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ABSTRACT  33 

Coinfections, or the simultaneous infection of hosts by multiple pathogens, are widespread in nature 34 
with significant negative impacts on global health. Can hosts evolve against such coinfections as 35 
effectively as they would against individual pathogens? Also, what roles do individual pathogens play 36 
during such evolution? Here, we combined theoretical models and experiments with Tribolium 37 
castaneum populations evolving against two coinfecting bacterial pathogens, with contrasting 38 
growth and virulence dynamics, to reveal that fast-growing pathogens inflicting rapid mortality 39 
surges (i.e., fast-acting) restrict adaptive success against coinfections. While hosts rapidly evolved 40 
better survival against slow-growing bacteria causing long-lasting infections, evolution against 41 
coinfection was significantly delayed and resembled slow adaptation against fast-acting pathogens. 42 
Moreover, limited scopes of immunomodulation against fast-acting pathogens during coinfections 43 
can drive the observed adaptive patterns. Overall, we provide new insights into how adaptive 44 
dynamics and mechanistic bases against coinfections are critically regulated by individual pathogens' 45 
growth and virulence dynamics. 46 
  47 
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INTRODUCTION 48 

Coinfection of a host by multiple pathogen species is highly ubiquitous (1–3). Although biomedical 49 
research has primarily focused on isolated interactions of a single host vs. a single pathogen, growing 50 
evidence from natural systems and epidemiological studies indicates the greater ecological 51 
importance of co-infecting pathogens in influencing the global health and disease burden (4, 5). For 52 
example, in humans, over one-sixth of the world's population is affected by coinfections, comprised 53 
of diverse pathogens underlying many globally important diseases such as HIV, tuberculosis, malaria, 54 
hepatitis, and leishmaniasis (6–8).  In addition to engaging in complex within-host interspecific 55 
interactions (1), the evolutionary history of frequent exposure to these coinfecting pathogens can 56 
profoundly influence the maintenance and deployment of the host immune system (9, 10). 57 
However, despite such natural relevance, whether or to what extent coinfecting pathogens could 58 
influence the evolution of the host immune system differently from infections caused by single 59 
pathogens remains unexplored.  60 

A generalized understanding of coinfection outcome is also challenging because of multiple 61 
confounding parameters such as the multiplication rate of individual pathogens during coinfection 62 
(11), temporal changes in their relative frequency and damage to the host (12) that influence the 63 
dynamics and efficacy of the immune activation. For instance, pathogens with divergent antigenic 64 
properties, which a single immune strategy cannot control, might lead the host to activate multiple 65 
immune components simultaneously during coinfection, increasing the energetic burden (13) and 66 
immunopathological risk (14, 15). Moreover, many naturally occurring coinfection can also involve 67 
pathogens that vary widely in their growth and virulence dynamics (16). In such cases, the host 68 
might evolve temporally separated immune strategies depending on how and at what rate different 69 
pathogens multiply inside the host and manifest their virulence (17). For instance, the immune 70 
system might experience a strong selection to rapidly eliminate the fast-growing pathogens that 71 
induce high mortality rates early in infection (i.e., fast-acting) (18, 19). Recent experiments and 72 
theoretical models can support this idea, where the ability to effectively clear pathogens by 73 
mounting appropriate immune responses early in the infection can serve as a critical determinant of 74 
post-infection survival success (20, 21).  However, the evolution of host responses facilitating such 75 
early-life fitness advantages against coinfections can be constrained if the response time to fast-76 
acting infections is limited, thereby precluding the timely induction of appropriate immune 77 
components at adequate levels (22, 23). This can be further complicated by the co-occurrence of 78 
other pathogens that grow relatively slowly, induce a slower mortality rate and persist longer (i.e., 79 
slow-acting), thereby warranting a sustained immune activation (24, 25). Consequently, the efficacy 80 
of immune adaptation against coinfections might be critically contingent upon balancing the 81 
expression of such specific immunomodulation against individual pathogens (25, 26). However, 82 
experiments accounting for the differences in growth and virulence dynamics between co-infecting 83 
pathogens while analysing their impacts on immune system evolution are missing.  84 

To fill these gaps, we first built a theoretical model that describes diverse adaptive trajectories of 85 
host responses against coinfections based on their differences in within-host pathogen growth rate, 86 
rate of clearance, timing of immune activation, host mortality rate (i.e., virulence manifestation), 87 
and the level of interference due to competitive interactions and immune cross-reactivity between 88 
pathogens (27, 28). Our model predicts that for pathogens that do not strongly interfere with each 89 
other's growth or induce strong cross-reactive immunity, within-host growth dynamics of rapidly 90 
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proliferating pathogens and their effects on host mortality rate at the early infection phase can drive 91 
the adaptive dynamics against coinfections. Subsequently, we tested this prediction using 92 
experimentally evolving Tribolium castaneum beetles adapting against two coinfecting bacterial 93 
pathogens with contrasting growth and virulence dynamics for 30 successive generations. At every 94 
generation, beetles were infected with either (A) fast-growing Gram-positive bacteria Bacillus 95 
thuringiensis (Bt), causing a rapid and sharp increase in host mortality followed by rapid clearance 96 
within a day (i.e., fast-acting) or (B) slow-growing Gram-negative bacteria Pseudomonas entomophila 97 
(Pe) that killed the beetles at a slower rate, while causing persistent infection for several weeks (i.e., 98 
slow-acting); or (C) a combination of both the pathogens (Mx) (see Fig. 1 for study design). Finally, 99 
we used an RNA-sequencing approach to investigate the underlying changes in gene expression to 100 
gain comparative molecular insights into host adaptations against individual vs coinfecting 101 
pathogens.  102 

We speculated two alternative possibilities— (A) If variations in the beetle’s ability to clear fast-103 
growing Bt primarily determine their survival probability early in the coinfection (20, 29), selection 104 
pressure might act more strongly to resist the infection prevalence of Bt than Pe. Consequently, the 105 
rate of adaptation against Mx might closely resemble the responses against only Bt infection. 106 
Moreover, there could also be a delay in their rate of adaptation if the scope of immune 107 
modulations is limited against the early mortality surges caused by rapid-acting Bt (30, 31);(B) 108 
Alternatively, since Bt-induced early infection phase is closely followed by a persistent Pe infection 109 
phase that interferes with the beetle’s oviposition window, selection can instead be stronger against 110 
long-lasting Pe infections to ameliorate its fitness costs during reproduction (32). This could bias the 111 
overall adaptive dynamics more towards the responses against Pe. Our results supported the model 112 
outputs such that fast-acting pathogens such as Bt imposing early infection costs indeed constrained 113 
the adaptation against Mx. Mechanistically, the observed patterns of adaptation against Mx could 114 
result from fewer immunomodulatory mechanisms available against its fast-growing Bt 115 
counterparts. Overall, these are rare insights into how selection against individual pathogens can 116 
determine the trajectory of phenotypic variations vs mechanistic changes while evolving against 117 
coinfections. 118 

RESULTS 119 
The theoretical model predicts the importance of within-host pathogen growth and virulence 120 
dynamics in understanding the host adaptation against coinfections 121 

To understand the host adaptation against coinfecting pathogens with contrasting growth dynamics, 122 
we began by first simulating the density-dependent growth rate of individual pathogens (e.g., rapid 123 
vs slow) leading to the acute infection phase using a Baranyi model, as described in Duneau et al. 124 
(20). Here, we also considered varying initial inoculation sizes, the lag phase of pathogen growth, 125 
and carrying capacity across pathogens and infection types. In this model, a subset of individuals 126 
succumbed to infection due to their inability to control the pathogen growth below a threshold 127 
density, causing terminal infection. Following this, we also simulated the divergent clearance 128 
patterns of the pathogens from the surviving individuals, leading to either rapid clearance or long-129 
lasting persistent infection (i.e., incomplete clearance) using an exponential decline model (20) (See 130 
Table S1 for parameters). Overall, this enabled us to typify within-host growth dynamics patterns of 131 
pathogens that could constitute diverse facets of a two-pathogen coinfection system: e.g., rapidly 132 
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growing pathogens causing acute infections, followed by rapid clearance (Rc) or persistent infection 133 
(Rp); Slow-growing pathogens causing acute infection, followed by rapid clearance (Sc) or persistent 134 
infection (Sp) (Fig. 2A). Subsequently, we paired these pathogens based on their contrasting growth 135 
rates (i.e., rapid vs slow) to create the following coinfection combinations: e.g., Rc-Sc, Rc-Sp, Rp-Sc 136 
and Rp-Sp. Note that we also considered a coefficient of interference α, describing the effects of 137 
direct competitive interactions (β) between co-infecting pathogens (27) and cross-reactive immune 138 
modulations (γ) affecting their growth (28), which increases when either of the coexisting pathogens 139 
attains their peak growth (Fig. 2B). Moreover, in the case of pathogens that can be rapidly cleared by 140 
the host, the level of their interference can also decline rapidly, whereas pathogens causing 141 
persistent infections, can retain their interference longer as they enter chronic infection phase (Fig. 142 
2B). Nevertheless, growth dynamics, as well as the nature of interference between pathogens, 143 
jointly influence the host survival. In the absence of strong interference (i.e., low β- and γ- values), 144 
the early host mortality pattern due to coinfection closely resembles the early host mortality trend 145 
against the rapid-acting pathogen that grows and imposes mortality rapidly (Fig. 2C, Table S2). By 146 
contrast, pathogens with very high mutual interference can lead to less severe effects of their 147 
coinfection relative to their single infection counterparts. 148 

