

1 **Article type**

2 Original research

3

4 **Manuscript title**

5 Favorable histo-molecular remodeling of pancreatic ductal adenocarcinoma after Total

6 Neoadjuvant Therapy including Stereotactic Body Radiotherapy

7

8 **List of authors**

9 Christelle Bouchart^{1,2*§}, Oier Azurmendi Senar^{2§}, Julie Navez³, Laurine Verset⁴, Anaïs
10 Boisson⁵, Matthieu Hein⁶, Kosta Stosic², Eric Quertinmont², Vjola Tafciu², Shulin Zhao⁷, Léo
11 Mas⁷, Nicky D'Haene⁴, Dirk Van Gestel¹, Luigi Moretti¹, Ilse Rooman⁸, Vincent Detours⁹,
12 Jean-Baptiste Bachet⁷, Pieter Demetter², Karen Willard-Gallo⁵, Rémy Nicolle¹⁰, Tatjana
13 Arsenijevic^{2,11}, Jean-Luc Van Laethem^{2,11}.

14 *§ Both authors contributed equally*

15 ¹ Department of Radiation Oncology, HUB Institut Jules Bordet, Université Libre de
16 Bruxelles, Rue Meylenmeersch 90, 1070 Brussels, Belgium.

17 ² Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de
18 Lennik 808, 1070 Brussels, Belgium.

19 ³ Department of Hepato-biliary-pancreatic surgery, Erasme University Hospital, Université
20 Libre de Bruxelles, Brussels, Belgium

21 ⁴ Department of Pathology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Rue
22 Meylenmeersch 90, 1070 Brussels, Belgium.

23 ⁵ Molecular Laboratory Unit (MIU), HUB Institut Jules Bordet, Université Libre de Bruxelles,
24 Rue Meylenmeersch 90, 1070 Brussels, Belgium.

25 ⁶ Medicine Faculty, Erasme University Hospital, Université Libre de Bruxelles, Brussels,
26 Belgium

27 ⁷ Digestive oncology unit, Pitié Salpêtrière Hospital, Sorbonne University, APHP, Paris,
28 France.

29 ⁸ Laboratory of Medical and Molecular Oncology, Translational Oncology Research Center,
30 Vrije Universiteit Brussel, Brussels, Belgium.

31 ⁹ Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels,
32 Belgium

33 ¹⁰ Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL 8252, Université
34 de Paris Cité, Paris, France.

35 ¹¹ Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme
36 Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium.

37

38

39

40

41

42

43

44

45 **Abstract**

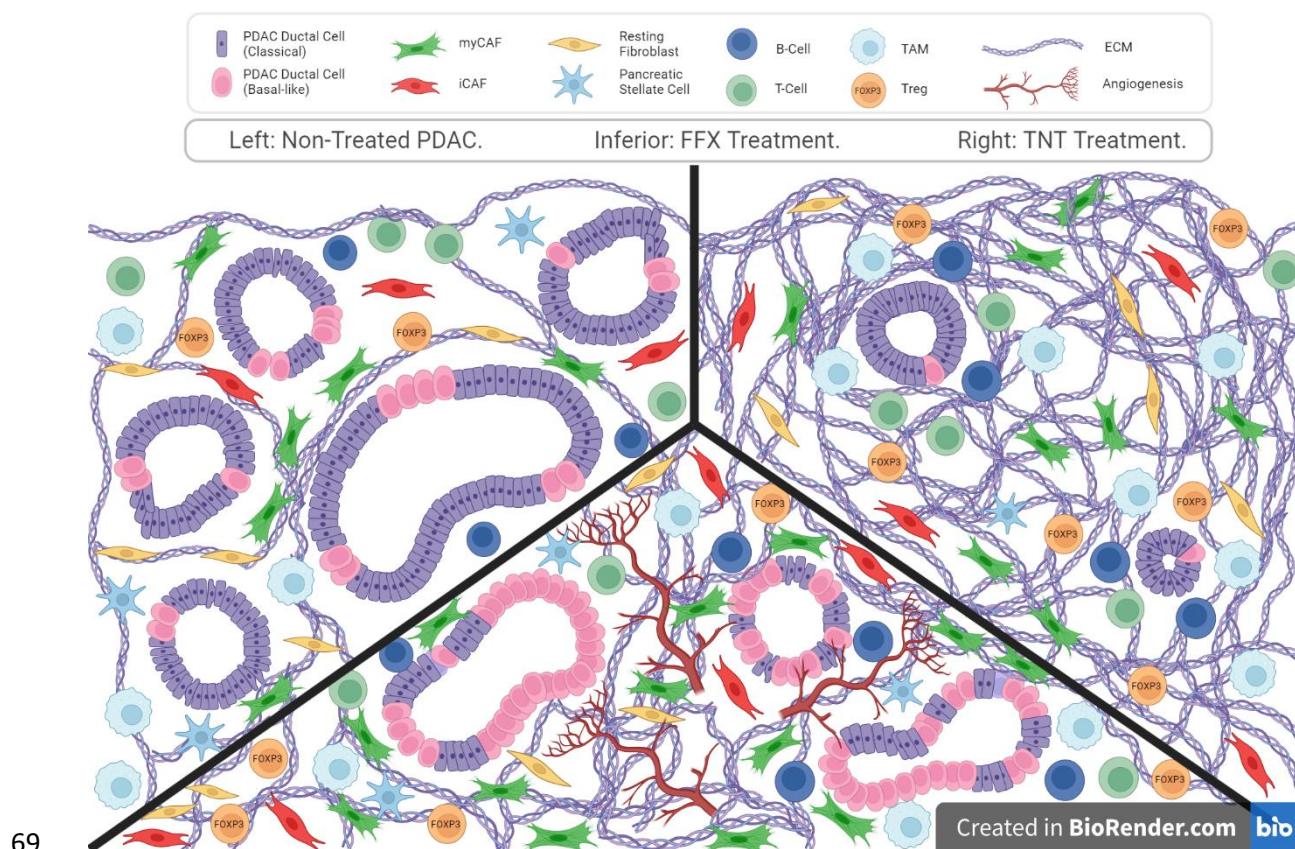
46 Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest tumors with slow
47 progress in systemic therapies due to its peculiar and resistant tumor microenvironment.
48 Inclusion of isotoxic high-dose stereotactic body radiation therapy (iHD-SBRT) into a total
49 neoadjuvant strategy (TNT) is promising for the treatment of localized PDAC. However, the
50 histo-molecular effects of iHD-SBRT are still poorly explored. In this study, we have shown
51 that TNT, associating FOLFIRINOX [FFX] followed by iHD-SBRT, leads to significant and
52 long-lasting remodeling of PDAC, affecting its stromal, metabolic, and molecular features.
53 Contrary to FFX alone, TNT is able to enrich tumors with Classical and Inactive stromal
54 signatures associated with better prognosis. Furthermore, iHD-SBRT seems capable to
55 counteract several of the detrimental modulatory effects induced by FFX such as Epithelial-to-
56 Mesenchymal Transition or angiogenesis. Additionally, we identified inflammatory cancer-
57 associated fibroblasts signatures as an important prognostic factor. This work provides new
58 rationale to sequentially combine FFX with iHD-SBRT and suggests new pathways that can be
59 targeted in combination with a TNT.

