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Abstract 32 

Clostridioides difficile infection (CDI) is one of the leading causes of healthcare- and 33 

antibiotic-associated diarrhea. While fecal microbiota transplantation (FMT) has 34 

emerged as a promising therapy for recurrent CDI, its exact mechanisms of action and 35 

long-term safety are not fully understood. Defined consortia of clonal bacterial isolates, 36 

known as live biotherapeutic products (LBPs), have been proposed as an alternative 37 

therapeutic option. However, the rational design of LBPs remains challenging. Here, we 38 

employ a computational pipeline and three independent metagenomic datasets to 39 

systematically identify microbial strains that have the potential to inhibit CDI. We first 40 

constructed the CDI-related microbial genome catalog, comprising 3,741 non-redundant 41 

metagenome-assembled genomes (nrMAGs) at the strain level. We then identified 42 

multiple potential protective nrMAGs that can be candidates for the design of microbial 43 

consortia targeting CDI, including strains from Dorea formicigenerans, Oscillibacter 44 

welbionis, and Faecalibacterium prausnitzii. Importantly, some of these potential 45 

protective nrMAGs were found to play an important role in the success of FMT, and the 46 

majority of the top protective nrMAGs can be validated by various previously reported 47 

findings. Our results demonstrate a computational framework for the rational selection 48 

of microbial strains targeting CDI, paving the way for the computational design of 49 

microbial consortia against other enteric infections. 50 

 51 
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Introduction  63 

Clostridioides difficile infection (CDI) is one of the leading causes of healthcare- and 64 

antibiotic-associated diarrhea, affecting roughly 500,000 patients and leading to almost 65 

30,000 deaths annually in the United States1,2. Exposure to toxinogenic C. difficile can 66 

lead to a spectrum of clinical outcomes, including asymptomatic colonization, mild 67 

diarrhea, and more severe disease syndromes such as pseudomembranous colitis, 68 

toxic megacolon, bowel perforation, sepsis, and death3. Antibiotics serve as the 69 

standard treatment for primary CDI4,5. However, CDI recurrence occurs in approximately 70 

a quarter of cases after antibiotic treatment6,7. Once CDI recurs, patients may get into a 71 

vicious cycle of antibiotic therapy and relapse8. Moreover, the use of antibiotics has 72 

been identified as the primary risk factor for developing CDI, and reports of strains with 73 

decreased sensitivity to vancomycin are becoming more frequent.  74 

 75 

The human gut microbiome is critical in providing colonization resistance against 76 

exogenous pathogens through complex mechanisms such as nutrient competition, 77 

competitive metabolic interactions, niche exclusion, and induction of the host immune 78 

response9. Intestinal microbiota restoration, such as fecal microbiota transplantation 79 

(FMT), has been shown to be effective for CDI treatment as well as the restoration of 80 

colonization resistance against C. difficile10,11. While FMT has emerged as a promising 81 

therapy for recurrent CDI (rCDI), its exact mechanisms of action are not fully 82 

understood12. In addition, FMT has the potential to transmit undetected or emerging 83 

pathogens, which may result in hospitalization or even death13,14. Recently, the FDA has 84 

approved fecal microbiota products (e.g., Rebyota15 and Vowst16) for the prevention of 85 

rCDI in individuals 18 years of age and older, following antibiotic treatment for rCDI. 86 

Rebyota is a room temperature shelf stable suspension of healthy donor stool17, 87 

although its clinical effect size for the prevention of rCDI is modest (RR, 1.17; 95% CI, 88 

0.99–1.39)18 and its microbial composition is not predefined19. Although Vowst is a 89 

formulation of live fecal microbiota consisting of a highly purified collection of about 50 90 

species of Firmicutes spores with a more robust clinical effect size (1.46; 95% CI, 1.21–91 

1.75)18, the ecological principle underlying the selection of these microbial strains is 92 

unclear.  93 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.04.30.591969doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.591969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

 94 

The variability of biological properties among bacterial strains within the same species 95 

underscores the significance of conducting strain-level composition analysis to 96 

understand the role of the human microbiome in human health and disease20. For 97 

example, some strains from Escherichia coli (e.g., E. coli O157:H7) cause severe 98 

abdominal pain, bloody diarrhea, and vomiting21. In contrast, E. coli Nissle 1917 is a 99 

non-pathogenic strain that has been utilized as a probiotic agent to treat gastrointestinal 100 

infections in humans22,23. Whole metagenome shotgun (WMS) sequencing is a rapid, 101 

cost-effective, and high-throughput technology for profiling microbial communities in 102 

human microbiome studies24. However, precise identification of microorganisms at the 103 

strain level remains challenging. Additionally, traditional strain-level profilers can only 104 

identify strains within the reference genome databases25. These databases are subject 105 

to limitations and biases and are unable to characterize microbes that do not have high-106 

quality reference genomes. To resolve these limitations, an alternative strategy for 107 

WMS data analysis involves reconstructing metagenome-assembled genomes (MAGs) 108 

through de novo assembly and binning, offering the advantage of recovering genomes 109 

for uncultured microorganisms absent from current reference databases26. 110 

 111 

In this study, we leveraged a novel computational framework27 we previously developed 112 

to rationally design a bacterial consortium against CDI (Fig. 1). The metagenome 113 

assembly and binning strategies were applied to reconstruct microbial population 114 

genomes directly from the microbiome samples of two independent CDI-related cohorts 115 

as well as the healthy controls from the Human Microbiome Project (HMP). Specifically, 116 

we sought to identify known and unknown taxa at the strain level, quantify the degree of 117 

donor strain engraftment, and design a candidate bacterial consortium against CDI. 118 

