

1 **Luminal breast epithelial cells from wildtype and *BRCA* mutation carriers harbor copy number
2 alterations commonly associated with breast cancer**
3

4 Marc J. Williams^{1*}, Michael UJ Oliphant^{2*}, Vinci Au^{3*}, Cathy Liu³, Caroline Baril³, Ciara O'Flanagan³,
5 Daniel Lai³, Sean Beatty³, Michael Van Vliet³, Jacky CH Yiu³, Lauren O'Connor², Walter L Goh², Alicia
6 Pollaci⁴, Adam C. Weiner¹, Diljot Grewal¹, Andrew McPherson¹, McKenna Moore⁴, Vikas Prabhakar⁵,
7 Shailesh Agarwal⁶, Judy E. Garber⁴, Deborah Dillon⁵, Sohrab P. Shah^{1^a}, Joan Brugge^{2^a}, Samuel
8 Aparicio^{3^a}
9

10 **Institutions.**

11 1. Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering
12 Cancer Center, New York, NY, USA
13 2. Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School (HMS), Boston, MA
14 02115, USA
15 3. Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British
16 Columbia, Canada V5Z 1L3.
17 4. Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI), Boston, MA 02115, USA
18 5. Department of Pathology, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
19 6. Dept of Surgery, Brigham and Women's Hospital (BWH), Boston, MA 02115, USA
20

21 **^ to whom correspondence may be addressed**

22 Sohrab P. Shah shahs3@mskcc.org
23 Joan Brugge joan_brugge@hms.harvard.edu
24 Samuel Aparicio saparicio@bccrc.ca

25 *denotes equal contributions
26
27
28

29 **Abstract**

30 Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature
31 of somatic copy number alterations and their role in tumor initiation and evolution is not well understood.
32 Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial
33 cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells
34 with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable
35 in almost all breast tissues and, in those from *BRCA1* or *BRCA2* mutations carriers, occurs prior to loss
36 of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common

37 associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost
38 exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs
39 reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs
40 in an individual breast. Tissues from *BRCA1* or *BRCA2* mutation carriers contain a small percentage of
41 cells with extreme aneuploidy, featuring loss of *TP53*, LOH of *BRCA1* or *BRCA2*, and multiple breast
42 cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably,
43 cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation
44 of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium
45 partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.

46

47 **Introduction**

48 Somatic mutations are known to accumulate in normal tissues over time and, although the vast majority
49 are inconsequential, contribute to cancer¹⁻³. Most studies have measured and emphasized the role of
50 single nucleotide variants (SNVs) in normal tissues. Yet gene dosage mutations due to somatic copy
51 number alterations occur in the majority of tumor types^{4,5} and are highly prevalent in breast cancers⁶⁻⁸,
52 contributing important driver events such as *ERBB2* amplification and *PTEN* loss. They also represent
53 the dominant source of transcriptional variation in genetically unstable human cancers^{4,6,9-11}, including
54 breast cancer. Studies of pre-invasive DCIS have noted that extensive CNAs and structural variants (SV),
55 resulting from duplication or loss of whole chromosome or chromosome segments, are already present
56 with a landscape largely indistinguishable from invasive cancers^{12,13}. Early pre-cancer atypical ductal
57 hyperplasias are also noted to have extensive CNA mutations^{14,15}. These findings indicate that CNAs
58 arise early in the evolution of breast cancer; however, a full understanding of the prevalence, evolutionary
59 timing and distribution of the earliest CNAs arising in morphologically normal breast epithelium is lacking.

60 The vast majority of SNV mutations are private to single cells or form small clonal expansions that
61 would be obscured by bulk short read sequencing of tissues. We posit this is also the case for CNAs.
62 Recent studies of SNVs in normal tissues have successfully used a combination of ultra-deep error
63 corrected sequencing¹⁶ or experimental cloning amplification of single cells subsequently characterized
64 with bulk short read next generation sequencing^{17,18} to bypass these barriers. However, the prevalence
65 of CNAs in most normal cells may be an order of magnitude or more lower than SNVs and thus
66 comprehensive characterization of CNAs is inaccessible to these approaches. A few studies have
67 attempted to discover somatic CNAs in normal tissues¹⁹⁻²³ by reanalyzing bulk sequencing data but have
68 been limited to blood or to detecting CNAs present in >20% of the cellular population, which do not allow
69 the underlying generative process of CNAs in individual cells to be defined. We have overcome these
70 limitations by developing methods for scaled single cell whole genome sequencing (scWGS) (DLP+)^{24,25}

71 which allow for discovery of CNAs unique to single cells in thousands of individual genomes. By sampling
72 without restriction directly from tissues, the progeny of single mitotic mutational events leading to cell-
73 specific alterations can be ascertained.

74 Here we investigate the prevalence and landscape of copy number alterations in normal breast
75 epithelial tissues to identify the earliest genetic alterations using DLP+ scWGS. We reveal the prevalence,
76 chromosomal distribution, and lineage specificity of CNA mutations in breast tissues from high risk
77 *BRCA1/BRCA2* germline mutation carriers and contrast with BRCA-wildtype epithelium.

78

79 Results

80

81 Low aneuploidy prevalence in normal mammary epithelia is cell type dependent

82 To assess the distribution and prevalence of CNAs in single breast epithelial cells of individuals with
83 germline breast cancer predisposition alleles, we obtained breast tissues from women carrying germline
84 pathogenic mutations in *BRCA1* (n=8) and *BRCA2* (n=6) undergoing risk-reducing surgery, as well as
85 from those with the *BRCA1/2* wild-type (WT) genotype (n=6) from reductive mammoplasties. Some
86 women had a history of breast cancer or other cancers and had received prior chemotherapy (**Fig. 1a**).
87 See **Supplementary Table 1** for all clinical details. For patients with a history of breast cancer, tissue
88 was acquired from the contralateral breast. Macroscopically normal tissue was allocated for research
89 purposes. Microscopic examination of representative FFPE blocks of clinical and/or research tissue
90 revealed no atypical hyperplasia or in situ carcinoma in 15/20 subjects. Representative tissue samples
91 from 5 donors revealed small foci (<1-2mm) of in situ carcinoma or atypical hyperplasia: B2-16 (DCIS),
92 WT-7 (ADH), WT-6752 (ALH), B2-21 (ALH), B2-23 (LCIS) (Supplementary Table 1). Tissue samples
93 were then dissociated into single cells, sorted into luminal and basal cell populations based on previously
94 established surface markers (²⁶⁻²⁸ methods) and the single cell genomes sequenced to an average
95 genome-wide coverage of 0.029X using the DLP+ protocol²⁹ (range 0.001-0.361, **Supplementary Table**
96 **2**). After removing low quality genomes and discarding samples with fewer than 300 cells, 42,756 single
97 cell genomes from 20 donors were analyzed (**Fig. 1a**). Example genome wide copy number profiles from
98 a diploid genome and aneuploid genome are shown in **Figure 1b-c**.

99

100 Aneuploid cells, defined as cells with at least one chromosome arm level gain or loss, were rare but
101 observed in every sample. Overall, 2.69% of cells (range: 0.1-5.9%) contained between one and four
102 aneuploid chromosome arms (simple aneuploidy). Notably, specific alterations such as gains of 1q and
103 losses on 16q, 10q, 22q and 7q were recurrent across donors for four samples: two *BRCA1*^{+/−} (B1-6410
104 and B1-6550), one *BRCA2*^{+/−} (B2-23) and one WT (WT-6) (**Figure 1d-g**). Similar patterns were observed

105 in all other donors, see **Supplementary Figure 1a-c**. These results indicate that cells carrying a specific
106 subset of CNAs accumulate in ostensibly normal breast epithelial cells.
107

108 Aneuploid cells were more prevalent in luminal cells compared to basal cells (3.6% vs. 1.4%, $p=9.4\times10^{-5}$, **Fig. 1h**), and in BRCA carrier donors compared to WT: 3.8% in BRCA1 and 2.9% in BRCA2 compared
109 with 1.8% in WT donors ($p=0.02$ and $p=0.15$ respectively, **Fig. 1i**). We did not find any significant
110 associations with other clinical covariates including age, parity, menopause status, cancer history or
111 chemotherapy history (**Supplementary Figure 2**). In a multi-variate regression that included age,
112 genotype and cell type, luminal cells were associated with an increase in aneuploidy ($p=5.69\times10^{-5}$) and
113 the WT genotype with a decrease in aneuploidy ($p=0.024$); no other groups showed a statistically
114 significant association (**Supplementary Figure 2f**).
115

116

117 **Recurrent aneuploidies in luminal cells are similar to breast cancers**

118 Next, we explored the distribution of CNAs across the genome and between cell types. Luminal and basal
119 cells had distinct distributions of CNAs. CNAs observed recurrently across patients were restricted to
120 luminal cells (**Fig. 2a** & **Supplementary Figure 3**). These included gain of 1q, the most common
121 observed alteration (1.06% in luminal vs 0.03% in basal, $p=0.00009$), loss of 16q (0.6% vs 0.04%,
122 $p=0.00044$), loss of 22q (0.5% vs 0.03%, $p=0.0049$), loss of 7q (0.33% vs 0.01%, $p=0.0025$) and loss of
123 10q (0.27% vs 0.07%, $p=0.032$ **Fig. 2** & **Supplementary Figure 3**). Loss of chromosome X was also
124 common but occurred at similar rates in both luminal and basal cell types (0.16% vs 0.12%, $p=0.63$,
125 **Fig. 2a,b** & **Supplementary Figure 3**). Since X chromosome loss has been shown to increase with age
126 and preferentially involve the inactive copy²¹, it is likely a selectively neutral event that would explain the
127 approximately equal rate of loss in the two cell types. We did not identify any alterations that were
128 statistically significantly more prevalent in basal cells compared to luminal cells.
129

130 To assess how these patterns compare to those from invasive breast cancers, we compared the normal
131 tissue CNA chromosomal distribution to 560 whole genome sequenced breast cancers from Nik-Zainal
132 *et al*⁶⁰. A number of events that were common in the luminal cell population were also common in
133 advanced cancers including the gains of 1q and losses of 16q and 22q (**Fig. 2a**). Loss of 7q, which is
134 common in our normal epithelium dataset, is comparatively rare in breast cancers (**Fig. 2a**). Conversely,
135 there are some events such as gains of 8q and 16p and loss of 11q that are very common in breast
136 cancers but are rare in normal breast epithelium, suggesting that these alterations are typically acquired
137 later during tumor evolution. Computing the cosine similarity between normal tissue CNA distributions
138 and all cancer types present in the TCGA, we found that breast cancers were the most similar cancer

139 type for both gains and losses, (**Supplementary Figure 4**). We note the similarity to some other cancer
140 types, which reflects the fact that some of the common alterations (e.g. 1q gain) are also prevalent in
141 other cancer types.

142

143 To explore whether the enrichment of certain chromosomes could be explained by underlying mutational
144 bias, we also compared the distribution of CNAs to that derived from 14,000 single cell genomes from a
145 wild-type immortalized breast tissue cell line (hTERT cells). In contrast to the scWGS from normal breast
146 epithelium, the distribution of CNAs in this cell line was relatively uniform across the genome (**Fig. 2a**).
147 This suggests that chromosome arms have a relatively uniform susceptibility to CNAs and that the higher
148 prevalence of CNAs within certain chromosomes in normal breast epithelium is a tissue- and cell type-
149 specific process, potentially linked to lineage differentiation and/or epithelial cell orientation within a tissue
150 context³¹.

151

152 Amongst cells that had more than one aneuploid chromosome arm, the most frequent events were 1q-
153 gain/16q-loss (present in 12 donors) and 1q-gain/10q-loss (present in seven donors, **Fig. 2c**). Both
154 combinations were enriched in luminal cells with average frequencies of 0.23% (1q-gain/16q-loss) and
155 0.19% (1q-gain/10q-loss, **Fig. 2d**). Interestingly, 10q-loss was only ever observed in conjunction with 1q-
156 gain while 16q-loss was frequently observed in isolation. These data are consistent with a recent report³²
157 that showed that clones carrying 1q-gain/16q-loss events are precursors that emerge decades before
158 cancer diagnosis.

159

160 **Allele-specific alterations reveal multiple independent CNAs**

161 To address whether the recurrent aneuploidies that we observed arose from single clonal expansions or
162 constituted multiple independent events, we phased chromosome gains and losses to parental alleles
163 (here defined arbitrarily as allele A or B) using SIGNALS³³, a HMM based inference approach determining
164 allele-specific copy number alterations. Observing gains and losses of both alleles would indicate that
165 these events had been acquired independently more than once and give a lower bound on the number
166 of events.

