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A comprehensive atlas of allele-specific methylation in primary human cell types
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100s of novel loci exhibiting parentally-imprinted methylation

Parentally-imprinting methylation is often cell-type-specific

Abstract

Allele-specific DNA methylation, determined genetically or epigenetically, is involved in gene
regulation and underlies multiple pathologies. Yet, our knowledge of this phenomenon is
partial, and largely limited to blood lineages. Here, we present a comprehensive atlas of
allele-specific DNA methylation, using deep whole-genome sequencing across 39 normal
human cell types. We identified 325k genomic regions, covering 6% of the genome and
containing 11% of all CpG sites, that show a bimodal distribution of methylated and
unmethylated molecules. In 34K of these regions, genetic variations at individual alleles
segregate with methylation patterns, thus validating allele-specific methylation. We also
identified 460 regions showing parentally-imprinted methylation, the majority of which were not
previously reported. Surprisingly, sequence-dependent and parent-dependent methylation
patterns are often restricted to specific cell types, revealing unappreciated variation in the
human allele-specific methylation across the human body. The atlas provides a resource for
studying allele-specific methylation and regulatory mechanisms underlying imprinted

expression in specific human cell types.
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202 deep WGBS methylomes Fragment-level identification
of 39 cell types of bimodal methylation
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Introduction

DNA methylation is a stable epigenetic mark that alters the accessibility and 3D packaging of
the genome, allowing differentiated cell types to selectively utilize transcriptional programs and
maintain their cellular identity throughout life'. Methylation patterns are generally identical
between the paternal and maternal alleles®®, although a small fraction of the genome,
estimated at 5% based on common SNPs, was reported to show allelic methylation
differences* """,

The molecular basis of monoallelic methylation patterns and their functional consequences
vary. In the case of meQTLs, genetic variation is associated with varying levels of methylation.
One cis-acting genetic variant is associated with hyper-methylation, whereas another variant is
associated with hypo-methylation, possibly to regulate the expression of an adjacent gene’. In
other cases, for example in mammalian female X-chromosome inactivation, at some early
embryonic developmental stage each cell randomly methylates one chromosome, and this

selection is then maintained in future cell divisions®'?~'4

. In other cases, allelic methylation
relates to the parent of origin, wherein either the maternal or paternal allele is methylated'>®,
Parental allele-specific methylation differences at imprinting control regions (ICRs), that are
established early in the sperm and egg and retained throughout development, serve as the
basis for genomic imprinting whereby genes are expressed only from one specific parental
allele’®??. These epigenetic differences play an important role in placental function and in
embryonic development, and dysregulation of imprinted genes is associated with several
developmental disorders, including Beckwith-Wiedemann syndrome, Angelman syndrome, and
Prader-Willi syndrome®*22,

Nonetheless, our understanding of allele-specific methylation remains incomplete. To a large
extent, this is due to the fact that most genome-wide methylome datasets are based on DNA
methylation arrays (lllumina BeadChip 450K and EPIC), and are limited to a predefined set of
CpGs, capturing only 1.5%-3% of the 28M methylation sites in the human genome.
Additionally, methylation arrays capture the average methylation levels of individual CpGs, and
genetic (SNP) information or epigenetic dependencies between neighboring sites on the same
DNA molecule are unobservable. Finally, the study of imprinting and allele-specific methylation
in humans was previously limited to few cell types, focusing on easily accessible blood
DNA15,28—31 .

Several next-generation sequencing studies recently analyzed allele-specific methylation (ASM)

30,31

from blood'®?°. Other studies analyzed uniparental disomy samples using a combination of
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iPSC, ESC and blood cells®?, or focused on sequence-dependent allele-specific changes’.
Additionally, allele-specific gene expression was studied across human tissues'®, using
RNA-seq data from GTEx®, and reported biallelic expression for known imprinted genes in few
tissues (e.g. IGF2 in the liver'®); similarly tissue-specific allelic expression was reported in
mice®. Such cases of cell-type-specific escape from parental repression raise questions as to
the molecular mechanisms underlying imprinting, their relation to allele-specific methylation,
and how they are modified in specific cell types, thus exemplifying the need for a detailed
genome-wide pan-tissue atlas of allele-specific methylation. Recently, we characterized the
DNA methylation landscape of over 200 surgical and blood samples that were obtained from
135 donors, purified to homogeneity, and deeply sequenced at a whole-genome scale®.

Here, we developed computational algorithms for the identification and characterization of
allele-specific methylation (ASM), including sequence-dependent effects (e.g. meQTLs) as well
as parentally methylated regions. Overall, we identified 325k regions with bimodal DNA
methylation patterns, 34k of which overlap heterozygous SNPs that segregate with DNA
methylation, thus supporting allele-specific differences. We also identified 460 putative
parentally imprinted regions where allele-specific methylation across multiple donors cannot be
explained by heterozygous variations. These include 45 known imprinting control regions (out
of a total of 55 known ICRs), another 34 novel regions near known imprinted genes and 381
tissue-specific parentally methylated regions, with one novel region validated across 33
parent-child trios. These parental DNA methylation regions are enriched for regulatory regions,
polycomb domains, and origins of asynchronous replication. The atlas presented here expands
our knowledge of parental imprinting across specific cell types, with implications for
understanding the crosstalk between genetic variation, DNA methylation and allele-specific

expression.
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Results

To analyze the landscape of allele-specific methylation and imprinting, we revisited our human
DNA methylation atlas describing the methylomes of 202 healthy samples, representing ~40
primary cell types collected and purified from 135 donors®. The purity of these samples and
the high sequencing depth facilitate a fragment-level analysis of DNA methylation, capturing
both genetic and epigenetic information from each sequenced fragment. This dataset offers a
unique resource to uncover cell-type-specificity of allele-specific methylation. To further
understand how ASM may impact gene expression, we integrated the methylation atlas with

