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Abstract 26 

Understanding individuals’ distinct movement patterns is crucial for health, rehabilitation, and 27 
sports. Recently, we developed a machine learning-based framework to show that “gait 28 
signatures” describing the neuromechanical dynamics governing able-bodied and post-stroke gait 29 
kinematics remain individual-specific across speeds. However, we only evaluated gait signatures 30 
within a limited speed range and number of participants, using only sagittal plane (i.e., 2D) joint 31 
angles. Here we characterized changes in gait signatures across a wide range of speeds, from 32 
very slow (0.3 m/s) to exceptionally fast (above the walk-to-run transition speed) in 17 able-bodied 33 

young adults. We further assessed whether 3D kinematic and/or kinetic (ground reaction forces, 34 
joint moments, and powers) data would improve the discrimination of gait signatures. Our study 35 
showed that gait signatures remained individual-specific across walking speeds: Notably, 3D 36 
kinematic signatures achieved exceptional accuracy (99.8%, confidence interval (CI): 99.1-100%) 37 
in classifying individuals, surpassing both 2D kinematics and 3D kinetics. Moreover, participants 38 
exhibited consistent, predictable linear changes in their gait signatures across the entire speed 39 
range. These changes were associated with participants’ preferred walking speeds, balance 40 
ability, cadence, and step length. These findings support gait signatures as a tool to characterize 41 
individual differences in gait and predict speed-induced changes in gait dynamics.  42 

  43 
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1. Introduction 44 

Seemingly stereotypical human behaviors such as walking and running exhibit distinct 45 
individual characteristics[1–5] that stem from complex interactions of neural control, muscle 46 
activation patterns, biomechanics, sensory feedback, and the environment. Precisely because of 47 
these interconnected processes, the mechanisms underlying individuality in gait coordination 48 
across speeds remain elusive. Previously, we developed a proof-of-concept framework 49 
leveraging a recurrent neural network (RNN) model to capture individual differences in human 50 
gait dynamics based on measured kinematics[6]. The high-dimensional internal parameters of the 51 

trained model encode how individuals’ inter- and intra-limb gait variables progress over time. From 52 
the model’s internal activations, we constructed low-dimensional representations of individuals’ 53 
multi-joint coordination, phase-averaged across multiple strides, termed gait signatures. Gait 54 
signatures have broadened our understanding of human inter-joint coordination, going beyond 55 
traditional analyses focused on discrete spatiotemporal[7], kinematics and kinetics[8], and other 56 
derived metrics of gait coordination[9–13]. Thus, our prior work introduced a method that showed 57 
promise using 2D joint angles to identify individual differences in gait signatures that remain 58 
individual-specific across a restricted range of walking speeds in both able-bodied and impaired 59 
gait[6]. Here, we tested the ability of gait signatures, derived from different data types (3D 60 
kinematics and 3D kinetics), to discriminate individuals amidst a wide range of speeds. 61 
Additionally, we examined gait signatures in able-bodied young adults across a wide range of 62 
walking speeds to understand their speed-dependent variations. Finally, to uncover potential 63 

factors influencing speed-dependent modifications in gait signatures, we investigated whether 64 
these changes correlate with specific spatiotemporal variables and dynamic balance.   65 

We hypothesize that individual differences in gait dynamics persist across a wide range 66 
of walking speeds. This persistence allows us to identify individuals by their gait signatures 67 
regardless of gait speed, despite the biomechanical changes required to walk at different speeds. 68 

To modulate gait speed from slow to a faster pace, individuals can employ various strategies, 69 
including taking longer steps, increasing step frequency, and decreasing the swing or stance 70 
phase durations, among others[14–17]. Increasing gait speed has also been associated with 71 
complex changes in joint excursions and step length asymmetry in people post-stroke[18,19]. 72 
However, previous research demonstrated that speed had little effect on joint-level coordination 73 
in injury-free adults[20,21]. Building on our previous findings[6], where we demonstrated discernible 74 

individual gait signatures across a limited range of speeds, we anticipate that although gait 75 
signatures would change across a wider speed range, their individual-specific nature would be 76 
preserved.    77 

Understanding what data are needed to differentiate gait coordination patterns between 78 
individuals may inform experimental design, equipment considerations, and future clinical 79 

translation. Our prior work[6] constructed gait signatures using only sagittal-plane joint kinematics 80 
(i.e. joint angles). However, including additional kinematic and kinetic (i.e. ground reaction forces, 81 
joint moments, and powers) data may offer further insights into the individual-specificity of gait 82 
signatures. While majority of gait variability occurs in the sagittal plane, variability may also 83 
manifest in the frontal and coronal planes among certain able-bodied individuals, evident in 84 
movements like hip abduction/adduction and internal rotation [22]. This variability becomes more 85 
pronounced in impaired individuals, such as stroke survivors, who often adopt compensatory 86 

strategies in the frontal plane, like circumduction or pelvic hiking[23–25]. Furthermore, kinetic 87 
information may be important to include as kinetics might contain meaningful information not 88 
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encoded in the kinematics[25]. For example, two people with identical kinematics and different 89 
body compositions will have different kinetics[26]. Alternatively, estimated joint kinematics and 90 
kinetics are mechanically related, such that kinetics may not be necessary to distinguish 91 

individuals if soft-tissue artifacts and measurement errors[27] are negligible, compared to individual 92 
differences in kinematics[28–30]. 93 

Given similar biomechanical constraints and unimpaired neural control in able-bodied 94 
young adults, we hypothesize that there exist common changes in gait dynamics across speeds. 95 
Numerous studies have reported many discrete gait parameters that increase with gait speed, 96 

including leg stiffness[31], center-of-mass work and power[32], muscle activity amplitude[33], joint 97 
angle excursions[34], kinetic variables[20,35], and spatiotemporal variables[14,16,17,36,37]. Moreover, 98 
previous research has identified many relationships between specific gait characteristics and 99 
walking speed[32]. For example, spatiotemporal parameters demonstrate squared and cubic 100 
relationships, while kinematic outcomes exhibit a range of linear, squared and cubic relationships 101 
with normalized gait speed[38]. Additionally, certain kinetic parameters exhibit a linear relationship 102 
with gait speed, while others display quadratic relationships[39]. While common measures of gait 103 
biomechanics exhibit differential relationships with speed, we tested whether gait signatures 104 
would also exhibit a consistent relationship with speed. As gait signatures leverage continuous, 105 
synchronously measured gait data to identify a low-dimensional representation of gait dynamics, 106 
they may provide a more comprehensive representation of how gait coordination changes with 107 
speed. This approach may shed light on the underlying organization of gait variables, enriching 108 

our understanding of how gait dynamics change across speeds.  109 

Understanding whether changes in gait signatures across different speeds correlate with 110 
changes in discrete spatiotemporal variables and dynamic balance ability would highlight potential 111 
factors impacting how people modulate coordination across speeds. Studies show that walking 112 
at extremely slow speeds disrupts individuals' natural momentum and coordination[40] and 113 

biomechanical strategies[41]. We hypothesize that an individual’s capacity to modulate their gait 114 
with speed is contingent upon underlying factors inherent to their sensorimotor system and 115 
functional capacity. We predict that individuals with better balance ability may be able to adapt 116 
more flexibly (exhibit less change in their signature) to walking at extremely slow or fast treadmill 117 
speeds than those with lower balance ability.  118 

This study assesses whether able-bodied young adults’ gait signature remain individual-119 
specific walking speeds ranging from extremely slow (0.3m/s) to exceptionally fast (above the 120 
empirical walk-to-run transition).  First, we determined the optimal number of speed trials per 121 
individual required to a train a linear support vector machine classifier effectively, enabling 122 
accurate individual identification across various speeds for each data type. Next, we characterized 123 
how the data type used to train the gait signatures model (2D kinematics, 3D kinematics, 3D 124 

kinetics and their combination) impacted the ability to identify individuals based on their gait 125 
signatures using a support vector machine classification task. Thirdly, we characterized the extent 126 
to which individuals exhibited consistent changes in gait signatures with speed. Lastly, we 127 
determined whether changes in gait signatures with speed were associated with changes 128 
biomechanical variables and individuals’ dynamic balance ability.    129 
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2. Materials and methods 130 