167

168 Applying SIGNALS to 10 samples that contained a large number of aneuploid cells, we found evidence
169 that CNAs were independently acquired at least twice. For example, B2-23 had aneuploid cells with all
170 the frequent CNAs: 1q-gain, 7q-loss, 10q-loss, 16q-loss and 22q-loss and also several cells with both 1q-
171 gain/10q-loss and 1q-gain/16q-loss (**Fig. 3a**). Allele-specific copy number analysis revealed gains and
172 losses on each allele, indicating each event must have been acquired independently at least twice

173 (Fig. 3b). In the case of cells with 1q-gain/10q-loss, we could infer three separate configurations: 1q(A-gain)-10q(B-loss), 1q(B-gain)-10q(B-loss) and 1q(B-gain)-10q(A-loss) (Fig. 3b). Similarly, for cells with 174 1q-gain/16q-loss, most had lost the B-allele on 16q but we identified one cell that had lost the A-allele. 175

176
177 Applying the same analysis to an additional nine samples, we found that there was evidence that the 178 common alterations were acquired independently multiple times in the majority of cases. For example, 179 cells with gain of 1q of both alleles were present in 7/10 samples, and losses of both alleles on 7q and 180 16q were observed in 6/10 and 7/10 samples, respectively. Taken together, these findings indicate that 181 the aneuploid populations we observe are not part of a single clonal expansion but rather are consistent 182 with multiple independent alterations, all of which are able to survive and proliferate. Furthermore, this 183 also suggests alterations on either allele have similar phenotypic effects.

184
185 **Extreme aneuploid cells are rare but present across individuals**

186 Some models of cancer evolution posit that highly aneuploid genomes of invasive breast cancers could 187 emerge from single catastrophic mitosis with multiple chromosomal defects as opposed to progressive 188 accumulation of events over multiple mitoses³⁴. To shed light on this, we searched for cells with extreme 189 aneuploidy. The majority of aneuploid cells have at most one or two CNAs, however, there exists a small 190 population of cells with many CNAs (Fig. 4a). We classified extreme aneuploid cells as those exceeding 191 9 aneuploid chromosome arms, placing them in the upper 5% of the CNA burden distribution (Fig. 4a). 192 Extreme aneuploid cells were rare but present across individuals with an average prevalence of 0.1% 193 (range 0-0.43%) (Fig. 4b & Supplementary Figure 5 for heatmaps). We then calculated how similar 194 these single cell genomes were to the average breast cancer profile and identified 23 cells that were 195 similar ($p \geq 0.25$), labeling these “cancer-like” genomes (Fig. 4c).

196
197 The 23 “cancer-like” cells were derived from three high-risk donor samples. All “cancer-like” cells had lost 198 one copy of either *BRCA1* or *BRCA2*, although we cannot be certain that the wild-type copy was lost due 199 to the inability to confirm mutational status in individual cells due to the limited sequencing coverage per 200 cell. All cells had also lost one allele on 17p, the location of *TP53*, suggesting that these cells had also 201 lost P53 function. B2-16 has 13 cancer-like cells that through phylogenetic analysis could be subdivided 202 into two independent clones, clone A and clone B (Fig. 4d,e). Although both these clones share similar 203 features such as gains on 1q and 8q and losses on 6q, 16q, 13p (including *BRCA2*) and 17p (including 204 *TP53*), the copy number changepoints for these events are distinct in each clone, strongly suggesting 205 they are evolutionary independent clonal lineages. This is further supported by allele-specific analysis 206 showing different alleles lost in chromosomes 6 and 16 in the two clones (Supplementary Figure 6a).

207 B1-49 had five “cancer-like” cells that were all evolutionary related (**Fig. 4f**). All cells had gains of 1q and
208 8q, and losses on 16q and 17q (including *BRCA1*). Allele-specific analysis also revealed that 17p was
209 copy neutral LOH (**Supplementary Figure 6b**). B2-18 had four “cancer-like” cells that again, were all
210 evolutionary related (**Fig. 4g**). These cells had gains on 1q, 8q and 17q and losses on 10q, 13q (including
211 *BRCA2*), 17p (including *TP53*), 16q and 22q among others. Interestingly 3/4 cells had undergone a whole
212 genome doubling, while one cell – that likely resembles the ancestral state of the three other cells –
213 remained in a diploid state. Pathological review of these breast tissues revealed a small DCIS lesion
214 associated with one of the FFPE blocks of B2-16.

215

216 We note that in samples with these cancer-like genomes, we did not observe cells with intermediate
217 aneuploid states that might be expected from a stepwise gradual accumulation of CNAs. This could reflect
218 the possibility that intermediate states are unfavorable to cellular proliferation or cleared by immune cells
219 or, alternatively, that all the changes are acquired within a short period of time, or plausibly a single mitotic
220 event.

221

222 Amongst the cells that were not correlated with advanced breast cancers ($p < 0.25$) (**Fig. 4c**), a significant
223 proportion were characterized by a large number of whole chromosome losses relative to cell ploidy (see
224 **Supplementary Figure 5 & Supplementary Figure 7**). These cells are consistent with cytokinesis
225 failure or multipolar divisions and are likely non-viable as we rarely observed two cells with near identical
226 genomes. Furthermore, in some cases, such cells had large regions that were homozygously deleted
227 (**Supplementary Figure 7**). However, there was a notable example of a clonally expanded genome
228 doubled population ($n=14$ cells) in donor B2-23 (**Supplementary Figure 5**).

229

230 Discussion

231 This study of scaled single cell genome analysis of breast epithelium reveals several striking
232 features of somatic copy number alterations in pathologically normal tissues. First, we show that
233 aneuploidy is uncommon, comprising 2.69% overall of epithelial cells. Second, we observe a marked
234 difference in epithelial lineages: luminal cells, the putative precursor compartment for breast
235 malignancies, exhibit 3.6% aneuploid cells, whereas only 1.4% of basal myoepithelial cells carried
236 aneuploidies. Third, we observed that CNAs occur with structured tissue architecture across the genome:
237 the most abundant CNAs were largely limited to the luminal population and included gains on 1q and
238 losses on 10q, 16q, 22q and 7q. Loss of chromosome X was similar in luminal and basal lineages, which
239 may be explained by the loss of the inactive copy being selectively neutral. Fourth, this specific pattern
240 of CNAs may be tissue context specific, as we did not observe it in cultured mammary epithelial cells.

241 Thus, our data suggests that CNAs form a significant component of the somatic mutational spectrum of
242 epithelial cells in normal breast tissues, and this is both chromosome- and cell lineage-specific, even
243 within mammary epithelial sub-lineages.

244 When compiling individual CNA events across many single genomes into an aggregate, the
245 normal cell CNA landscape we observe bears a striking resemblance to bulk sequencing data of invasive
246 breast cancers. One of the most commonly observed alterations from our dataset was co-occurring 1q
247 gain and 16q loss in luminal epithelial cells. Interestingly, these co-occurring CNAs are often found to be
248 the only alteration present in low grade DCIS and luminal A tumors^{7,35,36}. Our data not only support that
249 concurrent 1q gain and 16q loss is an early event, but that it is almost exclusively associated with luminal
250 epithelial cells and can occur through multiple independent allelic events. Concurrent 1q-gain/16q-loss is
251 most often generated through an unbalanced translocation event that results in the fusion of chromosome
252 1q and 16p arms, termed der(1;16)^{37,38}. Interestingly, a recent phylogenetic analysis identified der(1;16)
253 as a founder alteration that could be traced back to early pubertal breast epithelial cells. These clones
254 expanded over time and acquired additional mutations that eventually led to cancer development³²
255 (**Supplementary Figure 8**). While 1q/16q CNAs were found to be the only CNAs for some low grade
256 tumors, these alterations are also associated with high aneuploid tumors³⁸. Due to limitations in the
257 resolution of our sequencing data, we were unable to confirm whether 1q-gain/16q-loss clones in our
258 dataset were a result of der(1;16). Nevertheless, our results strongly support the importance of
259 premalignant alterations in 1q and 16q and raise the question whether targeting of early progenitors
260 harboring 1q-gain/16q-loss may be an effective therapeutic strategy for preventing or monitoring breast
261 cancer development.

262 While 1q gain as the most commonly detected event, additional alterations were repeatedly
263 identified including co-occurring 1q gain and 10q loss, 7q loss, and 22q loss. All of these CNAs, with the
264 exception of 7q loss, are enriched in breast tumors. Although these alterations occurred at lower
265 prevalence, some have been implicated as predictive of subtype and prognosis^{6,7,36,39}. For example, 10q
266 loss is of particular interest because *PTEN* is located on this chromosome arm and deletions of *PTEN*
267 are commonly associated with basal breast tumors (TCGA). *PTEN* loss has also been computationally
268 predicted to occur prior to *BRCA1* LOH in human breast tumors⁴⁰.

269 We speculate the CNA mutational events that accumulate later in the progression from normal
270 epithelium to cancer may be dependent on these earlier alterations. For example, it is known that MYC
271 overexpression sensitizes cells to apoptosis and survival of high MYC cells requires anti-apoptotic
272 alterations like p53 loss of function or gain of BCL2 anti-apoptotic proteins⁴¹⁻⁴³. The *MDM4* suppressor
273 of p53 is on 1q and 1q gain in tumor cells has been shown to increase the expression of MDM4, suppress
274 p53 signaling, and is associated with *TP53* mutations that are mutually-exclusive with 1q aneuploidy in

275 human cancers⁴⁴. The anti-apoptotic protein MCL1 is also located on 1q. Thus, it is possible that CNAs
276 are required to tolerate significant alterations as cells undergo transformation. Notably, some common
277 breast cancer associated CNAs such as 8q are not prevalent in mammary epithelium, suggesting these
278 are selected later in cancer evolution.

279 In addition to the cells with one or two CNAs, we also detected a small number of cells in *BRCA1*
280 and *BRCA2* mutation carriers with extensive CNAs, which were similar to those that occur in *BRCA*-
281 mutant cancers^{45,46}. These cells may derive from microscopic pre-malignant lesions present in the donor
282 tissue. Most of these cells also carried CNAs in 1q and 10q or 16q, raising the possibility that the
283 presumed loss of the WT *BRCA* allele occurred in cells with the pre-existing CNAs. It is of interest that
284 we did not observe an intermediate set of alterations progressing from minimal to extreme aneuploidy.
285 The paucity of intermediate clones in our analysis supports a punctuated model of clonal evolution, which
286 proposes tumor development as abrupt transitions rather than a gradual accumulation of alterations over
287 time^{47,48}. Therefore, we hypothesize (**Supplementary Fig 8**) that cells with minimal aneuploidy may serve
288 as founder cells that undergo rapid bursts of alterations triggered by catastrophic events like LOH of
289 *BRCA1* or *BRCA2*, TP53 loss of function, chromothripsis or whole-genome duplication. Alternatively,
290 intermediate states may be more susceptible to immune surveillance leading to rapid elimination or
291 require additional alterations to overcome LOH and undergo transformation. These intriguing hypotheses
292 require further investigation, with longitudinal studies potentially shedding light on the dynamics of clonal
293 evolution of cells with CNAs, as well as providing additional insights into the relationship between cancer-
294 associated genetic alterations and immune activity during early stages of tumorigenesis.

295 The patterns we observe could be due to a mutational bias (e.g. preferential mis-segregation of
296 certain chromosomes⁴⁹, contribution of chromosome specific fragile sites) or differing relative fitness of
297 cells carrying CNAs. Although the sampling method used here captures the single cell background,
298 largely bypassing purifying selection and not reliant on clonal amplification for detection of CNAs,
299 measuring actual contributions of potential hypermutability and/or fitness to the landscape would require
300 the timing and population fitness of individual CNAs to be measured. This is not currently tractable from
301 human tissues at single cell resolution. Nevertheless, taken together, our data suggest that the
302 mechanisms of somatic copy number alterations and/or selection operate continuously in non-malignant
303 epithelium, emphasizing the need to better understand the mechanistic relationships between lineage
304 specific mutational and selection forces in tumor formation.

