
Moderating heritability with genomic data 
 
Sarah E. Benstock1, Elizabeth Prom-Wormley2, Brad Verhulst1 

1 Department of Psychiatry and Behavioral Sciences, Texas A&M University, 
College Station, TX, USA  
2 Department of Family Medicine and Population Health, Division of Epidemiology, 
Virginia Commonwealth University, Richmond, VA, USA  
 
 
 
 
Abstract 
Environmental moderators may amplify or suppress the heritability (i.e., the proportion 
of genetic variation) of a phenotype. This genetic sensitivity to the environment is called 
gene-environment interaction (GxE). Existing GxE methods struggle to identify 
replicable interactions because they focus on the interaction coefficients. We propose a 
novel method for estimating GxE heritability using genetic marginal effects from GxE 
genome-wide analyses and LD Score Regression (LDSC). We demonstrate the 
effectiveness of our method for body mass index (BMI) treating biological sex (binary) 
and age (continuous) as moderators. We find robust, interpretable evidence for GxE 
that is not detected by existing methods.  
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Background 1 

Gene-environment interaction (GxE) can be statistically detected when 2 

differences in an environment amplify or suppress the impact of a genotype on a 3 

phenotype. At the functional level, differences in genetic associations with a phenotype 4 

reflect differential sensitivity to an environment (1). Thus, individuals with different 5 

alleles at specific loci are predicted to respond differently depending on the 6 

characteristics of their environment. Twin and model organism studies have found 7 

pervasive evidence of GxE for a variety of traits (2–5). Model organism research strictly 8 

manipulates both the genotypes (via selecting organisms with differential genetic strains 9 

of known effect) and environments (via careful experimental manipulations) allowing the 10 

precise characterization of interaction effects. While extremely powerful, such methods 11 

do not transfer to human genetic studies. By contrast, GxE in twin studies focuses on 12 

the differences in the heritability of a trait (or the proportion of genetic variation in a 13 

phenotype) depending on the individual’s or family’s environment.  Accordingly, it is 14 

difficult to use these results to subsequently identify alleles that are sensitive to 15 

environmental variation. Examining GxE in GWAS data provides an opportunity to 16 

identify both differences in the heritability of a phenotype at different levels of an 17 

environmental moderator, while allowing for the potential next step of identifying specific 18 

alleles that are sensitive to changes in the environment. However, relatively few studies 19 

have attempted to identify GxE in humans using genome wide association study 20 

(GWAS) data (6–12), likely due to the perception that GxE GWAS (or moderated 21 

GWAS) are plagued by low levels of statistical power and extreme multiple testing 22 

corrections (13–15).  23 
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Linkage Disequilibrium Score regression method (LDSC), and other single 24 

nucleotide polymorphism (SNP) heritability (h2
SNP) methods offer a unique opportunity to 25 

address prior limitations in the detection of GxE. Specifically, LDSC regresses the χ2 26 

values for SNP associations identified from a GWAS onto an LD score that captures the 27 

known LD (i.e. correlations between the variants) in the sample population. The slope of 28 

this regression equation indexes the h2
SNP of the phenotype (16,17). Typically, 29 

estimation of GxE from GWAS focuses on genome-wide significant SNP-moderator 30 

interaction coefficients (i.e., p < 5 x 10-8). LDSC, however, estimates heritability without 31 

specifying a minimum significance threshold, making it an extremely useful tool for 32 

interrogating highly polygenic phenotypes with numerous effect sizes that are not 33 

genome-wide significant. By extending these methods to test for GxE in GWAS data, 34 

we can conduct a broad examination that may identify critical environmental factors that 35 

moderate the genetic architecture of a wide variety of medical and behavioral 36 

phenotypes.  37 

Current GxE methods struggle to accurately identify either SNP-environment 38 

interaction effects or differences in h2
SNP across different moderator levels. Some 39 

approaches directly estimate h2
SNP from the GxE GWAS interaction coefficient. The 40 

principle limitations of these approaches are the exclusive focus on the interaction 41 

coefficient and the assumption that the interaction coefficient uniquely indexes GxE 42 