 119 

Results 120 

Study cohorts and metagenomic datasets 121 

To rationally design microbial consortia against C. difficile, we aimed to infer species 122 

that may inhibit C. difficile from CDI-related microbiome samples. We first collected 123 

WMS sequencing data from our in-house clinical cohort (denoted as BIDMC-cohort 124 
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hereafter) 28,29. Our BIDMC cohort consists of 104 well-characterized recruited 125 

participants divided into four groups (Table S1 and Fig. 2a): (1) Control (CON, n = 26); 126 

(2) Non-CDI Diarrhea (NCD, n = 14); (3) Asymptomatic Carriage of C. difficile (ASC, n = 127 

17); (4) CDI (n = 47). Given the fact that the participants from the CON group were not 128 

healthy people, we retrieved an FMT study30 (denoted as Verma-cohort hereafter) with 129 

publicly available data that assessed the microbiome composition of donors (n=21) and 130 

recipients (n=22, pre-and post-FMT) through WMS sequencing (Methods and Fig. 2a). 131 

In addition, we included two sets of randomly selected metagenome samples of healthy 132 

adults (n = 94) from the Human Microbiome Project (HMP)31. 133 

 134 

A high-quality microbial genome catalog 135 

Following quality control, we performed metagenomic assembly and binning on those 136 

microbiome samples from three cohorts, yielding 7,769 MAGs. To evaluate the highest 137 

quality representative genomes, we dereplicated the 7,769 MAGs at an average 138 

nucleotide identity (ANI) threshold of 99%, resulting in a final set of 3,741 non-139 

redundant MAGs (nrMAGs) with strain-level resolution. The nrMAGs were contributed 140 

by HMP, Verma-cohort, and the BIDMC-cohort in proportions of approximately 37%, 141 

23%, and 40%, respectively (Fig. 2b). In particular, our findings indicate that recipients 142 

prior to FMT made a smaller contribution to the nrMAG collection compared to donors 143 

and recipients after FMT, suggesting a reduced microbial diversity (Fig. S1). These 144 

nrMAGs exhibited a mean completeness of 88%, mean contamination of 0.93%, mean 145 

genome size of 2.5 megabases (Mb), and mean N50 of 65.7 kilobases (kb) (Fig. 1b-c 146 

and Fig. 2c-f). Out of the 3,741  strain-level nrMAGs, 1,390 (37.16%) nrMAGs met 147 

medium-quality criteria (50% ≤ completeness < 90%, and ≤5% contamination), while 148 

2,351 (62.84%) nrMAGs exhibited high-quality ( ≥ 90% completeness, and ≤ 5% 149 

contamination)32,33 (Fig. 1b).  150 

 151 

Using the Genome Taxonomy Database34, these nrMAGs were taxonomically assigned 152 

to 17 phyla, 22 classes, 47 orders, 104 families, and 408 genera, spanning across 883 153 

species. Most of them belonged to Firmicutes_A (60.97%), followed by Bacteroidetes 154 
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(10.18%), and Actinobacteria (10.00%). The phyla information of nrMAGs was 155 

summarized in Fig. 1b-c. Among those 883 species, Agathobacter rectalis, Blautia_A 156 

wexlerae, Gemmiger formicilis, Fusicatenibacter saccharivorans, and Bifidobacterium 157 

longum were the top five species with the highest strain-level diversity (i.e., number of 158 

nrMAGs identified within a specific species, Fig. 2g).  159 

 160 

Microbial diversity  161 

We initially investigated alpha diversity in the human microbiome at the nrMAG level. 162 

Alpha diversity measures (i.e., Richness and Shannon index) were compared among 163 

different groups from the same cohorts (Fig. 2h-j). No significant differences were found 164 

between the two randomly selected sets from the HMP (Fig. 2h and Fig. S2a). In 165 

accordance with the original study30, we found that the Richness and Shannon indices 166 

of the gut microbiome in the recipients of pre-FMT were significantly lower than those in 167 

donors. After FMT, those recipients showed similar alpha diversity to donors (Fig. 2i 168 

and Fig. S2b). In the BIDMC-cohort, we found that only the CDI group showed 169 

significantly lower alpha diversity than the CON group (Fig. 2j and Fig. S2c). 170 

Participants from the ASC group only showed a significantly lower number of identified 171 

nrMAGs than CON group participants.  172 

 173 

Principal coordinate analysis (PCoA) based on robust Aitchison distance, combined with 174 

PERMANOVA (permutational multivariate analysis of variance, a statistical method 175 

commonly used for testing the association between the microbiome and a covariate of 176 

interest), revealed no significant difference in the gut microbial community structure at 177 

the nrMAG-level between the two datasets from HMP (Fig. 2k). We found that the 178 

microbiomes of the donor and the recipients from pre-and post-FMT were 179 

compositionally distinct in the Verma-cohort (P = 0.0001, PERMANOVA Fig. 2l). 180 

Consistent with our previous study using 16S rRNA gene sequencing data29, the overall 181 

microbial composition differed significantly among different groups in the BIDMC-cohort 182 