305

306 **AUTHOR CONTRIBUTIONS**

307 JSB and SA conceived this study. MJW, MUJO, JSB and SA wrote the manuscript with input from other
308 authors. MJW analyzed all scDNAseq data. MUJO organized tissue sample processing, dissociated and
309 processed tissues, and carried out FACS sorting. LO dissociated and processed tissues, WG processed

310 and FACS-sorted samples. JEG, DAD, AP, MM, and orchestrated tissue procurement. Shailesh Agarwal
311 and ACP acquired patient consent, VP performed tissue collection and initial processing after surgery,
312 DAD performed pathological reviews. SPS supervised computational analysis. DL, CL, SB, DG, AM, AW,
313 JCHL developed and ran computational pipelines. VA generated the scDNAseq data with support from
314 CO'F, MVV and CB.
315

316 **Acknowledgements:**

317 We gratefully acknowledge the teams who facilitated tissue collection for these studies, including the
318 BWH breast surgery team led by Dr. Tari King; the BWH plastic surgery team; and the BWH Faulkner
319 pathologists and technical staff led by Dr. Tony Guidi. We thank Ron Schackmann, Abdu Alsaadi,
320 Gianmarco Rinaldi, Kung-Chi Chang, Kate Moore and Klarisa Norton for support in processing tissues.
321 We also thank the DFCI Flow Cytometry Core led by John Daley and Suzan Lazo. We deeply appreciate
322 invaluable editorial feedback provided by Drs. M. Angelica Martinez-Gakidis (JSB lab). This work was
323 supported in part by a Gray Foundation Team Sciences Award (JSB, SA, DAD, JEG,), a Goldberg Family
324 Research Fund gift (JSB), the Breast Cancer Research Foundation (JSB), an Anbinder Cancer Research
325 Fund gift (JSB), and an NCI grant NCI R35 CA242428(JSB). MJW is supported by a National Cancer
326 Institute Pathway to Independence award (K99CA256508). MUJO is supported by the R35 Diversity
327 Supplement (R35CA242428-04) and the Black in Cancer/Emerald Foundation Inc Postdoctoral Career
328 Transition Fellowship. S.P.S. holds the Nicholls Biondi Chair in Computational Oncology and is a Susan
329 G. Komen Scholar (GC233085). S.A. holds the Nan and Lorraine Robertson Chair in Breast Cancer and
330 is a Canada Research Chair in Molecular Oncology (950–230610). Additional funding was provided by a
331 Terry Fox Research Institute grant (1082), CIHR grants (FDN-148429, 495630), Breast Cancer Research
332 Foundation awards (BCRF-21-180, BCRF22-180, BCRF23-180) and the Canada Foundation for
333 Innovation (40044) to S.A.
334

335 **DECLARATION OF INTERESTS**

336 JSB is a scientific advisory board (SAB) member of Frontier Medicines and eFFECTOR Therapeutics.
337 DAD is on the SAB for Oncology Analytics, Inc., has consulted for Novartis, and receives research
338 support from Canon, Inc. JEG is a paid consultant for Helix and an uncompensated consultant for Konica
339 Minolta and Earli. SPS is a consultant to AstraZeneca Inc.. SPS received funding from Bristol Meyers
340 Squibb Inc. SA is co-founder and shareholder of Genome Therapeutics, uncompensated advisor to
341 Chordia Therapeutics Japan, advisor to Sangamo Therapeutics. No other authors declare any interests.
342
343

344

345

346 **Figures**

347

348 **Figure 1** Cohort summary and example heatmaps

349

350 **Supplementary Figure 1** Heatmaps for all patients

351

352 **Supplementary Figure 2** Clinical and biological associations with aneuploidy

353

354 **Supplementary Figure 3** Prevalence of arm alterations per cell type

355

356 **Figure 2** CNA landscape between cell types and in cancers

357

358 **Supplementary Figure 4** Cosine similarity with TCGA cancer subtypes

359

360 **Figure 3** Allele specific inference

361

362 **Figure 4** Extreme aneuploid cells

363

364 **Supplementary Figure 5** Additional extreme aneuploidy cells heatmaps

365

366 **Supplementary Figure 6** Haplotype specific analysis of cancer-like cells in B2-16

367

368 **Supplementary Figure 7** Examples of non cancer-like extreme aneuploidy cells

369

370 **Supplementary Figure 8** Proposed model

371

372

373 **Tables**

374

375 **Supplementary Table 1**

376 Clinical details of the 20 donor patients including BRCA1/2 mutations, age, cancer history, chemotherapy
377 history, details on pathological review, parity and menopause status

378

379 **Supplementary Table 2**

380 Cell level statistics including cell_id, sample, cell_type, cell coverage, number of aneuploid arms and
381 extreme aneuploidy classification.

382

383

384

385

386 **Methods**

387

388 **Tissue procurement**

389 All donor samples analyzed in the study are listed in Table S1. Specimens were obtained from Brigham
390 & Women's Hospital or Faulkner Hospital on the day of surgery. This study was reviewed by the Harvard
391 Medical School Institutional Review Board (IRB) and deemed not human subjects research. Donors gave
392 their informed consent to have their anonymized tissues used for scientific research purposes. The
393 scDNaseq dataset contains 20 samples that include 6 elective reduction mammoplasties and 14
394 prophylactic mastectomies (7 *BRCA1* mutation carriers, 6 *BRCA2* mutation carriers and 1
395 *BRCA1/BRCA2* mutation carrier). The age range of the cohort is 28-58 years old.

396

397 **Tissue processing and FACS**

398 Breast tissue samples were dissociated as previously described⁵⁰. Briefly, each tissue was minced and
399 transferred to a 50 ml conical tube containing a solution of Advanced DMEM/F12 (Thermo 12634010),
400 1x Glutamax (Gibco 35050), 10 mM HEPES (Gibco 15630), 50 U/ml Penicillin-Streptomycin (Gibco
401 15070) and 1 mg/ml collagenase (Sigma C9407). Digestion was performed by constant shaking at ~150-
402 200 rpm at 37C for 2-4 hours. Tissue was then pelleted by centrifugation and further dissociated into
403 single cells by treatment with TrypLE (Gibco 12605010) for 5-15 min. After neutralization and pelleting
404 by centrifugation, sequential pipetting with 25, 10 and 5 ml pipette tips was performed to further dissociate
405 the tissue. The dissociated tissue was then filtered through a 100um and 40um filter to isolate single cells
406 and counted manually under the microscope to assess yield and viability. Single cells were fixed with
407 1.6% paraformaldehyde for 10 min and cryopreserved until ready for FACS.

408

409 For FACS isolation of mammary epithelial cell types, single cells isolated from tissue were labeled for 30
410 min at room temperature with Alexa Fluor 647-conjugated anti-EpCAM (1:50, Biolegend 324212), PE-
411 conjugated anti-CD49f (1:100, Biolegend 313612), FITC-conjugated anti-CD31 (1:100, Biolegend
412 303103) and Alexa Fluor 488 anti-CD45 (1:100, Biolegend 304017). The lineage-negative population

413 was defined as CD31⁻ CD45⁻. After staining, FACS was performed to isolate CD31/CD45⁻ EpCAM⁺
414 CD49f^{+/−} (Luminal) and CD31/CD45⁻ EpCAM^{low} CD49f⁺ (Basal/myoepithelial) cells for scDNAseq analysis.
415

416 **Single cell DNA sequencing**

417 We used the DLP+ protocol to generate low pass whole genome sequencing data²⁴. Frozen single-cells
418 were thawed, washed and pelleted in DMEM (Corning 10-013-CV) and resuspended in PBS (Corning
419 21-040-CV) with 0.04% BSA (Cedarlane 001-000-162). Single-cell suspensions were labeled with
420 CellTrace CFSE dye (ThermoFisher C34554) and LIVE/DEAD Fixable Red stain (ThermoFisher L23102)
421 by incubation at 37°C for 20 min. Cells were resuspended in PBS with 0.04% BSA and aspirated into a
422 contactless piezoelectric dispenser (Scienion CellenOne) for single cell dispensing into open nanowell
423 arrays (TakaraBio SmartChip) preprinted with unique custom dual indexed sequencing primers. Nanowell
424 chips were subsequently scanned on a Nikon TI-E inverted fluorescent microscope (10X magnification).
425 Singly-occupied wells and cell state were determined using our custom image analysis software,
426 SmartChipApp (Java) (Laks et al. 2019). Cell-spotted nanowell chips are covered with SmartChip
427 Intermediate Film (Takara 430-000104-10) and stored at -20°C until library construction.
428

429 Lysis buffer comprised of 6.73 nL DirectPCR Lysis Reagent (Viagen 302-C), 2.69 nL protease (Qiagen
430 19155), 0.5 nL glycerol (100%), and 0.09 nL pluronic (10%) were dispensed into each well. Nanowell
431 chips were sealed with Microseal A (BioRad MSA5001) using a pneumatic sealer and centrifuged before
432 each incubation step. Cells were allowed to soak overnight in lysis buffer for 18-19 hours at 21°C (30°C
433 lid) in a flatbed thermocycler (ThermoFisher ProFlex Dual Flat PCR System 4484078). Following
434 overnight presoak, chips were incubated at 50°C for 1 hour to carry out thermal and enzymatic lysis.
435 Lysis inactivation (75°C for 15 min, 10°C forever) was conducted after lysis. Tagmentation was performed
436 with 7.5 nL Bead-Linked Transposomes (BLT, Illumina DNA Prep 20060059), 7.5 nL Tagmentation Buffer
437 1 (TB1, Illumina DNA Prep 20060059), and 15 nL nuclease-free water, incubated at 55°C for 15 min.
438 Neutralization was carried out with 9.9 nL protease (Qiagen 19155) with 0.1 nL Tween20 (10%) at 50°C
439 for 15 min, followed by heat inactivation at 70°C for 15 min. Limited-cycle PCR amplification was
440 conducted with 44.53 nL Enhanced PCR Mix (EPM, Illumina DNA Prep 20060059) and 0.47 nL Tween20
441 (10%) using the following conditions: 68°C for 3 min; 98°C for 3 min; 11-cycles of 98°C for 45 sec, 62°C
442 for 30 sec, 68°C for 2 min; 68°C for 1 min; and hold at 10°C. Single-cell whole genome libraries were
443 eluted from nanowell chips by centrifugation through a funnel into a recovery tube. Pooled libraries were
444 cleaned by double-sided bead purification using Sample Purification Beads (SPB, Illumina DNA Prep
445 20060059) and eluted into Resuspension Buffer (RSB, Illumina DNA Prep 20060059).
446

447 Single-cell whole genome libraries were quantified with Qubit dsDNA High Sensitivity Assay
448 (ThermoFisher Q32854) and Bioanalyzer 2100 HS kit (Agilent 5067-4626). Sequencing was conducted
449 to a depth of 0.03X coverage per cell on either: Illumina NextSeq 2000 (2x100 bp) at UBC Biomedical
450 Research Centre (Vancouver, BC), Illumina HiSeq 2500 (2x150 bp) or Illumina NovaSeq 6000 (2x150
451 bp) at the BC Genome Sciences Centre (Vancouver, BC).

452

453 **Single cell DNA processing and analysis**

454 The single cell-pipeline outlined in Laks *et al.* was used to call copy number in single cells at 0.5Mb
455 resolution. Briefly, this pipeline aligns sequencing reads to the reference genome, counts the number of
456 reads in 0.5Mb bins across the genome, performs GC correction using a modal regression framework
457 and then computes integer copy number states across the genome using HMMcopy⁵¹. We then applied
458 the cell quality filter and removed cells with quality < 0.75. In addition, to remove possible low quality cells
459 not captured by the cell quality score, cells undergoing replication and cells with possible incorrect ploidy
460 estimates we also removed cells that had the following characteristics: i) ploidy > 5 ii) >10 segments with
461 size <5Mb.

462

463 We computed allele-specific copy number for the aneuploid cells using SIGNALS for 10 donors. As input,
464 SIGNALS requires haplotype block counts per cell which in turn requires identifying heterozygous SNPs
465 and phased haplotype blocks. To identify heterozygous SNPs, all cells were merged into a single
466 pseudobulk bam file and treated as a normal whole genome sequencing sample. The “Haplotype Calling”
467 submodule
468 https://github.com/shahcompbio/single_cell_pipeline/blob/master/docs/source/index.md was then used
469 to infer haplotype blocks and genotype them in single cells. These results were then used in SIGNALS
470 with default parameters apart from *mincells* which was set to 4. *mincells* is the size of the smallest cluster
471 used to phase haplotype blocks, and needed to be lower than what is typically recommended for cancer
472 data due to the sparsity of CNAs. Downstream analysis and all plotting was done using SIGNALS³³.

8:
473

474 **Aneuploidy in single cells**
475 Single cells were called as aneuploid if they had at least one chromosome arm in a copy number state
476 that was different from the ploidy of the cell. Integer cell ploidy was assigned to be the most common
477 copy number state across the whole genome (unless this was 1, in which case ploidy was set to 2) and
478 chromosome arm copy number states in each cell were assigned based on the most common copy
479 number state of the bins within a chromosome arm (using *per_chram_cn* function in SIGNALS).
480 Aneuploid arms with copy number states greater than cell ploidy were classed as gains and less than

481 cell ploidy as losses. Cells were classed as “Extreme Aneuploid” if they were in the top 5% of cells in
482 terms of CNA abundance. This cutoff corresponded to 9 or more aneuploid arms.

483

484 **Additional datasets used in this study**

485 To compare the distribution of CNAs to cancer cells we made use of whole genome sequencing data
486 from Nik-Zainal et al³⁰ and SNP array data from TCGA¹⁰. To facilitate comparison with scWGS DLP data,
487 the various formats used in these studies were converted into a format that consisted of integer copy
488 number at 0.5Mb across the genome. Gains and losses were defined relative to cell ploidy as for the
489 single cell data.

490

491 We also used a set of >14,000 human telomerase reverse transcriptase (hTERT) immortalized wild-type
492 mammary epithelial cells. Details of culture conditions can be found in Funnell *et al*⁵².

493

494 **Classifying extreme aneuploid cells**

495 For each extreme aneuploid cell we computed its correlation coefficient with the average copy number
496 profile from 262 cancer samples that had purity > 0.5 in Nik-Zainal et al. Plotting the distribution of
497 correlation coefficients we observed a bimodal distribution, with a mode at 0, a mode at ~0.5 and an
498 inflection point at 0.25. We therefore classified cells that had ≥ 0.25 correlation coefficient as “cancer-
499 like” and those with correlation < 0.25 as low ploidy or high ploidy depending on their cell ploidy, which
500 also exhibited a bimodal distribution.

