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Abstract 

The jumping worm Amynthas tokioensis is invasive in North America, and it has been expanding 

its range northward in recent years. Because low temperatures typically restrict the geographic 

distribution of organisms, our goal was to characterize the cold tolerance physiology of adult 

jumping worms from a site in New Brunswick, Canada (c. 45°N), with the intent of better 

understanding their geographic range limits. Most of our experiments supported the conclusion 

that these worms are chill-susceptible: they die during or after exposure to relatively mild low 

temperatures. When gradually cooled, adult worms lost neuromuscular coordination at 

approximately 0 °C and froze at a mean temperature of -4.5 °C. They did not survive freezing 

and showed poor survival following 1 h exposures to 0 °C and subzero temperatures. At higher 

mild temperatures (5 °C), the worms could survive short (up to 6 h) but not long (e.g., 48 h) 

chilling durations. We attempted to induce improved cold tolerance via a five-week gradual 

acclimation to fall-like temperatures, but fall-acclimated worms showed poor survival during and 

after this acclimation. Acclimation also did not induce accumulation of glucose, a typical 

cryoprotectant in earthworms. We suggest that A. tokioensis can likely persist wherever the 

growing season is sufficiently warm and long enough for the adults to mature, reproduce, and lay 

cocoons prior to the chilling temperatures associated with early fall. Future work examining the 

cold tolerance of the overwintering cocoons will be important for fully understanding the 

northern range limits of these jumping worms. 

Key words 

cold tolerance, chill tolerance, critical thermal minimum, earthworms, supercooling point, 

thermal physiology 
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Introduction 

Amynthas tokioensis (jumping worm) is a pheretimoid earthworm (Oligochaeta: 

Megascolecidae) native to East and Southeast Asia and invasive in North America (Chang et al. 

2021; McAlpine et al. 2022). In their non-native habitats, A. tokioensis rapidly alter soil structure 

and nutrient availability (Chang et al. 2021). Amynthas spp. were first reported in Canada in 

Ontario in 2014 (c. 42°N; Reynolds 2014, 2018), and A. tokioensis has since invaded Québec 

(c. 45°N; Moore and Reynolds 2024) and New Brunswick, Canada (c. 45°N; McAlpine et al. 

2022). This species often co-occurs with two other invasive jumping worms, Amynthas agrestis 

and Metaphire hilgendorfi (Chang et al. 2018). With their increasingly northward expansion and 

substantial impacts on soil and other organisms, there is a need to increase our understanding of 

the thermal limits of these jumping worms.  

 

The thermal limits of jumping worms have been partially described, especially in relation to their 

annual life cycle. Amynthas spp. overwinter as cocoons, hatch as juvenile worms in the early 

spring, and mature into adults that reproduce and lay cocoons before dying in the fall (Chang et 

al. 2021). Laboratory experiments have shown that cocoons of A. agrestis from Tennessee, USA 

(c. 35°N) will hatch at 10 °C but not 5 °C (Blackmon et al. 2019). Juvenile Amynthas spp. have 

hatched even after cocoons experience extreme low winter temperatures, e.g., below -20 °C in 

Vermont, USA (c. 44°N) during the 2014 polar vortex (Görres et al. 2016). Adult A. agrestis do 

not survive prolonged (28 d) exposures to 5 °C (Tennessee population; Richardson et al. 2009), 

and the abundance of adult A. agrestis in the field declines as air temperatures drop below 10°C, 

with rapid decline below 5°C (Vermont population; Görres et al. 2014, 2016). While some data 

on temperature limits have been collected for A. agrestis, there is little literature on similar 
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thresholds for the co-invasive A. tokioensis, and no information on the thermal limits of 

Canadian populations. 

 

The lower thermal limits of ectothermic animals can be measured in multiple ways. As 

environmental temperatures decrease, animals will reach a critical thermal minimum (CTmin), 

the low temperature at which voluntary movement ceases (Overgaard and MacMillan 2017). 

Exposure to the CTmin is usually non-lethal (unless for prolonged periods) and lower CTmin 

values are associated with increased cold tolerance (Overgaard and MacMillan 2017). As 

environmental temperatures decrease below the CTmin, internal ice formation begins at the 

supercooling point (SCP; Sinclair et al. 2015), although some species remain active until they 

freeze (CTmin = SCP; e.g., Toxopeus et al. 2016). In addition, internal freezing may be initiated 

by external factors, such as contact with environmental ice (Holmstrup 2003; Toxopeus and 

Sinclair 2018). Both CTmin and SCP can vary seasonally as animals acclimatize to changing 

environmental conditions, and in response to acclimation regimes in laboratories (Havird et al. 