(P = 0.0001, PERMANOVA Fig. 2m). 183 

 184 
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Identify potential permissive and protective nrMAGs for the rational design of live 185 

biotherapeutics. 186 

To identify candidate strains for the development of microbiota-derived biotherapeutics , 187 

we applied the generalized microbe-phenotype triangulation (GMPT) method, moving 188 

beyond the standard association analysis27.  The GMPT relies on the following core 189 

hypothesis: species that are differentially abundant in most pairwise phenotype-based 190 

comparisons and whose abundances display a strong negative (or positive) correlation 191 

with the abundance of the pathogen tend to be causal preventive (or permissive) 192 

species that directly inhibit (or promote) the growth of the pathogen27. Our GMPT 193 

analysis incorporated microbiome data from the BIDMC-cohort, donor data from the 194 

Verma-cohort30, and one set from HMP. Since we have two sets of randomly selected 195 

metagenome samples of healthy adults from the HMP, we systematically included one 196 

set of HMP microbiome data at a time to cross-validate the results between the two 197 

datasets. Then, we conducted pairwise comparisons for six individual phenotype groups, 198 

which encompassed CDI, ASC, NCD, and CON from the BIDMC-cohort, donors from 199 

the Verma-cohort, and a dataset from HMP. 200 

 201 

Applying this approach to the data with the first set of HMP data, 15 pairwise differential 202 

abundance analyses generated a total of 1,349 nrMAGs present in at least one pairwise 203 

comparison (Table S6). To explore the potential relationship between those candidate 204 

nrMAGs and CDI, we calculated Spearman correlation coefficients between the average 205 

relative abundances of nrMAGs and pragmatic severity scores in a continuum of non-206 

CDI controls and C. difficile colonized and infected subjects (i.e., HMP healthy controls: 207 

0; Donor from Verma et al.30: 1; CON: 2; NCD: 3; ASC: 4 and CDI: 5) in different 208 

phenotypes. Similarly, we identified a total of 1,390 nrMAGs present in at least one 209 

pairwise comparison with the second set of HMP data (Table S7). Among the protective 210 

nrMAGs between the two runs with HMP data, 80.77% (525/650) and 81.14% (525/647) 211 

of them were overlapped, respectively. We then computed the average rank between 212 

two runs based on the frequency (Table S8). Among the top 40 potential protective 213 

nrMAGs, the dominant species were Dorea formicigenerans, Oscillibacter welbionis, 214 

Faecalibacterium prausnitzii, GCA-900066135 sp900066135, Bariatricus comes, 215 
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Phocaeicola dorei, Anaerobutyricum hallii, Bacteroides ovatus, Blautia_A obeum, 216 

Mediterraneibacter faecis, Alistipes putredinis, Odoribacter splanchnicus, Streptococcus 217 

salivarius, and Dorea longicatena (Table 1). Through a systematic review of literature, 218 

we found that most of our candidate strains have been reported to be protective from 219 

CDI or non-CDI antibiotic associated diarrhea at higher taxonomical levels (e.g., species 220 

and genus levels) across existing studies (Table 1). These findings support the validity 221 

of our methods.   222 

 223 

The protective strains play an important role in FMT.  224 

To further validate the potential role of the protective strains we identified from the 225 

GMPT pipeline, we systemically tracked the microbiome changes of the recipients who 226 

underwent FMT in the Verma-cohort. We aimed to investigate if those protective strains 227 

also play an important role in the success of FMT. Notably, the microbiome samples 228 

from the recipients in the Verma cohort were not included in our previous GMPT 229 

analysis.  230 

 231 

First, we examined the gain and loss of microbial strains before and after FMT to 232 

assess the transfer and engraftment of the donor microbiome in the recipient. For donor, 233 

pre-FMT recipients, and post-FMT recipients, we identified 3,129, 2,093, and 3,054 234 

nrMAGs, respectively. Notably, post-FMT recipients showed a loss of 33 nrMAGs (Fig. 235 

3a), with the majority of the lost strains attributed to species such as Anaeroglobus 236 

micronuciformis, Phascolarctobacterium faecium, Fusobacterium polymorphum, and 237 

Duodenibacillus sp003472385 from Firmicutes_C, Proteobacteria, and Fusobacteriota 238 

(Fig. 3b). On the contrary, all recipients exhibited a gain of 923 nrMAGs from their 239 

donors (Fig. 3a). The majority of these engrafted strains were taxonomically annotated 240 

to Actinobacteriota and Firmicutes_A, such as species like Ruminococcus_D bicirculans, 241 

Faecalibacterium prausnitzii, Faecalibacterium prausnitzii_G, Agathobacter rectalis, 242 

Agathobacter faecis, Acetatifactor sp900066565, Bifidobacterium adolescentis, and 243 

Collinsella aerofaciens_G (Fig. 3c-d).  244 

 245 
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For each donor-recipient pair, we then calculated the difference in their gut microbial 246 

community structure before and after FMT using the robust Aitchison distance. Our 247 

findings indicate that the distance between donors and recipients was significantly 248 

reduced after FMT compared to the pre-FMT state (Fig. 3e). Additionally, calculating the 249 

strain share rate for each donor-recipient pair before and after FMT revealed agreement 250 

with our previous finding that recipients gained more strains, shared a greater number 251 

of strains with the donor after FMT (Fig. 3f). 252 

 253 

Changes in the microbiome induced by FMT not only indicate the transfer and 254 

engraftment of the donor microbiome but also involve alterations in the abundance of 255 

coexisting strains. To address this question, we conducted the differential abundance 256 

analysis among three groups. Consistent with the robust Aitchison distance and strain 257 

share rate analyses, we only identified less differential abundant strains between donor 258 

and post-FMT recipients (Fig. 3g and Table S2). We have identified 223 and 238 259 

differential abundant nrMAGs from the comparison of donor vs. pre-FMT recipients (Fig. 260 

