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Luminal breast epithelial cells from wildtype and BRCA mutation carriers harbor copy number
alterations commonly associated with breast cancer
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Abstract

Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature
of somatic copy number alterations and their role in tumor initiation and evolution is not well understood.
Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial
cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells
with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7¢, and 10q loss) is detectable
in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss

of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common
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associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost
exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs
reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs
in an individual breast. Tissues from BRCAL or BRCA2 mutation carriers contain a small percentage of
cells with extreme aneuploidy, featuring loss of TP53, LOH of BRCAL or BRCA2, and multiple breast
cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably,
cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation
of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium

partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.

Introduction
Somatic mutations are known to accumulate in normal tissues over time and, although the vast majority
are inconsequential, contribute to cancer’=3. Most studies have measured and emphasized the role of
single nucleotide variants (SNVs) in normal tissues. Yet gene dosage mutations due to somatic copy
number alterations occur in the majority of tumor types*® and are highly prevalent in breast cancers®2,
contributing important driver events such as ERBB2 amplification and PTEN loss. They also represent
the dominant source of transcriptional variation in genomically unstable human cancers*®%*! including
breast cancer. Studies of pre-invasive DCIS have noted that extensive CNAs and structural variants (SV),
resulting from duplication or loss of whole chromosome or chromosome segments, are already present
with a landscape largely indistinguishable from invasive cancers'®'3, Early pre-cancer atypical ductal
hyperplasias are also noted to have extensive CNA mutations!4*®. These findings indicate that CNAs
arise early in the evolution of breast cancer; however, a full understanding of the prevalence, evolutionary
timing and distribution of the earliest CNAs arising in morphologically normal breast epithelium is lacking.
The vast majority of SNV mutations are private to single cells or form small clonal expansions that
would be obscured by bulk short read sequencing of tissues. We posit this is also the case for CNAs.
Recent studies of SNVs in normal tissues have successfully used a combination of ultra-deep error
corrected sequencing® or experimental cloning amplification of single cells subsequently characterized
with bulk short read next generation sequencing!’*8 to bypass these barriers. However, the prevalence
of CNAs in most normal cells may be an order of magnitude or more lower than SNVs and thus
comprehensive characterization of CNAs is inaccessible to these approaches. A few studies have
attempted to discover somatic CNAs in normal tissues!®-2® by reanalyzing bulk sequencing data but have
been limited to blood or to detecting CNAs present in >20% of the cellular population, which do not allow
the underlying generative process of CNAs in individual cells to be defined. We have overcome these

limitations by developing methods for scaled single cell whole genome sequencing (scWGS) (DLP+)?4%
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which allow for discovery of CNAs unique to single cells in thousands of individual genomes. By sampling
without restriction directly from tissues, the progeny of single mitotic mutational events leading to cell-
specific alterations can be ascertained.

Here we investigate the prevalence and landscape of copy number alterations in normal breast
epithelial tissues to identify the earliest genetic alterations using DLP+ scWGS. We reveal the prevalence,
chromosomal distribution, and lineage specificity of CNA mutations in breast tissues from high risk

BRCA1/BRCAZ2 germline mutation carriers and contrast with BRCA-wildtype epithelium.

Results

Low aneuploidy prevalence in normal mammary epithelia is cell type dependent

To assess the distribution and prevalence of CNAs in single breast epithelial cells of individuals with
germline breast cancer predisposition alleles, we obtained breast tissues from women carrying germline
pathogenic mutations in BRCA1 (n=8) and BRCA2 (n=6) undergoing risk-reducing surgery, as well as
from those with the BRCA1/2 wild-type (WT) genotype (n=6) from reductive mammoplasties. Some
women had a history of breast cancer or other cancers and had received prior chemotherapy (Fig. 1a).
See Supplementary Table 1 for all clinical details. For patients with a history of breast cancer, tissue
was acquired from the contralateral breast. Macroscopically normal tissue was allocated for research
purposes. Microscopic examination of representative FFPE blocks of clinical and/or research tissue
revealed no atypical hyperplasia or in situ carcinoma in 15/20 subjects. Representative tissue samples
from 5 donors revealed small foci (<1-2mm) of in situ carcinoma or atypical hyperplasia: B2-16 (DCIS),
WT-7 (ADH), WT-6752 (ALH), B2-21 (ALH), B2-23 (LCIS) (Supplementary Table 1). Tissue samples
were then dissociated into single cells, sorted into luminal and basal cell populations based on previously
established surface markers (-2 methods) and the single cell genomes sequenced to an average
genome-wide coverage of 0.029X using the DLP+ protocol?® (range 0.001-0.361, Supplementary Table
2). After removing low quality genomes and discarding samples with fewer than 300 cells, 42,756 single
cell genomes from 20 donors were analyzed (Fig. 1a). Example genome wide copy number profiles from

