

1 **Rational Design of Live Biotherapeutic Products for the Prevention of**
2 ***Clostridioides difficile* Infection**

3 Shanlin Ke¹, Javier A Villafuerte Gálvez², Zheng Sun¹, Yangchun Cao^{2,3}, Nira R
4 Pollock^{4,5}, Xinhua Chen^{2,#}, Ciarán P Kelly^{2,#}, Yang-Yu Liu^{1,6,#}

5

6 ¹*Channing Division of Network Medicine, Department of Medicine, Brigham and*
7 *Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.*

8 ²*Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical*
9 *Center, Harvard Medical School, Boston, Massachusetts 02215, USA.*

10 ³*College of Animal Science and Technology, Northwest A&F University, Yangling,*
11 *Shaanxi 712100, People's Republic of China.*

12 ⁴*Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical*
13 *Center, Harvard Medical School, Boston, Massachusetts 02215, USA.*

14 ⁵*Department of Laboratory Medicine, Boston Children's Hospital, Boston,*
15 *Massachusetts, USA.*

16 ⁶*Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute of Genomic*
17 *Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.*

18

19 [#]Correspondence: Y.-Y.L. (yyli@channing.harvard.edu); C.P.K. (ckelly2@bidmc.harvard.edu);
20 X.C. (xchen1@bidmc.harvard.edu).

21

22

23

24

25

26

27

28

29

30

31

32 **Abstract**

33 *Clostridioides difficile* infection (CDI) is one of the leading causes of healthcare- and
34 antibiotic-associated diarrhea. While fecal microbiota transplantation (FMT) has
35 emerged as a promising therapy for recurrent CDI, its exact mechanisms of action and
36 long-term safety are not fully understood. Defined consortia of clonal bacterial isolates,
37 known as live biotherapeutic products (LBPs), have been proposed as an alternative
38 therapeutic option. However, the rational design of LBPs remains challenging. Here, we
39 employ a computational pipeline and three independent metagenomic datasets to
40 systematically identify microbial strains that have the potential to inhibit CDI. We first
41 constructed the CDI-related microbial genome catalog, comprising 3,741 non-redundant
42 metagenome-assembled genomes (nrMAGs) at the strain level. We then identified
43 multiple potential protective nrMAGs that can be candidates for the design of microbial
44 consortia targeting CDI, including strains from *Dorea formicigenerans*, *Oscillibacter*
45 *welbionis*, and *Faecalibacterium prausnitzii*. Importantly, some of these potential
46 protective nrMAGs were found to play an important role in the success of FMT, and the
47 majority of the top protective nrMAGs can be validated by various previously reported
48 findings. Our results demonstrate a computational framework for the rational selection
49 of microbial strains targeting CDI, paving the way for the computational design of
50 microbial consortia against other enteric infections.

51

52

53

54

55

56

57

58

59

60

61

62

63 Introduction

64 *Clostridioides difficile* infection (CDI) is one of the leading causes of healthcare- and
65 antibiotic-associated diarrhea, affecting roughly 500,000 patients and leading to almost
66 30,000 deaths annually in the United States^{1,2}. Exposure to toxinogenic *C. difficile* can
67 lead to a spectrum of clinical outcomes, including asymptomatic colonization, mild
68 diarrhea, and more severe disease syndromes such as pseudomembranous colitis,
69 toxic megacolon, bowel perforation, sepsis, and death³. Antibiotics serve as the
70 standard treatment for primary CDI^{4,5}. However, CDI recurrence occurs in approximately
71 a quarter of cases after antibiotic treatment^{6,7}. Once CDI recurs, patients may get into a
72 vicious cycle of antibiotic therapy and relapse⁸. Moreover, the use of antibiotics has
73 been identified as the primary risk factor for developing CDI, and reports of strains with
74 decreased sensitivity to vancomycin are becoming more frequent.

75

76 The human gut microbiome is critical in providing colonization resistance against
77 exogenous pathogens through complex mechanisms such as nutrient competition,
78 competitive metabolic interactions, niche exclusion, and induction of the host immune
79 response⁹. Intestinal microbiota restoration, such as fecal microbiota transplantation
80 (FMT), has been shown to be effective for CDI treatment as well as the restoration of
81 colonization resistance against *C. difficile*^{10,11}. While FMT has emerged as a promising
82 therapy for recurrent CDI (rCDI), its exact mechanisms of action are not fully
83 understood¹². In addition, FMT has the potential to transmit undetected or emerging
84 pathogens, which may result in hospitalization or even death^{13,14}. Recently, the FDA has
85 approved fecal microbiota products (e.g., Rebyota¹⁵ and Vowst¹⁶) for the prevention of
86 rCDI in individuals 18 years of age and older, following antibiotic treatment for rCDI.
87 Rebyota is a room temperature shelf stable suspension of healthy donor stool¹⁷,
88 although its clinical effect size for the prevention of rCDI is modest (RR, 1.17; 95% CI,
89 0.99–1.39)¹⁸ and its microbial composition is not predefined¹⁹. Although Vowst is a
90 formulation of live fecal microbiota consisting of a highly purified collection of about 50
91 species of *Firmicutes* spores with a more robust clinical effect size (1.46; 95% CI, 1.21–
92 1.75)¹⁸, the ecological principle underlying the selection of these microbial strains is
93 unclear.

94

95 The variability of biological properties among bacterial strains within the same species
96 underscores the significance of conducting strain-level composition analysis to
97 understand the role of the human microbiome in human health and disease²⁰. For
98 example, some strains from *Escherichia coli* (e.g., *E. coli* O157:H7) cause severe
99 abdominal pain, bloody diarrhea, and vomiting²¹. In contrast, *E. coli* Nissle 1917 is a
100 non-pathogenic strain that has been utilized as a probiotic agent to treat gastrointestinal
101 infections in humans^{22,23}. Whole metagenome shotgun (WMS) sequencing is a rapid,
102 cost-effective, and high-throughput technology for profiling microbial communities in
103 human microbiome studies²⁴. However, precise identification of microorganisms at the
104 strain level remains challenging. Additionally, traditional strain-level profilers can only
105 identify strains within the reference genome databases²⁵. These databases are subject
106 to limitations and biases and are unable to characterize microbes that do not have high-
107 quality reference genomes. To resolve these limitations, an alternative strategy for
108 WMS data analysis involves reconstructing metagenome-assembled genomes (MAGs)
109 through *de novo* assembly and binning, offering the advantage of recovering genomes
110 for uncultured microorganisms absent from current reference databases²⁶.

111

112 In this study, we leveraged a novel computational framework²⁷ we previously developed
113 to rationally design a bacterial consortium against CDI (**Fig. 1**). The metagenome
114 assembly and binning strategies were applied to reconstruct microbial population
115 genomes directly from the microbiome samples of two independent CDI-related cohorts
116 as well as the healthy controls from the Human Microbiome Project (HMP). Specifically,
117 we sought to identify known and unknown taxa at the strain level, quantify the degree of
118 donor strain engraftment, and design a candidate bacterial consortium against CDI.

119

120 **Results**

121 **Study cohorts and metagenomic datasets**

122 To rationally design microbial consortia against *C. difficile*, we aimed to infer species
123 that may inhibit *C. difficile* from CDI-related microbiome samples. We first collected
124 WMS sequencing data from our in-house clinical cohort (denoted as BIDMC-cohort

125 hereafter)^{28,29}. Our BIDMC cohort consists of 104 well-characterized recruited
126 participants divided into four groups (**Table S1** and **Fig. 2a**): (1) Control (CON, n = 26);
127 (2) Non-CDI Diarrhea (NCD, n = 14); (3) Asymptomatic Carriage of *C. difficile* (ASC, n =
128 17); (4) CDI (n = 47). Given the fact that the participants from the CON group were not
129 healthy people, we retrieved an FMT study³⁰ (denoted as Verma-cohort hereafter) with
130 publicly available data that assessed the microbiome composition of donors (n=21) and
131 recipients (n=22, pre-and post-FMT) through WMS sequencing (**Methods** and **Fig. 2a**).
132 In addition, we included two sets of randomly selected metagenome samples of healthy
133 adults (n = 94) from the Human Microbiome Project (HMP)³¹.

134

135 **A high-quality microbial genome catalog**

136 Following quality control, we performed metagenomic assembly and binning on those
137 microbiome samples from three cohorts, yielding 7,769 MAGs. To evaluate the highest
138 quality representative genomes, we dereplicated the 7,769 MAGs at an average
139 nucleotide identity (ANI) threshold of 99%, resulting in a final set of 3,741 non-
140 redundant MAGs (nrMAGs) with strain-level resolution. The nrMAGs were contributed
141 by HMP, Verma-cohort, and the BIDMC-cohort in proportions of approximately 37%,
142 23%, and 40%, respectively (**Fig. 2b**). In particular, our findings indicate that recipients
143 prior to FMT made a smaller contribution to the nrMAG collection compared to donors
144 and recipients after FMT, suggesting a reduced microbial diversity (**Fig. S1**). These
145 nrMAGs exhibited a mean completeness of 88%, mean contamination of 0.93%, mean
146 genome size of 2.5 megabases (Mb), and mean N50 of 65.7 kilobases (kb) (**Fig. 1b-c**
147 and **Fig. 2c-f**). Out of the 3,741 strain-level nrMAGs, 1,390 (37.16%) nrMAGs met
148 medium-quality criteria (50% ≤ completeness < 90%, and ≤5% contamination), while
149 2,351 (62.84%) nrMAGs exhibited high-quality (≥ 90% completeness, and ≤ 5%
150 contamination)^{32,33} (**Fig. 1b**).