501

502 **Phylogenetic trees**

503 We constructed phylogenetic trees for the cancer-like extreme aneuploid cells using sitka⁵² which uses
504 copy number changepoints as phylogenetic markers. Here, a copy number change point is the locus (bin)
505 where the inferred integer copy number state changes between bin i and bin $i+1$. The input to sitka is a
506 binary matrix consisting of cells by changepoint bins. Default parameters were used. Length of branches
507 in the trees represent the number of copy number changes.

508

509 **Statistical analysis**

510 For between group comparisons we used t-tests. To investigate multiple factors that might influence
511 aneuploidy while taking into account that most donors have basal and luminal cells we performed a multi-
512 level multivariate model (**Supplementary Figure 2f**) that included cell type, age and donor genotype.
513 We used the lmer package in R with the following formula specification: percentage_aneuploidy ~ age +
514 cell_type + genotype + (1|sample).

515

516 **Data availability**

517 Raw sequencing data will be available from EGA under accession EGAS00001007716 at the time of
518 publication.

519

520 **Code availability**

521 Single-cell pipeline for processing DLP+ data is available at
522 https://github.com/shahcompbio/single_cell_pipeline.

523

524

525 **References**

- 526 1. Martincorena, I. *et al.* Tumor evolution. High burden and pervasive positive selection of somatic
527 mutations in normal human skin. *Science* **348**, 880–886 (2015).
- 528 2. Rockweiler, N. B. *et al.* The origins and functional effects of postzygotic mutations throughout the
529 human life span. *Science* **380**, eabn7113 (2023).
- 530 3. Martincorena, I. *et al.* Somatic mutant clones colonize the human esophagus with age. *Science*
531 **362**, 911–917 (2018).
- 532 4. Li, Y. *et al.* Patterns of somatic structural variation in human cancer genomes. *Nature* **578**, 112–
533 121 (2020).
- 534 5. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes, Consortium. Pan-cancer analysis of whole
535 genomes. *Nature* **578**, 82–93 (2020).
- 536 6. Curtis, C. *et al.* The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel
537 subgroups. *Nature* **486**, 346–352 (2012).
- 538 7. Chin, K. *et al.* Genomic and transcriptional aberrations linked to breast cancer pathophysiologies.
539 *Cancer Cell* **10**, 529–541 (2006).
- 540 8. Stephens, P. J. *et al.* The landscape of cancer genes and mutational processes in breast cancer.
541 *Nature* **486**, 400–404 (2012).
- 542 9. PCAWG Transcriptome Core Group *et al.* Genomic basis for RNA alterations in cancer. *Nature*

543 578, 129–136 (2020).

544 10. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours.

545 *Nature* **490**, 61–70 (2012).

546 11. Shi, H. *et al.* Allele-specific transcriptional effects of subclonal copy number alterations enable

547 genotype-phenotype mapping in cancer cells. *Nat. Commun.* **15**, 2482 (2024).

548 12. Wang, K. *et al.* Archival single-cell genomics reveals persistent subclones during DCIS

549 progression. *Cell* **186**, 3968-3982.e15 (2023).

550 13. Lips, E. H. *et al.* Genomic analysis defines clonal relationships of ductal carcinoma in situ and

551 recurrent invasive breast cancer. *Nat. Genet.* **54**, 850–860 (2022).

552 14. Lopez-Garcia, M. A., Geyer, F. C., Lacroix-Triki, M., Marchiò, C. & Reis-Filho, J. S. Breast cancer

553 precursors revisited: molecular features and progression pathways. *Histopathology* **57**, 171–192

554 (2010).

555 15. Simpson, P. T., Reis-Filho, J. S., Gale, T. & Lakhani, S. R. Molecular evolution of breast cancer. *J.*

556 *Pathol.* **205**, 248–254 (2005).

557 16. Abascal, F. *et al.* Somatic mutation landscapes at single-molecule resolution. *Nature* **593**, 405–410

558 (2021).

559 17. Ju, Y. S. *et al.* Somatic mutations reveal asymmetric cellular dynamics in the early human embryo.

560 *Nature* **543**, 714–718 (2017).

561 18. Roerink, S. F. *et al.* Intra-tumour diversification in colorectal cancer at the single-cell level. *Nature*

562 **556**, 457–462 (2018).

563 19. Abzyov, A. *et al.* Somatic copy number mosaicism in human skin revealed by induced pluripotent

564 stem cells. *Nature* **492**, 438–442 (2012).

565 20. Coorens, T. H. H. *et al.* Inherent mosaicism and extensive mutation of human placentas. *Nature*

566 **592**, 80–85 (2021).

567 21. Machiela, M. J. *et al.* Female chromosome X mosaicism is age-related and preferentially affects

568 the inactivated X chromosome. *Nat. Commun.* **7**, 11843 (2016).

569 22. Jakubek, Y. A. *et al.* Large-scale analysis of acquired chromosomal alterations in non-tumor
570 samples from patients with cancer. *Nat. Biotechnol.* **38**, 90–96 (2020).

571 23. Gao, T. *et al.* A pan-tissue survey of mosaic chromosomal alterations in 948 individuals. *Nat.*
572 *Genet.* **55**, 1901–1911 (2023).

573 24. Laks, E. *et al.* Clonal Decomposition and DNA Replication States Defined by Scaled Single- Cell
574 Genome Sequencing. *Cell* **179**, 1207–1221 (2019).

575 25. Zahn, H. *et al.* Scalable whole-genome single-cell library preparation without preamplification. *Nat.*
576 *Methods* **14**, 167–173 (2017).

577 26. Stingl, J. *et al.* Purification and unique properties of mammary epithelial stem cells. *Nature* **439**,
578 993–997 (2006).

579 27. Rios, A. C., Fu, N. Y., Lindeman, G. J. & Visvader, J. E. In situ identification of bipotent stem cells
580 in the mammary gland. *Nature* **506**, 322–327 (2014).

581 28. Rosenbluth, J. M. *et al.* Organoid cultures from normal and cancer-prone human breast tissues
582 preserve complex epithelial lineages. *Nat. Commun.* **11**, 1711 (2020).

583 29. Laks, E. *et al.* Clonal Decomposition and DNA Replication States Defined by Scaled Single-Cell
584 Genome Sequencing. *Cell* **179**, 1207-1221.e22 (2019).

585 30. Nik-Zainal, S. *et al.* Landscape of somatic mutations in 560 breast cancer whole-genome
586 sequences. *Nature* **534**, 47–54 (2016).

587 31. Knouse, K. A., Lopez, K. E., Bachofner, M. & Amon, A. Chromosome Segregation Fidelity in
588 Epithelia Requires Tissue Architecture. *Cell* **175**, 200-211.e13 (2018).

589 32. Nishimura, T. *et al.* Evolutionary histories of breast cancer and related clones. *Nature* (2023)
590 doi:10.1038/s41586-023-06333-9.

591 33. Funnell, T. *et al.* Single-cell genomic variation induced by mutational processes in cancer. *Nature*
592 **612**, 106–115 (2022).

593 34. Cross, W. C., Graham, T. A. & Wright, N. A. New paradigms in clonal evolution: punctuated
594 equilibrium in cancer. *J. Pathol.* **240**, 126–136 (2016).

595 35. Farabegoli, F. *et al.* Simultaneous chromosome 1q gain and 16q loss is associated with steroid
596 receptor presence and low proliferation in breast carcinoma. *Modern Pathology* 2004 **17**: 17,
597 449–455 (2004).

598 36. Russnes, H. G. *et al.* Genomic architecture characterizes tumor progression paths and fate in
599 breast cancer patients. *Sci. Transl. Med.* **2**, 38ra47 (2010).

600 37. Rye, I. H. *et al.* Quantitative Multigene FISH on Breast Carcinomas Identifies der(1;16)(q10;p10) as
601 an Early Event in Luminal A Tumors. *Genes Chromosomes Cancer* **54**, 235 (2015).

602 38. Privitera, A. P., Barresi, V. & Condorelli, D. F. Aberrations of chromosomes 1 and 16 in breast
603 cancer: A framework for cooperation of transcriptionally dysregulated genes. *Cancers* **13**, (2021).

604 39. Dawson, S. J., Rueda, O. M., Aparicio, S. & Caldas, C. A new genome-driven integrated
605 classification of breast cancer and its implications. *EMBO J.* **32**, 617 (2013).

606 40. Martins, F. C. *et al.* Evolutionary pathways in BRCA1-associated breast tumors. *Cancer Discov.* **2**,
607 503–511 (2012).

608 41. Askew, D. S., Ashmun, R. A., Simmons, B. C. & Cleveland, J. L. Constitutive c-myc expression in
609 an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis.
610 *Oncogene* **6**, 1915–1922 (1991).

611 42. Evan, G. I. *et al.* Induction of apoptosis in fibroblasts by c-myc protein. *Cell* **69**, 119–128 (1992).

612 43. Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in
613 transgenic mice by cooperation between myc and bcl-2. *Nature* **348**, 331–333 (1990).

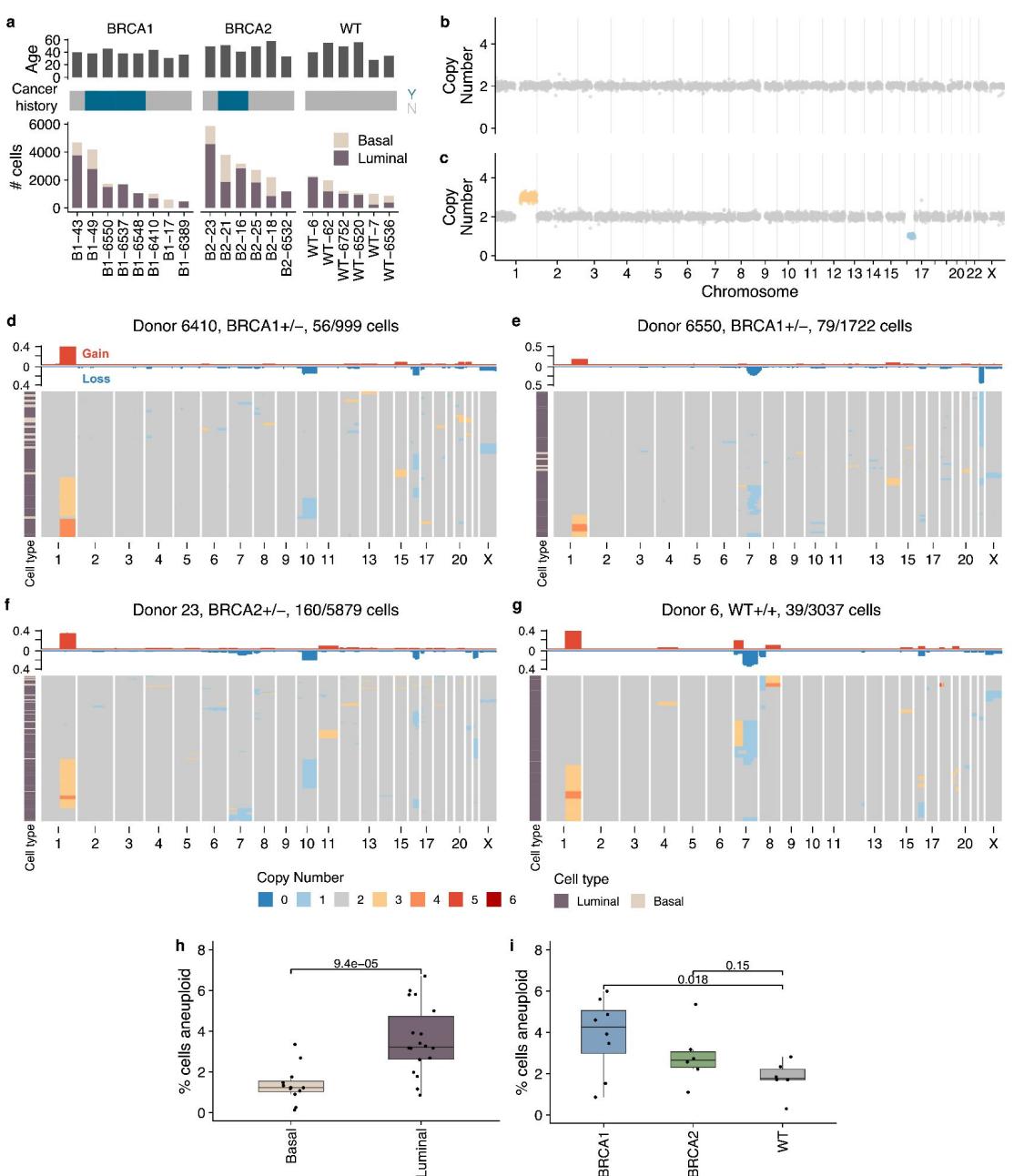
614 44. Girish, V. *et al.* Oncogene-like addiction to aneuploidy in human cancers. *Science* **381**, (2023).