60

61

62

63


64

65

66

67

68 **GRAPHICAL ABSTRACT**

69

70

71

72

73

74

75

76 **KEY WORDS**

77 Radiotherapy – Pancreatic cancer - Stereotactic radiotherapy – Neoadjuvant therapy –

78 Chemotherapy – Molecular subtyping - Immunohistochemistry – Tumor Microenvironment –

79 RNAseq

80

81

82 **INTRODUCTION**

83

84 As of today, pancreatic ductal adenocarcinoma (PDAC) remains one the deadliest tumors, with
85 a 5-year survival rate of less than 12%. [1] Despite recent improvements in the therapeutic
86 arsenal with the introduction of more active multi-agent chemotherapy (FOLFIRINOX [FFX],
87 Gemcitabine / nab-paclitaxel or NALIRIFOX), progress in systemic therapies for PDAC has
88 been slow compared to other cancers. [2-4] While many clinical trials have explored the
89 efficacy of immune checkpoint inhibitors (ICIs), cancer vaccines, or targeted therapy, these
90 have not led to major changes in clinical practice. [5,6] The difficulty in obtaining concrete
91 oncological benefits in these clinical trials stems largely from the peculiar tumor
92 microenvironment (TME) of PDAC, which provides many paths of resistance and
93 aggressiveness. [5,6] Therefore, it is crucial to better comprehend the complexity and the
94 crosstalk mechanisms involved, as well as to improve our understanding of how modern
95 therapies currently used in clinical practice influence the modulation of the TME.

96 Neoadjuvant therapy is a rapidly growing strategy for non-metastatic PDAC patients, although
97 the exact sequence to use remains to be determined. [7] The FFX regimen is currently the
98 preferred chemotherapy used in the neoadjuvant setting by many centers due to the results of
99 several trials in metastatic and non-metastatic patients showing a significant superiority in
100 survival compared to gemcitabine alone, as well as a safe and active profile in neoadjuvant
101 phase II trials. [2, 8-11] The addition of (nearly) ablative stereotactic body radiation therapy
102 (SBRT) to multi-agent chemotherapy in the neoadjuvant setting as a total neoadjuvant therapy
103 (TNT) may offer several advantages over conventional chemoradiotherapy (CRT). These
104 include notably the capacity to deliver more easily and rapidly a higher biologically effective
105 dose (BED) to the tumor, associated with improved survival outcomes, as well as a shorter
106 break of full-dose chemotherapy. [7, 12-14] Several studies reported promising results and an

107 increasing number of (randomized) phase II clinical trials are currently exploring this question,
108 including ours (STEREOPAC trial – NCT05083247). [7,14-18] However, if radiation therapy
109 is able modulate the TME, the impact of modern high-dose SBRT (> 35Gy in 5 fractions) on
110 the immune components and other molecular features is still poorly known in PDAC. A better
111 understanding of these modulations may pave the way for the development of molecularly
112 oriented combination trials with immune and/or targeted therapies as well as stratified treatment
113 strategies, which are urgently needed in PDAC. The identification of molecular subtypes in
114 PDAC has gained a lot of interest in the last decade and it is now clearer that these molecular
115 signatures have the potential to lead to better selection of patients, the prediction of the response
116 to treatments and therefore, the development of individualized treatments. [19-26] While the
117 relationship between molecular subtypes and chemotherapy is progressively explored, little is
118 known regarding RT and to our knowledge, nothing for high-dose SBRT nor its inclusion into
119 a TNT sequence.

120 In this study, we aimed to characterize for the first time in PDAC the molecular subtypes,
121 transcriptomic profiles and immuno-modulations following FFX alone or in a TNT including
122 isotoxic high-dose SBRT (iHD-SBRT). We hypothesized that iHD-SBRT can sustainably
123 modify the molecular and transcriptional profiles in PDAC, shedding light on key cells and
124 pathways involved and leading to a better understanding of the respective contribution and
125 complementarity of a TNT.

126

127 **RESULTS**

128

129 **Patients characteristics and outcomes**

130 A total cohort of 124 retrospectively collected patients treated for localized PDAC and
131 surgically resected between 2011 and 2020 was assessed for eligibility. Sixty-five patients were

132 initially included, but fifteen were subsequently excluded, as they did not meet the RNA
133 sequencing (RNAseq) quality check criteria. Finally, RNAseq data from 50 PDAC patients
134 were considered for this study. This cohort comprises: 1/ Seventeen patients in the non-
135 neoadjuvant (No_NAT) group; 2/ Seventeen patients in the FFX group and 3/ Sixteen patients
136 in the TNT group (FFX followed by iHD-SBRT before surgery). The methodology workflow
137 of the study is described in the CONSORT-like clinic-molecular diagram in **Fig. 1**. In the TNT
138 cohort, the patients underwent an oncological surgical resection at a median time of 44 days
139 (31 - 70 days) after iHD-SBRT, and this group included significantly more locally advanced
140 patients. No significant difference in median overall survival (OS) or median disease-free
141 survival (DFS) were observed between the three groups. However, we noted that the 1-year
142 DFS was significantly improved in the TNT cohort (TNT vs FFX vs No_NAT: 87.5 vs 70.6 vs
143 41.2%, respectively, $p=0.017$) (**Supplementary Fig. 1**). The main clinico-pathological
144 characteristics of the included patients are summarized in **Table 1**.

145

146 **iHD-SBRT following chemotherapy induction with FFX is able to reverse several of the**
147 **main unfavorable transcriptome alterations induced by FFX in PDAC**

148 To examine the biological functions of the identified differentially expressed genes (DEGs)
149 between different groups, we performed the gene ontology (GO) functional annotation
150 describing genes and their associations according to three ontology categories (molecular
151 function, cellular component and biological process) (**Fig. 2** and **Supplementary Fig. 2**). [27]
152 In the GO analyses, the FFX group, compared to the No_NAT samples, demonstrated a
153 significant positive enrichment in mitotic cell cycle arrest, extracellular matrix (ECM),
154 transcriptional activity (including histone demethylation), regulation of glucose transport, as
155 well as for regulation of angiogenesis, the vascular endothelial growth factor (VEGF) signaling
156 pathway and epithelial to mesenchymal transition (EMT). Conversely, when iHD-SBRT was

157 added to FFX in the therapeutic strategy (TNT vs FFX group), we interestingly observed a
158 significant negative enrichment in glucose transport, angiogenesis-related items, as well as
159 ECM assembly and EMT process. Furthermore, the TNT group showed significant positive
160 enrichment scores notably related to mitochondrial activity, glutathione biosynthetic process
161 and apoptotic cell clearance, while a reduced level of items was detected related to cell
162 adhesion, cell migration (including for fibroblasts), ECM organization and cellular response to
163 TGF β stimulus.

