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Abstract

Environmental moderators may amplify or suppress the heritability (i.e., the proportion
of genetic variation) of a phenotype. This genetic sensitivity to the environment is called
gene-environment interaction (GXE). Existing GXE methods struggle to identify
replicable interactions because they focus on the interaction coefficients. We propose a
novel method for estimating GXE heritability using genetic marginal effects from GxE
genome-wide analyses and LD Score Regression (LDSC). We demonstrate the
effectiveness of our method for body mass index (BMI) treating biological sex (binary)
and age (continuous) as moderators. We find robust, interpretable evidence for GXE
that is not detected by existing methods.
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Background

Gene-environment interaction (GXE) can be statistically detected when
differences in an environment amplify or suppress the impact of a genotype on a
phenotype. At the functional level, differences in genetic associations with a phenotype
reflect differential sensitivity to an environment (1). Thus, individuals with different
alleles at specific loci are predicted to respond differently depending on the
characteristics of their environment. Twin and model organism studies have found
pervasive evidence of GXE for a variety of traits (2—5). Model organism research strictly
manipulates both the genotypes (via selecting organisms with differential genetic strains
of known effect) and environments (via careful experimental manipulations) allowing the
precise characterization of interaction effects. While extremely powerful, such methods
do not transfer to human genetic studies. By contrast, GXE in twin studies focuses on
the differences in the heritability of a trait (or the proportion of genetic variation in a
phenotype) depending on the individual's or family’s environment. Accordingly, it is
difficult to use these results to subsequently identify alleles that are sensitive to
environmental variation. Examining GXE in GWAS data provides an opportunity to
identify both differences in the heritability of a phenotype at different levels of an
environmental moderator, while allowing for the potential next step of identifying specific
alleles that are sensitive to changes in the environment. However, relatively few studies
have attempted to identify GXE in humans using genome wide association study
(GWAS) data (6-12), likely due to the perception that GXE GWAS (or moderated
GWAS) are plagued by low levels of statistical power and extreme multiple testing

corrections (13-15).


https://doi.org/10.1101/2024.05.01.591940
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.591940; this version posted May 3, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Linkage Disequilibrium Score regression method (LDSC), and other single
nucleotide polymorphism (SNP) heritability (h?snp) methods offer a unique opportunity to
address prior limitations in the detection of GXE. Specifically, LDSC regresses the y?
values for SNP associations identified from a GWAS onto an LD score that captures the
known LD (i.e. correlations between the variants) in the sample population. The slope of
this regression equation indexes the h%syp of the phenotype (16,17). Typically,
estimation of GXE from GWAS focuses on genome-wide significant SNP-moderator
interaction coefficients (i.e., p <5 x 10®). LDSC, however, estimates heritability without
specifying a minimum significance threshold, making it an extremely useful tool for
interrogating highly polygenic phenotypes with numerous effect sizes that are not
genome-wide significant. By extending these methods to test for GXE in GWAS data,
we can conduct a broad examination that may identify critical environmental factors that
moderate the genetic architecture of a wide variety of medical and behavioral
phenotypes.

Current GXE methods struggle to accurately identify either SNP-environment
interaction effects or differences in h’syp across different moderator levels. Some
approaches directly estimate h’syp from the GXE GWAS interaction coefficient. The
principle limitations of these approaches are the exclusive focus on the interaction
coefficient and the assumption that the interaction coefficient uniquely indexes GxE
(9,10). While this initially seems reasonable, exclusively focusing on the interaction
coefficients ignores the fact that the interpretation of the interaction coefficient depends
on the main effect and the level of the moderator. Accordingly, heritability estimates that

focus on the interaction coefficient are analogous to random effects of the SNP and
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must be interpreted with caution. Other SNP-based heritability estimation methods use
a GREML-based mixed modeling approach with raw genetic data to partition the
phenotypic variance into homogeneous (i.e. additive genetic), heterogeneous (i.e. GXE),
and residual variation (8). GREML methods are computationally intensive (8,9).