a diploid genome and aneuploid genome are shown in Figure 1b-c.

Aneuploid cells, defined as cells with at least one chromosome arm level gain or loss, were rare but
observed in every sample. Overall, 2.69% of cells (range: 0.1-5.9%) contained between one and four
aneuploid chromosome arms (simple aneuploidy). Notably, specific alterations such as gains of 1g and
losses on 16q, 10q, 22g and 7q were recurrent across donors for four samples: two BRCA1*" (B1-6410
and B1-6550), one BRCA2*" (B2-23) and one WT (WT-6) (Figure 1d-g). Similar patterns were observed
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in all other donors, see Supplementary Figure la-c. These results indicate that cells carrying a specific

subset of CNAs accumulate in ostensibly normal breast epithelial cells.

Aneuploid cells were more prevalent in luminal cells compared to basal cells (3.6% vs. 1.4%, p=9.4x10
® Fig. 1h), and in BRCA carrier donors compared to WT: 3.8% in BRCA1 and 2.9% in BRCA2 compared
with 1.8% in WT donors (p=0.02 and p=0.15 respectively, Fig. 1i). We did not find any significant
associations with other clinical covariates including age, parity, menopause status, cancer history or
chemotherapy history (Supplementary Figure 2). In a multi-variate regression that included age,
genotype and cell type, luminal cells were associated with an increase in aneuploidy (p=5.69x10°) and
the WT genotype with a decrease in aneuploidy (p=0.024); no other groups showed a statistically

significant association (Supplementary Figure 2f).

Recurrent aneuploidies in luminal cells are similar to breast cancers

Next, we explored the distribution of CNAs across the genome and between cell types. Luminal and basal
cells had distinct distributions of CNAs. CNAs observed recurrently across patients were restricted to
luminal cells (Fig.2a & Supplementary Figure 3). These included gain of 1g, the most common
observed alteration (1.06% in luminal vs 0.03% in basal, p=0.00009), loss of 16q (0.6% vs 0.04%,
p=0.00044), loss of 22q (0.5% vs 0.03%, p=0.0049), loss of 7q (0.33% vs 0.01%, p=0.0025) and loss of
10q (0.27% vs 0.07%, p=0.032 Fig. 2 & Supplementary Figure 3). Loss of chromosome X was also
common but occurred at similar rates in both luminal and basal cell types (0.16% vs 0.12%, p=0.63,
Fig. 2a,b & Supplementary Figure 3). Since X chromosome loss has been shown to increase with age
and preferentially involve the inactive copy??, it is likely a selectively neutral event that would explain the
approximately equal rate of loss in the two cell types. We did not identify any alterations that were

statistically significantly more prevalent in basal cells compared to luminal cells.

To assess how these patterns compare to those from invasive breast cancers, we compared the normal
tissue CNA chromosomal distribution to 560 whole genome sequenced breast cancers from Nik-Zainal
et al*®. A number of events that were common in the luminal cell population were also common in
advanced cancers including the gains of 1q and losses of 16q and 22q (Fig. 2a). Loss of 7q, which is
common in our normal epithelium dataset, is comparatively rare in breast cancers (Fig. 2a). Conversely,
there are some events such as gains of 8q and 16p and loss of 11q that are very common in breast
cancers but are rare in normal breast epithelium, suggesting that these alterations are typically acquired
later during tumor evolution. Computing the cosine similarity between normal tissue CNA distributions

and all cancer types present in the TCGA, we found that breast cancers were the most similar cancer
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type for both gains and losses, (Supplementary Figure 4). We note the similarity to some other cancer
types, which reflects the fact that some of the common alterations (e.g. 1g gain) are also prevalent in

other cancer types.