164 GO and Molecular signatures database (MSigDB) canonical pathways and, consistently,
165 mitochondrial activity, glutathione metabolism and ribosomal pathways were significantly
166 enriched post-iHD-SBRT (TNT vs No_NAT only). Additionally, when single-nucleus
167 signatures from Hwang *et al.* were applied, significant enrichments were found for the
168 ribosomal biogenesis whereas TNF/NF-kB signaling exhibited reduced level after iHD-SBRT
169 (**Fig. 3**). [25]

170

171 **Addition of iHD-SBRT to FFX is associated with transcriptomic signatures and PAMG**
172 **score linked to better prognosis**

173 The molecular subtype signatures from the main studies available in the field (Puleo *et al*;
174 Moffitt *et al.*; Bailey *et al.*; Hwang *et al.* [20-22, 25]) were explored in this cohort to determine
175 the influence of modern neoadjuvant treatments, including high-dose SBRT (**Fig. 3**). When
176 compared to both No_NAT and FFX groups, the TNT group showed a significant enrichment
177 in the more favorable “Classical subtype” signatures (**Fig. 3a-b**, in red). Furthermore, the
178 addition of iHD-SBRT was also associated with a reduced level of “activated stroma” and
179 “Basal-like subtype” signatures from all major molecular classifications, which are associated
180 with poorer prognosis (**Fig. 3a-b**, in blue).

181 To get a deeper insight into the evolution of molecular subtypes' following the two different
182 neoadjuvant treatments, we applied the recently published single-nucleus signatures from
183 Hwang *et al.* to our cohort. [25] The FFX group compared to No_NAT was enriched with the
184 "Mesenchymal" signature, representing a subtype of "Basal-like" cells, and several stromal
185 signatures associated with highly active stroma, all of which being associated with worse
186 clinical outcomes (**Fig. 3c and Supplementary Fig. 3**). The neural-like progenitor and
187 neuroendocrine -like programs identified in Hwang *et al.* as significantly higher post chemo-
188 radiotherapy were not significantly enriched in our cohort (**Supplementary Data 1-2**). [25]
189 Interestingly, when compared to both the No_NAT and FFX cohorts, the TNT group was
190 notably significantly associated with a "Basaloid" signature, representing a particular subtype
191 of "Basal-like" cells associated with better clinical outcomes (**Fig. 3d-e**). [25]
192 Finally, a continuous gradient of PDAC pre-existing classifications, the pancreatic
193 adenocarcinoma molecular gradient (PAMG), was applied and revealed a significant favorable
194 shift in samples treated with TNT towards a higher PAMG score compared to FFX alone. These
195 data confirm that the TNT group is significantly enriched with the "Classical" subtype gene
196 signatures, associated with better cell differentiation, as well as improved clinical outcomes
197 (**Fig. 3f**). [28]

198
199 **TNT modulates the metabolic state of PDAC towards an enrichment of the**
200 **cholesterogenic metabolic profile**

201 Given that FFX alone and TNT appear to induce opposite enrichment scores regarding several
202 transcriptional items related to metabolism, such as mitochondrial activity (including oxidative
203 phosphorylation) and glucose import (**Fig. 2b and Supplementary Fig. 3**), a deeper
204 characterization of the metabolic state was performed in our cohort using the metabolic gene

205 signatures identified by Karasinska *et al.* [29] In all three of our groups, the glycolytic genes
206 were significantly associated with “Basal-like” genes, while cholesterogenic genes were with
207 “Classical” subtype genes (**Supplementary Fig. 4**). Compared to FFX, TNT was associated
208 with a significant positive enrichment score related to cholesterol biosynthesis, which correlates
209 with favorable clinical outcomes (**Supplementary Fig. 4**). [29]

210

211 **TNT generates different modulations on the cancer associated fibroblasts (CAFs)**
212 **transcriptomic signatures than FFX alone**

213 As it was observed that both FFX and TNT had a significant transcriptomic impact on stromal
214 signatures and ECM organization, xCell analyses were performed, revealing a significantly
215 higher stroma score (**Fig. 4a**) and CAFs population (**Fig. 4b**) after neoadjuvant FFX compared
216 to No_NAT. Several bulk and single-cell based CAF classifications were then tested with
217 GSEA to observe the specific CAFs modifications induced by FFX and TNT (**Fig. 4c-h**).

218 An enrichment in “Immunomodulatory” CAFs (from Hwang *et al.* [25]) and inflammatory
219 CAFs (iCAF) signatures was observed in both neoadjuvant cohorts compared to No_NAT.
220 Interestingly, after FFX alone, compared to the two other groups, a significant enrichment in
221 myofibroblastic CAFs (myCAF) signatures, associated with worse prognosis, was observed
222 (**Fig. 4c and f**). Furthermore, our results indicate that patients treated with TNT display fewer
223 pancreatic stellate cells (PSCs) as well as myCAF compared to both No_NAT and FFX groups
224 and are enriched in “Normal Fibroblasts” signatures compared to the No_NAT samples (**Fig.**
225 **4d-e, g and h**).

226

227 **iCAF but not myCAF are significantly associated with better clinical outcome in**
228 **No_NAT and TNT cohorts**

229 iCAF and myCAF transcriptomics signatures from Elyada *et al.* were tested independently
230 using the single sample classifier Gene Set Variation Analysis (GSVA) to classify all the
231 samples according to their enrichment in high and low groups for each subtype. [30]
232 Interestingly, in our whole cohort, iCAF-high samples had a significantly better OS than the
233 iCAF-low group ($p=0.0038$) (**Fig. 4i**). In addition, the iCAF-high samples displayed a
234 significantly better LR-DFS compared to the iCAF-low in the TNT cohort ($p=0.038$) (**Fig. 4k**).
235 This observation was validated in a No_NAT external cohort (Puleo *et al.* [22]; $n=309$),
236 confirming a significant difference in relapse free survival according to iCAF enrichment
237 ($p=0.041$) (**Supplementary Fig. 5**). No significant differences were observed between high
238 and low myCAF groups for DFS and OS in our cohort, nor in the Puleo *et al.* cohort (**Fig. 4j**
239 and **Supplementary Fig. 5**). These results suggest an important potential of iCAF as a
240 prognostic / predictive factor.

241

242 **Neoadjuvant treatments increase desmoplasia without significantly affecting tumor-**
243 **infiltrating lymphocytes (TILs) except for the T helper population**

244 To further assess the stromal characteristics of PDAC, the percentage of the tumoral area
245 occupied by collagen was quantified through immunohistochemistry (IHC) analysis across the
246 entire cohort. Consistent with our previously described findings, a significant increase in
247 Collagen1A1 (COL1A1) deposition – a marker indicative of pan-fibroblast population - was
248 observed in both neoadjuvant groups compared to the No_NAT group (68.4 vs 78.6 vs 83.27%
249 for No_NAT vs FFX vs TNT, respectively, $p<0.001$) (**Fig. 5a**). Additionally, a non-significant
250 trend towards a lower expression of α SMA (a marker associated with myCAFs) was noticed in
251 the TNT group compared to FFX (**Fig. 5b**). Notably, despite the increase in collagen deposition
252 in tumors treated with neoadjuvant treatments, no significant changes were observed in the
253 expression levels of CD3 TILs as well as cytotoxic CD8+ cells, including after TNT (**Fig. 5c**-

254 **d)**). Regarding T-cells, only the CD4+ T helper population was significantly decreased after TNT
255 compared to FFX and No_NAT groups (**Fig. 5e**). The B-cell CD20+ population was decreased
256 after NAT with a significant difference observed between TNT and No_NAT groups
257 (**Supplementary Fig. 6**). Following review by specialized GI pathologists (LV and PDM),
258 signs of tumoral cells injury such as cell swelling and pyknotic nucleus were often observed
259 after NAT (**Fig. 6**). The immune infiltration including tumor infiltrating lymphocytes (TILs)
260 did not appear to be sequestered in the collagenous stroma after TNT, and remained present in
261 close proximity to the remaining tumoral glands, with TILs infiltrating directly within the
262 tumoral glands, as illustrated in **Fig. 6f**. The presence of scarce tertiary lymphoid structures
263 (TLS) within the tumoral area was identified on consecutive H&E and CD3/CD20 dual stained
264 slides and no significant difference was observed between the three groups (**Supplementary**
265 **Fig. 6**).