615 45. Distinct Somatic Genetic Changes Associated with Tumor Progression in Carriers of BRCA1 and
616 BRCA2 Germ-line Mutations1 | Cancer Research | American Association for Cancer Research.
617 <https://aacrjournals.org/cancerres/article/57/7/1222/503964/Distinct-Somatic-Genetic-Changes-Associated-with>.

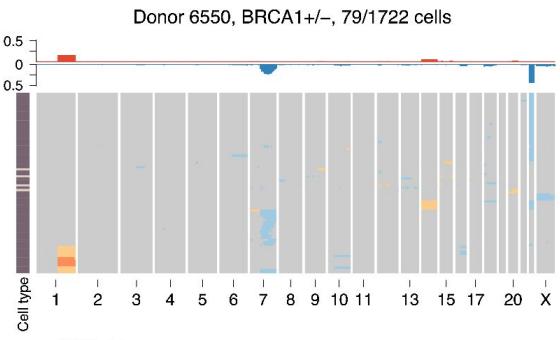
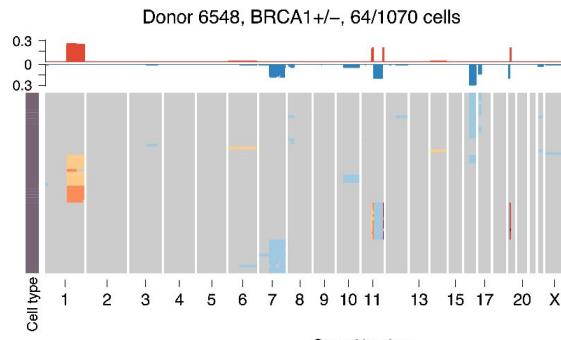
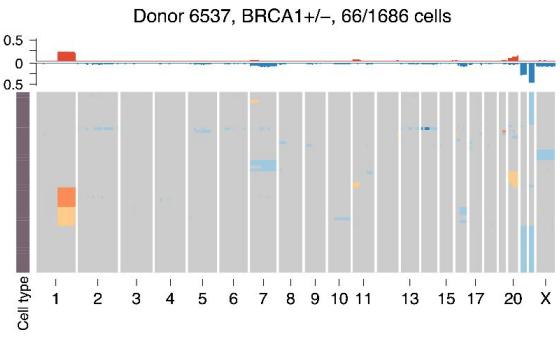
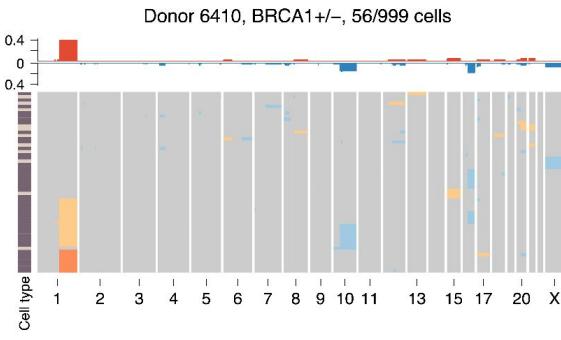
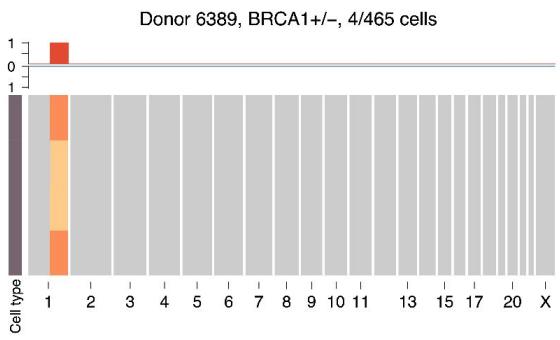
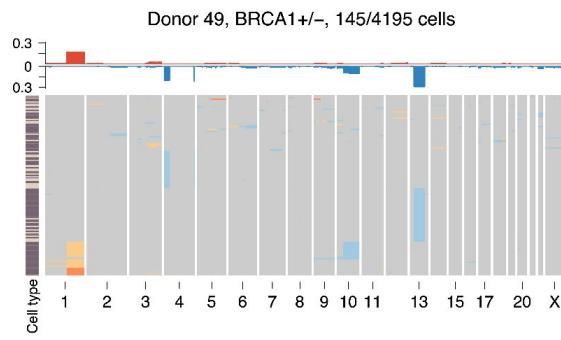
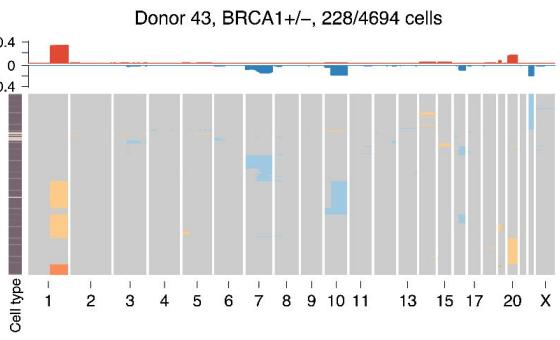
618 46. Davies, H. *et al.* HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational
619 signatures. *Nature Medicine* 2017 **23**: 517–525 (2017).

621 47. Gould, S. J. & Eldredge, N. Punctuated equilibrium comes of age. *Nature* **366**, 223–227 (1993).

622 48. Davis, A., Gao, R. & Navin, N. Tumor evolution: Linear, branching, neutral or punctuated? *Biochim.*
623 *Biophys. Acta* **1867**, 151 (2017).


624 49. Worrall, J. T. *et al.* Non-random mis-segregation of human chromosomes. *Cell Rep.* **23**, 3366–
625 3380 (2018).

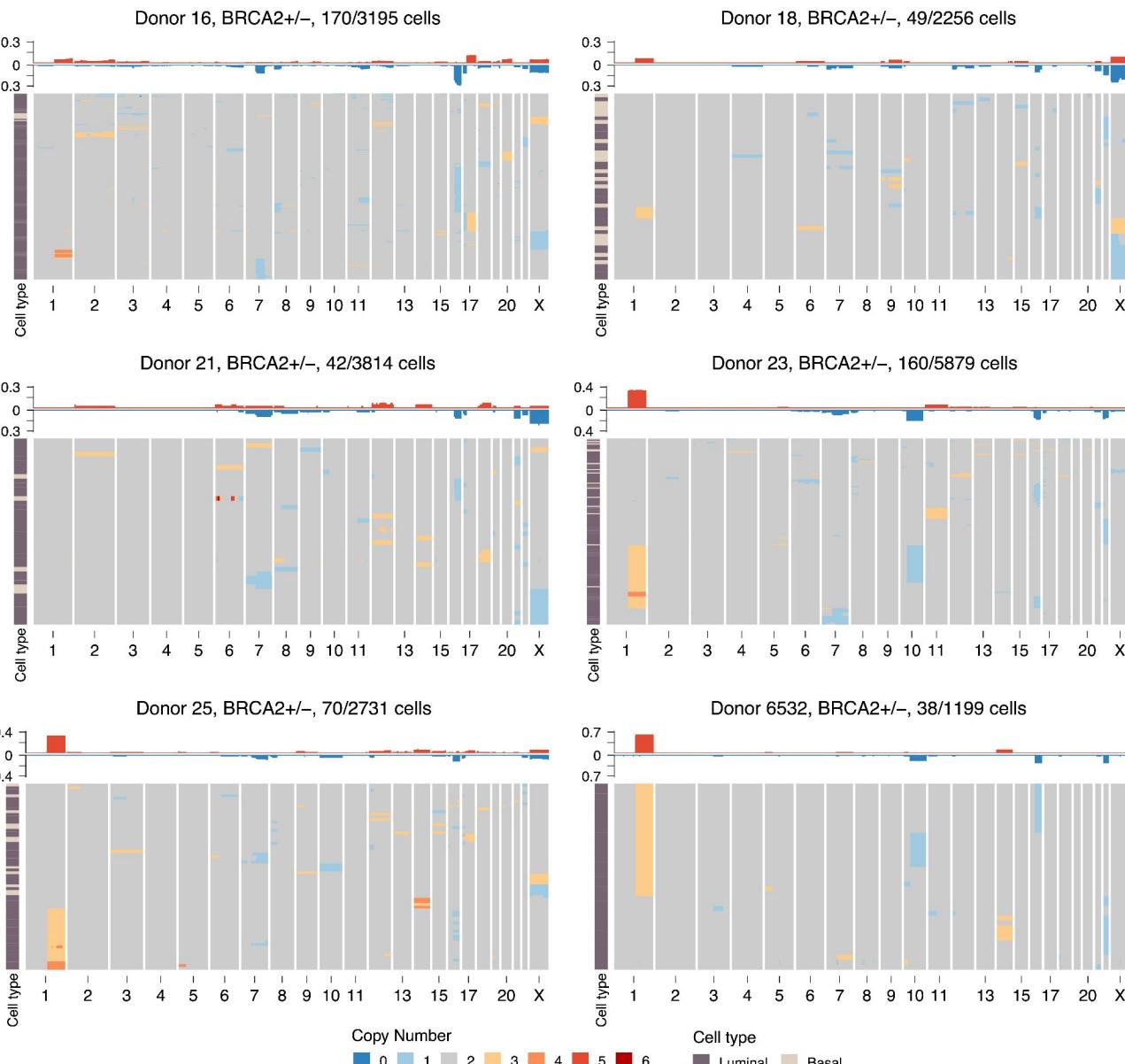
626 50. Gray, G. K. *et al.* A human breast atlas integrating single-cell proteomics and transcriptomics. *Dev.*
627 *Cell* **57**, 1400-1420.e7 (2022).








628 51. Lai, D. & Shah, S. HMMcopy: copy number prediction with correction for GC and mappability bias
629 for HTS data. *R package version 1*, (2012).

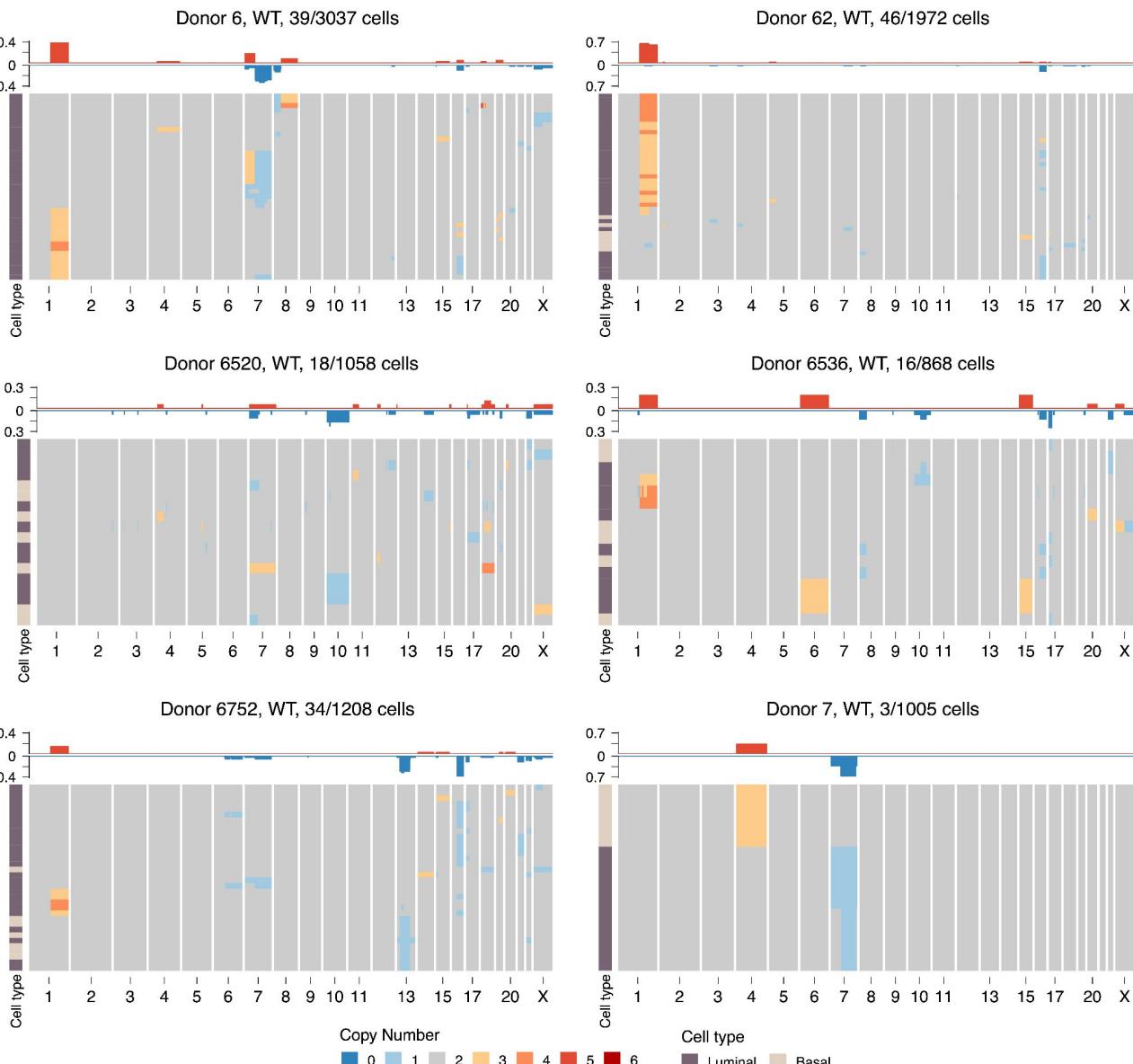
630 52. Salehi, S. *et al.* Cancer phylogenetic tree inference at scale from 1000s of single cell genomes.
631 *Peer Community Journal* **3**, (2023).

