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Abstract

Understanding individuals’ distinct movement patterns is crucial for health, rehabilitation, and
sports. Recently, we developed a machine learning-based framework to show that “gait
signatures” describing the neuromechanical dynamics governing able-bodied and post-stroke gait
kinematics remain individual-specific across speeds. However, we only evaluated gait signatures
within a limited speed range and number of participants, using only sagittal plane (i.e., 2D) joint
angles. Here we characterized changes in gait signatures across a wide range of speeds, from
very slow (0.3 m/s) to exceptionally fast (above the walk-to-run transition speed) in 17 able-bodied
young adults. We further assessed whether 3D kinematic and/or kinetic (ground reaction forces,
joint moments, and powers) data would improve the discrimination of gait signatures. Our study
showed that gait signatures remained individual-specific across walking speeds: Notably, 3D
kinematic signatures achieved exceptional accuracy (99.8%, confidence interval (Cl): 99.1-100%)
in classifying individuals, surpassing both 2D kinematics and 3D kinetics. Moreover, participants
exhibited consistent, predictable linear changes in their gait signatures across the entire speed
range. These changes were associated with participants’ preferred walking speeds, balance
ability, cadence, and step length. These findings support gait signatures as a tool to characterize
individual differences in gait and predict speed-induced changes in gait dynamics.
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1. Introduction

Seemingly stereotypical human behaviors such as walking and running exhibit distinct
individual characteristics®® that stem from complex interactions of neural control, muscle
activation patterns, biomechanics, sensory feedback, and the environment. Precisely because of
these interconnected processes, the mechanisms underlying individuality in gait coordination
across speeds remain elusive. Previously, we developed a proof-of-concept framework
leveraging a recurrent neural network (RNN) model to capture individual differences in human
gait dynamics based on measured kinematics!®. The high-dimensional internal parameters of the
trained model encode how individuals’ inter- and intra-limb gait variables progress over time. From
the model’s internal activations, we constructed low-dimensional representations of individuals’
multi-joint coordination, phase-averaged across multiple strides, termed gait signatures. Gait
signatures have broadened our understanding of human inter-joint coordination, going beyond
traditional analyses focused on discrete spatiotemporall”), kinematics and kinetics®, and other
derived metrics of gait coordination®*3. Thus, our prior work introduced a method that showed
promise using 2D joint angles to identify individual differences in gait signatures that remain
individual-specific across a restricted range of walking speeds in both able-bodied and impaired
gaitl®l. Here, we tested the ability of gait signatures, derived from different data types (3D
kinematics and 3D kinetics), to discriminate individuals amidst a wide range of speeds.
Additionally, we examined gait signatures in able-bodied young adults across a wide range of
walking speeds to understand their speed-dependent variations. Finally, to uncover potential
factors influencing speed-dependent modifications in gait signatures, we investigated whether
these changes correlate with specific spatiotemporal variables and dynamic balance.

We hypothesize that individual differences in gait dynamics persist across a wide range
of walking speeds. This persistence allows us to identify individuals by their gait signatures
regardless of gait speed, despite the biomechanical changes required to walk at different speeds.
To modulate gait speed from slow to a faster pace, individuals can employ various strategies,
including taking longer steps, increasing step frequency, and decreasing the swing or stance
phase durations, among others*17. Increasing gait speed has also been associated with
complex changes in joint excursions and step length asymmetry in people post-stroke819,
However, previous research demonstrated that speed had little effect on joint-level coordination
in injury-free adults®2%, Building on our previous findings!®, where we demonstrated discernible
individual gait signatures across a limited range of speeds, we anticipate that although gait
signatures would change across a wider speed range, their individual-specific nature would be
preserved.

Understanding what data are needed to differentiate gait coordination patterns between
individuals may inform experimental design, equipment considerations, and future clinical
translation. Our prior work® constructed gait signatures using only sagittal-plane joint kinematics
(i.e. joint angles). However, including additional kinematic and kinetic (i.e. ground reaction forces,
joint moments, and powers) data may offer further insights into the individual-specificity of gait
signatures. While majority of gait variability occurs in the sagittal plane, variability may also
manifest in the frontal and coronal planes among certain able-bodied individuals, evident in
movements like hip abduction/adduction and internal rotation??. This variability becomes more
pronounced in impaired individuals, such as stroke survivors, who often adopt compensatory
strategies in the frontal plane, like circumduction or pelvic hiking®?3-%. Furthermore, kinetic
information may be important to include as kinetics might contain meaningful information not
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89  encoded in the kinematics®?®. For example, two people with identical kinematics and different
90 body compositions will have different kinetics?®l. Alternatively, estimated joint kinematics and
91 kinetics are mechanically related, such that kinetics may not be necessary to distinguish
92 individuals if soft-tissue artifacts and measurement errors?” are negligible, compared to individual
93 differences in kinematics?8-3,

94 Given similar biomechanical constraints and unimpaired neural control in able-bodied

95  young adults, we hypothesize that there exist common changes in gait dynamics across speeds.

96 Numerous studies have reported many discrete gait parameters that increase with gait speed,

97 including leg stiffness®Y, center-of-mass work and power®?, muscle activity amplitude®, joint

98 angle excursionsB4, kinetic variables?%3®l, and spatiotemporal variables416.173637 Moreover,

99  previous research has identified many relationships between specific gait characteristics and
100 walking speed®?. For example, spatiotemporal parameters demonstrate squared and cubic
101 relationships, while kinematic outcomes exhibit a range of linear, squared and cubic relationships
102  with normalized gait speed®8. Additionally, certain kinetic parameters exhibit a linear relationship
103  with gait speed, while others display quadratic relationships®®. While common measures of gait
104  biomechanics exhibit differential relationships with speed, we tested whether gait signatures
105 would also exhibit a consistent relationship with speed. As gait signatures leverage continuous,
106  synchronously measured gait data to identify a low-dimensional representation of gait dynamics,
107 they may provide a more comprehensive representation of how gait coordination changes with
108  speed. This approach may shed light on the underlying organization of gait variables, enriching
109  our understanding of how gait dynamics change across speeds.

110 Understanding whether changes in gait signatures across different speeds correlate with
111 changesin discrete spatiotemporal variables and dynamic balance ability would highlight potential
112  factors impacting how people modulate coordination across speeds. Studies show that walking
113  at extremely slow speeds disrupts individuals' natural momentum and coordination®® and
114  biomechanical strategies“ll. We hypothesize that an individual's capacity to modulate their gait
115  with speed is contingent upon underlying factors inherent to their sensorimotor system and
116  functional capacity. We predict that individuals with better balance ability may be able to adapt
117  more flexibly (exhibit less change in their signature) to walking at extremely slow or fast treadmill
118  speeds than those with lower balance ability.

119 This study assesses whether able-bodied young adults’ gait signature remain individual-
120  specific walking speeds ranging from extremely slow (0.3m/s) to exceptionally fast (above the
121  empirical walk-to-run transition). First, we determined the optimal number of speed trials per
122  individual required to a train a linear support vector machine classifier effectively, enabling
123  accurate individual identification across various speeds for each data type. Next, we characterized
124  how the data type used to train the gait signatures model (2D kinematics, 3D kinematics, 3D
125  kinetics and their combination) impacted the ability to identify individuals based on their gait
126  signatures using a support vector machine classification task. Thirdly, we characterized the extent
127  to which individuals exhibited consistent changes in gait signatures with speed. Lastly, we
128 determined whether changes in gait signatures with speed were associated with changes
129  biomechanical variables and individuals’ dynamic balance ability.


https://doi.org/10.1101/2024.05.01.591976
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.591976; this version posted May 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

130 2. Materials and methods
131 2.1 Ethics statement

132 All participants provided written informed consent prior to study participation, and the study
133  protocol was approved by the Emory University Institutional Review Board.