(9,10). While this initially seems reasonable, exclusively focusing on the interaction 43 

coefficients ignores the fact that the interpretation of the interaction coefficient depends 44 

on the main effect and the level of the moderator. Accordingly, heritability estimates that 45 

focus on the interaction coefficient are analogous to random effects of the SNP and 46 
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must be interpreted with caution. Other SNP-based heritability estimation methods use 47 

a GREML-based mixed modeling approach with raw genetic data to partition the 48 

phenotypic variance into homogeneous (i.e. additive genetic), heterogeneous (i.e. GxE), 49 

and residual variation (8). GREML methods are computationally intensive (8,9).  50 

Rather than focusing on the interaction coefficient or using GRMEL-based 51 

approaches, our method integrates the interaction coefficients and the main effects into 52 

genetic marginal effects for each SNP analyzed in a GxE GWAS (18). Genetic marginal 53 

effects simplify interpretation of GxE GWAS results so that they can be interpreted in 54 

almost the same way as standard GWAS summary statistics, just for a specific level of 55 

the moderating environment, thereby de-confounding main and interaction effects. A 56 

genetic marginal effect captures the rate at which the outcome is expected to change 57 

based upon a one allele increase in the SNP. In GxE GWAS, because the genetic 58 

association for each SNP may depend on the level of the environment, it is necessary to 59 

integrate the main effects and the interaction effects into a single interpretable value. 60 

Mathematically, this is as simple as taking the first derivative of the regression equation 61 

with respect to the SNP (See Method Eqs. 1 & 2). After calculating genetic marginal 62 

effects for characteristic values of the moderator, we can estimate heritability for each of 63 

the levels.  64 

In this paper, we describe an extension of LDSC for estimating moderated h2
SNP, 65 

using genetic marginal effects derived from GxE GWAS summary statistics (17–19) and 66 

build on several methods we have published elsewhere (18). We view moderated h2
SNP 67 

as a starting point that will allow researchers to refine the search for individual variants 68 

that interact with specific moderators by focusing attention on appropriate moderators 69 
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and subsequently invest time, effort, and resources collecting data and conducting 70 

analyses that pinpoint significant locus-level genetic interactions. We demonstrate the 71 

effectiveness of our moderated h2
SNP analyses using body mass index (BMI) data from 72 

the UK Biobank (20). The results identify differences in h2
SNP of BMI at different levels of 73 

binary (i.e., sex) and continuous (i.e., age) moderators. However, our proposed method 74 

can be applied to GWAS summary statistics for any moderating variable that has been 75 

thoughtfully and appropriately coded, as the marginal effects calculation will not be 76 

impacted, and will be easier to interpret than other GxE heritability methods (18).  77 

 78 

Results 79 

Method Overview. We present a method to estimate h2
SNP at different, yet 80 

characteristic levels, of an environmental moderator. GxE is present if we observe 81 

significant differences in the estimate of h2
SNP for the phenotype at different levels of the 82 

moderator. Our approach requires two preliminary steps before estimating h2
SNP. First, it 83 

is necessary to obtain moderated, or GxE, GWAS summary statistics. At present, 84 

appropriate summary statistics are relatively rare, meaning researchers may need to 85 

conduct the GxE GWAS themselves. Then, using estimated GxE summary statistics, it 86 

is possible to calculate genetic marginal effects for each SNP at characteristic values of 87 

the moderating variable (such as categories for discrete moderators, diagnostic 88 

thresholds for medical traits used as moderators, or other notable thresholds in the 89 

distribution of a moderating variable). Genetic marginal effects are very similar to 90 

conducting stratified GWAS (separate GWAS for each level of the moderator). For 91 

continuous moderators, however, stratified GWAS analyses are infeasible, as they 92 
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would reduce the sample size in any group to such an extent that it would negate the 93 

possibility of detecting any reliable genomic signal. Our method of calculating genetic 94 

marginal effects is equally effective for continuous, ordinal, or binary moderators. These 95 

genetic marginal effects can then be used to estimate heritability at specific levels of the 96 

moderator with LDSC. The interpretation of the heritability explicitly references the level 97 

of the environment used to calculate the marginal genetic effect. To demonstrate the 98 

effectiveness of our method, we examine differences in the heritability of BMI using sex 99 

(binary: male vs female) and age (continuous: 40-70 years of age) as examples. 100 