Since low interference between pathogens increases the severity of coinfections (estimated as post-149 
infection mortality described above (Fig. 2C), we assumed this to be the most relevant condition that 150 
maximizes the selection on the host to reduce the infection costs. We thus only modelled the host 151 
adaptive trajectories across various combinations of rapid- vs slow-growing pathogens only at low β- 152 
and γ- values (Table S3). Overall, our model predicts that the rate of host adaptation against 153 
coinfection is determined by the growth dynamics of rapidly proliferating pathogens and their total 154 
infection window (i.e., from the first pathogen exposure to the end of mortality due to infection), 155 
where host mortality happens, and fitness costs can be paid under pathogenic infections (Fig. 2D, 156 
Table S3), overriding the effects of growth and virulence dynamics of slow-proliferating pathogens. 157 
For example, rapidly growing pathogens such as Rc, which can lead to early mortality surges within a 158 
short time, can significantly delay the host adaptation against Rc-Sp or Rc-Sc combinations. In 159 
contrast, host evolution (i.e., gain in the survival advantage against pathogens) was faster when the 160 
rapid growth phase was followed by persistent infection, causing mortality over a prolonged period 161 
(i.e., Rp-Sp and Rp-Sp). 162 

Experimental data confirms that rapidly growing pathogen determines the coinfection outcome 163 
during the early infection phase 164 

We next performed a series of experiments to verify the above model predictions, underscoring the 165 
role of rapidly growing pathogens in driving the evolution against coinfections. We chose to verify 166 
the host adaptive trajectory against a pair of coinfecting pathogens, which are already predicted by 167 
the model to produce the most contrasting effects on host adaptation attributed to their divergent 168 
growth and virulence dynamics— i.e., Rc-like pathogen in combination with another slow-growing 169 
and slow-killing Sp-like pathogen (Fig 2D). To this end, we used the model insect T. castaneum 170 
infected with a mix of suitable bacterial pathogens, B. thuringiensis (Bt) and Pseudomonas 171 
entomophila (Pe), which we identified as possessing comparable growth and virulence dynamics as 172 
that of Rc- and Sp-like pathogens, respectively. Both pathogens killed ~60–65% of the beetles within 173 
a week, although the mortality rates differed. While Bt-induced mortality showed a rapid surge 174 
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within 8 hours post-infection (hpi), with most susceptible individuals dying within the first 12hpi (Fig. 175 
3A; Table S4), Pe-induced mortality showed a relatively late onset of around 20–24hpi and 176 
continued for the next 7-days. However, beetles infected with a combination of Bt and Pe (Mx) 177 
showed a mixed mortality pattern reflecting the individual effects of both pathogens such that there 178 
was a sharp Bt-like decline in their survival within the first 16–18hpi, which is then followed by a 179 
gradual Pe-like decline for the next 7 days (Fig. 3A). During this, Bt cells showed rapid growth 180 
between the first 6–8hpi and then became undetectable by 20 hours, whereas the Pe cells reached 181 
peak growth around 24hpi and persisted in high numbers even after a week (Fig. 3B & C; Table S5) 182 
(Pe cells persisted even after 25 days post-infection in some beetles; Fig. S1). Moreover, in beetles 183 
infected with Mx, early mortalities (within 20hpi) were primarily driven by Bt-induced pathogenicity 184 
as dead beetles carried a large abundance of Bt cells (~106 cells/ beetle; estimated immediately after 185 
death), whereas later mortalities (>20hpi) were most possibly caused by an overgrowth of only Pe 186 
(~107 cells/ beetle) (Fig. 3D). These results thus corroborate the model predictions where the 187 
severity of coinfection and host mortality patterns during early infection phase was indeed 188 
correlated with the effects of rapid-growing pathogen counterparts (See Fig 2C).  189 

Experimental data validates that rapidly growing pathogen drives the host adaptive dynamics 190 
against coinfection 191 

We next allowed beetle populations to evolve under strong pathogen selection imposed by either Bt 192 
(B-regime) or Pe (P-regime) or a mix of both (M-regime), each with 4 replicate populations (i.e., B1–193 
4; P1–4; M1–4) and tracked their post-infection survival for 30 generations. Beetle response against 194 
Pe was the fastest so that within only 8 generations, they could rapidly increase their post-infection 195 
survival from ~40 to ~75% and then to ~90% by 18 generations (Fig. 2E; Table S6; also see Fig. S2). In 196 
contrast, B and M beetles required a substantially extended selection period to improve survival. 197 
They initially showed large fluctuations in survival (~35–60%) for 16 generations and then could 198 
steadily increase only up to ~75% by the 24th generation.  Control populations that were either 199 
pricked with sterile Ringer solution (C) (or maintained as unhandled populations) had a very high 200 
survival rate (>98%) throughout the experiment. Parallelly, we also directly estimated the relative 201 
improvement in post-infection survival of each replicate population, relative to C beetles, at regular 202 
intervals between generations 8–28 to disentangle the adaptive dynamics across pathogens and 203 
infection types (Fig. 2E, S3). While at least half of the replicate P-populations showed significantly 204 
improved survival within 8 generations, followed by the other two populations by 15 generations, 205 
the first replicate population of M- and B-beetles could evolve the response only at generations 13 206 
and 18, respectively. The remaining M- and B-populations evolved the response after the 18th and 207 
22nd generations. Overall, while these results highlight the divergence in the rate of adaptation 208 
across pathogens (e.g., Bt vs Pe) and infection types (single vs multiple pathogens), they are also in 209 
conformity with the theoretical predictions, emphasizing the role of fast-growing Bt-like pathogens 210 
in restricting the adaptation against coinfections.  211 

We also found a significant reduction in the bacterial load across pathogen-selected regimes relative 212 
to C-beetles, estimated around the onset of mortality after Pe and Bt infections (i.e., 24 and 8hpi, 213 
respectively) and at two-time points after Mx infection (8hpi and 20hpi) (Fig. S4, S5; Table S7–9). 214 
Increased post-infection survival of evolved beetles could thus be associated with their improved 215 
ability to prevent bacterial growth relative to the unselected control beetles. 216 
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Host populations evolving against coinfection adopted distinct strategies to counter the severity of 217 
infections caused by individual pathogens 218 

Next, we also compared the bacterial load of every M- and C-beetle that succumbed to Mx infection 219 
and sampled a subset of survivors every 5–8h for the next 50hpi to explain their divergent mortality 220 
patterns as a function of temporal changes in the pathogen growth dynamics. Contrary to our 221 
expectation, live M- beetles did not carry fewer Bt cells than C-beetles, except during the early phase 222 
of infection before mortality was initiated (i.e., 6–8 hours) (Fig. 4A; Table S10, also see Fig. S4F). 223 
However, they could significantly limit the number of beetle mortalities due to the growth of Bt cells 224 
beyond a threshold density at the early phase of infection (i.e., compare the number of dead beetles 225 
in M- and C-regime between 12–20hpi; Fig. S6; Tables S11). Interestingly, most of the live M- and C-226 
beetles showed complete removal of Bt cells within ~20 hours of infection (Fig. 4A), suggesting no 227 
differences in their rate of pathogen clearance (Fig. S7; Tables S12). Increased efficacy in arresting 228 
the Bt growth below the threshold density causing terminal infection, rather than its clearance, thus 229 
explained the improved survival of M-beetles relative to C-beetles.  230 