3g and Table S3) and pre-FMT recipients vs. post-FMT recipients (Fig. 3g and Table 261 

S4), respectively. Among these differential abundant nrMAGs, we found 179 overlapped 262 

strains (Fig. 3h, Table S5), including strains from Blautia_A wexlerae, Veillonella 263 

parvula_A, Veillonella parvula, Blautia_A sp900066165, Escherichia coli_D, Escherichia 264 

flexneri, Anaeroglobus micronuciformis, Blautia_A obeum, Lacticaseibacillus rhamnosus, 265 

and Veillonella dispar_A. Specifically, we observed significant increases in some 266 

candidate protective strains following FMT. These include multiple strains from Dorea 267 

formicigenerans, Mediterraneibacter faecis, Phocaeicola dorei, Blautia_A wexlerae, and 268 

Blautia_A obeum. This finding further validated the potential role of protective strains in 269 

treating CDI.  270 

 271 

Discussion 272 

The growing interest in FMT as a therapeutic approach stems from its high success rate 273 

in treating recurrent CDI, leading to an exploration of its potential for addressing various 274 

human diseases35. However, FMT remains an unstandardized procedure with unclear 275 

mechanisms and long-term safety concerns35,36. Therefore, an advantage of microbial 276 
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consortia over “whole stool” FMT is the introduction of a group of specific microbiota 277 

that can precisely target and effectively treat a disease while minimizing clinical risks. In 278 

this study, we used a computational pipeline to directly identify candidate bacterial 279 

strains from a diverse CDI-related metagenomic dataset, thereby facilitating the 280 

targeted development of microbial therapies and advancing our understanding of CDI 281 

pathogenesis and treatment.  282 

 283 

By tracking the dynamic changes in gut microbiome data undergoing FMT, we identified 284 

significant shifts in the microbial structure of the recipients. Although we did not utilize 285 

the microbiome data from recipients before and after FMT in our GMPT pipeline, we 286 

found that some of the top ranked candidate protective strains showed significant 287 

increases after FMT, including multiple strains from Dorea formicigenerans, 288 

Mediterraneibacter faecis, Phocaeicola dorei, and Blautia_A obeum. This finding 289 

provides an additional layer of validity to our method. In addition, we performed a 290 

systematic literature review on the highest ranked candidate protective strains and 291 

found that the majority of them have been reported to have various protective roles at 292 

species or genus levels in the CDI continuum: negative association with C. difficile 293 

colonization, infection and severity. We found clustering of the main protective species 294 

within the families Lachnospiraceae, Bacteroidaceae, and Oscillospiraceae. For 295 

example, F. prausnitzii, a beneficial human gut microbe touted as a candidate for next-296 

generation probiotics37, was found to have reduced abundance in CDI patients, which 297 

was restored after FMT38. Interestingly, we have also identified a protective strain of the 298 

species Dorea longicatena, which is a component of a defined bacterial consortium 299 

(VE303) with encouraging Phase 2 clinical data, consisting of eight, nonpathogenic, 300 

nontoxigenic, commensal strains of Clostridia39.  301 

 302 

In addition to the potential protective strains, we also identified multiple permissive 303 

strains of C. difficile, including strains from Enterococcus_B faecium and Eggerthella 304 

lenta. This aligns with a previous study reporting that enterococci (including E. faecium) 305 

can enhance the fitness and pathogenicity of C. difficile via shaping the metabolic 306 

environment in the gut and reprograming C. difficile metabolism40. Additionally, E. lenta 307 
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is an anaerobic gram-positive bacillus associated with polymicrobial intraabdominal 308 

infections41. Therefore, the potentially permissive strains that we identified from this 309 

study offer the opportunity to further understand how C. difficile interacts with the rich 310 

community of microorganisms in the colon. Moreover, in alignment with the variation in 311 

biological properties among bacterial strains within the same species42, we have 312 

observed distinct roles played by different strains of F. prausnitzii_D in the context of 313 

CDI. This underscores the critical importance of conducting studies at the strain level. 314 

 315 

The current study has some limitations. First, we leveraged metagenomic data from 316 

three independent datasets with technological variations, including differences in 317 

sequencing depth. Second, we did not pre-define a strict threshold to select potential 318 

protective strains from the candidate list for further experimental validations. Lastly, the 319 

inference of the efficacy of candidate protective strains against CDI is limited by the 320 

current computational algorithm. To test the efficacy of our proposed microbial consortia 321 

and gain a deeper understanding of exact mechanisms, the utilization of techniques of 322 

metabolomics and immunological approaches, along with direct in vitro and in vivo 323 

experiments, are necessary.  324 

 325 

Taken together, our results provide compelling evidence for the rational design of 326 

microbial consortia against C. difficile. Many of the candidates detected here replicate 327 

previously reported findings, supporting the validity of our results. Importantly, our work 328 

paves the way for the design of LBPs against general microbiome-related diseases. 329 

 330 

Methods 331 

Study cohorts 332 

Dataset I: BIDMC-cohort. The background and design of this cohort have been 333 

detailed in our previous studies28,29. This clinical cohort consists of 104 well-334 

characterized recruited participants, who were divided into four groups associated with 335 

different C. difficile infection/colonization statuses: (1) C. difficile infection (CDI, n=47): 336 