allele-specific expression data from GTEx>® spanning >50 tissues and cell types (Figure 1).
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Figure 1. Schematic workflow: A pan-tissue human atlas of bimodal, allele-specific and
parent-of-origin DNA methylation. Using fragment-level analysis, we identified 324,759 genomic loci
showing a mixture of fully methylated and fully unmethylated DNA fragments. Genetic variation at
neighboring SNPs was used to split the fragments by genotype, and to identify 34,426 loci that show
allele-specific methylation. These were analyzed across multiple donors and classified as
sequence-dependent allele-specific methylation (SD-ASMs, bottom-left) where methylation consistently
segregates with one allele, or parental methylation (bottom-right) if both methylated and unmethylated
epialleles exist, regardless of the genotype, suggesting that methylation is associated with parental,
rather than genetic, origin. Overall, we identified 460 parental loci, including most known imprinting
control regions, as well as multiple novel regions, which we associate with neighboring genes showing
allele-specific expression or allelic bias. Remarkably, some of these regions also show cell-type-specific
effects, including escape of allele-specific methylation.

Identification of regions with bimodal methylation
Our initial analysis focused on identifying regions of bimodal methylation, where half of the

sequenced reads are methylated, and the other half are unmethylated®=®%". Such bimodality
could be attributed to differential methylation in sub-populations of cells; however in the case

of primary cell types purified to homogeneity from a single donor, the existence of two
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epialleles suggests allele-specific methylation (ASM) - either at imprinting control regions (ICRs)
where one parental allele is methylated while the other is not, or at sequence-dependent ASM
(SD-ASM) regions, where a heterozygous SNP is associated in cis with differential
methylation”"®. To identify bimodal regions, we classified each DNA fragment, typically covering
multiple neighboring CpG sites, as “mostly unmethylated” (U), “mostly methylated” (M), or
“mixed” (X)*®. We then calculated the percent of U/X/M fragments in each genomic position,
and developed an algorithm to identify genomic regions consisting of a mixture of methylated

and unmethylated fragments (Figures 2A, S1).
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Figure 2. Joint genetic/epigenetic analysis across 202 samples from 135 donors identifies parental
allele-specific methylation. (A) A computational algorithm identifies bimodal regions (n=324,759), by
analyzing deeply sequenced methylomes from 39 cell types. Shown is a bimodal region
(chr19:54039871-54043130, hg19, highlighted) where 51% of DNA fragments are methylated (black),
and 46% are unmethylated, in a colon macrophage sample purified from a single donor. (B) Similarly,
DNA fragments from Adipocytes were split by a common T/G SNP (rs2071094, chr11:2021164) to show
allele-specific methylation. Fragments carrying the T allele are unmethylated (white), whereas G allele
fragments are methylated. (C) Contingency table of alleles by methylation, as shown in (B). All 29
unmethylated fragments are from the G genotype, whereas all 22 methylated ones carry the T genotype
(adj. p-value<7.1E-19, Fisher’s exact). (D) Genetic/Epigenetic table across multiple samples/cell types
(rs9330298, chr1:153590254, hg19). Here, for all samples (homozygous or heterozygous), unmethylated
fragments (U) have the G genotype, whereas the methylated fragments (M) are associated with the
alternative T genotype, consistent with sequence-dependent allele-specific methylation (SD-ASM). (E) A
similar table for rs80269905 (chr11:2720873), is consistent with parental imprinting. All samples are
bimodal (showing both U and M fragments), and heterozygous samples are associated with
allele-specific bimodal patterns but switch across different donors.
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Importantly, our algorithm is based on fragment-level analysis and does not rely on fixed-sized
windows, allowing for flexible and accurate determination of start and end positions, at a single
base-pair resolution. Overall, we identified 324,759 regions showing a significant bimodal
pattern in at least one sample (Data S1). These bimodal regions cover all (100%) known
imprinting control regions, with a total of 172 Mb (5.7% of the genome, 11% of all CpG sites).
On average, each individual sample shows bimodal patterns across 2.45% of CpG sites
(std=1.6) or 1.15% of the genome (34.76Mb, std=0.94), with most bimodal regions (65%)

showing bimodal patterns in at least 10 samples.

Ubiquitous and cell-type-specific methylation patterns at known imprinting control
regions

Most notable of these regions is the ICR for IGF2?® (chr11:2018812-2024740, hg19), which
shows bimodal methylation patterns in all 202 samples. As Figure 3A-B demonstrates, half of
the sequenced reads at this region are methylated across multiple CpGs, whereas the other
half are unmethylated, consistent with bimodal allele-specific patterns originating from
differential parental methylation. Similarly, the known ICRs?® of DIRAS3, ZDBF2/GPR1-AS,
PLAGL1, PEG10, and others are ubiquitously bimodally methylated (Figure S2).

Remarkably, not all ICRs are bimodally methylated across all adult tissues. For example, IGF2R
is maternally expressed in mice, but not in humans® where both alleles are expressed,
purportedly due to the loss of the ncRNA Air*®*'. Nonetheless the known ICR for IGF2R
(chr6:160426558-160427561, hg19) was thought to show allele-specific methylation in all
human adult tissues***?*3, Using our data, we show that while the ICR is generally bimodal, it is
fully methylated, across both alleles, in all 13 colon and small intestine epithelium samples
(Figure 3C). Besides IGF2R, we found 13 known ICRs that show cell-type-specific alterations of
the bimodal (imprinted) pattern. Intriguingly, we observed regions that became biallelically
hypomethylated as well as regions that became fully methylated, suggesting high
cell-type-specific plasticity at parentally methylated regions (Figures S2, S3).