We noted that the number of M-beetles that died due to Pe overgrowth after 16h was also 231 
drastically reduced (Fig. 3B; Table S10), but now, in contrast to the Bt-infection phase, surviving M 232 
beetles always carried a much lower density of Pe cells (Fig. 3B; Table S10), indicating that evolved 233 
beetles cleared Pe more efficiently. This, in turn, enabled them to prevent the Pe load of surviving 234 
beetles from exceeding the threshold density, leading to lethally acute infection (Fig. 3B). Also, M- 235 
and C-beetles that succumbed to infection did not differ in their Bt or Pe burden, suggesting that the 236 
threshold pathogen density needed to cause mortality was comparable across regimes (Fig. 3A,  B; 237 
Table S10). Overall, these results broadly corroborated the patterns of bacterial growth dynamics in 238 
B- and P-regimes as well (Fig. 3C, D; Table S10), suggesting that the outcome of Mx infection in the 239 
M-regime might be additively determined by both their initial success in controlling the Bt 240 
overgrowth as well as maintaining lower Pe burden in the later phase of infection.   241 

Immune gene expression profiles in host populations adapted against the coinfection resembled 242 
more with those evolving against the slow-growing pathogen 243 

 To gain mechanistic insights into divergent responses evolving across pathogens and infection types, 244 
we next conducted RNAseq using beetles across selection regimes, collected around the onset of 245 
their mortality after respective infection treatments (i.e., 8, 16 and 24h after infection with Bt, Mx, 246 
and Pe, respectively). This allowed us to compare the gene expression changes underlying nearly 247 
comparable fitness consequences across diverse beetle lines and infection types. Overall, the 248 
number of differentially expressed genes (DEGs) upon infection was considerably higher in M-249 
beetles and P-beetles compared to B-beetles, both before (No. of genes: M= 427, P= 439, B= 165) 250 
and after (No. of genes: M= 374, P= 472, B= 171) the experimental evolution (Fig. S8A, B). Also, the 251 
evolved M-beetles showed a significantly higher number of overlapping DEGs with that of P-beetles 252 
(N= 119) than B-beetles (N=29), which might indicate similar mechanisms using a shared set of 253 
candidate genes between M- and P-beetles (Fig. S8C). We found 77 and 81 DEGs common across 254 
infection treatments in control and evolved populations, respectively. Those common set of genes 255 
possibly played pervasive roles across pathogens and infection types including immune-related 256 
molecules such as peptidoglycan recognition proteins (PGRP SC2), gram-negative bacteria binding 257 
proteins, antimicrobial peptides (AMPs; Attacin 2, Coleoptericin and Defensin 3) as well as key 258 
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metabolic genes namely glucose dehydrogenase and fatty acyl CoA reductase. We also identified 65 259 
DEGs upon infection with known immune functions across pathogens and selection regimes (Table 260 
S13). However, to disentangle their roles, we divided them into five broad categories based on their 261 
immune-related functions (i.e. immune categories) (33–35): (a) pathogen and immune receptors; (b) 262 
immune regulators; (c) inducible immune effectors, including AMPs and lysozymes; fast-acting 263 
constitutively expressed (d) melanisation response involving phenoloxidase pathway; and (e) 264 
production of reactive oxygen species (Fig. 5A), followed by a MANOVA to test effects of infection 265 
status, pathogen identity and selection regimes on each of these immune categories (Tables S14–266 
S18). While the effects of selection regimes varied across immune categories, the infection status 267 
and pathogen identity produced the most consistent changes. They also showed a strong two-way 268 
interaction across immune categories, suggesting the deployment of pathogen-specific immune 269 
responses.  270 

To further explore these associations, we performed a canonical discriminant analysis to obtain a 271 
linear combination of expression values of immune-related genes, separating the effects of infection 272 
across pathogen types and selection regimes in each immune category. We corroborated the 273 
statistical differences due to infection treatment as found in MANOVA. However, the effects were 274 
pathogen-specific, highlighting the mechanistic differences in host responses across pathogens. For 275 
instance, while infection produced comparable patterns of changes in gene expression values in 276 
both P- and M-beetles across all the immune categories, B-beetles showed contrasting patterns of 277 
changes in at least two of these functional categories, namely inducible immune effectors and 278 
immune receptors (note the opposite direction of changes with Bt vs Pe and Mx infections; Fig 5B; 279 
Tables S14–18). These immune gene expression patterns plausibly reemphasize the greater 280 
functional overlaps in immune repertoires between M- and P-beetles relative to B-beetles (Fig. 5B; 281 
Tables S14–18). We also found significant interactions between the selection regime and infection 282 
treatment in some functional immune categories where infection affected evolved beetles 283 
differently from their respective control populations (Fig. 5B; Tables S14–18). For example, Pe 284 
infection induced more divergence in the expression patterns of inducible effectors, receptors, and 285 
immune regulators in evolved P relative to C beetles (e.g., note the divergence between sham-286 
infection vs bacterial infection; Fig 5B, Tables S14–18). It also induced changes in phenoloxidase 287 
response-related genes that were initially non-responsive in control beetles. In contrast, evolution 288 
against Bt produced changes limited to only fast-acting melanisation response and ROS. 289 
Interestingly, evolution against Mx infection involved changes in inducible immune effectors and 290 
phenoloxidase responses, suggesting the involvement of molecules partially involved in both P- and 291 
B-regimes, although their functional implications might differ.  292 

Finally, we applied canonical correlation analyses, followed by linear regression analyses, to 293 
determine whether the observed changes in the gene expression profile of the aforementioned 294 
immune categories predicted the phenotypic variations between the control vs selected regimes 295 
across pathogens. In each case, we used a joint estimate of the bacterial load of individual beetle 296 
hosts and the infection susceptibility, estimated as the hazard ratios (36) of infected vs sham-297 
infected beetles (where Hazard ratios greater than 1 denote higher mortality in the infected beetle), 298 
to gain an integrated view of post-infection fitness outcomes as a function of pathogen burden and 299 
concomitant survival costs. We assumed significant correlations between gene expression values 300 
and the phenotypic changes to imply whether the concerned category of immune molecules can 301 
explain the observed variation in phenotypic traits during experimental evolution. Overall, 302 
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phenotypic variations of Pe-infected beetles correlated with a maximum number of immune 303 
categories, including receptors, immune regulators, and inducible immune effectors, followed by Bt-304 
infected beetles that correlated with regulators and melanisation responses, and Mx-infected 305 
beetles that correlated with only receptors (Fig. 5C; Tables S19–23). Similar patterns also emerged 306 
when we separately analysed the associations of infection susceptibility with the gene expression 307 
profile using linear regression analyses. Pe-infected beetles still had more correlations (i.e., with 308 
both receptors as well as melanisation response) relative to B and M beetles that either correlated 309 
with melanisation response or receptors, respectively (Fig.S9A; Table S24). In contrast, no such 310 
correlations existed with the bacterial load of Bt-infected beetles, as opposed to Pe- and Mx-infected 311 
beetles, where, in addition to exhibiting correlations to receptors and regulators respectively, they 312 
also showed association with melanisation response (Fig. S9B; Table S25). While these correlations 313 
suggest a larger scope of the modulating immune responses at various functional levels in P-beetles 314 
to increase post-infection fitness, they possibly also reemphasized the potential divergence of 315 
immune strategies adopted in B-beetles from that of P- and M-beetles to control the pathogen 316 
growth. 317 

In addition, we also used KEGG enrichment analyses to reveal broad similarities in how several key 318 
metabolic pathways responded against Pe and Mx infection (Fig. S10). For instance, unselected C-319 
beetles infected with Mx and Pe showed downregulation of glutathione and several components of 320 
amino acid (e.g., valine, leucine, and isoleucine), and carbohydrate (e.g., amino sugar and nucleotide 321 
sugar) metabolism. They also showed downregulation of glycolysis and upregulation of phagosome 322 
maturation pathways, which contrasted with Bt-infection. In the evolved M- and P-beetles, we noted 323 
a downregulation in both the citrate cycle and OXPHOS pathway (Fig. S10). Also, while evolved B-324 
beetles overexpressed mismatch and nucleotide excision repair pathways, both M- and P-beetles 325 
produced no changes in their expression. These results thus suggest the possibility of common 326 
metabolic bases underlying overlapping immune responses against Mx and Pe. 327 

