

1 **PATHOGEN GROWTH AND VIRULENCE DYNAMICS DRIVE THE HOST EVOLUTION AGAINST**
2 **COINFECTIONS**

3

4 Srijan Seal*#¹, Dipendra Nath Basu*#¹, Kripanjali Ghosh¹, Aryan Ramachandran¹, Rintu Kutum¹,
5 Triveni Shelke², Ishaan Gupta², Imroze Khan*¹

6

7 ¹Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India

8 ²Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz
9 Khas, New Delhi-110016, India

10

11 *#Equal Contributions*

12

13 **Corresponding authors*

14 seal.srijan03@gmail.com

15 dipendra1989@gmail.com

16 imroze.khan@ashoka.edu.in

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 **KEYWORDS:** Adaptive dynamics, Coinfection, Experimental evolution, Innate immunity,
32 Transcriptomics

33 **ABSTRACT**

34 Coinfections, or the simultaneous infection of hosts by multiple pathogens, are widespread in nature
35 with significant negative impacts on global health. Can hosts evolve against such coinfections as
36 effectively as they would against individual pathogens? Also, what roles do individual pathogens play
37 during such evolution? Here, we combined theoretical models and experiments with *Tribolium*
38 *castaneum* populations evolving against two coinfecting bacterial pathogens, with contrasting
39 growth and virulence dynamics, to reveal that fast-growing pathogens inflicting rapid mortality
40 surges (i.e., fast-acting) restrict adaptive success against coinfections. While hosts rapidly evolved
41 better survival against slow-growing bacteria causing long-lasting infections, evolution against
42 coinfection was significantly delayed and resembled slow adaptation against fast-acting pathogens.
43 Moreover, limited scopes of immunomodulation against fast-acting pathogens during coinfections
44 can drive the observed adaptive patterns. Overall, we provide new insights into how adaptive
45 dynamics and mechanistic bases against coinfections are critically regulated by individual pathogens'
46 growth and virulence dynamics.

47

48 INTRODUCTION

49 Coinfection of a host by multiple pathogen species is highly ubiquitous (1–3). Although biomedical
50 research has primarily focused on isolated interactions of a single host vs. a single pathogen, growing
51 evidence from natural systems and epidemiological studies indicates the greater ecological
52 importance of co-infecting pathogens in influencing the global health and disease burden (4, 5). For
53 example, in humans, over one-sixth of the world's population is affected by coinfections, comprised
54 of diverse pathogens underlying many globally important diseases such as HIV, tuberculosis, malaria,
55 hepatitis, and leishmaniasis (6–8). In addition to engaging in complex within-host interspecific
56 interactions (1), the evolutionary history of frequent exposure to these coinfecting pathogens can
57 profoundly influence the maintenance and deployment of the host immune system (9, 10).
58 However, despite such natural relevance, whether or to what extent coinfecting pathogens could
59 influence the evolution of the host immune system differently from infections caused by single
60 pathogens remains unexplored.

61 A generalized understanding of coinfection outcome is also challenging because of multiple
62 confounding parameters such as the multiplication rate of individual pathogens during coinfection
63 (11), temporal changes in their relative frequency and damage to the host (12) that influence the
64 dynamics and efficacy of the immune activation. For instance, pathogens with divergent antigenic
65 properties, which a single immune strategy cannot control, might lead the host to activate multiple
66 immune components simultaneously during coinfection, increasing the energetic burden (13) and
67 immunopathological risk (14, 15). Moreover, many naturally occurring coinfection can also involve
68 pathogens that vary widely in their growth and virulence dynamics (16). In such cases, the host
69 might evolve temporally separated immune strategies depending on how and at what rate different
70 pathogens multiply inside the host and manifest their virulence (17). For instance, the immune
71 system might experience a strong selection to rapidly eliminate the fast-growing pathogens that
72 induce high mortality rates early in infection (i.e., fast-acting) (18, 19). Recent experiments and
73 theoretical models can support this idea, where the ability to effectively clear pathogens by
74 mounting appropriate immune responses early in the infection can serve as a critical determinant of
75 post-infection survival success (20, 21). However, the evolution of host responses facilitating such
76 early-life fitness advantages against coinfections can be constrained if the response time to fast-
77 acting infections is limited, thereby precluding the timely induction of appropriate immune
78 components at adequate levels (22, 23). This can be further complicated by the co-occurrence of
79 other pathogens that grow relatively slowly, induce a slower mortality rate and persist longer (i.e.,
80 slow-acting), thereby warranting a sustained immune activation (24, 25). Consequently, the efficacy
81 of immune adaptation against coinfections might be critically contingent upon balancing the
82 expression of such specific immunomodulation against individual pathogens (25, 26). However,
83 experiments accounting for the differences in growth and virulence dynamics between co-infecting
84 pathogens while analysing their impacts on immune system evolution are missing.

85 To fill these gaps, we first built a theoretical model that describes diverse adaptive trajectories of
86 host responses against coinfections based on their differences in within-host pathogen growth rate,
87 rate of clearance, timing of immune activation, host mortality rate (i.e., virulence manifestation),
88 and the level of interference due to competitive interactions and immune cross-reactivity between
89 pathogens (27, 28). Our model predicts that for pathogens that do not strongly interfere with each
90 other's growth or induce strong cross-reactive immunity, within-host growth dynamics of rapidly

91 proliferating pathogens and their effects on host mortality rate at the early infection phase can drive
92 the adaptive dynamics against coinfections. Subsequently, we tested this prediction using
93 experimentally evolving *Tribolium castaneum* beetles adapting against two coinfecting bacterial
94 pathogens with contrasting growth and virulence dynamics for 30 successive generations. At every
95 generation, beetles were infected with either (A) fast-growing Gram-positive bacteria *Bacillus*
96 *thuringiensis* (Bt), causing a rapid and sharp increase in host mortality followed by rapid clearance
97 within a day (i.e., fast-acting) or (B) slow-growing Gram-negative bacteria *Pseudomonas entomophila*
98 (Pe) that killed the beetles at a slower rate, while causing persistent infection for several weeks (i.e.,
99 slow-acting); or (C) a combination of both the pathogens (Mx) (see **Fig. 1** for study design). Finally,
100 we used an RNA-sequencing approach to investigate the underlying changes in gene expression to
101 gain comparative molecular insights into host adaptations against individual vs coinfecting
102 pathogens.

103 We speculated two alternative possibilities— (A) If variations in the beetle's ability to clear fast-
104 growing Bt primarily determine their survival probability early in the coinfection (20, 29), selection
105 pressure might act more strongly to resist the infection prevalence of Bt than Pe. Consequently, the
106 rate of adaptation against Mx might closely resemble the responses against only Bt infection.
107 Moreover, there could also be a delay in their rate of adaptation if the scope of immune
108 modulations is limited against the early mortality surges caused by rapid-acting Bt (30, 31);(B)
109 Alternatively, since Bt-induced early infection phase is closely followed by a persistent Pe infection
110 phase that interferes with the beetle's oviposition window, selection can instead be stronger against
111 long-lasting Pe infections to ameliorate its fitness costs during reproduction (32). This could bias the
112 overall adaptive dynamics more towards the responses against Pe. Our results supported the model
113 outputs such that fast-acting pathogens such as Bt imposing early infection costs indeed constrained
114 the adaptation against Mx. Mechanistically, the observed patterns of adaptation against Mx could
115 result from fewer immunomodulatory mechanisms available against its fast-growing Bt
116 counterparts. Overall, these are rare insights into how selection against individual pathogens can
117 determine the trajectory of phenotypic variations vs mechanistic changes while evolving against
118 coinfections.

119 RESULTS

120 **The theoretical model predicts the importance of within-host pathogen growth and virulence** 121 **dynamics in understanding the host adaptation against coinfections**

122 To understand the host adaptation against coinfecting pathogens with contrasting growth dynamics,
123 we began by first simulating the density-dependent growth rate of individual pathogens (e.g., rapid
124 vs slow) leading to the acute infection phase using a Baranyi model, as described in Duneau et al.
125 (20). Here, we also considered varying initial inoculation sizes, the lag phase of pathogen growth,
126 and carrying capacity across pathogens and infection types. In this model, a subset of individuals
127 succumbed to infection due to their inability to control the pathogen growth below a threshold
128 density, causing terminal infection. Following this, we also simulated the divergent clearance
129 patterns of the pathogens from the surviving individuals, leading to either rapid clearance or long-
130 lasting persistent infection (i.e., incomplete clearance) using an exponential decline model (20) (See
131 **Table S1** for parameters). Overall, this enabled us to typify within-host growth dynamics patterns of
132 pathogens that could constitute diverse facets of a two-pathogen coinfection system: e.g., rapidly

133 growing pathogens causing acute infections, followed by rapid clearance (Rc) or persistent infection
134 (Rp); Slow-growing pathogens causing acute infection, followed by rapid clearance (Sc) or persistent
135 infection (Sp) (**Fig. 2A**). Subsequently, we paired these pathogens based on their contrasting growth
136 rates (i.e., rapid vs slow) to create the following coinfection combinations: e.g., Rc-Sc, Rc-Sp, Rp-Sc
137 and Rp-Sp. Note that we also considered a coefficient of interference α , describing the effects of
138 direct competitive interactions (β) between co-infecting pathogens (27) and cross-reactive immune
139 modulations (γ) affecting their growth (28), which increases when either of the coexisting pathogens
140 attains their peak growth (**Fig. 2B**). Moreover, in the case of pathogens that can be rapidly cleared by
141 the host, the level of their interference can also decline rapidly, whereas pathogens causing
142 persistent infections, can retain their interference longer as they enter chronic infection phase (**Fig.**
143 **2B**). Nevertheless, growth dynamics, as well as the nature of interference between pathogens,
144 jointly influence the host survival. In the absence of strong interference (i.e., low β - and γ -values),
145 the early host mortality pattern due to coinfection closely resembles the early host mortality trend
146 against the rapid-acting pathogen that grows and imposes mortality rapidly (**Fig. 2C, Table S2**). By
147 contrast, pathogens with very high mutual interference can lead to less severe effects of their
148 coinfection relative to their single infection counterparts.

149 Since low interference between pathogens increases the severity of coinfections (estimated as post-
150 infection mortality described above (**Fig. 2C**), we assumed this to be the most relevant condition that
151 maximizes the selection on the host to reduce the infection costs. We thus only modelled the host
152 adaptive trajectories across various combinations of rapid- vs slow-growing pathogens only at low β -
153 and γ - values (**Table S3**). Overall, our model predicts that the rate of host adaptation against
154 coinfection is determined by the growth dynamics of rapidly proliferating pathogens and their total
155 infection window (i.e., from the first pathogen exposure to the end of mortality due to infection),
156 where host mortality happens, and fitness costs can be paid under pathogenic infections (**Fig. 2D**,
157 **Table S3**), overriding the effects of growth and virulence dynamics of slow-proliferating pathogens.
158 For example, rapidly growing pathogens such as Rc, which can lead to early mortality surges within a
159 short time, can significantly delay the host adaptation against Rc-Sp or Rc-Sc combinations. In
160 contrast, host evolution (i.e., gain in the survival advantage against pathogens) was faster when the
161 rapid growth phase was followed by persistent infection, causing mortality over a prolonged period
162 (i.e., Rp-Sp and Rp-Sp).

163 **Experimental data confirms that rapidly growing pathogen determines the coinfection outcome**
164 **during the early infection phase**

165 We next performed a series of experiments to verify the above model predictions, underscoring the
166 role of rapidly growing pathogens in driving the evolution against coinfections. We chose to verify
167 the host adaptive trajectory against a pair of coinfecting pathogens, which are already predicted by
168 the model to produce the most contrasting effects on host adaptation attributed to their divergent
169 growth and virulence dynamics— i.e., Rc-like pathogen in combination with another slow-growing
170 and slow-killing Sp-like pathogen (**Fig 2D**). To this end, we used the model insect *T. castaneum*
171 infected with a mix of suitable bacterial pathogens, *B. thuringiensis* (Bt) and *Pseudomonas*
172 *entomophila* (Pe), which we identified as possessing comparable growth and virulence dynamics as
173 that of Rc- and Sp-like pathogens, respectively. Both pathogens killed ~60–65% of the beetles within
174 a week, although the mortality rates differed. While Bt-induced mortality showed a rapid surge

175 within 8 hours post-infection (hpi), with most susceptible individuals dying within the first 12hpi (**Fig.**
176 **3A; Table S4**), Pe-induced mortality showed a relatively late onset of around 20–24hpi and
177 continued for the next 7-days. However, beetles infected with a combination of Bt and Pe (Mx)
178 showed a mixed mortality pattern reflecting the individual effects of both pathogens such that there
179 was a sharp Bt-like decline in their survival within the first 16–18hpi, which is then followed by a
180 gradual Pe-like decline for the next 7 days (**Fig. 3A**). During this, Bt cells showed rapid growth
181 between the first 6–8hpi and then became undetectable by 20 hours, whereas the Pe cells reached
182 peak growth around 24hpi and persisted in high numbers even after a week (**Fig. 3B & C; Table S5**)
183 (Pe cells persisted even after 25 days post-infection in some beetles; **Fig. S1**). Moreover, in beetles
184 infected with Mx, early mortalities (within 20hpi) were primarily driven by Bt-induced pathogenicity
185 as dead beetles carried a large abundance of Bt cells ($\sim 10^6$ cells/ beetle; estimated immediately after
186 death), whereas later mortalities (>20hpi) were most possibly caused by an overgrowth of only Pe
187 ($\sim 10^7$ cells/ beetle) (**Fig. 3D**). These results thus corroborate the model predictions where the
188 severity of coinfection and host mortality patterns during early infection phase was indeed
189 correlated with the effects of rapid-growing pathogen counterparts (See **Fig 2C**).