151

152 Using the Genome Taxonomy Database³⁴, these nrMAGs were taxonomically assigned
153 to 17 phyla, 22 classes, 47 orders, 104 families, and 408 genera, spanning across 883
154 species. Most of them belonged to Firmicutes_A (60.97%), followed by Bacteroidetes

155 (10.18%), and Actinobacteria (10.00%). The phyla information of nrMAGs was
156 summarized in **Fig. 1b-c**. Among those 883 species, *Agathobacter rectalis*, *Blautia_A*
157 *wexlerae*, *Gemmiger formicilis*, *Fusicatenibacter saccharivorans*, and *Bifidobacterium*
158 *longum* were the top five species with the highest strain-level diversity (i.e., number of
159 nrMAGs identified within a specific species, **Fig. 2g**).

160

161 **Microbial diversity**

162 We initially investigated alpha diversity in the human microbiome at the nrMAG level.
163 Alpha diversity measures (i.e., Richness and Shannon index) were compared among
164 different groups from the same cohorts (**Fig. 2h-j**). No significant differences were found
165 between the two randomly selected sets from the HMP (**Fig. 2h** and **Fig. S2a**). In
166 accordance with the original study³⁰, we found that the Richness and Shannon indices
167 of the gut microbiome in the recipients of pre-FMT were significantly lower than those in
168 donors. After FMT, those recipients showed similar alpha diversity to donors (**Fig. 2i**
169 and **Fig. S2b**). In the BIDMC-cohort, we found that only the CDI group showed
170 significantly lower alpha diversity than the CON group (**Fig. 2j** and **Fig. S2c**).
171 Participants from the ASC group only showed a significantly lower number of identified
172 nrMAGs than CON group participants.

173

174 Principal coordinate analysis (PCoA) based on robust Aitchison distance, combined with
175 PERMANOVA (permutational multivariate analysis of variance, a statistical method
176 commonly used for testing the association between the microbiome and a covariate of
177 interest), revealed no significant difference in the gut microbial community structure at
178 the nrMAG-level between the two datasets from HMP (**Fig. 2k**). We found that the
179 microbiomes of the donor and the recipients from pre-and post-FMT were
180 compositionally distinct in the Verma-cohort ($P = 0.0001$, PERMANOVA **Fig. 2l**).
181 Consistent with our previous study using 16S rRNA gene sequencing data²⁹, the overall
182 microbial composition differed significantly among different groups in the BIDMC-cohort
183 ($P = 0.0001$, PERMANOVA **Fig. 2m**).

184

185 **Identify potential permissive and protective nrMAGs for the rational design of live**
186 **biotherapeutics.**

187 To identify candidate strains for the development of microbiota-derived biotherapeutics ,
188 we applied the generalized microbe-phenotype triangulation (GMPT) method, moving
189 beyond the standard association analysis²⁷. The GMPT relies on the following core
190 hypothesis: species that are differentially abundant in most pairwise phenotype-based
191 comparisons and whose abundances display a strong negative (or positive) correlation
192 with the abundance of the pathogen tend to be causal preventive (or permissive)
193 species that directly inhibit (or promote) the growth of the pathogen²⁷. Our GMPT
194 analysis incorporated microbiome data from the BIDMC-cohort, donor data from the
195 Verma-cohort³⁰, and one set from HMP. Since we have two sets of randomly selected
196 metagenome samples of healthy adults from the HMP, we systematically included one
197 set of HMP microbiome data at a time to cross-validate the results between the two
198 datasets. Then, we conducted pairwise comparisons for six individual phenotype groups,
199 which encompassed CDI, ASC, NCD, and CON from the BIDMC-cohort, donors from
200 the Verma-cohort, and a dataset from HMP.

201
202 Applying this approach to the data with the first set of HMP data, 15 pairwise differential
203 abundance analyses generated a total of 1,349 nrMAGs present in at least one pairwise
204 comparison (**Table S6**). To explore the potential relationship between those candidate
205 nrMAGs and CDI, we calculated Spearman correlation coefficients between the average
206 relative abundances of nrMAGs and pragmatic severity scores in a continuum of non-
207 CDI controls and *C. difficile* colonized and infected subjects (i.e., HMP healthy controls:
208 0; Donor from Verma et al.³⁰: 1; CON: 2; NCD: 3; ASC: 4 and CDI: 5) in different
209 phenotypes. Similarly, we identified a total of 1,390 nrMAGs present in at least one
210 pairwise comparison with the second set of HMP data (**Table S7**). Among the protective
211 nrMAGs between the two runs with HMP data, 80.77% (525/650) and 81.14% (525/647)
212 of them were overlapped, respectively. We then computed the average rank between
213 two runs based on the frequency (**Table S8**). Among the top 40 potential protective
214 nrMAGs, the dominant species were *Dorea formicigenerans*, *Oscillibacter welbionis*,
215 *Faecalibacterium prausnitzii*, GCA-900066135 sp900066135, *Bariaticus comes*,

216 *Phocaeicola dorei*, *Anaerobutyricum hallii*, *Bacteroides ovatus*, *Blautia_A obeum*,
217 *Mediterraneibacter faecis*, *Alistipes putredinis*, *Odoribacter splanchnicus*, *Streptococcus*
218 *salivarius*, and *Dorea longicatena* (**Table 1**). Through a systematic review of literature,
219 we found that most of our candidate strains have been reported to be protective from
220 CDI or non-CDI antibiotic associated diarrhea at higher taxonomical levels (e.g., species
221 and genus levels) across existing studies (**Table 1**). These findings support the validity
222 of our methods.

223

224 **The protective strains play an important role in FMT.**

225 To further validate the potential role of the protective strains we identified from the
226 GMPT pipeline, we systemically tracked the microbiome changes of the recipients who
227 underwent FMT in the Verma-cohort. We aimed to investigate if those protective strains
228 also play an important role in the success of FMT. Notably, the microbiome samples
229 from the recipients in the Verma cohort were not included in our previous GMPT
230 analysis.

231

232 First, we examined the gain and loss of microbial strains before and after FMT to
233 assess the transfer and engraftment of the donor microbiome in the recipient. For donor,
234 pre-FMT recipients, and post-FMT recipients, we identified 3,129, 2,093, and 3,054
235 nrMAGs, respectively. Notably, post-FMT recipients showed a loss of 33 nrMAGs (**Fig.**
236 **3a**), with the majority of the lost strains attributed to species such as *Anaeroglobus*
237 *micronuciformis*, *Phascolarctobacterium faecium*, *Fusobacterium polymorphum*, and
238 *Duodenibacillus sp003472385* from Firmicutes_C, Proteobacteria, and Fusobacteriota
239 (**Fig. 3b**). On the contrary, all recipients exhibited a gain of 923 nrMAGs from their
240 donors (**Fig. 3a**). The majority of these engrafted strains were taxonomically annotated
241 to Actinobacteriota and Firmicutes_A, such as species like *Ruminococcus_D bicirculans*,
242 *Faecalibacterium prausnitzii*, *Faecalibacterium prausnitzii_G*, *Agathobacter rectalis*,
243 *Agathobacter faecis*, *Acetatifactor sp900066565*, *Bifidobacterium adolescentis*, and
244 *Collinsella aerofaciens_G* (**Fig. 3c-d**).

245

246 For each donor-recipient pair, we then calculated the difference in their gut microbial
247 community structure before and after FMT using the robust Aitchison distance. Our
248 findings indicate that the distance between donors and recipients was significantly
249 reduced after FMT compared to the pre-FMT state (**Fig. 3e**). Additionally, calculating the
250 strain share rate for each donor-recipient pair before and after FMT revealed agreement
251 with our previous finding that recipients gained more strains, shared a greater number
252 of strains with the donor after FMT (**Fig. 3f**).

253

254 Changes in the microbiome induced by FMT not only indicate the transfer and
255 engraftment of the donor microbiome but also involve alterations in the abundance of
256 coexisting strains. To address this question, we conducted the differential abundance
257 analysis among three groups. Consistent with the robust Aitchison distance and strain
258 share rate analyses, we only identified less differential abundant strains between donor
259 and post-FMT recipients (**Fig. 3g and Table S2**). We have identified 223 and 238
260 differential abundant nrMAGs from the comparison of donor vs. pre-FMT recipients (**Fig.**
261 **3g and Table S3**) and pre-FMT recipients vs. post-FMT recipients (**Fig. 3g and Table**
262 **S4**), respectively. Among these differential abundant nrMAGs, we found 179 overlapped
263 strains (**Fig. 3h, Table S5**), including strains from *Blautia_A wexlerae*, *Veillonella*
264 *parvula_A*, *Veillonella parvula*, *Blautia_A sp900066165*, *Escherichia coli_D*, *Escherichia*
265 *flexneri*, *Anaeroglobus micronuciformis*, *Blautia_A obeum*, *Lacticaseibacillus rhamnosus*,
266 and *Veillonella dispar_A*. Specifically, we observed significant increases in some
267 candidate protective strains following FMT. These include multiple strains from *Dorea*
268 *formicigenerans*, *Mediterraneibacter faecis*, *Phocaeicola dorei*, *Blautia_A wexlerae*, and
269 *Blautia_A obeum*. This finding further validated the potential role of protective strains in
270 treating CDI.

271

272 **Discussion**

273 The growing interest in FMT as a therapeutic approach stems from its high success rate
274 in treating recurrent CDI, leading to an exploration of its potential for addressing various
275 human diseases³⁵. However, FMT remains an unstandardized procedure with unclear
276 mechanisms and long-term safety concerns^{35,36}. Therefore, an advantage of microbial

277 consortia over “whole stool” FMT is the introduction of a group of specific microbiota
278 that can precisely target and effectively treat a disease while minimizing clinical risks. In
279 this study, we used a computational pipeline to directly identify candidate bacterial
280 strains from a diverse CDI-related metagenomic dataset, thereby facilitating the
281 targeted development of microbial therapies and advancing our understanding of CDI
282 pathogenesis and treatment.