DISCUSSION 328 

Despite the ubiquity of coinfections and their direct relevance to many infectious diseases (2, 4), it is 329 
unclear how they influence host adaptive trajectories against pathogens and concomitant immune 330 
system evolution. Also, what are the specific drivers of such evolutionary effects of coinfections? 331 
Here, we used mathematical models to propose within-host growth rate, the rate of virulence 332 
manifestation, and the infection-driven mortality window of individual pathogens (i.e., between first 333 
and last host mortality) as critical determinants of adaptive success against coinfections. In the 334 
absence of strong competitive interference or cross-reactive immunity between pathogens (27, 28), 335 
rapidly growing pathogen counterparts, imposing acute mortality surges early in the infection, 336 
determined the course of evolution against coinfections. Moreover, if such an early surge of survival 337 
costs is also expressed rapidly within a short infection window, the rate of adaptation against 338 
coinfections might be delayed. We hypothesize this as a possibility that arises when appropriate 339 
immune responses are unavailable or cannot be induced against such fast-acting pathogens within 340 
the available infection window to curb their acute early-infection costs (31, 37). Subsequently, we 341 
empirically validated whether fast-growing pathogens can drive the adaptation against coinfection, 342 
using replicated populations of T. castaneum evolving against bacterial pathogens of distinct Gram-343 
types (i.e., Bt and Pe) with contrasting within-host dynamics, virulence manifestation rates and 344 
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differential host immune modulations (38, 39). Bt grew faster early in the infection, inducing early 345 
and rapid mortality surge within 12h (i.e., fast-acting), followed by rapid clearance by the host. In 346 
contrast, Pe grew relatively slowly, causing long-lasting persistent infections with mortality 347 
beginning around 24h post-infection (i.e., slow-acting). We found the rate of adaptation to be fastest 348 
against Pe, with half of the replicate populations evolving resistance as early as generation 8, 349 
whereas resistance evolution against fast-growing Bt was delayed the most. Also, as predicted by the 350 
model, the rate of adaptation against coinfection by Mx indeed appeared to be constrained by fast-351 
acting Bt such that M-beetles followed almost a similar evolutionary trajectory as that of beetles 352 
infected with Bt alone (e.g., most replicate populations taking 15–22 generations to evolve 353 
resistance). Another striking aspect is that while the survival success of the P-beetles rose to ~90%, 354 
the survival of both M- and B-beetles could not increase beyond ~75% despite a continuous strong 355 
selection for 30 generations. This possibly indicates the constraints associated with evolving 356 
resistant alleles against Bt cells that are present in both M- and B-beetles during their early infection 357 
phase, restricting their net fitness gain to much below that of their P-beetle counterparts (40, 41).  358 

Here, an emerging question is— how might Bt cells drive the dynamics of adaptive evolution against 359 
Mx? We noted that beetles infected with Mx showed a sharp decline in survival early in infection 360 
(between 16–20h), which broadly resembles the mortality pattern of beetles that were only infected 361 
with Bt. Also, beetles that succumbed to infection within this early timeframe predominantly carried 362 
many Bt cells (~105–106 cells/female), linking the overgrowth of Bt to lethal infections. Interestingly, 363 
the estimated levels of the bacterial load causing such terminal infection did not correlate with the 364 
time post-infection at which death occurs. Hence, they also denoted the maximal Bt load that 365 
beetles could tolerate before they died (20). Several dead beetles also carried Pe cells, but neither 366 
their frequency nor their within-host Pe density was sufficient to explain all the beetle mortality 367 
observed during the early infection phase, hinting at the limited role of Pe in driving the early 368 
survival costs of coinfection. In contrast to dead beetles, surviving beetles early in infection either 369 
had a much lower Bt burden than their dead counterparts or cleared the infection below the 370 
detection level within 20h. The ability to restrict the growth of Bt below their threshold density, 371 
which otherwise could lead to terminal infections, followed by rapid clearance, was thus critical for 372 
these beetles to survive the early phase of coinfection. These results also conform to recent studies 373 
with D. melanogaster, where similar binary infection outcomes have been reported across 374 
pathogens (20, 21, 26), underscoring the pivotal roles of rapidly induced immunity in effectively 375 
curtailing the pathogen overgrowth early in infection.  376 

As expected, the ability to prevent Bt overgrowth early in coinfection also increased in beetles 377 
adapted against Mx infections. When challenged with Mx-infection, fewer individuals from evolved 378 
M-populations carried the lethally high Bt density (~105–106 cells/ beetle) relative to C-beetles, 379 
thereby explaining the reduction in their early-infection mortality. However, increased survival of 380 
evolved beetles was not achieved by merely clearing the Bt cells, as their number, by and large, did 381 
not vary considerably between the live M- vs C-beetles. Subsequently, C-beetles that survived the 382 
infection could clear the Bt cells at a nearly equal rate to that of M-beetles. This suggests that 383 
pathogen selection did not improve pathogen clearance ability in evolved beetles. Instead, it could 384 
have favoured mechanisms to arrest the Bt growth below the critical density, otherwise leading to 385 
lethal infections (20). This is likely also the reason why transcriptome analyses of beetles challenged 386 
with only Bt infection had several differentially expressed immune effectors upon infection (e.g., 387 
AMPs Attacin 2, Coleoptericin and Tenecin 1) (42) and still, none of them responded differently in 388 
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evolved B beetles, suggesting no added contribution towards experimental evolution against Bt. 389 
Also, the overall changes in the gene expression profile of different immune effector groups, 390 
including AMPs, PO or ROS, did not explain the variation in the overall bacterial load across beetle 391 
lines. Perhaps more relevant changes in Bt-resistant beetles were detected in terms of their higher 392 
basal expression levels (i.e., without infection) of apolipophorins, possibly facilitating phagocytosis 393 
and pathogen pattern recognition (43) or chymotrypsin, which is known to arrest the growth of 394 
Gram-positive bacteria (44), including neutralization of Bt-toxins (45). Increased circulation of these 395 
molecules, even in the non-immune challenged state of B beetles, might thus play a more important 396 
role in early detection and prevention of Bt overgrowth.   397 

By contrast, immune strategies against Bt in M-beetles may be more complex due to confounding 398 
effects of immune responses against chronic Pe infections persisting throughout the oviposition 399 
window of these experimentally evolving beetles (i.e., 3–8 days post-infection). Moreover, unlike Bt 400 
infection, surviving M-beetles consistently had reduced Pe load relative to C-beetles, suggesting the 401 
potential immune activation against Pe to minimize the infection costs while reproducing (46). 402 
Finally, despite receiving a lower infection dose (M- vs P-beetles: ~103 vs 104 cells/female), Pe cells in 403 
M beetles grew at an equivalent level as that of P beetles (~105 cells/female within 12 hours), which 404 
indicates that both beetle populations might have eventually experienced similar selection pressure 405 
from the severity of Pe infection. These hypotheses were further corroborated by comparing the 406 
reproductive costs of each infection type in the unselected C-beetles (see Fig. S11, Table S26). In the 407 
case of both Pe and Mx infections, the persistence of Pe cells during the oviposition window was also 408 
associated with a reduction in reproductive outputs. However, this contrasted with beetles 409 
challenged with Bt infection. Bt-infected beetles that survived until the oviposition window 410 
reproduced as much as their uninfected control counterparts, possibly attributed to their ability to 411 
clear the infection completely by then. Based on these observations, we thus speculated strong 412 
selection pressure on both M- and P-beetles from the beginning of their selection treatment to 413 
evolve counterstrategies to reduce the reproductive costs imposed by a common pathogen that 414 
persists longer inside the host (47). More specifically, to this end, M-beetles might evolve more 415 
similarities with P-beetles vis-à-vis their immune responses rather than temporally 416 
compartmentalizing immunity against individual participating pathogens (48). Our transcriptome 417 
analyses that revealed larger overlaps in the set of genes and their expression profile against Pe and 418 
Mx infection, both before and after experimental evolution, perhaps supported this idea.  419 