266

267 **Immunosuppressive cells remain present after both neoadjuvant treatments**

268 IHC stainings were performed to explore the immunosuppressive populations of pan-
269 macrophages CD68, CCR2, FOXP3 and PD-1/PD-L1 markers in the TME of our whole PDAC
270 cohort. After different neoadjuvant treatments, no significant differences were observed for
271 CD68+ and CCR2 + cells while the expression of FOXP3 was significantly increased in both
272 TNT and FFX group compared to No_NAT (**Fig. 5f**, **Fig. 6** and **Supplementary Fig. 6**). In the
273 TNT group, CD68+ cells were frequently visualized within the lumen of the remaining tumoral
274 glands (**Fig. 6h**). Expression of PD-L1 and PD-1 was scarce on our whole cohort. PD-L1
275 expression was significantly increased in the TNT cohort compared to both No_NAT and FFX
276 group but its expression on lymphocytes-like cells remained globally low and weak in the TNT
277 group with a majority of the samples being negative. On the other side, PD-1 expression was

278 significantly decreased and almost null in the TNT group compared to No_NAT and FFX
279 groups. (**Fig. 5g-h** and **Supplementary Fig. 6**)

280

281 **xCell deconvolution analysis of the immune TME shows decreased CD4 Th2 population**
282 **and increased macrophages polarity after TNT**

283 Given the significant decrease in the CD4+ population after TNT demonstrated by IHC data,
284 the presence of the signatures of various T helper cells sub-populations was explored through
285 xCell deconvolution analysis. The results revealed a significant reduction in the CD4 Th2
286 population in the TNT group compared to the FFX group (**Fig. 7**). In consistence with the IHC
287 data, xCell analysis of the global macrophage population marked no difference among the
288 groups. However, a significant increase in both, M1 and particularly M2-macrophage sub-
289 populations was observed in the TNT samples compared to the FFX group (**Fig. 7**). Conversely,
290 myeloid dendritic cells (MDCs) were significantly decreased after TNT compared to FFX
291 alone, while no significant differences were observed for the neutrophil population (**Fig. 7** and
292 **Supplementary Fig. 7**).

293

294 **DISCUSSION**

295

296 TNT incorporating modern multi-agent chemotherapy, in particular FFX, and innovative
297 radiotherapy such as (nearly) ablative SBRT, has shown promising oncological results in PDAC
298 and is currently investigated in several ongoing prospective randomized trials, including ours.
299 [7, 12-18] Indeed, even in the limited cohort of our study, the 1y-DFS was still statistically in
300 favor of the TNT group (87.5 vs 70.6 vs 41.2% for TNT, FFX and No_NAT, respectively,
301 p=0.017). Despite including significantly more LA patients with larger tumor diameter at
302 diagnosis, the TNT group displayed favorable median DFS and OS. Nonetheless, further well-

303 designed trials, combining these treatments with targeted therapies and stratified treatment
304 approaches, are urgently needed to improve the dismal patients' prognosis. [5] For this purpose,
305 we hereby investigated for the first time the histo-molecular modulations induced by FFX alone
306 and FFX followed by iHD-SBRT (TNT group).

307 We identified distinct gene expression patterns and key-pathways, clearly distinguishing two
308 different transcriptional profiles after neoadjuvant treatment with FFX alone or followed by
309 iHD-SBRT. Notably, high-dose SBRT demonstrated the ability to counteract and reverse many
310 of the detrimental transcriptional modulations associated with FFX. While FFX alone led to an
311 increased expression of unfavorable processes linked to EMT, angiogenesis, histone
312 demethylation and intracellular transport of glucose, the addition of iHD-SBRT reversed these
313 effects. Furthermore, metabolic profiles differed based on the neoadjuvant treatment received,
314 with TNT more associated with an increased mitochondrial activity and a more favorable
315 cholesterogenic metabolism compared to FFX alone. [29] These findings provide an additional
316 rationale for combining high-dose SBRT with FFX and may partially explain the promising
317 oncological outcomes obtained with this approach.

318 In the past decade, transcriptomic-driven subtyping of PDAC was performed by several groups,
319 including ours, using different classification names. [19-25] *In fine*, two main molecular
320 subtypes were systematically identified in these studies: the “Classical” and the “Basal-like”
321 subtype (also denominated as squamous or quasi-mesenchymal). [19-25] The latter is
322 associated with a poorer prognosis, less differentiated tumors and displayed characteristics of
323 EMT. [19-25] On the opposite, the “Classical” subtype is usually associated with better survival
324 outcomes and well-differentiated tumors. [19-25] Although data are still scarce and require
325 further validation in PDAC, the response to therapies seems different according to the molecular
326 subtypes. [24, 26, 28-29] In particular, it is suggested that FFX provides a better response (DFS)
327 in the “Classical” subtype compared to Basal-like subtypes for which gemcitabine-based

328 chemotherapy seems more effective. [19, 23, 26, 31-33] In our study, we observed a significant
329 enrichment in “Basal-like” and active stroma signatures after induction therapy with FFX only.
330 These results are in concordance with the literature, and in particular, with the study by Porter
331 *et al.* that demonstrated in PDAC cell lines a shift from the Classical toward the Basal-like state
332 after FFX treatment. [33-34] To the best of our knowledge, this is a first study investigating
333 potential reprogramming of molecular expression following high-dose SBRT (> 35Gy in 5
334 fractions) in PDAC. Interestingly, we observed with the addition of iHD-SBRT to FFX a
335 significant enrichment shift toward the “Classical subtype”, related to better prognosis, which
336 was consistent through various signatures available and the molecular gradient PAMG score.
337 [28] To date, the only study exploring molecular subtypes in patients treated with RT is the
338 recent single-nucleus RNAseq study by Hwang *et al.*. This study analyzed 43 PDAC patients;
339 18 with NT tumors and 25 having received highly variable types of neoadjuvant treatments
340 (including conventional CRT + FFX +/- losartan [n=19] and two patients treated with FFX +
341 low-dose SBRT [33Gy in 5 fractions] + losartan +/- nivolumab). [25] Although non-significant,
342 the authors reported a lower expression of the Squamoid program (similar to “Basal-like”), in
343 the CRT group compared to No_NAT group, supporting our findings. These data also highly
344 suggest that high-dose SBRT targets the “Basal-like” subpopulation more effectively
345 (selection) and/or reprograms the “Basal-like” population induced post-FFX into a more
346 “Classical-like” one (reprogramming). This molecular plasticity process could be mediated
347 through TGF β activity, as suggested by our transcriptomic data. Indeed, TGF β has been
348 implicated as a key regulator of cancer cell plasticity between the “Basal” and “Classical” states
349 in PDAC mouse models, with the TGF β blockade promoting the “Classical” state with
350 increased chemosensitivity. [35]

351 One of the main transcriptomic modulations observed after neoadjuvant treatments involves
352 stroma remodeling. After iHD-SBRT, compared to both NT and FFX groups, a clear shift