190 **Experimental data validates that rapidly growing pathogen drives the host adaptive dynamics**
191 **against coinfection**

192 We next allowed beetle populations to evolve under strong pathogen selection imposed by either Bt
193 (B-regime) or Pe (P-regime) or a mix of both (M-regime), each with 4 replicate populations (i.e., B1–
194 4; P1–4; M1–4) and tracked their post-infection survival for 30 generations. Beetle response against
195 Pe was the fastest so that within only 8 generations, they could rapidly increase their post-infection
196 survival from ~ 40 to $\sim 75\%$ and then to $\sim 90\%$ by 18 generations (**Fig. 2E; Table S6**; also see **Fig. S2**). In
197 contrast, B and M beetles required a substantially extended selection period to improve survival.
198 They initially showed large fluctuations in survival (~ 35 – 60%) for 16 generations and then could
199 steadily increase only up to $\sim 75\%$ by the 24th generation. Control populations that were either
200 pricked with sterile Ringer solution (C) (or maintained as unhandled populations) had a very high
201 survival rate ($>98\%$) throughout the experiment. Parallelly, we also directly estimated the relative
202 improvement in post-infection survival of each replicate population, relative to C beetles, at regular
203 intervals between generations 8–28 to disentangle the adaptive dynamics across pathogens and
204 infection types (**Fig. 2E, S3**). While at least half of the replicate P-populations showed significantly
205 improved survival within 8 generations, followed by the other two populations by 15 generations,
206 the first replicate population of M- and B-beetles could evolve the response only at generations 13
207 and 18, respectively. The remaining M- and B-populations evolved the response after the 18th and
208 22nd generations. Overall, while these results highlight the divergence in the rate of adaptation
209 across pathogens (e.g., Bt vs Pe) and infection types (single vs multiple pathogens), they are also in
210 conformity with the theoretical predictions, emphasizing the role of fast-growing Bt-like pathogens
211 in restricting the adaptation against coinfections.

212 We also found a significant reduction in the bacterial load across pathogen-selected regimes relative
213 to C-beetles, estimated around the onset of mortality after Pe and Bt infections (i.e., 24 and 8hpi,
214 respectively) and at two-time points after Mx infection (8hpi and 20hpi) (**Fig. S4, S5; Table S7–9**).
215 Increased post-infection survival of evolved beetles could thus be associated with their improved
216 ability to prevent bacterial growth relative to the unselected control beetles.

217 **Host populations evolving against coinfection adopted distinct strategies to counter the severity of**
218 **infections caused by individual pathogens**

219 Next, we also compared the bacterial load of every M- and C-beetle that succumbed to Mx infection
220 and sampled a subset of survivors every 5–8h for the next 50hpi to explain their divergent mortality
221 patterns as a function of temporal changes in the pathogen growth dynamics. Contrary to our
222 expectation, live M- beetles did not carry fewer Bt cells than C-beetles, except during the early phase
223 of infection before mortality was initiated (i.e., 6–8 hours) (**Fig. 4A; Table S10, also see Fig. S4F**).
224 However, they could significantly limit the number of beetle mortalities due to the growth of Bt cells
225 beyond a threshold density at the early phase of infection (i.e., compare the number of dead beetles
226 in M- and C-regime between 12–20hpi; **Fig. S6; Tables S11**). Interestingly, most of the live M- and C-
227 beetles showed complete removal of Bt cells within ~20 hours of infection (**Fig. 4A**), suggesting no
228 differences in their rate of pathogen clearance (**Fig. S7; Tables S12**). Increased efficacy in arresting
229 the Bt growth below the threshold density causing terminal infection, rather than its clearance, thus
230 explained the improved survival of M-beetles relative to C-beetles.

231 We noted that the number of M-beetles that died due to Pe overgrowth after 16h was also
232 drastically reduced (**Fig. 3B; Table S10**), but now, in contrast to the Bt-infection phase, surviving M
233 beetles always carried a much lower density of Pe cells (**Fig. 3B; Table S10**), indicating that evolved
234 beetles cleared Pe more efficiently. This, in turn, enabled them to prevent the Pe load of surviving
235 beetles from exceeding the threshold density, leading to lethally acute infection (**Fig. 3B**). Also, M-
236 and C-beetles that succumbed to infection did not differ in their Bt or Pe burden, suggesting that the
237 threshold pathogen density needed to cause mortality was comparable across regimes (**Fig. 3A, B;**
238 **Table S10**). Overall, these results broadly corroborated the patterns of bacterial growth dynamics in
239 B- and P-regimes as well (**Fig. 3C, D; Table S10**), suggesting that the outcome of Mx infection in the
240 M-regime might be additively determined by both their initial success in controlling the Bt
241 overgrowth as well as maintaining lower Pe burden in the later phase of infection.

242 **Immune gene expression profiles in host populations adapted against the coinfection resembled**
243 **more with those evolving against the slow-growing pathogen**

244 To gain mechanistic insights into divergent responses evolving across pathogens and infection types,
245 we next conducted RNAseq using beetles across selection regimes, collected around the onset of
246 their mortality after respective infection treatments (i.e., 8, 16 and 24h after infection with Bt, Mx,
247 and Pe, respectively). This allowed us to compare the gene expression changes underlying nearly
248 comparable fitness consequences across diverse beetle lines and infection types. Overall, the
249 number of differentially expressed genes (DEGs) upon infection was considerably higher in M-
250 beetles and P-beetles compared to B-beetles, both before (No. of genes: M= 427, P= 439, B= 165)
251 and after (No. of genes: M= 374, P= 472, B= 171) the experimental evolution (**Fig. S8A, B**). Also, the
252 evolved M-beetles showed a significantly higher number of overlapping DEGs with that of P-beetles
253 (N= 119) than B-beetles (N=29), which might indicate similar mechanisms using a shared set of
254 candidate genes between M- and P-beetles (**Fig. S8C**). We found 77 and 81 DEGs common across
255 infection treatments in control and evolved populations, respectively. Those common set of genes
256 possibly played pervasive roles across pathogens and infection types including immune-related
257 molecules such as peptidoglycan recognition proteins (PGRP SC2), gram-negative bacteria binding
258 proteins, antimicrobial peptides (AMPs; Attacin 2, Coleoptericin and Defensin 3) as well as key

259 metabolic genes namely glucose dehydrogenase and fatty acyl CoA reductase. We also identified 65
260 DEGs upon infection with known immune functions across pathogens and selection regimes (**Table**
261 **S13**). However, to disentangle their roles, we divided them into five broad categories based on their
262 immune-related functions (i.e. immune categories) (33–35): (a) pathogen and immune receptors; (b)
263 immune regulators; (c) inducible immune effectors, including AMPs and lysozymes; fast-acting
264 constitutively expressed (d) melanisation response involving phenoloxidase pathway; and (e)
265 production of reactive oxygen species (**Fig. 5A**), followed by a MANOVA to test effects of infection
266 status, pathogen identity and selection regimes on each of these immune categories (**Tables S14–**
267 **S18**). While the effects of selection regimes varied across immune categories, the infection status
268 and pathogen identity produced the most consistent changes. They also showed a strong two-way
269 interaction across immune categories, suggesting the deployment of pathogen-specific immune
270 responses.

271 To further explore these associations, we performed a canonical discriminant analysis to obtain a
272 linear combination of expression values of immune-related genes, separating the effects of infection
273 across pathogen types and selection regimes in each immune category. We corroborated the
274 statistical differences due to infection treatment as found in MANOVA. However, the effects were
275 pathogen-specific, highlighting the mechanistic differences in host responses across pathogens. For
276 instance, while infection produced comparable patterns of changes in gene expression values in
277 both P- and M-beetles across all the immune categories, B-beetles showed contrasting patterns of
278 changes in at least two of these functional categories, namely inducible immune effectors and
279 immune receptors (note the opposite direction of changes with Bt vs Pe and Mx infections; **Fig 5B**;
280 **Tables S14–18**). These immune gene expression patterns plausibly reemphasize the greater
281 functional overlaps in immune repertoires between M- and P-beetles relative to B-beetles (**Fig. 5B**;
282 **Tables S14–18**). We also found significant interactions between the selection regime and infection
283 treatment in some functional immune categories where infection affected evolved beetles
284 differently from their respective control populations (**Fig. 5B; Tables S14–18**). For example, Pe
285 infection induced more divergence in the expression patterns of inducible effectors, receptors, and
286 immune regulators in evolved P relative to C beetles (e.g., note the divergence between sham-
287 infection vs bacterial infection; **Fig 5B, Tables S14–18**). It also induced changes in phenoloxidase
288 response-related genes that were initially non-responsive in control beetles. In contrast, evolution
289 against Bt produced changes limited to only fast-acting melanisation response and ROS.
290 Interestingly, evolution against Mx infection involved changes in inducible immune effectors and
291 phenoloxidase responses, suggesting the involvement of molecules partially involved in both P- and
292 B-regimes, although their functional implications might differ.

293 Finally, we applied canonical correlation analyses, followed by linear regression analyses, to
294 determine whether the observed changes in the gene expression profile of the aforementioned
295 immune categories predicted the phenotypic variations between the control vs selected regimes
296 across pathogens. In each case, we used a joint estimate of the bacterial load of individual beetle
297 hosts and the infection susceptibility, estimated as the hazard ratios (36) of infected vs sham-
298 infected beetles (where Hazard ratios greater than 1 denote higher mortality in the infected beetle),
299 to gain an integrated view of post-infection fitness outcomes as a function of pathogen burden and
300 concomitant survival costs. We assumed significant correlations between gene expression values
301 and the phenotypic changes to imply whether the concerned category of immune molecules can
302 explain the observed variation in phenotypic traits during experimental evolution. Overall,

303 phenotypic variations of Pe-infected beetles correlated with a maximum number of immune
304 categories, including receptors, immune regulators, and inducible immune effectors, followed by Bt-
305 infected beetles that correlated with regulators and melanisation responses, and Mx-infected
306 beetles that correlated with only receptors (**Fig. 5C; Tables S19–23**). Similar patterns also emerged
307 when we separately analysed the associations of infection susceptibility with the gene expression
308 profile using linear regression analyses. Pe-infected beetles still had more correlations (i.e., with
309 both receptors as well as melanisation response) relative to B and M beetles that either correlated
310 with melanisation response or receptors, respectively (**Fig. S9A; Table S24**). In contrast, no such
311 correlations existed with the bacterial load of Bt-infected beetles, as opposed to Pe- and Mx-infected
312 beetles, where, in addition to exhibiting correlations to receptors and regulators respectively, they
313 also showed association with melanisation response (**Fig. S9B; Table S25**). While these correlations
314 suggest a larger scope of the modulating immune responses at various functional levels in P-beetles
315 to increase post-infection fitness, they possibly also reemphasized the potential divergence of
316 immune strategies adopted in B-beetles from that of P- and M-beetles to control the pathogen
317 growth.

318 In addition, we also used KEGG enrichment analyses to reveal broad similarities in how several key
319 metabolic pathways responded against Pe and Mx infection (**Fig. S10**). For instance, unselected C-
320 beetles infected with Mx and Pe showed downregulation of glutathione and several components of
321 amino acid (e.g., valine, leucine, and isoleucine), and carbohydrate (e.g., amino sugar and nucleotide
322 sugar) metabolism. They also showed downregulation of glycolysis and upregulation of phagosome
323 maturation pathways, which contrasted with Bt-infection. In the evolved M- and P-beetles, we noted
324 a downregulation in both the citrate cycle and OXPHOS pathway (**Fig. S10**). Also, while evolved B-
325 beetles overexpressed mismatch and nucleotide excision repair pathways, both M- and P-beetles
326 produced no changes in their expression. These results thus suggest the possibility of common
327 metabolic bases underlying overlapping immune responses against Mx and Pe.

328 DISCUSSION

329 Despite the ubiquity of coinfections and their direct relevance to many infectious diseases (2, 4), it is
330 unclear how they influence host adaptive trajectories against pathogens and concomitant immune
331 system evolution. Also, what are the specific drivers of such evolutionary effects of coinfections?
332 Here, we used mathematical models to propose within-host growth rate, the rate of virulence
333 manifestation, and the infection-driven mortality window of individual pathogens (i.e., between first
334 and last host mortality) as critical determinants of adaptive success against coinfections. In the
335 absence of strong competitive interference or cross-reactive immunity between pathogens (27, 28),
336 rapidly growing pathogen counterparts, imposing acute mortality surges early in the infection,
337 determined the course of evolution against coinfections. Moreover, if such an early surge of survival
338 costs is also expressed rapidly within a short infection window, the rate of adaptation against
339 coinfections might be delayed. We hypothesize this as a possibility that arises when appropriate
340 immune responses are unavailable or cannot be induced against such fast-acting pathogens within
341 the available infection window to curb their acute early-infection costs (31, 37). Subsequently, we
342 empirically validated whether fast-growing pathogens can drive the adaptation against coinfection,
343 using replicated populations of *T. castaneum* evolving against bacterial pathogens of distinct Gram-
344 types (i.e., Bt and Pe) with contrasting within-host dynamics, virulence manifestation rates and

345 differential host immune modulations (38, 39). Bt grew faster early in the infection, inducing early
346 and rapid mortality surge within 12h (i.e., fast-acting), followed by rapid clearance by the host. In
347 contrast, Pe grew relatively slowly, causing long-lasting persistent infections with mortality
348 beginning around 24h post-infection (i.e., slow-acting). We found the rate of adaptation to be fastest
349 against Pe, with half of the replicate populations evolving resistance as early as generation 8,
350 whereas resistance evolution against fast-growing Bt was delayed the most. Also, as predicted by the
351 model, the rate of adaptation against coinfection by Mx indeed appeared to be constrained by fast-
352 acting Bt such that M-beetles followed almost a similar evolutionary trajectory as that of beetles
353 infected with Bt alone (e.g., most replicate populations taking 15–22 generations to evolve
354 resistance). Another striking aspect is that while the survival success of the P-beetles rose to ~90%,
355 the survival of both M- and B-beetles could not increase beyond ~75% despite a continuous strong
356 selection for 30 generations. This possibly indicates the constraints associated with evolving
357 resistant alleles against Bt cells that are present in both M- and B-beetles during their early infection
358 phase, restricting their net fitness gain to much below that of their P-beetle counterparts (40, 41).