Gene-by-Sex Interactions for BMI (Binary Moderator). The goal of the first 101 

moderated LDSC demonstration is to illustrate how the heritability of BMI differs 102 

between males and females. Accordingly, we conducted a moderated GWAS of BMI 103 

treating biological sex (binary) as a moderator. We then calculated genetic marginal 104 

effects and standard errors for females (moderator = 0) and males (moderator = 1). 105 

Overall, the genetic architecture of BMI appears broadly similar across sex, with genetic 106 

associations appearing at similar loci. However, there are clear differences in the 107 

magnitude of the significance between females and males (Figure 1), with the 108 

associations for females achieving substantially higher levels of statistical significance. 109 

This is particularly evident for associations on chromosomes 1, 2, 3, and 18.  110 

[Figure 1] 111 

Figure 2 shows that BMI is more heritable in females compared with males (Females-112 

h2
SNP = 0.28, se = 0.01; Males-h2

SNP = 0.21, se = 0.01; p = 5.36 x10-06). Furthermore, 113 

the genetic correlation (rGSNP) between males and females for BMI was estimated to be 114 

0.94 (se = 0.03, p = 0.04), implying that a slightly different set of genetic factors 115 
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contributes to BMI depending on sex. This is consistent with known sexual dimorphisms 116 

in body composition and body fat percentage (21).  117 

[Figure 2] 118 

Gene-by-Age Interactions for BMI (Continuous Moderator). Like biological sex, 119 

we observe GxE for BMI as people age (Figure 3). While the genetic associations at 120 

each age point to similar loci, the level of statistical significance of genetic loci varies.  121 

[Figure 3] 122 

Specifically, we observe higher levels of h2
SNP at age 40 which declines at older ages. 123 

This is consistent with the possibility that individuals may begin to restrict their health 124 

and eating behaviors after 40 years of age to address or prevent chronic health 125 

conditions (22,23) . The h2
SNP

 estimates for the mean age (56 years of age) remain 126 

similar to previous h2
SNP

 (24–26), even though the heritability for 40 years is higher 127 

compared to other ages.  128 

[Figure 4] 129 

In contrast with sex, the rGSNP across ages (rGSNP ranging from 0.95 to 0.99) suggesting 130 

the same genetic factors contribute to BMI across the lifespan, while the magnitudes of 131 

their influence vary by age. 132 

 133 

Discussion 134 

We presented a method to estimate moderated h2
SNP to highlight how GxE affect 135 

the heritability of a phenotype. Our method is easy to interpret and adapt to a variety of 136 

moderators and phenotypic outcomes. To demonstrate the effectiveness of our method, 137 

we conducted analyses of BMI showing how the h2
SNP

 of BMI varies across sex (a 138 
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binary moderator) and age (a continuous moderator). Our method detected GxE for 139 

both sex and age. Specifically, BMI is more heritable for females than males, and the 140 

heritability of BMI declines between the ages of 40 and 70. Notably, other methods for 141 

detecting GxE heritability using GWAS data have found limited evidence of genetic 142 

interactions for age (9). Below we highlight the benefits of our moderated h2
SNP method, 143 

focusing on how our method works, the interpretation of the moderated h2
SNP estimates, 144 

and differences from other SNP-based GxE methods. 145 

The interpretation of moderated h2
SNP follows from the interpretation of marginal 146 

genetic effects calculated from a GxE GWAS. The interpretation of marginal genetic 147 

effects is analogous to standard GWAS summary statistics. In GWAS, the beta 148 

coefficient is the expected change in a dependent variable for each additional allele and 149 

the summary statistics can be used to estimate h2
SNP for the phenotype. The 150 

interpretation of a genetic marginal effects, by extension, is restricted to a particular 151 

level of the moderator. Specifically, a genetic marginal effect captures the expected 152 

change in the dependent variable for each additional allele, at the specified value of the 153 

moderator. Therefore, using GxE GWAS summary statistics, we can estimate h2
SNP for 154 

the specific level of the environment that was used to calculate the marginal genetic 155 

effect, making the interpretation of GxE h2
SNP straightforward. This can be repeated for 156 

any value of the moderator. 157 

In our first example, we used biological sex as the moderator, as there are well-158 