134 2.2 Human subject participants

135  Seventeen young able-bodied adult individuals participated in this study (8 men, 9 women,;
136 mean = s.d. age = 27.9 £ 4.5 years, height = 1.7 £ 0.1 m, body mass = 77.0 + 21.8 kg).
137  Participants reported no history of injury or pain in the last 3 months.

138 2.3 Experimental design

139  To test the effect of a wide range of speeds, participants completed 60-second trials at 9 different
140  speeds ranging from extremely slow to extremely fast speeds. The speed conditions were
141  implemented in 2 phases, and within each phase speeds were assessed in random order. Phase
142 1 was always implemented first and consisted of 6 speed conditions ranging from the fixed
143  extreme slow speed of 0.3 m/s to each participant’s fastest comfortable safe speed determined
144  on the treadmill. Phase 2 was implemented second and consisted of the 3 remaining speed
145  conditions (92.5%, 100.0%, and 107.5% of the empirical walk-to-run transition speed).
146  Participants were advised to take a seated or standing rest break for 1-2 minutes as needed, and
147  if they experienced fatigue or pain following a gait trial. The 9 speeds evaluated for each
148  participant are outlined below as follows:

149 Phase 1 speed conditions

150 1. Fixed extreme slow: a very slow fixed speed of 0.3 m/s was selected to match the speed
151 of low functioning stroke survivors.

152

153 2. Slow overground-derived: participants were instructed to walk at a very slow pace
154 overground (instruction: “walk as if leisurely strolling in a beautiful park”) along a flat, indoor
155 marked 29.9-foot (9.11-meter) path in a controlled lab setting. Three trials were performed
156 and the average speed for this condition was calculated for each participant.
157

158 3. Self-selected treadmill-derived: The treadmill was initiated at ~1 m/s and participants were
159 instructed to indicate whether to increase or decrease the speed until they reached a
160 speed that was representative of their natural or comfortable walking speed.

161

162 4. Self-selected overground-derived: participants were instructed to walk at their natural self-
163 selected pace overground (instruction: “walk at a pace that is natural for you to travel from
164 point A to B”) along a flat, smooth, marked 29.9-foot path in a controlled lab setting. Speed
165 was determined as the average speed from three trials.

166

167 5. Intermediate calculated: The speed halfway in between each participant’s self-selected
168 overground-derived and the fast treadmill-derived speed was calculated.
169

170 6. Fast treadmill-derived: The treadmill was initiated at ~1 m/s and participants were
171 instructed to indicate whether to increase or decrease the speed until they reached a
172 speed that was representative of a fast-walking speed (instruction: “walk as if you are
173 running late for a very important event”).

5
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174 Phase 2 speed conditions

175

176 7. 92.5% of the walk-to-run transition speed: 7.5% below the determined walk-to-run

177 transition speed was calculated.

178

179 8. Walk-to-run transition speed: The walk-to-run transition speed was determined before
180 randomizing the 3 speed conditions in phase 2. The treadmill was initiated around each
181 individuals’ determined fast walking speed, and participants were instructed to indicate
182 whether to increase or decrease the speed until they reached a speed that felt they could
183 no longer walk and needed to start running. Treadmill speeds were varied by 0.05m/s -
184 0.13m/s at a time. Once participants identified a preferred transition speed, the treadmill
185 speed was increased beyond, then decreased below, that speed to encourage exploration
186 of each speed. Participants were instructed to try walking and running at each speed (~20
187 seconds), if possible. Next, participants were again asked to identify the speed beyond
188 which they prefer to run and below which they prefer to walk. This process was repeated
189 until participants selected two consecutive speeds within 0.05 m/s of each other. The
190 recorded speed was the one they settled on during the process. This approach is similar
191 to another study®? however, we did not mandate rest periods.
192

193 9. 107.5% of the walk-to-run transition speed: 7.5% above the determined walk-to-run

194 transition speed was calculated.

195

196 2.4 Data acquisition and processing

197 We used 3D motion capture to obtain continuous walking data from participants. Reflective
198 markers were attached to participants’ trunk, pelvis, and bilateral shank, thigh, and foot
199  segmentst*3d. We collected marker position data while participants walked on a split-belt
200 instrumented treadmill (Bertec Corp., Ohio, USA) using a 7-camera motion analysis system
201  (Vicon Motion Systems, Ltd., UK). Marker data were collected at 100Hz, and synchronous ground
202  reaction forces were recorded at 2000 Hz and were down sampled to 100Hz using previously
203  established techniques™*l, Raw marker position data were labeled and gap-filled. Marker
204  trajectories and ground reaction force raw analog data were low-pass filtered at 6 and 30 Hz in
205  Visual 3D (C-Motion Inc., Maryland, USA). Gait events (bilateral heel contact and toe-off) were
206  determined using a 20N vertical GRF cutoff; 3D kinematics and kinetics were calculated in Visual
207  3D.

208 To describe the 3D kinematics of each individual, we measured 18 continuous variables
209 from the motion capture data; bilateral hip, knee, and ankle joint angles each in the sagittal, frontal,
210 and transverse planes. Two-dimensional kinematics consisted of 6 continuous features,
211 comprising bilateral hip, knee, and ankle joint angles in the sagittal plane only. 3D kinetics
212 consisted of 42 total features- bilateral ground reaction forces normalized to body weight, ankle,
213  knee and hip moments and powers each in the sagittal, frontal, and transverse planes. A
214  combination of all the data consisted of 60 variables. sagittal-plane hip, knee, and ankle joint
215  kinematics. Three speed trials were omitted (2 for participant YA04 and 1 for participant YA06)
216  due to technical errors during data collection, resulting in a reduction of the full trial data set from
217 N =153to N =150. The excluded trials corresponded to YA04 and YAQ06’s 7.5% below walk-to-
218 run transition speed, and YA4’s 7.5% above walk-to-run transition speed. To visualize
219  representative traces of 3D kinematics and kinetics across different speeds, refer to (Fig. 1). One
220  minute of continuous 3D motion capture treadmill walking data were collected from 17 able-bodied
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221  young adults across 9 different speed conditions (Fig. 2a). Continuous gait data from all
222  individuals and speed conditions were extracted (Fig. 2b).

223
a) Kinematics ”/gl;t[ (LR) ground reaction force (GRF) b) Kinetics
eft (L) vertical (vert.)
flexion (flex.) anterior-posterior (AP)
extension (ext.)
i) Representative continuous data for one participant across three speed conditions
extreme slow speed (0.30 m/s) extreme slow speed (0.30 m/s)
101
R Ankle
flex.Jext. ° /\/\J/\/\/\f\/\/\;/\r\/\/\ RGRF
(degrees) "0 vert.
20t (N/kg)
230 F ok
self-selected speed (1.08 m/s) self-selected speed (1.08 m/s)
101
R Ankle of
flex./ext. 5 R GRF il
(degrees) vert.
27 (N/kg)
30 - 3
105 walk to run transition speed (1.97 m/s) walk to run transition speed (1.97 m/s)
RAnkle o
flex./ext. .10 Rv(iﬁF 1
(degrees) o - :
N/k
o ) )
0 2 4 6 8 10
Time (s) Time (s)
ii) Phase averaged trial data for three particpants colored by individual (purple, orange and green), and speed (gradient)
lightest to darkest = slowest to fastest lightest to darkest = slowest to fastest
L Knee Normalized
flex./ext. L Ankle Moment
flex./ext.
L Ankle Normalized /\
flex./ext. L AP GRF —
0 100 0 100
T Gait cycle (%) T Gait cycle (%)
Left Left
Initial Contact iti
224 Initial Contact

225  Figure 1: Visualization of representative a) kinematic and b) kinetic treadmill walking data.
226  Representative continuous right angle flexion/extension (a-i) and right vertical ground
227  reaction force (b-i) for one participant across three speed conditions: extreme slow, self-
228 selected, and extreme fast (walk to run transition). Representative phase-averaged left
229  knee flexion/extension (a-ii, top), left ankle flexion/extension (a-ii, bottom), normalized left
230 ankle moment flexion/extension (b-ii, top), and normalized left anterior-posterior ground
231 reaction force (b-ii, bottom) data for three participants colored by individual (color) and
232 speed (gradient).
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233 2.5 Generating gait signatures