353 towards a more normalized stroma associated with better prognosis was noted. This prompted
354 further investigation into several key-stromal components. Notably, the deposition of ECM,
355 particularly collagen I, significantly increased after neoadjuvant treatments as evidenced by
356 RNAseq / IHC analyses and corroborated by previous studies [36-37]. While an important
357 desmoplasia was previously thought to be only a contributor of tumor progression due to factors
358 such as increased of interstitial fluid pressure, barrier to immune intratumoral infiltration and
359 drug delivery, recent findings suggest that an increased stromal compartment could correlate
360 with a better survival and restrain progression, depending on the cells of its origin. [36-42] In
361 untreated PDAC, the complex and heterogeneous CAF population is the main origin of the
362 desmoplasia ($\approx 90\%$) but their modulations induced by RT are almost unknown. [41,42] Despite
363 observing a significant increase in COL1A1, the population of myCAF_s, reputed to be the
364 subtype most involved in ECM deposition and associated with poor prognosis, was not
365 increased post iHD-SBRT as evidenced by both RNAseq and IHC analysis. [43-45] These data
366 suggest either a simple enhancement of myCAF_s activities and/or a potential increase in
367 external collagen production by other cell types. Furthermore, the iCAF subpopulation
368 increased after neoadjuvant treatments, including iHD-SBRT, aligning with recent data from
369 Zhou *et al.* who reported a similar increase in iCAF_s in chemotherapy treated samples (n=14;
370 FFX and/or gemcitabine/nab-paclitaxel and 1 case with conventional CRT). [46] High-
371 expression of iCAF_s was associated with improved prognosis in other No_NAT PDAC cohorts,
372 which was validated in our study in two independent No_NAT cohorts. [43, 47-48] We further
373 demonstrated a significant association between iCAF-high population and a better DFS after
374 neoadjuvant treatment with TNT, confirming its potential prognostic /predictive role in PDAC.
375 Given that different neoadjuvant treatments generate different effects on the CAF populations,
376 the effectiveness of the addition of therapies targeting CAF_s in PDAC may vary depending on
377 the treatment combination used and studies should be encouraged to explore this field.

378 After iHD-SBRT, the T-lymphocytes infiltration including cytotoxic CD8+ T cells was globally
379 preserved, with immune cells still able to infiltrate close to, and even in direct contact with the
380 tumoral cells despite increased desmoplasia. Previously, Mills *et al.* assessed the CD4/CD8
381 infiltration within or beyond the areas of dense collagen in a small cohort of nine patients treated
382 with low-dose SBRT only (25Gy in 5 fractions). The authors reported fewer T-cells in these
383 areas in treated samples compared to No_NAT samples, suggesting that T-cell sequestration is
384 not promoted post-SBRT. [36] Another study identified several immune cell marker differences
385 after neoadjuvant treatments, including 12 patients treated with RT, in different area of the
386 tumor through spatial analysis. [49] As expected, we observed an increase in
387 immunosuppressive populations after TNT (notably FOXP3+ Treg cells and macrophages M2-
388 sub-population), however MDCs, PSCs and CD4-Th2 cells were decreased. Finally, the
389 expression of PD-1/PD-L1 was scarce in our whole cohort and, particularly after iHD-SBRT,
390 with almost no expression of PD-1 while PD-L1 increased but remained rare. Consequently,
391 our data do not support the use of anti- PD-1/PD-L1 in PDAC, including in combination with
392 FFX or TNT. Indeed, to date, the association of PD-1/PD-L1 inhibitors with chemotherapy +/-
393 RT remains a failure in PDAC clinical trials. [5-6]

394 Despite being constrained by several factors, including the absence of matched pre- and post-
395 treatment specimens and limited sample size, our study demonstrates for the first time that high-
396 dose SBRT is capable of durable and in-depth remodeling of PDAC, at the stromal, metabolic
397 and molecular levels. The main significant alterations identified following TNT are resumed in
398 **Fig. 8**, including the capability of reversing several unfavorable enrichment/activations induced
399 by chemotherapy, supporting its complementarity with FFX, along with the potential
400 immune/targeting therapies to be associated with a TNT strategy. This work provides
401 comprehensive insight into human PDAC to more accurately guide the development of new
402 combination strategies involving SBRT. Prospective evaluation of our results will be conducted

403 in the ongoing randomized phase II STEREOPAC trial, planning to enroll 256 patients
404 diagnosed with BR tumors (FFX +/- iHD-SBRT). [16] Further investigation into the exact
405 mechanisms involved in all the reprogramming and alterations induced in PDAC by high-dose
406 SBRT should be pursued in preclinical models and human matched pre- and post-treatment
407 specimens.

408

409 **METHODS**

410

411 **Patients**

412 This study included the use of residual tissue from 50 resected PDAC tumors in Erasme and
413 Pitié Salpêtrière hospitals. All patients had surgery between 2011 and 2020 and archived
414 formalin fixed paraffin-embedded (FFPE) tumor specimens from surgery were available. The
415 main inclusion criteria were patients of age ≥ 18 with complete clinicopathological data
416 available, no evidence of metastatic disease prior to surgery, patients having received no
417 neoadjuvant treatment (No_NAT group), an induction chemotherapy with FFX only (FFX
418 group) or patients treated with a TNT including FFX followed by iHD-SBRT before surgery
419 (TNT group). The main clinical exclusion criteria were the use of any other neoadjuvant
420 treatment (including in case of shift to another type of neoadjuvant chemotherapy such as
421 gemcitabine/nab-paclitaxel), a tumor histology other than a ductal adenocarcinoma (including
422 PDAC associated with intraductal papillary mucinous neoplasm [IPMN]) and patients who died
423 from postoperative complications within 30 days after surgery.

424

425 **Data Collection**

426 An aggregated retrospective database with standardized clinicopathological variables was
427 created for patients resected in Erasme and Pitié Salpêtrière hospitals. The variables included:

428 sex, age at diagnosis, level of CA19.9 at diagnosis, clinical disease stage, tumor site,
429 preoperative treatments received, type of surgical resection, TNM classification, histological
430 grade, lymphovascular and perineural invasion, and relevant outcomes parameters.

431

432 **Neoadjuvant treatment**

433 Patients receiving a neoadjuvant treatment included an induction with FFX chemotherapy
434 regimen for a median of 6 cycles. The FFX regimen consisted in an intravenous infusion of
435 oxaliplatin (85mg/m², 2h) then an intravenous infusion of leucovorin (400mg/m², 2h)
436 concomitantly with a 90-min intravenous infusion of irinotecan (165-180mg/m²) followed by a
437 46h continuous infusion of fluorouracil (2000-2400mg/m²), and was given once every two
438 weeks.

439 For sixteen patients, FFX was followed by iHD-SBRT as previously described in details in [14,
440 50], according to the TNT strategy implemented in our hospital since January 2018 for localized
441 PDAC. A surgical exploration was performed in case of no progression 4 to 7 weeks after iHD-
442 SBRT. Briefly, the SBRT treatment was designed to individually maximize the dose prescribed
443 to the tumor and vessels interfaces ($D_{max(0.5cc)} < 53\text{Gy}$ in 5 fractions) while following an isotoxic
444 dose prescription (IDP). In an IDP, the dose prescription is not based on the coverage of the
445 planning target volume (PTV) but on the predetermined limiting dose constraints to the
446 neighbouring organs at risks in order to control toxicity. [14, 50] The following dose constraints
447 were applied: for planning organ at risk volumes (PRVs) stomach, duodenum, colon and small
448 bowel, $D_{max(0.5cc)} < 35\text{Gy}$, $V_{30\text{Gy}} < 2\text{cc}$; PRV spinal cord, $V_{20\text{Gy}} < 1\text{cc}$ and for kidneys, $D_{mean} < 10\text{Gy}$
449 and $V_{12\text{Gy}} < 25\%$).