2020). For example, adult Eisenia nordenskioldi (Siberian earthworms) decrease their SCP from 

-1.2 °C to -3.5 °C both naturally during the fall and when exposed to gradually decreasing 

temperatures in lab (Meshcheryakova and Berman 2014). The relevance of the SCP for cold 

tolerance depends on the animal’s cold tolerance strategy. 

 

The two major cold tolerance strategies of ectothermic animals are freeze tolerance and freeze 

avoidance. Freeze-tolerant animals survive internal ice formation (Holmstrup and Zachariassen 

1996; Toxopeus and Sinclair 2018) and temperatures below their SCP, exhibited by adults of the 

earthworms E. nordenskioldi (Holmstrup et al. 1999) and Dendrobaena octaedra (Rasmussen 
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and Holmstrup 2002). Freeze-tolerant earthworms often accumulate high levels of glucose as a 

cryoprotectant molecule (Holmstrup et al. 1999; Slotsbo et al. 2008). Freeze-avoidant (also 

called freeze-intolerant) animals physiologically suppress the SCP via accumulation of 

cryoprotectants and antifreeze proteins, but will die if ice forms (i.e., at the SCP), as seen in 

many terrestrial insects (Toxopeus and Sinclair 2018). Cryoprotective dehydration is an extreme 

version of freeze avoidance, in which organisms avoid ice formation by substantially decreasing 

their water content, a strategy used by cocoons of some earthworms (Holmstrup and Westh 

1994). Animals that are not cold-tolerant are usually described as chill-susceptible, dying at mild 

low temperatures above the SCP, such as the earthworms Eisenia fetida (red wrigglers; 

Meshcheryakova and Berman 2014). Chill-susceptible animals may behaviourally avoid low 

temperatures, for example by overwintering below the frost layer, as seen in the earthworm 

Lumbricus terrestris (nightcrawlers; Nuutinen and Butt 2009). Measuring survival under both 

short (e.g., 1 h) and prolonged (e.g., multiple days) exposures can provide additional insight into 

cold tolerance, especially if ecologically-relevant conditions are selected (McIntyre et al. 2023; 

Lemay et al. 2024).  

 

In this study, we characterized the thermal limits of adult A. tokioensis collected in late summer 

from New Brunswick, Canada. We determined their cold tolerance strategy and survival 

following exposure to acute (short) and chronic mild low temperatures. We also measured 

CTmin, SCP, and tissue glucose concentrations in worms that were acclimated to summer-like or 

fall-like conditions. Our results strongly suggest that adult A. tokioensis have limited cold 

tolerance, and that cool fall conditions may limit their spread if adults cannot lay cocoons before 

they are killed by low temperatures. 
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Methods 

Worm collection, identification, and acclimation 

Approximately 200 adult jumping worms were collected from a residential back yard near 

Oromocto, New Brunswick, Canada (45.84°N; 66.48°W) in August 2023 and transported to 

Saint Francis Xavier University in Antigonish, Nova Scotia, Canada within a few hours. Jumping 

worms were collected from under logs, plant pots, and other material in the yard. Adults were 

distinguished from juveniles based on the presence of a clitellum. Recent research found only 

A. tokioensis at this location (Bennett et al. 2024), but we also looked for spermathecal pores on 

some of the collected earthworms to confirm that they were A. tokioensis (Chang et al. 2016). 

Worms were subdivided into cylindrical 1 L plastic jars with screw-top lids containing 500 – 700 

mL moist potting soil and dried aspen leaves (collected the previous fall in Antigonish) for food. 

Lids were perforated for aeration, and the jars were placed in fine mesh bags to contain escapees. 

Soil moisture and leaves were checked and topped up twice per week.  