234 To create gait signatures, we utilized the RNN framework described previously!®, where
235  continuous, multi-joint kinematics from multiple individuals and speeds were used to train an RNN
236  model. The RNN model architecture consisted of a single input layer, a hidden layer with 512 long
237  short-term memory (LSTM) activation units, and an output layer. The model was trained using an
238  Adam optimizer®” in a sequence-to-sequence manner to predict one-step time shifted output
239  kinematics (Fig. 2c). To prevent overfitting on this larger dataset of stereotypical able-bodied gait
240 patterns, we made the following modifications to our prior framework!®. We lowered the learning
241  rate of the Adam optimizer from 0.001 in to 0.0001, added a drop out layer after the hidden layer
242 with 20% drop out rate, and added a kernel L2 regularization (regularization strength of 0.01).
243  Additionally, the trials in this able-bodied young adult dataset were 60 seconds long vs. the 15
244  second trials used previously. During training, our data were batched according to the number of
245  total trials (N = 150). and the RNN was trained on all individuals trials to extract individual-specific
246  latent states of the RNN which represent individuals’ gait dynamics (Fig. 2c, Individual-specific
247  latent states).

248 The RNN latent states (Fig. 2c, Individual-specific latent states), were extracted for all
249  individuals’ trials, reduced in dimension using and principal component analysis and phase-
250 averaged® to generate gait signatures. Gait signatures can be visualized as looped
251  representations of specified principal component (PC) projections (Fig. 2d) and 3D multi-
252 dimensional scaling projections (Fig. 2e). We trained four individual RNN models, each with a
253  different input data type (2D kinematics, 3D kinematics, 3D kinetics and a combination of the
254  data). Gait signatures were generated for each model RNN model separately.

a) 3D motion capture b) Extract continuous c) Train sequence to sequence d) Phase-averaged projections

treadmill walking gait data RNN to extract latent states onto principal components (p)
from all individuals

o
2 >
20
20 \\B\\( 0
— 0
’ A / PC2 520 PC1
Individual-specific Hs,Cs One step time-shifted €) 3D multidimensional scaling
o gait data individual-specific gait data projection of signatures
° 1504
- R
> » = z pW, > M100‘
17 @ = n=t @ 50
: wp  principal component analysis s 0 4
wP .50) <
17 able-bodied young adults Individual-specific 100 . ~
across speeds latent states 100 31\"“*"*'16615{_)500
mpos2'®  "“mps 1

255
256  Figure 2: Pipeline of the gait signatures framework and outcomes. a) 3D motion capture
257 data from 17 able-bodied young adults walking on a treadmill across 9 speeds each was
258 conducted. b) Continuous timeseries kinematics and kinetics were extracted from all trials.
259  c) A sequence-to-sequence RNN was trained using subsets of the datarecorded in (b), and
260 individual-specific gait signatures were extracted for all individuals' trials. d) Principal
261 component analysis was applied to reduce the dimensionality of the high dimensional
262 latent states, each trial was phase-averaged, and the first 3 dominant PCs visualized as 3D
263 loops.e) 3D projections of low-dimensional gait signatures using multidimensional scaling
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264  reveal individual-specific gait signhatures among 3 representative able-bodied young
265 adults.

266 2.6 Determining the variance explained in the original features by the principal
267 components of the gait signatures model

268 To attain the variance explained in the original features by each principal component (PC)
269  of the RNN latent spaces, we used each trained RNN model (Fig. 3a, 1. Train RNN), extracted
270  the model internal activations (weights), performed PCA on them, and identified the weights
271  corresponding to each PC (Fig. 3a, 2. Isolate weights corresponding to each PC). The model
272 weights were updated to a new model based on the top N principal components and used to
273  generate reconstructed data for the provided internal states (Fig. 3a, 3. Reconstruct data for
274  isolated PCs). The coefficient of determination (R?) was calculated between the reconstructed
275 data and the measured data (Fig. 3a, 4. Evaluate the R? between measured and reconstructed
276  data for each PC). Eigenvalue plots of the cumulative variance explained by each PC of the gait
277  signature (expressed as a percentage) were constructed for each data type (Fig. 3b).

278 To determine the number of principal components to retain, the elbow of the eigenvalue
279  plotis usually considered sufficient“l. However, since our eigenvalue plots represent the variance
280 explained by PCs of the original data (not of the high-dimensional gait signatures i.e., internal
281  activations), we determined a reasonable threshold of 80% to account for most of the variance
282  explained in the original model input data.
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a) Determination of the variance explained in the original signals by the principal components (PCs) of the gait signature model

1. Train RNN
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b) Eigenvalue plots of variance explained by each principal component of the gait signature across the four signals
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283

284  Figure 3: Variance explained in the original signals by each of the principal components
285  of the extracted dynamics. a) To determine the variance explained in the original data by
286 the dynamics: 1) the RNN model was trained, 2) the trained model weights (internal
287  activations) were extracted and the dynamics corresponding to each PC was isolated. 3)
288 Foreach PC,the original signals were reconstructed across participants. 4) The coefficient
289 of determination was calculated between the measured input signals and the
290 reconstructed signals for each PC. These values were used to construct eigenvalue plots
291 for each signal type. b) Eigenvalue plots of the cumulative variance explained by
292 increasing number of principal components of the gait signature for each of the four signal
293 types.

294 2.7 Discriminating individuals and speeds

295  To determine whether gait signatures remain characteristic to an individual across a wide range
296  of walking speeds, we used a linear support vector machine (SVM) discrimination classification
297  task to classify individuals based on their gait signatures across their nine speed trial conditions.
298 To maintain consistency in the number of trials per participant analyzed, individuals with fewer
299 than nine speed trials were excluded from this analysis. The resultant dataset comprised 14

300 individuals, each with nine different speed condition trials. For each data type, eight distinct

301 SVM classifiers were trained on a progressive selection of one to eight random trials per

10
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302 individual over 140 total runs using built in MATLAB function ‘templateSVM’ with standardized
303 features. The random number generator seed was set to the run number on each iteration for
304 consistency across the different models. The average classification accuracy across the runs
305 corresponding to the number of speed trials per individual in the training set was calculated for
306  each data type. We conducted this analysis separately for the gait signatures across data types
307 (Fig. 4, Discrimination task).

308 Because our gait signature classification accuracies do not obey gaussian statistics, we
309 used non-parametric Mann-Whitney U tests to test for differences in classification accuracy
310 between gait signatures generated from 2D versus 3D inputs. For classifiers trained using one to
311  eight speed trials per participant, we compared classification accuracy and reported p-values and
312 Mann-Whitney U effect sizes (r). An effect size (r) smaller than 0.3 indicates a small effect, a value
313  between 0.3 and 0.5 suggests a medium effect, while an effect size greater than 0.5 indicates a
314 large effect.
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316  Eigure 4: Schematic outlining the comparison of individual discriminatory power between
317 the gait signatures generated using four different signals (2D kinematic, 3D kinematic, 3D
318 Kkinetic and a combination of all signals). 3D motion capture of treadmill walking was
319 obtained from 17 able-bodied young adults, encompassing 9 different speed conditions.
320 The four data types were created, each with varying number of features. RNN models were
321 trained for each data type and respective gait sighatures were generated. The
322 classification accuracy of individuals across different speeds was assessed using support
323 vector machine (SVM) classifiers, and the classification accuracies between the four gait
324  signature types were compared.