Eligible patients were inpatients ≥ 18 years old with new-onset diarrhea, positive clinical 337 

stool NAAT (Xpert C. difficile/Epi) result, and a decision to treat for CDI; (2) 338 
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Asymptomatic Carriage (ASC, n = 17): Eligible patients were inpatients ≥ 18 years old, 339 

admitted for at least 72 hours, who had received at least one dose of an antibiotic within 340 

the past seven days, and did not have diarrhea in the 48 hours prior to stool specimen 341 

submission, and positive clinical stool NAAT result; (3) Non-CDI Diarrhea (NCD, n = 14): 342 

patients with diarrhea (confirmed using the same definition used for the CDI cohort) but 343 

had NAAT-negative stool on clinical C. difficile testing; and (4) Control (CON, n = 26): 344 

patients without diarrhea who had screened as eligible for the ASC cohort but were 345 

NAAT-negative on research stool testing. DNA of fecal samples (200 mg) were 346 

extracted using Mag-Bind® Universal Metagenomics Kit (Product# M5633-01, Omega 347 

Biotek) and DNeasy PowerSoil Kit (Catalog# 12888-100, Qiagen) according to 348 

manufacturer’s instructions. The quality of the extracted DNA was measured by 1% 349 

agarose gel electrophoresis and Qubit® 3.0 Fluorometer (ThermoFisher). Subsequently, 350 

the extracted DNAs were used for shotgun metagenomic library construction, and 351 

sequencing was performed on the Illumina HiSeq X Ten platform, generating a 150 bp 352 

paired-end library for each sample. 353 

Dataset II: Verma-cohort. In the study conducted by Verma et al30, fecal samples were 354 

collected from 22 patients with recurrent CDI before and after FMT and their 355 

corresponding healthy donors (n=21, with one donor providing fecal samples for two 356 

different recipients). Eight-seven WMS human gut metagenomes were downloaded 357 

from this study via NCBI Sequence Read Archive (BioProject ID PRJNA705895). The 358 

clinical outcome in recurrent CDI patients after FMT was determined by the 359 

symptomatic resolution of CDI30. Clinical symptoms such as diarrhea, bloating, 360 

abdominal pain, and cramping were alleviated in all patients within 3–7 days following 361 

FMT30. 362 

Dataset III: Human Microbiome Project. Human gut metagenomes (Ninety-eight 363 

individuals) were randomly selected from HMP data (https://portal.hmpdacc.org/)43. All 364 

samples are from the HMP study31 and are healthy adult subjects. In total, ninety-four 365 

human gut metagenomes were randomly selected based on the largest group size in 366 

our clinical cohort. To cross-validate the main findings, we randomly divided the HMP 367 

data into two sets in the downstream analyses.  368 

 369 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2024. ; https://doi.org/10.1101/2024.04.30.591969doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.591969
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

Metagenome assembly and binning 370 

Genome reconstruction of the human microbiome using metagenomic sequencing data 371 

was executed through the functional modules of metaWRAP (v1.3.2)44. All 372 

metagenomic sequencing data underwent quality control and removal of human 373 

contamination using metaWRAP-Read_qc. Clean reads were then assembled with the 374 

metaWRAP-Assembly module using metaSPAdes (v3.13.0)45. The assembled contigs 375 

were binned into bins using three metagenomic binning tools: MetaBAT (v2.12.1)46, 376 

MaxBin (v2.2.6)47, and CONCOCT (v1.0.0)48. The default minimum length of contigs 377 

used for constructing bins with MaxBin2 and CONCOCT was 1000 bp, and metaBAT2 378 

was defaulted to 1500 bp44. The bins from each binning tool were integrated and refined 379 

with Bin_refinement module of metaWRAP with options “-c 50 -x 10”, corresponding to 380 

the criterion of medium-quality draft MAGs32. CheckM (v1.0.12)49 was used to estimate 381 

the completeness and contamination of the bins, and the minimum completion and 382 

maximum contamination were 50% and 10%, respectively. 383 

 384 

De-replication of MAGs and genome annotation. All 7,776 MAGs underwent de-385 

replication into non-redundant MAGs (nrMAGs) using dRep (v3.0.0) (≥50% genome 386 

completeness and ≤5% contamination)50. Initially, MAGs from three cohorts were 387 

divided into primary clusters using Mash at a 90% Mash ANI. Then, each primary 388 

cluster was used to form secondary clusters at the threshold of 99% ANI with at least 30% 389 

overlap between genomes51. Taxonomic annotation of all nrMAGs was conducted using 390 

GTDB-Tk (v.1.4.1)52 based on the Genome Taxonomy Database 391 

(http://gtdb.ecogenomic.org/)34, providing standardized taxonomic labels for subsequent 392 

analysis in this study. 393 

 394 

Abundance estimation and phylogenetic analysis of nrMAGs 395 

The metaWRAP-Quant_bins module coupled with Salmon (v0.13.1)53 was employed to 396 

access the abundance of each nrMAGs in each metagenomic sample. The phylogenetic 397 

tree of the nrMAGs was constructed using PhyloPhlAn (v3.0.58)54 and visualized 398 

through iTOL (https://itol.embl.de/)55. 399 

 400 
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Statistical analysis 401 