Additionally, a detailed examination of known ICRs across different cell types identified
fluctuations in their exact boundaries, as well as internal patches that are fully methylated in
some cell types. For example, the germline ICR of H19/IGF2% is bimodal in all blood samples
but contains a small 700bp-long region of biallelic methylation in hepatocytes and pancreatic

samples (Figure 4A-B).
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Figure 3. Pan-tissue analysis of bimodal methylation in known imprinting control regions (ICRs).
(A) DNA fragments from adipocytes purified from a single donor, at the known imprinting control region
(ICR) of the IGF2 gene (chr11:2018812-2024740, hg19). 52% of fragments are fully methylated (black
circles) whereas 45% are fully unmethylated (white circles). (B) Stacked bars showing the percent of
methylated (red), unmethylated (green) or mixed (yellow) DNA fragments, across 202 purified samples,
spanning from 39 cell types, where a nearly balanced pattern of 1:1 ratio between unmethylated and
methylated fragments is shown for this known imprinted region. (C) Same for the known ICR of IGF2R
(chr6:160426558-160427561, hg19), showing a bimodal (imprinted) pattern across all samples, except
for small intestine and colon epithelial cells (n=13 samples), where both alleles are fully methylated (right,
bottom). Grey asterisks mark samples from a single donor who exhibits bi-allelic methylation.

We therefore used the genome-wide catalog of bimodal regions to automatically highlight and
mask out intra-ICR regions that show a biallelic methylation pattern (hyper- or
hypo-methylated), thus improving the positional definitions of known ICRs near imprinted
genes (Table S1).
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Figure 4. Tissue-specific loss of imprinting in intra-ICR patches. (A) Average CpG methylation plot
(chr11:2018807-2021899) within the known ICR for H19/IGF2. The highlighted 692bp patch
(chr11:2020097-2020789) shows monoallelic methylation in purified granulocytes and T cells samples
(as expected) but is fully methylated in hepatocytes, and pancreas ductal epithelial samples. An average
of 50% methylation is expected for known ICRs (dotted line). (B) Sequenced DNA fragments from within
the highlighted region, revealing intra-ICR biallelic methylation. Indeed, almost all fragments from the
hepatocytes and pancreas are fully methylated, compared to half of granulocyte and T cell DNA
fragments.

Allele-specific methylation patterns segregated by SNPs

Bimodal methylation patterns within a pure cell population can originate from random
patterning (metastable epialleles)*, from genetic polymorphisms (meQTLs), or from
parent-specific mechanisms. To distinguish between these possibilities, we developed a
statistical procedure to test whether epialleles are associated with specific SNPs. We examined
gnomAD* and identified common SNPs (minor allele frequency, MAF >1%) that intersect with
our set of 325k bimodal regions. In 152k regions, at least one sample exhibited both bimodal
methylation and heterozygous SNP (Figure 2B-C). Overall, we identified 55,271 SNPs that
segregate within 34,426 unique allele-specific methylation regions (Table S2). These regions
show a bimodal methylation pattern across DNA fragments that cover =3 CpG sites, which is
segregated in at least one sample. Thus, 4% of SNPs tested were found to associate with

ASM, which is more conservative than previous estimates*”®. Note that for the majority of
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bimodal regions, where no informative SNP were found, we are unable to assess if their
methylation is sequence-dependent or not. Since sequence reads are typically ~200bp long, it
is impossible to assess the presence of distant genetic variants controlling methylation. Thus,
the 34k regions that show bimodal methylation associated with SNPs is a lower bound, and the

actual magnitude of sequence- or parental-controlled methylation is likely much larger.

Parental or sequence-dependent allele-specific methylation?

Once regions showing allele-specific methylation were identified, we examined their genetic
and epigenetic patterns across multiple samples. As figure 2D demonstrates, regions of
sequence-dependent allele-specific methylation (SD-ASM)"'>'® show similar associations
between allele and epiallele across donors, including biallelic methylation patterns for
homozygous donors. Conversely, parental methylation will show bimodal patterns across
multiple donors, regardless of genotyping (Figure 2E). Using stringent statistical thresholds, we
identified 460 putative parental regions, covering most known imprinting control regions (45/55,
82%)?"?®, The remaining parental regions we identified include 78 regions adjacent to known
imprinted genes (up to 100Kb), 14 that reside near known ICRs (<100Kb), and 373 parental
regions whose function is yet to be determined, of which 347 are novel (Table S3). Figure S4
shows the distribution of bimodality, parental methylation, and known ICRs across the human
genome (hg19), and figure S5 shows the distribution of the number of samples exhibiting

bimodality, per parentally methylated region.

Validation of parent-of-origin methylation at novel tissue-specific locus

To validate tissue-specific parent-of-origin methylation patterns, we selected one novel
parental region and studied its methylation patterns across different tissues and cell types. We
focused on a genomic region that is fully methylated in blood but bimodal in epithelial cells
(Figure 5A), and performed a targeted-PCR methylation sequencing across 33
mother-father-child trios (Tables S9, S10). This allowed us to capture the epigenetic landscape
across multiple CpGs while genotyping the target SNP at each sequenced molecule. As
predicted by the WGBS atlas data, unmethylated fragments in this locus were associated with

the paternal allele in all discernible cases (Figure 5B-F).
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Figure 5. Validation of a novel cell-type-specific parentally methylated region. (A) Fragment-level
analysis of a novel parent-of-origin cell-type-specific region we identified (chr8:61627212-61627412)
shows biallelic methylation (red) in endothelial cells, neurons, fibroblasts, and blood cells, but bimodal
methylation patterns in hepatocytes and epithelial cells (1:1 ratio of fully methylated and fully
unmethylated sequenced fragments of =3 CpGs). (B-F) Genetic/epigenetic analysis of parental
methylation in tongue epithelial cells, validated across 15 families (a total of 33 children and their
parents). For each trio, we used targeted-PCR next-generation sequencing (after bisulfite conversion) to
measure the genotype (rs7826035, C/T, chr8:61627312) and the methylation status of six CpG sites
(chr8:61627190-61627349, measured on the bottom strand). (B) A trio (family ID IMP017) showing
homozygous C/C for the mother, with C/T heterozygosity for the father. The child T allele is therefore of
paternal origin. Blue bars correspond to relative allelic read count. Unmethylated DNA fragments (green
bars) are limited to the parental T allele, suggesting maternal-specific methylation. (C) same as (B) for a
family with three heterozygous children (IMP012). (D) A family where the T allele of heterozygous child 1
is maternal, whereas unmethylated fragments (green) are all from the paternal C allele. Two additional
siblings are C/C homozygous and not shown (family ID IMP005). (E-F) Examples of a C/C homozygous
family and a C/T heterozygous family, where the parent-of-origin of unmethylated fragments cannot be
associated with a parent-of-origin (family IDs IMP014, IMP011). All remaining families were homozygous
(C/C, not shown).
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Parental allele-specific methylation at regulatory regions