Rather than focusing on the interaction coefficient or using GRMEL-based
approaches, our method integrates the interaction coefficients and the main effects into
genetic marginal effects for each SNP analyzed in a GXE GWAS (18). Genetic marginal
effects simplify interpretation of GXE GWAS results so that they can be interpreted in
almost the same way as standard GWAS summary statistics, just for a specific level of
the moderating environment, thereby de-confounding main and interaction effects. A
genetic marginal effect captures the rate at which the outcome is expected to change
based upon a one allele increase in the SNP. In GXE GWAS, because the genetic
association for each SNP may depend on the level of the environment, it is necessary to
integrate the main effects and the interaction effects into a single interpretable value.
Mathematically, this is as simple as taking the first derivative of the regression equation
with respect to the SNP (See Method Eqgs. 1 & 2). After calculating genetic marginal
effects for characteristic values of the moderator, we can estimate heritability for each of
the levels.

In this paper, we describe an extension of LDSC for estimating moderated h?syp,
using genetic marginal effects derived from GXE GWAS summary statistics (17-19) and
build on several methods we have published elsewhere (18). We view moderated h%syp
as a starting point that will allow researchers to refine the search for individual variants

that interact with specific moderators by focusing attention on appropriate moderators
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and subsequently invest time, effort, and resources collecting data and conducting
analyses that pinpoint significant locus-level genetic interactions. We demonstrate the
effectiveness of our moderated h?sye analyses using body mass index (BMI) data from
the UK Biobank (20). The results identify differences in h’sye of BMI at different levels of
binary (i.e., sex) and continuous (i.e., age) moderators. However, our proposed method
can be applied to GWAS summary statistics for any moderating variable that has been
thoughtfully and appropriately coded, as the marginal effects calculation will not be

impacted, and will be easier to interpret than other GXE heritability methods (18).

Results

Method Overview. We present a method to estimate h’syp at different, yet
characteristic levels, of an environmental moderator. GXE is present if we observe
significant differences in the estimate of h%s\p for the phenotype at different levels of the
moderator. Our approach requires two preliminary steps before estimating h?syp. First, it
IS necessary to obtain moderated, or GXE, GWAS summary statistics. At present,
appropriate summary statistics are relatively rare, meaning researchers may need to
conduct the GXE GWAS themselves. Then, using estimated GXE summary statistics, it
is possible to calculate genetic marginal effects for each SNP at characteristic values of
the moderating variable (such as categories for discrete moderators, diagnostic
thresholds for medical traits used as moderators, or other notable thresholds in the
distribution of a moderating variable). Genetic marginal effects are very similar to
conducting stratified GWAS (separate GWAS for each level of the moderator). For

continuous moderators, however, stratified GWAS analyses are infeasible, as they
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93  would reduce the sample size in any group to such an extent that it would negate the
94  possibility of detecting any reliable genomic signal. Our method of calculating genetic
95 marginal effects is equally effective for continuous, ordinal, or binary moderators. These
96 genetic marginal effects can then be used to estimate heritability at specific levels of the
97 moderator with LDSC. The interpretation of the heritability explicitly references the level
98 of the environment used to calculate the marginal genetic effect. To demonstrate the
99 effectiveness of our method, we examine differences in the heritability of BMI using sex

100 (binary: male vs female) and age (continuous: 40-70 years of age) as examples.

101 Gene-by-Sex Interactions for BMI (Binary Moderator). The goal of the first

102 moderated LDSC demonstration is to illustrate how the heritability of BMI differs

103 between males and females. Accordingly, we conducted a moderated GWAS of BMI

104 treating biological sex (binary) as a moderator. We then calculated genetic marginal

105 effects and standard errors for females (moderator = 0) and males (moderator = 1).