632

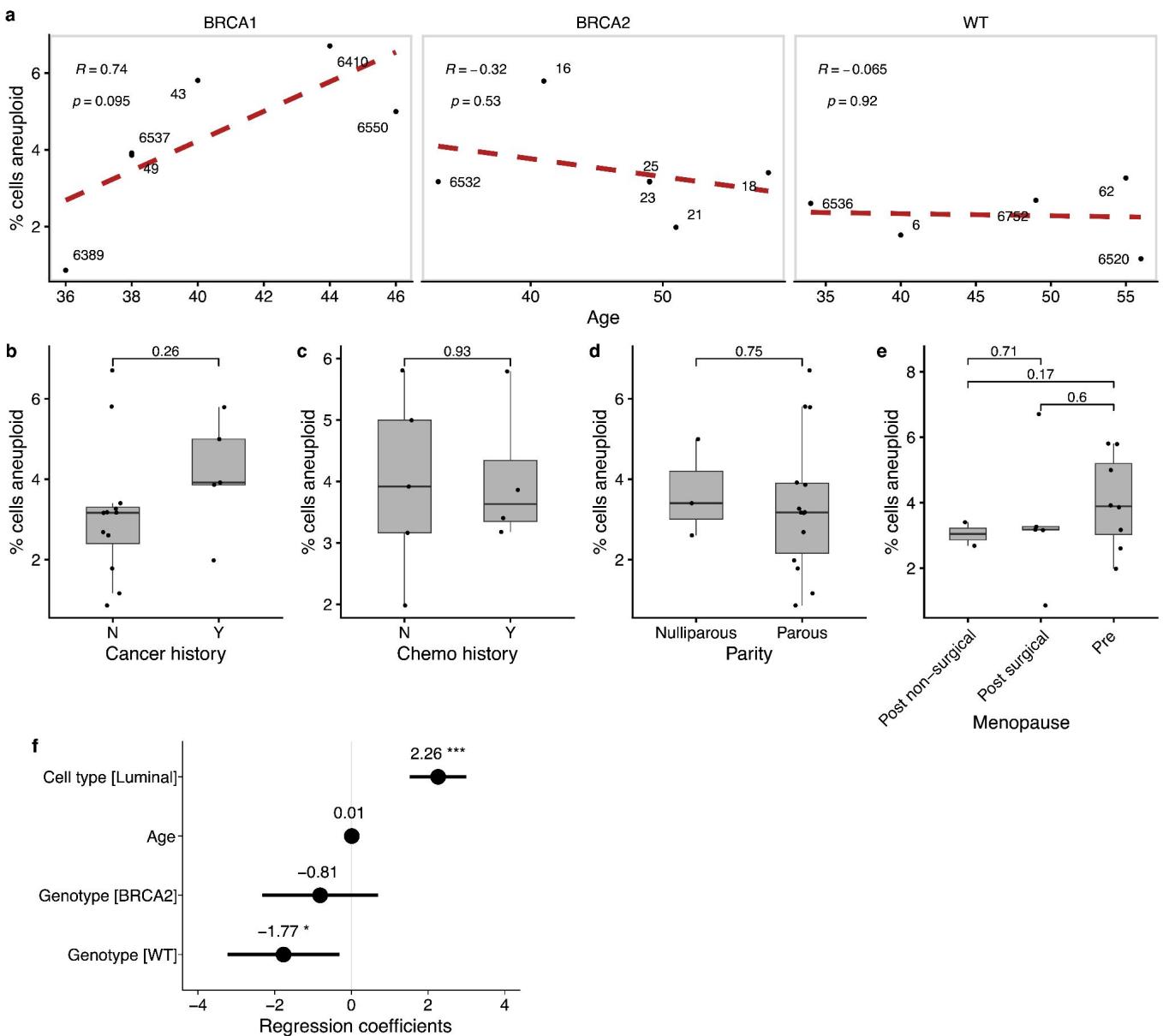
Figure 1 **a)** Number of high quality cells per sample per cell type along with cancer history and patient ages **b)** Example diploid cell **c)** Example aneuploid cell with chr1q gain and chr16q loss **d)** Heatmap of aneuploid cells from donor B1-6410, title shows donor name, genotype and number of aneuploid cells out of total number of cells **e)** Heatmap of aneuploid cells from donor B1-6550 **f)** Heatmap of aneuploid cells from donor B2-23 **g)** Heatmap of aneuploid cells from donor WT-6 **h)** % of cells aneuploid between cell types **i)** % of cells aneuploid between genotypes