Parent-of-origin differential methylation is key to regulating allele-specific expression of
imprinted genes. We therefore used functional annotations to test whether our catalog of
parentally methylated regions is enriched for various genomic features. Indeed, we have
observed significant local enrichment for promoters (68% of regions, chromHMM annotations),
enhancers (8%)*°, transcription factor binding sites*’ (Tables S4, S5, Figure S6), histone marks

of active gene regulation (H3K27ac, 56%)*, and origins of replication (46% of parental

regions)*.
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Figure 6. Enrichment of functional annotations at putative parent-of-origin allele-specific regions.
(A) Percent of parentally-methylated ASMs annotated as active promoters and bivalent enhancers
(chromHMM TssA and EnhBiv terms, respectively). (B) Enrichment of gene regulatory activity, based on
H3K27ac peak annotation in 387 ChlP-seq experiments (AREs)*. (C) Enrichment for Polycomb repressive
regions (chromHMM ReprPC). (D) Local enrichment for origins of replication, identified using peaks of
nascent strand DNA (left), as well as early replication, measured as the ratio of S to G1 phase DNA
fragments®,
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These observations highlight the regulatory role of the parental regions we identified through
various molecular mechanisms. Furthermore, gene-set enrichment analysis for the putative
parental regions we identified showed a 47-fold enrichment for “maternal imprinting” (FDR <
2.6E-42). Intriguingly, over 46% of parental regions (213/460) overlap with origins of
replication*, compared to 17% expected by random (FDR < 9E-58), with an average S/G1 ratio

of 1.46 at parental regions (Figure 6D).

Parental methylation near imprinted and allele-biased genes

Having identified regions exhibiting putative parent-of-origin allele-specific methylation, we
sought to associate them with imprinted genes and their ICRs (Table S6). Combined with Data
S1, this map represents a comprehensive catalog of imprinting control regions and parental
DMRs in humans. Remarkably, we identified novel parentally methylated regions near seven
imprinted genes for which no ICR was previously found, including PAX8/PAX8-AS1, GNG7,
ZNF215, UTS2, AXL, and KIF25 (Table S6). As figure S7 shows, the novel region we identified
18Kb upstream to PAX8 (chr2:113953706-113955952) shows bimodal methylation in neuronal
cells, on par with allele-biased gene expression in the brain'.

We therefore used expression data from GTEx to examine allele-specific expression across the
human genome, using 15,253 samples collected from 838 donors® -, and identified 2,246
genes exhibiting a significant bias in at least one tissue type. Of these, 216 genes are located
near parental/bimodal regions in matched cell types (<250Kb), compared to 111 genes
expected at random (std=10; permutation test p<4E-34, Table S7). These findings further
support the idea that bimodally methylated regions control allele-specific gene expression in

cis.

Putative mechanism underlying tissue-specific biallelic expression of imprinted genes

Despite the common canonical examples wherein imprinted genes are monoallelically
expressed in all cell types, in certain instances imprinted genes were shown to “escape”
parental repression and to exhibit biallelic expression in a tissue-specific manner'®®*%, One
notable example is IGF2, which is monoallelically expressed in most tissues, but is expressed
in the liver from both maternal and paternal alleles'® (Figure 7A). The mechanisms underlying
the parental regulation of IGF2 are well studied - in the paternal allele, the primary ICR is
methylated to prevent binding of the insulation factor CTCF, thus allowing IGF2 activation by

distal enhancers. Conversely, the maternal allele is unmethylated and CTCF is bound, leading
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to distal activation of H19, but not IGF2%*° (Figure 7B). However, the regulatory mechanisms
underlying biallelic expression of IGF2 in the liver have not been elucidated>**°.

Our data shows bimodal methylation at the IGF2 ICR across all samples (Figure 3A-B) including
hepatocytes, suggesting that a different mechanism is underlying liver-specific maternal
activation. We identified two genomic regions in the vicinity of IGF2 that are fully unmethylated
in hepatocytes (in both alleles) but are fully methylated elsewhere in the human body®. These
two putative enhancers are also characterized by enhancer-specific chromatin marks

(H3K4me1 and H3K27ac), and were annotated as putative liver enhancers by chromHMM?>¢%7,
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Figure 7. Putative novel enhancers overcome IGF2 imprinting in human hepatocytes. (A)
Allele-specific read counts for IGF2 (GTEx) show biallelic expression of either the A (X-axis) or B (Y-axis)
alleles (blue dots). Conversely, mRNA from liver cells (red) show a diagonal, 1:1 allelic ratio, consistent
with liver-specific escape of imprinting. (B) Known imprinting control mechanism for IGF2/H19. In the
paternal allele (top), methylated CpGs (black lollipops) prevent CTCF from binding the ICR, facilitating the
activation of IGF2 by a distal enhancer. Conversely, in the maternal allele CTCF binds the unmethylated
ICR, acting as an insulator®®*°, We propose a mechanism by which liver-specific enhancers activate IGF2
in both maternal and parental alleles, thus escaping maternal imprinting. (C) Genomic view of the
H19/IGF2 locus. The putative liver enhancers (highlighted in blue) show strong H3K4me1 and H3K27ac
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ChIP-seq peaks in adult liver tissue (green and blue tracks), but not elsewhere (not shown). chromHMM
adult liver (AL) track shows a putative annotation of this region as active enhancers (yellow). (D)
Fragment-level analysis using our whole-genome methylation atlas shows fully unmethylated fragments
(green) in six hepatocyte samples, at two adjacent putative enhancers (black frame), compared to fully
methylated fragments in other cell types, where IGF2 is maternally imprinted.