The possibility of mechanistic congruence between M- and P-beetles is further highlighted by the 420 
linear discriminant analyses of immunity-related gene expression data (49). In fact, many of them, 421 
classified into various functional categories ranging from sensing the pathogen or pathogen-422 
associated molecular patterns (receptors) and regulating the immune responses to immune 423 
effectors such as AMPs, lysozyme, phenoloxidase cascade and ROS production (34, 50), showed 424 
more concurrent gene expression patterns between M- and P-beetles. These patterns, however, did 425 
not always match with that of B beetles, as some of these functional categories, such as AMPs and 426 
lysozymes, immune regulators and receptors, showed changes either in the opposite direction to 427 
that of M- or P-beetles or produced no changes after infection. Also, unlike in M- and P-beetles, 428 
none of the immune groups correlated with the changes in the overall bacterial burden before and 429 
after the evolution against Bt. Together, all these patterns thus hint at distinct functional 430 
implications of these immune groups in B-beetles relative to both M- or P-beetles.  431 
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The similarity in immune responses against Pe and Mx infection was also reflected by their 432 
resemblance in metabolic changes. For example, KEGG enrichment analyses revealed the 433 
downregulation of several important components of carbohydrate (e.g., glycolysis, amino sugar and 434 
nucleotide sugar metabolism) and amino acid (e.g., valine, leucine and isoleucine) metabolism in 435 
unselected C beetles (42). Besides, evolved P- and M-beetles showed reduced OXPHOS metabolism 436 
and increased glycolytic enzyme hexokinase 2 expression, suggesting shifting energy metabolism to 437 
support immune activation in these beetles (51, 52). However, such metabolic patterns were 438 
reversed in B beetles, which could corroborate why we failed to detect increased expression of 439 
immune effectors after experimental evolution. Instead, the enrichment of pathways related to 440 
increased DNA repair (53) and phagosome maturation (54) might indicate strategies to reduce the 441 
DNA damage caused by immune activation (55) and the use of alternative immune strategies in B 442 
beetles (e.g., cellular immunity (38, 56)) respectively.  443 

Finally, a detailed comparison of phenotype-by-immune gene expression correlations across 444 
pathogens and infection types offered critical molecular insights into their divergent adaptive 445 
dynamics. For example, strong correlations between the combined phenotypic changes (i.e., post-446 
infection survival and bacterial load)  in P-beetles and diverse categories of immune-related 447 
molecules such as receptors (e.g., PGRP SC1a/b-like, PGRP2 (33)), regulators (e.g., Relish (57)) and 448 
inducible effectors (including Attacin 1, Attacin 2, Tenecin 1 and Ctenidin 1 (34)) might underscore a 449 
wider scope for selection, acting parallelly and more effectively across various functional levels of 450 
their immune signalling cascade (58, 59). This, in turn, can accelerate their rate of adaptation. This 451 
notion can also be supported by previous analyses where immune molecules, particularly those 452 
involved in pathogen recognition and immune regulation, have been shown to evolve more rapidly 453 
under strong positive selection than other non-immune genes (60). Moreover, the multi-level 454 
immune crosstalk between receptors, regulators and effectors driving phenotypic variations against 455 
Pe corroborates the assumptions of our theoretical model. For instance, faster adaptation against 456 
slow-acting Pe-like pathogens was possible because slower mortality costs expressed over a 457 
prolonged infection window enabled beetles to employ functionally more diverse phenotype-by-458 
immunological modulations under pathogen selection (25, 61).  459 

In contrast, the scope for such phenotype-by-immunological modulations in M- and B-beetles was 460 
limited. For example, unlike P-beetles, their immuno-competence phenotype correlated with either 461 
receptors or regulators but not with both, which might reduce the number of potential loci available 462 
to evolve rapidly under selection. Scopes for selection might be even more constricted in B beetles, 463 
as their phenotypic variations correlated with PO response (62), which, in addition to serving as a 464 
critical insect immune defence component, exerts multiple pleiotropic roles in insect physiology (63–465 
65). For example, the observed correlation was mainly driven by reduced PO enzymatic activity in 466 
evolved B-beetles (See SI, Fig. S12; Table S27), conforming with their lower expression levels of 467 
phenoloxidase 2 and tyrosine decarboxylase transcripts (63, 66), but evolution via such decline in PO 468 
activity might also impose development and reproductive costs (63, 65). Besides, evolved B beetles 469 
also showed more divergent expression profiles of ROS-related genes after Bt infection than the 470 
unselected beetles, driven primarily by down-regulation of Glutathione S-transferase 1 after Bt 471 
infection, which might incur higher cytotoxicity (67), thereby adding significant costs to fast 472 
adaptation against Bt.  473 
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In summary, this study present a unique integrated framework, combining theory and experiments, 474 
to identify drivers of host adaptive dynamics against coinfecting pathogens. Note that we could test 475 
only a few specific infection conditions amidst numerous other possible interactions between host 476 
and coinfecting pathogen types and their diverse infection outcomes. Yet, the coherence between 477 
theoretical predictions and our empirical datasets, while establishing the role of pathogen growth 478 
dynamics and virulence manifestation patterns in driving phenotypic and mechanistic trajectories, 479 
indicated the broader implications of our findings. Another striking outcome of our work is the 480 
decoupling of the overall rate of phenotypic evolution vs mechanistic bases against coinfecting 481 
pathogens relative to the effects of individual pathogens. This eventually highlighted the asymmetry 482 
in why and how individual pathogens might unequally bias the adaptive dynamics against 483 
coinfection vs underlying genetic mechanisms rather than their simple additive effects (68), offering 484 
exciting avenues for future theoretical models to encompass other infection types and more 485 
mechanistic explorations. Finally, our systematic investigation of host adaptations against multiple 486 
pathogens and infection contexts in a single comparative framework may instigate more 487 
fundamental work to fill the gaps in our understanding of how innate immune features might evolve 488 
across pathogens and infection types. 489 

MATERIALS AND METHODS 490 
Mathematical simulation of host survival and adaptation against coinfecting pathogens with 491 
contrasting growth and virulence dynamics 492 

To model the effects of coinfections caused by two pathogens with contrasting growth dynamics on 493 
host survival and adaptive responses, we began by simulating their growth dynamics following a 494 
theoretical framework described previously by Duneau et al. (20) (Detailed descriptions of 495 
parameters used in these simulations, as well as those described below, are provided in 496 
supplementary methods). The model, originally built upon experimental data from fruit flies, 497 
assumed uninhibited pathogen growth initially followed by either host immune response clearing 498 
the pathogen or the host succumbing to acute infection, leading to binary outcomes — a 499 
phenomenon validated empirically in other species as well, including mice and flour beetles (69, 70). 500 
To capture similar growth dynamics, we thus combined two demographic models where we first 501 
simulated the divergent pathogen growth patterns (i.e., rapid vs slow) without the interference of 502 
host immunity, based on the Baranyi model (71). We then used an exponential decrease model to 503 
simulate the pathogen clearance where host immunity could either clear the infection completely or 504 
maintain a lower pathogen burden, producing long-lasting infections (26). Note that we did not 505 
consider the pathogens that cause lethal infections causing complete mortality or benign infections, 506 
as both conditions might preclude the possibility of host adaptations against them. Hence, we could 507 
simulate pathogens with the following 4 distinct growth dynamics: e.g., rapidly growing pathogens 508 
causing acute infections, followed by (a) rapid clearance (Rc) or (b) persistent infection (Rp); Slow-509 
growing pathogens causing acute infection, followed by (c) rapid clearance (Sc) or (d) persistent 510 
infection (Sp). Subsequently, we paired pathogens with only contrasting growth rates (rapid vs slow) 511 
to simulate the following coinfection scenarios: e.g., Rc-Sc, Rc-Sp, Rp-Sc, and Rp-Sp.  512 

Here, we note that coinfecting pathogens might compete for limited resources (27), inhibit each 513 
other’s growth by producing toxins (12) or induce cross-reactive immune mechanisms (28), which 514 
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can influence their within-host growth dynamics. To model such effects, we thus described a 515 
coefficient of interference α  516 

𝛼𝛼𝑡𝑡 = 𝑒𝑒−�
𝑛𝑛𝑡𝑡
𝑛𝑛0
+𝑐𝑐�.𝜀𝜀

 517 

Here, we assumed α to range from 0 to 1, denoting the maximum or no interference between the 518 
coinfecting pathogens respectively. Also, since interference due to competitive inhibition and 519 
immune cross-reactivity might proportionally increase with the load of the interfering pathogen, the 520 
magnitude of α at time t is inversely proportional to the ratio of load of the interfering pathogen at 521 
time t (nt) and the initial bacterial load (n0). Additionally, we note the possibility that residual 522 
interference may persist even after the interfering pathogens are cleared by the host immunity. To 523 
account for this effect, we introduced an offset factor c, denoted as the ratio of initial bacterial load 524 
(n0) and maximum bacterial load (nmax) of the interfering pathogen. Finally, we also described a 525 
coefficient ε, combining the net interference posed by increasing resource-driven competition or 526 
toxin-mediated inhibition between pathogens (β) and/or immune cross-reactivity (γ) mediated via 527 
activation of common host immune components across pathogens, that is inversely proportional to 528 
the value of α (such that ε = 0 or 1 represents no interference or maximum interference respectively; 529 
see SI for details).  530 