2.1 Ethics statement 131 

All participants provided written informed consent prior to study participation, and the study 132 
protocol was approved by the Emory University Institutional Review Board. 133 

2.2 Human subject participants 134 

Seventeen young able-bodied adult individuals participated in this study (8 men, 9 women; 135 
mean ± s.d. age = 27.9 ± 4.5 years, height = 1.7 ± 0.1 m, body mass = 77.0 ± 21.8 kg). 136 
Participants reported no history of injury or pain in the last 3 months. 137 

2.3 Experimental design 138 

To test the effect of a wide range of speeds, participants completed 60-second trials at 9 different 139 
speeds ranging from extremely slow to extremely fast speeds. The speed conditions were 140 

implemented in 2 phases, and within each phase speeds were assessed in random order. Phase 141 
1 was always implemented first and consisted of 6 speed conditions ranging from the fixed 142 
extreme slow speed of 0.3 m/s to each participant’s fastest comfortable safe speed determined 143 
on the treadmill. Phase 2 was implemented second and consisted of the 3 remaining speed 144 
conditions (92.5%, 100.0%, and 107.5% of the empirical walk-to-run transition speed). 145 

Participants were advised to take a seated or standing rest break for 1-2 minutes as needed, and 146 
if they experienced fatigue or pain following a gait trial. The 9 speeds evaluated for each 147 
participant are outlined below as follows:  148 

Phase 1 speed conditions 149 

1. Fixed extreme slow: a very slow fixed speed of 0.3 m/s was selected to match the speed 150 
of low functioning stroke survivors.  151 
 152 

2. Slow overground-derived: participants were instructed to walk at a very slow pace 153 
overground (instruction: “walk as if leisurely strolling in a beautiful park”) along a flat, indoor 154 
marked 29.9-foot (9.11-meter) path in a controlled lab setting. Three trials were performed 155 
and the average speed for this condition was calculated for each participant.  156 
 157 

3. Self-selected treadmill-derived: The treadmill was initiated at ~1 m/s and participants were 158 
instructed to indicate whether to increase or decrease the speed until they reached a 159 
speed that was representative of their natural or comfortable walking speed. 160 
 161 

4. Self-selected overground-derived: participants were instructed to walk at their natural self-162 
selected pace overground (instruction: “walk at a pace that is natural for you to travel from 163 
point A to B”) along a flat, smooth, marked 29.9-foot path in a controlled lab setting. Speed 164 
was determined as the average speed from three trials. 165 
 166 

5. Intermediate calculated: The speed halfway in between each participant’s self-selected 167 
overground-derived and the fast treadmill-derived speed was calculated.  168 
 169 

6. Fast treadmill-derived: The treadmill was initiated at ~1 m/s and participants were 170 
instructed to indicate whether to increase or decrease the speed until they reached a 171 
speed that was representative of a fast-walking speed (instruction: “walk as if you are 172 
running late for a very important event”).  173 
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Phase 2 speed conditions 174 
 175 

7. 92.5% of the walk-to-run transition speed: 7.5% below the determined walk-to-run 176 
transition speed was calculated. 177 
 178 

8. Walk-to-run transition speed: The walk-to-run transition speed was determined before 179 
randomizing the 3 speed conditions in phase 2. The treadmill was initiated around each 180 
individuals’ determined fast walking speed, and participants were instructed to indicate 181 
whether to increase or decrease the speed until they reached a speed that felt they could 182 
no longer walk and needed to start running. Treadmill speeds were varied by 0.05m/s -  183 
0.13m/s at a time. Once participants identified a preferred transition speed, the treadmill 184 
speed was increased beyond, then decreased below, that speed to encourage exploration 185 
of each speed. Participants were instructed to try walking and running at each speed (~20 186 
seconds), if possible. Next, participants were again asked to identify the speed beyond 187 
which they prefer to run and below which they prefer to walk. This process was repeated 188 
until participants selected two consecutive speeds within 0.05 m/s of each other. The 189 
recorded speed was the one they settled on during the process. This approach is similar 190 
to another study[42] however, we did not mandate rest periods.  191 
 192 

9. 107.5%  of the walk-to-run transition speed: 7.5% above the determined walk-to-run 193 
transition speed was calculated.  194 
 195 

2.4 Data acquisition and processing 196 

We used 3D motion capture to obtain continuous walking data from participants. Reflective 197 
markers were attached to participants’ trunk, pelvis, and bilateral shank, thigh, and foot 198 
segments[43]. We collected marker position data while participants walked on a split-belt 199 
instrumented treadmill (Bertec Corp., Ohio, USA) using a 7-camera motion analysis system 200 
(Vicon Motion Systems, Ltd., UK). Marker data were collected at 100Hz, and synchronous ground 201 
reaction forces were recorded at 2000 Hz and were down sampled to 100Hz using previously 202 
established techniques[43–46]. Raw marker position data were labeled and gap-filled.  Marker 203 
trajectories and ground reaction force raw analog data were low-pass filtered at 6 and 30 Hz in 204 
Visual 3D (C-Motion Inc., Maryland, USA). Gait events (bilateral heel contact and toe-off) were 205 
determined using a 20N vertical GRF cutoff; 3D kinematics and kinetics were calculated in Visual 206 
3D.  207 

 To describe the 3D kinematics of each individual, we measured 18 continuous variables 208 
from the motion capture data; bilateral hip, knee, and ankle joint angles each in the sagittal, frontal, 209 
and transverse planes. Two-dimensional kinematics consisted of 6 continuous features, 210 
comprising bilateral hip, knee, and ankle joint angles in the sagittal plane only. 3D kinetics 211 
consisted of 42 total features- bilateral ground reaction forces normalized to body weight, ankle, 212 
knee and hip moments and powers each in the sagittal, frontal, and transverse planes. A 213 
combination of all the data consisted of 60 variables. sagittal-plane hip, knee, and ankle joint 214 
kinematics. Three speed trials were omitted (2 for participant YA04 and 1 for participant YA06) 215 
due to technical errors during data collection, resulting in a reduction of the full trial data set from 216 
N = 153 to N = 150.  The excluded trials corresponded to YA04 and YA06’s 7.5% below walk-to-217 

run transition speed, and YA4’s 7.5% above walk-to-run transition speed. To visualize 218 
representative traces of 3D kinematics and kinetics across different speeds, refer to (Fig. 1). One 219 

minute of continuous 3D motion capture treadmill walking data were collected from 17 able-bodied 220 
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young adults across 9 different speed conditions (Fig. 2a). Continuous gait data from all 221 
individuals and speed conditions were extracted (Fig. 2b).  222 

 223 

 224 

Figure 1: Visualization of representative a) kinematic and b) kinetic treadmill walking data. 225 
Representative continuous right angle flexion/extension (a-i) and right vertical ground 226 
reaction force (b-i) for one participant across three speed conditions: extreme slow, self-227 
selected, and extreme fast (walk to run transition). Representative phase-averaged left 228 
knee flexion/extension (a-ii, top), left ankle flexion/extension (a-ii, bottom), normalized left 229 

ankle moment flexion/extension (b-ii, top), and normalized left anterior-posterior ground 230 
reaction force (b-ii, bottom) data for three participants colored by individual (color) and 231 
speed (gradient).   232 
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2.5 Generating gait signatures  233 