106  Overall, the genetic architecture of BMI appears broadly similar across sex, with genetic

107 associations appearing at similar loci. However, there are clear differences in the

108 magnitude of the significance between females and males (Figure 1), with the

109 associations for females achieving substantially higher levels of statistical significance.

110 This is particularly evident for associations on chromosomes 1, 2, 3, and 18.

111 [Figure 1]

112 Figure 2 shows that BMI is more heritable in females compared with males (Females-

113 h%\p = 0.28, se = 0.01; Males-h%s\p = 0.21, se = 0.01; p = 5.36 x10™%). Furthermore,

114 the genetic correlation (rGsnp) between males and females for BMI was estimated to be

115 0.94 (se = 0.03, p = 0.04), implying that a slightly different set of genetic factors
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116  contributes to BMI depending on sex. This is consistent with known sexual dimorphisms
117 in body composition and body fat percentage (21).

118 [Figure 2]

119 Gene-by-Age Interactions for BMI (Continuous Moderator). Like biological sex,
120 we observe GXE for BMI as people age (Figure 3). While the genetic associations at
121  each age point to similar loci, the level of statistical significance of genetic loci varies.
122 [Figure 3]

123  Specifically, we observe higher levels of h%syp at age 40 which declines at older ages.
124  This is consistent with the possibility that individuals may begin to restrict their health
125 and eating behaviors after 40 years of age to address or prevent chronic health

126  conditions (22,23) . The h’s\p estimates for the mean age (56 years of age) remain

127  similar to previous hsyp (24—26), even though the heritability for 40 years is higher

128 compared to other ages.

129 [Figure 4]

130  In contrast with sex, the rGsyp across ages (rGsne ranging from 0.95 to 0.99) suggesting
131 the same genetic factors contribute to BMI across the lifespan, while the magnitudes of

132  their influence vary by age.

133
134 Discussion
135 We presented a method to estimate moderated h%syp to highlight how GxE affect

136 the heritability of a phenotype. Our method is easy to interpret and adapt to a variety of
137 moderators and phenotypic outcomes. To demonstrate the effectiveness of our method,

138 we conducted analyses of BMI showing how the h?sye of BMI varies across sex (a
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139  binary moderator) and age (a continuous moderator). Our method detected GxE for
140 both sex and age. Specifically, BMI is more heritable for females than males, and the
141  heritability of BMI declines between the ages of 40 and 70. Notably, other methods for
142  detecting GxE heritability using GWAS data have found limited evidence of genetic

143 interactions for age (9). Below we highlight the benefits of our moderated h?snp method,
144  focusing on how our method works, the interpretation of the moderated hsyp estimates,
145 and differences from other SNP-based GxXE methods.

146 The interpretation of moderated h?syp follows from the interpretation of marginal
147  genetic effects calculated from a GXE GWAS. The interpretation of marginal genetic
148  effects is analogous to standard GWAS summary statistics. In GWAS, the beta

149  coefficient is the expected change in a dependent variable for each additional allele and
150 the summary statistics can be used to estimate h’syp for the phenotype. The

151 interpretation of a genetic marginal effects, by extension, is restricted to a particular

152  level of the moderator. Specifically, a genetic marginal effect captures the expected

153 change in the dependent variable for each additional allele, at the specified value of the
154  moderator. Therefore, using GXE GWAS summary statistics, we can estimate h?syp for
155 the specific level of the environment that was used to calculate the marginal genetic
156  effect, making the interpretation of GXE h®syp straightforward. This can be repeated for
157  any value of the moderator.