established sex differences in BMI (21).  Male and female differences in BMI arise, in 159 

part, from differential genetic and biological pathways that affect a variety of different 160 

anthropometric factors such as fat storage, muscle development, and stature (27–30).  161 
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We calculated two marginal effects: one for males and one for females. We then 162 

estimated the heritability from the male and female marginal effects. Finally, we tested 163 

the difference between h2
SNP for males and females by constructing confidence intervals 164 

from the standard errors. The simplicity of h2
SNP in each group reduces the likelihood of 165 

misinterpretation. Our results suggest BMI is more heritable in females (Figure 2), but 166 

previous results in twin studies in the same age range are inconsistent (31). Importantly, 167 

research examining sex differences for other measures adjacent to BMI, like waist-to-168 

hip ratio as a proxy for obesity and fat distribution, and metabolic traits, suggest more 169 

genetic loci are associated with these traits in females (29).  170 

Our second example used continuous age as the moderator, and as such is 171 

slightly more complicated. Because age is a continuous variable, we calculated the 172 

marginal genetic effects at easily interpretable values: 40, 50, 60, and 70. The age 173 

range in the UK biobank data is approximately 40 to 70, and thus the marginal genetic 174 

effects reflect characteristic ages from the sample as people tend to think of age in 175 

decades. As the marginal genetic effects are calculated from GxE GWAS results, we 176 

could have calculated marginal genetic effects for every year of age between 40 and 70, 177 

or extrapolated age beyond the observed age range (though extreme caution would be 178 

necessary in such situations). The results suggest that the heritability of BMI decreases 179 

with age (Figure 4). These results are in line with twin studies that have examined the 180 

heritability across different ages, where the heritability of BMI was found to be higher at 181 

younger ages and progressively decrease (2,32). Interestingly, other recent methods 182 

estimating h2
SNP with genome-wide GxE methods found limited evidence of an 183 

interaction between age and genetic factors underlying BMI (9,33). Nevertheless, the 184 
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results from our method show clear differences in the magnitude of genetic factors for 185 

BMI across different ages (Figure 2), which is similar to the results of Robinson et al., 186 

(2017), who used GCI-GREML to examine genotype-age interactions in BMI, and 187 

Poveda et al., (2017), who used a maximum likelihood-based variance component 188 

decomposition. 189 

Caveats and Considerations. While our method to identify moderated h2
SNP is an 190 

effective procedure for estimating GxE using GWAS data, several factors must be 191 

properly understood to avoid erroneously applying the method. Here we emphasize the 192 

choice of characteristic levels of the environmental moderator and the calculation of 193 

effective sample sizes for the marginal effects.  194 

When calculating marginal genetic effects, it is possible to choose any value of 195 

the moderator even if the value is nonsensical. When choosing characteristic values of 196 

the moderator to calculate marginal genetic effects, it is necessary to keep in mind that 197 

the precision of marginal genetic effects decreases as the chosen value of the 198 

moderator diverges from its mean. The maximum precision of a marginal genetic effect 199 

is at the mean of the moderator, corresponding with estimates from standard 200 

(unmoderated) GWAS summary statistics. Genetic marginal effects calculated one 201 

standard deviation above or below the moderator’s mean will be slightly less precise 202 

and the precision will decrease markedly beyond that point based upon the distribution 203 

of the moderator. As moderated h2
SNP is derived from marginal genetic effects, the 204 

precision of h2
SNP depends on the precision of the marginal genetic effects. 205 

Importantly, LDSC requires users to specify the sample size. Under- or over-206 

estimates of the sample size can have a major impact on the estimated h2
SNP. This is 207 
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particularly relevant for the estimation of h2
SNP from marginal genetic effects, as the 208 

effective sample size for a particular marginal genetic effect is not the total sample size. 209 

Marginal genetic effects are most precise at the mean of the moderator, in part because 210 

all observations of the moderator contribute equally to the mean value. By extension, 211 

marginal genetic effects based on values that diverge from the mean of the moderator 212 

will reduce the effective sample size. Accordingly, an effective sample size must be 213 

calculated for each marginal effect, which accounts for the fact that observations take 214 

on different weight the further the deviation from the mean. The effective sample size 215 

calculation is presented in the methods section. As proof-of-principle, when we 216 

compared the effective sample size for the sex-moderated analysis with the observed 217 

number of males and females, the numbers are extremely close (Observed: Nmales = 218 