To create gait signatures, we utilized the RNN framework described previously[6], where 234 
continuous, multi-joint kinematics from multiple individuals and speeds were used to train an RNN 235 
model. The RNN model architecture consisted of a single input layer, a hidden layer with 512 long 236 
short-term memory (LSTM) activation units, and an output layer. The model was trained using an 237 
Adam optimizer[47] in a sequence-to-sequence manner to predict one-step time shifted output 238 
kinematics (Fig. 2c). To prevent overfitting on this larger dataset of stereotypical able-bodied gait 239 
patterns, we made the following modifications to our prior framework[6]. We lowered the learning 240 

rate of the Adam optimizer from 0.001 in to 0.0001, added a drop out layer after the hidden layer 241 
with 20% drop out rate, and added a kernel L2 regularization (regularization strength of 0.01). 242 
Additionally, the trials in this able-bodied young adult dataset were 60 seconds long vs. the 15 243 
second trials used previously. During training, our data were batched according to the number of 244 
total trials (N = 150). and the RNN was trained on all individuals trials to extract individual-specific 245 
latent states of the RNN which represent individuals’ gait dynamics (Fig. 2c, Individual-specific 246 
latent states).  247 

The RNN latent states (Fig. 2c, Individual-specific latent states), were extracted for all 248 
individuals’ trials, reduced in dimension using and principal component analysis and phase-249 
averaged[48] to generate gait signatures. Gait signatures can be visualized as looped 250 
representations of specified principal component (PC) projections (Fig. 2d) and 3D multi-251 
dimensional scaling projections (Fig. 2e). We trained four individual RNN models, each with a 252 
different input data type (2D kinematics, 3D kinematics, 3D kinetics and a combination of the 253 
data). Gait signatures were generated for each model RNN model separately.   254 

 255 
Figure 2: Pipeline of the gait signatures framework and outcomes. a) 3D motion capture 256 
data from 17 able-bodied young adults walking on a treadmill across 9 speeds each was 257 
conducted. b) Continuous timeseries kinematics and kinetics were extracted from all trials. 258 
c) A sequence-to-sequence RNN was trained using subsets of the data recorded in (b), and 259 
individual-specific gait signatures were extracted for all individuals' trials. d) Principal 260 

component analysis was applied to reduce the dimensionality of the high dimensional 261 
latent states, each trial was phase-averaged, and the first 3 dominant PCs visualized as 3D 262 

loops. e) 3D projections of low-dimensional gait signatures using multidimensional scaling 263 
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reveal individual-specific gait signatures among 3 representative able-bodied young 264 
adults.  265 

2.6 Determining the variance explained in the original features by the principal 266 

components of the gait signatures model  267 

To attain the variance explained in the original features by each principal component (PC) 268 
of the RNN latent spaces, we used each trained RNN model (Fig. 3a, 1. Train RNN), extracted 269 
the model internal activations (weights), performed PCA on them, and identified the weights 270 
corresponding to each PC (Fig. 3a, 2. Isolate weights corresponding to each PC). The model 271 
weights were updated to a new model based on the top N principal components and used to 272 
generate reconstructed data for the provided internal states (Fig. 3a, 3. Reconstruct data for 273 
isolated PCs). The coefficient of determination (R2) was calculated between the reconstructed 274 
data and the measured data (Fig. 3a, 4. Evaluate the R2 between measured and reconstructed 275 
data for each PC). Eigenvalue plots of the cumulative variance explained by each PC of the gait 276 

signature (expressed as a percentage) were constructed for each data type (Fig. 3b).  277 

To determine the number of principal components to retain, the elbow of the eigenvalue 278 
plot is usually considered sufficient[49]. However, since our eigenvalue plots represent the variance 279 
explained by PCs of the original data (not of the high-dimensional gait signatures i.e., internal 280 
activations), we determined a reasonable threshold of 80% to account for most of the variance 281 

explained in the original model input data.  282 
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 283 

Figure 3: Variance explained in the original signals by each of the principal components 284 
of the extracted dynamics. a) To determine the variance explained in the original data by 285 
the dynamics: 1) the RNN model was trained, 2) the trained model weights (internal 286 
activations) were extracted and the dynamics corresponding to each PC was isolated. 3) 287 
For each PC, the original signals were reconstructed across participants. 4) The coefficient 288 
of determination was calculated between the measured input signals and the 289 
reconstructed signals for each PC. These values were used to construct eigenvalue plots 290 
for each signal type. b) Eigenvalue plots of the cumulative variance explained by 291 
increasing number of principal components of the gait signature for each of the four signal 292 

types. 293 

2.7 Discriminating individuals and speeds  294 

To determine whether gait signatures remain characteristic to an individual across a wide range 295 
of walking speeds, we used a linear support vector machine (SVM) discrimination classification 296 
task to classify individuals based on their gait signatures across their nine speed trial conditions. 297 
To maintain consistency in the number of trials per participant analyzed, individuals with fewer 298 
than nine speed trials were excluded from this analysis. The resultant dataset comprised 14 299 

individuals, each with nine different speed condition trials. For each data type, eight distinct 300 
SVM classifiers were trained on a progressive selection of one to eight random trials per 301 
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individual over 140 total runs using built in MATLAB function ‘templateSVM’ with standardized 302 
features. The random number generator seed was set to the run number on each iteration for 303 
consistency across the different models. The average classification accuracy across the runs 304 

corresponding to the number of speed trials per individual in the training set was calculated for 305 
each data type. We conducted this analysis separately for the gait signatures across data types 306 
(Fig. 4, Discrimination task).  307 

Because our gait signature classification accuracies do not obey gaussian statistics, we 308 
used non-parametric Mann-Whitney U tests to test for differences in classification accuracy 309 

between gait signatures generated from 2D versus 3D inputs. For classifiers trained using one to 310 
eight speed trials per participant, we compared classification accuracy and reported p-values and 311 
Mann-Whitney U effect sizes (r). An effect size (r) smaller than 0.3 indicates a small effect, a value 312 
between 0.3 and 0.5 suggests a medium effect, while an effect size greater than 0.5 indicates a 313 
large effect.  314 

315 
Figure 4: Schematic outlining the comparison of individual discriminatory power between 316 
the gait signatures generated using four different signals (2D kinematic, 3D kinematic, 3D 317 
kinetic and a combination of all signals). 3D motion capture of treadmill walking was 318 

obtained from 17 able-bodied young adults, encompassing 9 different speed conditions. 319 
The four data types were created, each with varying number of features. RNN models were 320 
trained for each data type and respective gait signatures were generated. The 321 
classification accuracy of individuals across different speeds was assessed using support 322 
vector machine (SVM) classifiers, and the classification accuracies between the four gait 323 

signature types were compared.    324 

To assess the individual discriminatory potential of discrete biomechanical variables 325 
across speeds, we conducted a comparable SVM classification approach. Specifically, we 326 
focused on 26 widely recognized bilateral kinematic and kinetic discrete variables commonly used 327 
in gait analyses[6], as detailed in Supplementary Table T1. Additionally, we explored the 328 
discriminatory capacity of only the 18 kinematic-only and eight kinetic-only variables in 329 

distinguishing individuals. 330 

 331 
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2.8 3-D Multi-dimensional scaling map to compare gait signatures 332 

To analyze and visualize the pairwise distances between gait signatures, we employed 333 
multi-dimensional scaling (MDS) to project all gait signatures onto a single 3D gait map. This 334 
technique was used to lower the dimension of our complex high-dimensional signatures, 335 
maximally preserving relationships between individuals and trials.  336 

To quantify the intra- vs. inter-individual differences in 3D MDS signatures, the Euclidean 337 
distances were calculated between all signatures within an individual and between individuals, 338 
respectively. Subsequently, a histogram of the Z-scored Euclidean distances was plotted to 339 
visualize both intra and inter- individual distances and the Mann-Whitney U test was performed 340 
on the distributions of distances. 341 