283

284 By tracking the dynamic changes in gut microbiome data undergoing FMT, we identified
285 significant shifts in the microbial structure of the recipients. Although we did not utilize
286 the microbiome data from recipients before and after FMT in our GMPT pipeline, we
287 found that some of the top ranked candidate protective strains showed significant
288 increases after FMT, including multiple strains from *Dorea formicigenerans*,
289 *Mediterraneibacter faecis*, *Phocaeicola dorei*, and *Blautia_A obeum*. This finding
290 provides an additional layer of validity to our method. In addition, we performed a
291 systematic literature review on the highest ranked candidate protective strains and
292 found that the majority of them have been reported to have various protective roles at
293 species or genus levels in the CDI continuum: negative association with *C. difficile*
294 colonization, infection and severity. We found clustering of the main protective species
295 within the families Lachnospiraceae, Bacteroidaceae, and Oscillospiraceae. For
296 example, *F. prausnitzii*, a beneficial human gut microbe touted as a candidate for next-
297 generation probiotics³⁷, was found to have reduced abundance in CDI patients, which
298 was restored after FMT³⁸. Interestingly, we have also identified a protective strain of the
299 species *Dorea longicatena*, which is a component of a defined bacterial consortium
300 (VE303) with encouraging Phase 2 clinical data, consisting of eight, nonpathogenic,
301 nontoxigenic, commensal strains of Clostridia³⁹.

302

303 In addition to the potential protective strains, we also identified multiple permissive
304 strains of *C. difficile*, including strains from *Enterococcus_B faecium* and *Eggerthella*
305 *lenta*. This aligns with a previous study reporting that enterococci (including *E. faecium*)
306 can enhance the fitness and pathogenicity of *C. difficile* via shaping the metabolic
307 environment in the gut and reprogramming *C. difficile* metabolism⁴⁰. Additionally, *E. lenta*

308 is an anaerobic gram-positive bacillus associated with polymicrobial intraabdominal
309 infections⁴¹. Therefore, the potentially permissive strains that we identified from this
310 study offer the opportunity to further understand how *C. difficile* interacts with the rich
311 community of microorganisms in the colon. Moreover, in alignment with the variation in
312 biological properties among bacterial strains within the same species⁴², we have
313 observed distinct roles played by different strains of *F. prausnitzii_D* in the context of
314 CDI. This underscores the critical importance of conducting studies at the strain level.

315

316 The current study has some limitations. First, we leveraged metagenomic data from
317 three independent datasets with technological variations, including differences in
318 sequencing depth. Second, we did not pre-define a strict threshold to select potential
319 protective strains from the candidate list for further experimental validations. Lastly, the
320 inference of the efficacy of candidate protective strains against CDI is limited by the
321 current computational algorithm. To test the efficacy of our proposed microbial consortia
322 and gain a deeper understanding of exact mechanisms, the utilization of techniques of
323 metabolomics and immunological approaches, along with direct *in vitro* and *in vivo*
324 experiments, are necessary.

325

326 Taken together, our results provide compelling evidence for the rational design of
327 microbial consortia against *C. difficile*. Many of the candidates detected here replicate
328 previously reported findings, supporting the validity of our results. Importantly, our work
329 paves the way for the design of LBPs against general microbiome-related diseases.

330

331 **Methods**

332 **Study cohorts**

333 **Dataset I: BIDMC-cohort.** The background and design of this cohort have been
334 detailed in our previous studies^{28,29}. This clinical cohort consists of 104 well-
335 characterized recruited participants, who were divided into four groups associated with
336 different *C. difficile* infection/colonization statuses: (1) *C. difficile* infection (CDI, n=47):
337 Eligible patients were inpatients \geq 18 years old with new-onset diarrhea, positive clinical
338 stool NAAT (Xpert *C. difficile*/Epi) result, and a decision to treat for CDI; (2)

339 Asymptomatic Carriage (ASC, n = 17): Eligible patients were inpatients \geq 18 years old,
340 admitted for at least 72 hours, who had received at least one dose of an antibiotic within
341 the past seven days, and did not have diarrhea in the 48 hours prior to stool specimen
342 submission, and positive clinical stool NAAT result; (3) Non-CDI Diarrhea (NCD, n = 14):
343 patients with diarrhea (confirmed using the same definition used for the CDI cohort) but
344 had NAAT-negative stool on clinical C. difficile testing; and (4) Control (CON, n = 26):
345 patients without diarrhea who had screened as eligible for the ASC cohort but were
346 NAAT-negative on research stool testing. DNA of fecal samples (200 mg) were
347 extracted using Mag-Bind® Universal Metagenomics Kit (Product# M5633-01, Omega
348 Biotek) and DNeasy PowerSoil Kit (Catalog# 12888-100, Qiagen) according to
349 manufacturer's instructions. The quality of the extracted DNA was measured by 1%
350 agarose gel electrophoresis and Qubit® 3.0 Fluorometer (ThermoFisher). Subsequently,
351 the extracted DNAs were used for shotgun metagenomic library construction, and
352 sequencing was performed on the Illumina HiSeq X Ten platform, generating a 150 bp
353 paired-end library for each sample.

354 **Dataset II: Verma-cohort.** In the study conducted by Verma et al³⁰, fecal samples were
355 collected from 22 patients with recurrent CDI before and after FMT and their
356 corresponding healthy donors (n=21, with one donor providing fecal samples for two
357 different recipients). Eight-seven WMS human gut metagenomes were downloaded
358 from this study via NCBI Sequence Read Archive (BioProject ID PRJNA705895). The
359 clinical outcome in recurrent CDI patients after FMT was determined by the
360 symptomatic resolution of CDI³⁰. Clinical symptoms such as diarrhea, bloating,
361 abdominal pain, and cramping were alleviated in all patients within 3–7 days following
362 FMT³⁰.

363 **Dataset III: Human Microbiome Project.** Human gut metagenomes (Ninety-eight
364 individuals) were randomly selected from HMP data (<https://portal.hmpdacc.org/>)⁴³. All
365 samples are from the HMP study³¹ and are healthy adult subjects. In total, ninety-four
366 human gut metagenomes were randomly selected based on the largest group size in
367 our clinical cohort. To cross-validate the main findings, we randomly divided the HMP
368 data into two sets in the downstream analyses.

369

370 **Metagenome assembly and binning**

371 Genome reconstruction of the human microbiome using metagenomic sequencing data
372 was executed through the functional modules of metaWRAP (v1.3.2)⁴⁴. All
373 metagenomic sequencing data underwent quality control and removal of human
374 contamination using metaWRAP-Read_qc. Clean reads were then assembled with the
375 metaWRAP-Assembly module using metaSPAdes (v3.13.0)⁴⁵. The assembled contigs
376 were binned into bins using three metagenomic binning tools: MetaBAT (v2.12.1)⁴⁶,
377 MaxBin (v2.2.6)⁴⁷, and CONCOCT (v1.0.0)⁴⁸. The default minimum length of contigs
378 used for constructing bins with MaxBin2 and CONCOCT was 1000 bp, and metaBAT2
379 was defaulted to 1500 bp⁴⁴. The bins from each binning tool were integrated and refined
380 with Bin_refinement module of metaWRAP with options “-c 50 -x 10”, corresponding to
381 the criterion of medium-quality draft MAGs³². CheckM (v1.0.12)⁴⁹ was used to estimate
382 the completeness and contamination of the bins, and the minimum completion and
383 maximum contamination were 50% and 10%, respectively.

384

385 **De-replication of MAGs and genome annotation.** All 7,776 MAGs underwent de-
386 replication into non-redundant MAGs (nrMAGs) using dRep (v3.0.0) ($\geq 50\%$ genome
387 completeness and $\leq 5\%$ contamination)⁵⁰. Initially, MAGs from three cohorts were
388 divided into primary clusters using Mash at a 90% Mash ANI. Then, each primary
389 cluster was used to form secondary clusters at the threshold of 99% ANI with at least 30%
390 overlap between genomes⁵¹. Taxonomic annotation of all nrMAGs was conducted using
391 GTDB-Tk (v.1.4.1)⁵² based on the Genome Taxonomy Database
392 (<http://gtdb.ecogenomic.org/>)³⁴, providing standardized taxonomic labels for subsequent
393 analysis in this study.

394

395 **Abundance estimation and phylogenetic analysis of nrMAGs**

396 The metaWRAP-Quant_bins module coupled with Salmon (v0.13.1)⁵³ was employed to
397 access the abundance of each nrMAGs in each metagenomic sample. The phylogenetic
398 tree of the nrMAGs was constructed using PhyloPhlAn (v3.0.58)⁵⁴ and visualized
399 through iTOL (<https://itol.embl.de/>)⁵⁵.

400

401 **Statistical analysis**

402 Microbial alpha diversity measures were calculated at the nrMAGs level using R vegan
403 package (v2.5.7), and principal coordinates analysis (PCoA) plots were generated using
404 robust Aitchison distance⁵⁶. Differences in microbiome compositions across different
405 groups were tested by the permutational multivariate analysis of variance
406 (PERMANOVA) using the “adonis” function in R vegan package. All PERMANOVA tests
407 were performed with 9999 permutations based on the robust Aitchison distance. We
408 defined strain-sharing rates as the total number of shared strains between two samples
409 divided by the number of common species identified from the two samples. Differences
410 between the groups were analyzed using a Wilcoxon–Mann–Whitney test. For
411 differential abundance analysis and GMPT (Generalized Microbe Phenotype
412 Triangulation) pipeline²⁷, we used ANCOM (analysis of composition of microbiomes)⁵⁷,
413 with a Benjamini–Hochberg correction at a 5% level of significance. All statistical
414 analysis was performed with R (version 3.6.3).