450

451 **Sample processing and RNA isolation**

452 For accurate reference slides, new FFPE tissue section was cut at 4 μ m then stained with H&E
453 for all the representative tumoral blocks identified by specialized gastrointestinal pathologists
454 (LV, PDM, NH). Tissue sections were scanned using a Nanozoomer 2.0-RS Digital slide
455 scanner (Hamamatsu). The H&E digital slides used as reference were reviewed by CB and a
456 specialized pathologist (LV) to delineate the tumoral area prior to RNA isolation. From the 50
457 FFPE blocks, five consecutive 6-8 μ m non-stained slides were cut in RNase free conditions.
458 The tumoral area was then demarcated on each slide, directly comparing it with the reference
459 H&E slide.

460 The delineated tumoral sections were manually scrapped and RNA was extracted from the
461 scrapped sections with the ALLPrep FFPE tissue kit[©] following the manufacturer's instructions
462 for semi-automated RNA extraction via Qiacube instrument (Qiagen, Venlo, The Netherlands).
463 RNA samples were run on an Agilent 2100 bioanalyzer using the RNA 6000 Pico LabChip kit
464 (Agilent, Diegem, Belgium). The bioanalyzer electropherograms were analyzed by Agilent
465 2100 Expert Software to determine the RNA quantity and quality. RNA samples with DV200
466 >30% were selected and 100 ng of RNA was used for the library preparation. NGS libraries
467 were prepared using the QuantSeq Library Prep Kit for Illumina (Lexogen) as per manufacturer
468 recommendations'. The libraries were sequenced on NovaSeq using NovaSeq 6000 S2 Reagent
469 Kit with 100 bp single reads.

470

471 **RNA-sequencing Data Analysis**

472
473 FASTQ files were checked for sequencing quality via FastQC. [51] The quantification of
474 transcript abundance was done from the raw RNA-seq files using the Kallisto v0.50.0 pseudo-
475 alignment method. [52] Kallisto was performed with a 100-bootstrap value, using a
476 transcriptome index constructed from the human reference transcriptome GRCH38 from

477 Ensembl. Gene-level quantification of estimated counts was performed using the R-package
478 tximport v1.26.1. (data available here: [10.5281/zenodo.1093986](https://doi.org/10.5281/zenodo.1093986)) [53] Poorly covered genes
479 (read count <10 in more than half of the samples) were removed for further analysis.
480 Differential gene expression (DGE) analyses were performed between patients that received
481 different treatments using the R-packages edgeR v3.40.2 and limma v3.54.2 packages. [54-55]
482 Heatmap representations of the genes with a p-value lower than 0.05 in each of the comparisons
483 applied in the DGE analyses were generated using Complex Heatmap v2.14.0 package
484 (**Supplementary Fig. 8**). [56] The PAMG classifier was applied to determine the
485 chemosensitivity and the aggressivity of the samples. [28]

486

487 **Functional analysis**

488 With the aim of characterizing the molecular characteristics of each neoadjuvant therapy, Gene
489 Set Enrichment Analysis (GSEA) was performed on a pre-ranked list of genes using the fgsea
490 R package v1.24.0. [57] Only enrichments of gene sets with a padj< 0.05 were considered as
491 significant. Gene signatures of PDAC and cancer associated fibroblast (CAF) subtypes were
492 collected from the CancerRNASig package. Molecular Signature Database (MSigDB),
493 Ontology and Canonical pathways gene sets were obtained by the msigdb package v1.6.0. Gene
494 Set Variation Analysis (GSVA) was applied to samples as a single sample classifier of different
495 CAF subtypes. [58] Finally, immune cell fractions were estimated by the xCell algorithm and
496 statistical analysis between treatments of the immune populations was obtained by the package
497 ggpubr v0.6.0. [59-60]

498

499 **Immunohistochemistry (IHC)**

500 FFPE full-face tissue sections (4 μ m) from the 50 tumors were single and dual
501 immunohistochemically stained for CD3/CD20, CD4/CD8, PD-1/PD-L1, CD68, CCR2,

502 FOXP3, COL1A1, and α SMA. All antibodies and their dilution are listed in the
503 **Supplementary Table 1**. Chromogenic IHC (cIHC) were performed on a Ventana Benchmark
504 XT automated staining instrument with the ultraVIEW DAB and ultraVIEW Red Detection Kit
505 (Ventana Medical Systems). All antibodies were initially tested on positive and negative control
506 tissues and staining patterns were validated by pathologists (LV and PDM). cIHC slides were
507 acquired at 40x with a Nanozoomer 2.0-RS Digital slide scanner (Hamamatsu). Delineation of
508 the tumor area was performed by CB and verified by two experimented specialized pathologists
509 (LV and PDM). Quantification of the different stainings was performed with the Visiopharm[®]
510 software.

511

512 **Multiplex Immunohistochemistry (mIHC)**

513 FFPE tissue sections (4 μ m) were processed manually for mIHC using Opal reagents (Akoya
514 Biosciences) for illustration purposes in four representative samples (2 in the No-NAT and TNT
515 groups). Briefly, slides were first heated at 37°C overnight before being deparaffinized hydrated
516 through an ethanol gradient and fixed in 10% neutral buffer formalin. Heat-induced antigen
517 retrieval was achieved in Antigen Retrieval (AR) 9 buffer (Akoya Biosciences) using a
518 microwave (Panasonic with Inverter technology). Slides were labeled for CD20 (B cells), CD4
519 (Th cells), CD8 (cytotoxic T cells), CD68 (macrophages), CCR2 (chemokine CCL2 receptor),
520 pan-cytokeratin (cancer cells) and DAPI (all nuclei) according to the manufacturer's
521 instructions (Opal 6-Plex Manual Detection Kit - for Whole Slide Imaging, NEL861001KT,
522 Akoya Biosciences) (**Supplementary Table 1**). Slides were mounted with Prolong Diamond
523 Antifade Mountant (Life Technologies Europe BV). The whole slides were acquired with the
524 PhenoImager HT scanner (Akoya Biosciences) using appropriated exposure times. Tonsil tissue
525 was used as positive control. Region of interests (ROIs) were selected in PhenoChart Whole
526 Slide Viewer by an experimented gastrointestinal pathologist (LV). ROIs were unmixed using

527 the synthetic spectral library and the tissue autofluorescence extracted from an unstained PDAC
528 was removed in inForm Tissue Analysis Software (V.2.6.0, Akoya Biosciences).

529

530 **Statistical analysis**

531 Statistical analyses were performed using Stata 14 and R. Data normality was assessed using
532 histograms, boxplots, and quantile–quantile plots, and the equality of variances was checked
533 using the Levene’s test.