To explore whether the enrichment of certain chromosomes could be explained by underlying mutational
bias, we also compared the distribution of CNAs to that derived from 14,000 single cell genomes from a
wild-type immortalized breast tissue cell line (hnTERT cells). In contrast to the scWGS from normal breast
epithelium, the distribution of CNAs in this cell line was relatively uniform across the genome (Fig. 2a).
This suggests that chromosome arms have a relatively uniform susceptibility to CNAs and that the higher
prevalence of CNAs within certain chromosomes in normal breast epithelium is a tissue- and cell type-
specific process, potentially linked to lineage differentiation and/or epithelial cell orientation within a tissue

context®!.

Amongst cells that had more than one aneuploid chromosome arm, the most frequent events were 19-
gain/16g-loss (present in 12 donors) and 1g-gain/10g-loss (present in seven donors, Fig. 2c). Both
combinations were enriched in luminal cells with average frequencies of 0.23% (1qg-gain/16qg-loss) and
0.19% (1g-gain/10g-loss,Fig. 2d). Interestingly, 10g-loss was only ever observed in conjunction with 1qg-
gain while 16g-loss was frequently observed in isolation. These data are consistent with a recent report®?
that showed that clones carrying 1g-gain/16g-loss events are precursors that emerge decades before

cancer diagnosis.

Allele-specific alterations reveal multiple independent CNAs

To address whether the recurrent aneuploidies that we observed arose from single clonal expansions or
constituted multiple independent events, we phased chromosome gains and losses to parental alleles
(here defined arbitrarily as allele A or B) using SIGNALS?®*3, a HMM based inference approach determining
allele-specific copy number alterations. Observing gains and losses of both alleles would indicate that
these events had been acquired independently more than once and give a lower bound on the number

of events.

Applying SIGNALS to 10 samples that contained a large number of aneuploid cells, we found evidence
that CNAs were independently acquired at least twice. For example, B2-23 had aneuploid cells with all
the frequent CNAs: 1g-gain, 7g-loss, 10g-loss, 16g-loss and 22g-loss and also several cells with both 1g-
gain/10g-loss and 1g-gain/16g-loss (Fig. 3a). Allele-specific copy humber analysis revealed gains and

losses on each allele, indicating each event must have been acquired independently at least twice
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(Fig. 3b). In the case of cells with 1g-gain/10g-loss, we could infer three separate configurations: 1q(A-
gain)-10q(B-loss), 1q(B-gain)-10q(B-loss) and 1q(B-gain)-10q(A-loss) (Fig. 3b). Similarly, for cells with

1g-gain/16g-loss, most had lost the B-allele on 169 but we identified one cell that had lost the A-allele.

Applying the same analysis to an additional nine samples, we found that there was evidence that the
common alterations were acquired independently multiple times in the majority of cases. For example,
cells with gain of 1q of both alleles were present in 7/10 samples, and losses of both alleles on 7g and
169 were observed in 6/10 and 7/10 samples, respectively. Taken together, these findings indicate that
the aneuploid populations we observe are not part of a single clonal expansion but rather are consistent
with multiple independent alterations, all of which are able to survive and proliferate. Furthermore, this

also suggests alterations on either allele have similar phenotypic effects.

Extreme aneuploid cells are rare but present across individuals

Some models of cancer evolution posit that highly aneuploid genomes of invasive breast cancers could
emerge from single catastrophic mitosis with multiple chromosomal defects as opposed to progressive
accumulation of events over multiple mitoses®4. To shed light on this, we searched for cells with extreme
aneuploidy. The majority of aneuploid cells have at most one or two CNAs, however, there exists a small
population of cells with many CNAs (Fig. 4a). We classified extreme aneuploid cells as those exceeding
9 aneuploid chromosome arms, placing them in the upper 5% of the CNA burden distribution (Fig. 4a).
Extreme aneuploid cells were rare but present across individuals with an average prevalence of 0.1%
(range 0-0.43%) (Fig. 4b & Supplementary Figure 5 for heatmaps). We then calculated how similar
these single cell genomes were to the average breast cancer profile and identified 23 cells that were

similar (p=20.25), labeling these “cancer-like” genomes (Fig. 4c).