359 Here, an emerging question is— how might Bt cells drive the dynamics of adaptive evolution against
360 Mx? We noted that beetles infected with Mx showed a sharp decline in survival early in infection
361 (between 16–20h), which broadly resembles the mortality pattern of beetles that were only infected
362 with Bt. Also, beetles that succumbed to infection within this early timeframe predominantly carried
363 many Bt cells ($\sim 10^5$ – 10^6 cells/female), linking the overgrowth of Bt to lethal infections. Interestingly,
364 the estimated levels of the bacterial load causing such terminal infection did not correlate with the
365 time post-infection at which death occurs. Hence, they also denoted the maximal Bt load that
366 beetles could tolerate before they died (20). Several dead beetles also carried Pe cells, but neither
367 their frequency nor their within-host Pe density was sufficient to explain all the beetle mortality
368 observed during the early infection phase, hinting at the limited role of Pe in driving the early
369 survival costs of coinfection. In contrast to dead beetles, surviving beetles early in infection either
370 had a much lower Bt burden than their dead counterparts or cleared the infection below the
371 detection level within 20h. The ability to restrict the growth of Bt below their threshold density,
372 which otherwise could lead to terminal infections, followed by rapid clearance, was thus critical for
373 these beetles to survive the early phase of coinfection. These results also conform to recent studies
374 with *D. melanogaster*, where similar binary infection outcomes have been reported across
375 pathogens (20, 21, 26), underscoring the pivotal roles of rapidly induced immunity in effectively
376 curtailing the pathogen overgrowth early in infection.

377 As expected, the ability to prevent Bt overgrowth early in coinfection also increased in beetles
378 adapted against Mx infections. When challenged with Mx-infection, fewer individuals from evolved
379 M-populations carried the lethally high Bt density ($\sim 10^5$ – 10^6 cells/ beetle) relative to C-beetles,
380 thereby explaining the reduction in their early-infection mortality. However, increased survival of
381 evolved beetles was not achieved by merely clearing the Bt cells, as their number, by and large, did
382 not vary considerably between the live M- vs C-beetles. Subsequently, C-beetles that survived the
383 infection could clear the Bt cells at a nearly equal rate to that of M-beetles. This suggests that
384 pathogen selection did not improve pathogen clearance ability in evolved beetles. Instead, it could
385 have favoured mechanisms to arrest the Bt growth below the critical density, otherwise leading to
386 lethal infections (20). This is likely also the reason why transcriptome analyses of beetles challenged
387 with only Bt infection had several differentially expressed immune effectors upon infection (e.g.,
388 AMPs Attacin 2, Coleoptericin and Tenecin 1) (42) and still, none of them responded differently in

389 evolved B beetles, suggesting no added contribution towards experimental evolution against Bt.
390 Also, the overall changes in the gene expression profile of different immune effector groups,
391 including AMPs, PO or ROS, did not explain the variation in the overall bacterial load across beetle
392 lines. Perhaps more relevant changes in Bt-resistant beetles were detected in terms of their higher
393 basal expression levels (i.e., without infection) of apolipophorins, possibly facilitating phagocytosis
394 and pathogen pattern recognition (43) or chymotrypsin, which is known to arrest the growth of
395 Gram-positive bacteria (44), including neutralization of Bt-toxins (45). Increased circulation of these
396 molecules, even in the non-immune challenged state of B beetles, might thus play a more important
397 role in early detection and prevention of Bt overgrowth.

398 By contrast, immune strategies against Bt in M-beetles may be more complex due to confounding
399 effects of immune responses against chronic Pe infections persisting throughout the oviposition
400 window of these experimentally evolving beetles (i.e., 3–8 days post-infection). Moreover, unlike Bt
401 infection, surviving M-beetles consistently had reduced Pe load relative to C-beetles, suggesting the
402 potential immune activation against Pe to minimize the infection costs while reproducing (46).
403 Finally, despite receiving a lower infection dose (M- vs P-beetles: $\sim 10^3$ vs 10^4 cells/female), Pe cells in
404 M beetles grew at an equivalent level as that of P beetles ($\sim 10^5$ cells/female within 12 hours), which
405 indicates that both beetle populations might have eventually experienced similar selection pressure
406 from the severity of Pe infection. These hypotheses were further corroborated by comparing the
407 reproductive costs of each infection type in the unselected C-beetles (see **Fig. S11, Table S26**). In the
408 case of both Pe and Mx infections, the persistence of Pe cells during the oviposition window was also
409 associated with a reduction in reproductive outputs. However, this contrasted with beetles
410 challenged with Bt infection. Bt-infected beetles that survived until the oviposition window
411 reproduced as much as their uninfected control counterparts, possibly attributed to their ability to
412 clear the infection completely by then. Based on these observations, we thus speculated strong
413 selection pressure on both M- and P-beetles from the beginning of their selection treatment to
414 evolve counterstrategies to reduce the reproductive costs imposed by a common pathogen that
415 persists longer inside the host (47). More specifically, to this end, M-beetles might evolve more
416 similarities with P-beetles vis-à-vis their immune responses rather than temporally
417 compartmentalizing immunity against individual participating pathogens (48). Our transcriptome
418 analyses that revealed larger overlaps in the set of genes and their expression profile against Pe and
419 Mx infection, both before and after experimental evolution, perhaps supported this idea.

420 The possibility of mechanistic congruence between M- and P-beetles is further highlighted by the
421 linear discriminant analyses of immunity-related gene expression data (49). In fact, many of them,
422 classified into various functional categories ranging from sensing the pathogen or pathogen-
423 associated molecular patterns (receptors) and regulating the immune responses to immune
424 effectors such as AMPs, lysozyme, phenoloxidase cascade and ROS production (34, 50), showed
425 more concurrent gene expression patterns between M- and P-beetles. These patterns, however, did
426 not always match with that of B beetles, as some of these functional categories, such as AMPs and
427 lysozymes, immune regulators and receptors, showed changes either in the opposite direction to
428 that of M- or P-beetles or produced no changes after infection. Also, unlike in M- and P-beetles,
429 none of the immune groups correlated with the changes in the overall bacterial burden before and
430 after the evolution against Bt. Together, all these patterns thus hint at distinct functional
431 implications of these immune groups in B-beetles relative to both M- or P-beetles.

432 The similarity in immune responses against Pe and Mx infection was also reflected by their
433 resemblance in metabolic changes. For example, KEGG enrichment analyses revealed the
434 downregulation of several important components of carbohydrate (e.g., glycolysis, amino sugar and
435 nucleotide sugar metabolism) and amino acid (e.g., valine, leucine and isoleucine) metabolism in
436 unselected C beetles (42). Besides, evolved P- and M-beetles showed reduced OXPHOS metabolism
437 and increased glycolytic enzyme hexokinase 2 expression, suggesting shifting energy metabolism to
438 support immune activation in these beetles (51, 52). However, such metabolic patterns were
439 reversed in B beetles, which could corroborate why we failed to detect increased expression of
440 immune effectors after experimental evolution. Instead, the enrichment of pathways related to
441 increased DNA repair (53) and phagosome maturation (54) might indicate strategies to reduce the
442 DNA damage caused by immune activation (55) and the use of alternative immune strategies in B
443 beetles (e.g., cellular immunity (38, 56)) respectively.

444 Finally, a detailed comparison of phenotype-by-immune gene expression correlations across
445 pathogens and infection types offered critical molecular insights into their divergent adaptive
446 dynamics. For example, strong correlations between the combined phenotypic changes (i.e., post-
447 infection survival and bacterial load) in P-beetles and diverse categories of immune-related
448 molecules such as receptors (e.g., PGRP SC1a/b-like, PGRP2 (33)), regulators (e.g., Relish (57)) and
449 inducible effectors (including Attacin 1, Attacin 2, Tenecin 1 and Ctenidin 1 (34)) might underscore a
450 wider scope for selection, acting parallelly and more effectively across various functional levels of
451 their immune signalling cascade (58, 59). This, in turn, can accelerate their rate of adaptation. This
452 notion can also be supported by previous analyses where immune molecules, particularly those
453 involved in pathogen recognition and immune regulation, have been shown to evolve more rapidly
454 under strong positive selection than other non-immune genes (60). Moreover, the multi-level
455 immune crosstalk between receptors, regulators and effectors driving phenotypic variations against
456 Pe corroborates the assumptions of our theoretical model. For instance, faster adaptation against
457 slow-acting Pe-like pathogens was possible because slower mortality costs expressed over a
458 prolonged infection window enabled beetles to employ functionally more diverse phenotype-by-
459 immunological modulations under pathogen selection (25, 61).

460 In contrast, the scope for such phenotype-by-immunological modulations in M- and B-beetles was
461 limited. For example, unlike P-beetles, their immuno-competence phenotype correlated with either
462 receptors or regulators but not with both, which might reduce the number of potential loci available
463 to evolve rapidly under selection. Scopes for selection might be even more constricted in B beetles,
464 as their phenotypic variations correlated with PO response (62), which, in addition to serving as a
465 critical insect immune defence component, exerts multiple pleiotropic roles in insect physiology (63–
466 65). For example, the observed correlation was mainly driven by reduced PO enzymatic activity in
467 evolved B-beetles (See SI, Fig. S12; Table S27), conforming with their lower expression levels of
468 phenoloxidase 2 and tyrosine decarboxylase transcripts (63, 66), but evolution via such decline in PO
469 activity might also impose development and reproductive costs (63, 65). Besides, evolved B beetles
470 also showed more divergent expression profiles of ROS-related genes after Bt infection than the
471 unselected beetles, driven primarily by down-regulation of Glutathione S-transferase 1 after Bt
472 infection, which might incur higher cytotoxicity (67), thereby adding significant costs to fast
473 adaptation against Bt.

474 In summary, this study present a unique integrated framework, combining theory and experiments,
475 to identify drivers of host adaptive dynamics against coinfecting pathogens. Note that we could test
476 only a few specific infection conditions amidst numerous other possible interactions between host
477 and coinfecting pathogen types and their diverse infection outcomes. Yet, the coherence between
478 theoretical predictions and our empirical datasets, while establishing the role of pathogen growth
479 dynamics and virulence manifestation patterns in driving phenotypic and mechanistic trajectories,
480 indicated the broader implications of our findings. Another striking outcome of our work is the
481 decoupling of the overall rate of phenotypic evolution vs mechanistic bases against coinfecting
482 pathogens relative to the effects of individual pathogens. This eventually highlighted the asymmetry
483 in why and how individual pathogens might unequally bias the adaptive dynamics against
484 coinfection vs underlying genetic mechanisms rather than their simple additive effects (68), offering
485 exciting avenues for future theoretical models to encompass other infection types and more
486 mechanistic explorations. Finally, our systematic investigation of host adaptations against multiple
487 pathogens and infection contexts in a single comparative framework may instigate more
488 fundamental work to fill the gaps in our understanding of how innate immune features might evolve
489 across pathogens and infection types.

490 **MATERIALS AND METHODS**

491 **Mathematical simulation of host survival and adaptation against coinfecting pathogens with**
492 **contrasting growth and virulence dynamics**

493 To model the effects of coinfections caused by two pathogens with contrasting growth dynamics on
494 host survival and adaptive responses, we began by simulating their growth dynamics following a
495 theoretical framework described previously by Duneau et al. (20) (Detailed descriptions of
496 parameters used in these simulations, as well as those described below, are provided in
497 supplementary methods). The model, originally built upon experimental data from fruit flies,
498 assumed uninhibited pathogen growth initially followed by either host immune response clearing
499 the pathogen or the host succumbing to acute infection, leading to binary outcomes — a
500 phenomenon validated empirically in other species as well, including mice and flour beetles (69, 70).
501 To capture similar growth dynamics, we thus combined two demographic models where we first
502 simulated the divergent pathogen growth patterns (i.e., rapid vs slow) without the interference of
503 host immunity, based on the Baranyi model (71). We then used an exponential decrease model to
504 simulate the pathogen clearance where host immunity could either clear the infection completely or
505 maintain a lower pathogen burden, producing long-lasting infections (26). Note that we did not
506 consider the pathogens that cause lethal infections causing complete mortality or benign infections,
507 as both conditions might preclude the possibility of host adaptations against them. Hence, we could
508 simulate pathogens with the following 4 distinct growth dynamics: e.g., rapidly growing pathogens
509 causing acute infections, followed by (a) rapid clearance (Rc) or (b) persistent infection (Rp); Slow-
510 growing pathogens causing acute infection, followed by (c) rapid clearance (Sc) or (d) persistent
511 infection (Sp). Subsequently, we paired pathogens with only contrasting growth rates (rapid vs slow)
512 to simulate the following coinfection scenarios: e.g., Rc-Sc, Rc-Sp, Rp-Sc, and Rp-Sp.