These findings suggest the presence of liver-specific enhancers that activate IGF2 specifically
in the liver, including in the otherwise silenced maternal allele, thus overriding ICR-driven
maternal allele repression (Figure 7B-D). Based on this example, we developed a
computational score to compare allele-specific gene expression data® with the presence of
differentially unmethylated neighboring regions, and identified putative cell-type-specific
enhancers for 34 imprinted genes (Table S8), suggesting a general mechanism for

tissue-specific escape from parental imprinting.

Discussion

We describe here a comprehensive atlas of allele-specific DNA methylation in all major human
cell types, based on deep whole-genome bisulfite sequencing of DNA from freshly isolated
cells. A unique strength of this atlas is that it is based on DNA from purified cell types, allowing
identification of bimodal methylation patterns that are due to within-cell-type phenomena,
rather than cell mixture effects.

Overall, we identified 325k genomic loci that exhibit bimodal methylation patterns in at least
one sample, covering 5.7% of the genome and 11% of CpGs (average of 2.45% of CpGs in
bimodal regions, per sample). We observed differences in bimodality both between and within
cell types, due to cell-type-specific effects in parental methylation, as well as genetic
differences between individuals in regions associated with sequence-dependent allele-specific
methylation. In 10% of bimodal regions (34k loci), we were able to identify SNPs that segregate
with methylation, demonstrating allele-specific methylation. The remaining loci may feature
allele-specific methylation with distant sequence determinants that cannot be captured with
short-read sequencing, or cases in which one random allele per cell is methylated, similarly to
the situation in the mammalian X chromosome'. We were able to identify some definitive
examples of the latter (i.e. bimodal methylation that is neither parental nor allele-specific),
therefore the scope of this phenomenon remains to be determined. Additionally it is possible
that in some of our purified samples there are hidden sub-types of cells that harbor distinct

methylation patterns (e.g. different types of pancreatic beta cells, all expressing insulin).
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The comprehensive catalog of allele-specific and parental methylation presented here is
consistent with previously published maps of parentally-derived ASM’'°3%3" The main
differences we present stem from our use of homogenous samples of various purified cell
types, deeply sequenced across multiple donors and cell types. Two previous studies utilized
samples with uniparental disomy and conducted bisulfite sequencing from blood to collectively
discover 92 parentally methylated regions®*®'. Of the 36 regions identified by Court et al., we
classified all 36 as bimodal, with 32 supported by SNPs indicating parental methylation. Joshi
et al. identified 79 regions, of which we classified 76 as bimodal, with 44 supported by
heterozygous SNPs in our samples. A more recent study utilized a WGBS blood dataset
consisting of 285 samples with complete parent-of-origin genetic information for over 1.9
million SNPs'®, and identified regions of parental ASM. 76% of these (174/229) were recognized
as bimodal in our atlas, and 85 regions had enough samples with heterozygous SNPs to be
classified as parentally methylated. The remaining 55 regions did not pass our strict threshold
for statistical significance for bimodality. Thus our atlas reproduces most regions identified by
previous studies in blood cell types, and highlights the importance of studying allele-specific
methylation in a variety of cell types.

The association of methylation patterns with SNPs allowed us to identify 460 genomic regions
with putative parental methylation. Reassuringly, most known imprinting control regions - loci
with parentally regulated methylation - are present in this list (45/55). In addition, 78 of the loci
we discovered are associated with known imprinted genes, providing a putative mechanism of
regulation, and 14 loci reside in vicinity to known ICRs (up to 100kb). The remaining 373 loci
represent a comprehensive landscape of parental allele-specific methylation. We validated one
such locus, showing parentally-associated allelic differences in epithelial - but not blood - cells,
using trio analysis in swab samples. The imprinting status of the other loci as well as their
function merit further investigation. Further, the validation of this methodology and the
existence of tongue epithelium-specific parental ASM markers exemplifies the plausibility of
using tongue swabs to detect congenital imprinting-related disease. To date, only screens
using blood samples have been developed?® .

The substantial number of loci with putative parental allele-specific methylation allowed us to
characterize these regions, revealing enrichment for regulatory regions (bearing chromatin
marks of enhancers and promoters) and for polycomb targets, consistent with a role in
regulation of monoallelic expression of nearby genes. Putative imprinted loci also tend to reside

near origins of DNA replication, raising the testable hypothesis that parent-of-origin dependent
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asynchronous DNA replication controls parent-of-origin-dependent  allele-specific
methylation®®*°. Further analysis is required to investigate the relationship between
cell-type-specific allele-specific methylation and cell-type-specific asynchronous DNA
replication.

One striking phenomenon emerging from the atlas is tissue-specific escape from imprinting.
Previous studies of imprinting mostly focused on blood cells, and assumed that parental
imprinting in the gametes persists in all tissues'®?2. The presence of multiple rarely studied cell
types in the atlas exposed the fact that many parentally determined loci (including almost a
quarter of known ICRs, 13/55) escape imprinting and become fully methylated or fully
unmethylated in specific cell types. The biological significance of this fascinating phenomenon
and the underlying molecular mechanisms likely vary, depending on the affected gene and cell
types. Our analysis of select cases suggests one way by which specific cell types may
overcome monoallelic expression imposed by parent-of-origin-dependent methylation. As we
showed for IGF2, the presence of a tissue-specific enhancer near the gene (in this case, a
proximal enhancer that is fully unmethylated only in hepatocytes) likely allows expression from
both alleles, despite monoallelic availability of the remote enhancer.

The comprehensive atlas of parentally-imprinted and sequence-dependent DNA methylation in
a variety of human cell types provides a platform for additional computational and wet lab
analysis, to address the fundamental question of how, why, and to which extent cells
distinguish between different alleles of the same gene, a phenomenon with important biological

and clinical implications.

Methods

Materials Availability
All WGBS sequenced and derived data is available on GEO (accession no. GSE186458).