158 In our first example, we used biological sex as the moderator, as there are well-
159 established sex differences in BMI (21). Male and female differences in BMI arise, in
160 part, from differential genetic and biological pathways that affect a variety of different

161 anthropometric factors such as fat storage, muscle development, and stature (27-30).
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162 We calculated two marginal effects: one for males and one for females. We then

163  estimated the heritability from the male and female marginal effects. Finally, we tested
164 the difference between hsyp for males and females by constructing confidence intervals
165 from the standard errors. The simplicity of h’syp in each group reduces the likelihood of
166  misinterpretation. Our results suggest BMI is more heritable in females (Figure 2), but
167  previous results in twin studies in the same age range are inconsistent (31). Importantly,
168 research examining sex differences for other measures adjacent to BMI, like waist-to-
169 hip ratio as a proxy for obesity and fat distribution, and metabolic traits, suggest more
170 genetic loci are associated with these traits in females (29).

171 Our second example used continuous age as the moderator, and as such is

172  slightly more complicated. Because age is a continuous variable, we calculated the

173  marginal genetic effects at easily interpretable values: 40, 50, 60, and 70. The age

174  range in the UK biobank data is approximately 40 to 70, and thus the marginal genetic
175 effects reflect characteristic ages from the sample as people tend to think of age in

176  decades. As the marginal genetic effects are calculated from GXE GWAS results, we
177  could have calculated marginal genetic effects for every year of age between 40 and 70,
178  or extrapolated age beyond the observed age range (though extreme caution would be
179 necessary in such situations). The results suggest that the heritability of BMI decreases
180 with age (Figure 4). These results are in line with twin studies that have examined the
181 heritability across different ages, where the heritability of BMI was found to be higher at
182  younger ages and progressively decrease (2,32). Interestingly, other recent methods
183  estimating h%syp With genome-wide GXE methods found limited evidence of an

184 interaction between age and genetic factors underlying BMI (9,33). Nevertheless, the
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185 results from our method show clear differences in the magnitude of genetic factors for
186 BMI across different ages (Figure 2), which is similar to the results of Robinson et al.,
187 (2017), who used GCI-GREML to examine genotype-age interactions in BMI, and

188 Poveda et al., (2017), who used a maximum likelihood-based variance component

189  decomposition.

190 Caveats and Considerations. While our method to identify moderated h%yp is an
191  effective procedure for estimating GXE using GWAS data, several factors must be

192  properly understood to avoid erroneously applying the method. Here we emphasize the
193  choice of characteristic levels of the environmental moderator and the calculation of
194 effective sample sizes for the marginal effects.

195 When calculating marginal genetic effects, it is possible to choose any value of
196 the moderator even if the value is nonsensical. When choosing characteristic values of
197 the moderator to calculate marginal genetic effects, it is necessary to keep in mind that
198 the precision of marginal genetic effects decreases as the chosen value of the

199 moderator diverges from its mean. The maximum precision of a marginal genetic effect
200 is at the mean of the moderator, corresponding with estimates from standard

201  (unmoderated) GWAS summary statistics. Genetic marginal effects calculated one

202 standard deviation above or below the moderator's mean will be slightly less precise
203  and the precision will decrease markedly beyond that point based upon the distribution
204  of the moderator. As moderated h%sp is derived from marginal genetic effects, the

205  precision of h’sye depends on the precision of the marginal genetic effects.

206 Importantly, LDSC requires users to specify the sample size. Under- or over-

207 estimates of the sample size can have a major impact on the estimated h%syp. This is
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208 particularly relevant for the estimation of h’sye from marginal genetic effects, as the

209 effective sample size for a particular marginal genetic effect is not the total sample size.
210 Marginal genetic effects are most precise at the mean of the moderator, in part because
211  all observations of the moderator contribute equally to the mean value. By extension,
212 marginal genetic effects based on values that diverge from the mean of the moderator
213 will reduce the effective sample size. Accordingly, an effective sample size must be

214  calculated for each marginal effect, which accounts for the fact that observations take
215 on different weight the further the deviation from the mean. The effective sample size
216  calculation is presented in the methods section. As proof-of-principle, when we

217 compared the effective sample size for the sex-moderated analysis with the observed
218 number of males and females, the numbers are extremely close (Observed: Nmaes =
219 179,271, Niemaies = 210,169; Mean effective sample size: Nmaes = 178,684, Ntemales =

220  209,577). The similarity between the observed and effective sample size is expected as
221  marginal genetic effects for binary moderators are analogous to stratified analyses.