Microbial alpha diversity measures were calculated at the nrMAGs level using R vegan 402 

package (v2.5.7), and principal coordinates analysis (PCoA) plots were generated using 403 

robust Aitchison distance56. Differences in microbiome compositions across different 404 

groups were tested by the permutational multivariate analysis of variance 405 

(PERMANOVA) using the “adonis” function in R vegan package. All PERMANOVA tests 406 

were performed with 9999 permutations based on the robust Aitchison distance. We 407 

defined strain-sharing rates as the total number of shared strains between two samples 408 

divided by the number of common species identified from the two samples. Differences 409 

between the groups were analyzed using a Wilcoxon–Mann–Whitney test. For 410 

differential abundance analysis and GMPT (Generalized Microbe Phenotype 411 

Triangulation) pipeline27, we used ANCOM (analysis of composition of microbiomes)57, 412 

with a Benjamini–Hochberg correction at a 5% level of significance. All statistical 413 

analysis was performed with R (version 3.6.3). 414 

 415 

Data availability  416 

Metagenomic data from HMP are available via https://portal.hmpdacc.org. The 417 

metagenomic data from the study of Verma et al.30 can be downloaded via NCBI 418 

Sequence Read Archive (BioProject ID PRJNA705895). The metagenomic data from 419 

the BIDMC-cohort is available in the NCBI Bioproject under accession code 420 

PRJNA1067975. Metagenome-assembled genomes for all samples are available on 421 

Figshare (https://doi.org/10.6084/m9.figshare.25355857). 422 

 423 

Code availability  424 

The code for the construction of the MAGs catalog and statistical analysis and 425 

visualization is available in the GitHub repository (https://github.com/ShanlinKe/CDI). 426 
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 718 

Fig. 1 Study workflow and the reconstruction of the microbial genome catalog. a. 719 

To rationally design microbial consortia against C. difficile, we sought to infer species 720 

that may potentially inhibit C. difficile from various metagenomic data. We collected a 721 

total of 285 shotgun metagenomic sequencing data from three independent cohorts. A 722 

total of 7,769 MAGs (≥50% completeness and ≤5% contamination) were constructed 723 

from all metagenomic sequencing data. The MAGs were then dereplicated to 3,741 724 

non-redundant MAGs (nrMAGs, strain level) based on 99% of ANI. The taxonomy 725 

annotation and abundance estimation of nrMAGs were then conducted. We then 726 
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applied the generalized microbe-phenotype triangulation (GMPT) method to identify 727 

candidate strains for the development of microbiota probiotics.  b. The distribution of 728 

completeness and contamination of nrMAGs is depicted, with the color of each point 729 

representing the respective phylum. Additionally, the size of each point corresponds to 730 

the genome size of the nrMAGs. c. A phylogenetic tree of nrMAGs was constructed 731 

using PhyloPhlAn. In this representation, the color of the outer cycle and clades 732 

signifies the phylum, while the bar plot within the cycle illustrates the average 733 

abundance across all microbiome samples. 734 
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Fig. 2 The microbial genome catalog and microbial diversity. a. Sample distribution 756 

among different datasets and clinical groups. b. Number of MAGs recovered from 757 

different datasets and clinical groups. Violin plot of basic characteristics of nrMAGs on 758 

completeness (c), contamination (d), genome size (e), and N50 (f). g. The top-40 759 

species with the highest strain-richness (i.e., number of nrMAGs) identified from the 760 

microbial genome catalog. The color of each bar signifies the phylum. Richness 761 

(number of identified nrMAGs) of the gut microbiome from HMP (h), Verma-cohort. (i), 762 

and BIDMC-cohort (j). Principal Coordinates Analysis (PCoA) plot based on robust 763 

Aitchison distance from HMP (k), Verma-cohort. (l), and BIDMC-cohort (m). All 764 

PERMANOVA tests were performed with 9999 permutations based on robust Aitchison 765 

distance, two-sided. 766 
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Fig. 3 The changes in recipients’ microbiome after FMT. a. The distribution of 786 

nrMAG among donors, pre-FMT recipients, and post-FMT recipients. b, The distribution 787 

of lost nrMAGs after FMT at the species level, and the color of each bar represents the 788 

phylum. c. The distribution of engrafted nrMAGs after FMT at the species level, and the 789 

color of each bar represents the phylum. d. The distribution of engrafted nrMAGs after 790 

FMT at the phylum level. e, The robust Aitchison distance between donor and recipient 791 

pairs before and after FMT. f, The nrMAG share rate between donor and recipient pairs 792 

before and after FMT. g. The differential abundant nrMAG distribution among three pair-793 

wise comparisons between donors, pre-FMT recipients, and post-FMT recipients. h. 794 

The heat map showed the abundance distribution of overlapped nrMAGs identified from 795 

the comparisons of donor vs. pre-FMT recipients and pre-FMT recipients vs. post-FMT 796 

recipients. These nrMAGs were taxonomically annotated using GTDB-Tk based on the 797 

Genome Taxonomy Database.  798 
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Table. 1 Summary of the literature evidence regarding the potential role of 817 

protective species in CDI identified through our computational pipeline. The top 818 

25 potential protective species were selected based on the overlapped protective 819 

strains identified from the GMPT results with two sets of HMP microbiome data.   820 

Family R
an

k 

Species Taxonomy 
ID 

alternate 
names 

PMID 
Author 

reference 
Sponsor 

Study size and 
Groups 

Effect 

Lachnospira
ceae 

1 Dorea 
formicigenera
ns 

39486            
 Eubacterium 
formicigenerans 

34252073π 
Verma30 

22 rCDI (pre/post FMT) 
Healthy donors 

D. formicigerans is top 5 
engrafter in rCDI patients after 
FMT from donor 

2 GCA-
900066135 
sp900066135 
 

2830660   
Lachnospiraceae 
bacterium 
Marseille-Q4251 

   