325 To assess the individual discriminatory potential of discrete biomechanical variables
326  across speeds, we conducted a comparable SVM classification approach. Specifically, we
327 focused on 26 widely recognized bilateral kinematic and kinetic discrete variables commonly used
328 in gait analyses!®, as detailed in Supplementary Table T1. Additionally, we explored the
329 discriminatory capacity of only the 18 kinematic-only and eight kinetic-only variables in
330 distinguishing individuals.

331
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332 2.8 3-D Multi-dimensional scaling map to compare gait signatures

333 To analyze and visualize the pairwise distances between gait signatures, we employed
334  multi-dimensional scaling (MDS) to project all gait signatures onto a single 3D gait map. This
335 technique was used to lower the dimension of our complex high-dimensional signatures,
336 maximally preserving relationships between individuals and trials.

337 To quantify the intra- vs. inter-individual differences in 3D MDS signatures, the Euclidean
338  distances were calculated between all signatures within an individual and between individuals,
339 respectively. Subsequently, a histogram of the Z-scored Euclidean distances was plotted to
340  visualize both intra and inter- individual distances and the Mann-Whitney U test was performed
341  on the distributions of distances.

342 2.9 Identifying relationships between gait signatures and speed

343 To determine if the relationship between 3D MDS coordinates and gait speed is linear,
344  simple linear regression was performed separately for each of the three MDS coordinates and
345 the speed for each individual. Box plots illustrating the slope and R? values of the linear fits were
346  generated, and the mean and 95% confidence intervals of these distributions were recorded.
347  Additionally, p-values were recorded for the linear fits of each participant.

348 To test whether individuals exhibit similar linear changes in dynamics across speeds, we
349  used linear mixed effects (LME) models to predict each trial’'s 3D MDS coordinates from speed
350 trials. We estimated positions in 3D MDS, separately for each dimension, using linear mixed-
351 effects models with fixed intercepts and effects of speed, and a random intercept for subject. The
352 fixed and random effects coefficients differ in each dimension. The models assume that the
353 relationship between MDS location and trial speed is linear, while allowing for individual
354  differences in the mean location of gait signatures in MDS space. The models aim to capture how
355 the overall changes in gait signatures correspond to changes in speed for different subjects. MDS
356 3D coordinates (X, Y and Z) are the dependent variables (to be predicted), trial speed is the
357 predictor variables and individuals’ Subject ID was used as a categorical random intercept
358  (Equation 1).

359
MDSy1 [Box B1,x (1|Subject)x

360 MDSy |~ Boy |+ |Biy | * speed + | (1|Subject)y €))
MDSz1 | Bo,z B,z (1|Subject),

361

362 We performed a hierarchical bootstrapping analysis® to examine how sensitive the model
363  parameters are to variations in the input data, the number of trials chosen per individual, and the
364  speed trials used in training. Specifically, we conducted 17 leave-one-subject-out LME models to
365 predict 3D MDS coordinate positions from gait speed. We manipulated the number of speed trials
366  chosen per subject (ranging from four to eight) across five iterations, with five random selections
367  of speed trials per trial count.

368

369
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370 2.10 Relationships between gait signatures and individual differences in mobility
371 to walking speed and changes in gait sighatures

372 To determine whether changes in gait signatures with speed are associated with
373  individual’s functional abilities, we used a narrowing beam balance test, which has been used to
374  characterize walking balance and motor coordination®. The narrowing beam balance score,
375 representing the distance travelled in feet travelled along the narrowing beam, was calculated as
376  the average distance across four trials. We used linear regression and assessed the correlation
377  coefficient (Pearson’s r) between balance score and the following variables: a) self-selected
378  walking speed, b) Euclidean distance between SS and extreme slow signatures and c) Euclidean
379 distance between SS and extreme fast signatures. Additionally, to assess whether SS walking
380 speed are associated with the extent to which participants altered their gait signatures, we
381 performed linear regression between the Euclidean distance between SS and extreme slow
382  signatures vs. SS speed.

383 2.11 Exploratory analysis of gait sighatures and spatiotemporal variables

384 To determine whether changes in gait signatures with speed reflected similar findings in
385 the literature about changes in spatiotemporal variables with speed, we conducted an exploratory
386  analysis to determine whether changes in gait signatures (Euclidean distance) between both self-
387 selected (SS) and extreme slow, and extreme fast speeds were associated with discrete, trial-
388 averaged spatiotemporal biomechanical variables. Ten different Pearson’s r correlation tests
389  were conducted for bilateral biomechanical variables: cadence, stance duration, swing duration,
390 step width, and step length. The alpha value of 0.05 was corrected using Bonferroni method®?
391 for the 10 different tests per speed modulation type (SS to extreme slow and SS to extreme fast)
392  and updated to 0.005 each.

393 3. Results

394 In summary, individual differences in gait signatures were maintained across the full range of
395  walking speeds from extremely slow to the walk to run transition. 3D kinematic gait signatures
396 achieved almost perfect individual classification accuracy of 99% (CI: 99.1-100%), using four or
397 more random speed trials in the SVM classifier training set. While individual classification
398 performance was also relatively high for 2D kinematics (95.0%, ClI: 88.1-100%) and 3D kinetics
399 (97.8%, CI: 99.7-98.8%), it remained lower compared to that of 3D kinematic gait signatures.
400 Linear mixed effects models revealed that individuals exhibited similar changes in their gait
401  signatures across different speeds. This analysis uncovered a unifying framework for the impact
402  of speed on gait signatures. We found a significant positive correlation between changes between
403  SS and the extreme slow speed gait signatures and an external measure of balance ability (p =
404  0.01, r = 0.60). Furthermore, an exploratory analysis revealed that changes between SS and
405 extreme slow signatures show significant, positive, linear relationships with speed-induced
406 changes in two out of five spatiotemporal variables: cadence and step length.
407

408 3.1 Kinematics and kinetics during treadmill walking differ qualitatively across
409 individuals and speeds

410 Representative right sagittal plane ankle kinematics (Fig. 1a-i) and right vertical ground
411 reaction forces (Fig. 1b-i) were relatively consistent across all strides within an individual’s trial.
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412  Slower-speed trials resulted in fewer gait cycles than faster-speed trials over the shown 10-
413  second period with noticeable larger joint excursions and ground reaction forces with increasing
414  speed (Fig. 1ab-i). Despite similar general shapes of phase-averaged kinematics and kinetics
415  across participants and speeds, there was evident nuanced variability (Fig. 1ab-ii).

416 3.2 Kinematic gait signatures demonstrate low dimensionality, contrary to kinetic
417  gait sighatures

418 All gait signature data types met the criterion of explaining at least 80% variance in the
419  original data signals while using fewer than 34 PCs. However, the number of PCs required to
420 achieve this threshold varied among different gait signature types (Fig. 3b). Specifically, six PCs
421  of 2D kinematic signatures capture over 90% of the variance in the original sagittal plane
422  kinematics (Fig. 3b-i). On the other hand, 3D kinematic gait signatures require 10 principal
423  components to account for ~83% of the variance in the original features (Fig. 3b-ii). Notably, in
424 3D kinetic signatures and combined kinematic and kinetic signatures, achieving at least 80%
425  variance necessitated 29 and 33 PCs respectively (Fig. 3b-iii and iv).

426
427 3.3 Kinematic data types preserve individual differences in gait signatures across
428 speeds

429 Phase-averaged 2D and 3D kinematic gait signatures maintain individual-specific
430 trajectories across their entire range of walking speeds. The looped projections of the first three
431 dominant PCs (PCs 1-3) (Fig. 5ab-i), and the second 3 dominant PCs (PCs 4-6) (Fig. 5ab-ii)
432  belonging to each individual (specific color) cluster tightly together (Fig. 5ab-i). Higher order PCs
433  4-6 reveal more individual specific clustering (Fig. 5ab-ii), especially in the 3D kinematic RNN
434  signatures (Fig. 5b-ii).