415

416 **Data availability**

417 Metagenomic data from HMP are available via <https://portal.hmpdacc.org>. The
418 metagenomic data from the study of Verma et al.³⁰ can be downloaded via NCBI
419 Sequence Read Archive (BioProject ID PRJNA705895). The metagenomic data from
420 the BIDMC-cohort is available in the NCBI Bioproject under accession code
421 PRJNA1067975. Metagenome-assembled genomes for all samples are available on
422 Figshare (<https://doi.org/10.6084/m9.figshare.25355857>).

423

424 **Code availability**

425 The code for the construction of the MAGs catalog and statistical analysis and
426 visualization is available in the GitHub repository (<https://github.com/ShanlinKe/CDI>).

427

428 **Acknowledgements**

429 The authors thank all patients who participated in this study, as well as the technologists
430 in the Beth Israel Deaconess Medical Center Clinical Microbiology Laboratory, for their
431 help with sample collection. This study was supported by the China Scholarship Council

432 (201806305024 to Y.C.), National Key Research and Development Program (grants
433 2021YFD1300301 to Y.C.), Shaanxi Science Fund for Distinguished Young Scholars
434 (grants 2024-JC-JCQN-25 to Y.C.), the Ningxia Key Project of Research and
435 Development Plan (grants 2023BFC01036 Y.C.), the National Institute of Allergy and
436 Infectious Diseases (grants R01AI141529 to Y.-Y.L., R01AI116596 to N.R.P. and
437 C.P.K., and K23AI177749-01 to J.A.V.G.), Institute Merieux (grant to N. R. P. and C. P.
438 K.), the Irving W. and Charlotte F. Rabb Award (to X.C.) and Milky Way Life Sciences
439 (contract to C.P.K. and Y.-Y.L.).

440

441 **Author contributions**

442 Y.-Y.L., X.C. and C.P.K. conceived and designed the project. N.R.P. and C.P.K.
443 planned and performed the human studies and sample collections. S.K. performed all
444 the data analysis. S.K., J.A.V.G., and Y.-Y.L. interpreted the results and prepared the
445 manuscript. Z.S., X.C., and C.P.K. interpreted the results, reviewed and edited the
446 manuscript. Y.C. acquired the raw sequencing data, reviewed and edited the
447 manuscript. All authors have read and approved the manuscript.

448

449 **Competing interests**

450 C.P.K. has acted as a paid consultant to: Artugen Therapeutics, Facile Therapeutics,
451 Finch, Fzata, Glaxo Smith Kline, Immunics Therapeutics, Recursion Pharmaceuticals,
452 RVAC Medicines, Sanofi Pasteur, Seres Therapeutics, and Summit Therapeutics;
453 C.P.K. has acted as a paid consultant and member of the Scientific Advisory Board to:
454 Acurx Pharmaceuticals, Anokion, Ferring Pharma, Inova Diagnostics, Janssen
455 Pharmaceuticals, Merck & Company, Milky Way Life Sciences, Pfizer, Takeda, and
456 Vedanta Biosciences; C.P.K. has acted as an unpaid consultant and had private equity
457 in Glutenostics; has acted as a paid consultant and has private equity in Cour
458 Pharmaceuticals, and First Light Biosciences, Inc; and has acted as a study investigator
459 for: Milky Way Life Sciences and Merck. X.C. is a paid consultant and board member of
460 Milky Way Life Sciences and has acted as a consultant to Artugen Therapeutics and
461 RVAC Medicines. X.C. is a co-founder with private equity in Milky Way Life Sciences

462 and TaoTe Technology, which also co-founded Milky Way Life Sciences. Milky Way Life
463 Sciences is a donor to BIDMC's Center for Nutritional Health and funds clinical trials at
464 Beth Israel Deaconess Medical Center.

465

466

467

468

469

470

471 **References**

- 472 1 Magill, S. S. *et al.* Changes in Prevalence of Health Care-Associated Infections in U.S.
473 Hospitals. *N Engl J Med* **379**, 1732-1744, doi:10.1056/NEJMoa1801550 (2018).
- 474 2 Sehgal, K. & Khanna, S. Gut microbiome and Clostridioides difficile infection: a closer
475 look at the microscopic interface. *Therap Adv Gastroenterol* **14**, 1756284821994736,
476 doi:10.1177/1756284821994736 (2021).
- 477 3 Rupnik, M., Wilcox, M. H. & Gerding, D. N. Clostridium difficile infection: new
478 developments in epidemiology and pathogenesis. *Nat Rev Microbiol* **7**, 526-536,
479 doi:10.1038/nrmicro2164 (2009).
- 480 4 Nelson, R. L., Suda, K. J. & Evans, C. T. Antibiotic treatment for Clostridium difficile-
481 associated diarrhoea in adults. *Cochrane Database Syst Rev* **3**, CD004610,
482 doi:10.1002/14651858.CD004610.pub5 (2017).
- 483 5 Ooijevaar, R. E. *et al.* Update of treatment algorithms for Clostridium difficile infection.
484 *Clin Microbiol Infect* **24**, 452-462, doi:10.1016/j.cmi.2017.12.022 (2018).
- 485 6 Rineh, A., Kelso, M. J., Vatansever, F., Tegos, G. P. & Hamblin, M. R. Clostridium difficile
486 infection: molecular pathogenesis and novel therapeutics. *Expert Rev Anti Infect Ther* **12**,
487 131-150, doi:10.1586/14787210.2014.866515 (2014).
- 488 7 Bagdasarian, N., Rao, K. & Malani, P. N. Diagnosis and treatment of Clostridium difficile
489 in adults: a systematic review. *JAMA* **313**, 398-408, doi:10.1001/jama.2014.17103 (2015).
- 490 8 Yokoyama, Y. *et al.* Risk factors of first recurrence of Clostridioides difficile infection.
491 *Anaerobe* **75**, 102556, doi:10.1016/j.anaerobe.2022.102556 (2022).
- 492 9 Ducarmon, Q. R. *et al.* Gut Microbiota and Colonization Resistance against Bacterial
493 Enteric Infection. *Microbiol Mol Biol Rev* **83**, doi:10.1128/MMBR.00007-19 (2019).
- 494 10 Laffin, M., Millan, B. & Madsen, K. L. Fecal microbial transplantation as a therapeutic
495 option in patients colonized with antibiotic resistant organisms. *Gut Microbes* **8**, 221-
496 224, doi:10.1080/19490976.2016.1278105 (2017).
- 497 11 Woodworth, M. H., Hayden, M. K., Young, V. B. & Kwon, J. H. The Role of Fecal
498 Microbiota Transplantation in Reducing Intestinal Colonization With Antibiotic-Resistant

499 Organisms: The Current Landscape and Future Directions. *Open Forum Infect Dis* **6**,
500 doi:10.1093/ofid/ofz288 (2019).

501 12 Segal, J. P. *et al.* Mechanisms underpinning the efficacy of faecal microbiota
502 transplantation in treating gastrointestinal disease. *Therap Adv Gastroenterol* **13**,
503 1756284820946904, doi:10.1177/1756284820946904 (2020).

504 13 DeFilipp, Z. *et al.* Drug-Resistant *E. coli* Bacteremia Transmitted by Fecal Microbiota
505 Transplant. *N Engl J Med* **381**, 2043-2050, doi:10.1056/NEJMoa1910437 (2019).

506 14 Blaser, M. J. Fecal Microbiota Transplantation for Dysbiosis - Predictable Risks. *N Engl J*
507 *Med* **381**, 2064-2066, doi:10.1056/NEJMe1913807 (2019).

508 15 Administration, T. U. S. F. a. D. FDA Approves First Fecal Microbiota Product. (2022).

509 16 Administration, T. U. S. F. a. D. FDA Approves First Orally Administered Fecal Microbiota
510 Product for the Prevention of Recurrence of *Clostridioides difficile* Infection. (2023).

511 17 Dubberke, E. R. *et al.* Results From a Randomized, Placebo-Controlled Clinical Trial of a
512 RBX2660-A Microbiota-Based Drug for the Prevention of Recurrent *Clostridium difficile*
513 Infection. *Clin Infect Dis* **67**, 1198-1204, doi:10.1093/cid/ciy259 (2018).

514 18 Peery, A. F. *et al.* AGA Clinical Practice Guideline on Fecal Microbiota-Based Therapies
515 for Select Gastrointestinal Diseases. *Gastroenterology* **166**, 409-434,
516 doi:10.1053/j.gastro.2024.01.008 (2024).

517 19 Walter, J. & Shanahan, F. Fecal microbiota-based treatment for recurrent *Clostridioides*
518 *difficile* infection. *Cell* **186**, 1087, doi:10.1016/j.cell.2023.02.034 (2023).

519 20 Liao, H., Ji, Y. & Sun, Y. High-resolution strain-level microbiome composition analysis
520 from short reads. *Microbiome* **11**, 183, doi:10.1186/s40168-023-01615-w (2023).

521 21 Besser, M. D. R. E., Griffin, M. D. P. M. & Slutsker, M. D. M. P. H. L. *Escherichia*
522 *coli*O157:H7 Gastroenteritis and the Hemolytic Uremic Syndrome: An Emerging
523 Infectious Disease. *Annual Review of Medicine* **50**, 355-367,
524 doi:10.1146/annurev.med.50.1.355 (1999).

525 22 Sonnenborn, U. *Escherichia coli* strain Nissle 1917-from bench to bedside and back:
526 history of a special *Escherichia coli* strain with probiotic properties. *FEMS Microbiol Lett*
527 **363**, doi:10.1093/femsle/fnw212 (2016).

528 23 Arribas, B. *et al.* A probiotic strain of *Escherichia coli*, Nissle 1917, given orally exerts
529 local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in
530 mice. *Br J Pharmacol* **157**, 1024-1033, doi:10.1111/j.1476-5381.2009.00270.x (2009).