2.9 Identifying relationships between gait signatures and speed  342 

To determine if the relationship between 3D MDS coordinates and gait speed is linear, 343 
simple linear regression was performed separately for each of the three MDS coordinates and 344 
the speed for each individual. Box plots illustrating the slope and R2 values of the linear fits were 345 
generated, and the mean and 95% confidence intervals of these distributions were recorded. 346 
Additionally, p-values were recorded for the linear fits of each participant.   347 

To test whether individuals exhibit similar linear changes in dynamics across speeds, we 348 
used linear mixed effects (LME) models to predict each trial’s 3D MDS coordinates from speed 349 
trials. We estimated positions in 3D MDS, separately for each dimension, using linear mixed-350 
effects models with fixed intercepts and effects of speed, and a random intercept for subject. The 351 
fixed and random effects coefficients differ in each dimension. The models assume that the 352 
relationship between MDS location and trial speed is linear, while allowing for individual 353 
differences in the mean location of gait signatures in MDS space. The models aim to capture how 354 

the overall changes in gait signatures correspond to changes in speed for different subjects. MDS 355 
3D coordinates (X, Y and Z) are the dependent variables (to be predicted), trial speed is the 356 
predictor variables and individuals’ Subject ID was used as a categorical random intercept 357 
(Equation 1).  358 
 359 

[

𝑀𝐷𝑆𝑋

𝑀𝐷𝑆𝑌

𝑀𝐷𝑆𝑍

] ~ [

𝛽0,𝑋

𝛽0,𝑌

𝛽0,𝑍

] + [

𝛽1,𝑋

𝛽1,𝑌

𝛽1,𝑍

] ∗ 𝑠𝑝𝑒𝑒𝑑 + [

(1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡)𝑋

(1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡)𝑌

(1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡)𝑍

]                                     (1) 360 

 361 
We performed a hierarchical bootstrapping analysis[50] to examine how sensitive the model 362 
parameters are to variations in the input data, the number of trials chosen per individual, and the 363 
speed trials used in training. Specifically, we conducted 17 leave-one-subject-out LME models to 364 
predict 3D MDS coordinate positions from gait speed. We manipulated the number of speed trials 365 
chosen per subject (ranging from four to eight) across five iterations, with five random selections 366 
of speed trials per trial count. 367 

 368 

 369 
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2.10 Relationships between gait signatures and individual differences in mobility 370 

to walking speed and changes in gait signatures 371 

To determine whether changes in gait signatures with speed are associated with 372 
individual’s functional abilities, we used a narrowing beam balance test, which has been used to 373 
characterize walking balance and motor coordination [51]

. The narrowing beam balance score, 374 
representing the distance travelled in feet travelled along the narrowing beam, was calculated as 375 
the average distance across four trials. We used linear regression and assessed the correlation 376 
coefficient (Pearson’s r) between balance score and the following variables: a) self-selected 377 

walking speed, b) Euclidean distance between SS and extreme slow signatures and c) Euclidean 378 
distance between SS and extreme fast signatures. Additionally, to assess whether SS walking 379 
speed are associated with the extent to which participants altered their gait signatures, we 380 
performed linear regression between the Euclidean distance between SS and extreme slow 381 
signatures vs. SS speed.  382 

2.11 Exploratory analysis of gait signatures and spatiotemporal variables 383 

To determine whether changes in gait signatures with speed reflected similar findings in 384 
the literature about changes in spatiotemporal variables with speed, we conducted an exploratory 385 
analysis to determine whether changes in gait signatures (Euclidean distance) between both self-386 
selected (SS) and extreme slow, and extreme fast speeds were associated with discrete, trial-387 

averaged spatiotemporal biomechanical variables. Ten different Pearson’s r correlation tests 388 
were conducted for bilateral biomechanical variables: cadence, stance duration, swing duration, 389 
step width, and step length. The alpha value of 0.05 was corrected using Bonferroni method[52] 390 
for the 10 different tests per speed modulation type (SS to extreme slow and SS to extreme fast) 391 
and updated to 0.005 each. 392 

3. Results  393 

In summary, individual differences in gait signatures were maintained across the full range of 394 
walking speeds from extremely slow to the walk to run transition. 3D kinematic gait signatures 395 
achieved almost perfect individual classification accuracy of 99% (CI: 99.1-100%), using four or 396 
more random speed trials in the SVM classifier training set. While individual classification 397 

performance was also relatively high for 2D kinematics (95.0%, CI: 88.1-100%) and 3D kinetics 398 
(97.8%, CI: 99.7-98.8%), it remained lower compared to that of 3D kinematic gait signatures. 399 
Linear mixed effects models revealed that individuals exhibited similar changes in their gait 400 
signatures across different speeds. This analysis uncovered a unifying framework for the impact 401 
of speed on gait signatures. We found a significant positive correlation between changes between 402 
SS and the extreme slow speed gait signatures and an external measure of balance ability (p = 403 
0.01, r = 0.60). Furthermore, an exploratory analysis revealed that changes between SS and 404 
extreme slow signatures show significant, positive, linear relationships with speed-induced 405 
changes in two out of five spatiotemporal variables: cadence and step length. 406 
 407 

3.1 Kinematics and kinetics during treadmill walking differ qualitatively across 408 

individuals and speeds 409 

Representative right sagittal plane ankle kinematics (Fig. 1a-i) and right vertical ground 410 
reaction forces (Fig. 1b-i) were relatively consistent across all strides within an individual’s trial. 411 
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Slower-speed trials resulted in fewer gait cycles than faster-speed trials over the shown 10-412 
second period with noticeable larger joint excursions and ground reaction forces with increasing 413 
speed (Fig. 1ab-i). Despite similar general shapes of phase-averaged kinematics and kinetics 414 

across participants and speeds, there was evident nuanced variability (Fig. 1ab-ii).  415 

3.2 Kinematic gait signatures demonstrate low dimensionality, contrary to kinetic 416 

gait signatures 417 

 All gait signature data types met the criterion of explaining at least 80% variance in the 418 
original data signals while using fewer than 34 PCs. However, the number of PCs required to 419 
achieve this threshold varied among different gait signature types (Fig. 3b). Specifically, six PCs 420 
of 2D kinematic signatures capture over 90% of the variance in the original sagittal plane 421 
kinematics (Fig. 3b-i). On the other hand, 3D kinematic gait signatures require 10 principal 422 
components to account for ~83% of the variance in the original features (Fig. 3b-ii). Notably, in 423 
3D kinetic signatures and combined kinematic and kinetic signatures, achieving at least 80% 424 

variance necessitated 29 and 33 PCs respectively (Fig. 3b-iii and iv).  425 

 426 
3.3 Kinematic data types preserve individual differences in gait signatures across 427 

speeds 428 

Phase-averaged 2D and 3D kinematic gait signatures maintain individual-specific 429 

trajectories across their entire range of walking speeds. The looped projections of the first three 430 
dominant PCs (PCs 1-3) (Fig. 5ab-i), and the second 3 dominant PCs (PCs 4-6) (Fig. 5ab-ii) 431 
belonging to each individual (specific color) cluster tightly together (Fig. 5ab-i). Higher order PCs 432 
4-6 reveal more individual specific clustering (Fig. 5ab-ii), especially in the 3D kinematic RNN 433 
signatures (Fig. 5b-ii).  434 

Note that while 2D and 3D kinematic signatures were generally similarly shaped across 435 
all individuals’ speed trials, 3D kinetic signatures showed 2 subsets of signatures: some 436 
participants’ signatures tend more upwards in PC3 compared to other signatures (Supplementary 437 
Fig. S1a-i). Specifically, four participants (YA16, YA17, YA18 and YA19) appeared to have 438 
similarly shaped gait signatures compared to the other participants (Supplementary Fig. S1a-ii).  439 
This separation of signatures into 2 groups was not quite as evident in the combined 3D kinematic 440 
and 3D kinetic signatures (Supplementary Fig. S1b-i and ii). This division of 2 groupings of 3D 441 
kinetic signatures is more evident in the higher order PCs 4-6 (Supplementary Fig. S1a-iii) and 442 
3D MDS plots (Supplementary Fig. S1ab-iv).   443 