435 Note that while 2D and 3D kinematic signatures were generally similarly shaped across
436  all individuals’ speed trials, 3D kinetic signatures showed 2 subsets of signatures: some
437  participants’ signatures tend more upwards in PC3 compared to other signatures (Supplementary
438  Fig. Sla-i). Specifically, four participants (YA16, YAl7, YA18 and YA19) appeared to have
439  similarly shaped gait signatures compared to the other participants (Supplementary Fig. Sla-ii).
440  This separation of signatures into 2 groups was not quite as evident in the combined 3D kinematic
441  and 3D Kkinetic signatures (Supplementary Fig. S1b-i and ii). This division of 2 groupings of 3D
442  Kkinetic signatures is more evident in the higher order PCs 4-6 (Supplementary Fig. S1a-iii) and
443 3D MDS plots (Supplementary Fig. S1ab-iv).

444 3D kinematic signatures consistently classified individuals with significantly higher
445  accuracy than 2D kinematic gait signatures, regardless of the number of speed trials per
446  individuals used in the SVM training set. The classification accuracies of 2D kinematic gait
447  signatures were significantly lower than the 3D kinematic gait signatures across one to eight
448  speed trials in the training set (p < 0.001, -0.27 < r > -1.01). If including at least four speed trials
449  in the training set, 3D kinematic signatures achieved almost perfect classification accuracy of
450 99.8% (CI: 99.1-100%) (Fig. 5b-iii), whereas 2D kinematic signatures achieved 95% (ClI: 88.2-
451  100%) (Fig. 5a-iii). To attain perfect individual classification accuracy for 3D kinematic signatures
452  (100%), a minimum of seven training speeds are required, however, even with the inclusion of
453  additional speed trials up to eightin the training set, 2D kinematic signatures failed to reach 100%
454  accuracy (Fig. 5a-iii). In a representative confusion matrix of a single classification iteration using
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455 run of 2D kinematic signatures, we observed at least 3 instances of individual misclassification
456  (Fig. 5a, iv). Classification analyses did not substantially improve when adding kinetic data
457  (Supplementary Fig. Sla-v). Our analysis using 26 bilateral, discrete biomechanical variables
458  (Supplementary Table T1) achieved 92.2 + 0.1% classification accuracy with only four randomly
459  selected speed trials per individual in the SVM training set. Kinematic-only variables yielded
460  similar high average accuracy at 91.2 + 0.1%. However, kinetic-only variables had significantly
461  lower accuracy (p < 0.001) at of 64.3 + 0.2%, with misclassifications up to 12 out of 14 individuals’
462  speed trials.

463 Analysis of the inter- and intra- individual Euclidean distances between 3D kinematic
464  signatures in 3D MDS space demonstrates that intra-individual distances are smaller than inter-
465  individual differences (p < 0.001), further supporting for the individual-specific nature of gait
466  signatures within our cohort of able-bodied gait (Fig. 5b-v). The proportion of distances above two
467  standard deviations (SD) (|z-score| > 2) were 0% and 2.2% for intra- and inter-individual distances
468  respectively. The proportion of distances below two SDs were 48.8% and 0% for intra- and inter-
469  individual distances respectively.
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471  Figure 5: Kinematic gait signatures are individual-specific. i) 3D looped trajectories of the
472 first 3 principal components (PCs 1-3) of a) 2D kinematic and b) 3D kinematic gait
473  signatures are individual-specific across speeds. Individual’s trials (same color) are
474  grouped closely together with similar shapes. ii) 3D looped representations of the second
475  set of principal components (PCs 4-6) reveal greater individual specific clustering in a) 2D
476  kinematic sighatures, and stronger differentiation observed in b) 3D kinematic signatures.
477  iii) Individual classification accuracy is lower using a) 2D kinematics vs. b) 3D kinematics
478 across varied number of speed trials in the classification model training set. 3D kinematic
479  signatures exhibited robust classification of individuals, achieving a mean accuracy of
480 99.8% (CI: 99.1% to 100%), with a minimum of four speed trials in the training set,
481  surpassing the accuracy of 2D kinematics, which achieved 96% (Cl: 88.2-100%). Please
482  note that significant differences exist between 2D and 3D kinematic signature accuracies
483 regardless of the number of speed trials in the training set. However, for clarity, we
484  specifically emphasize the statistical comparison in the illustration using only four speeds
485 in the training set as this is where 3D kinematic sighatures attain near perfect (100%)
486  classification accuracy. iv) A representative confusion matrix from a single classification
487 model run shows that several individuals were misclassified when four speed trials per
488 individual were included in the training set. v) The intra-individual trial distances in MDS
489  space for 3D kinematic signatures are smaller than the intra-individual distances, further
490 showecasing the individual-specificity across all speed trials of an individual.

491

492 3.4 Gait signatures are modulated consistently with changes in walking speed

493 Despite showing that gait signatures are individual-specific across speeds (Fig. 5), 2D and
494 3D looped kinematic gait signatures (colored by speed) appear similar in structure and shape
495  (Fig. 6ab-i). Both gait signature types show that slower trials (blue) are more flattened in PC3 and
496  concentrated to the center of all speed signatures, whereas faster speeds are more expanded in
497  PC3 and found on the outskirts of all signatures (Fig. 6ab-i, top row). This result can be seen in a
498  representative gait signature across speeds (Fig. 6ab-i, YA1l speed trials).

499 3D gait maps of both 2D and 3D kinematic gait signatures colored by gait speed reveal
500 thatslower speeds (blue) across subjects are distinctly located in one region of the map and faster
501 speeds (red) are in another region of the map (Fig. 6ab-ii). This modification by speed is more
502 noticeable in 2D signatures than in the 3D signatures.

503 We found that across participants, the 3D MDS representation of gait signatures change
504 in a similar direction with changes in gait speed (Fig. 6ab-iii). Notably, even at extremely slow
505  speeds (0.3 m/s), similar to those observed in stroke survivors, the gait signatures maintained a
506  consistent linear relationship with faster speeds. Linear mixed effects models accurately
507 explained the relationship between individuals’ MDS coordinate representations of their 3D
508  kinematic gait signatures and speed with high accuracy (R?> 0.95) for each coordinate (Fig. 6b-
509 iii). However, the accuracy was lower for 2D kinematics (R?> 0.89) (Fig. 6a-iii). Note that the p-
510 value for the linear MDS coordinate fits in the Y axis of the 3D kinematic signatures were not
511  significant (p = 0.28).

512

513
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Figure 6: Gait signatures hold information about walking speed. i) 3D looped trajectories
of principal components 1-3 colored by gait speed show that similar speed trials are
shaped similarly in a) 2D kinematic and b) 3D kinematic signatures. Slower speed
signatures (blue) are concentrated in the center of all signatures and faster speed
signatures (red) on the outskirts, fanning outward and upward in PC3. ii) 3D MDS
visualizations of all signatures colored by speed illustrates that slower speeds (blue)
across individuals are in the top left region of the map for a) 2D kinematic sighatures and
in the right half region of the gait map for b) 3D kinematic signatures. iii) 3D MDS
visualizations of all signatures colored by individual fit with linear mixed effects models
show that individuals gait signatures change similarly and linearly with change in gait
speed.
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526 3.5 Within individuals, 3D MDS coordinates of gait signatures vary linearly with speed

527  Linear regression of each individual’s 3D MDS gait signature coordinates separately (XYZ)
528  showed consistently strong and significant associations between changes in the X-axis (R? > 0.50;
529 p <0.02) across participants, but not in the Y- or Z-axes (Fig. 7a). X and Z significant slopes are
530 negative, whereas Y has significant slopes that are positive and negative (Fig. 7b). Moreover,
531 distinct clusters of individuals exhibited similar changes in their gait signatures with speed were
532  evident, particularly in the X and Z coordinate slope values. These clusters were observed: a)
533  around the mean value (red dotted line), b) above the upper limit of the 95% confidence interval
534  (gray dotted line), and c) below the lower limit of the 95% confidence interval (Fig. 7a).