531 24 Tu, Q., He, Z. & Zhou, J. Strain/species identification in metagenomes using genome-
532 specific markers. *Nucleic Acids Res* **42**, e67, doi:10.1093/nar/gku138 (2014).

533 25 Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level
534 population structure and genetic diversity from metagenomes. *Genome Res* **27**, 626-638,
535 doi:10.1101/gr.216242.116 (2017).

536 26 Ke, S., Weiss, S. T. & Liu, Y. Y. Dissecting the role of the human microbiome in COVID-19
537 via metagenome-assembled genomes. *Nat Commun* **13**, 5235, doi:10.1038/s41467-022-
538 32991-w (2022).

539 27 Ke, S. *et al.* A computational method to dissect colonization resistance of the gut
540 microbiota against pathogens. *Cell Reports Methods*, 100576,
541 doi:<https://doi.org/10.1016/j.crmeth.2023.100576> (2023).

542 28 Pollock, N. R. *et al.* Comparison of *Clostridioides difficile* Stool Toxin Concentrations in
543 Adults With Symptomatic Infection and Asymptomatic Carriage Using an Ultrasensitive
544 Quantitative Immunoassay. *Clin Infect Dis* **68**, 78-86, doi:10.1093/cid/ciy415 (2019).

545 29 Ke, S. *et al.* Integrating gut microbiome and host immune markers to understand the
546 pathogenesis of *Clostridioides difficile* infection. *Gut Microbes* **13**, 1-18,
547 doi:10.1080/19490976.2021.1935186 (2021).

548 30 Verma, S. *et al.* Identification and engraftment of new bacterial strains by shotgun
549 metagenomic sequence analysis in patients with recurrent *Clostridioides difficile*
550 infection before and after fecal microbiota transplantation and in healthy human
551 subjects. *PLoS One* **16**, e0251590, doi:10.1371/journal.pone.0251590 (2021).

552 31 Human Microbiome Project, C. Structure, function and diversity of the healthy human
553 microbiome. *Nature* **486**, 207-214, doi:10.1038/nature11234 (2012).

554 32 Bowers, R. M. *et al.* Minimum information about a single amplified genome (MISAG) and
555 a metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nat Biotechnol* **35**,
556 725-731, doi:10.1038/nbt.3893 (2017).

557 33 Parks, D. H. *et al.* Recovery of nearly 8,000 metagenome-assembled genomes
558 substantially expands the tree of life. *Nat Microbiol* **2**, 1533-1542, doi:10.1038/s41564-
559 017-0012-7 (2017).

560 34 Parks, D. H. *et al.* A standardized bacterial taxonomy based on genome phylogeny
561 substantially revises the tree of life. *Nat Biotechnol* **36**, 996-1004, doi:10.1038/nbt.4229
562 (2018).

563 35 Wortelboer, K., Nieuwdorp, M. & Herrema, H. Fecal microbiota transplantation beyond
564 *Clostridioides difficile* infections. *EBioMedicine* **44**, 716-729,
565 doi:10.1016/j.ebiom.2019.05.066 (2019).

566 36 El-Matary, W. Fecal microbiota transplantation: long-term safety issues. *Am J
567 Gastroenterol* **108**, 1537-1538, doi:10.1038/ajg.2013.208 (2013).

568 37 Bai, Z. *et al.* Comprehensive analysis of 84 *Faecalibacterium prausnitzii* strains uncovers
569 their genetic diversity, functional characteristics, and potential risks. *Front Cell Infect
570 Microbiol* **12**, 919701, doi:10.3389/fcimb.2022.919701 (2022).

571 38 Bjorkqvist, O. *et al.* *Faecalibacterium prausnitzii* increases following fecal microbiota
572 transplantation in recurrent *Clostridioides difficile* infection. *PLoS One* **16**, e0249861,
573 doi:10.1371/journal.pone.0249861 (2021).

574 39 Louie, T. *et al.* VE303, a Defined Bacterial Consortium, for Prevention of Recurrent
575 *Clostridioides difficile* Infection: A Randomized Clinical Trial. *JAMA* **329**, 1356-1366,
576 doi:10.1001/jama.2023.4314 (2023).

577 40 Smith, A. B. *et al.* Enterococci enhance *Clostridioides difficile* pathogenesis. *Nature* **611**,
578 780-786, doi:10.1038/s41586-022-05438-x (2022).

579 41 Ugarte-Torres, A., Gillrie, M. R., Griener, T. P. & Church, D. L. *Escherichia coli* lenta
580 Bloodstream Infections Are Associated With Increased Mortality Following Empiric
581 Piperacillin-Tazobactam (TZP) Monotherapy: A Population-based Cohort Study. *Clin
582 Infect Dis* **67**, 221-228, doi:10.1093/cid/ciy057 (2018).

583 42 Hilau, S., Katz, S., Wasserman, T., Hershberg, R. & Savir, Y. Density-dependent effects
584 are the main determinants of variation in growth dynamics between closely related

585 bacterial strains. *PLoS Comput Biol* **18**, e1010565, doi:10.1371/journal.pcbi.1010565
586 (2022).

587 43 Gevers, D. *et al.* The Human Microbiome Project: a community resource for the healthy
588 human microbiome. *PLoS Biol* **10**, e1001377, doi:10.1371/journal.pbio.1001377 (2012).

589 44 Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-
590 resolved metagenomic data analysis. *Microbiome* **6**, 158, doi:10.1186/s40168-018-0541-
591 1 (2018).

592 45 Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile
593 metagenomic assembler. *Genome Res* **27**, 824-834, doi:10.1101/gr.213959.116 (2017).

594 46 Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm
595 to recover genomes from multiple metagenomic datasets. *Bioinformatics* **32**, 605-607,
596 doi:10.1093/bioinformatics/btv638 (2016).

597 47 Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately
598 reconstructing single genomes from complex microbial communities. *PeerJ* **3**, e1165,
599 doi:10.7717/peerj.1165 (2015).

600 48 Alneberg, J. *et al.* Binning metagenomic contigs by coverage and composition. *Nat
601 Methods* **11**, 1144-1146, doi:10.1038/nmeth.3103 (2014).

602 49 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
603 assessing the quality of microbial genomes recovered from isolates, single cells, and
604 metagenomes. *Genome Res* **25**, 1043-1055, doi:10.1101/gr.186072.114 (2015).

605 50 Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate
606 genomic comparisons that enables improved genome recovery from metagenomes
607 through de-replication. *ISME J* **11**, 2864-2868, doi:10.1038/ismej.2017.126 (2017).

608 51 Ondov, B. D. *et al.* Mash: fast genome and metagenome distance estimation using
609 MinHash. *Genome Biol* **17**, 132, doi:10.1186/s13059-016-0997-x (2016).

610 52 Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify
611 genomes with the Genome Taxonomy Database. *Bioinformatics*,
612 doi:10.1093/bioinformatics/btz848 (2019).

613 53 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and
614 bias-aware quantification of transcript expression. *Nat Methods* **14**, 417-419,
615 doi:10.1038/nmeth.4197 (2017).

616 54 Asnicar, F. *et al.* Precise phylogenetic analysis of microbial isolates and genomes from
617 metagenomes using PhyloPhlAn 3.0. *Nat Commun* **11**, 2500, doi:10.1038/s41467-020-
618 16366-7 (2020).

619 55 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
620 tree display and annotation. *Nucleic Acids Res* **49**, W293-W296,
621 doi:10.1093/nar/gkab301 (2021).

622 56 Martino, C. *et al.* A Novel Sparse Compositional Technique Reveals Microbial
623 Perturbations. *mSystems* **4**, doi:10.1128/mSystems.00016-19 (2019).

624 57 Mandal, S. *et al.* Analysis of composition of microbiomes: a novel method for studying
625 microbial composition. *Microb Ecol Health Dis* **26**, 27663, doi:10.3402/mehd.v26.27663
626 (2015).

627 58 Crobach, M. J. T. *et al.* The Bacterial Gut Microbiota of Adult Patients Infected, Colonized
628 or Noncolonized by *Clostridioides difficile*. *Microorganisms* **8**,
629 doi:10.3390/microorganisms8050677 (2020).

630 59 Mullish, B. H. *et al.* Microbial bile salt hydrolases mediate the efficacy of faecal
631 microbiota transplant in the treatment of recurrent *Clostridioides difficile* infection. *Gut*,
632 doi:10.1136/gutjnl-2018-317842 (2019).

633 60 Berkell, M. *et al.* Microbiota-based markers predictive of development of *Clostridioides*
634 *difficile* infection. *Nat Commun* **12**, 2241, doi:10.1038/s41467-021-22302-0 (2021).

635 61 Milani, C. *et al.* Gut microbiota composition and *Clostridium difficile* infection in
636 hospitalized elderly individuals: a metagenomic study. *Sci Rep* **6**, 25945,
637 doi:10.1038/srep25945 (2016).

638 62 Han, S. H., Yi, J., Kim, J. H., Lee, S. & Moon, H. W. Composition of gut microbiota in
639 patients with toxigenic *Clostridioides* (*Clostridium*) *difficile*: Comparison between
640 subgroups according to clinical criteria and toxin gene load. *PLoS One* **14**, e0212626,
641 doi:10.1371/journal.pone.0212626 (2019).

642 63 Feuerstadt, P. *et al.* SER-109, an Oral Microbiome Therapy for Recurrent *Clostridioides*
643 *difficile* Infection. *N Engl J Med* **386**, 220-229, doi:10.1056/NEJMoa2106516 (2022).

644 64 Tvede, M. & Rask-Madsen, J. Bacteriotherapy for chronic relapsing *Clostridium difficile*
645 diarrhoea in six patients. *Lancet* **1**, 1156-1160, doi:10.1016/s0140-6736(89)92749-9
646 (1989).