513 Here, we note that coinfecting pathogens might compete for limited resources (27), inhibit each
514 other's growth by producing toxins (12) or induce cross-reactive immune mechanisms (28), which

515 can influence their within-host growth dynamics. To model such effects, we thus described a
516 coefficient of interference α

$$517 \quad \alpha_t = e^{-(\frac{n_t}{n_0} + c) \cdot \varepsilon}$$

518 Here, we assumed α to range from 0 to 1, denoting the maximum or no interference between the
519 coinfecting pathogens respectively. Also, since interference due to competitive inhibition and
520 immune cross-reactivity might proportionally increase with the load of the interfering pathogen, the
521 magnitude of α at time t is inversely proportional to the ratio of load of the interfering pathogen at
522 time t (n_t) and the initial bacterial load (n_0). Additionally, we note the possibility that residual
523 interference may persist even after the interfering pathogens are cleared by the host immunity. To
524 account for this effect, we introduced an offset factor c , denoted as the ratio of initial bacterial load
525 (n_0) and maximum bacterial load (n_{max}) of the interfering pathogen. Finally, we also described a
526 coefficient ε , combining the net interference posed by increasing resource-driven competition or
527 toxin-mediated inhibition between pathogens (β) and/or immune cross-reactivity (γ) mediated via
528 activation of common host immune components across pathogens, that is inversely proportional to
529 the value of α (such that $\varepsilon = 0$ or 1 represents no interference or maximum interference respectively;
530 see SI for details).

531 Next, we predicted the post-infection survival probability of hosts challenged with a combination of
532 rapid (R)- vs slow (S)-growing pathogens based on their simulated within-host growth dynamics and
533 the estimated interference coefficient as described above:

$$534 \quad P(Surv_{Coinfection}) = 1 - P(Mort_{Coinfection}) \\ 535 \quad P(Mort_{Coinfection}) = \{p(Mort_{R \& S'}) + p(Mort_{R' \& S}) + p(Mort_{R \& S})\} \\ 536 \quad = \{\alpha_{SR}(1 - p_R)p_S + \alpha_{RS}(1 - p_S)p_R + \alpha_{RS}\alpha_{SR}(1 - p_R)(1 - p_S)\}$$

537 Here, we first conceptualized the host survival probabilities under coinfection $P(Surv_{coinfection})$ as
538 individuals that could avoid the mortality induced by individual pathogens (Mortality probabilities:
539 $p(Mort_{R \& S'})$ or $p(Mort_{R' \& S})$ against R vs S pathogens) as well as their combined actions
540 ($p(Mort_{R \& S})$). Here, S' and R' denote complementary terms of probability. We then transformed
541 these mortality probabilities as a function of survival probabilities against individual pathogens (i.e.,
542 p_R = survival probability against R; p_S = survival probability against S) and their coefficient of
543 interference (α). We assumed that α is directional so that α_{SR} describes the effect of 'S' on 'R' and
544 vice-versa (α_{RS}).

545 Modelling the rate of adaptation

546 We note that the survival costs against coinfections can increase with reductions in competitive
547 interference or immune cross-reactivity between pathogens (i.e., high α ; low ε). Moreover, they
548 follow the predicted survival patterns of the rapidly growing pathogen counterpart during the early
549 infection phase. We thus chose to model the combinations of coinfecting pathogens only with low
550 interference, which is likely to posit strong selection pressure on the hosts to first counter the early
551 infection costs of rapidly growing pathogens. We also assumed that the ability to deploy and
552 evolvability of effective immune responses could be constrained by the response time available to
553 the host after infection (21, 30). For example, rapidly proliferating pathogens causing acute-phase
554 infection and a rapid surge of mortality manifested within a shorter timeframe after infection (e.g.,
555 R_c) might outrun the host immunocompetence due to limited immune repertoire availability or

556 failure to induce or replenish appropriate levels of required immune responses. Consequently, host
557 adaptative success against such pathogens can be constrained. In contrast, hosts infected with slow-
558 growing pathogens that have prolonged infection windows with sustained survival costs (e.g., Sp)
559 can also afford a longer response time to deploy and modulate various immune components (e.g.,
560 both constitutive vs inducible responses (36)) against pathogens. We thus assumed that the ability
561 to respond and modulate effective immune responses to counter the infection could be directly
562 proportional to the total infection window, where the pathogens first proliferate to cause the acute
563 infection phase, followed by the host mortality window (i.e., the time between the first and last
564 post-infection mortality). We modelled the efficacy of host adaptations against individual pathogens
565 as a function of the relative scope for immune modulations within their total effective infection
566 window, expressed as a ratio with respect to the total generation time of the host (e.g., conceived as
567 early development to time to reproduction to initiate the next generation).

568 Since rapid-growing pathogens imposing early virulence manifestations drive the outcome of
569 coinfection during the early infection phase, we next assumed that the time taken to inflict the first
570 mortality after infection could be comparable between the coinfection vs rapidly growing
571 pathogens. Consequently, we modelled the efficacy of adaptation against coinfections as a function
572 of the available immune modulations only during the mortality window of rapid-growing pathogens
573 with respect to the total mortality window caused by both pathogens. In all these cases, we
574 expected that the host adaptive trajectory would initially have a lag period where survival advantage
575 cannot be detected, followed by an increase until it reaches an asymptote, with no further gain in
576 survival advantage. We thus used a logistic model to predict the adaptative trajectories, formulated
577 as:

$$578 \quad S_g = S_0 + \frac{S_{max} - S_0}{1 + e^{\theta \cdot (g^{lag} - g)}}$$

579 Here, we describe the survival against infections caused by single pathogens or coinfections at
580 generation g as S_g , which depends on (a) the survival of the ancestral populations (S_0) and their
581 maximum gain in survival (S_{max}) after successful adaptation against pathogenic infections; (b) the
582 minimum number of generations elapsed (g^{lag}) before hosts could show survival advantage; and (c)
583 the parameter θ , denoting the constraints of evolving appropriate immune responses within the
584 host mortality window for single or coinfecting pathogens (detailed in SI methods). Overall, the
585 parameters θ and g^{lag} influence the variable trajectories of host adaptation against single vs
586 coinfecting pathogens. We simulated all the parameters using R.

587 **Experimental quantification of virulence and growth dynamics of coinfecting pathogens**

588 We used a large, outbred population of *Tribolium castaneum* (72) adapted to laboratory conditions
589 for >2 years before commencing the experiments (see SI for more details on baseline population
590 maintenance and assays described below). Also, based on the observations from other experiments
591 (32, 73), we chose two naturally relevant bacterial entomopathogens that are likely to show
592 contrasting growth dynamics and rates of virulence manifestations within insect hosts: fast-growing
593 *B. thuringiensis* DSM2046 (Bt) (74) vs slow-growing *P. entomophila* L48 (Pe) (75), causing a rapid vs
594 slower onset of mortality respectively. To quantify their effects on beetle hosts, we pricked 10-day-
595 old virgin females from baseline populations with a needle dipped in a bacterial slurry comprised of
596 either Bt ($\sim 8 \times 10^{17}$ cells/ μ l) or Pe ($\sim 4 \times 10^{19}$ cells/ μ l), or a mix (1:1) of both bacterial cells (Mx) and

597 monitored their survival for 10 days (See SI for input infection dose). We used sham-infected beetles
598 pricked with sterile Insect Ringer solution (74) as procedural control for our infection assays (n= 30
599 females/infection treatment). We also tracked the changes in growth dynamics of these pathogens
600 inside surviving beetles sampled at regular intervals for the next 24h for Bt (or ~3 days for Pe), both
601 in the context of infections caused as individual vs co-occurring pathogens (n=8–10 replicates with
602 pooled homogenate of 3 females/infection treatment/time point), using established protocols in the
603 lab (76). We differentiated the Bt and Pe cells by their distinct colony sizes and morphologies on the
604 Luria agar plates (See SI methods). For each pathogen, we analysed the (a) post-infection survival
605 data using Cox proportional hazard analysis (77), using infection treatment as a fixed effect in
606 “survival” package in R (78), and (b) log-transformed bacterial load dynamics data using a
607 generalised linear model (‘glm’ function in R) fitted to a gamma distribution with infection treatment
608 and time of bacterial load estimation as fixed effects. Separately, we also assayed the bacterial load
609 of a subset of females that succumbed to Mx-infection within the first 48h to estimate the bacterial
610 load upon death and the relative contribution of Bt vs Pe burden in causing mortality during
611 coinfection (n= 34 females).

612 **Experimental evolution paradigm**

613 Next, we used the experimental evolution paradigm for 30 successive generations to examine the
614 adaptive dynamics against coinfecting pathogens (32). We used the baseline beetle population to
615 create five selection regimes: namely (I) Unhandled regime (U-regime): populations that did not
616 undergo any treatment; (II) Control regime (C-regime): Unselected control populations sham-
617 infected with sterile Ringer; (III) Infected with Bt (B-regime); (IV) Infected with Pe (P-regime); (V)
618 Infected with a mixed culture of both Bt and Pe (M-regime), with each of these regimes having four
619 independently evolving replicate populations (i.e., C1–4, B1–4, P1–4 & M1–4; See SI for infection
620 doses). We infected (or sham-infected) 9–10 days old virgin adult male and female beetles (32).
621 Three days later, we combined the surviving beetles into 75 pairs and allowed them to oviposit for
622 another 5 days (i.e., beetle reproductive window; day 3–8 post-infection). Note that although we
623 maintained ~75 breeding pairs for each selection regime, we infected an excess of virgin beetles
624 (~300–400 beetles/ replicate population) for every generation, as we expected high mortality after
625 the respective infection treatments. During experimental evolution, this ensured we had sufficient
626 individuals to set up the 75 mating pairs to oviposit every generation. We adjusted our infection
627 doses to induce ~60–65% mortality within 8 days post-infection across infection treatments, thereby
628 enabling us to initiate beetle lines with comparable selection pressure across pathogen-selected
629 regimes. After three weeks of egg incubation, we isolated male and female pupae from each
630 population and allowed the eclosed adults to initiate the next generation after the relevant selection
631 treatment. We handled the four replicate populations from each selection regime on different days
632 (but C_i, B_i, P_i and M_i, where i=1–4, were handled together on the same day) and maintained
633 continuous divergent pathogen selection. For each of the 4 replicate populations across selection
634 regimes, we also estimated the proportion of the surviving adults (out of the total number of
635 infected beetles) pre- (i.e., day 3 post-infection) and post-reproductive window (i.e., day 8 post-
636 infection) at every generation (except the first two generations) to track the overall changes in
637 survival post-infection across selection regimes. Moreover, to understand the contrast between
638 diverging evolutionary trends across generations from different selection regimes, we used a

639 generalised linear model fitted to Gaussian distribution followed by performing pairwise
640 comparisons using “emmeans”.

641 **Quantifying the evolved responses against coinfection**

642 To understand the dynamics of adaptation against single pathogens vs coinfections, we repeatedly
643 assayed post-infection survival of each replicate population across selection regimes against their
644 respective infection treatments during experimental evolution and compared with that of control
645 unselected beetles (i.e., C vs P; C vs B or C vs M beetles after Pe, Bt and Mx infection respectively), at
646 multiple generations (e.g., generations 8, 13, 15, 18, 20, 22 and 28). We used 9–10 days old
647 standardised females (for logistical reasons, we could not test males, except generation 28 when
648 both sexes were assayed) (n=24–60 beetles/regime/population/generation), collected after one
649 generation of relaxation of pathogen selection from the generation of interest, to minimise the
650 transgenerational effects (32). For each pathogen-selected regime, we compared them separately
651 with the C-regime after the respective infection treatments, using the mixed-effects Cox model (with
652 the selection regime as a fixed effect and replicate populations as a random effect) (77), followed by
653 analysing each replicate population separately, using Cox proportional hazard analyses (with the
654 selection regime as a fixed effect). Besides, we also quantified the bacterial load of evolved beetles
655 when all the replicate populations showed improved post-infection survival (P- and M-beetles at
656 generation 18; B-beetles at generation 22) to test whether their improved survival can be explained
657 by lower bacterial burden relative to their control counterparts (N= 10–15 replicates with pooled
658 homogenate of 3 females/selection regime). Since different pathogens might manifest their
659 virulence at different rates with divergent within-host pathogen growth dynamics, we sampled 9–10
660 days-old females from B and P regimes (and their corresponding Control regimes) after the onset of
661 the first 10–15% mortality (information derived from post-infection survival curves) after respective
662 infection treatments. For the M regime (and its corresponding control), we sampled females at two
663 time points to obtain an adequate number of both Bt and Pe cells (See SI for detailed methods and
664 analyses).

665 However, to explain the mortality patterns in more detail, we next (at generations 26–28)
666 characterized the dynamics of within-host bacterial load in one of the replicate populations from
667 both evolved and control beetles by assaying 9–10 days-old standardised females every few hours
668 (See SI for detailed methods). We tracked Bt cells in B vs C regimes until 18 hours (or Pe cells in P vs
669 C regime until 72 hours), whereas, for Mx infection, both the bacterial cells were assayed until 50h
670 (n= 6–10 replicates with pooled homogenate of 3 females/selection regime/time point/infection
671 treatment). Simultaneously, we also noted the beetle death during these experiments and estimated
672 their bacterial load as soon as they succumbed to respective infection treatments across selection
673 regimes to understand the link between growth dynamics, virulence manifestation, and the
674 maximum pathogen load that beetles could tolerate before death (n=13–80 replicates/selection
675 regime/infection treatment). We analysed the bacterial load data using a generalised linear model
676 fitted to a gamma distribution, with selection regime and time of assay as fixed effects for live
677 beetles and only selection regime as fixed effects for dead beetles.