179,271, Nfemales = 210,169; Mean effective sample size: Nmales = 178,684, Nfemales = 219 

209,577). The similarity between the observed and effective sample size is expected as 220 

marginal genetic effects for binary moderators are analogous to stratified analyses.  221 

Conclusions 222 

Moderated h2
SNP will allow researchers to identify GxE in GWAS data, thereby 223 

focusing attention on moderating variables that alter the genetic architecture of medical 224 

and behavioral phenotypes. Identifying GxE in the heritability of phenotypes will allow 225 

researchers to invest time, effort, and resources into collecting the appropriate data 226 

required to pinpoint moderators that amplify or dampen the genetic associations with a 227 

phenotype. Using genetic marginal effects to estimate h2
SNP provides an easily 228 

interpretable method to examine GxE that can be applied to moderated GWAS 229 

summary statistics. 230 
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 231 

Methods 232 

Moderated Genome-Wide Association Study (moderated GWAS). The 233 

moderated GWAS model is an extension of the standard GWAS. The standard GWAS 234 

regression model is:  235 

�� �  ��� � �����	�� � 
��
��������� � �� Eq. 1 

where ��  is the outcome phenotype for the ith person, SNPij is the jth genetic variant for 236 

the ith person, and Covariatesi are the standard GWAS covariates such as biological 237 

sex, age, and genetic ancestry principal components. The estimate of ���is the estimate 238 

of the genetic association (which is later passed to LDSC), while ��� is the intercept, and 239 


� is a vector of regression coefficients corresponding to the included covariates.  240 

The GxE GWAS model extends the standard GWAS model by adding an 241 

interaction between the environment and each variant, as well as explicitly including the 242 

environmental factor (18): 243 

�� �  ��� � �����	�� � ������� � �����	������� �  
��
��������� �  �� Eq. 2 

In the GxE GWAS model, both main effects, ��� and ���, depend on the interaction effect, 244 

���. Thus, ��� provides a test of whether the effect of a SNP on the phenotype varies at 245 

different levels of the environment. The interaction parameter, however, is difficult to 246 

interpret directly. Therefore, it is advantageous to calculate genetic marginal effects to 247 

examine the genetic association at specific levels of an environment.   248 

Calculating Genetic Marginal Effects. Summary statistics from the moderated 249 

GWAS are used to calculate genetic marginal effects. Genetic marginal effects are the 250 

association between the SNP and a phenotype at a specific level of an environment. In 251 
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a standard GWAS model, the genetic marginal effect of the SNP is the regression 252 

coefficient (���). This is the effect of the SNP on the phenotype at the mean level of the 253 

moderating environment. In the moderated GWAS model, the genetic marginal effect is 254 

a function of both genetic and environmental factors (18). To calculate genetic marginal 255 

effects (�����, we take the first derivative of the GxE GWAS model with respect to the 256 

SNP, leaving: 257 

���� �  ��� � ������ Eq. 3 

We can then use this equation to calculate a genetic marginal effect for any value of the 258 

environment by inserting a characteristic value for Env. 259 

We can calculate the standard errors of the genetic marginal effects (SEME) using 260 

parameters from the variance-covariance (vcov) matrix of the moderated GWAS model: 261 

SEME =  ��	�
�  � �	�

� Env� �  2σ
	�,	��Env 
Eq. 4 

inserting the corresponding value of Env that was used to calculate the genetic marginal 262 

effects. After calculating the marginal effect and the standard error, the z-statistic and p-263 

value are easily calculated for use in subsequent analyses. This process is then 264 

repeated for each SNP that is analyzed. This process is automated in GW-SEM (35), 265 

which is the only software platform that currently stores the σ
	�,	�� statistic necessary to 266 

calculate the standard error of the marginal effects. 267 

Effective Sample Size. Users must supply accurate sample sizes for estimate 268 

h2
SNP using LDSC to avoid over- or under-estimating heritability, but the total sample 269 

size for the GxE GWAS analysis does not reflect the effective sample size for a 270 