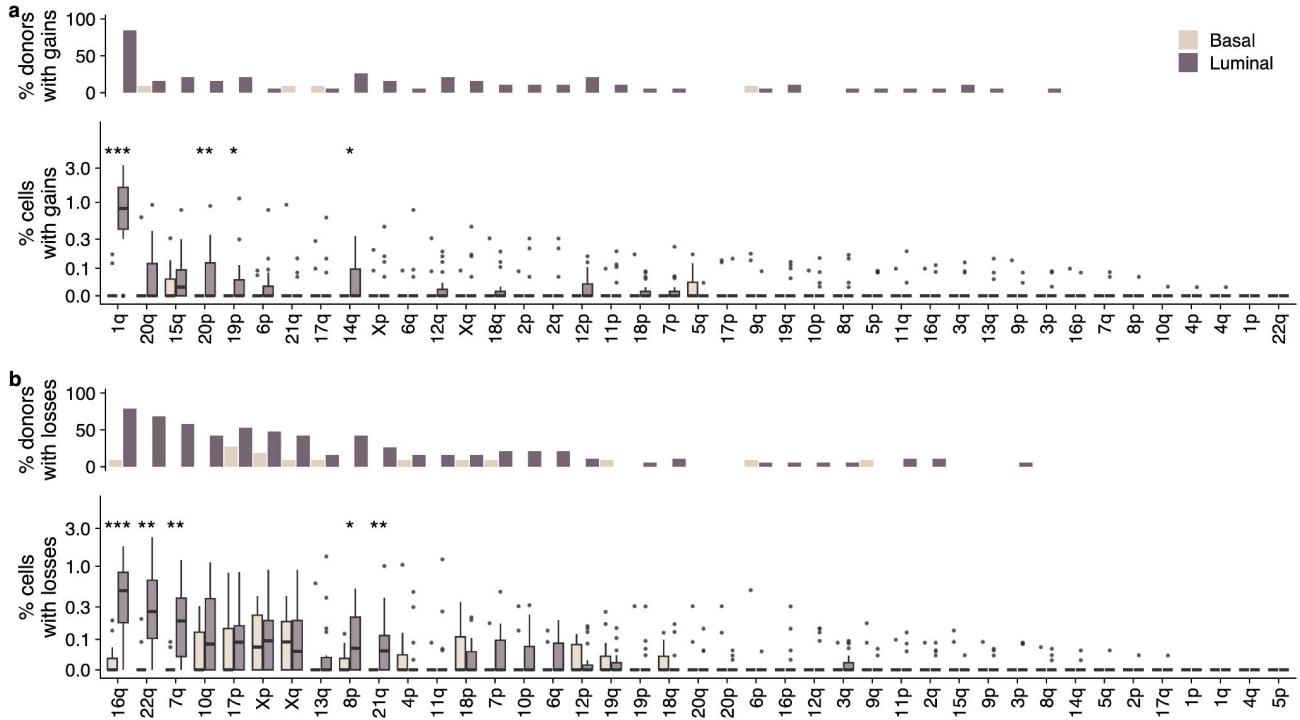

Copy Number

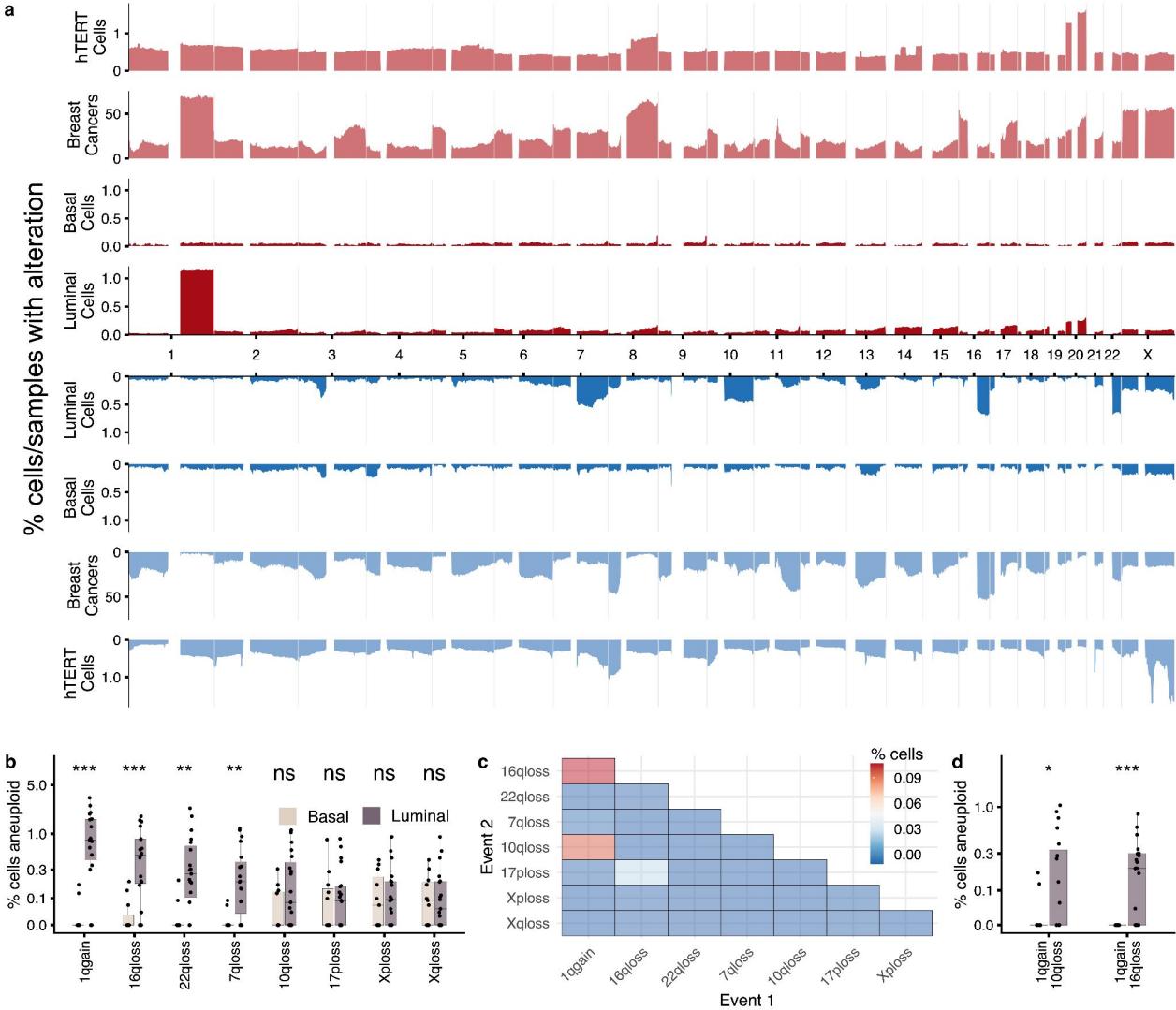
0 1 2 3 4 5 6

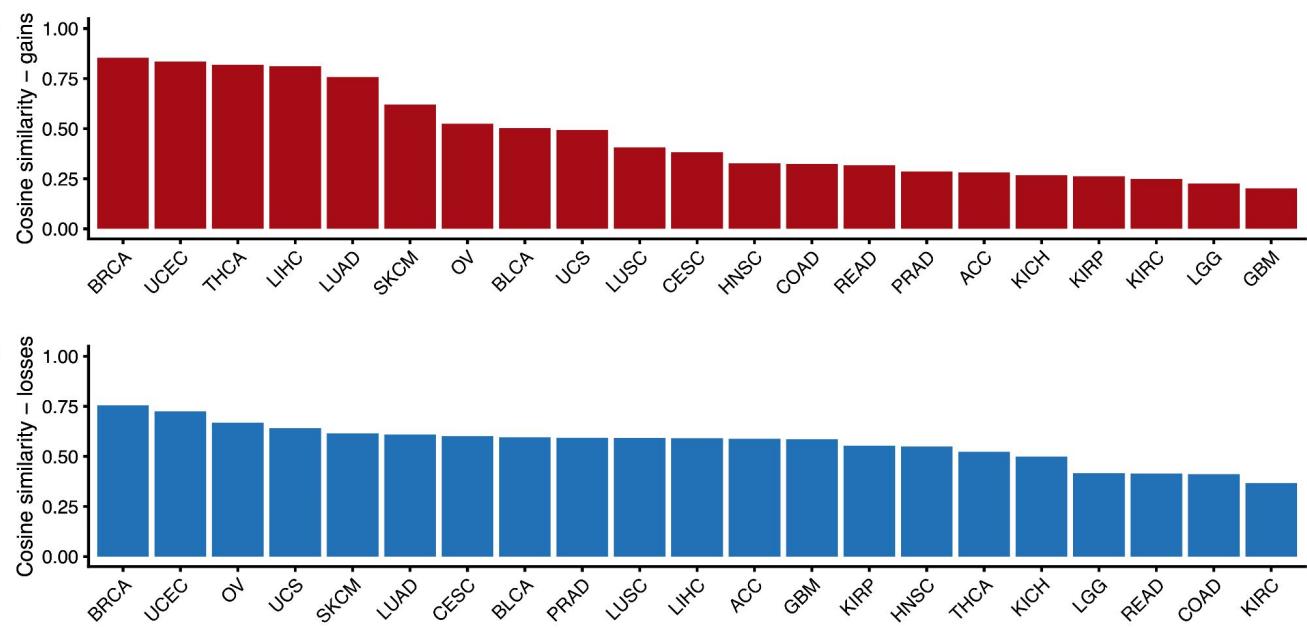

Cell type

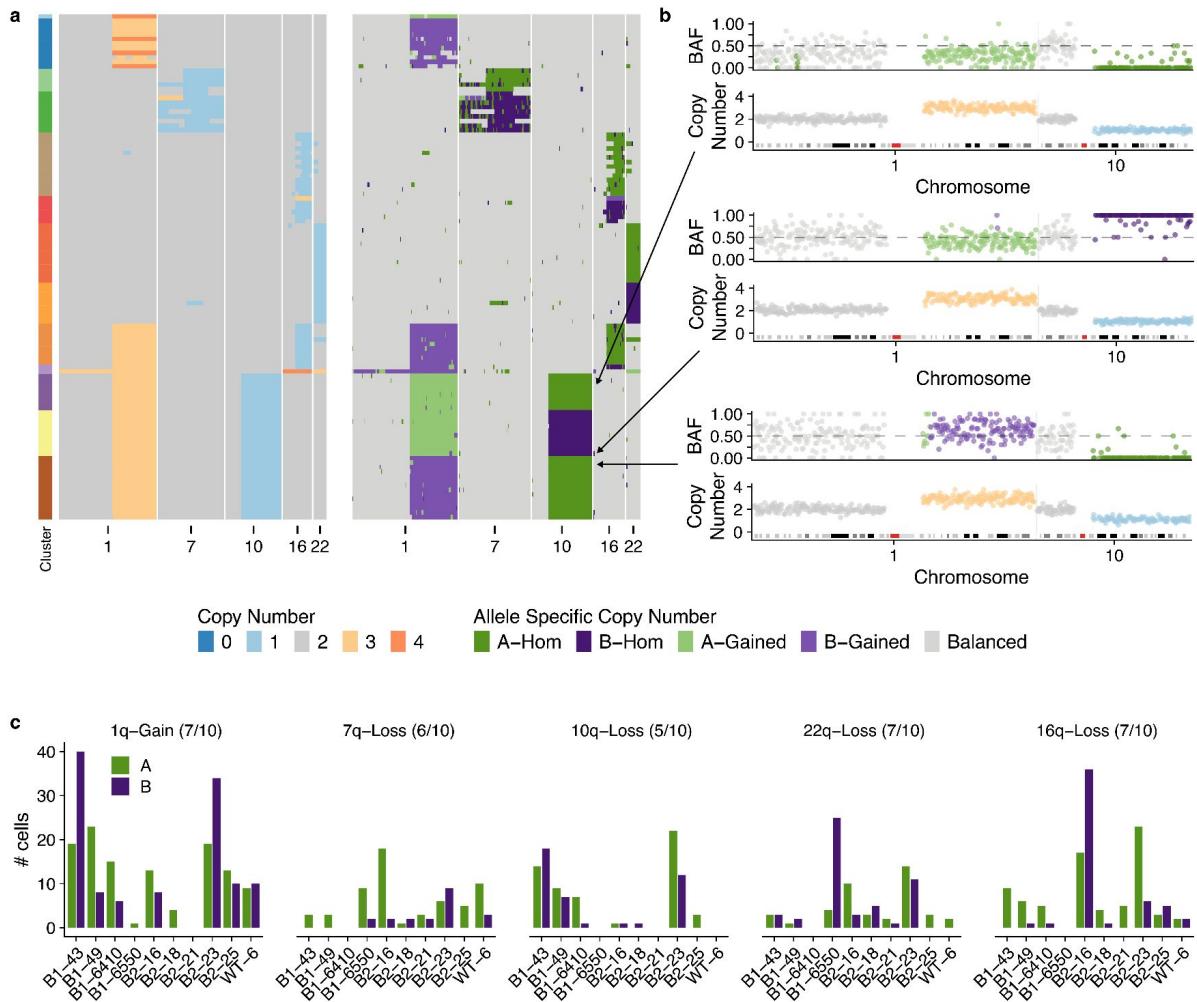
Luminal Basal

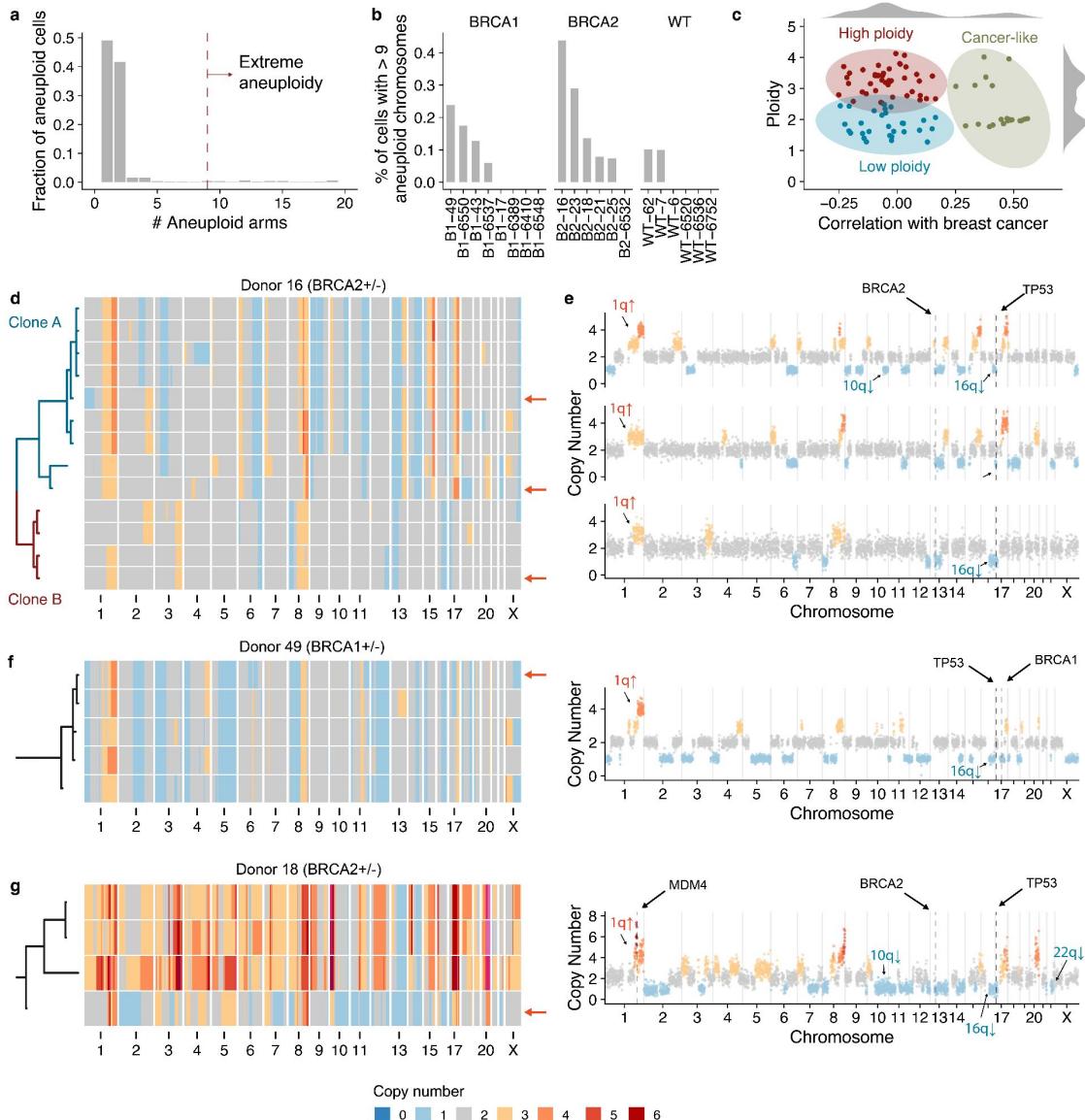

Supplementary Figure 1a Heatmap of aneuploid cells from BRCA1 donors, title shows donor name, genotype and number of aneuploid cells out of total number of cells

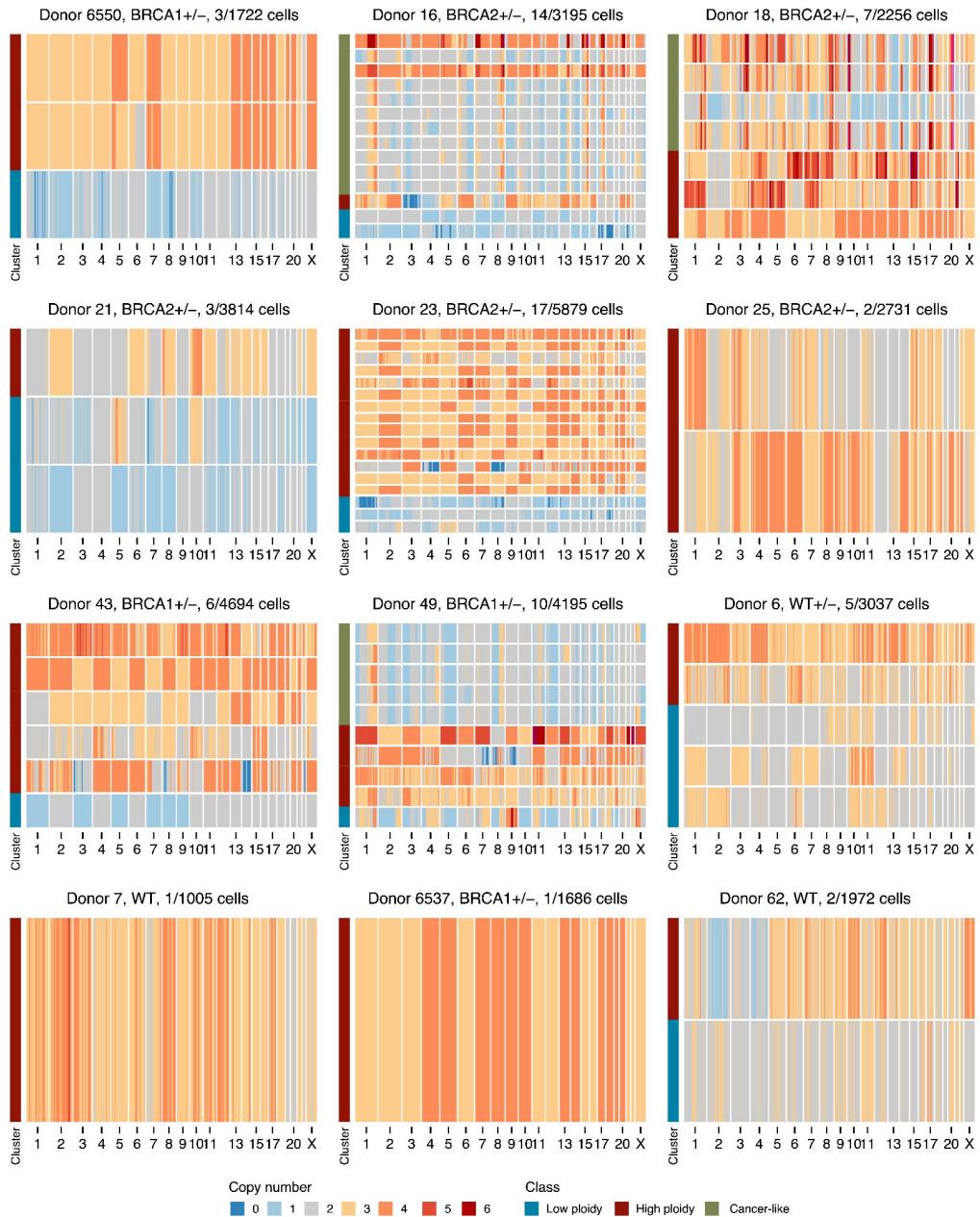

Supplementary Figure 1b Heatmap of aneuploid cells from BRCA2 donors, title shows donor name, genotype and number of aneuploid cells out of total number of cells