 

Worms were separated into three groups based on the duration and temperature exposures in lab 

(Table 1). “Summer-collected” worms were used in experiments within 2 – 5 days of field 

collection. “Summer-acclimated” worms were kept under summer-like conditions (room 

temperature, c. 20 °C, and natural lighting) for three weeks prior to experiments. “Fall-

acclimated” worms were moved into a MIR-154-PA incubator (PHCbi, Chicago, IL, USA) for a 

five-week fall-like acclimation in darkness prior to experiments. The fall-like acclimation started 

with one week at 18 °C, and then decreased once per week to 15, 12, 10, and 8 °C to represent 

average soil temperatures from late September to late October near the collection site 
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(Environment Canada 2023). The samples sizes of each group and their use in subsequent 

experiments are summarized in Table 1. 

 

Table 1 Samples sizes of Amynthas tokioensis used in acclimations and experimentsa for this 

study, including mortality that occurred during acclimations. 

Number of worms Summer-collected Summer-acclimated Fall-acclimated 

Total 16 95 91 

Died prior to 

experiments 

N/A  

(0% mortality) 

30  

(32% mortality) 

71 

(78% mortality) 

Used in experiments 16 (cold tolerance 

strategy) 

32 (acute cold shock) 

12 (prolonged chilling) 

16 (CTmin and SCP) 

5 (glucose assay) 

8 (acute cold shock) 

 

6 (CTmin and SCP) 

6 (glucose assay) 

aCTmin = critical thermal minimum, SCP = supercooling point 

 

 

Cold tolerance strategy and low temperature tolerance 

To determine the impact of cold exposure on worm survival, we conducted three types of cold 

exposures. First, we determined whether summer-collected worms could survive freezing and 

supercooling in a cold tolerance strategy experiment. Second, we measured survival following 

exposure to a range of acute (1 h) cold shocks in summer- and fall-acclimated worms. Third, we 

tracked survival of summer-acclimated worms during a prolonged (multi-day) exposure to mild 

low temperatures.  

 

To determine their cold tolerance strategy, we gradually cooled (at -0.25 °C/min) a group of 

worms from room temperature (c. 20 °C) to a temperature (c. -4 °C) at which half of the worms 

froze and half remained unfrozen (supercooled), and assessed survival following methods similar 

to those used for insects (Sinclair et al. 2015; Li et al. 2020; McIntyre et al. 2023; Lemay et al. 
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2024). Two groups of eight worms were used, both summer-collected. Freezing was detected 

based on a sudden increase in worm body temperature due to the exothermic process of ice 

formation (Sinclair et al. 2015). After the cold treatment, worms were returned to room 

temperature containers with moist soil and leaves for recovery. Survival was assessed as the 

ability of worms to move independently or respond to gently prodding with a paintbrush 48 h 

post-cold treatment. Worms were classified as freeze-tolerant if all worms (frozen and 

supercooled) survived, or freeze-intolerant if only supercooled worms survived. 

 

To conduct the cold exposure described above, we used a programmable recirculating container 

with a custom attachment. Prior to the cold exposure, each worm was briefly rinsed with water, 

weighed, and placed into a 50 mL Falcon tube (VWR, Toronto, ON, Canada) without soil. The 

lack of soil was to ensure that freezing occurred internally, rather than due to inoculation by 

external ice (e.g., in frozen soil; Holmstrup 2003; Toxopeus and Sinclair 2018). These tubes 

were secured in a custom clear container, through which temperature-controlled 50% (v/v) 

propylene glycol (VWR) could be circulated. The propylene glycol was cooled with an Arctic 25 

programmable recirculating chiller (Thermo Fisher Scientific, Toronto, ON, Canada), and 

pumped into the custom container via an EcoPlus aquarium pump (1 Fish 2 Fish, Dartmouth, NS, 

Canada). The temperature in the bottom of each tube was recorded once per second via a Type T 

copper-constantan thermocouple (Omega Engineering, Norwalk, CT, USA) threaded through a 

hole in the top of the Falcon tube, and interfaced with PicoLog v. 6.2.8 via a TC-8 unit (Pico 

Technology, Cambridgeshire, UK).  
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Survival following acute (1 h) cold shock was assessed at temperatures that encompassed 0 – 

100% mortality, followed by return to room temperature for recovery. Four groups of eight 

summer-acclimated worms were used – one group per temperature (-2, 0, 2, and 5 °C). In 

addition, one group of eight fall-acclimated worms were exposed to 0 °C. The cold exposure was 

conducted similarly to that described above, except that the temperature was not gradually 

decreased; worms were transferred directly from room temperature to the cold temperature, and 

then back to room temperature. In addition, we included c. 20 mL of moist potting soil in each 

tube prior to cold exposure to make the environment more realistic. We performed a logistic 

regression in R v4.0.3 (R Core Team 2023) to describe the relationship between temperature and 

proportion survival in summer-acclimated worms. This experiment allowed us to determine 

whether short exposures to temperatures above the SCP caused mortality, helping distinguish 

between freeze-avoidant (high survival) and chill-susceptible (low survival) classifications.  