678 **Transcriptome analyses**

679 Finally, to gain mechanistic insights into the evolved responses of P-, B- and M-beetles, we
680 performed whole-body transcriptome analyses of 10-day-old virgin females after the respective
681 infection treatments (or sham treatment) (n= 4 replicates; each comprised of 10 females pooled
682 together from each replicate population/infection treatment/selection regime). Here, we sampled
683 females from each infected population and their sham-infected counterparts across the control and
684 three pathogen-selected regimes (See SI methods for more details on experimental protocol and
685 analyses). Attributed to divergent temporal growth and virulence dynamics across pathogens and
686 infection types, we extracted the RNA from beetles after the onset of the virulence manifestation
687 (i.e., 10–15% mortality around 24h, 8h, or 16h after Pe, Bt and Mx infection respectively) to obtain
688 gene expression profiles at comparable fitness variations, rather than at a specific time point post-
689 infection. We used Qiagen RNeasy Minikit to extract RNA following the manufacturer's protocol. We
690 sent the isolated RNA samples to a commercial sequencing facility (Neuberg Diagnostics Private
691 Limited) for downstream processing. The quantity and quality of extracted RNA was checked on a
692 Qubit 4.0 fluorometer (Thermofisher #Q33238) using an HS RNA assay kit (Thermofisher #Q32851)
693 and on TapeStation using HS RNA ScreenTape (Agilent), respectively. The libraries was prepared
694 using TruSeq® Stranded Total RNA kit (Illumina #15032618, Illumina #20020596) post poly-A
695 enrichment (79). The sequencing was performed on an Illumina Novaseq 6000 platform using a 150
696 bp paired-end chemistry. We analyzed the transcriptome data using an HTseq-based customized
697 pipeline (80) and Tcas5.2 as the reference genome (81). We estimated differential gene expression
698 (DEGs) using R package "DESeq2" (82). We used "pheatmap" and "RColorBrewer" packages in R to
699 visualize expression profiles of all the DEGs by a pooled-population heatmap based on the z-score of
700 normalized read counts. We counted the common vs unique sets of up- and down-regulated DEGs,
701 including those with contrasting variations, among the three pathogen-selected regimes and
702 visualized them using R-package "ComplexUpset". We performed a principal component analysis
703 based on the normalized count data of all the DEGs from all three pathogen-selected regimes.
704 Subsequently, we obtained all the gene ontology terms (GO terms) using Blast2Go. GO terms for
705 KEGG were used to perform pathway enrichment using the R-package "gProfiler2" and visualised
706 using the R-package "ggplot2".

707 Subsequently, to understand the possible role of immune responses, we categorised DEGs with
708 known immunological roles into five broad functional categories: (a) pathogen and immune
709 receptors; (b) immune regulators; (c) inducible immune effectors, including AMPs and lysozymes;
710 fast-acting constitutively expressed (d) melanisation response involving phenoloxidase pathway; and
711 (e) production of reactive oxygen species. We estimated a linear combination of gene expression
712 profiles for each immune category as a function of infection treatments and selection regimes, using
713 canonical discriminant analysis (49, 83). Further, to understand how these gene expression profiles
714 correlated with phenotypic variations (either individually with the hazard ratios (as a proxy of
715 survival response) or bacterial load and as a combined estimate of both hazard ratio and bacterial
716 load for each infection treatment and selection regime), we performed linear regressions and
717 canonical correlation analysis (49, 83) respectively.

718 **Conflict of interest:**

719 We have no conflict of interest.

720 **Author's contributions**

721 Conceptualisation: Imroze Khan, Srijan Seal, Dipendra Nath Basu

722 Design of the experiment: Imroze Khan, Srijan Seal, Dipendra Nath Basu, Ishaan Gupta, Triveni
723 Shelke

724 Data curation: Srijan Seal, Dipendra Nath Basu

725 Formal analysis: Dipendra Nath Basu, Srijan Seal, Rintu Kutum

726 Funding acquisition: Imroze Khan, Srijan Seal, Ishaan Gupta

727 Investigation: Srijan Seal, Dipendra Nath Basu, Kripanjali Ghosh, Aryan Ramachandran, Imroze Khan

728 Supervision: Imroze Khan

729 Visualisation: Dipendra Nath Basu, Srijan Seal,

730 Writing – original draft: Imroze Khan, Dipendra Nath Basu, Srijan Seal

731 Writing – review & editing: Imroze Khan, Dipendra Nath Basu, Srijan Seal, Rintu Kutum

732 **ACKNOWLEDGEMENTS**

733 We acknowledge Deepa Agashe, Shivani Krishna, Sandeep Ameta, Basabi Bagchi, Saubhik Sarkar,
734 Biswajit Shit, Shriya Palchaudhuri and Nilabhra Mitra for their feedback on the manuscript. We thank
735 Gautam Menon and Abhirup Banerjee for providing their critical insights during mathematical
736 modelling.

737

738 **FUNDING SOURCES**

739 We thank the DBT-Wellcome Trust Intermediate Fellowship (IA/I/20/1/504930 to IK), SERB-DST
740 (ECR/2017/003370 to IK), Society for Study of Evolution (R.C. Lewontin's Early career research grant
741 to SS), IITD-Ashoka MFRIP Funding (MI02416G to IK and IG) and Trivedi School of Biosciences at
742 Ashoka University (Simon-Ashoka early career fellowship to DNB) for funding this research.

743 **REFERENCES**

- 744 1. M. E. Natsopoulou, D. P. McMahon, V. Doublet, J. Bryden, R. J. Paxton, Interspecific
745 competition in honeybee intracellular gut parasites is asymmetric and favours the spread of an
746 emerging infectious disease. *Proc. R. Soc. B Biol. Sci.* **282**, 20141896 (2015).
- 747 2. V. O. Ezenwa, Helminth-microparasite co-infection in wildlife: lessons from ruminants, rodents
748 and rabbits. *Parasite Immunol.* **38**, 527–534 (2016).
- 749 3. N. J. Clark, K. Wells, D. Dimitrov, S. M. Clegg, Coinfections and environmental conditions drive
750 the distributions of blood parasites in wild birds. *J. Anim. Ecol.* **85**, 1461–1470 (2016).
- 751 4. P. Fazel, H. Sedighian, E. Behzadi, R. Kachuei, A. A. Imani Fooladi, Interaction between SARS-
752 CoV-2 and pathogenic bacteria. *Curr. Microbiol.* **80**, 223 (2023).

753 5. A. Pérez-González, E. Cachay, A. Ocampo, E. Poveda, Update on the epidemiological features
754 and clinical implications of Human Papillomavirus infection (HPV) and Human
755 Immunodeficiency Virus (HIV) coinfection. *Microorganisms* **10**, 1047 (2022).

756 6. D. Boraschi, M. Abebe Alemayehu, A. Aseffa, F. Chiodi, J. Chisi, G. Del Prete, T. M. Doherty, I.
757 Elhassan, H. Engers, B. Gyan, A. M. Harandi, T. Kariuki, F. Kironde, B. Kouriba, J. Langhorne, T.
758 Laskay, D. Medaglini, O. Olesen, P. Onyebujoh, C. Palma, R. Sauerwein, E. Sibanda, U. Steinhoff,
759 A. Tagliabue, A. Thiel, M. Vahedi, M. Troye-Blomberg, Immunity against HIV/AIDS, malaria, and
760 tuberculosis during coinfections with neglected infectious diseases: recommendations for the
761 European Union research priorities. *PLoS Negl. Trop. Dis.* **2**, e255 (2008).

762 7. E. C. Griffiths, A. B. Pedersen, A. Fenton, O. L. Petchey, The nature and consequences of
763 coinfection in humans. *J. Infect.* **63**, 200–206 (2011).

764 8. U. Ornellas-Garcia, P. Cuervo, F. L. Ribeiro-Gomes, Malaria and leishmaniasis: updates on
765 coinfection. *Front. Immunol.* **14**, 1122411 (2023).

766 9. R. Marques, I. Antunes, U. Eksmond, J. Stoye, K. Hasenkrug, G. Kassiotis, B lymphocyte
767 activation by coinfection prevents immune control of Friend virus infection. *J. Immunol.* **181**,
768 3432–3440 (2008).

769 10. E. Du Bruyn, C. Stek, R. Daroowala, Q. Said-Hartley, M. Hsiao, G. Schafer, R. T. Goliath, F.
770 Abrahams, A. Jackson, S. Wasserman, B. W. Allwood, A. G. Davis, R. P.-J. Lai, A. K. Coussens, K.
771 A. Wilkinson, J. De Vries, N. Tiffin, M. Cerrone, N. A. B. Ntusi, HIATUS consortium, F. Abrahams,
772 B. Allwood, S. Aziz, N. Bangani, J. Black, M. Blumenthal, M. Bremer, W. Burgers, Z. Ciko, A. K.
773 Coussens, R. Daroowala, E. Du Bruyn, H. G. Esmail, S. Gordon, Y. X. R. Harley, M. Hsiao, R. P.-J.
774 Lai, F. Lakay, F.-O. Martinez-Estrada, G. Meintjes, M. S. Mendelson, N. Ntusi, T. Papavarnavas,
775 A. Proust, S. Ruzive, G. Schafer, K. Serole, C. Whitaker, K. A. Wilkinson, R. J. Wilkinson, K.
776 Zvinairo, C. Riou, R. J. Wilkinson, Effects of tuberculosis and/or HIV-1 infection on COVID-19
777 presentation and immune response in Africa. *Nat. Commun.* **14**, 188 (2023).

778 11. R. F. Inglis, A. Gardner, P. Cornelis, A. Buckling, Spite and virulence in the bacterium
779 *Pseudomonas aeruginosa*. *Proc. Natl. Acad. Sci.* **106**, 5703–5707 (2009).

780 12. O. A. Todd, P. L. Fidel, J. M. Harro, J. J. Hilliard, C. Tkaczyk, B. R. Sellman, M. C. Noverr, B. M.
781 Peters, *Candida albicans* augments *Staphylococcus aureus* virulence by engaging the
782 staphylococcal *agr* quorum sensing system. *mBio* **10**, e00910-19 (2019).

783 13. S. A. Budischak, K. Sakamoto, L. C. Megow, K. R. Cummings, J. F. Urban, V. O. Ezenwa, Resource
784 limitation alters the consequences of coinfection for both hosts and parasites. *Int. J. Parasitol.*
785 **45**, 455–463 (2015).

786 14. R. S. Goldszmid, G. Trinchieri, The price of immunity. *Nat. Immunol.* **13**, 932–938 (2012).

787 15. B. P. Lazzaro, A. T. Tate, Balancing sensitivity, risk, and immunopathology in immune
788 regulation. *Curr. Opin. Insect Sci.* **50**, 100874 (2022).

789 16. D. A. Schmitz, R. C. Allen, R. Kümmerli, Negative interactions and virulence differences drive
790 the dynamics in multispecies bacterial infections. *Proc. R. Soc. B Biol. Sci.* **290**, 20231119
791 (2023).

792 17. A. Fenton, T. Lamb, A. L. Graham, Optimality analysis of Th1/Th2 immune responses during
793 microparasite-macroparasite coinfection, with epidemiological feedbacks. *Parasitology* **135**,
794 841–853 (2008).

795 18. M. J. Mackinnon, A. F. Read, Genetic relationships between parasite virulence and transmission
796 in the rodent malaria *Plasmodium chabaudi*. *Evolution* **53**, 689–703 (1999).

797 19. J. Santhanam, L. Råberg, A. F. Read, N. J. Savill, Immune-mediated competition in rodent
798 malaria is most likely caused by induced changes in innate immune clearance of merozoites.
799 *PLoS Comput. Biol.* **10**, e1003416 (2014).

800 20. D. Duneau, J.-B. Ferdy, J. Revah, H. Kondolf, G. A. Ortiz, B. P. Lazzaro, N. Buchon, Stochastic
801 variation in the initial phase of bacterial infection predicts the probability of survival in *D.*
802 *melanogaster*. *eLife* **6**, e28298 (2017).

803 21. P. D. M. Lafont, C. Lauzeral, N. Parthuisot, C. Faucher, D. Duneau, J.-B. Ferdy, “A within-host
804 infection model to explore tolerance and resistance” (preprint, Evolutionary Biology, 2021);
805 <https://doi.org/10.1101/2021.10.19.464998>.

806 22. R. Hamilton, M. Siva-Jothy, M. Boots, Two arms are better than one: parasite variation leads to
807 combined inducible and constitutive innate immune responses. *Proc. R. Soc. B Biol. Sci.* **275**,
808 937–945 (2008).

809 23. E. Shudo, Y. Iwasa, Inducible defense against pathogens and parasites: optimal choice among
810 multiple options. *J. Theor. Biol.* **209**, 233–247 (2001).

811 24. A. N. Nelson, W.-H. W. Lin, R. Shivakoti, N. E. Putnam, L. Mangus, R. J. Adams, D. Hauer, V. K.
812 Baxter, D. E. Griffin, Association of persistent wild-type measles virus RNA with long-term
813 humoral immunity in rhesus macaques. *JCI Insight* **5**, e134992 (2020).

814 25. M. C. Chambers, E. Jacobson, S. Khalil, B. P. Lazzaro, Consequences of chronic bacterial
815 infection in *Drosophila melanogaster*. *PLOS ONE* **14**, e0224440 (2019).