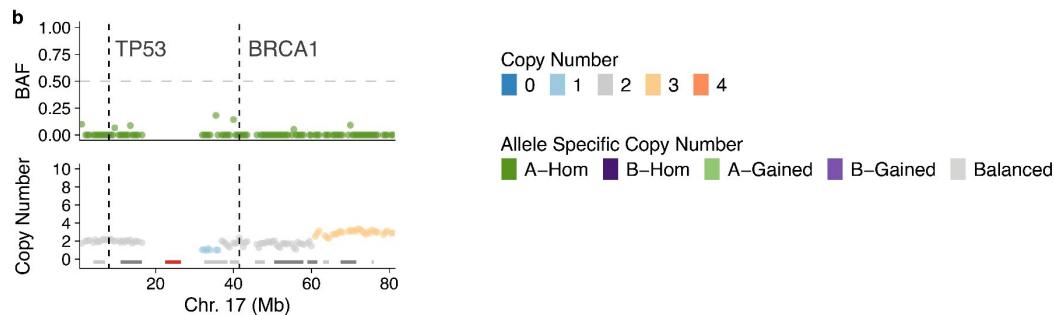
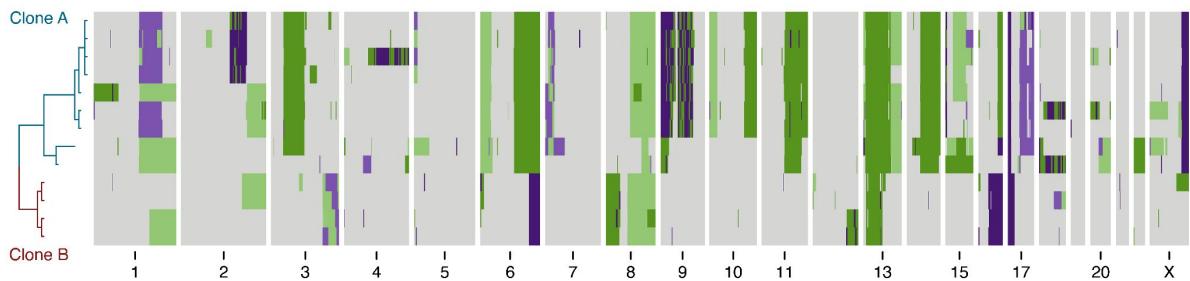
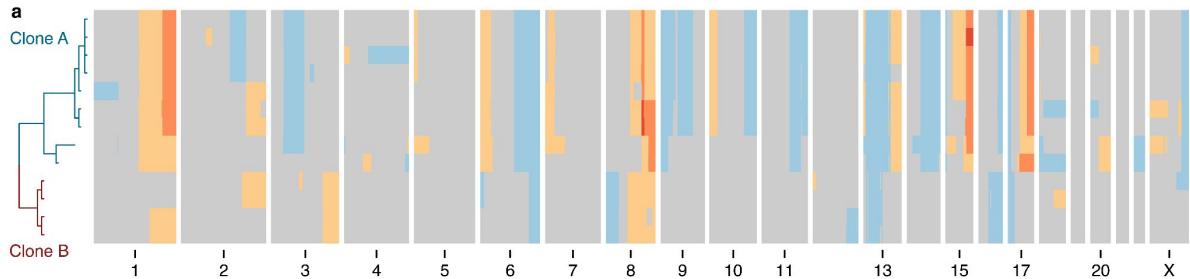

Supplementary Figure 1c Heatmap of aneuploid cells from WT donors, title shows donor name, genotype and number of aneuploid cells out of total number of cells

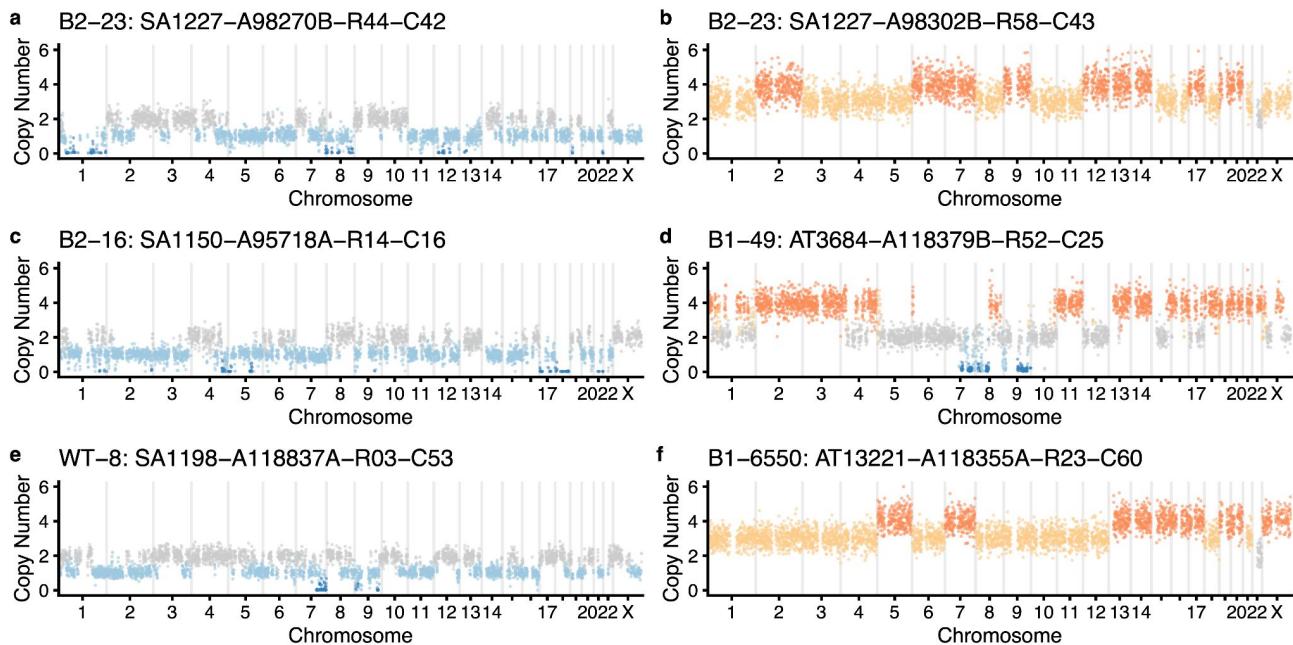

Supplementary Figure 2 a) Scatter plot of % cells aneuploid vs age stratified by genotype. Red dashed lines is the linear regression line. Inset text shows correlation coefficient and p -value. Distribution of % cells aneuploid for other clinical covariates: **b)** cancer history **c)** chemo therapy history **d)** parity **e)** menopause status **f)** Coefficients of linear multivariate mixed-model, lines show 95% confidence interval

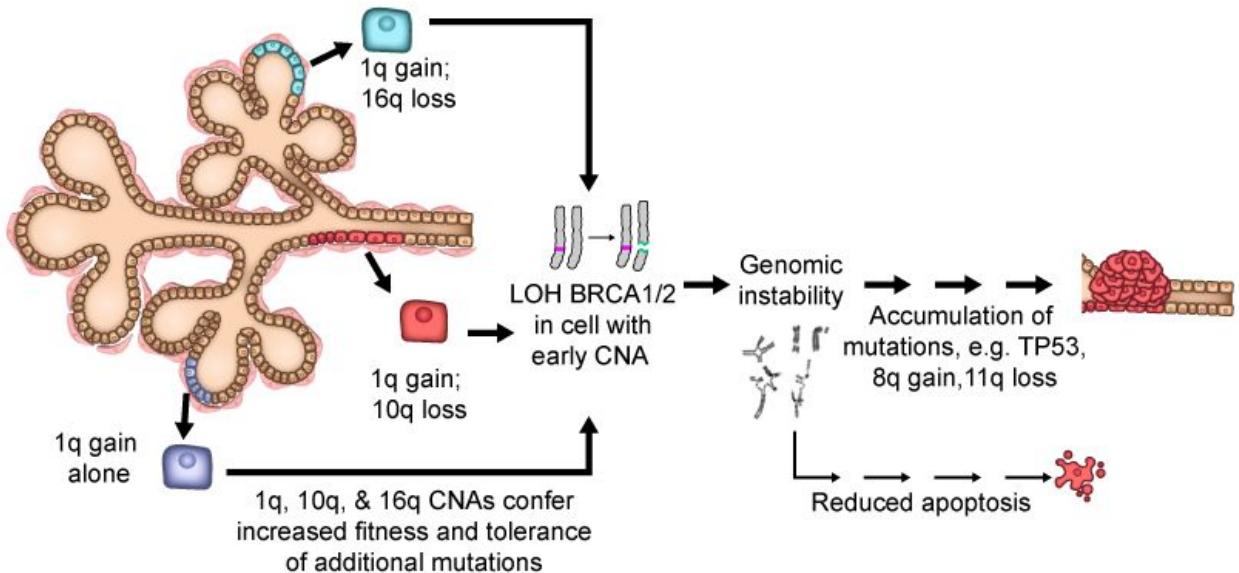

Supplementary Figure 3 a) Top: % of donors that have >1 cell with chromosome arm gained per cell type. Bottom: % cells with gains per cell type, each data point is a donor. **b)** Top: % of donors that have >1 cell with chromosome arm lost per cell type. Bottom: % cells with losses per cell type, each data point is a donor.


Figure 2 a) Frequency of gains/losses across the cohort, y-axis is fraction of cells or samples that have gains/losses. 3 cohorts shown. hTERT cells: 14,000 cells from an immortalized mammary epithelial cell line, Breast Cancers: 555 whole genome sequence cancers from Nik-Zainal et al. Luminal and basal cells from this study **b)** % cells aneuploid per patient split by luminal and basal cells for the 8 most common chromosome alterations **c)** co-occurrence heatmap showing percentage of cells that have 2 chromosomal aneuploidies concurrently **d)** % of cells that have 1q-gain/16q-loss and 1q-gain/10q-loss per cell type


Supplementary Figure 4 Cosine similarity between landscape of CNAs in scWGS of normal breast epithelia and TCGA subtypes for gains **a)** and losses **b)**




Figure 3 a) Total copy number heatmap and allele specific copy number heatmap for B2-23 for chromosomes 1,7,19,16 & 22. Cells grouped into unique alterations based on allele specific copy number. Total number of cells = 111 **b)** Three cells from the heatmap with chr1q gain and chr10q loss. For each cell the B-allele frequency BAF and copy number is shown for chromosomes 1 and 10. These 3 cells have distinct combinations of chr1-gain and 10 loss. **c)** Number of cells with either allele A or B gained/lost across the 6 most common alterations in 10 patients. Title above each plot shows the event and the number of samples that have events on both alleles


Figure 4 a) Fraction of the aneuploid cells that have X aneuploid arms. Dashed red line shows the cutoff (=9) used to classify cells as extreme aneuploidy **b)** % of cells in each sample with > 9 aneuploid chromosomes. **c)** Scatter plot of ploidy vs correlation with cancers from Nik-Zainal *et al.* highlighting three distinct groups: high ploidy, low ploidy and cancer-like **d)** Heatmap of extreme aneuploid cancer-like cells in patient B2-16 ordered by a phylogenetic tree. **e)** 3 cells from patient 16 with arrows showing their placement in the heatmap. **f)** Example cell and heatmap of extreme aneuploid cancer-like cells in patient B1-49 **g)** Example cell and heatmap of extreme aneuploid cancer-like cells in patient B2-18


Supplementary Figure 5 All extreme aneuploid cells per patient, title shows donor name, genotype and number of extreme aneuploid cells out of total number of cells

Supplementary Figure 6 a) Total and allele specific copy number for the cancer-like cells in B2-16. Top shows total copy number, bottom shows allele specific copy number **b)** B-allele frequency and total copy number of chromosome 17 from donor B1-49. Location of TP53 and BRCA1 are shown with dashed lines. Data is a merged pseudobulk across the 5 cancer-like cells.

Supplementary Figure 7 a-f) Examples of extreme aneuploid genomes that are not similar to breast cancer genomes.

Supplementary Figure 8 In the proposed model, CNAs that accumulate in normal breast tissues (e.g. 1q gain and 10q or 16q loss) would enhance the fitness of the luminal epithelial cells. In BRCA1/2 mutation carriers, where inactivation of the wild-type (WT) copy of BRCA1/2 leads to defective DNA repair, genomic instability, and apoptosis, luminal cells carrying these CNAs would be more tolerant of these stresses, thus allowing the homologous-recombination defective mutant cells to expand, acquire oncogenic mutations, and ultimately progress to cancer.