The 23 “cancer-like” cells were derived from three high-risk donor samples. All “cancer-like” cells had lost
one copy of either BRCAL or BRCA2, although we cannot be certain that the wild-type copy was lost due
to the inability to confirm mutational status in individual cells due to the limited sequencing coverage per
cell. All cells had also lost one allele on 17p, the location of TP53, suggesting that these cells had also
lost P53 function. B2-16 has 13 cancer-like cells that through phylogenetic analysis could be subdivided
into two independent clones, clone A and clone B (Fig. 4d,e). Although both these clones share similar
features such as gains on 1qg and 8q and losses on 6q, 16q, 13p (including BRCA2) and 17p (including
TP53), the copy number changepoints for these events are distinct in each clone, strongly suggesting
they are evolutionary independent clonal lineages. This is further supported by allele-specific analysis

showing different alleles lost in chromosomes 6 and 16 in the two clones (Supplementary Figure 6a).
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B1-49 had five “cancer-like” cells that were all evolutionary related (Fig. 4f). All cells had gains of 1q and
8q, and losses on 16q and 17q (including BRCAL). Allele-specific analysis also revealed that 17p was
copy neutral LOH (Supplementary Figure 6b). B2-18 had four “cancer-like” cells that again, were all
evolutionary related (Fig. 4g). These cells had gains on 1q, 8q and 17q and losses on 10q, 13q (including
BRCA2), 17p (including TP53), 16¢g and 22q among others. Interestingly 3/4 cells had undergone a whole
genome doubling, while one cell — that likely resembles the ancestral state of the three other cells —
remained in a diploid state. Pathological review of these breast tissues revealed a small DCIS lesion
associated with one of the FFPE blocks of B2-16.

We note that in samples with these cancer-like genomes, we did not observe cells with intermediate
aneuploid states that might be expected from a stepwise gradual accumulation of CNAs. This could reflect
the possibility that intermediate states are unfavorable to cellular proliferation or cleared by immune cells
or, alternatively, that all the changes are acquired within a short period of time, or plausibly a single mitotic

event.

Amongst the cells that were not correlated with advanced breast cancers (p<0.25) (Fig. 4c¢), a significant
proportion were characterized by a large number of whole chromosome losses relative to cell ploidy (see
Supplementary Figure 5 & Supplementary Figure 7). These cells are consistent with cytokinesis
failure or multipolar divisions and are likely non-viable as we rarely observed two cells with near identical
genomes. Furthermore, in some cases, such cells had large regions that were homozygously deleted
(Supplementary Figure 7). However, there was a notable example of a clonally expanded genome

doubled population (n=14 cells) in donor B2-23 (Supplementary Figure 5).

Discussion

This study of scaled single cell genome analysis of breast epithelium reveals several striking
features of somatic copy number alterations in pathologically normal tissues. First, we show that
aneuploidy is uncommon, comprising 2.69% overall of epithelial cells. Second, we observe a marked
difference in epithelial lineages: luminal cells, the putative precursor compartment for breast
malignancies, exhibit 3.6% aneuploid cells, whereas only 1.4% of basal myoepithelial cells carried
aneuploidies. Third, we observed that CNAs occur with structured tissue architecture across the genome:
the most abundant CNAs were largely limited to the luminal population and included gains on 1q and
losses on 10q, 164, 22q and 7g. Loss of chromosome X was similar in luminal and basal lineages, which
may be explained by the loss of the inactive copy being selectively neutral. Fourth, this specific pattern

of CNAs may be tissue context specific, as we did not observe it in cultured mammary epithelial cells.
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Thus, our data suggests that CNAs form a significant component of the somatic mutational spectrum of
epithelial cells in normal breast tissues, and this is both chromosome- and cell lineage-specific, even
within mammary epithelial sub-lineages.