816 26. B. A. Hidalgo, L. M. Silva, M. Franz, R. R. Regoes, S. A. O. Armitage, Decomposing virulence to
817 understand bacterial clearance in persistent infections. *Nat. Commun.* **13**, 5023 (2022).

818 27. M. Popovic, M. Minceva, Coinfection and interference phenomena are the results of multiple
819 thermodynamic competitive interactions. *Microorganisms* **9**, 2060 (2021).

820 28. I. Zafar, E. M. Galon, D. Kondoh, A. Efstratiou, J. Li, S. Ji, M. Liu, Y. Li, Y. Hasegawa, J. Zhou, X.
821 Xuan, The cross-species immunity during acute *Babesia* coinfection in mice. *Front. Cell. Infect.*
822 *Microbiol.* **12**, 885985 (2022).

823 29. S. P. Ellner, N. Buchon, T. Dörr, B. P. Lazzaro, Host–pathogen immune feedbacks can explain
824 widely divergent outcomes from similar infections. *Proc. R. Soc. B Biol. Sci.* **288**, 20210786
825 (2021).

826 30. M. P. Davenport, G. T. Belz, R. M. Ribeiro, The race between infection and immunity: how do
827 pathogens set the pace? *Trends Immunol.* **30**, 61–66 (2009).

828 31. S. H. Koh, S. G. Shin, M. J. Andrade, R. Go, S. Park, C.-H. Woo, J. H. Lim, Long pentraxin PTX3
829 mediates acute inflammatory responses against pneumococcal infection. *Biochem. Biophys.*
830 *Res. Commun.* **493**, 671–676 (2017).

831 32. I. Khan, A. Prakash, D. Agashe, Experimental evolution of insect immune memory versus
832 pathogen resistance. *Proc. R. Soc. B Biol. Sci.* **284**, 20171583 (2017).

833 33. Q. Wang, M. Ren, X. Liu, H. Xia, K. Chen, Peptidoglycan recognition proteins in insect immunity.
834 *Mol. Immunol.* **106**, 69–76 (2019).

835 34. K. Yokoi, H. Koyama, W. Ito, C. Minakuchi, T. Tanaka, K. Miura, Involvement of NF-κB
836 transcription factors in antimicrobial peptide gene induction in the red flour beetle, *Tribolium*
837 *castaneum*. *Dev. Comp. Immunol.* **38**, 342–351 (2012).

838 35. K. Yokoi, Y. Hayakawa, D. Kato, C. Minakuchi, T. Tanaka, M. Ochiai, K. Kamiya, K. Miura,
839 Prophenoloxidase genes and antimicrobial host defense of the model beetle, *Tribolium*
840 *castaneum*. *J. Invertebr. Pathol.* **132**, 190–200 (2015).

841 36. D. Collett, *Modelling Survival Data in Medical Research* (Chapman and Hall/CRC, ed. 0, 2015;
842 <https://www.taylorfrancis.com/books/9781498731690>).

843 37. M. Karin, T. Lawrence, V. Nizet, Innate immunity gone awry: linking microbial infections to
844 chronic inflammation and cancer. *Cell* **124**, 823–835 (2006).

845 38. D. Jent, A. Perry, J. Critchlow, A. T. Tate, Natural variation in the contribution of microbial
846 density to inducible immune dynamics. *Mol. Ecol.* **28**, 5360–5372 (2019).

847 39. Z. Zou, J. D. Evans, Z. Lu, P. Zhao, M. Williams, N. Sumathipala, C. Hetru, D. Hultmark, H. Jiang,
848 Comparative genomic analysis of the *Tribolium* immune system. *Genome Biol.* **8**, R177 (2007).

849 40. K. A. Hughes, J. Leips, Pleiotropy, constraint, and modularity in the evolution of life histories:
850 insights from genomic analyses. *Ann. N. Y. Acad. Sci.* **1389**, 76–91 (2017).

851 41. T. J. Kawecki, R. E. Lenski, D. Ebert, B. Hollis, I. Olivieri, M. C. Whitlock, Experimental evolution.
852 *Trends Ecol. Evol.* **27**, 547–560 (2012).

853 42. K. Ferro, R. Peuß, W. Yang, P. Rosenstiel, H. Schulenburg, J. Kurtz, Experimental evolution of
854 immunological specificity. *Proc. Natl. Acad. Sci.* **116**, 20598–20604 (2019).

855 43. M. M. A. Whitten, I. F. Tew, B. L. Lee, N. A. Ratcliffe, A novel role for an insect apolipoprotein
856 (apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsulation reactions.
857 *J. Immunol. Baltim. Md 1950* **172** (2004).

858 44. D. Zhou, Z. Liu, D. Zhang, Y. Xu, W. Tan, L. Ma, Y. Sun, B. Shen, C. Zhu, Chymotrypsin both
859 directly modulates bacterial growth and asserts ampicillin degradation-mediated protective
860 effect on bacteria. *Ann. Microbiol.* **63**, 623–631 (2013).

861 45. M. Audtho, A. P. Valaitis, O. Alzate, D. H. Dean, Production of chymotrypsin-resistant *Bacillus*
862 *thuringiensis* Cry2Aa1 delta-endotoxin by protein engineering. *Appl. Environ. Microbiol.* **65**,
863 4601–4605 (1999).

864 46. R. A. Schwenke, B. P. Lazzaro, M. F. Wolfner, Reproduction–immunity trade-offs in insects.
865 *Annu. Rev. Entomol.* **61**, 239–256 (2016).

866 47. D. A. C. Stapels, P. W. S. Hill, A. J. Westermann, R. A. Fisher, T. L. Thurston, A.-E. Saliba, I.
867 Blommestein, J. Vogel, S. Helaine, *Salmonella* persisters undermine host immune defenses
868 during antibiotic treatment. *Science* **362**, 1156–1160 (2018).

869 48. J. Thakar, A. K. Pathak, L. Murphy, R. Albert, I. M. Cattadori, Network model of immune
870 responses reveals key effectors to single and coinfection dynamics by a respiratory bacterium
871 and a gastrointestinal helminth. *PLoS Comput. Biol.* **8**, e1002345 (2012).

872 49. M. Koppik, J. Baur, D. Berger, Increased male investment in sperm competition results in
873 reduced maintenance of gametes. *PLOS Biol.* **21**, e3002049 (2023).

874 50. H. Koyama, D. Kato, C. Minakuchi, T. Tanaka, K. Yokoi, K. Miura, Peptidoglycan recognition
875 protein genes and their roles in the innate immune pathways of the red flour beetle, *Tribolium*
876 *castaneum*. *J. Invertebr. Pathol.* **132**, 86–100 (2015).

877 51. B. Kelly, L. A. O'Neill, Metabolic reprogramming in macrophages and dendritic cells in innate
878 immunity. *Cell Res.* **25**, 771–784 (2015).

879 52. Y. Li, A. Jia, Y. Wang, L. Dong, Y. Wang, Y. He, S. Wang, Y. Cao, H. Yang, Y. Bi, G. Liu, Immune
880 effects of glycolysis or oxidative phosphorylation metabolic pathway in protecting against
881 bacterial infection. *J. Cell. Physiol.* **234**, 20298–20309 (2019).

882 53. N. Chatterjee, G. C. Walker, Mechanisms of DNA damage, repair, and mutagenesis. *Environ.*
883 *Mol. Mutagen.* **58**, 235–263 (2017).

884 54. A.-M. Pauwels, M. Trost, R. Beyaert, E. Hoffmann, Patterns, receptors, and signals: regulation
885 of phagosome maturation. *Trends Immunol.* **38**, 407–422 (2017).

886 55. D. Kidane, W. J. Chae, J. Czochor, K. A. Eckert, P. M. Glazer, A. L. M. Bothwell, J. B. Sweasy,
887 Interplay between DNA repair and inflammation, and the link to cancer. *Crit. Rev. Biochem.*
888 *Mol. Biol.* **49**, 116–139 (2014).

889 56. A. E. Nazario-Toole, L. P. Wu, “Phagocytosis in Insect Immunity” in *Advances in Insect*
890 *Physiology* (Elsevier, 2017);
891 <https://linkinghub.elsevier.com/retrieve/pii/S0065280616300480> vol. 52, pp. 35–82.

892 57. K. Yokoi, H. Koyama, C. Minakuchi, T. Tanaka, K. Miura, Antimicrobial peptide gene induction,
893 involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle,
894 *Tribolium castaneum*. *Results Immunol.* **2**, 72–82 (2012).

895 58. D. Zhong, M.-H. Wang, A. Pai, G. Yan, Transcription profiling of immune genes during parasite
896 infection in susceptible and resistant strains of the flour beetles (*Tribolium castaneum*). *Exp.*
897 *Parasitol.* **134**, 61–67 (2013).

898 59. A. T. Tate, A. L. Graham, Dissecting the contributions of time and microbe density to variation
899 in immune gene expression. *Proc. R. Soc. B Biol. Sci.* **284**, 20170727 (2017).

900 60. T. B. Sackton, B. P. Lazzaro, T. A. Schlenke, J. D. Evans, D. Hultmark, A. G. Clark, Dynamic
901 evolution of the innate immune system in *Drosophila*. *Nat. Genet.* **39**, 1461–1468 (2007).

902 61. K. Troha, J. H. Im, J. Revah, B. P. Lazzaro, N. Buchon, Comparative transcriptomics reveals
903 CrebA as a novel regulator of infection tolerance in *D. melanogaster*. *PLoS Pathog.* **14**,
904 e1006847 (2018).

905 62. X. Huang, D. Jing, S. Prabu, T. Zhang, Z. Wang, RNA interference of phenoloxidases of the fall
906 armyworm, *Spodoptera frugiperda*, enhance susceptibility to *Bacillus thuringiensis* protein
907 Vip3Aa19. *Insects* **13**, 1041 (2022).

908 63. I. González-Santoyo, A. Córdoba-Aguilar, Phenoloxidase: a key component of the insect
909 immune system. *Entomol. Exp. Appl.* **142**, 1–16 (2012).

910 64. A. Giglio, P. G. Julianini, Phenoloxidase activity among developmental stages and pupal cell
911 types of the ground beetle *Carabus (Chaetocarabus) lefebvrei* (Coleoptera, Carabidae). *J. Insect*
912 *Physiol.* **59**, 466–474 (2013).

913 65. G. A. Schwarzenbach, P. I. Ward, Responses to selection on phenoloxidase activity in yellow
914 dung flies. *Evolution* **60**, 1612–1621 (2006).

915 66. M. Sideri, S. Tsakas, E. Markoutsas, M. Lampropoulou, V. J. Marmaras, Innate immunity in
916 insects: surface-associated dopa decarboxylase-dependent pathways regulate phagocytosis,
917 nodulation and melanization in medfly haemocytes. *Immunology* **123**, 528–537 (2008).

918 67. W. Shan, D. Guo, H. Guo, S. Tan, L. Ma, Y. Wang, X. Guo, B. Xu, Cloning and expression studies
919 on glutathione S-transferase like-gene in honey bee for its role in oxidative stress. *Cell Stress*
920 *Chaperones* **27**, 121–134 (2022).

921 68. E. W. Seabloom, E. T. Borer, K. Gross, A. E. Kendig, C. Lacroix, C. E. Mitchell, E. A. Mordecai, A.
922 G. Power, The community ecology of pathogens: coinfection, coexistence and community
923 composition. *Ecol. Lett.* **18**, 401–415 (2015).

924 69. A. T. Tate, P. Andolfatto, J. P. Demuth, A. L. Graham, The within-host dynamics of infection in
925 trans-generationally primed flour beetles. *Mol. Ecol.* **26**, 3794–3807 (2017).

926 70. A. van Leeuwen, S. A. Budischak, A. L. Graham, C. E. Cressler, Parasite resource manipulation
927 drives bimodal variation in infection duration. *Proc. R. Soc. B Biol. Sci.* **286**, 20190456 (2019).

928 71. J. Baranyi, T. A. Roberts, A dynamic approach to predicting bacterial growth in food. *Int. J. Food*
929 *Microbiol.* **23**, 277–294 (1994).

930 72. V. Ravi Kumar, G. Agavekar, D. Agashe, Fitness landscapes reveal context-dependent benefits
931 of oviposition behavior. *Evolution* **77**, 550–561 (2023).

932 73. B. Shit, A. Prakash, S. Sarkar, P. F. Vale, I. Khan, Ageing leads to reduced specificity of
933 antimicrobial peptide responses in *Drosophila melanogaster*. *Proc. R. Soc. B Biol. Sci.* **289**,
934 20221642 (2022).

935 74. I. Khan, A. Prakash, D. Agashe, Divergent immune priming responses across flour beetle life
936 stages and populations. *Ecol. Evol.* **6**, 7847–7855 (2016).

937 75. M. Mulet, M. Gomila, B. Lemaitre, J. Lalucat, E. García-Valdés, Taxonomic characterisation of
938 *Pseudomonas* strain L48 and formal proposal of *Pseudomonas entomophila* sp. nov. *Syst. Appl.*
939 *Microbiol.* **35**, 145–149 (2012).

940 76. I. Khan, A. Prakash, D. Agashe, Pathogen susceptibility and fitness costs explain variation in
941 immune priming across natural populations of flour beetles. *J. Anim. Ecol.* **88**, 1332–1342
942 (2019).

943 77. T. Therneau, Mixed effects Cox models. *CRAN Repos.* (2015).

944 78. T. M. Therneau, A package for survival analysis in R., version 3.5-7 (2023); <https://CRAN.R-project.org/package=survival>.