 3D kinematic signatures consistently classified individuals with significantly higher 444 

accuracy than 2D kinematic gait signatures, regardless of the number of speed trials per 445 
individuals used in the SVM training set. The classification accuracies of 2D kinematic gait 446 
signatures were significantly lower than the 3D kinematic gait signatures across one to eight 447 
speed trials in the training set (p < 0.001, -0.27 < r > -1.01). If including at least four speed trials 448 
in the training set, 3D kinematic signatures achieved almost perfect classification accuracy of 449 
99.8% (CI: 99.1-100%) (Fig. 5b-iii), whereas 2D kinematic signatures achieved 95% (CI: 88.2-450 
100%) (Fig. 5a-iii). To attain perfect individual classification accuracy for 3D kinematic signatures 451 

(100%), a minimum of seven training speeds are required, however, even with the inclusion of 452 

additional speed trials up to eight in the training set, 2D kinematic signatures failed to reach 100% 453 
accuracy (Fig. 5a-iii). In a representative confusion matrix of a single classification iteration using 454 
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run of 2D kinematic signatures, we observed at least 3 instances of individual misclassification 455 
(Fig. 5a, iv). Classification analyses did not substantially improve when adding kinetic data 456 
(Supplementary Fig. S1a-v). Our analysis using 26 bilateral, discrete biomechanical variables 457 

(Supplementary Table T1) achieved 92.2 ± 0.1% classification accuracy with only four randomly 458 
selected speed trials per individual in the SVM training set. Kinematic-only variables yielded 459 
similar high average accuracy at 91.2 ± 0.1%. However, kinetic-only variables had significantly 460 
lower accuracy (p < 0.001) at of 64.3 ± 0.2%, with  misclassifications up to 12 out of 14 individuals’ 461 
speed trials.  462 

Analysis of the inter- and intra- individual Euclidean distances between 3D kinematic 463 
signatures in 3D MDS space demonstrates that intra-individual distances are smaller than inter-464 
individual differences (p < 0.001), further supporting for the individual-specific nature of gait 465 
signatures within our cohort of able-bodied gait (Fig. 5b-v). The proportion of distances above two 466 
standard deviations (SD) (|z-score| > 2) were 0% and 2.2% for intra- and inter-individual distances 467 
respectively. The proportion of distances below two SDs were 48.8% and 0% for intra- and inter-468 
individual distances respectively. 469 
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Figure 5: Kinematic gait signatures are individual-specific. i) 3D looped trajectories of the 471 
first 3 principal components (PCs 1-3) of a) 2D kinematic and b) 3D kinematic gait 472 
signatures are individual-specific across speeds. Individual’s trials (same color) are 473 
grouped closely together with similar shapes. ii) 3D looped representations of the second 474 
set of principal components (PCs 4-6) reveal greater individual specific clustering in a) 2D 475 
kinematic signatures, and stronger differentiation observed in b) 3D kinematic signatures. 476 
iii) Individual classification accuracy is lower using a) 2D kinematics vs. b) 3D kinematics 477 
across varied number of speed trials in the classification model training set. 3D kinematic 478 
signatures exhibited robust classification of individuals, achieving a mean accuracy of 479 
99.8% (CI: 99.1% to 100%), with a minimum of four speed trials in the training set, 480 
surpassing the accuracy of 2D kinematics, which achieved 96% (CI: 88.2-100%). Please 481 
note that significant differences exist between 2D and 3D kinematic signature accuracies 482 
regardless of the number of speed trials in the training set. However, for clarity, we 483 
specifically emphasize the statistical comparison in the illustration using only four speeds 484 
in the training set as this is where 3D kinematic signatures attain near perfect (100%) 485 
classification accuracy. iv) A representative confusion matrix from a single classification 486 
model run shows that several individuals were misclassified when four speed trials per 487 
individual were included in the training set. v) The intra-individual trial distances in MDS 488 
space for 3D kinematic signatures are smaller than the intra-individual distances, further 489 
showcasing the individual-specificity across all speed trials of an individual.  490 
 491 
3.4 Gait signatures are modulated consistently with changes in walking speed  492 

Despite showing that gait signatures are individual-specific across speeds (Fig. 5), 2D and 493 
3D looped kinematic gait signatures (colored by speed) appear similar in structure and shape 494 
(Fig. 6ab-i). Both gait signature types show that slower trials (blue) are more flattened in PC3 and 495 
concentrated to the center of all speed signatures, whereas faster speeds are more expanded in 496 
PC3 and found on the outskirts of all signatures (Fig. 6ab-i, top row). This result can be seen in a 497 
representative gait signature across speeds (Fig. 6ab-i, YA11 speed trials).  498 

3D gait maps of both 2D and 3D kinematic gait signatures colored by gait speed reveal 499 
that slower speeds (blue) across subjects are distinctly located in one region of the map and faster 500 
speeds (red) are in another region of the map (Fig. 6ab-ii). This modification by speed is more 501 
noticeable in 2D signatures than in the 3D signatures.  502 

We found that across participants, the 3D MDS representation of gait signatures change 503 
in a similar direction with changes in gait speed (Fig. 6ab-iii). Notably, even at extremely slow 504 
speeds (0.3 m/s), similar to those observed in stroke survivors, the gait signatures maintained a 505 
consistent linear relationship with faster speeds. Linear mixed effects models accurately 506 
explained the relationship between individuals’ MDS coordinate representations of their 3D 507 
kinematic gait signatures and speed with high accuracy (R2 > 0.95) for each coordinate (Fig. 6b-508 
iii). However, the accuracy was lower for 2D kinematics (R2 > 0.89) (Fig. 6a-iii). Note that the p-509 
value for the linear MDS coordinate fits in the Y axis of the 3D kinematic signatures were not 510 
significant (p = 0.28).  511 

  512 

 513 
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 514 

Figure 6: Gait signatures hold information about walking speed. i) 3D looped trajectories 515 
of principal components 1-3 colored by gait speed show that similar speed trials are 516 
shaped similarly in a) 2D kinematic and b) 3D kinematic signatures. Slower speed 517 
signatures (blue) are concentrated in the center of all signatures and faster speed 518 
signatures (red) on the outskirts, fanning outward and upward in PC3. ii) 3D MDS 519 
visualizations of all signatures colored by speed illustrates that slower speeds (blue) 520 
across individuals are in the top left region of the map for a) 2D kinematic signatures and 521 
in the right half region of the gait map for b) 3D kinematic signatures. iii) 3D MDS 522 
visualizations of all signatures colored by individual fit with linear mixed effects models 523 
show that individuals gait signatures change similarly and linearly with change in gait 524 
speed.  525 
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3.5 Within individuals, 3D MDS coordinates of gait signatures vary linearly with speed  526 

Linear regression of each individual’s 3D MDS gait signature coordinates separately (XYZ) 527 
showed consistently strong and significant associations between changes in the X-axis (R2 > 0.50; 528 
p < 0.02) across participants, but not in the Y- or Z-axes (Fig. 7a). X and Z significant slopes are 529 
negative, whereas Y has significant slopes that are positive and negative (Fig. 7b). Moreover, 530 
distinct clusters of individuals exhibited similar changes in their gait signatures with speed were 531 
evident, particularly in the X and Z coordinate slope values. These clusters were observed: a) 532 
around the mean value (red dotted line), b) above the upper limit of the 95% confidence interval 533 

(gray dotted line), and c) below the lower limit of the 95% confidence interval (Fig. 7a).  534 