marginal effect. The effective sample size used to estimate h2
SNP must be calculated for 271 

each marginal effect. The effective sample size is calculated in two steps, based on the  272 
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assumption that the standard error of a parameter estimate is equal to the ratio of the 273 

standard distribution of the parameter and the square root of the sample size. Thus, 274 

using the standard error of the genetic marginal effects for the mean level of the 275 

moderator (which has the highest level of statistical precision) and the overall sample 276 

size from the GWAS which is the effective sample size at the mean of the moderator, 277 

we calculate the standard deviation of the marginal effect (SD).  278 

�! � √� � ����.����  Eq. 5 

Then assuming the SD is homoskedastic, we can calculate the effective sample size, 279 

Neff, for any marginal effect by solving for N, using the calculated SEME. 280 

���� � # �!
����

$
�

 
Eq. 6 

Neff can then be used calculate h2
SNP. 281 

Estimating h2
SNP. LDSC requires GWAS summary statistics to calculate h2

SNP. 282 

After 1) conducting the GxE GWAS or obtaining GxE GWAS summary statistics, 2) 283 

calculating genetic marginal effects, and 3) calculating the effective sample size for the 284 

marginal effects, users will have all the necessary information to use LDSC to estimate 285 

h2
SNP (17). As genetic marginal effects can be interpreted in the same ways as other 286 

GWAS summary statistics, h2
SNP for a particular value of a marginal effect can be 287 

interpreted in the same way as standard h2
SNP. 288 

Sample for the Demonstration Analyses. We used data from the UK Biobank 289 

(application number 57923) to conduct the demonstration analyses. The UK Biobank is 290 

a large, phenotypically rich dataset, containing information pertaining to general 291 

demographics to detailed health information (20). We used data from individuals of 292 

European ancestry and selected body mass index (BMI) as our outcome variable. 293 
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Subsequently we selected two moderators known to influence BMI: biological sex 294 

(28,29) and age (34). 295 

As GxE summary statistics were unavailable, we first conducted GxE GWAS in 296 

GW-SEM (35). Age, sex, and the first ten genetic principal components were included 297 

as covariates, as were interactions between the moderator (i.e., sex or age depending 298 

on the model) and the first ten PCs (36). Following the GxE GWAS, genetic marginal 299 

effects, standard errors, z-statistics, and p-values were calculated. For the sex 300 

moderated GWAS, marginal effects were calculated for males and females, and for the 301 

age moderated GWAS, genetic marginal effects were calculated for ages 40, 50, 60, 302 

and 70. Finally, h2
SNP

 was estimated for each level for the genetic marginal effects. 303 

Software Requirements: The following software tools are required: R Core Team 304 

(2023). _R: A Language and Environment for Statistical Computing_. R Foundation for 305 

Statistical Computing, Vienna, Austria. (https://www.R-project.org/); OpenMx 306 

(https://CRAN.R-project.org/package=OpenMx); GW-SEM 307 

(https://github.com/jpritikin/gwsem); and LDSC (https://github.com/bulik/ldsc).  308 

309 
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Figures and Figure Captions 405 

 406 

Figure 1: Manhattan Plots of BMI moderated by biological sex. Manhattan plots showing the 407 

statistical significance of biological sex for each SNP on BMI, where A. is biological females and B. is 408 

biological males. The red line represents genome-wide significance (5x10-8), and the blue line represents 409 

nominal significance (0.05). 410 
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 411 

Figure 2: h2
SNP of BMI moderated by biological sex. h2

SNP for biological females and males with 95% 412 

confidence intervals represented by the grey bars.  413 

 414 

 415 

 416 

 417 
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 418 

 419 

 420 

 421 

Figure 3: Manhattan Plots of BMI moderated by age. Manhattan plots showing the statistical 422 

significance of the selected marginal effects for each SNP on BMI, where A. is 40 years of age, B. is 50 423 

years of age, C. 60 years of age, and D. 70 years of age. The red line represents genome-wide 424 

significance (5x10-8), and the blue line represents nominal significance (0.05). 425 
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 430 

Figure 4: h2
SNP of BMI moderated by age. h2

SNP for ages 40, 50, 60 and 70 with 95% confidence 431 

intervals represented by the purple shaded region.  432 

 433 
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