946 79. R. Jaksik, M. Drobna-Śledzińska, M. Dawidowska, RNA-seq library preparation for
947 comprehensive transcriptome analysis in cancer cells: The impact of insert size. *Genomics* **113**,
948 4149–4162 (2021).

949 80. S. Anders, P. T. Pyl, W. Huber, HTSeq—a Python framework to work with high-throughput
950 sequencing data. *Bioinformatics* **31**, 166–169 (2015).

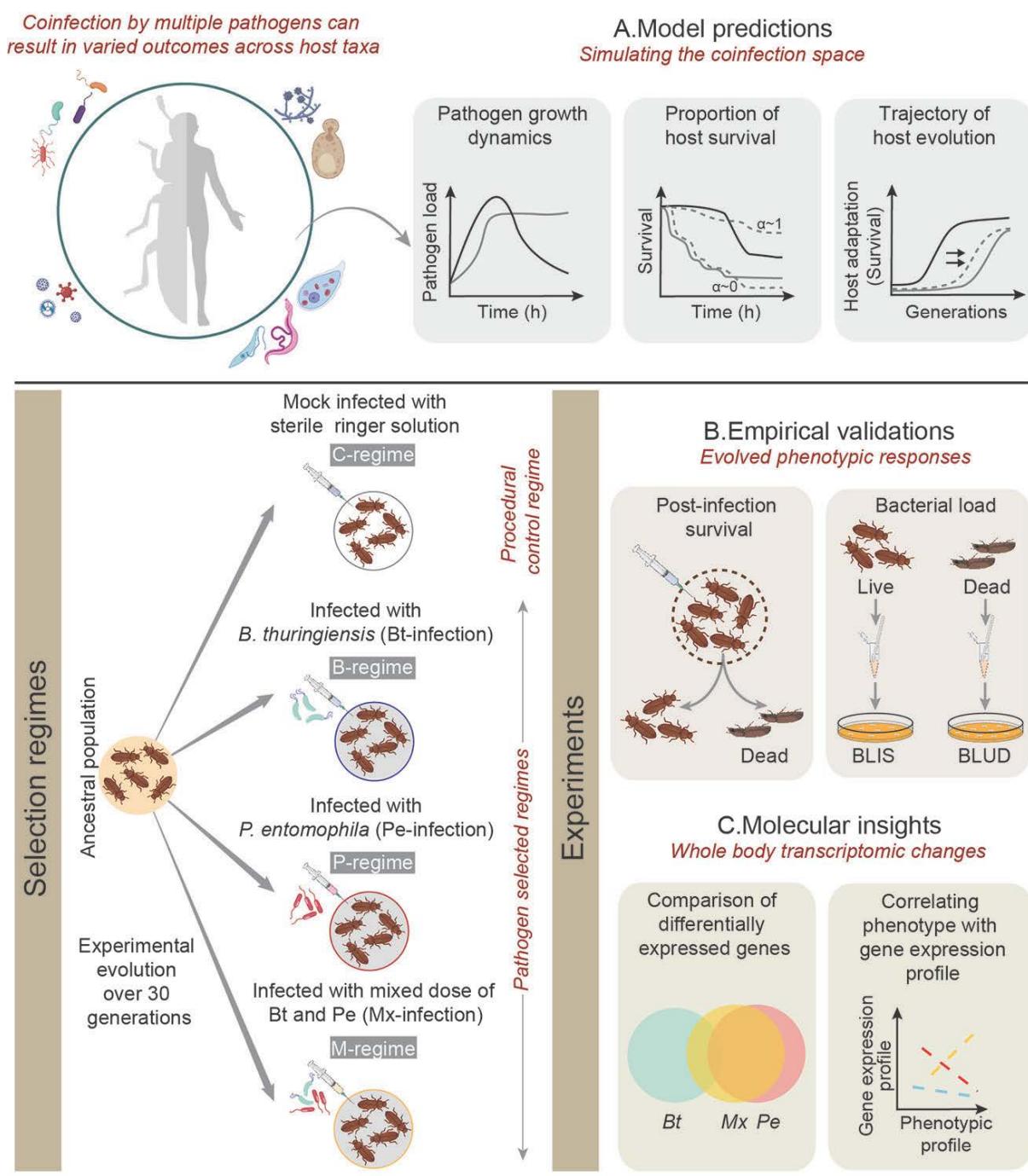
951 81. N. Herndon, J. Shelton, L. Gerischer, P. Ioannidis, M. Ninova, J. Dönitz, R. M. Waterhouse, C.
952 Liang, C. Damm, J. Siemanowski, P. Kitzmann, J. Ulrich, S. Dippel, G. Oberhofer, Y. Hu, J.
953 Schwirz, M. Schacht, S. Lehmann, A. Montino, N. Posnien, D. Gurska, T. Horn, J. Seibert, I. M.
954 Vargas Jentzsch, K. A. Panfilio, J. Li, E. A. Wimmer, D. Stappert, S. Roth, R. Schröder, Y. Park, M.
955 Schoppmeier, H.-R. Chung, M. Klingler, S. Kittelmann, M. Friedrich, R. Chen, B. Altincicek, A.
956 Vilcinskas, E. Zdobnov, S. Griffiths-Jones, M. Ronshaugen, M. Stanke, S. J. Brown, G. Bucher,
957 Enhanced genome assembly and a new official gene set for *Tribolium castaneum*. *BMC
958 Genomics* **21**, 47 (2020).

959 82. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-
960 seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

961 83. M. Friendly, J. Fox, *candisc*: Visualizing generalized canonical discriminant and canonical
962 correlation analysis. R package version 0.8-6. (2021).
963 <https://cran.r-project.org/web/packages/candisc/citation.html>.

964
965
966
967
968

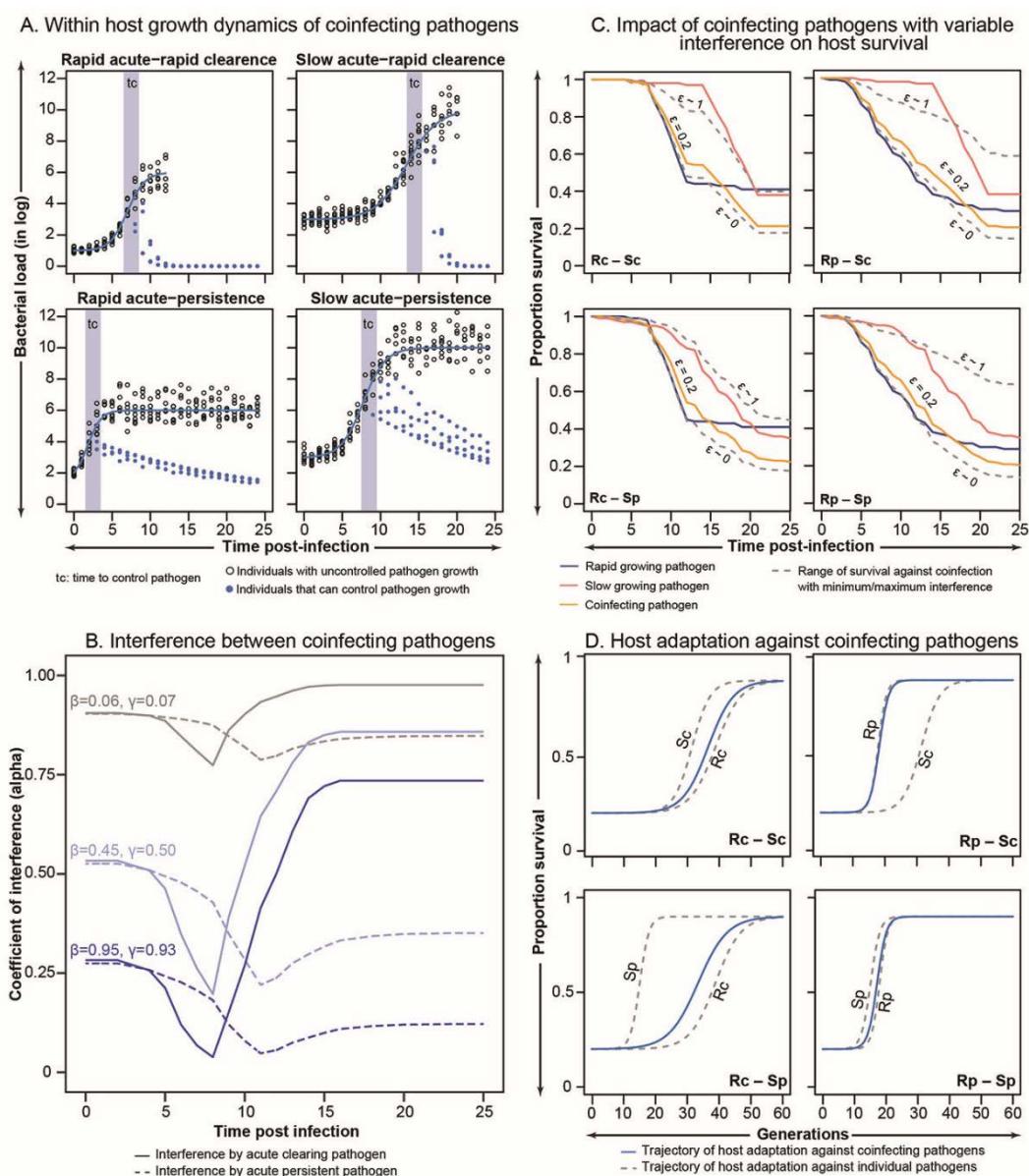
969 **FIGURES**



970

971 **Figure 1: A brief description of study design. (A)** First, theoretical modelling to predict the adaptive
972 dynamics against coinfections (dotted line) based on the within-host growth vs clearance rate of
973 individual pathogens (solid line), timing of immune activation, the host mortality rate caused by each
974 pathogen and their level of interference (α) ; **(B)** Subsequently, empirical validation of the predicted
975 patterns of adaptive dynamics against coinfection, using experimentally evolving model insect
976 *Tribolium castaneum* beetles adapting against two coinfecting bacterial pathogens with contrasting
977 growth and virulence dynamics. Replicated beetle populations were infected with either fast-
978 growing *Bacillus thuringiensis* (Bt) or slow-growing Gram-negative bacteria *Pseudomonas*
979 *entomophila* (Pe) or a combination of both the pathogens (Mx) to create three pathogen-selected

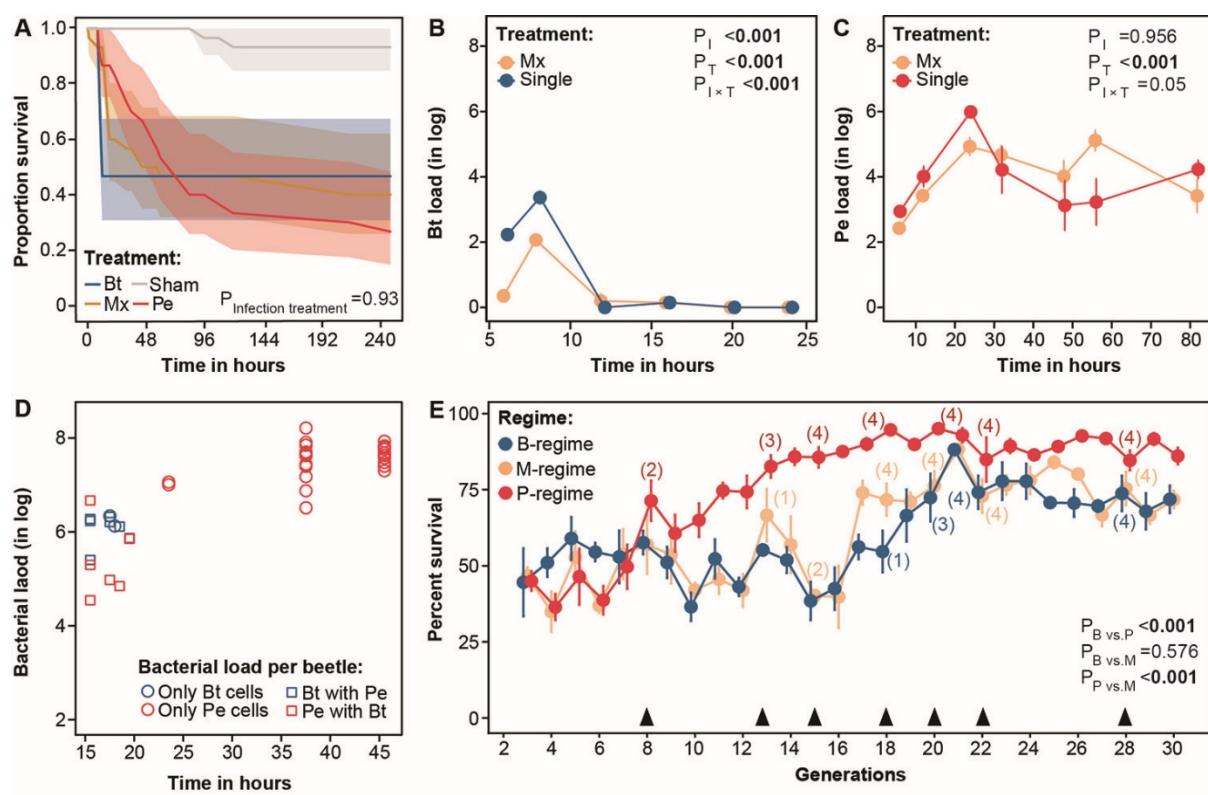
980 regimes such as B-, P- and M-regimes, respectively (n= 4 independent replicate populations with 75
981 breeding pairs/ regime). We also had unselected control populations (C-regime) where beetles were
982 sham-infected with sterile insect Ringer solution. We used post-infection survival and reduction in
983 bacterial load in surviving (BLIS) beetles as proxies for the adaptive evolution of pathogen resistance,
984 whereas bacterial load upon death (BLUD) served as a measure of lethal pathogen burden across
985 selection regimes; **(C)** Finally, we used an RNA-sequencing approach to analyse underlying changes
986 in gene expression profiles to gain molecular insights and explain the observed phenotypic variations
987 during the experimental evolution.