535 3.6 Stability of linear mixed effects model parameters across individuals

536 Linear mixed effects (LME) models tested the similarity of the linear relationships between
537  gait signatures and speed across the entire cohort. Hierarchical bootstrapping results confirmed
538 that robustness of the LME models to variations in input data, the number of trials per individual
539 and speed trials used to train the model. Consequently, LME models were deemed suitable for
540  accurately predicting the locations of 3D kinematic gait signatures with respect to speed (Fig. 7¢).
541  Note that a few Y-coordinate models resulted in non-significant p-values. The X, Y, Z sensitivity
542  of the B, (fixed slope) parameter was -0.30 £ 0.03, -0.02 £ 0.02 and -0.27 + 0.03 respectively.
543 The X, Y, Z sensitivity of the By (fixed intercept) parameter was 37.5 £5.7, 3.7 £ 5.8 and 35.0 +
544 5.5 respectively. The standard deviation ranges of individual random intercepts for the X, Y, Z
545  coordinates were [4.3 — 9.7], [4.2 — 8.2] and [3.9 — 6.4] respectively.

546 Histograms of residuals across the three LME models (representing X,Y,Z coordinate
547  locations) exhibited normal distributions centered around zero (Supplementary Fig. S2a).
548  Furthermore, residual vs. predicted coordinate plots show that the variance of residuals across
549  various predictions are constant (homoscedasticity) (Supplementary Fig. S2b), meaning that the
550 models are generally well-behaved.

551
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554  FEigure 7 Individual’s gait signatures change linearly with speed. Simple linear regression
555  of individuals’ 3D MDS coordinates vs. speed show similar a) R? values and b) slopes
556 across individuals. c) Hierarchical bootstrapping of linear mixed effects shows that the
557 linear relationship of MDS coordinates with speed is robust across variability in model
558 input data, the number of speed trials selected per individual, and the randomness of the
559  selected speed trials used in model.
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562 3.7 Associations between gait signature changes and balance ability

563  Walking balance ability may be associated with the extent to which individuals alter their gait
564  signatures across speeds. We identified a moderately positive correlation between individuals’
565  narrowing balance beam score and changes in gait signatures (Euclidean distance between self-
566  selected and extremely slow speed walking gait signatures) (p = 0.01, r = 0.60) (Fig. 8a).
567 Individuals with better balance (higher scores) alter their gait signatures more from SS to extreme
568  slow. Additionally, we observed a moderate positive correlation between participants’ SS speed
569 and their performance on the narrowing balance beam (Fig. 8b), where participants’ with faster
570  SS speeds exhibited better performance compared to those with slower SS speeds (p =0.02, r =
571  0.57). Further, individuals with slower SS speeds changed their gait signatures less between the
572  SS and extreme slow speeds (Fig. 8c). However, changes in gait signatures between participants’
573  SS and extreme fast speeds were not associated balance (p = 0.15, r = -0.37) (Supplementary
574  Fig. S3a), or self-selected walking speed (p = 0.07, r = -0.45) (Supplementary Fig. S3b). In a 3D
575 MDS map of all gait signatures, there is no discernable trend in the spatial arrangement of
576 individuals’ according to their narrowing balance beam score (where similar colors indicate similar
577  balance scores) (Fig. 8d). For instance, the 2 groups of gait signatures colored orange are located
578 distant from each other, and both are close to individuals with significantly lower narrowing
579  balance beam scores (Fig. 8d).

a) Balance ability vs. change in gait signatures b) Self-selected speed vs. balance
Participant ID
— 30, ——vana] —~ 30
3 : A I r=0.57 .
£ 28 &£ 28 = 0.02
= e YAO5 = p=u
o YADG o ]
1 T
g e YAD7 g %
0N 24 e YAOD8 N 2y
e YAD9
£ £
@ YA10 @
@ 22 o 22
g e YA11 0
e YAIZ
@ 20
§ 20 o YA14 o
S .l ] ] e YAI5 s .
=z — linear fit YA16 ="’ — linear fit
@ . s YAT oo e
% 60 70 8 %0 100 110 YA18 06 07 08 09 1 11 12 13 14 15
Euclidean distance between x;g Self-selected walking speed (m/s)
S8 and extreme slow signatures
c) Change in gait signatures vs. self-selected speed d) Gait signatures do not cluster with
balance ability in MDS space
28
(7]
» 160 W
= ° o
[+] = 26 L
8 9l r=078 3
2 £ p<o.001 ®
g T" 120 e 2 g
o5 (7] o
g o 3
g = 22
+= =100 o
L 0 9
8w 20 8
© i i =+
i ¢ — linear fit 2
T
= 18
Q 60
2 06 08 1 12 1.4 16
580 Self-selected walking speed (m/s)

581  FEigure 8: Balance ability may be associated with the extent to which individuals modulate
582 their gait signatures with changes in speed. a) A moderately positive linear relationship
583  exists between balance ability and the change (Euclidean distance) between SS and
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584  extreme slow speed gait sighatures- individuals with better balance modulate their gait
585 signatures more when reducing speed from SS to extreme slow walking speeds. b) A
586 moderately positive linear relationship exists between self-selected walking speed and
587 balance ability- individuals with better balance prefer walking at faster self-selected
588 walking speeds. c) A strong positive linear relationship exists between change in gait
589 signatures between SS and extreme slow speed and self-selected walking speed. d) 3D
590 MDS representation of all individuals’ gait signatures colored by their narrowing balance
591 beam score reveal no clustering of signatures in this space.

592 3.8 Exploring associations between changes in gait signatures and discrete
593 spatiotemporal variables with speed

594 Changes in gait signatures from SS to extreme slow speeds, but not extreme fast speeds,
595 are correlated with changes in two of five spatiotemporal biomechanical metrics (cadence, step
596 length, swing duration, stance duration and step width). Significant correlations were identified
597 between SS and extreme slow speed gait signatures and changes in right cadence (p = 0.002, r
598 = 0.68) (Fig. 9a) and left step length (p = 0.001, r = 0.72) (Fig. 9b). However, there was no
599  significant correlation between any of the 5 bilateral spatiotemporal variables and changes in gait
600  signatures between SS and extremely fast walking speeds (p > Qgonferroni = 0.005).

a) Change in cadence vs. change in gait signatures b) Change in step length vs. change in gait signatures
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602  Figure 9: A strong positive linear relationship exists between the Euclidean distance
603  between self-selected and extreme slow speed signatures and changes in a) right leg
604 cadence and b) left leg step length

605 3.9 Discrete spatiotemporal variables show strong linear relationships speed, but
606 cannot distinguish between individuals

607 Trial-averaged discrete variables also showed linear relationships with gait speed
608 (Supplementary Fig. S4). Cadence and step length have strong, positive relationships with
609 increasing gait speed (Supplementary Fig. S4a-i and iii), while swing duration and stance duration
610  show strong, negative relationships with increasing speed (Supplementary Fig. S4a-ii and iv) at
611 the Bonferroni-adjusted significance level of a = 0.005 for n = 10 variables (all p-values < 0.001)
612  (Supplementary Fig. S4a). The variability of these variables at the extreme slow speed (0.3m/s)
613  showed high variability (Supplementary Fig. S4). Stance width did not demonstrate a significant
614  correlation with speed (p = 0.9, r = 0.03). Spatiotemporal variables only discriminated individuals
615  with average classification accuracy of 55.7 £ 0.2%. A confusion matrix of a representative
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616  classification run illustrates that as many as 11 out of 14 individuals were misclassified
617  (Supplementary Fig. S4b).