 

We also assessed survival of summer-acclimated worms during a longer exposure to 5 °C, a 

temperature that has previously been reported as limiting for Amynthas adults. One group of 12 

worms was used, and survival was checked after 1, 3.5, 6, 24, and 48 h of chilling. The cold 

exposure was conducted using a walk-in 5 °C incubator in complete darkness. Temperature was 

monitored in the incubator by an iButton (iButton Link Technology, Whitewater, WI, USA). 

Each worm was placed in a 50 mL Falcon tube containing c. 20 mL of moist soil and at least one 

dried leaf. Each survival assessment required approximately 15 min at room temperature. We 

performed a logistic regression in R v4.0.3 to describe the relationship between time at 5 °C and 

proportion survival. This experiment allowed us to determine whether longer exposures to 
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temperatures about the SCP caused mortality, providing further context for whether the worms 

were chill-susceptible.  

 

Critical thermal minimum (CTmin) and supercooling point (SCP) 

To determine the impact of acclimation on cold tolerance, we measured CTmin and SCP in both 

summer-acclimated and fall-acclimated worms using a gradual chilling protocol. Using similar 

methods as described above, we cooled (at -0.25 °C/min) groups of 6 to 8 worms from 20 °C (if 

summer-acclimated) or 8 °C (if fall-acclimated) to a temperature (c. -6 °C) at which all the 

worms froze. Prior to the cold exposure, worms were weighed, rinsed, and placed into tubes that 

did not contain soil, as we needed to observe worm movement. Each worm was observed for 

activity once every 3 min, and the CTmin was defined as the highest temperature at which 

voluntary movement ceased for at least 9 min (three observation periods). Voluntary movement 

included whole body movement (e.g., climbing the sides of the tube), and small movements 

(e.g., of mouthparts) that indicated some part of the neuromuscular system was functional. 

Cooling continued below the CTmin until the SCP was reached, i.e., the lowest temperature prior 

to the exotherm associated with internal ice formation (Sinclair et al., 2015). Because activity 

and freezing can be impacted by mass, we used ANCOVAs in R v4.0.3 with mass as a covariate 

to determine the effect of acclimation on CTmin and SCP. 

 

Worm homogenization and glucose assays 

To investigate a biochemical correlate of cold tolerance, we determined concentrations of the 

potential cryoprotectant glucose in homogenates of whole worms that were summer-acclimated 

or fall-acclimated, but never exposed to a cold treatment. First, five summer-acclimated worms 

and six fall-acclimated worms were rinsed with water, flash-frozen in liquid nitrogen in 15 mL 
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Falcon tubes, and stored for up to three weeks at -80 °C. Worms were then partially thawed on 

ice, dissected in a petri plate to remove gut contents (which appeared to inhibit the glucose assay 

in a pilot experiment), and cut into pieces c. 1 cm long. We reweighed the tissues in a 15 mL 

Falcon tube (one per worm), and added 10 mL of Tris-buffered saline (TBS; 5 mM Tris; 137 

mM NaCl; 2.7 mM KCl, pH 6.6) per gram of worm tissue. We used a Power Gen 125 

Homogenizer (Thermo Fisher Scientific) two to three times for 10 s at 18000 rpm to homogenize 

the tissues of each worm. To create a cell-free extract, we centrifuged the homogenate for 5 min 

at 3000 × g at 4 °C, and then centrifuged 1 mL of the resulting supernatant for 30 min at 3000 × 

g at 4 °C.  