534 Categorical data were presented as percentages and numbers, while continuous data were
535 described using median and P25–P75, and due to asymmetric distribution, analyzed with
536 nonparametric tests such as the Kruskal-Wallis rank test for group differences. Chi² tests were
537 employed for categorical data. Bonferroni corrections were applied following multiple
538 comparisons between the different groups.

539 Survival analyses were conducted using the survival v3.5-3 and survminer v0.4.9 packages.
540 Log-rank test was used to calculate the differences in Kaplan-Meier curves and p-values < 0.05
541 were considered as statistically significant. Multivariate Cox proportional hazard regression
542 models were applied for survival with a 95% confidence interval. OS was defined as the time
543 in months from diagnosis to death due to cancer recurrence. DFS was defined as the time from
544 diagnosis to the first documentation of recurrent disease following surgery. Loco-regional DFS
545 (LR-DFS) was defined as the time from diagnosis to the first documentation of loco-regional
546 recurrence (in the original tumor location or the N1-2 lymph node areas).

547 Non-parametric Wilcoxon test in R v4.2.3 and RStudio v2023.3.0.386 environments was used
548 for RNAseq data analysis, assessing significant differences in treatments in PAMG, Puleo
549 components projections, and xCell immune deconvolution outputs with p values < 0.05
550 considered statistically significant.

551

552 **Study approval**

553 This study was approved by the Institutional Review Board of Erasme University Hospital and
554 Pitié Salpêtrière hospital under the approval numbers P2018/392 - A2020-115 and
555 2014/58NICB respectively.

556

557 **Acknowledgements**

558 The first authors disclosed receipt of the following financial support for the research: this work
559 is supported by doctoral grants from the “Les Amis de l’Institut Bordet / L’Association Jules
560 Bordet” grant numbers: [2019-31] (CB, DVG, LM) and [2021-03] (CB), by the “Fonds de la
561 Recherche Scientifique – FNRS” grant numbers [FC 33593] (CB) and [PDR T0011.22] (OAS).
562 JN was financially supported by Fonds Erasme and VD by a grant of the “Fondation Contre le
563 Cancer - FCC” grant number [F/2020/1402]. IR and JLVL supported this work through a FCC
564 grant number [FAF-C/2018/1203].

565

566 **Author contributions**

567 This study was designed and conceptualized by CB, TA and JLVL. JN, LV, PDM, ND and JBB
568 provided human samples. Clinical data were collected by CB, JN, SZ and LMa. (m)IHC
569 experiments, quantification, data analysis, interpretation and related figure design were done
570 by CB, LV, AB, MH, KS, IR, PDM and KWG. RNA isolation, RNAseq data analysis,
571 interpretation and related figures were done by CB, OAS, JN, EQ, VT, VD, RN and TA. CB,
572 TA and OAS drafted the manuscript. CB, DVG, LMo, IR and JLVL obtained funding for the
573 study. Editing was performed by LMo and DVG. All authors performed critical revisions. All
574 authors read and approved the final manuscript.

575 **Competing interests**

576 None declared.

577

578 **Materials & Correspondence**

579 Bouchart Christelle, MD, PhD

580 Department of Radiation-Oncology

581 Institut Jules Bordet – H.U.B.

582 Rue Meylenmeersch, 90

583 1070 Brussels (Belgium)

584 Phone number: (0032) 2 541 38 00

585 Email: christelle.bouchart@hubruxelles.be

586

587

588

589

590

591

592

593

594

595

596 **TABLES**

597 **Table 1.** Main characteristics and outcomes of the studied cohort.

	Whole cohort (n=50)	No_NAT (n=17)	FFX (n=17)	TNT (n=16)	P-value
Age (years)	66.8 (57.6 – 69.8)	69.1 (60.5 – 70.9)	64.7 (57.6 – 66.8)	67.0 (53.2 – 70.4)	0.126
Gender (%)					0.644
Male	56.0	47.1	58.8	62.5	
Female	44.0	52.9	41.2	37.5	
Clinical staging TNM 8th ed. (%)					<0.001 ^{a,b}
IA	10.0	29.4	0.0	0.0	
IB	32.0	58.8	29.4	6.3	
IIA	0.0	0.0	0.0	0.0	
IIB	30.0	11.8	35.3	43.7	
III	28.0	0.0	35.3	50.0	
CA19.9 values at diagnosis (kU/L)	49.3	28.5	58.0	101.9	0.265
Tumor diameter (mm)	28.0 (22.0 – 35.0)	22.0 (17.0 – 25.0)	30.0 (26.0 – 35.0)	37.5 (27.6 – 46.0)	<0.001 ^{a,b}
Primary site (%)					0.571
Head/uncus/isthmus	88.0	94.1	82.4	87.5	
Body/tail	12.0	5.9	17.6	12.5	
Resection status (%)					<0.001 ^{a,b}
Resectable	46.0	94.1	35.3	6.2	
Borderline resectable	40.0	5.9	52.9	62.5	
Locally advanced	14.0	0.0	11.8	31.3	
Number of neoadjuvant FFX cycles received	6 (5 – 8)	/	6 (4 – 8)	7 (6 – 8)	0.378
Pathological staging TNM 8th ed. (%)					0.697
IA	10.0	5.9	17.7	6.2	
IB	18.0	17.6	17.6	18.8	
IIA	4.0	0.0	0.0	12.5	
IIB	26.0	35.3	17.6	25.0	
III	34.0	35.3	35.3	31.2	
IV	8.0	5.9	11.8	6.3	
Differentiation grade (%)					0.006 ^b
Good	12.2	0.0	23.5	13.3	
Intermediate	42.9	29.4	29.4	73.3	
Poor	44.9	70.6	47.1	13.4	
Adjuvant chemotherapy received (%)					0.492
No	16.0	11.8	11.8	25.0	
Yes	84.0	88.2	88.2	75.0	
FU, median [IC95%] (months)	29.5 (19.0 – 50.0)	24.1 (18.4 – 52.6)	36.9 (19.0 – 47.6)	28.3 (21.6 – 49.9)	0.821
DFS, median [IC95%] (months)	17.5 (12.8 – 21.6)	10.0 (5.0 – 20.4)	17.7 (7.0 – 35.6)	20.6 (15.6 – 27.3)	0.496
1-year DFS (%)	66.0	41.2	70.6	87.5	0.017 ^b
OS, median [IC95%] (months)	31.8 (24.1 – 47.6)	24.1 (17.3 – 54.4)	38.5 (18.5 – 97.5)	32.3 (22.4 – 75.5)	0.558

599 No_NAT= non-treated; FFX= FOLFIRINOX; TNT= total neoadjuvant treatment (FFX +
600 iHD-SBRT); FU = follow-up; DFS= disease free survival; OS= overall survival

