at c. -4.5 °C,
a relatively high SCP that may be initiated by gut contents — as seen in some insects (Toxopeus
et al. 2016, 2019b). In their natural environment these worms could freeze at even higher subzero
temperatures if in contact with frozen soil (Holmstrup 2003; Holmstrup et al. 2007). Unlike some
earthworms in temperate climates (e.g., D. octaedra, E. nordenskioldi; Holmstrup et al. 1999;
Rasmussen and Holmstrup 2002), adult A. tokioensis did not survive internal ice formation. This
is consistent with their relatively tropical origin (Chang et al. 2021), where we would not expect
freeze tolerance to evolve (Toxopeus and Sinclair 2018). Based on survival following multiple

types of chilling and cold exposures, we conclude that these worms are chill-susceptible.

Despite the poor cold tolerance of adult A. tokioensis, their population has been persisting at our
collection location in New Brunswick for a few years (McAlpine et al. 2022). Similar to the co-
invasive adult A. agrestis (Richardson et al. 2009; Gorres et al. 2014, 2016), our worms exhibited
poor survival at mild low temperatures, showing recovery from short (1 h) chilling at 2 and 5 °C,
but not prolonged (1 day or more) exposures. This is consistent with field observations that
abundance of adult jumping worms in the field declines as soil temperatures drop below 5 °C
(Chang et al. 2021). Similar to many earthworms (Holmstrup 1994; Meshcheryakova and
Berman 2014), it is probable that the cocoons of A. tokioensis are much more cold-tolerant than

the adults. Hatchlings have been observed in early spring in Vermont following a winter in
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which the soil was frozen, indicating that cocoons can survive through cold winter conditions
although it is unclear how winter temperatures impact hatching success rates (Gorres et al. 2016).
We predict that A. tokioensis can persist wherever the growing season is sufficiently warm and

long enough for the adults to mature, reproduce, and lay cocoons prior to early fall.

One question that remains is whether the decline in adult A. tokioensis abundance each fall is due
to accumulation of cold/chilling injuries (Overgaard and MacMillan 2017) or age. Mortality was
high during our fall-like acclimation, suggesting early fall (late September to late October)
temperatures are stressful. In addition, our worms showed a general inability to modify their
physiology (CTmin, SCP, glucose concentrations) during fall-like acclimation, which is
characteristic of chill-susceptible earthworms (Holmstrup et al. 1999; Meshcheryakova and
Berman 2014). However, the fall-like acclimation was relatively long (5 weeks), so we
acknowledge that some worms may have simply died from old age. Jumping worms likely
survive as adults for no more than three months (Chang et al. 2021). Amynthas agrestis adults
can persist under laboratory conditions for up to 4 weeks at moderate temperatures (12 °C;
Richardson et al. 2009), and longer acclimations have been successfully used for freeze-tolerant
earthworms (e.g., 8 weeks; Holmstrup et al. 2007). A more detailed time course of survival
during fall-like conditions would further add to our understanding of how cold impacts the adults

of A. tokioensis.
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