222 Conclusions

223 Moderated hsyp will allow researchers to identify GXE in GWAS data, thereby
224  focusing attention on moderating variables that alter the genetic architecture of medical
225 and behavioral phenotypes. Identifying GXE in the heritability of phenotypes will allow
226  researchers to invest time, effort, and resources into collecting the appropriate data
227  required to pinpoint moderators that amplify or dampen the genetic associations with a
228  phenotype. Using genetic marginal effects to estimate h’syp provides an easily

229 interpretable method to examine GXE that can be applied to moderated GWAS

230 summary statistics.
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231
232 Methods
233 Moderated Genome-Wide Association Study (moderated GWAS). The

234 moderated GWAS model is an extension of the standard GWAS. The standard GWAS
235  regression model is:
Y; = By + BiSNP; + yCovariates; + ¢ Eg. 1

236  where Y, is the outcome phenotype for the i person, SNPj is the ji™ genetic variant for
237 the i" person, and Covariates; are the standard GWAS covariates such as biological
238  sex, age, and genetic ancestry principal components. The estimate of $;is the estimate
239  of the genetic association (which is later passed to LDSC), while j, is the intercept, and
240 7 is a vector of regression coefficients corresponding to the included covariates.
241 The GXE GWAS model extends the standard GWAS model by adding an
242  interaction between the environment and each variant, as well as explicitly including the
243 environmental factor (18):

Y; = Bo+ BiSNP; + B,Env; + B3SNP;xEnv; + $Covariates; + ¢ Eq. 2
244  In the GXE GWAS model, both main effects, 8, and §3,, depend on the interaction effect,
245  f,. Thus, B, provides a test of whether the effect of a SNP on the phenotype varies at
246  different levels of the environment. The interaction parameter, however, is difficult to
247  interpret directly. Therefore, it is advantageous to calculate genetic marginal effects to
248 examine the genetic association at specific levels of an environment.
249 Calculating Genetic Marginal Effects. Summary statistics from the moderated
250 GWAS are used to calculate genetic marginal effects. Genetic marginal effects are the

251 association between the SNP and a phenotype at a specific level of an environment. In
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252 astandard GWAS model, the genetic marginal effect of the SNP is the regression
253  coefficient (8,). This is the effect of the SNP on the phenotype at the mean level of the
254  moderating environment. In the moderated GWAS model, the genetic marginal effect is
255 a function of both genetic and environmental factors (18). To calculate genetic marginal
256  effects (By), we take the first derivative of the GXE GWAS model with respect to the
257  SNP, leaving:

Bue = Br + BzEnv Eqg. 3
258 We can then use this equation to calculate a genetic marginal effect for any value of the
259 environment by inserting a characteristic value for Env.
260 We can calculate the standard errors of the genetic marginal effects (SEve) using

261  parameters from the variance-covariance (vcov) matrix of the moderated GWAS model:

Eqg. 4
SEve= \/051 +0§3Env2 + 203, p,)Env 9

262 inserting the corresponding value of Env that was used to calculate the genetic marginal
263  effects. After calculating the marginal effect and the standard error, the z-statistic and p-
264  value are easily calculated for use in subsequent analyses. This process is then

265 repeated for each SNP that is analyzed. This process is automated in GW-SEM (35),

266  which is the only software platform that currently stores the oz ;. Statistic necessary to

267 calculate the standard error of the marginal effects.