647 65 Yoon, S. *et al.* Bile salt hydrolase-mediated inhibitory effect of *Bacteroides ovatus* on
648 growth of *Clostridium difficile*. *J Microbiol* **55**, 892-899, doi:10.1007/s12275-017-7340-4
649 (2017).

650 66 Amrane, S. *et al.* Metagenomic and culturomic analysis of gut microbiota dysbiosis
651 during *Clostridium difficile* infection. *Sci Rep* **9**, 12807, doi:10.1038/s41598-019-49189-8
652 (2019).

653 67 Hourigan, S. K. *et al.* Fecal Transplant in Children With *Clostridioides difficile* Gives
654 Sustained Reduction in Antimicrobial Resistance and Potential Pathogen Burden. *Open*
655 *Forum Infect Dis* **6**, ofz379, doi:10.1093/ofid/ofz379 (2019).

656 68 Douchant, K. *et al.* Defined microbial communities and their soluble products protect
657 mice from *Clostridioides difficile* infection. *Commun Biol* **7**, 135, doi:10.1038/s42003-
658 024-05778-6 (2024).

659 69 Francisco, D. M. A. *et al.* Risk Factors Associated with Severe *Clostridioides difficile*
660 Infection in Patients with Cancer. *Infect Dis Ther* **12**, 209-225, doi:10.1007/s40121-022-
661 00722-9 (2023).

662 70 Moelling, K. & Broecker, F. Fecal microbiota transplantation to fight *Clostridium difficile*
663 infections and other intestinal diseases. *Bacteriophage* **6**, e1251380,
664 doi:10.1080/21597081.2016.1251380 (2016).

665 71 Roychowdhury, S. *et al.* *Faecalibacterium prausnitzii* and a Prebiotic Protect Intestinal
666 Health in a Mouse Model of Antibiotic and *Clostridium difficile* Exposure. *JPEN J*
667 *Pareneter Enteral Nutr* **42**, 1156-1167, doi:10.1002/jpen.1053 (2018).

668 72 Vakili, B., Fateh, A., Asadzadeh Aghdaei, H., Sotoodehnejadnematalahi, F. & Siadat, S. D.
669 Intestinal Microbiota in Elderly Inpatients with *Clostridioides difficile* Infection. *Infect*
670 *Drug Resist* **13**, 2723-2731, doi:10.2147/IDR.S262019 (2020).

671 73 Vakili, B., Fateh, A., Asadzadeh Aghdaei, H., Sotoodehnejadnematalahi, F. & Siadat, S. D.
672 Characterization of Gut Microbiota in Hospitalized Patients with *Clostridioides difficile*
673 Infection. *Curr Microbiol* **77**, 1673-1680, doi:10.1007/s00284-020-01980-x (2020).
674 74 Shoaei, P. *et al.* Gut microbiota in burned patients with *Clostridioides difficile* infection.
675 *Burns* **48**, 1120-1129, doi:10.1016/j.burns.2021.11.023 (2022).
676 75 Gu, X. *et al.* Gut Ruminococcaceae levels at baseline correlate with risk of antibiotic-
677 associated diarrhea. *iScience* **25**, 103644, doi:10.1016/j.isci.2021.103644 (2022).
678 76 Dudik, B., Kinova Sepova, H., Greifova, G., Bilka, F. & Bilkova, A. Next generation
679 probiotics: an overview of the most promising candidates. *Epidemiol Mikrobiol Imunol*
680 **71**, 48-56 (2022).
681 77 Lee, Y. J., Yu, W. K. & Heo, T. R. Identification and screening for antimicrobial activity
682 against *Clostridium difficile* of *Bifidobacterium* and *Lactobacillus* species isolated from
683 healthy infant faeces. *Int J Antimicrob Agents* **21**, 340-346, doi:10.1016/s0924-
684 8579(02)00389-8 (2003).
685 78 Solbach, P. *et al.* Microbiota-associated Risk Factors for *Clostridioides difficile*
686 Acquisition in Hospitalized Patients: A Prospective, Multicentric Study. *Clin Infect Dis* **73**,
687 e2625-e2634, doi:10.1093/cid/ciaa871 (2021).
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

707

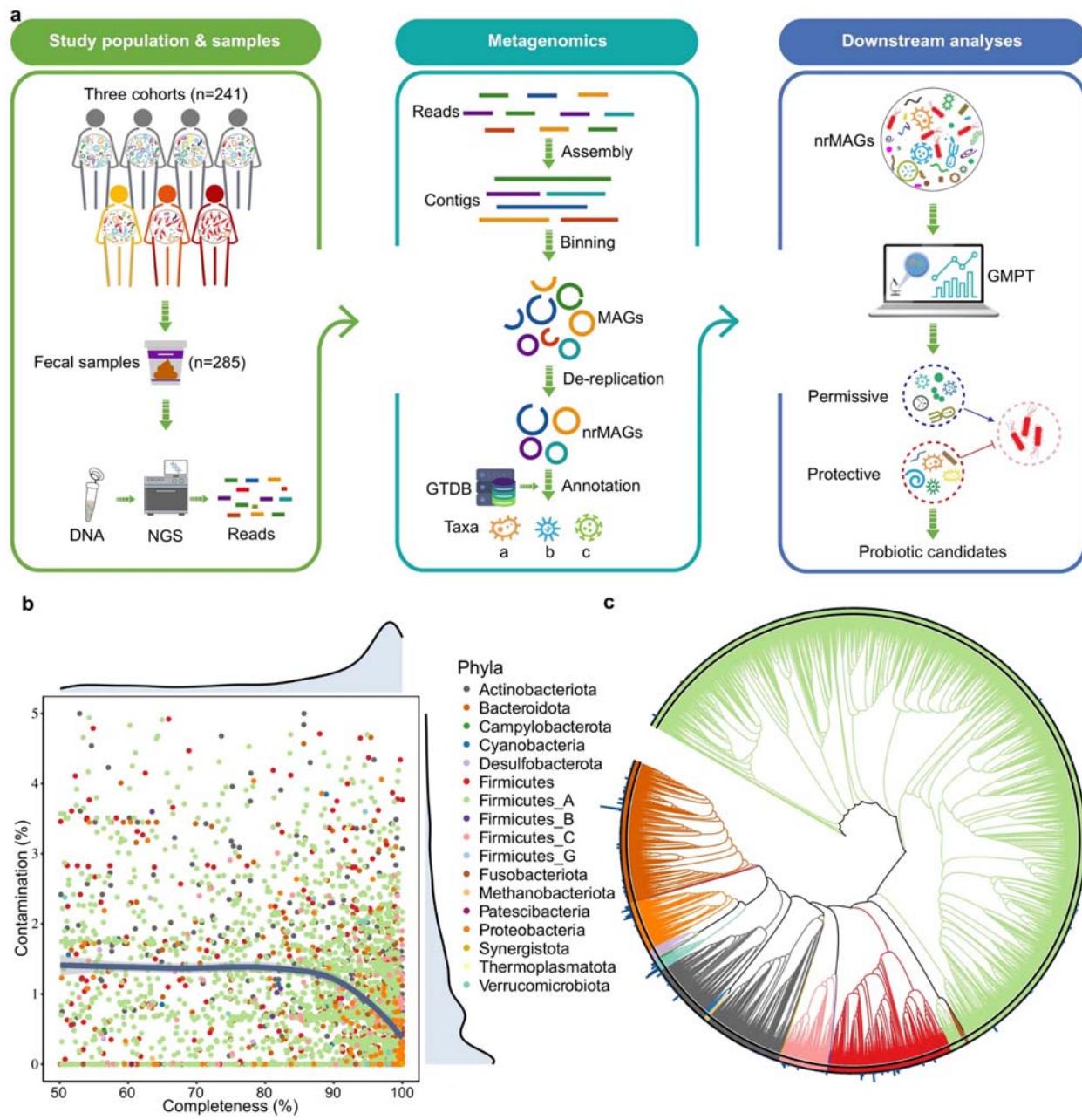
708

709

710

711

712


713

714

715

716 **Figures and Legends**

717

718

Fig. 1 Study workflow and the reconstruction of the microbial genome catalog. a.

719 To rationally design microbial consortia against *C. difficile*, we sought to infer species
720 that may potentially inhibit *C. difficile* from various metagenomic data. We collected a
721 total of 285 shotgun metagenomic sequencing data from three independent cohorts. A
722 total of 7,769 MAGs ($\geq 50\%$ completeness and $\leq 5\%$ contamination) were constructed
723 from all metagenomic sequencing data. The MAGs were then dereplicated to 3,741
724 non-redundant MAGs (nrMAGs, strain level) based on 99% of ANI. The taxonomy
725 annotation and abundance estimation of nrMAGs were then conducted. We then
726

727 applied the generalized microbe-phenotype triangulation (GMPT) method to identify
728 candidate strains for the development of microbiota probiotics. **b.** The distribution of
729 completeness and contamination of nrMAGs is depicted, with the color of each point
730 representing the respective phylum. Additionally, the size of each point corresponds to
731 the genome size of the nrMAGs. **c.** A phylogenetic tree of nrMAGs was constructed
732 using PhyloPhlAn. In this representation, the color of the outer cycle and clades
733 signifies the phylum, while the bar plot within the cycle illustrates the average
734 abundance across all microbiome samples.