3.6 Stability of linear mixed effects model parameters across individuals 535 

Linear mixed effects (LME) models tested the similarity of the linear relationships between 536 
gait signatures and speed across the entire cohort. Hierarchical bootstrapping results confirmed 537 
that robustness of the LME models to variations in input data, the number of trials per individual 538 

and speed trials used to train the model. Consequently, LME models were deemed suitable for 539 
accurately predicting the locations of 3D kinematic gait signatures with respect to speed (Fig. 7c). 540 
Note that a few Y-coordinate models resulted in non-significant p-values. The X, Y, Z sensitivity 541 
of the B1 (fixed slope) parameter was -0.30 ± 0.03, -0.02 ± 0.02 and -0.27 ± 0.03 respectively. 542 
The X, Y, Z sensitivity of the B0 (fixed intercept) parameter was 37.5 ± 5.7, 3.7 ± 5.8 and 35.0 ± 543 
5.5 respectively. The standard deviation ranges of individual random intercepts for the X, Y, Z 544 
coordinates were [4.3 – 9.7], [4.2 – 8.2] and [3.9 – 6.4] respectively. 545 

Histograms of residuals across the three LME models (representing X,Y,Z coordinate 546 
locations) exhibited normal distributions centered around zero (Supplementary Fig. S2a).  547 
Furthermore, residual vs. predicted coordinate plots show that the variance of residuals across 548 
various predictions are constant (homoscedasticity) (Supplementary Fig. S2b), meaning that the 549 
models are generally well-behaved.   550 

 551 
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 552 

 553 

Figure 7 Individual’s gait signatures change linearly with speed. Simple linear regression 554 
of individuals’ 3D MDS coordinates vs. speed show similar a) R2 values and b) slopes 555 
across individuals. c) Hierarchical bootstrapping of linear mixed effects shows that the 556 
linear relationship of MDS coordinates with speed is robust across variability in model 557 
input data, the number of speed trials selected per individual, and the randomness of the 558 
selected speed trials used in model. 559 

 560 

 561 
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3.7 Associations between gait signature changes and balance ability 562 

Walking balance ability may be associated with the extent to which individuals alter their gait 563 
signatures across speeds. We identified a moderately positive correlation between individuals’ 564 
narrowing balance beam score and changes in gait signatures (Euclidean distance between self-565 
selected and extremely slow speed walking gait signatures) (p = 0.01, r = 0.60) (Fig. 8a). 566 
Individuals with better balance (higher scores) alter their gait signatures more from SS to extreme 567 
slow. Additionally, we observed a moderate positive correlation between participants’ SS speed 568 
and their performance on the narrowing balance beam (Fig. 8b), where participants’ with faster 569 

SS speeds exhibited better performance compared to those with slower SS speeds (p = 0.02, r = 570 
0.57). Further, individuals with slower SS speeds changed their gait signatures less between the 571 
SS and extreme slow speeds (Fig. 8c). However, changes in gait signatures between participants’ 572 
SS and extreme fast speeds were not associated balance (p = 0.15, r = -0.37) (Supplementary 573 
Fig. S3a), or self-selected walking speed (p = 0.07, r = -0.45) (Supplementary Fig. S3b). In a 3D 574 
MDS map of all gait signatures,  there is no discernable trend in the spatial arrangement of 575 
individuals’ according to their narrowing balance beam score (where similar colors indicate similar 576 
balance scores) (Fig. 8d). For instance, the 2 groups of gait signatures colored orange are located 577 
distant from each other, and both are close to individuals with significantly lower narrowing 578 
balance beam scores (Fig. 8d). 579 

 580 

Figure 8: Balance ability may be associated with the extent to which individuals modulate 581 
their gait signatures with changes in speed. a) A moderately positive linear relationship 582 
exists between balance ability and the change (Euclidean distance) between SS and 583 
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extreme slow speed gait signatures- individuals with better balance modulate their gait 584 
signatures more when reducing speed from SS to extreme slow walking speeds. b) A 585 
moderately positive linear relationship exists between self-selected walking speed and 586 

balance ability- individuals with better balance prefer walking at faster self-selected 587 
walking speeds. c) A strong positive linear relationship exists between change in gait 588 
signatures between SS and extreme slow speed and self-selected walking speed. d) 3D 589 
MDS representation of all individuals’ gait signatures colored by their narrowing balance 590 
beam score reveal no clustering of signatures in this space. 591 

3.8 Exploring associations between changes in gait signatures and discrete 592 

spatiotemporal variables with speed 593 

Changes in gait signatures from SS to extreme slow speeds, but not extreme fast speeds, 594 
are correlated with changes in two of five spatiotemporal biomechanical metrics (cadence, step 595 
length, swing duration, stance duration and step width). Significant correlations were identified 596 

between SS and extreme slow speed gait signatures and changes in right cadence (p = 0.002, r 597 
= 0.68) (Fig. 9a) and left step length (p = 0.001, r = 0.72) (Fig. 9b). However, there was no 598 
significant correlation between any of the 5 bilateral spatiotemporal variables and changes in gait 599 
signatures between SS and extremely fast walking speeds (p > αBonferroni = 0.005).  600 

601 
Figure 9: A strong positive linear relationship exists between the Euclidean distance 602 

between self-selected and extreme slow speed signatures and changes in a) right leg 603 
cadence and b) left leg step length 604 

3.9 Discrete spatiotemporal variables show strong linear relationships speed, but 605 

cannot distinguish between individuals  606 

Trial-averaged discrete variables also showed linear relationships with gait speed  607 
(Supplementary Fig. S4). Cadence and step length have strong, positive relationships with 608 
increasing gait speed (Supplementary Fig. S4a-i and iii), while swing duration and stance duration 609 
show strong, negative relationships with increasing speed (Supplementary Fig. S4a-ii and iv) at 610 
the Bonferroni-adjusted significance level of α = 0.005 for n = 10 variables (all p-values < 0.001) 611 
(Supplementary Fig. S4a). The variability of these variables at the extreme slow speed (0.3m/s) 612 

showed high variability (Supplementary Fig. S4). Stance width did not demonstrate a significant 613 
correlation with speed (p = 0.9, r = 0.03). Spatiotemporal variables only discriminated individuals 614 
with average classification accuracy of 55.7 ± 0.2%. A confusion matrix of a representative 615 
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classification run illustrates that as many as 11 out of 14 individuals were misclassified 616 
(Supplementary Fig. S4b).  617 

4 Discussion  618 

Summary 619 

Machine-learning-based dynamic gait signatures holistically encode individual differences 620 
and systematic changes in gait dynamics with walking speed. Individual differences in gait 621 
amongst able-bodied young adults are distinguishable within a common, low-dimensional latent 622 
space of the gait dynamics model regardless of differences in how slow or fast they walk. 623 
Differences across individuals are evident using RNN models based on both 2D and 3D 624 
kinematics, suggesting that consistent gait coordination patterns within individuals can be 625 
captured from camera-based measures. In contrast, gait signatures trained using kinetics did not 626 
improve discrimination and their representations were high-dimensional, suggesting that kinetic 627 
variables do not maintain consistent coordination across speeds. Although there are unique 628 

differences between individuals’ gait signatures, the changes in these signatures as speeds 629 
change are predictable, enabling us to identify a unifying linear relationship that explains how 630 
able-bodied individuals’ gait signatures alters with speed. Within this common linear relationship, 631 
however, the degree to which individuals modify their gait signatures is variable and is related to 632 
their balance ability and self-selected walking speed. Overall, these insights underscore the need 633 

to identify unifying principles regarding the physiological or biomechanical factors that underpin 634 
these changes. The gait signatures approach may be useful to identify individual differences in 635 
gait across a variety of applications, notably in sports and personalized gait rehabilitation. 636 