When compiling individual CNA events across many single genomes into an aggregate, the
normal cell CNA landscape we observe bears a striking resemblance to bulk sequencing data of invasive
breast cancers. One of the most commonly observed alterations from our dataset was co-occurring 1q
gain and 16q loss in luminal epithelial cells. Interestingly, these co-occurring CNAs are often found to be
the only alteration present in low grade DCIS and luminal A tumors’#526, Our data not only support that
concurrent 1q gain and 16q loss is an early event, but that it is almost exclusively associated with luminal
epithelial cells and can occur through multiple independent allelic events. Concurrent 1g-gain/16qg-loss is
most often generated through an unbalanced translocation event that results in the fusion of chromosome
1g and 16p arms, termed der(1;16)3"38, Interestingly, a recent phylogenetic analysis identified der(1;16)
as a founder alteration that could be traced back to early pubertal breast epithelial cells. These clones
expanded over time and acquired additional mutations that eventually led to cancer developments3?
(Supplementary Figure 8). While 1g/16g CNAs were found to be the only CNAs for some low grade
tumors, these alterations are also associated with high aneuploid tumors. Due to limitations in the
resolution of our sequencing data, we were unable to confirm whether 1g-gain/16qg-loss clones in our
dataset were a result of der(1;16). Nevertheless, our results strongly support the importance of
premalignant alterations in 1q and 16q and raise the question whether targeting of early progenitors
harboring 1g-gain/16g-loss may be an effective therapeutic strategy for preventing or monitoring breast
cancer development.

While 1q gain as the most commonly detected event, additional alterations were repeatedly
identified including co-occurring 1g gain and 10q loss, 79 loss, and 22q loss. All of these CNAs, with the
exception of 7q loss, are enriched in breast tumors. Although these alterations occurred at lower
prevalence, some have been implicated as predictive of subtype and prognosis®7:3¢3, For example, 10q
loss is of particular interest because PTEN is located on this chromosome arm and deletions of PTEN
are commonly associated with basal breast tumors (TCGA). PTEN loss has also been computationally
predicted to occur prior to BRCAL LOH in human breast tumors*°,

We speculate the CNA mutational events that accumulate later in the progression from normal
epithelium to cancer may be dependent on these earlier alterations. For example, it is known that MYC
overexpression sensitizes cells to apoptosis and survival of high MYC cells requires anti-apoptotic
alterations like p53 loss of function or gain of BCL2 anti-apoptotic proteins **-%3. The MDM4 suppressor
of p53is on 1g and 1qg gain in tumor cells has been shown to increase the expression of MDM4, suppress

p53 signaling, and is associated with TP53 mutations that are mutually-exclusive with 1q aneuploidy in
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human cancers*. The anti-apoptotic protein MCL1 is also located on 1q. Thus, it is possible that CNAs
are required to tolerate significant alterations as cells undergo transformation. Notably, some common
breast cancer associated CNAs such as 8q are not prevalent in mammary epithelium, suggesting these
are selected later in cancer evolution.

In addition to the cells with one or two CNAs, we also detected a small number of cells in BRCA1
and BRCA2 mutation carriers with extensive CNAs, which were similar to those that occur in BRCA-
mutant cancers*. These cells may derive from microscopic pre-malignant lesions present in the donor
tissue. Most of these cells also carried CNAs in 1g and 10q or 16q, raising the possibility that the
presumed loss of the WT BRCA allele occurred in cells with the pre-existing CNAs. It is of interest that
we did not observe an intermediate set of alterations progressing from minimal to extreme aneuploidy.
The paucity of intermediate clones in our analysis supports a punctuated model of clonal evolution, which
proposes tumor development as abrupt transitions rather than a gradual accumulation of alterations over
time*”#8, Therefore, we hypothesize (Supplementary Fig 8) that cells with minimal aneuploidy may serve
as founder cells that undergo rapid bursts of alterations triggered by catastrophic events like LOH of
BRCAL1 or BRCA2, TP53 loss of function, chromothripsis or whole-genome duplication. Alternatively,
intermediate states may be more susceptible to immune surveillance leading to rapid elimination or
require additional alterations to overcome LOH and undergo transformation. These intriguing hypotheses
require further investigation, with longitudinal studies potentially shedding light on the dynamics of clonal
evolution of cells with CNAs, as well as providing additional insights into the relationship between cancer-
associated genetic alterations and immune activity during early stages of tumorigenesis.