Targeted PCR sequencing of trios at the novel tissue-specific region will be made available by
the date of publication. The code will be made available by the date of publication. Any
additional information required to reanalyze the data reported in this paper is available from the

lead contact upon reasonable request.

Experimental model and study participant details
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Sequencing data (150bp paired-end reads, 984 million pairs per sample) for the atlas were
mapped to the human genome (hg19) and analyzed using the software suite wgbstools®
(github.com/nloyfer/wgbs_tools) as described in Loyfer et al’.

The clinical study of the trios was approved by the ethics committee of the Hadassah Medical
Center. Procedures were performed in accordance with the Declaration of Helsinki
(HMO-0198-14). Swab sampling donors have provided written informed consent. Participant
details are provided in Table S9.

This study was approved by the Hadassah Hospital Institutional Review Board and all

participants provided signed informed consent (adults) or parental consent (children).

DNA processing

Swab samples were collected with an inoculating loop by swabbing it against the tongue of
healthy donors for 20 seconds and breaking the inoculating loop into a 2ml Eppendorf tube
with 200ul of PBS. The sample was saved in a freezer at -20C until extraction. DNA extraction
was performed via DNeasy Blood and tissue kit (QIAGEN) according to the manufacturer’s
instructions with the following change: incubation time of AL buffer was performed overnight.
The DNA concentration was measured using Qubit High Sensitivity double-strand molecular
probes (Invitrogen) and bisulfite treatment (Zymo). Bisulfite-treated DNA was PCR amplified
using primers (Table S10) specific for bisulfite-treated DNA but independent of methylation
status at monitored CpG sites or genotype. We used a multiplex 2-step PCR protocol as
described in Neiman et al®®. Pooled PCR products were subjected to multiplex NGS using the
NextSeq 500/550v2 Reagent Kit (lllumina). Sequenced reads were separated by barcode,
aligned to the target sequence, and analyzed using custom scripts written and implemented in
R. Reads were quality filtered based on lllumina quality scores. Reads were identified by having
at least 80% similarity to target sequences and containing all the expected CpGs in the
sequence. CpGs were considered methylated if “C” was read at a CpG site and were
considered unmethylated if “T” was read. The efficiency of bisulfite conversion was assessed
by analyzing the methylation of non-CpG cytosines. We then determined the fraction of
molecules in which all CpG sites were unmethylated. Further ASM analysis was similar to those
of the WGBS samples. Reads were segregated by genotype at SNP rs7826035 (C/T,
chr8:61627312l). For C/T SNPs only bottom stranded reads are considered. Tongue swab
samples contain a mix of blood and tongue epithelial cells. Since the novel region detected is

bi-allelically methylated in blood cells we verified that unmethylated fragments (which must
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come from tongue-epithelial cells) always contained the paternal genotype. All samples were
required to contain at least 1000 sequenced fragments and each C/T allele was determined to
be present if at least 40% of reads exhibited the relevant genotype. We classified children as
exhibiting paternal-specific demethylation if over 95% of unmethylated fragments contained

the paternal genotype.

Data and identification of bimodal methylation regions

Sequenced read pairs were then merged, and classified as hyper-methylated (M) if covering
three CpGs or more, with an average methylation (per fragment) = 65%. Similarly,
hypo-methylated (U) fragments were defined as having average methylation < 35%. Fragments
with less than 3 CpG sites are ignored, and the remaining fragments, with an avg. methylation
of (85%-65%), were classified as mixed (X). For each CpG site, we calculated the {U,X,M}
proportions across all overlapping fragments with >3 CpGs. Bimodal regions were then defined
as contiguous regions (= 5 CpGs) where the proportion of both hyper- and hypo-methylated
fragments (i.e., U, M) is = 20%.

We then devised a statistical test to distinguish between a null hypothesis model H, of one
epi-allele (possibly showing ~50% methylation, on average), vs. a mixture model H; of two
equally likely epi-alleles (A, B), corresponding to DNA fragments originating from the
methylated and the unmethylated alleles. Both models assume conditional independence
between neighboring CpGs, and model the expected methylation at the i'th CpG (for a given

epiallele) using a Bernoulli parameter P(rl_lepiallele) where T, is an indicator for whether the

DNA fragment r shows that CpG i is methylated. For H,, these probabilities could be estimated
using a maximum likelihood estimator, based on the empirical probability of methylation at the
i'th CpG (beta value). For H1, we used the expectation-maximization (EM) algorithm, to
iteratively infer the posterior probability that each fragment r is associated with each epiallele
Pr(A|r), Pr(B|r), and estimated the expected methylation P(rl,|A), P(ri|B) of each CpG i given

the two epialleles.

In Hy, we define the probability to be methylated at CpG i as: 6.

Thus, the likelihood of one region, based on H,, could be viewed as the product of likelihood

across all fragments:
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Alternatively, based on H; where the probability to be methylated on allele A is eli and on allele

Bis ef, the likelihood could be described as:

[LII 5@ —o=r +
R

We infer the posterior probability P(A|r) per read. We assign each read to an allele by choosing

(02)7 (1 - 62)1

b | =

the allele with the maximum posterior probability (hard assignment). We then calculate the

expected methylation probability per CpG, for each of the A or B epialleles (expected counts).

Finally, we applied a log-likelihood ratio test to estimate the statistical significance of each
bimodal region (comparing the two-epiallele mixture model H, with the nested, single-epiallele,
H, model), using the software package wgbstools (test_bimodal function)®. p-values were then

corrected for multiple hypotheses using the Benjamini-Hochberg FDR correction scheme®”.

To further extend identified bimodal regions beyond domains of densely located CpG (resulting
with sequenced fragments covering = 3 CpGs), with allow expansion into flanking regions, as
bimodality is maintained (namely, while both hypo- and hyper-methylated fragments are >
20%).

This computational procedure was applied to each sample independently, to account for
genetic and environmental changes. We then set the start and end position of each bimodal
region to the closest methylation block boundary, as determined using a genome-wide

segmentation of the genome, using the wgbstools package as described in Loyfer et al*.