The individual-specific gait signatures discovered by our framework are consistent with 637 
the idea that individuals maintain consistent, highly characteristic gait dynamics across a variety 638 
of walking speeds[3,4,53]. Our study complements previous research by showing that individuals’ 639 
gaits remain individual-specific across a wide range of speeds, rather than solely at self-selected 640 
walking speeds[1] or a more limited range of speeds[6]. Our cohort of able-bodied adults served as 641 
a rigorous test case, demonstrating the robustness of individual classification even in a healthy, 642 
young population with relatively similar dynamics. These results suggest potential discriminatory 643 
effectiveness in stroke and other patient populations as well. We show that even at very slow 644 
speeds, able-bodied gait signatures can be approximated by a linear model. Notably, prior studies 645 
have shown that walking at extremely slow speeds alter baseline gait coordination more 646 
profoundly than fast walking speeds[40,41], and in our dataset, we observe high inter-individual 647 
variability in spatiotemporal parameters at very slow walking speeds. We thus postulate that 648 
walking at extreme slow speeds may necessitate distinct gait dynamics, given that observable 649 
differences in muscle coordination also exist at slow versus self-selected walking speed[54]. This 650 

effect could be attributed to the fact that slow walking is more akin to a postural task involving a 651 
series of weight shifts. Further, we hypothesize that there may be a greater deviation in dynamics 652 
near individuals’ walk-to-run transition speed. However, our gait signatures remained individual-653 
specific and approximately linear across the entire spectrum of walking speeds, even at extreme 654 
fast and slow speeds. Capturing the processes governing the progression of inter- and intra- limb 655 
gait variables over time offers a more comprehensive speed-independent characterization of 656 

individuals.  657 

Kinematic data adequately capture individual differences in gait dynamics that differentiate 658 
individuals. Here we compared 3D kinematic signatures to the 2D kinematics approach from our 659 
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prior work[6]. We found a small but significant improvement in individual discrimination using 3D 660 
kinematic signatures. However, the 96% and higher average discriminatory accuracy of 2D 661 
kinematics suggests a significant amount of information can be garnered solely from motions in 662 

the sagittal plane. Improvements in the individual classification accuracy by 3D kinematic gait 663 
signatures are likely due to the added information from movement in the frontal and transverse 664 
planes. For patient populations with more frontal- and transverse-plane gait deviations[23–25], 665 
generating gait signatures from 3D kinematic data may be more important for differentiating 666 
between individuals. Additionally, the choice between 2D and 3D kinematics affects equipment 667 
requirements, with 3D analysis often requiring multiple cameras compared to 2D analyses[55–57]. 668 
The efficacy of using 2D kinematics in gait analysis has already shown promise in conditions such 669 
as spastic tertraparesis[58], cerebral palsy[59], and cancer survivors[60]. Moreover, 2D kinematics-670 
based gait signatures, such as from gait videos, may still enable characterization of gait dynamics 671 
in diverse cohorts when 3D motion capture is not feasible[61–63].  672 

We were surprised that the addition of kinetics did not improve the individual 673 
distinguishability of gait signatures. The fact that kinetic data could not be modeled in a low-674 
dimensional space within the model suggest that the dynamics governing kinematics are sufficient 675 
to distinguish individuals across speeds compared to the dynamics of forces, which are more 676 
directly related to the biomechanical demands of maintaining dynamics underlying kinematic 677 
patterns. Considering that the recurrent neural network (RNN) learns to model the evolving 678 
neuromechanical dynamics of gait over time, it is plausible that the RNN may be able to encode 679 

similar information about an individual to what is contained in kinetic data. Moreover, previous 680 
research has used kinematic data to infer kinetic data[29,30], suggesting that kinematics encompass 681 
information integral to kinetics. Whether kinetic data enhance classification accuracy in people 682 
with neuro-pathologies such as stroke needs more evaluation in future work. Nonetheless, 683 
eliminating the need for costly force plates in gait analysis remains advantageous.  684 

Our data show that able-bodied gait signatures change predictably with speed. Despite 685 
individual-specific differences in gait signatures, we found consistent directional changes in 3D 686 
MDS representations of gait signatures with speed across participants. Similarly, many 687 
researchers have found linear relationships between simple discrete spatiotemporal variables 688 
with gait speed[14,16,17,36,37,64].  These variables, however, describe aggregated information across 689 
individuals’ entire stride (e.g., peak, or averaged gait metrics). We show that changes in our gait 690 

signatures with speed are indeed moderately correlated with spatiotemporal variables such as 691 
cadence, step length, stance duration and swing duration, suggesting that our gait signatures 692 
framework holistically captures the information found in these composite variables. Furthermore, 693 
studies have shown significant relationships between gait speed and discrete kinematic[39,65–67] 694 

and kinetic variables[39,68]. However, these metrics only provide information at discrete points in 695 

the gait cycle, disregarding potentially meaningful information at other time points during the gait 696 
cycle. We showed that gait signatures classified individuals with higher average classification 697 
accuracy (~99%) than spatiotemporal variables (~56%), discrete kinematic (~91%), and discrete 698 
kinetic (~64%) variables. Given that our framework uses continuous, synchronous, multi-joint data 699 
to construct gait signatures, our current results provide further support that our approach provides 700 
a more comprehensive measure of individuals’ gait coordination over time.  701 

Aspects of individual differences in mobility– even in able-bodied young adults– appear to 702 
play a role in shaping individuals’ gait dynamics and the ability to adjust them across speeds. 703 
First, we observed that baseline gait dynamics undergo more substantial changes with extreme 704 
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slow walking speeds compared to extreme fast speeds. Our results suggest that individuals with 705 
better balance may more flexibly modulate their gait dynamics from SS to extreme slow walking. 706 
Second, correlation analyses suggested that participants who preferred faster self-selected 707 

walking speeds tended to perform better on the narrowing balance beam. We infer that better 708 
balance and the extent to which individuals’ modulate their gait signatures likely emerge from a 709 
common underlying construct (a confounding variable)- walking speed. Slower walking speeds 710 
are associated with worse balance and greater risk of falls, particularly among older adults and 711 
individuals with neurological impairment[69,70]. Thus, the habitual walking speed preferences 712 
observed among able-bodied young adults may be linked to their individual balance capabilities.  713 

The inclusion of extremely slow speeds in our analysis is particularly relevant for 714 
comparisons between able-bodied individuals and impaired populations who may walk at very 715 
slow speeds. In our previous study[6], we investigated both able-bodied and stroke individuals 716 
across a narrower speed range, ranging from their self-selected speeds to their comfortable fast 717 
speeds, revealing minimal overlap between the speeds of the two cohorts. The speed limitation 718 
stemmed from neuromechanical impairments and safety concerns for stroke survivors. 719 
Specifically, stroke survivors walked from 0.3m/s to 0.9 m/s, while able-bodied individuals ranged 720 
from 0.9 to 1.6m/s[6]. Thus, the incorporation of these much slower speed signatures for able-721 
bodied young adults in our current work facilitates a more unbiased comparison of gait dynamics 722 
for impaired populations, such as stroke survivors. Conversely, the inclusion of speeds up to the 723 
walk-run transition may facilitate comparisons with cohorts comprising individuals who walk at 724 

exceptionally fast speeds, such as competitive speed walkers.    725 

It is important to address some potential biases and limitations in our methodology. First, 726 
we enforced a fixed extreme slow speed of 0.3m/s across participants to ensure the speed reflects 727 
that of impaired gait speeds such as stroke survivors. This imposition may have introduced a floor 728 
effect, particularly affecting taller individuals or those with longer legs. Future studies should 729 

consider scaling speeds to leg length[71]. Additionally, we did not use a multi-session approach or 730 
have a rigorous practice session[72]. Participants may select different transition speeds given more 731 
time on the treadmill. However, given the linear regression results, we do not expect conclusions 732 
to change at slightly higher or lower transition speeds. Kinematic and kinetic variables in the 733 
frontal and rotational planes may be prone to measurement errors and greater inter-individual 734 
variability due to marker positioning, but the evaluation of within-individual changes across speeds 735 

reduces this concern in the current study[27,73–75]. To improve visualization of our data and simplify 736 
analyses, we employed 3D multi-dimensional scaling of our high dimensional gait signatures (> 737 
1000D), which may have resulted in a loss of information about relative similarity between 738 
individuals and trials. The results may have changes if a higher-dimensional representation of 739 

dissimilarity was used. Our use of support vector machine classifiers to distinguish individuals 740 

across speeds presents interpretation challenges, as the learned decision boundary may be 741 
complex and difficult to interpret, providing limited insight into the underlying relationships driving 742 
classification outcomes. Additionally, using a linear mixed effects model on a relatively small 743 
dataset raises concerns regarding the reliability of estimates for the variance components for 744 
random effects. These random effects capture variability among the individuals, potentially 745 
leading to a reduction in residual variability and an inflated perception of explained variability, thus 746 
inflating the R2 values.  747 