The patterns we observe could be due to a mutational bias (e.g. preferential mis-segregation of
certain chromosomes?*®, contribution of chromosome specific fragile sites) or differing relative fithess of
cells carrying CNAs. Although the sampling method used here captures the single cell background,
largely bypassing purifying selection and not reliant on clonal amplification for detection of CNAs,
measuring actual contributions of potential hypermutability and/or fitness to the landscape would require
the timing and population fitness of individual CNAs to be measured. This is not currently tractable from
human tissues at single cell resolution. Nevertheless, taken together, our data suggest that the
mechanisms of somatic copy number alterations and/or selection operate continuously in non-malignant
epithelium, emphasizing the need to better understand the mechanistic relationships between lineage

specific mutational and selection forces in tumor formation.
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Supplementary Table 2
Cell level statistics including cell_id, sample, cell_type, cell coverage, number of aneuploid arms and

extreme aneuploidy classification.

Methods

Tissue procurement

All donor samples analyzed in the study are listed in Table S1. Specimens were obtained from Brigham
& Women’s Hospital or Faulkner Hospital on the day of surgery. This study was reviewed by the Harvard
Medical School Institutional Review Board (IRB) and deemed not human subjects research. Donors gave
their informed consent to have their anonymized tissues used for scientific research purposes. The
scDNAseq dataset contains 20 samples that include 6 elective reduction mammoplasties and 14
prophylactic mastectomies (7 BRCA1l mutation carriers, 6 BRCA2 mutation carriers and 1

BRCA1/BRCA2 mutation carrier). The age range of the cohort is 28-58 years old.

Tissue processing and FACS

Breast tissue samples were dissociated as previously described®. Briefly, each tissue was minced and
transferred to a 50 ml conical tube containing a solution of Advanced DMEM/F12 (Thermo 12634010),
1x Glutamax (Gibco 35050), 10 mM HEPES (Gibco 15630), 50 U/ml Penicillin-Streptomycin (Gibco
15070) and 1 mg/ml collagenase (Sigma C9407). Digestion was performed by constant shaking at ~150-
200 rpm at 37C for 2-4 hours. Tissue was then pelleted by centrifugation and further dissociated into
single cells by treatment with TrypLE (Gibco 12605010) for 5-15 min. After neutralization and pelleting
by centrifugation, sequential pipetting with 25, 10 and 5 ml pipette tips was performed to further dissociate
the tissue. The dissociated tissue was then filtered through a 100um and 40um filter to isolate single cells
and counted manually under the microscope to assess yield and viability. Single cells were fixed with

1.6% paraformaldehyde for 10 min and cryopreserved until ready for FACS.

For FACS isolation of mammary epithelial cell types, single cells isolated from tissue were labeled for 30
min at room temperature with Alexa Fluor 647-conjugated anti-EpCAM (1:50, Biolegend 324212), PE-
conjugated anti-CD49f (1:100, Biolegend 313612), FITC-conjugated anti-CD31 (1:100, Biolegend
303103) and Alexa Fluor 488 anti-CD45 (1:100, Biolegend 304017). The lineage-negative population
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was defined as CD31 CD45'. After staining, FACS was performed to isolate CD31/CD45 EpCAM*
CD49f* (Luminal) and CD31/CD45  EpCAM"" CD49f* (Basal/myoepithelial) cells for scDNAseq analysis.

Single cell DNA sequencing

We used the DLP+ protocol to generate low pass whole genome sequencing data?*. Frozen single-cells
were thawed, washed and pelleted in DMEM (Corning 10-013-CV) and resuspended in PBS (Corning
21-040-CV) with 0.04% BSA (Cedarlane 001-000-162). Single-cell suspensions were labeled with
CellTrace CFSE dye (ThermoFisher C34554) and LIVE/DEAD Fixable Red stain (ThermoFisher L23102)
by incubation at 37°C for 20 min. Cells were resuspended in PBS with 0.04% BSA and aspirated into a
contactless piezoelectric dispenser (Scienion CellenOne) for single cell dispensing into open nanowell
arrays (TakaraBio SmartChip) preprinted with unigue custom dual indexed sequencing primers. Nanowell
chips were subsequently scanned on a Nikon TI-E inverted fluorescent microscope (10X magnification).
Singly-occupied wells and cell state were determined using our custom image analysis software,
SmartChipApp (Java) (Laks et al. 2019). Cell-spotted nanowell chips are covered with SmartChip
Intermediate Film (Takara 430-000104-10) and stored at -20°C until library construction.