735

736

737

738

739

740

741

742

743

744

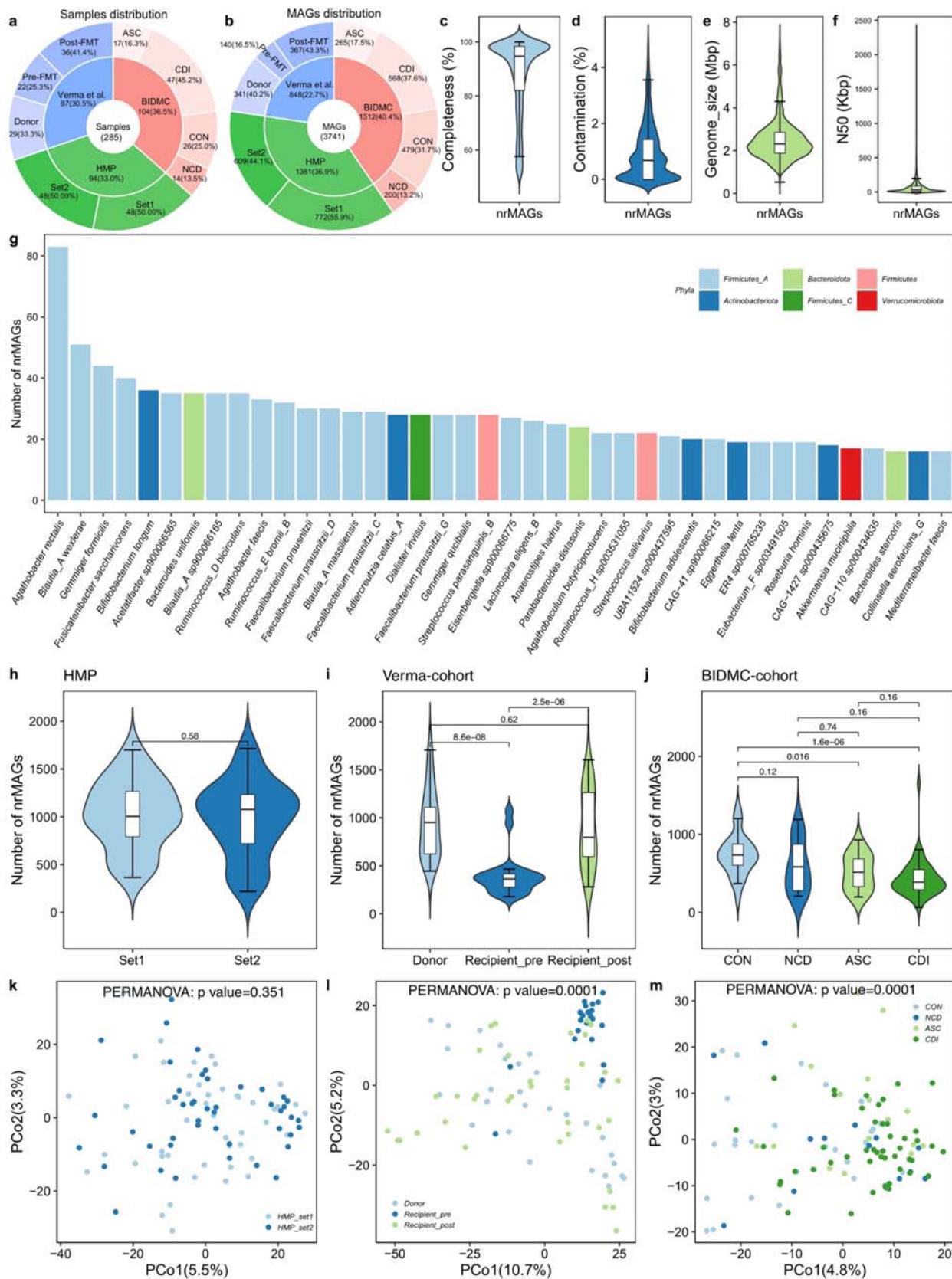
745

746

747

748

749


750

751

752

753

754

756 **Fig. 2 The microbial genome catalog and microbial diversity.** **a.** Sample distribution
757 among different datasets and clinical groups. **b.** Number of MAGs recovered from
758 different datasets and clinical groups. Violin plot of basic characteristics of nrMAGs on
759 completeness (**c**), contamination (**d**), genome size (**e**), and N50 (**f**). **g.** The top-40
760 species with the highest strain-richness (i.e., number of nrMAGs) identified from the
761 microbial genome catalog. The color of each bar signifies the phylum. Richness
762 (number of identified nrMAGs) of the gut microbiome from HMP (**h**), Verma-cohort. (**i**),
763 and BIDMC-cohort (**j**). Principal Coordinates Analysis (PCoA) plot based on robust
764 Aitchison distance from HMP (**k**), Verma-cohort. (**l**), and BIDMC-cohort (**m**). All
765 PERMANOVA tests were performed with 9999 permutations based on robust Aitchison
766 distance, two-sided.

767

768

769

770

771

772

773

774

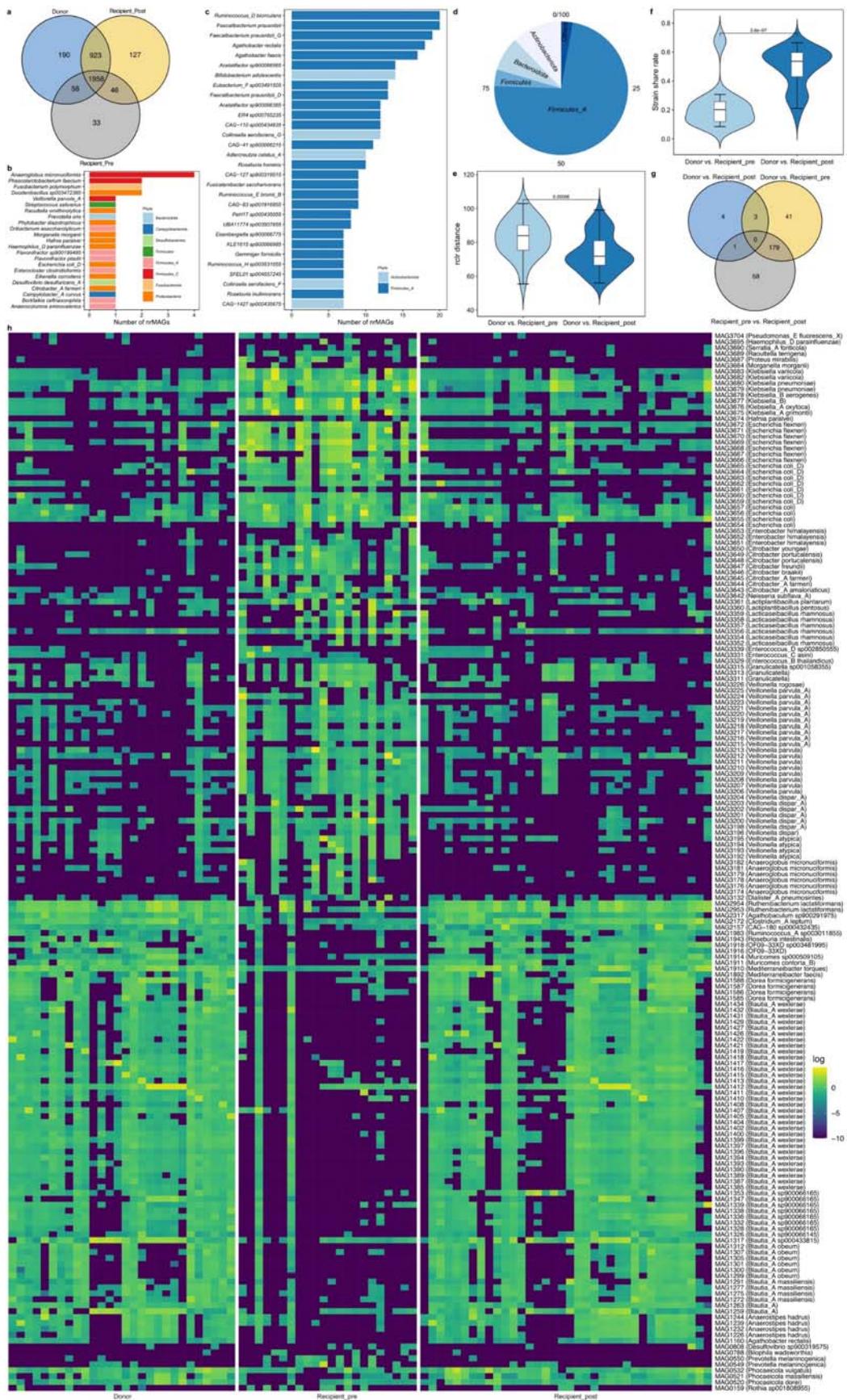
775

776

777

778

779


780

781

782

783

784

786 **Fig. 3 The changes in recipients' microbiome after FMT.** **a.** The distribution of
787 nrMAG among donors, pre-FMT recipients, and post-FMT recipients. **b.** The distribution
788 of lost nrMAGs after FMT at the species level, and the color of each bar represents the
789 phylum. **c.** The distribution of engrafted nrMAGs after FMT at the species level, and the
790 color of each bar represents the phylum. **d.** The distribution of engrafted nrMAGs after
791 FMT at the phylum level. **e.** The robust Aitchison distance between donor and recipient
792 pairs before and after FMT. **f.** The nrMAG share rate between donor and recipient pairs
793 before and after FMT. **g.** The differential abundant nrMAG distribution among three pair-
794 wise comparisons between donors, pre-FMT recipients, and post-FMT recipients. **h.**
795 The heat map showed the abundance distribution of overlapped nrMAGs identified from
796 the comparisons of donor vs. pre-FMT recipients and pre-FMT recipients vs. post-FMT
797 recipients. These nrMAGs were taxonomically annotated using GTDB-Tk based on the
798 Genome Taxonomy Database.

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817 **Table. 1 Summary of the literature evidence regarding the potential role of**
 818 **protective species in CDI identified through our computational pipeline.** The top
 819 25 potential protective species were selected based on the overlapped protective
 820 strains identified from the GMPT results with two sets of HMP microbiome data.