The results of our study hold significant implications for real-world applications, particularly 748 
in gait research, sports training, and gait rehabilitation. Our work can potentially aid researchers 749 
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with determining the minimum equipment required for constructing gait signatures capable of 750 
effectively characterizing individual differences in gait dynamics. The ability of gait signatures to 751 
reliably identify individuals walking at any gait speed may also be useful in research where 752 

biometric recognition using machine learning is important[76,77]. The finding that 3D MDS gait 753 
signatures can be reasonably predicted from a limited set of speeds may offer a valuable 754 
framework similar to velocity-based training in sports conditioning[78,79], potentially enabling 755 
trainers to pinpoint optimal training speeds for athletes or prescribe training intensities to induce 756 
desired changes in in movement quality. The linear relationship between gait signatures and 757 
speed could inform modeling and control applications, aiding the development of more efficient 758 
locomotion strategies for human-robotic systems[80]. This relationship is particularly relevant given 759 
that previous systems typically operated at speeds equivalent to or lower than a participant’s 760 
comfortable overground speed[81,82]. For instance, adaptive prosthetic devices and exoskeletons 761 
could be designed to mimic an individual’s natural gait patterns more closely across a range of 762 
speeds. However, while gait signatures generally change linearly with speed in able-bodied 763 
adults, this relationship may not be the case for impaired individuals, underscoring the importance 764 

of future studies in understanding individual-specific response to conditions and interventions. 765 
Moreover, individual-specific signatures hold clinical value by extending treatment monitoring and 766 
measurement beyond discrete clinical measures[83]. Gait signatures may also facilitate the design 767 
of personalized gait rehabilitation programs by leveraging insights into how individual gait 768 
characteristics predict treatment efficacy[84]. The direct association between changes in gait 769 

signatures and improvements in gait quality remains unverified. Future work should explore the 770 
relationship between gait signatures and gait quality, as well as define clinically meaningful 771 
changes. Nonetheless, more research is required to understand how impaired gait signatures 772 
change with speed, considering safety concerns and the capabilities of impaired populations. Our 773 
study opens new avenues for personalized rehabilitation interventions and enhanced sports 774 
performance through informed speed selection. 775 

 776 
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5 Conclusions  778 

We used our previously developed gait signatures framework to show that gait dynamics 779 
remain individual-specific across a wide range of speeds, suggesting that this framework may be 780 
useful in characterizing individual differences in gait impairments and inform training or 781 
rehabilitation personalization. Approximately linear changes in able-bodied young adult gait 782 
signatures with gait speed allows inferences to be made about their gait dynamics at unmeasured 783 
speeds. Further, changes in gait signatures from self-selected to extreme slow speeds were 784 
correlated with balance ability, individuals’ self-selected walking speed, and discrete 785 

spatiotemporal variables, pointing to specific factors that may be shaping changes in dynamics 786 
with speed. While this work focuses on solely able-bodied individuals, future work should include 787 
impaired cohorts before similar gait analyses can be translated to clinical practice. By considering 788 
the dynamic evolution of multiple gait variables over time and their modulation with speed, 789 
researchers and practitioners can gain a deeper understanding of how individuals’ gait patterns 790 
adapt across different speeds. This perspective can enable the development of interventions 791 
tailored to meet the specific needs of individuals with gait impairments.  792 

 793 
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6 Supplementary Figures 795 

 796 

Supplementary Fig. S1: Visualization of kinetic-based gait signatures a) 3D kinetics and b) 797 
3D kinematics & 3D kinetics. i) 3D looped trajectories of the first 3 principal components 798 
(PCs 1-3) of the gait signatures colored by speed shows that gait signatures at faster 799 
speeds (red) were more expansive than those at slower speeds (blue) ii) 3D looped 800 
representations of the first 3 PCs 1-3 of the gait signatures colored by individuals revealed 801 
that signatures are individual-specific across speeds. Kinetic signatures (a) appeared to 802 
form 2 groups of individuals with differing looped trajectories.  iii) 3D looped 803 
representations of the second set of PCs 4-6 of the gait signatures colored by individual 804 
showcased individual-specific signatures. iv) 3D MDS visualizations of all signatures 805 
colored by individual further reveals a splitting of individuals into two groups. v) Individual 806 
classification accuracy was relatively high using a) 3D kinetics and b) 3D kinetics & 807 
kinematics across varied number of speed trials in the classification model training  set. 808 
 809 
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 810 

 811 

Supplementary Fig. S2: Evaluation of LME model fits. a) Histogram of residuals across 3D 812 
coordinate LME models are centered around zero. b) Residuals vs. predicted values reveal 813 
homoscedasticity (fluctuation around zero) regardless of prediction value. 814 

 815 

 816 

817 
Supplementary Fig. S3: Correlation plots showing no significant linear relationships 818 
between Euclidean distance between SS and extreme fast (walk to run transition) speed 819 

signatures and a) narrowing balance beam score and b) self-selected walking speed.  820 

  821 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.591976doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.591976
http://creativecommons.org/licenses/by/4.0/


   

 

 30  

 

 822 

Supplementary Fig. S4: Discrete biomechanical variables show strong, linear relationships 823 

with speed. a) Discrete spatiotemporal variables i) cadence and iii) step length show strong 824 
positive linear relationships with increasing gait speed and variables ii) swing duration 825 
and iv) stance duration show strong negative linear relationships with increasing gait 826 
speed. b) Five bilateral spatiotemporal discrete variables (cadence, step length, swing 827 
duration, stance duration and step width) were unable to classify individuals with high 828 
accuracy (53%). A confusion matrix, derived from a single run of a linear support vector 829 
machine classification model, illustrates that multiple individuals were misclassified. 830 

  831 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.591976doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.591976
http://creativecommons.org/licenses/by/4.0/


   

 

 31  

 

Supplementary Table. T1: 13 commonly used discrete biomechanical variables assessed 832 
bilaterally in gait analysis 833 

  834 

Kinematics Kinetics 

Step length Peak anterior ground reaction force 

Peak trailing limb angle Push off integral 

Peak hip hike Peak ankle moment 

Double support duration Peak ankle power 

Stance duration  

Swing duration  

Ankle angle at heel strike 
 

Ankle angle at toe off 
 

Knee angle at midstance 
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7 Data Availability Statement 835 

All data and code that support the findings in this paper has been deposited at GitHub: 836 
https://github.com/bermanlabemory/GaitSignatures_HealthyYoungAdultStudy. The RNN model 837 
training and gait signature development was conducted in Python programming language.  The 838 
data analysis of the generated gait signatures was conducted in MATLAB 2023a (MathWorks). 839 
The deposited materials are accessible to enhance reproducibility and advocate for open science. 840 
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