6 Anaerobutyri
cum hallii 

39488           
Eubacterium hallii  

32384826 
Crobach58 

41 CDI, 41 colonized, 43 
controls 

↑ A. hallii: controls vs. 
colonized  
(↑6.6x AB+, ↑ 3.8x AB-) 

8 Dorea 
longicatena 
 

88431            
Eubacterium sp. 
III-35 
 

37060545 
Louie39  
Vedanta 

Phase 2 RCT VE303 (8-
organism consortium) 
79 rCDI 1:1:1  
placebo (PBO): low (LD): 
high-dose (HD) VE303 

D. longicatena is part of 
consortium. 
8-week CDI recurrence: PBO 
45.5%, LD 37.0%, HD 13.8% 
(p=0.006 HD vs. PBO) 

9 Blautia 
obeum 

40520           
Ruminococcus 
obeum 

30816855 
Mullish59  
Finch 

14 rCDI receiving FMT 
(pre, post: 1, 4, 12 
weeks)  
5 healthy donors 

Pre-FMT: ↓ bile salt hydrolase 
(BSH) activity and genes 
(bsh/baiCD), ↑ primary bile 
acids (taurocholic) 
Post-FMT: ↑ bsh/baiCD, ↑B. 
obeum (BSH producer) 
Culture supernatant of B. 
obeum (& 3 other BSH+ 
species) attenuates CDI in 
mouse model  

33854066 
Berkell60 

AB+: 14 CDI, 64 AAD, 
669 no diarrhea (ND) 

B. obeum is 21.5% of OTU30 
(oligotyping) 
↑OTU30 3.8x: (AAD+ND) vs. 
CDI 
↑OTU30 3.7x: AAD vs. CDI 

1
0 

Bariatricus 
comes 

GBIF 
10828568 

   

1
5 

Mediterraneib
acter faecis 

592978        
Ruminococcus 
faecis 

   

1
7 

Anaerostipes 
hadrus 

649756          
Eubacterium 
hadrum 

   

1
8 

Lachnospira 
sp900316325 

    

2
0 

Agathobacter 
rectalis 

39491      
Pseudobacterium 
/ Roseburia / 
Eubacterium 
rectale  
Bacteroides 
rectalis 

   

2
1 

CAG-81 
sp900066535 

    

2
3 

UBA7182 
sp003480725 

1952150       

2
5 

Blautia 
wexlerae 

418240 33854066 
Berkell60 

See B. obeum B. wexlerae is 57.9% of 
OTU30 (oligotyping)  

Family level effects (human studies 
only) 

27166072 
Milani61 

29 Non-CDI, AB+ 
30 Non-CDI, AB- 
25 CDI 

Lachnospira relative 
abundance:  
CDI: 0.31%, AB+: 1.22%, AB-: 
3.28% 
(p<0.005 CDI vs. AB-) 
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30785932 
Han62 

Cd tcdB: 
79 NAAT+ 
20 NAAT- 

Lachnospira relative 
abundance:  
NAAT + 9.00%, NAAT – 
16.51% 
p=0.003 

35045228 
Feuerstadt6
3 Seres 

Phase 3 RCT 
182 rCDI  
1:1 
PBO: SER-109  

SER-109 contains, among 
others, the following genera of 
Lachnospiraceae: 
Anaerobutyricum, 
Anaerostipes, Bariatricus, 
Blautia, Dorea, Lachnospira, 
Mediterraneibacter 
8-week CDI recurrence: PBO 
40%, SER-109 12% (p<0.001) 

Bacteroidac
eae 

5 Phocaeicola 
dorei 
 

357276             
Bacteroides dorei 

   

1
3 

Phocaeicola 
vulgatus 
 

821                    
Bacteroides 
vulgatus 

2566734 π 
Tvede64 

RCT 6 rCDI, rectally 
instilled: 
2 donor feces vs. 
4 bacterial strain mix 

All patients had clinical 
resolution at 24h. No 
recurrence within 1 year.  
P. vulgatus: one of 10-strain in 
mix, inhibited Cd growth in 
vitro 

1
4 

Bacteroides 
ovatus 

28116            
           
Pasteurella ovata, 
Pseudobacterium 
ovatum 
Bacteroides 
fragilis subsp. 
ovatus 

2566734 π 
Tvede64 

See P. vulgatus B. ovatus: one of 10-strain in 
mix, inhibited Cd growth in 
vitro 

29076071 π 
Yoon65 
KoBio Labs 

In vitro study of 
susceptibility of Cd 
cultures to supernatants 
of different bacterial 
organisms 

B. ovatus SNUG40239 
supernatant inhibited Cd 
growth in a bile acid 
dependent manner. 

30816855 
Mullish59  
Finch 

See B. obeum Post-FMT: ↑B. ovatus (BSH 
producer) 
Culture supernatant of B. 
ovatus (& 3 other BSH+ 
species) attenuates CDI in 
mouse model 

31488869 
Amrane66 

11 CDI 
8 healthy donors 

B. ovatus among top 3 
cultivable organisms absent in 
CDI and present in >75% of 
controls. 

31660343 
Hourigan67 

9 children with CDI/rCDI 
receiving FMT (pre/post) 
Donor stool 

↑ B. ovatus:  
recipients post vs. pre FMT 
(p=0.03) 
donors vs. recipients pre-FMT 
(p=0.04) 