Family	Rank	Species	Taxonomy ID alternate names	PMID Author reference Sponsor	Study size and Groups	Effect
Lachnospira ceae	1	<i>Dorea formicigerans</i>	39486 <i>Eubacterium formicigerans</i>	34252073 ³⁷ Verma ³⁰	22 rCDI (pre/post FMT) Healthy donors	<i>D. formicigerans</i> is top 5 engrafter in rCDI patients after FMT from donor
	2	<i>GCA-900066135</i> <i>sp900066135</i>	2830660 <i>Lachnospiraceae bacterium</i> <i>Marseille-Q4251</i>			
	6	<i>Anaerobutyricum hallii</i>	39488 <i>Eubacterium hallii</i>	32384826 Crobach ⁵⁸	41 CDI, 41 colonized, 43 controls	↑ <i>A. hallii</i> : controls vs. colonized (↑6.6x AB+, ↑ 3.8x AB-)
	8	<i>Dorea longicatena</i>	88431 <i>Eubacterium sp.</i> <i>III-35</i>	37060545 Louie ³⁹ Vedanta	Phase 2 RCT VE303 (8- organism consortium) 79 rCDI 1:1:1 placebo (PBO): low (LD): high-dose (HD) VE303	<i>D. longicatena</i> is part of consortium. 8-week CDI recurrence: PBO 45.5%, LD 37.0%, HD 13.8% (p=0.006 HD vs. PBO)
	9	<i>Blautia obeum</i>	40520 <i>Ruminococcus obeum</i>	30816855 Mullish ⁵⁹ Finch	14 rCDI receiving FMT (pre, post: 1, 4, 12 weeks) 5 healthy donors	Pre-FMT: ↓ bile salt hydrolase (BSH) activity and genes (<i>bsh/baiCD</i>), ↑ primary bile acids (taurocholic) Post-FMT: ↑ <i>bsh/baiCD</i> , ↑ <i>B. obeum</i> (BSH producer) Culture supernatant of <i>B. obeum</i> (& 3 other BSH+ species) attenuates CDI in mouse model
					AB+: 14 CDI, 64 AAD, 669 no diarrhea (ND)	<i>B. obeum</i> is 21.5% of OTU30 (oligotyping) ↑ OTU30 3.8x: (AAD+ND) vs. CDI ↑ OTU30 3.7x: AAD vs. CDI
	10	<i>Bariatricus comes</i>	GBIF 10828568			
	15	<i>Mediterraneibacter faecis</i>	592978 <i>Ruminococcus faecis</i>			
	17	<i>Anaerostipes hadrus</i>	649756 <i>Eubacterium hadrum</i>			
	18	<i>Lachnospira</i> <i>sp900316325</i>				
	20	<i>Agathobacter rectalis</i>	39491 <i>Pseudobacterium</i> <i>/Roseburia</i> / <i>Eubacterium rectale</i> <i>Bacteroides rectalis</i>			
	21	<i>CAG-81</i> <i>sp900066535</i>				
	23	<i>UBA7182</i> <i>sp003480725</i>	1952150			
	25	<i>Blautia wexlerae</i>	418240	33854066 Berkell ⁶⁰	See <i>B. obeum</i>	<i>B. wexlerae</i> is 57.9% of OTU30 (oligotyping)
	Family level effects (human studies only)			27166072 Milani ⁶¹	29 Non-CDI, AB+ 30 Non-CDI, AB- 25 CDI	Lachnospira relative abundance: CDI: 0.31%, AB+: 1.22%, AB-: 3.28% (p<0.005 CDI vs. AB-)

			30785932 Han ⁶²	<i>Cd tcdB:</i> 79 NAAT+ 20 NAAT-	Lachnospira relative abundance: NAAT + 9.00%, NAAT – 16.51% p=0.003
			35045228 Feuerstadt ⁶³ ³ Seres	Phase 3 RCT 182 rCDI 1:1 PBO: SER-109	SER-109 contains, among others, the following genera of Lachnospiraceae: <i>Anaerobutyricum</i> , <i>Anaerostipes</i> , <i>Bariaticus</i> , <i>Blautia</i> , <i>Dorea</i> , <i>Lachnospira</i> , <i>Mediterraneibacter</i> 8-week CDI recurrence: PBO 40%, SER-109 12% (p<0.001)
Bacteroidaceae	5	<i>Phocaeicola dorei</i>	357276 <i>Bacteroides dorei</i>		
	1	<i>Phocaeicola vulgatus</i>	821 <i>Bacteroides vulgatus</i>	2566734 ⁷⁷ Tvede ⁶⁴	RCT 6 rCDI, rectally instilled: 2 donor feces vs. 4 bacterial strain mix
	4	<i>Bacteroides ovatus</i>	28116 <i>Pasteurella ovata</i> , <i>Pseudobacterium ovatum</i> <i>Bacteroides fragilis</i> subsp. <i>ovatus</i>	2566734 ⁷⁷ Tvede ⁶⁴	See <i>P. vulgatus</i>
				29076071 ⁷⁷ Yoon ⁶⁵ KoBio Labs	In vitro study of susceptibility of <i>Cd</i> cultures to supernatants of different bacterial organisms
				30816855 Mullish ⁵⁹ Finch	See <i>B. obeum</i>
				31488869 Amrane ⁶⁶	11 CDI 8 healthy donors
				31660343 Hourigan ⁶⁷	9 children with CDI/rCDI receiving FMT (pre/post) Donor stool
				38280981 Douchant ⁶⁸	Murine model of CDI 18 & 4-strain synthetic microbial communities
	2	<i>Bacteroides uniformis</i>	820	36443547 Francisco ⁶⁹	200 CDI with cancer 42 severe/fulminant 158 non-severe
Oscillospiraceae	3	<i>Oscillibacter welbionis</i>	--		
	4	<i>Faecalibacter ium</i> <i>prausnitzii</i>	853 <i>Fusobacterium prausnitzii</i>	28090385 Moelling ⁷⁰	N=1, rCDI cured with FMT Followed for 4.5 years
				29385239 ⁷⁷ Roychowdhury ⁷¹	CDI mouse model, 13 mice/group, orally received: <i>F. prausnitzii</i> (Fp), Fp + Potato Starch (PS), PS, Supernatant of Fp + PS, and saline
				31660343	See <i>B. ovatus</i>
					↑ <i>F. prausnitzii</i> :

			Hourigan ⁶⁷		donors vs. recipients pre-FMT (p=0.008)
			32296918 Vakili ⁷²	28 CDI 56 non-CDI	↑ <i>F. prausnitzii</i> : Non-CDI vs. CDI (p=0.015)
			32801806 Vakili ⁷³	50 CDI 50 healthy controls	↑ <i>F. prausnitzii</i> : Controls vs. CDI (p<0.05)
			33836037 Björkqvist ³⁸	15 rCDI receiving FMT (pre, post: 2 weeks, 2-4 months) 9 healthy donors	↑ <i>F. prausnitzii</i> : Donors vs. rCDI pre-FMT (p<0.01) rCDI post-FMT vs. pre-FMT (p<0.001)
			34924229 Shoaei ⁷⁴	69 Burn unit patients (23 CDI, 46 non-CDI) 46 healthy controls	↑ <i>F. prausnitzii</i> : Non-CDI vs. CDI (p<0.001) Controls vs. CDI (p=0.003)
			35005566 Gu ⁷⁵ Finch	30 healthy adults, amoxicillin-clavulanate: (13 AAD, 17 non-AAD) Days: 0, 1, 2, 3, 7, 14, 28	↑ <i>F. prausnitzii</i> : On day 0, ↓ 2.33x risk of AAD Non-AAD vs. AAD (Days 1-7, p<0.05)
			35477270 Dudik ⁷⁶	Narrative review	<i>F. prausnitzii</i> in top 2 of most promising 'next-generation probiotics'
2 2	<i>Lawsonibacter</i> sp900066645				
		Family level effects (human studies only)	35045228 Feuerstadt ⁶ ₃ Seres	See Lachnospiraceae	SER-109 contains, among others, the following genera of Oscillospiraceae ~[Ruminococcaceae]: <i>Faecalibacterium</i> , <i>Lawsonibacter</i>
Streptococcaceae	7	<i>Streptococcus salivarius</i>	1304 <i>Lactobacillus salivarius</i>	12672580 Lee ⁷⁷	In vitro study: 102 lactic acid producing bacteria from 32 healthy infants.
Rikenellaceae	1 1	<i>Alistipes putredinis</i>	28117		
unclassified Bacillota	1 2	UBA1191	1947933 Firmicutes bacterium UBA1191		
Odoribacteraceae	1 6	<i>Odoribacter splanchnicus</i>	28118 <i>Bacteroides splanchnicus</i>	32589701 Solbach ⁷⁸	1506 hospitalized patients 139 colonized on admission 16 new Cd through admission ↑ <i>O. splanchnicus</i> on admission associated with absence of Cd colonization through admission (LDA 3.4, FDR<0.05)
Peptostreptococcaceae	1 9	<i>Romboutsia timonensis</i>	1776391 <i>Romboutsia</i> sp. DR1		

821
822
823
824
825
826
827
828

PMID: Pubmed ID, Cd: *Clostridioides difficile*, CDI: Cd Infection, rCDI: recurrent CDI, AB+: antibiotic-exposed, AB-: non-antibiotic-exposed, FMT: Fecal Microbiota Transplantation, NAAT: Nucleic Acid Amplification Test, *tcDB*: Cd Toxin B gene, RCT: Randomized Controlled Trial, OUT: Operational Taxonomic Unit, RT: Ribotype, AAD: Antibiotic Associated Diarrhea, LDA score: Linear Discriminant Analysis score, FDR: False Discovery Rate
Π denotes strain-level information available in the reference (*Dorea formicigenerans* ATCC 27755, *Phocaeicola vulgatus* A33-14, *Bacteroides ovatus* A40-4, *Bacteroides ovatus* SNUG40239, *Faecalibacterium prausnitzii* ATCC 27766)