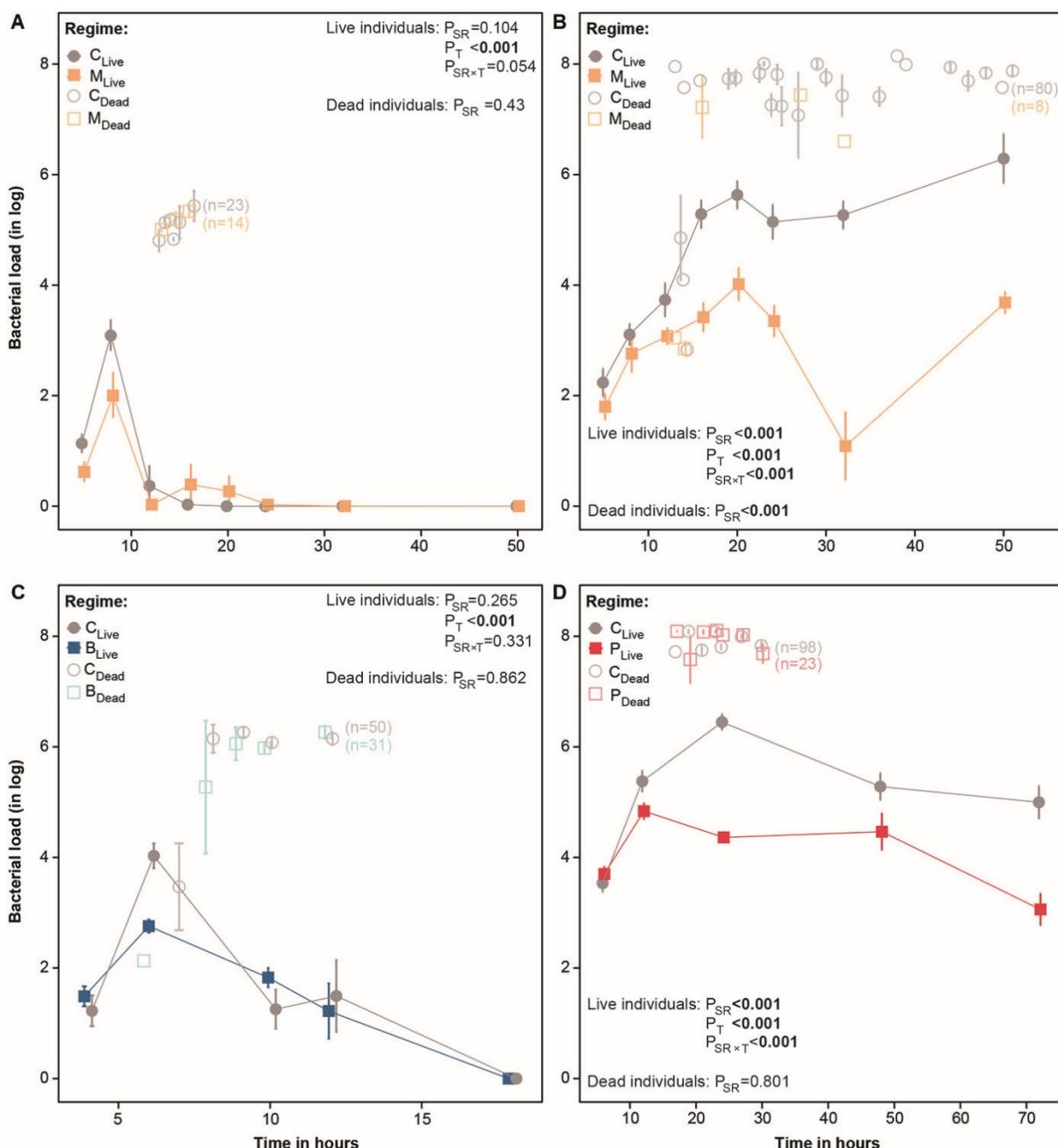
988

989 **Figure 2: A mathematical model of coinfection landscape and host evolution. (A)** Combination of
990 pathogens with divergent growth dynamics during coinfection: fast-growing pathogens causing
991 acute infections, followed by (i) rapid clearance (Rc) or (ii) persistent infection (Rp); Slow-growing
992 pathogens causing acute infection, followed by (iii) rapid clearance (Sc) or (iv) persistent infection
993 (Sp), using the combination of Baranyi model and an exponential decline model, developed by
994 Duneau et al. 2017 (n=250; 10 data points for each of the 25 time points); **(B)** The shape of the
995 coefficient of interference (α) was simulated for both rapidly cleared vs persistent pathogens, as well
996 as for the various extent of β and γ ; The coefficient of interference α between coinfecting pathogens
997 is dependent on pathogen growth dynamics, and the parameter ϵ (combining the interference due
998 to host immune modulations by the co-infecting counterpart (β) and direct resource-driven
999 competition between the co-infecting pathogens (γ)); **(C)** Probable effects of coinfection by different
1000 combinations of pathogens (as described in **A**) on host survival, based on survival patterns against
1001 individual pathogens by incorporating conditional probabilities of survival and variable degrees of
1002 interference between pathogen types (as described in **B**); **(D)** The host adaptive trajectories across
1003 various combinations of rapid- vs slow-growing pathogens only at low ϵ values. The trajectories were

1004 determined by the growth dynamics of rapidly proliferating pathogens and their total infection
1005 window.

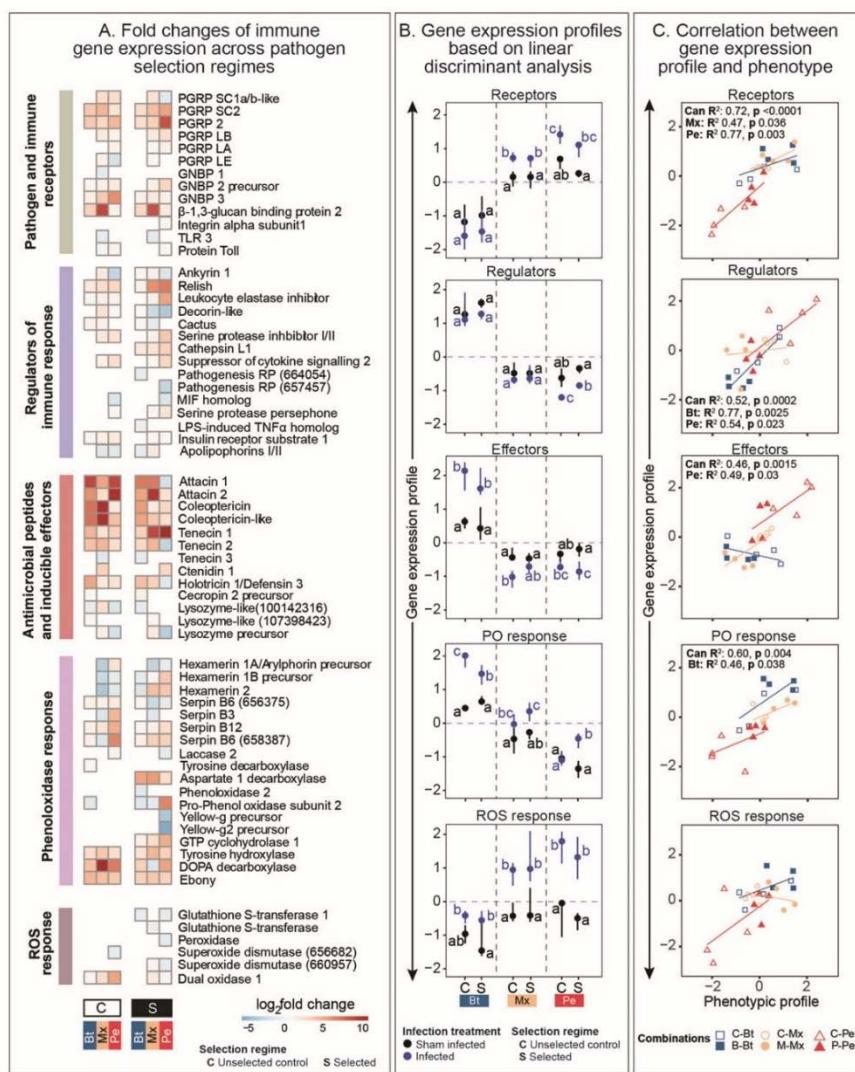


1006 **Figure 3: (A)** Proportion of beetles from baseline population (henceforth, baseline beetles) surviving
1007 after infection with bacterial pathogens *B. thuringiensis* (Bt), *P. entomophila* (Pe) or a combination of
1008 both (Mx) (n= 30 females/treatment). The P-value represents differences across different infection
1009 treatments (i.e., Bt, Pe, and Mx); Temporal changes in within-host growth dynamics of **(B)** Bt
1010 and **(C)** Pe load in baseline beetles, both in the context of infections caused by single- (i.e., Bt or Pe)
1011 vs co-infecting pathogens (i.e., Mx) (n= 10 replicates with pooled homogenate of 3 females/
1012 timepoints/infection treatment). P-values represent the effects of infection treatment (I) and the
1013 assay time (T); **(D)** The load of Bt vs Pe cells in baseline beetles that succumbed to infection, assayed
1014 till first 46h after Mx infection. Bt cells were detected only in beetles that died within the first 19h of
1015 infection (n=9). At later time points (>19–45h), beetles (n=25) only carried Pe cells; **(E)** Beetle
1016 survival across generations (Generation 3–30) at the end of the oviposition window (i.e., 8th-day
1017 post-infection) in each replicate population of different pathogen-selection regimes (n= 4 replicate
1018 populations/selection regime). P-values represent the pairwise differences between selection
1019 regimes. Solid black triangles denote the generations where selection response was assayed by
1020 comparing the post-infection survival of control (C) vs pathogen-selected regimes (B, P and M)
1021 against their respective pathogens (n=24–60 females/regime/generation). The numbers in the
1022 parentheses represent the number of replicate populations from each selection regime that showed
1023 significantly improved survival during experimental evolution (also see **Fig. S2**). All the assays
1024 involved 4 replicate populations, except generation 8, where only 3 replicate populations could be
1025 assayed.



1028 **Figure 4: Within-host bacterial growth dynamics in control vs selected beetles.** Temporal changes
 1029 in **(A)** *B. thuringiensis* (Bt) **(B)** *P. entomophila* (Pe) load of live (n= 6–10 replicates with pooled
 1030 homogenate of 3 females/selection regime/time point/ bacteria) and dead beetles sampled at
 1031 various time points after coinfection in M regime relative to C regime until 50 hours post-infection
 1032 (hpi); Temporal changes in **(C)** Bt and **(D)** Pe load sampled from live (n= 6–10 replicates with pooled
 1033 homogenate of 3 females/selection regime/time point/bacteria) and dead beetles in B and P regime,
 1034 relative to their C counterparts. Bt load from every dead B vs C beetle was recorded till 12hpi,
 1035 whereas live individuals were monitored till 18hpi as Bt cells are usually cleared by beetles by this
 1036 time. In contrast, Pe load from dead and live P vs C beetles was recorded only till 30hpi (beetle
 1037 mortality beyond this point was not tracked for bacterial load assay) and 72hpi, respectively. In each
 1038 case, bacterial load of dead beetles was extracted from individual beetles. The total number of
 1039 beetles that died is indicated in parentheses. In each panel, P-values either represent the effects of

1040 the selection regime (SR) and assay time (T) on bacterial load derived from live individuals; or the
1041 main effect of the SR on bacterial load upon death.



1042

1043 **Figure 5: RNA sequencing and molecular insights into the evolved responses. (A)** Heatmaps
1044 denoting the differentially regulated genes with known immunological function in insects (described
1045 in **Table S14**) after respective infection treatments (e.g., sham infection vs either Bt, Pe, or Mx) in
1046 control vs pathogen-selected regimes (B-, P- or M-regimes), divided into five broad functional
1047 categories: (a) pathogen and immune receptors; (b) immune regulators; (c) inducible immune
1048 effectors, including antimicrobial peptides (AMPs) and lysozymes; (d) melanisation response
1049 involving phenoloxidase pathway; and (e) production of reactive oxygen species; **(B)** Cumulative
1050 gene expression profile of differentially expressed immune genes based on linear discriminant
1051 analysis (LDA). The first axis of LDA is considered as gene expression profile for various categories of
1052 differentially expressed immune-related genes. Here, we compared expression profile changes
1053 between beetles with sham infection and infection with respective pathogens (Bt, Pe, and Mx) in
1054 pathogen-selected (S) beetles (B-, P-, M-beetles) vs their respective unselected (C) beetle
1055 populations. In each panel, significantly different groups are connected with different alphabets.
1056 Alphabet assignments are not comparable across pathogens (separated by dotted lines); **(C)**
1057 Correlation of phenotypic profile (based on combined estimates of post-infection survival and
1058 bacterial load) with cumulative expression levels of diverse immune function categories described in
1059 panel A, using canonical correlation analysis. Correlations are shown separately for each immune

1060 gene category. Corresponding statistics, including canonical R-square and R-squares representing
1061 only significant pathogen-specific trends, are also shown for each immune gene category.