618 4 Discussion
619 Summary

620 Machine-learning-based dynamic gait signatures holistically encode individual differences
621 and systematic changes in gait dynamics with walking speed. Individual differences in gait
622  amongst able-bodied young adults are distinguishable within a common, low-dimensional latent
623  space of the gait dynamics model regardless of differences in how slow or fast they walk.
624  Differences across individuals are evident using RNN models based on both 2D and 3D
625  kinematics, suggesting that consistent gait coordination patterns within individuals can be
626  captured from camera-based measures. In contrast, gait signatures trained using kinetics did not
627  improve discrimination and their representations were high-dimensional, suggesting that kinetic
628 variables do not maintain consistent coordination across speeds. Although there are unique
629 differences between individuals’ gait signatures, the changes in these signatures as speeds
630 change are predictable, enabling us to identify a unifying linear relationship that explains how
631 able-bodied individuals’ gait signatures alters with speed. Within this common linear relationship,
632  however, the degree to which individuals modify their gait signatures is variable and is related to
633  their balance ability and self-selected walking speed. Overall, these insights underscore the need
634  to identify unifying principles regarding the physiological or biomechanical factors that underpin
635 these changes. The gait signatures approach may be useful to identify individual differences in
636  gait across a variety of applications, notably in sports and personalized gait rehabilitation.

637 The individual-specific gait signatures discovered by our framework are consistent with
638 the idea that individuals maintain consistent, highly characteristic gait dynamics across a variety
639  of walking speedst®*53. Our study complements previous research by showing that individuals’
640  gaits remain individual-specific across a wide range of speeds, rather than solely at self-selected
641  walking speeds™ or a more limited range of speeds®. Our cohort of able-bodied adults served as
642  arigorous test case, demonstrating the robustness of individual classification even in a healthy,
643  young population with relatively similar dynamics. These results suggest potential discriminatory
644  effectiveness in stroke and other patient populations as well. We show that even at very slow
645  speeds, able-bodied gait signatures can be approximated by a linear model. Notably, prior studies
646 have shown that walking at extremely slow speeds alter baseline gait coordination more
647  profoundly than fast walking speeds“®#! and in our dataset, we observe high inter-individual
648  variability in spatiotemporal parameters at very slow walking speeds. We thus postulate that
649  walking at extreme slow speeds may necessitate distinct gait dynamics, given that observable
650 differences in muscle coordination also exist at slow versus self-selected walking speed®. This
651  effect could be attributed to the fact that slow walking is more akin to a postural task involving a
652  series of weight shifts. Further, we hypothesize that there may be a greater deviation in dynamics
653  near individuals’ walk-to-run transition speed. However, our gait signatures remained individual-
654  specific and approximately linear across the entire spectrum of walking speeds, even at extreme
655  fast and slow speeds. Capturing the processes governing the progression of inter- and intra- limb
656  gait variables over time offers a more comprehensive speed-independent characterization of
657  individuals.

658 Kinematic data adequately capture individual differences in gait dynamics that differentiate
659 individuals. Here we compared 3D kinematic signatures to the 2D kinematics approach from our
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660  prior workl®. We found a small but significant improvement in individual discrimination using 3D
661  kinematic signatures. However, the 96% and higher average discriminatory accuracy of 2D
662  kinematics suggests a significant amount of information can be garnered solely from motions in
663 the sagittal plane. Improvements in the individual classification accuracy by 3D kinematic gait
664  signatures are likely due to the added information from movement in the frontal and transverse
665 planes. For patient populations with more frontal- and transverse-plane gait deviations??3-2%],
666  generating gait signatures from 3D kinematic data may be more important for differentiating
667  between individuals. Additionally, the choice between 2D and 3D kinematics affects equipment
668  requirements, with 3D analysis often requiring multiple cameras compared to 2D analyses®>>7,
669  The efficacy of using 2D kinematics in gait analysis has already shown promise in conditions such
670  as spastic tertraparesis®, cerebral palsy®, and cancer survivors®®l, Moreover, 2D kinematics-
671  based gait signatures, such as from gait videos, may still enable characterization of gait dynamics
672 indiverse cohorts when 3D motion capture is not feasible-53],

673 We were surprised that the addition of kinetics did not improve the individual
674  distinguishability of gait signatures. The fact that kinetic data could not be modeled in a low-
675 dimensional space within the model suggest that the dynamics governing kinematics are sufficient
676  to distinguish individuals across speeds compared to the dynamics of forces, which are more
677  directly related to the biomechanical demands of maintaining dynamics underlying kinematic
678  patterns. Considering that the recurrent neural network (RNN) learns to model the evolving
679  neuromechanical dynamics of gait over time, it is plausible that the RNN may be able to encode
680  similar information about an individual to what is contained in kinetic data. Moreover, previous
681  research has used kinematic data to infer kinetic datal?°2%, suggesting that kinematics encompass
682 information integral to kinetics. Whether kinetic data enhance classification accuracy in people
683  with neuro-pathologies such as stroke needs more evaluation in future work. Nonetheless,
684  eliminating the need for costly force plates in gait analysis remains advantageous.

685 Our data show that able-bodied gait signatures change predictably with speed. Despite
686 individual-specific differences in gait signatures, we found consistent directional changes in 3D
687 MDS representations of gait signatures with speed across participants. Similarly, many
688  researchers have found linear relationships between simple discrete spatiotemporal variables
689  with gait speed416:17.3637.641  These variables, however, describe aggregated information across
690 individuals’ entire stride (e.g., peak, or averaged gait metrics). We show that changes in our gait
691  signatures with speed are indeed moderately correlated with spatiotemporal variables such as
692  cadence, step length, stance duration and swing duration, suggesting that our gait signatures
693  framework holistically captures the information found in these composite variables. Furthermore,
694  studies have shown significant relationships between gait speed and discrete kinematict®%-65-67]
695 and kinetic variables®¢8, However, these metrics only provide information at discrete points in
696  the gait cycle, disregarding potentially meaningful information at other time points during the gait
697 cycle. We showed that gait signatures classified individuals with higher average classification
698  accuracy (~99%) than spatiotemporal variables (~56%), discrete kinematic (~91%), and discrete
699  kinetic (~64%) variables. Given that our framework uses continuous, synchronous, multi-joint data
700  to construct gait signatures, our current results provide further support that our approach provides
701 a more comprehensive measure of individuals’ gait coordination over time.

702 Aspects of individual differences in mobility— even in able-bodied young adults— appear to
703  play a role in shaping individuals’ gait dynamics and the ability to adjust them across speeds.
704  First, we observed that baseline gait dynamics undergo more substantial changes with extreme
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705  slow walking speeds compared to extreme fast speeds. Our results suggest that individuals with
706  better balance may more flexibly modulate their gait dynamics from SS to extreme slow walking.
707  Second, correlation analyses suggested that participants who preferred faster self-selected
708  walking speeds tended to perform better on the narrowing balance beam. We infer that better
709  balance and the extent to which individuals’ modulate their gait signatures likely emerge from a
710  common underlying construct (a confounding variable)- walking speed. Slower walking speeds
711  are associated with worse balance and greater risk of falls, particularly among older adults and
712 individuals with neurological impairment®® 7%, Thus, the habitual walking speed preferences
713  observed among able-bodied young adults may be linked to their individual balance capabilities.

714 The inclusion of extremely slow speeds in our analysis is particularly relevant for
715  comparisons between able-bodied individuals and impaired populations who may walk at very
716  slow speeds. In our previous study®, we investigated both able-bodied and stroke individuals
717  across a narrower speed range, ranging from their self-selected speeds to their comfortable fast
718  speeds, revealing minimal overlap between the speeds of the two cohorts. The speed limitation
719 stemmed from neuromechanical impairments and safety concerns for stroke survivors.
720  Specifically, stroke survivors walked from 0.3m/s to 0.9 m/s, while able-bodied individuals ranged
721 from 0.9 to 1.6m/sl. Thus, the incorporation of these much slower speed signatures for able-
722  bodied young adults in our current work facilitates a more unbiased comparison of gait dynamics
723  for impaired populations, such as stroke survivors. Conversely, the inclusion of speeds up to the
724  walk-run transition may facilitate comparisons with cohorts comprising individuals who walk at
725  exceptionally fast speeds, such as competitive speed walkers.