Next, we predicted the post-infection survival probability of hosts challenged with a combination of 531 
rapid (R)- vs slow (S)-growing pathogens based on their simulated within-host growth dynamics and 532 
the estimated interference coefficient as described above: 533 

𝑃𝑃�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�   = 1 − 𝑃𝑃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� 534 
 𝑃𝑃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶� = {𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅&𝑆𝑆′) + 𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅′&𝑆𝑆) + 𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅&𝑆𝑆)} 535 
                                       = {𝛼𝛼𝑆𝑆𝑆𝑆(1 − 𝑝𝑝𝑅𝑅)𝑝𝑝𝑆𝑆+𝛼𝛼𝑅𝑅𝑅𝑅(1 − 𝑝𝑝𝑆𝑆)𝑝𝑝𝑅𝑅 + 𝛼𝛼𝑅𝑅𝑅𝑅𝛼𝛼𝑆𝑆𝑆𝑆(1 − 𝑝𝑝𝑅𝑅)(1 − 𝑝𝑝𝑆𝑆)} 536 

Here, we first conceptualized the host survival probabilities under coinfection P(Survcoinfection) as 537 
individuals that could avoid the mortality induced by individual pathogens (Mortality probabilities: 538 
𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅&𝑆𝑆′) or 𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅′&𝑆𝑆) against R vs S pathogens) as well as their combined actions 539 
(𝑝𝑝(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅&𝑆𝑆)). Here, S’ and R’ denote complementary terms of probability. We then transformed 540 
these mortality probabilities as a function of survival probabilities against individual pathogens (i.e., 541 
pR = survival probability against R; pS= survival probability against S) and their coefficient of 542 
interference (α). We assumed that α is directional so that αSR describes the effect of ‘S’ on ‘R’ and 543 
vice-versa (αRS).  544 

Modelling the rate of adaptation 545 

We note that the survival costs against coinfections can increase with reductions in competitive 546 
interference or immune cross-reactivity between pathogens (i.e., high α; low ε). Moreover, they 547 
follow the predicted survival patterns of the rapidly growing pathogen counterpart during the early 548 
infection phase. We thus chose to model the combinations of coinfecting pathogens only with low 549 
interference, which is likely to posit strong selection pressure on the hosts to first counter the early 550 
infection costs of rapidly growing pathogens. We also assumed that the ability to deploy and 551 
evolvability of effective immune responses could be constrained by the response time available to 552 
the host after infection (21, 30). For example, rapidly proliferating pathogens causing acute-phase 553 
infection and a rapid surge of mortality manifested within a shorter timeframe after infection (e.g., 554 
Rc) might outrun the host immunocompetence due to limited immune repertoire availability or 555 
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failure to induce or replenish appropriate levels of required immune responses. Consequently, host 556 
adaptative success against such pathogens can be constrained. In contrast, hosts infected with slow-557 
growing pathogens that have prolonged infection windows with sustained survival costs (e.g., Sp) 558 
can also afford a longer response time to deploy and modulate various immune components (e.g., 559 
both constitutive vs inducible responses (36)) against pathogens. We thus assumed that the ability 560 
to respond and modulate effective immune responses to counter the infection could be directly 561 
proportional to the total infection window, where the pathogens first proliferate to cause the acute 562 
infection phase, followed by the host mortality window (i.e., the time between the first and last 563 
post-infection mortality). We modelled the efficacy of host adaptations against individual pathogens 564 
as a function of the relative scope for immune modulations within their total effective infection 565 
window, expressed as a ratio with respect to the total generation time of the host (e.g., conceived as 566 
early development to time to reproduction to initiate the next generation).  567 

Since rapid-growing pathogens imposing early virulence manifestations drive the outcome of 568 
coinfection during the early infection phase, we next assumed that the time taken to inflict the first 569 
mortality after infection could be comparable between the coinfection vs rapidly growing 570 
pathogens. Consequently, we modelled the efficacy of adaptation against coinfections as a function 571 
of the available immune modulations only during the mortality window of rapid-growing pathogens 572 
with respect to the total mortality window caused by both pathogens. In all these cases, we 573 
expected that the host adaptive trajectory would initially have a lag period where survival advantage 574 
cannot be detected, followed by an increase until it reaches an asymptote, with no further gain in 575 
survival advantage. We thus used a logistic model to predict the adaptative trajectories, formulated 576 
as: 577 

𝑆𝑆𝑔𝑔 =  𝑆𝑆0 +
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑆𝑆0

1 + 𝑒𝑒𝜃𝜃.(𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔−𝑔𝑔)
 578 

Here, we describe the survival against infections caused by single pathogens or coinfections at 579 
generation g as Sg, which depends on (a) the survival of the ancestral populations (S0) and their 580 
maximum gain in survival (Smax) after successful adaptation against pathogenic infections; (b) the 581 
minimum number of generations elapsed (glag) before hosts could show survival advantage; and (c) 582 
the parameter θ, denoting the constraints of evolving appropriate immune responses within the 583 
host mortality window for single or coinfecting pathogens (detailed in SI methods). Overall, the 584 
parameters θ and glag influence the variable trajectories of host adaptation against single vs 585 
coinfecting pathogens. We simulated all the parameters using R. 586 

Experimental quantification of virulence and growth dynamics of coinfecting pathogens 587 

We used a large, outbred population of Tribolium castaneum (72) adapted to laboratory conditions 588 
for >2 years before commencing the experiments (see SI for more details on baseline population 589 
maintenance and assays described below). Also, based on the observations from other experiments 590 
(32, 73), we chose two naturally relevant bacterial entomopathogens that are likely to show 591 
contrasting growth dynamics and rates of virulence manifestations within insect hosts: fast-growing 592 
B. thuringiensis DSM2046 (Bt) (74) vs slow-growing P. entomophila L48 (Pe) (75), causing a rapid vs 593 
slower onset of mortality respectively. To quantify their effects on beetle hosts, we pricked 10-day-594 
old virgin females from baseline populations with a needle dipped in a bacterial slurry comprised of 595 
either Bt (~ 8×10^7 cells/µl) or Pe (~ 4×10^9 cells/µl), or a mix (1:1) of both bacterial cells (Mx) and 596 
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monitored their survival for 10 days (See SI for input infection dose). We used sham-infected beetles 597 
pricked with sterile Insect Ringer solution (74) as procedural control for our infection assays (n= 30 598 
females/infection treatment). We also tracked the changes in growth dynamics of these pathogens 599 
inside surviving beetles sampled at regular intervals for the next 24h for Bt (or ~3 days for Pe), both 600 
in the context of infections caused as individual vs co-occurring pathogens (n=8–10 replicates with 601 
pooled homogenate of 3 females/infection treatment/time point), using established protocols in the 602 
lab (76). We differentiated the Bt and Pe cells by their distinct colony sizes and morphologies on the 603 
Luria agar plates (See SI methods). For each pathogen, we analysed the (a) post-infection survival 604 
data using Cox proportional hazard analysis (77), using infection treatment as a fixed effect in 605 
“survival” package in R (78), and (b) log-transformed bacterial load dynamics data using a 606 
generalised linear model (‘glm’ function in R) fitted to a gamma distribution with infection treatment 607 
and time of bacterial load estimation as fixed effects. Separately, we also assayed the bacterial load 608 
of a subset of females that succumbed to Mx-infection within the first 48h to estimate the bacterial 609 
load upon death and the relative contribution of Bt vs Pe burden in causing mortality during 610 
coinfection (n= 34 females).  611 