 

We performed glucose assays using the Glucose Assay Reagent (Sigma Aldrich, Toronto, ON, 

Canada) according to the manufacturer’s instructions and as described previously (Toxopeus et 

al. 2019a). Briefly, we prepared glucose standards in TBS ranging from 0.01 to 0.16 mg/mL via 

a 2-fold dilution series. We diluted cell-free homogenates 1:1 with TBS, and then incubated 

these samples (and the standards) at 70 °C for 10 min to denature any endogenous enzymes, 

followed by centrifugation for 3 min at 20,000 × g at room temperature to pellet any precipitated 

proteins. 90 μL Glucose Assay Reagent and 10 μL sample or standard were pipetted in triplicate 

into a 96-well spectrophotometer plate. The plate was sealed with Parafilm, followed by mixing 

of the plate for 30 s on low in a SpectraMax iD5 (Molecular Devices), and incubation of the 

plate at room temperature for 20 min. The Parafilm was then removed, followed by reading 

absorbance at 340 nm. The concentration of glucose in each sample was determined by 

comparison to the standard curve. We compared the glucose concentrations of summer- and fall-

acclimated worms using a Welch’s t-test in R v4.0.3. 
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Data and code availability  

All figures were produced in R v4.0.3. All data and code for statistical analysis and figure 

generation are available at https://github.com/jtoxopeus/jumping-worm-cold-tolerance. 

 

Results 

Amynthas tokioensis are chill-susceptible 

Overall, adult A. tokioensis collected during the summer showed poor cold tolerance. We can 

conclude they were freeze-intolerant because worms gradually cooled to their SCP (i.e., those 

that froze) died, while supercooled (never frozen) worms exposed to the same temperature 

survived (Table 2), and indeed were active within minutes of being returned to room 

temperature. When summer-acclimated worms were exposed to mild low temperatures for 

durations of 1 h, survival was low (< 50%) at 0 °C and below (Fig. 1A). In addition, survivors 

from the 0 °C treatment did not regain full motility, but could respond to prodding. However, a 

short exposure to 2 °C or 5 °C was non-lethal (Fig. 1A), and worms regained full motility. When 

summer-acclimated worms were exposed to 5 °C for longer durations, survival was high during 

the first 6 h of exposure, but dropped to almost zero after 24 h, and all worms were dead after 48 

h (Fig. 1B). We therefore conclude that adult A. tokioensis are chill-susceptible. 

 

Table 2 Survival and mass of summer-collected Amynthas tokioensis cooled to the same low 

temperature (c. -4°C) at which half of them froze and half remained unfrozen (supercooled). 

Metric Frozen Supercooled 

Number of worms 8 8 

Number of worms 

that survived 

0 8 

Average mass ± s.e. 

of worms (g) 

0.93 ± 0.12 0.86 ± 0.08 
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Fig. 1 Survival of summer-acclimated Amynthas tokioensis following exposure to various cold 

treatments. (A) Each group of 8 worms was cold-shocked for 1 h at one of the indicated 

temperature. (B) One group of 12 worms was kept at 5 °C for up to 48 h, and checked for 

survival at several time points. Grey lines are based on the logistic regression for each dataset. 

Temperature significantly impacted survival (regression; P = 0.006). Time at 5 °C did not have a 

statistical impact on survival (regression; P > 0.05). Errors bars represent standard error of 

proportion. 

 

Amynthas tokioensis do not acclimate well to fall-like conditions 

When we exposed A. tokioensis to fall-like conditions, the worms did not become more cold-

tolerant. Most worms died during the fall-like acclimation (mortality of 78%), while most worms 

lived during the summer-like acclimation (mortality of 32%; Table 1). Fall-acclimation treatment 

was associated with a minor decrease in CTmin compared to the summer-acclimation treatment 

(Fig. 2A; ANCOVA: Mass P = 0.92; Acclimation P = 0.021). Therefore, fall-acclimated worms 

(mean CTmin = -0.77 °C) could remain active at temperatures c. 1 °C lower than that of 

summer-acclimated worms (mean CTmin = 0.63 °C). However, when we exposed six fall-

acclimated worms to 0 °C for 1 h, all of them died, exhibiting worse cold tolerance than the 

summer-collected worms (compare to Fig. 1A). There was no difference in the SCP of fall-

acclimated and summer-acclimated worms (mean SCPs = -4.63 °C and -4.37 °C, respectively), 
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although there was an effect of worm mass on SCP (Fig. 2A, ANCOVA: Mass P = 0.043; 

Acclimation P = 0.499). Finally, fall-like acclimation didn’t induce an increase in concentration 

of glucose, a known cryoprotectant in worms (Fig. 2B, Welch’s t-test: P = 0.941). Therefore, 

most of our data support the conclusion that the worms were unable to improve their cold 

tolerance physiology in response to mild decreases in temperature that would be expected during 

the fall season. 