268 Effective Sample Size. Users must supply accurate sample sizes for estimate
269  h%snp using LDSC to avoid over- or under-estimating heritability, but the total sample
270  size for the GXE GWAS analysis does not reflect the effective sample size for a

271  marginal effect. The effective sample size used to estimate h’syp must be calculated for

272  each marginal effect. The effective sample size is calculated in two steps, based on the
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273 assumption that the standard error of a parameter estimate is equal to the ratio of the
274  standard distribution of the parameter and the square root of the sample size. Thus,
275 using the standard error of the genetic marginal effects for the mean level of the
276  moderator (which has the highest level of statistical precision) and the overall sample
277  size from the GWAS which is the effective sample size at the mean of the moderator,
278 we calculate the standard deviation of the marginal effect (SD).

SD = VN x SEyg mgan Eq. 5
279  Then assuming the SD is homoskedastic, we can calculate the effective sample size,

280  Nefr, for any marginal effect by solving for N, using the calculated SEve.

SD \* Eq. 6
Ners = (5m)
SEye

281  Nei can then be used calculate h’syp.

282 Estimating hsne. LDSC requires GWAS summary statistics to calculate h’syp.
283  After 1) conducting the GXE GWAS or obtaining GXE GWAS summary statistics, 2)
284  calculating genetic marginal effects, and 3) calculating the effective sample size for the
285 marginal effects, users will have all the necessary information to use LDSC to estimate
286  hsye (17). As genetic marginal effects can be interpreted in the same ways as other
287 GWAS summary statistics, h?sye for a particular value of a marginal effect can be

288 interpreted in the same way as standard hsye.

289 Sample for the Demonstration Analyses. We used data from the UK Biobank
290 (application number 57923) to conduct the demonstration analyses. The UK Biobank is
291 alarge, phenotypically rich dataset, containing information pertaining to general

292  demographics to detailed health information (20). We used data from individuals of

293  European ancestry and selected body mass index (BMI) as our outcome variable.
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294  Subsequently we selected two moderators known to influence BMI: biological sex

295 (28,29) and age (34).

296 As GxE summary statistics were unavailable, we first conducted GXE GWAS in
297 GW-SEM (35). Age, sex, and the first ten genetic principal components were included
298 as covariates, as were interactions between the moderator (i.e., sex or age depending
299 on the model) and the first ten PCs (36). Following the GXE GWAS, genetic marginal
300 effects, standard errors, z-statistics, and p-values were calculated. For the sex

301 moderated GWAS, marginal effects were calculated for males and females, and for the
302 age moderated GWAS, genetic marginal effects were calculated for ages 40, 50, 60,
303 and 70. Finally, h’sxe was estimated for each level for the genetic marginal effects.

304 Software Requirements: The following software tools are required: R Core Team
305 (2023). R: A Language and Environment for Statistical Computing_. R Foundation for

306  Statistical Computing, Vienna, Austria. (https://www.R-project.org/); OpenMx

307 (https://CRAN.R-project.org/package=0OpenMx); GW-SEM

308 (https://github.com/jpritikin/gwsem); and LDSC (https://qgithub.com/bulik/ldsc).

309
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Figures and Figure Captions
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Figure 1: Manhattan Plots of BMI moderated by biological sex. Manhattan plots showing the
statistical significance of biological sex for each SNP on BMI, where A. is biological females and B. is
biological males. The red line represents genome-wide significance (5x10°®), and the blue line represents

nominal significance (0.05).
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Figure 2: hZSNp of BMI moderated by biological sex. hZSpror biological females and males with 95%

confidence intervals represented by the grey bars.
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422  Figure 3: Manhattan Plots of BMI moderated by age. Manhattan plots showing the statistical
423 significance of the selected marginal effects for each SNP on BMI, where A. is 40 years of age, B. is 50
424  vyears of age, C. 60 years of age, and D. 70 years of age. The red line represents genome-wide

425  significance (5x10®), and the blue line represents nominal significance (0.05).
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Figure 4: h2syp Oof BMI moderated by age. h?sne for ages 40, 50, 60 and 70 with 95% confidence

intervals represented by the purple shaded region.
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