 Experimental evolution paradigm  612 

Next, we used the experimental evolution paradigm for 30 successive generations to examine the 613 
adaptive dynamics against coinfecting pathogens (32). We used the baseline beetle population to 614 
create five selection regimes: namely (I) Unhandled regime (U-regime): populations that did not 615 
undergo any treatment; (II) Control regime (C-regime): Unselected control populations sham-616 
infected with sterile Ringer; (III) Infected with Bt (B-regime); (IV) Infected with Pe (P-regime); (V) 617 
Infected with a mixed culture of both Bt and Pe (M-regime), with each of these regimes having four 618 
independently evolving replicate populations (i.e., C1–4, B1–4, P1–4 & M1–4; See SI for infection 619 
doses). We infected (or sham-infected) 9–10 days old virgin adult male and female beetles (32). 620 
Three days later, we combined the surviving beetles into 75 pairs and allowed them to oviposit for 621 
another 5 days (i.e., beetle reproductive window; day 3–8 post-infection). Note that although we 622 
maintained ~75 breeding pairs for each selection regime, we infected an excess of virgin beetles 623 
(~300–400 beetles/ replicate population) for every generation, as we expected high mortality after 624 
the respective infection treatments. During experimental evolution, this ensured we had sufficient 625 
individuals to set up the 75 mating pairs to oviposit every generation. We adjusted our infection 626 
doses to induce ~60–65% mortality within 8 days post-infection across infection treatments, thereby 627 
enabling us to initiate beetle lines with comparable selection pressure across pathogen-selected 628 
regimes. After three weeks of egg incubation, we isolated male and female pupae from each 629 
population and allowed the eclosed adults to initiate the next generation after the relevant selection 630 
treatment. We handled the four replicate populations from each selection regime on different days 631 
(but Ci, Bi, Pi and Mi, where i=1–4, were handled together on the same day) and maintained 632 
continuous divergent pathogen selection. For each of the 4 replicate populations across selection 633 
regimes, we also estimated the proportion of the surviving adults (out of the total number of 634 
infected beetles) pre- (i.e., day 3 post-infection) and post-reproductive window (i.e., day 8 post-635 
infection) at every generation (except the first two generations) to track the overall changes in 636 
survival post-infection across selection regimes. Moreover, to understand the contrast between 637 
diverging evolutionary trends across generations from different selection regimes, we used a 638 
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generalised linear model fitted to Gaussian distribution followed by performing pairwise 639 
comparisons using “emmeans”.  640 

Quantifying the evolved responses against coinfection 641 

To understand the dynamics of adaptation against single pathogens vs coinfections, we repeatedly 642 
assayed post-infection survival of each replicate population across selection regimes against their 643 
respective infection treatments during experimental evolution and compared with that of control 644 
unselected beetles (i.e., C vs P; C vs B or C vs M beetles after Pe, Bt and Mx infection respectively), at 645 
multiple generations (e.g., generations 8, 13, 15, 18, 20, 22 and 28). We used 9–10 days old 646 
standardised females (for logistical reasons, we could not test males, except generation 28 when 647 
both sexes were assayed) (n=24–60 beetles/regime/population/generation), collected after one 648 
generation of relaxation of pathogen selection from the generation of interest, to minimise the 649 
transgenerational effects (32). For each pathogen-selected regime, we compared them separately 650 
with the C-regime after the respective infection treatments, using the mixed-effects Cox model (with 651 
the selection regime as a fixed effect and replicate populations as a random effect) (77), followed by 652 
analysing each replicate population separately, using Cox proportional hazard analyses (with the 653 
selection regime as a fixed effect). Besides, we also quantified the bacterial load of evolved beetles 654 
when all the replicate populations showed improved post-infection survival (P- and M-beetles at 655 
generation 18; B-beetles at generation 22) to test whether their improved survival can be explained 656 
by lower bacterial burden relative to their control counterparts (N= 10–15 replicates with pooled 657 
homogenate of 3 females/selection regime). Since different pathogens might manifest their 658 
virulence at different rates with divergent within-host pathogen growth dynamics, we sampled 9–10 659 
days-old females from B and P regimes (and their corresponding Control regimes) after the onset of 660 
the first 10–15% mortality (information derived from post-infection survival curves) after respective 661 
infection treatments. For the M regime (and its corresponding control), we sampled females at two 662 
time points to obtain an adequate number of both Bt and Pe cells (See SI for detailed methods and 663 
analyses). 664 

However, to explain the mortality patterns in more detail, we next (at generations 26–28) 665 
characterized the dynamics of within-host bacterial load in one of the replicate populations from 666 
both evolved and control beetles by assaying 9–10 days-old standardised females every few hours 667 
(See SI for detailed methods). We tracked Bt cells in B vs C regimes until 18 hours (or Pe cells in P vs 668 
C regime until 72 hours), whereas, for Mx infection, both the bacterial cells were assayed until 50h 669 
(n= 6–10 replicates with pooled homogenate of 3 females/selection regime/time point/infection 670 
treatment). Simultaneously, we also noted the beetle death during these experiments and estimated 671 
their bacterial load as soon as they succumbed to respective infection treatments across selection 672 
regimes to understand the link between growth dynamics, virulence manifestation, and the 673 
maximum pathogen load that beetles could tolerate before death (n=13–80 replicates/selection 674 
regime/infection treatment). We analysed the bacterial load data using a generalised linear model 675 
fitted to a gamma distribution, with selection regime and time of assay as fixed effects for live 676 
beetles and only selection regime as fixed effects for dead beetles. 677 
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Transcriptome analyses      678 

Finally, to gain mechanistic insights into the evolved responses of P-, B- and M-beetles, we 679 
performed whole-body transcriptome analyses of 10-day-old virgin females after the respective 680 
infection treatments (or sham treatment) (n= 4 replicates; each comprised of 10 females pooled 681 
together from each replicate population/infection treatment/selection regime). Here, we sampled 682 
females from each infected population and their sham-infected counterparts across the control and 683 
three pathogen-selected regimes (See SI methods for more details on experimental protocol and 684 
analyses). Attributed to divergent temporal growth and virulence dynamics across pathogens and 685 
infection types, we extracted the RNA from beetles after the onset of the virulence manifestation 686 
(i.e., 10–15% mortality around 24h, 8h, or 16h after Pe, Bt and Mx infection respectively) to obtain 687 
gene expression profiles at comparable fitness variations, rather than at a specific time point post-688 
infection. We used Qiagen RNeasy Minikit to extract RNA following the manufacturer’s protocol. We 689 
sent the isolated RNA samples to a commercial sequencing facility (Neuberg Diagnostics Private 690 
Limited) for downstream processing. The quantity and quality of extracted RNA was checked on a 691 
Qubit 4.0 fluorometer (Thermofisher #Q33238) using an HS RNA assay kit (Thermofisher #Q32851) 692 
and on TapeStation using HS RNA ScreenTape (Agilent), respectively. The libraries was prepared 693 
using TruSeq® Stranded Total RNA kit (Illumina #15032618, Illumina #20020596) post poly-A 694 
enrichment (79). The sequencing was performed on an Illumina Novaseq 6000 platform using a 150 695 
bp paired-end chemistry. We analyzed the transcriptome data using an HTseq-based customized 696 
pipeline (80) and Tcas5.2 as the reference genome (81). We estimated differential gene expression 697 
(DEGs) using R package “DESeq2” (82). We used “pheatmap” and “RColorBrewer” packages in R to 698 
visualize expression profiles of all the DEGs by a pooled-population heatmap based on the z-score of 699 
normalized read counts. We counted the common vs unique sets of up- and down-regulated DEGs, 700 
including those with contrasting variations, among the three pathogen-selected regimes and 701 
visualized them using R-package “ComplexUpset”. We performed a principal component analysis 702 
based on the normalized count data of all the DEGs from all three pathogen-selected regimes. 703 
Subsequently, we obtained all the gene ontology terms (GO terms) using Blast2Go. GO terms for 704 
KEGG were used to perform pathway enrichment using the R-package “gProfiler2” and visualised 705 
using the R-package “ggplot2”.  706 

Subsequently, to understand the possible role of immune responses, we categorised DEGs with 707 
known immunological roles into five broad functional categories: (a) pathogen and immune 708 
receptors; (b) immune regulators; (c) inducible immune effectors, including AMPs and lysozymes; 709 
fast-acting constitutively expressed (d) melanisation response involving phenoloxidase pathway; and 710 
(e) production of reactive oxygen species. We estimated a linear combination of gene expression 711 
profiles for each immune category as a function of infection treatments and selection regimes, using 712 
canonical discriminant analysis (49, 83). Further, to understand how these gene expression profiles 713 
correlated with phenotypic variations (either individually with the hazard ratios (as a proxy of 714 
survival response) or bacterial load and as a combined estimate of both hazard ratio and bacterial 715 
load for each infection treatment and selection regime), we performed linear regressions and 716 
canonical correlation analysis (49, 83) respectively.  717 
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FIGURES 969 