Allele-specific methylation

To associate bimodal regions with two independent allele-specific methylation (ASM) patterns,
we integrated these regions with 1,360,985 SNPs showing a minor allele frequency (MAF) >
1%, using GnomAD* data (Ashkenazi Jewish population). For each such SNP, we retained the
heterozygous samples (= 5 fragments from each allele), and built a contingency table

comparing the number of U/X/M fragments (=3 CpGs) from each individual genotype. Fisher’s
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exact test was then used to test for association between allele and methylation patterns,

followed by Benjamini-Hochberg FDR correction® (Table S2).

Sequence-dependent and parent-of-origins ASMs

Once allele-specific methylation (ASM) was identified, per sample, we performed a broad
cross-sample analysis to test for sequence-dependent (SD-ASM) and parent-of-origin effects.
For SD-ASM, all samples (of a given cell type, or in general) are expected to show concordance
between genotype and methylation. That is, regardless of donor heterozygosity, all fragments
from a given allele (genotype) are expected to be methylated, whereas fragments from the
alternative allele not. Conversely, parent-of-origin effects are expected to show bimodality
regardless of heterozygosity, and switch alleles between unrelated donors. Specifically, we
require =3 samples to exhibit ASM and that the association between genotype and hyper/hypo
methylation switch across samples. Thus if one sample allele A is associated with
unmethylated epialleles and in another sample allele A is associated with methylated epialleles,
the region is classified as putatively parent-or-origin derived ASM, as opposed to SD-ASM.
Parent-of-origin ASMs were defined as novel if they were not identified in the previous studies

of Zink et al., Court et al., Joshi et al., and Orjuela et al'>?*3",

Gene enrichment analysis

These putative parent-of-origin ASM regions were compared against all imprinted genes, as
reported by Tucci et al®®, as well as known imprinting control regions (ICRs) from Monk et al?®.
For the definition of promoters, bivalent enhancers, and polycomb repressive we used
chromHMM genomic annotations®. Each type was merged (“bedtools merge”) across all cell
types. Active regulatory elements were determined using H3K27ac ChlIP-seq data*. Origins of
replication and S/G1 ratio bedGraph files were taken from Mukhopadhyay et al*®. To test
enrichment, we measured the intersection of the merged annotation track (bigwig) with the list
of putative parental-ASM regions (“bedtools intersect”). Statistical significance was estimated
using a permutation test of 100 random length-preserving chromosome-wide shuffles, fitted

using a Normal distribution.

Identifying biased allelic expression

Allele-specific expression data from GTEx (https://gtexportal.org/home/datasets, v8 phASER

haplotype matrix) was used. For each gene, a background noise model was applied by fitting a
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Normal distribution for the A vs. B allele-specific read count, at discrete bins of expression
levels. Any gene/sample with allelic bias = 3 standard deviations was classified as showing

allelic bias.

Associating tissue-specific allelic bias with bimodal methylation

Using the allele-specific read count data from GTEx, we classified a tissue/gene pair as
showing allelic bias if >25% of samples in that tissue show allelic bias. Cell-type-specific
bimodality was defined as genomic regions for which =90% of sequenced samples are
classified as bimodal. We identified 2,246 such genes. GTEXx tissues and our purified cell types
were matched across 23 tissues/cell types, and the mutual information across genes with
allelic expression and bimodal regions (<250Kb away) was computed. We compared the
number of genes identified to what happens at random using permutation testing. We selected
2,246 genes at random and counted the number which were near (<=250kb away) parentally
methylated regions with bimodal patterns in matching cell types as those exhibiting bias. We

ran 50 iterations of random permutations.

Escape from imprinted expression mechanisms

For every imprinted gene we find those which exhibit biallelic expression in at least one tissue
type. Each gene/sample is classified as biallelically expressed if the allelic bias is within one
standard deviation of the noise model described above. Tissue/gene pairs are classified as
biallelically expressed if at least 25% of samples show biallelic expression. For each such
gene/tissue we search for hypomethylated DMRs using wgbstools’ find_markers command

13

with the following parameters: “--min_cpg 5 --delta_quants 0.35 --tg_quant 0.15 --bg_quant
0.4”. For our analysis of IGF2 (Fig. 6), ChlP-seq from Roadmap Epigenomics’ Adult Liver was
used (H3K27ac and H3K4me1 from Donor 3, DNA_Lib 1057)%%, as well as chromHMM primary

annotations for Adult Liver®’.

Quantification and statistical analysis

Quantification of bimodal regions, ASM, and putative parent-of-origin methylation are
described above. Bimodal regions are detected using the EM algorithm to fit model parameters
and then a log odds ratio test is used to determine significance (described above). FDR is used
to correct for multiple hypothesis testing, with a threshold of 0.05. Fisher’s exact test is used to

determine significance of ASM with an FDR threshold of 0.01. All regions and their significance
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can be found in Data S1 and Table S2. Enrichment analysis used permutation testing with a
FDR threshold of 0.05, as described above.

Supplemental Information

Data S1. Genome-wide list of bimodal methylation regions by sample

Table S1.
Table S2.
Table S3.
Table S4.
Table S5.
Table S6.
Table S7.
Table S8.
Table S9.