726 It is important to address some potential biases and limitations in our methodology. First,
727  we enforced a fixed extreme slow speed of 0.3m/s across participants to ensure the speed reflects
728  that of impaired gait speeds such as stroke survivors. This imposition may have introduced a floor
729  effect, particularly affecting taller individuals or those with longer legs. Future studies should
730  consider scaling speeds to leg length"Yl. Additionally, we did not use a multi-session approach or
731  have arigorous practice session”?. Participants may select different transition speeds given more
732  time on the treadmill. However, given the linear regression results, we do not expect conclusions
733  to change at slightly higher or lower transition speeds. Kinematic and kinetic variables in the
734  frontal and rotational planes may be prone to measurement errors and greater inter-individual
735  variability due to marker positioning, but the evaluation of within-individual changes across speeds
736  reduces this concern in the current study?”7>-751. To improve visualization of our data and simplify
737  analyses, we employed 3D multi-dimensional scaling of our high dimensional gait signatures (>
738  1000D), which may have resulted in a loss of information about relative similarity between
739 individuals and trials. The results may have changes if a higher-dimensional representation of
740  dissimilarity was used. Our use of support vector machine classifiers to distinguish individuals
741  across speeds presents interpretation challenges, as the learned decision boundary may be
742 complex and difficult to interpret, providing limited insight into the underlying relationships driving
743  classification outcomes. Additionally, using a linear mixed effects model on a relatively small
744  dataset raises concerns regarding the reliability of estimates for the variance components for
745 random effects. These random effects capture variability among the individuals, potentially
746  leadingto a reduction in residual variability and an inflated perception of explained variability, thus
747  inflating the R2values.

748 The results of our study hold significant implications for real-world applications, particularly
749  in gait research, sports training, and gait rehabilitation. Our work can potentially aid researchers
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750  with determining the minimum equipment required for constructing gait signatures capable of
751  effectively characterizing individual differences in gait dynamics. The ability of gait signatures to
752  reliably identify individuals walking at any gait speed may also be useful in research where
753  biometric recognition using machine learning is importantl’®’7l. The finding that 3D MDS gait
754  signatures can be reasonably predicted from a limited set of speeds may offer a valuable
755  framework similar to velocity-based training in sports conditioning”®7®, potentially enabling
756  trainers to pinpoint optimal training speeds for athletes or prescribe training intensities to induce
757 desired changes in in movement quality. The linear relationship between gait signatures and
758  speed could inform modeling and control applications, aiding the development of more efficient
759  locomotion strategies for human-robotic systems®%. This relationship is particularly relevant given
760 that previous systems typically operated at speeds equivalent to or lower than a participant’s
761  comfortable overground speed®®2, For instance, adaptive prosthetic devices and exoskeletons
762  could be designed to mimic an individual’s natural gait patterns more closely across a range of
763  speeds. However, while gait signatures generally change linearly with speed in able-bodied
764  adults, this relationship may not be the case for impaired individuals, underscoring the importance
765  of future studies in understanding individual-specific response to conditions and interventions.
766  Moreover, individual-specific signatures hold clinical value by extending treatment monitoring and
767  measurement beyond discrete clinical measures®l, Gait signatures may also facilitate the design
768  of personalized gait rehabilitation programs by leveraging insights into how individual gait
769  characteristics predict treatment efficacy®. The direct association between changes in gait
770  signatures and improvements in gait quality remains unverified. Future work should explore the
771  relationship between gait signatures and gait quality, as well as define clinically meaningful
772 changes. Nonetheless, more research is required to understand how impaired gait signatures
773  change with speed, considering safety concerns and the capabilities of impaired populations. Our
774  study opens new avenues for personalized rehabilitation interventions and enhanced sports
775  performance through informed speed selection.

776
777
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778 5 Conclusions

779 We used our previously developed gait signatures framework to show that gait dynamics
780  remain individual-specific across a wide range of speeds, suggesting that this framework may be
781  useful in characterizing individual differences in gait impairments and inform training or
782  rehabilitation personalization. Approximately linear changes in able-bodied young adult gait
783  signatures with gait speed allows inferences to be made about their gait dynamics at unmeasured
784  speeds. Further, changes in gait signatures from self-selected to extreme slow speeds were
785 correlated with balance ability, individuals’ self-selected walking speed, and discrete
786  spatiotemporal variables, pointing to specific factors that may be shaping changes in dynamics
787  with speed. While this work focuses on solely able-bodied individuals, future work should include
788  impaired cohorts before similar gait analyses can be translated to clinical practice. By considering
789  the dynamic evolution of multiple gait variables over time and their modulation with speed,
790 researchers and practitioners can gain a deeper understanding of how individuals’ gait patterns
791 adapt across different speeds. This perspective can enable the development of interventions
792 tailored to meet the specific needs of individuals with gait impairments.

793

794
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795 6 Supplementary Figures

a) 3D Kkinetics b) 3D kinematics & 3D kinetics
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797  Supplementary Fig. S1: Visualization of kinetic-based gait signatures a) 3D kinetics and b)
798 3D kinematics & 3D kinetics. i) 3D looped trajectories of the first 3 principal components
799 (PCs 1-3) of the gait sighatures colored by speed shows that gait sighatures at faster
800 speeds (red) were more expansive than those at slower speeds (blue) ii) 3D looped
801 representations of the first 3 PCs 1-3 of the gait sighatures colored by individuals revealed
802 that signatures are individual-specific across speeds. Kinetic signatures (a) appeared to
803 form 2 groups of individuals with differing looped trajectories. iii) 3D looped
804 representations of the second set of PCs 4-6 of the gait signatures colored by individual
805 showcased individual-specific signatures. iv) 3D MDS visualizations of all signatures
806 colored by individual further reveals a splitting of individuals into two groups. v) Individual
807 classification accuracy was relatively high using a) 3D kinetics and b) 3D kinetics &
808  kinematics across varied number of speed trials in the classification model training set.
809
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a) Histograms of linear mixed effect model residuals
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Supplementary Fig. S2: Evaluation of LME model fits. a) Histogram of residuals across 3D

coordinate LME models are centered around

zero. b) Residuals vs. predicted values reveal

homoscedasticity (fluctuation around zero) regardless of prediction value.

a) Balance ability vs. change in gait signatures
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Supplementary Fig. S3: Correlation plots showing no significant linear relationships
between Euclidean distance between SS and extreme fast (walk to run transition) speed
signatures and a) narrowing balance beam score and b) self-selected walking speed.
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a) Discrete spatiotemporal variables have linear relationships with gait speed
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Supplementary Fig. S4: Discrete biomechanical variables show strong, linear relationships
with speed. a) Discrete spatiotemporal variables i) cadence and iii) step length show strong
positive linear relationships with increasing gait speed and variables ii) swing duration
and iv) stance duration show strong negative linear relationships with increasing gait
speed. b) Five bilateral spatiotemporal discrete variables (cadence, step length, swing
duration, stance duration and step width) were unable to classify individuals with high
accuracy (53%). A confusion matrix, derived from a single run of a linear support vector
machine classification model, illustrates that multiple individuals were misclassified.
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832 Supplementary Table. T1: 13 commonly used discrete biomechanical variables assessed
833  bilaterally in gait analysis

834
Kinematics Kinetics
Step length Peak anterior ground reaction force
Peak trailing limb angle Push off integral
Peak hip hike Peak ankle moment
Double support duration Peak ankle power

Stance duration
Swing duration
Ankle angle at heel strike
Ankle angle at toe off

Knee angle at midstance
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835 7 Data Availability Statement

836 All data and code that support the findings in this paper has been deposited at GitHub:
837  https://github.com/bermanlabemory/GaitSignatures HealthyYoungAdultStudy. The RNN model
838 training and gait signature development was conducted in Python programming language. The
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