 970 

Figure 1: A brief description of study design. (A) First, theoretical modelling to predict the adaptive 971 
dynamics against coinfections (dotted line) based on the within-host growth vs clearance rate of 972 
individual pathogens (solid line), timing of immune activation, the host mortality rate caused by each 973 
pathogen and their level of interference (α) ; (B) Subsequently, empirical validation of the predicted 974 
patterns of adaptive dynamics against coinfection, using experimentally evolving model insect 975 
Tribolium castaneum beetles adapting against two coinfecting bacterial pathogens with contrasting 976 
growth and virulence dynamics. Replicated beetle populations were infected with either fast-977 
growing Bacillus thuringiensis (Bt) or slow-growing Gram-negative bacteria Pseudomonas 978 
entomophila (Pe) or a combination of both the pathogens (Mx) to create three pathogen-selected 979 
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regimes such as B-, P- and M-regimes, respectively (n= 4 independent replicate populations with 75 980 
breeding pairs/ regime). We also had unselected control populations (C-regime) where beetles were 981 
sham-infected with sterile insect Ringer solution. We used post-infection survival and reduction in 982 
bacterial load in surviving (BLIS) beetles as proxies for the adaptive evolution of pathogen resistance, 983 
whereas bacterial load upon death (BLUD) served as a measure of lethal pathogen burden across 984 
selection regimes; (C) Finally, we used an RNA-sequencing approach to analyse underlying changes 985 
in gene expression profiles to gain molecular insights and explain the observed phenotypic variations 986 
during the experimental evolution.  987 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2024. ; https://doi.org/10.1101/2024.05.01.592035doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.592035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 988 

Figure 2: A mathematical model of coinfection landscape and host evolution. (A) Combination of 989 
pathogens with divergent growth dynamics during coinfection: fast-growing pathogens causing 990 
acute infections, followed by (i) rapid clearance (Rc) or (ii) persistent infection (Rp); Slow-growing 991 
pathogens causing acute infection, followed by (iii) rapid clearance (Sc) or (iv) persistent infection 992 
(Sp), using the combination of Baranyi model and an exponential decline model, developed by 993 
Duneau et al. 2017  (n=250; 10 data points for each of the 25 time points); (B) The shape of the 994 
coefficient of interference (α) was simulated for both rapidly cleared vs persistent pathogens, as well 995 
as for the various extent of β and γ; The coefficient of interference α between coinfecting pathogens 996 
is dependent on pathogen growth dynamics, and the parameter ε (combining the interference due 997 
to host immune modulations by the co-infecting counterpart (β) and direct resource-driven 998 
competition between the co-infecting pathogens (γ)); (C) Probable effects of coinfection by different 999 
combinations of pathogens (as described in A) on host survival, based on survival patterns against 1000 
individual pathogens by incorporating conditional probabilities of survival and variable degrees of 1001 
interference between pathogen types (as described in B); (D) The host adaptive trajectories across 1002 
various combinations of rapid- vs slow-growing pathogens only at low ε values. The trajectories were 1003 
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determined by the growth dynamics of rapidly proliferating pathogens and their total infection 1004 
window.  1005 
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 1006 

Figure 3: (A) Proportion of beetles from baseline population (henceforth, baseline beetles) surviving 1007 
after infection with bacterial pathogens B. thuringiensis (Bt), P. entomophila (Pe) or a combination of 1008 
both (Mx) (n= 30 females/treatment). The P-value represents differences across different infection 1009 
treatments (i.e., Bt, Pe, and Mx); Temporal changes in within-host growth dynamics of (B) Bt 1010 
and (C) Pe load in baseline beetles, both in the context of infections caused by single- (i.e., Bt or Pe) 1011 
vs co-infecting pathogens (i.e., Mx) (n= 10 replicates with pooled homogenate of 3 females/ 1012 
timepoints/infection treatment). P-values represent the effects of infection treatment (I) and the 1013 
assay time (T); (D) The load of Bt vs Pe cells in baseline beetles that succumbed to infection, assayed 1014 
till first 46h after Mx infection. Bt cells were detected only in beetles that died within the first 19h of 1015 
infection (n=9). At later time points (>19–45h), beetles (n=25) only carried Pe cells; (E) Beetle 1016 
survival across generations (Generation 3–30) at the end of the oviposition window (i.e., 8th-day 1017 
post-infection) in each replicate population of different pathogen-selection regimes (n= 4 replicate 1018 
populations/selection regime). P-values represent the pairwise differences between selection 1019 
regimes. Solid black triangles denote the generations where selection response was assayed by 1020 
comparing the post-infection survival of control (C) vs pathogen-selected regimes (B, P and M) 1021 
against their respective pathogens (n=24–60 females/regime/generation). The numbers in the 1022 
parentheses represent the number of replicate populations from each selection regime that showed 1023 
significantly improved survival during experimental evolution (also see Fig. S2). All the assays 1024 
involved 4 replicate populations, except generation 8, where only 3 replicate populations could be 1025 
assayed. 1026 
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 1027 

Figure 4: Within-host bacterial growth dynamics in control vs selected beetles. Temporal changes 1028 
in (A) B. thuringiensis (Bt) (B) P. entomophila (Pe) load of live (n= 6–10 replicates with pooled 1029 
homogenate of 3 females/selection regime/time point/ bacteria) and dead beetles sampled at 1030 
various time points after coinfection in M regime relative to C regime until 50 hours post-infection 1031 
(hpi); Temporal changes in (C) Bt and (D) Pe load sampled from live (n= 6–10 replicates with pooled 1032 
homogenate of 3 females/selection regime/time point/bacteria) and dead beetles in B and P regime, 1033 
relative to their C counterparts. Bt load from every dead B vs C beetle was recorded till 12hpi, 1034 
whereas live individuals were monitored till 18hpi as Bt cells are usually cleared by beetles by this 1035 
time. In contrast, Pe load from dead and live P vs C beetles was recorded only till 30hpi (beetle 1036 
mortality beyond this point was not tracked for bacterial load assay) and 72hpi, respectively. In each 1037 
case, bacterial load of dead beetles was extracted from individual beetles. The total number of 1038 
beetles that died is indicated in parentheses. In each panel, P-values either represent the effects of 1039 
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the selection regime (SR) and assay time (T) on bacterial load derived from live individuals; or the 1040 
main effect of the SR on bacterial load upon death.  1041 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 4, 2024. ; https://doi.org/10.1101/2024.05.01.592035doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.592035
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1042 

Figure 5: RNA sequencing and molecular insights into the evolved responses. (A) Heatmaps 1043 
denoting the differentially regulated genes with known immunological function in insects (described 1044 
in Table S14) after respective infection treatments (e.g., sham infection vs either Bt, Pe, or Mx) in 1045 
control vs pathogen-selected regimes (B-, P- or M-regimes), divided into five broad functional 1046 
categories:  (a) pathogen and immune receptors; (b) immune regulators; (c) inducible immune 1047 
effectors, including antimicrobial peptides (AMPs) and lysozymes; (d) melanisation response 1048 
involving phenoloxidase pathway; and (e) production of reactive oxygen species;  (B) Cumulative 1049 
gene expression profile of differentially expressed immune genes based on linear discriminant 1050 
analysis (LDA). The first axis of LDA is considered as gene expression profile for various categories of 1051 
differentially expressed immune-related genes. Here, we compared expression profile changes 1052 
between beetles with sham infection and infection with respective pathogens (Bt, Pe, and Mx) in 1053 
pathogen-selected (S) beetles (B-, P-, M-beetles) vs their respective unselected (C) beetle 1054 
populations. In each panel, significantly different groups are connected with different alphabets. 1055 
Alphabet assignments are not comparable across pathogens (separated by dotted lines); (C) 1056 
Correlation of phenotypic profile (based on combined estimates of post-infection survival and 1057 
bacterial load) with cumulative expression levels of diverse immune function categories described in 1058 
panel A, using canonical correlation analysis. Correlations are shown separately for each immune 1059 
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gene category. Corresponding statistics, including canonical R-square and R-squares representing 1060 
only significant pathogen-specific trends, are also shown for each immune gene category.  1061 
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