38280981 
Douchant68 

Murine model of CDI 
18 & 4-strain synthetic 
microbial communities 

B. ovatus part of synthetic 
microbial community: 
Protects mice from CDI (RT 
027, 078)  
Effect persists with bacteria-
free supernatant. 
In vitro Cd toxin proteolysis 

2
4 

Bacteroides 
uniformis 

820 36443547 
Francisco69 

200 CDI with cancer 
42 severe/fulminant  
158 non-severe   

B. uniformis top species 
associated with non-severe 
CDI by IDSA/SHEA criteria 
(effect size 2.5, p<0.05) 

Oscillospirac
eae 

3 Oscillibacter 
welbionis 

--    

4 Faecalibacter
ium 
prausnitzii 

853              
Fusobacterium 
prausnitzii 

28090385 
Moelling70 

N=1, rCDI cured with 
FMT 
Followed for 4.5 years 

F. prausnitzii and A. 
municiphila only two species 
engrafting at end of follow-up 

29385239 π 

Roychowdh
ury71 

CDI mouse model, 13 
mice/group, orally 
received: F. prausntizii 
(Fp), Fp + Potato Starch 
(PS), PS, Supernatant of 
Fp + PS, and saline 

F. prausnitzii + PS vs. saline: 
↓ Cd DNA (day 3) 
↓ IL-1β & IL-8 mRNA (day 5 
vs. 1) 
↑ IL-10 mRNA (day 5 vs. 1) 

31660343 See B. ovatus ↑ F. prausnitzii: 
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Hourigan67 donors vs. recipients pre-FMT 
(p=0.008) 

32296918 
Vakili72 

28 CDI 
56 non-CDI 

↑ F. prausnitzii: 
Non-CDI vs. CDI (p=0.015) 

32801806 
Vakili73 

50 CDI 
50 healthy controls 

↑ F. prausnitzii: 
Controls vs. CDI (p<0.05) 

33836037 
Björkqvist38 

15 rCDI receiving FMT 
(pre, post: 2 weeks, 2-4 
months) 
9 healthy donors 

↑ F. prausnitzii: 
Donors vs. rCDI pre-FMT 
(p<0.01) 
rCDI post-FMT vs. pre-FMT 
(p<0.001) 

34924229 
Shoaei74 

69 Burn unit patients 
(23 CDI, 46 non-CDI) 
46 healthy controls 

↑ F. prausnitzii: 
Non-CDI vs. CDI (p<0.001) 
Controls vs. CDI (p=0.003) 

35005566 
Gu75 
Finch 

30 healthy adults, 
amoxicillin-clavulanate: 
(13 AAD, 17 non-AAD) 
Days: 0, 1, 2, 3, 7, 14, 28 

↑ F. prausnitzii: 
On day 0, ↓2.33x risk of AAD 
Non-AAD vs. AAD (Days 1-7, 
p<0.05) 

35477270 
Dudik76 

Narrative review F. prausnitzii in top 2 of most 
promising ‘next-generation 
probiotics’ 

2
2 

Lawsonibacte
r 
sp900066645 

    

Family level effects (human studies 
only) 

35045228 
Feuerstadt6
3  
Seres 

See Lachnospiraceae SER-109 contains, among 
others, the following genera of 
Oscillospiraceae 
~[Ruminococcaceae]:  
Faecalibacterium, 
Lawsonibacter 

Streptococc
aceae 

7 Streptococcu
s salivarius 

1304 
Lactobacillus 
salivarius 

12672580 
Lee77 

In vitro study: 102 lactic 
acid producing bacteria 
from 32 healthy infants. 

S. salivarius among 12/32 
strains with anti-Cd activity in 
co-culture 

Rikenellace
ae 

1
1 

Alistipes 
putredinis 

28117    

unclassified 
Bacillota 

1
2 

UBA1191 1947933          
Firmicutes 
bacterium 
UBA1191 

   

Odoribacter
aceae 

1
6 

Odoribacter 
splanchnicus 

28118            
Bacteroides 
splanchnicus 

32589701 
Solbach78 

1506 hospitalized 
patients 
139 colonized on 
admission 
16 new Cd through 
admission 

↑ O. splanchnicus on 
admission associated with 
absence of Cd colonization 
through admission (LDA 3.4, 
FDR<0.05) 

Peptostrepto
co-ccaceae 

1
9 

Romboutsia 
timonensis 

1776391          
Romboutsia sp. 
DR1 

   

 821 
PMID: Pubmed ID, Cd: Clostridioides difficile, CDI: Cd Infection, rCDI: recurrent CDI, AB+: antibiotic-exposed, AB-: non-antibiotic-822 
exposed, FMT: Fecal Microbiota Transplantation, NAAT: Nucleic Acid Amplification Test, tcdB: Cd Toxin B gene, RCT: Randomized 823 
Controlled Trial, OUT: Operational Taxonomic Unit, RT: Ribotype, AAD: Antibiotic Associated Diarrhea, LDA score: Linear 824 
Discriminant Analysis score, FDR: False Discovery Rate 825 
Π denotes strain-level information available in the reference (Dorea formicigenerans ATCC 27755, Phocaeicola vulgatus A33-14, 826 
Bacteroides ovatus A40-4, Bacteroides ovatus SNUG40239, Faecalibacterium prausnitzii ATCC 27766)  827 
 828 
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