Lysis buffer comprised of 6.73 nL DirectPCR Lysis Reagent (Viagen 302-C), 2.69 nL protease (Qiagen
19155), 0.5 nL glycerol (100%), and 0.09 nL pluronic (10%) were dispensed into each well. Nanowell
chips were sealed with Microseal A (BioRad MSA5001) using a pneumatic sealer and centrifuged before
each incubation step. Cells were allowed to soak overnight in lysis buffer for 18-19 hours at 21°C (30°C
lid) in a flatbed thermocycler (ThermoFisher ProFlex Dual Flat PCR System 4484078). Following
overnight presoak, chips were incubated at 50°C for 1 hour to carry out thermal and enzymatic lysis.
Lysis inactivation (75°C for 15 min, 10°C forever) was conducted after lysis. Tagmentation was performed
with 7.5 nL Bead-Linked Transposomes (BLT, lllumina DNA Prep 20060059), 7.5 nL Tagmentation Buffer
1 (TB1, lllumina DNA Prep 20060059), and 15 nL nuclease-free water, incubated at 55°C for 15 min.
Neutralization was carried out with 9.9 nL protease (Qiagen 19155) with 0.1 nL Tween20 (10%) at 50°C
for 15 min, followed by heat inactivation at 70°C for 15 min. Limited-cycle PCR amplification was
conducted with 44.53 nL Enhanced PCR Mix (EPM, lllumina DNA Prep 20060059) and 0.47 nL Tween20
(10%) using the following conditions: 68°C for 3 min; 98°C for 3 min; 11-cycles of 98°C for 45 sec, 62°C
for 30 sec, 68°C for 2 min; 68°C for 1 min; and hold at 10°C. Single-cell whole genome libraries were
eluted from nanowell chips by centrifugation through a funnel into a recovery tube. Pooled libraries were
cleaned by double-sided bead purification using Sample Purification Beads (SPB, lllumina DNA Prep
20060059) and eluted into Resuspension Buffer (RSB, lllumina DNA Prep 20060059).
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Single-cell whole genome libraries were quantified with Qubit dsDNA High Sensitivity Assay
(ThermoFisher Q32854) and Bioanalyzer 2100 HS kit (Agilent 5067-4626). Sequencing was conducted
to a depth of 0.03X coverage per cell on either: lllumina NextSeq 2000 (2x100 bp) at UBC Biomedical
Research Centre (Vancouver, BC), lllumina HiSeq 2500 (2x150 bp) or Illumina NovaSeq 6000 (2x150

bp) at the BC Genome Sciences Centre (Vancouver, BC).

Single cell DNA processing and analysis

The single cell-pipeline outlined in Laks et al. was used to call copy number in single cells at 0.5Mb
resolution. Briefly, this pipeline aligns sequencing reads to the reference genome, counts the number of
reads in 0.5Mb bins across the genome, performs GC correction using a modal regression framework
and then computes integer copy number states across the genome using HMMcopy®!. We then applied
the cell quality filter and removed cells with quality < 0.75. In addition, to remove possible low quality cells
not captured by the cell quality score, cells undergoing replication and cells with possible incorrect ploidy
estimates we also removed cells that had the following characteristics: i) ploidy > 5 ii) >10 segments with
size <5Mb.

We computed allele-specific copy number for the aneuploid cells using SIGNALS for 10 donors. As input,
SIGNALS requires haplotype block counts per cell which in turn requires identifying heterozygous SNPs
and phased haplotype blocks. To identify heterozygous SNPs, all cells were merged into a single
pseudobulk bam file and treated as a normal whole genome sequencing sample. The “Haplotype Calling”
submodule (step 8:

https://github.com/shahcompbio/single cell pipeline/blob/master/docs/source/index.md) was then used

to infer haplotype blocks and genotype them in single cells. These results were then used in SIGNALS
with default parameters apart from mincells which was set to 4. mincells is the size of the smallest cluster
used to phase haplotype blocks, and needed to be lower than what is typically recommended for cancer

data due to the sparsity of CNAs. Downstream analysis and all plotting was done using SIGNALS,

Aneuploidy in single cells

Single cells were called as aneuploid if they had at least one chromosome arm in a copy number state
that was different from the ploidy of the cell. Integer cell ploidy was assigned to be the most common
copy number state across the whole genome (unless this was 1, in which case ploidy was set to 2) and
chromosome arm copy number states in each cell were assigned based on the most common copy
number state of the bins within a chromosome arm (using per_chrarm_cn function in SIGNALS).