 

 

Fig. 2 Cold tolerance and cryoprotectant concentrations of summer-acclimated and fall-

acclimated Amynthas tokioensis. (A) A group of 16 (summer) and 6 (fall) worms were gradually 

chilled to determine the temperature at which voluntary movement ceased (CTmin) and internal 

ice formation began (SCP). (B) Glucose concentration in whole worms (without gut contents) 

was determined for 5 (summer) and 6 (fall) worms direct from their acclimation conditions. 

Thick lines represent median, while the bottom and top of the box indicate the first and third 

quartiles. Whiskers extend to the minimum and maximum y-values. Asterisks indicate a 

significant difference between summer and fall worms based on ANCOVAs for CTmin and SCP, 

or Welch’s t-test for glucose concentrations. 
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Discussion 

Our study is the first to thoroughly characterize the cold tolerance physiology of adult 

A. tokioensis. When gradually cooled, they lost neuromuscular coordination at c. 0 °C, so in their 

natural environment we would expect these worms to behaviourally avoid temperatures below 

0 °C as much as possible (Holmstrup 2003). In the absence of soil, the worms froze at c. -4.5 °C, 

a relatively high SCP that may be initiated by gut contents – as seen in some insects (Toxopeus 

et al. 2016, 2019b). In their natural environment these worms could freeze at even higher subzero 

temperatures if in contact with frozen soil (Holmstrup 2003; Holmstrup et al. 2007). Unlike some 

earthworms in temperate climates (e.g., D. octaedra, E. nordenskioldi; Holmstrup et al. 1999; 

Rasmussen and Holmstrup 2002), adult A. tokioensis did not survive internal ice formation. This 

is consistent with their relatively tropical origin (Chang et al. 2021), where we would not expect 

freeze tolerance to evolve (Toxopeus and Sinclair 2018). Based on survival following multiple 

types of chilling and cold exposures, we conclude that these worms are chill-susceptible. 

 

Despite the poor cold tolerance of adult A. tokioensis, their population has been persisting at our 

collection location in New Brunswick for a few years (McAlpine et al. 2022). Similar to the co-

invasive adult A. agrestis (Richardson et al. 2009; Görres et al. 2014, 2016), our worms exhibited 

poor survival at mild low temperatures, showing recovery from short (1 h) chilling at 2 and 5 °C, 

but not prolonged (1 day or more) exposures. This is consistent with field observations that 

abundance of adult jumping worms in the field declines as soil temperatures drop below 5 °C 

(Chang et al. 2021). Similar to many earthworms (Holmstrup 1994; Meshcheryakova and 

Berman 2014), it is probable that the cocoons of A. tokioensis are much more cold-tolerant than 

the adults. Hatchlings have been observed in early spring in Vermont following a winter in 
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which the soil was frozen, indicating that cocoons can survive through cold winter conditions 

although it is unclear how winter temperatures impact hatching success rates (Görres et al. 2016). 

We predict that A. tokioensis can persist wherever the growing season is sufficiently warm and 

long enough for the adults to mature, reproduce, and lay cocoons prior to early fall.  

 

One question that remains is whether the decline in adult A. tokioensis abundance each fall is due 

to accumulation of cold/chilling injuries (Overgaard and MacMillan 2017) or age. Mortality was 

high during our fall-like acclimation, suggesting early fall (late September to late October) 

temperatures are stressful. In addition, our worms showed a general inability to modify their 

physiology (CTmin, SCP, glucose concentrations) during fall-like acclimation, which is 

characteristic of chill-susceptible earthworms (Holmstrup et al. 1999; Meshcheryakova and 

Berman 2014). However, the fall-like acclimation was relatively long (5 weeks), so we 

acknowledge that some worms may have simply died from old age. Jumping worms likely 

survive as adults for no more than three months (Chang et al. 2021). Amynthas agrestis adults 

can persist under laboratory conditions for up to 4 weeks at moderate temperatures (12 °C; 

Richardson et al. 2009), and longer acclimations have been successfully used for freeze-tolerant 

earthworms (e.g., 8 weeks; Holmstrup et al. 2007). A more detailed time course of survival 

during fall-like conditions would further add to our understanding of how cold impacts the adults 

of A. tokioensis. 
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