Known ICR coordinates, with regions of biallelic methylation masked

List of SNPs associated with cell-type-specific ASMs

Genome-wide list of SNPs associated with parental ASMs

Transcription factor enrichment analysis (ReMap)

Chromatin states enrichment analysis (chromHMM)

Genes exhibiting allele-specific expression, with parental ASM

Genes exhibiting escape-from-imprinting, with tissue-specific DMRs

Genes exhibiting tissue-specific imprinting, with putative parentally methylated ASMs

Novel parental-ASM participant information

Table S10. Novel parental-ASM locus and primer information
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Extended data figures

A Fragment-level identification of bimodal methylation B Algorithm: find bimodal regions

let n be the number of CpGs
let {U,X,M} be arrays of size n
for 1 in range l:n

U[i] = num. of U reads at CpG i
M[i] = num. of M reads at CpG i
X[i] = num. of X reads at CpG i

// smooth counts and sum vectors
smooth {U,X,M} using LOWESS
total = sum(U, X, M)

// min fraction of {U,M} per CpG
minUM = min(U,M) / total
// bimodal regions with U,M>20%

Bimodal Region let regions be:
T T CpG runs with minUM 2 20%

For r in regions:
Start End Expand r with 23-CpG reads
Allele-specific param. estim.
Statistical significance

Supplemental Figure 1. Algorithm for the identification of bimodal regions. (A) every read is
separated by a white space. Reads are classified as either U (less than 35% methylated CpGs per
fragment), X (not U or M), or M (more than 65% methylated CpGs per fragment). The figure below shows
the cumulative proportion of U/X/M reads across each CpG, with arrows marking where the min(U,M)
fragment proportion is above 20%. We classify a region as bimodal if the proportion of both U and M
reads is = 20% across neighboring CpGs and passes the statistical test. (B) Pseudo code of the efficient
linear-time algorithm which identifies the bimodal regions. The algorithm works as visualized in A. The
algorithm begins by transforming a WGBS bam file into a 3-dimensional array whereby each entry of the
array represents a CpG site. At each index of the array we store how many U/X/M reads intersect this
CpG site. We apply LOWESS smoothing on each array individually and we find those regions of
contiguous CpG site where the proportion of U and M reads intersecting that site are at least 20%.
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Supplemental Figure 2. Bimodality plot of known ICRs. For each known ICR (hg19 coordinates), we
plot the percent of U/X/M sequenced fragments (=3 CpGs) across 202 samples (columns). Fully bimodal
patterns are visualized is 50% unmethylated fragments (green) and 50% methylated fragments (red).
Sequenced fragments with >35% unmethylated CpGs and >35% methylated CpGs (e.g. a fragment of 4
CpGs, with exactly two methylated CpGs) are classified as mixed, and their empirical percentage in a
give sample/region is shown in yellow.
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Supplemental Figure 3. Number of regions vs number of samples exhibiting bimodal methylation.
Bar chart showing the number of regions (y-axis) which are bimodal in at least the number of samples
specified in the x-axis.
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Supplemental Figure 4. Distribution of bimodal regions and ASM across the genome.
In orange, a track showing the number of tissues that are bimodal across the genome. The heights
exceeding the threshold are shown above the bars. In blue the negative log10 Fisher’s fused p-value
of ASM across the genome is shown. Known ICRs are indicated below each chromosome.
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Supplemental Figure 5. Distributional properties of parental ASM regions.

Bar chart showing the number of parental-ASM-regions identified (y-axis) which are bimodal in at
least the number of samples specified in the number of samples (x-axis).
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Supplemental Figure 6. Local enrichment of parentally methylated regions for various chromHMM
annotations. Average percent of intersecting nucleotides between parental-ASM regions and various
chromHMM state annotations.

35


https://doi.org/10.1101/2024.05.01.591988
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.591988; this version posted May 2, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PAX8
A B Neurons Granulocytes
Read counts per allele PAX8 . SEEBEES  SEES S48 T8O - - " SEISEE .. e
® 90 46 9000068 960 00 . e @ .. oo
3000 - * €00 O0CODOCO0 #8 ¢ e . eoe e oee @
oh s . * 900 000000000 e8e e . o0e ese 0
> ar_ @ Seh Y b * 00 COOC0O00 S48 80O - .. . e
Lk | * O8O 9000 @ . oo * . oee
. . * 00 _eee *80® 0O . e >4 08 & _Seee
2500 . o o *e 0O ece 0O * o® S0SCS00 &
- *® OO0 o e & » CH04 A a4 s + 989
D . o O e o o e ceee o
-l. L d < OOCO00 OO0 R s d < - - 999
o o . eseve 000000 00000 oe O sves sove
2000 . 0 - o 000 *e0eee o ese e oeee eeee
LA L™ . o 000 -0 &8 2998 08 - *
. . © 000 .. oo *—ee0 .00 eeee
< o *9%" o o O .. o .0 .00 000
o oo % o ° . oo 0 . 408 4508
2 15001 @ LY . ° COCO000  S8ee & -0 08 S80S
[] . ® © 0000000000 #6488 0 e o
= < S80S & A bbdd R a's s d Lo d
g ® o esseese see eeee eceee .0 _seee
<o L i dd -* R bbdddddhddd *er—
08 9090880 9968 88 90 SE0E000E0S SO0
oe O 8000 _o0e S48 S900040088 9809
08800 .o 90000080 .00 _980e
00  Oeeeeeeses 464 908e .e0e e
00  00eOee .00 900 .00 o0
00  0O®0000000 080 T SESESUSESS O S0e
o0 COCeeD e S48 < 0S4
00 000000 *ee S80S O S0eeeess 80
L] o0 COCOO0Ce e S48 0% h e d
. . g0 900000 00 e ce—ee .0ee
CGO000000 S68 _908e ceee oee
1500 2000 2500 3000 3o 2000 3o ces 323,
0000000000 GeeseReEe
Allele B 0000 0000000000 00 oe0e e
=l
C @
s o
2 o G s o S @
s o @I IR o @ g o Bfefs 0 @
EAr A \“a&“‘o“\ze ‘}Q%‘o o & 2 c\"b g ;_‘8\1 & Y & g
&F & {S‘g‘ e
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Supplemental Figure 7. Tissue-specific allelic expression of known imprinted gene PAXS8 is
accompanied by matched bimodal methylation. (A) Allele-specific read counts from GTEx of the
known imprinted gene PAX8 show imprinted expression for brain (red) samples, with other samples
shown in blue. Most samples do not show allelically biased expression. Lung samples also show biased
expression. (B) Bimodal DNA methylation in purified cortical neurons (left) but not in other samples (e.g.
granulocytes, right) at a bimodal region (chr2:113953706-113955952), 17Kb upstream of PAX8). (C)
Fragment-level methylation analysis exhibits brain-specific bimodality.
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