Aneuploid arms with copy number states greater than cell ploidy were classed as gains and less than


https://github.com/shahcompbio/single_cell_pipeline/blob/master/docs/source/index.md
https://doi.org/10.1101/2024.05.01.591587
http://creativecommons.org/licenses/by-nc/4.0/

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.01.591587; this version posted May 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

cell ploidy as losses. Cells were classed as “Extreme Aneuploid” if they were in the top 5% of cells in

terms of CNA abundance. This cutoff corresponded to 9 or more aneuploid arms.

Additional datasets used in this study

To compare the distribution of CNAs to cancer cells we made use of whole genome sequencing data
from Nik-Zainal et al*® and SNP array data from TCGA!°. To facilitate comparison with scWGS DLP data,
the various formats used in these studies were converted into a format that consisted of integer copy
number at 0.5Mb across the genome. Gains and losses were defined relative to cell ploidy as for the

single cell data.

We also used a set of >14,000 human telomerase reverse transcriptase (hTERT) immortalized wild-type

mammary epithelial cells. Details of culture conditions can be found in Funnell et al®?.

Classifying extreme aneuploid cells

For each extreme aneuploid cell we computed its correlation coefficient with the average copy number
profile from 262 cancer samples that had purity > 0.5 in Nik-Zainal et al. Plotting the distribution of
correlation coefficients we observed a bimodal distribution, with a mode at 0, a mode at ~0.5 and an
inflection point at 0.25. We therefore classified cells that had = 0.25 correlation coefficient as “cancer-
like” and those with correlation < 0.25 as low ploidy or high ploidy depending on their cell ploidy, which

also exhibited a bimodal distribution.

Phylogenetic trees

We constructed phylogenetic trees for the cancer-like extreme aneuploid cells using sitka®? which uses
copy number changepoints as phylogenetic markers. Here, a copy number change point is the locus (bin)
where the inferred integer copy number state changes between bin i and bin i+1. The input to sitka is a
binary matrix consisting of cells by changepoint bins. Default parameters were used. Length of branches

in the trees represent the number of copy number changes.

Statistical analysis

For between group comparisons we used t-tests. To investigate multiple factors that might influence
aneuploidy while taking into account that most donors have basal and luminal cells we performed a multi-
level multivariate model (Supplementary Figure 2f) that included cell type, age and donor genotype.
We used the Imer package in R with the following formula specification: percentage_aneuploidy ~ age +

cell_type + genotype + (1|sample).
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Data availability
Raw sequencing data will be available from EGA under accession EGAS00001007716 at the time of

publication.

Code availability
Single-cell pipeline for processing DLP+ data is available at
https://github.com/shahcompbio/single cell pipeline.
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Supplementary Figure 1a Heatmap of aneuploid cells from BRCA1 donors, title shows donor name, genotype and number

of aneuploid cells out of total number of cells
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hTERT cells: 14,000 cells from an immortalized mammary epithelial cell line, Breast Cancers: 555 whole

genome sequence cancers from Nik-Zainal et al. Luminal and basal cells from this study b) % cells aneuploid per patient

split by luminal

and basal cells for the 8 most common chromosome alterations c) co-occurence heatmap showing

percentage of cells that have 2 chromosomal aneuploidies concurrently d) % of cells that have 1g-gain/16q-loss and
1g-gain/10qg-loss per cell type
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Supplementary Figure 8 In the proposed model, CNAs that accumulate in normal breast tissues (e.g. 1q gain and 10q or
16q loss) would enhance the fitness of the luminal epithelial cells. In BRCA1/2 mutation carriers, where inactivation of the
wild-type (WT) copy of BRCA1/2 leads to defective DNA repair, genomic instability, and apoptosis, luminal cells carrying
these CNAs would be more tolerant of these stresses, thus allowing the homologous-recombination defective mutant cells
to expand, acquire oncogenic mutations, and ultimately progress to cancer.
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