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

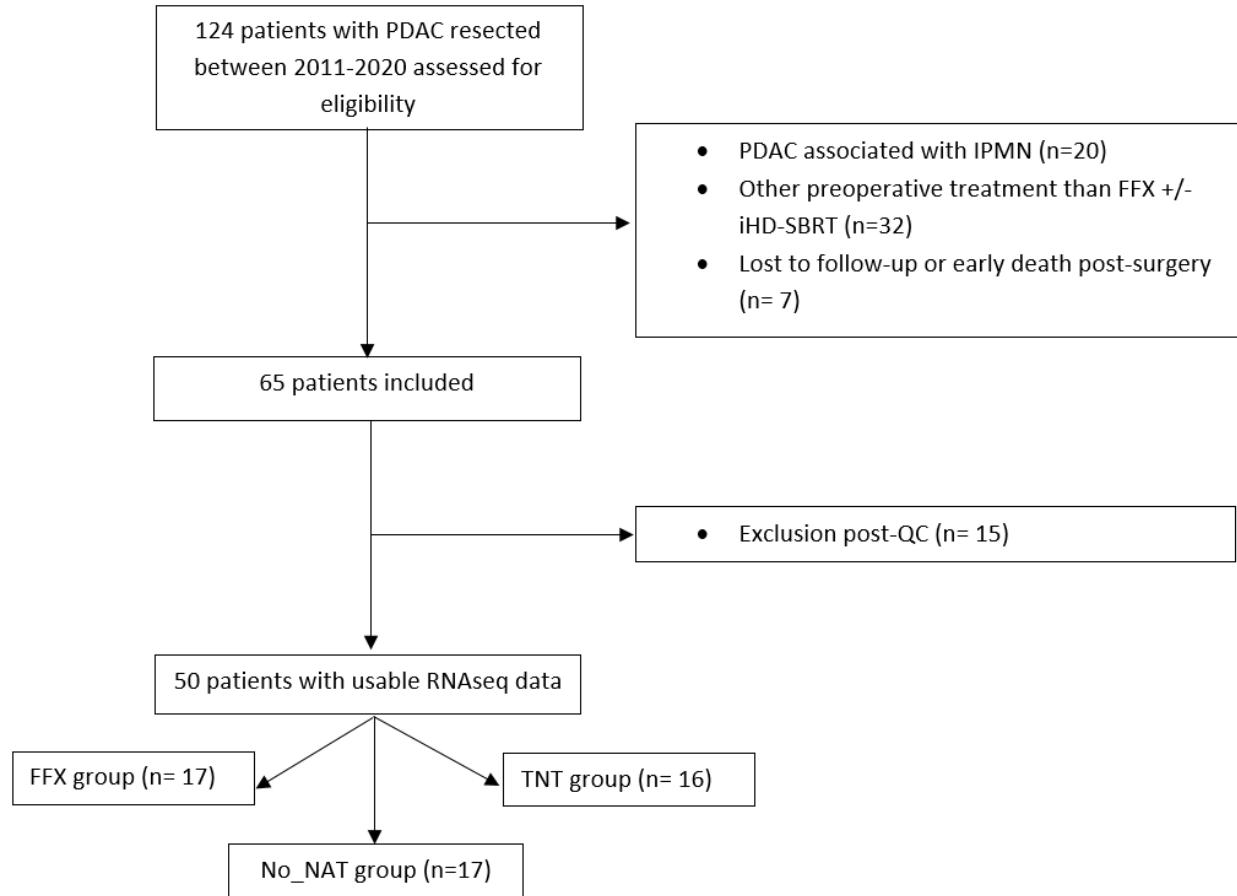
621

622

623

624

625


626

627

628

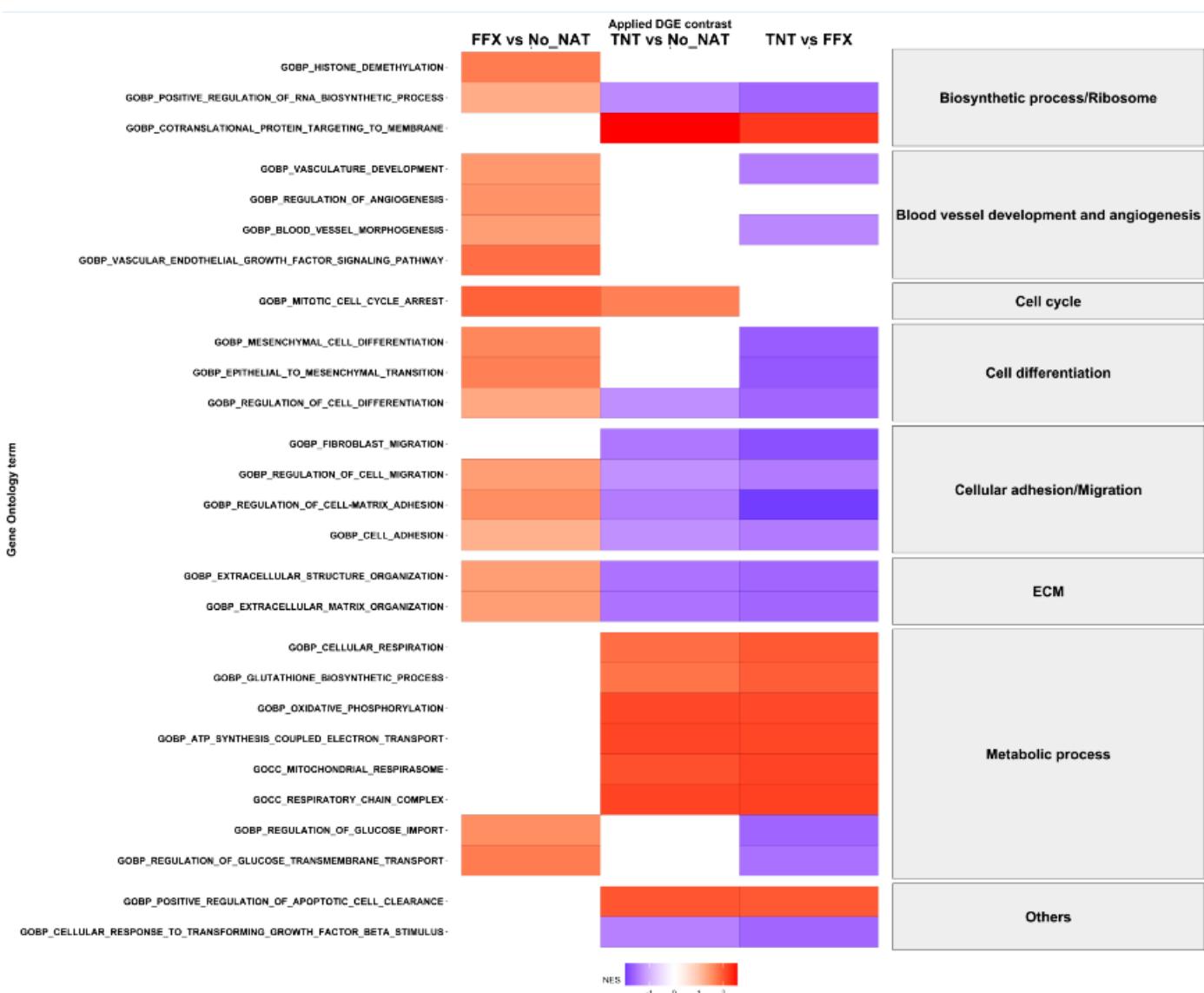
629 **FIGURES**

630 **Figure 1.** CONSORT-like workflow description of the PDAC cohort.

631 Detailed description of the selection process of the patients and samples cohort.

632 PDAC: pancreatic ductal adenocarcinoma; IPMN: intraductal papillary mucinous neoplasm;
633 FFX: FOLFIRINOX; iHD-SBRT: isotoxic high-dose stereotactic body radiotherapy; QC:
634 quality control; TNT: total neoadjuvant treatment (FFX + iHD-SBRT); No_NAT: no
635 neoadjuvant treatment group.

636

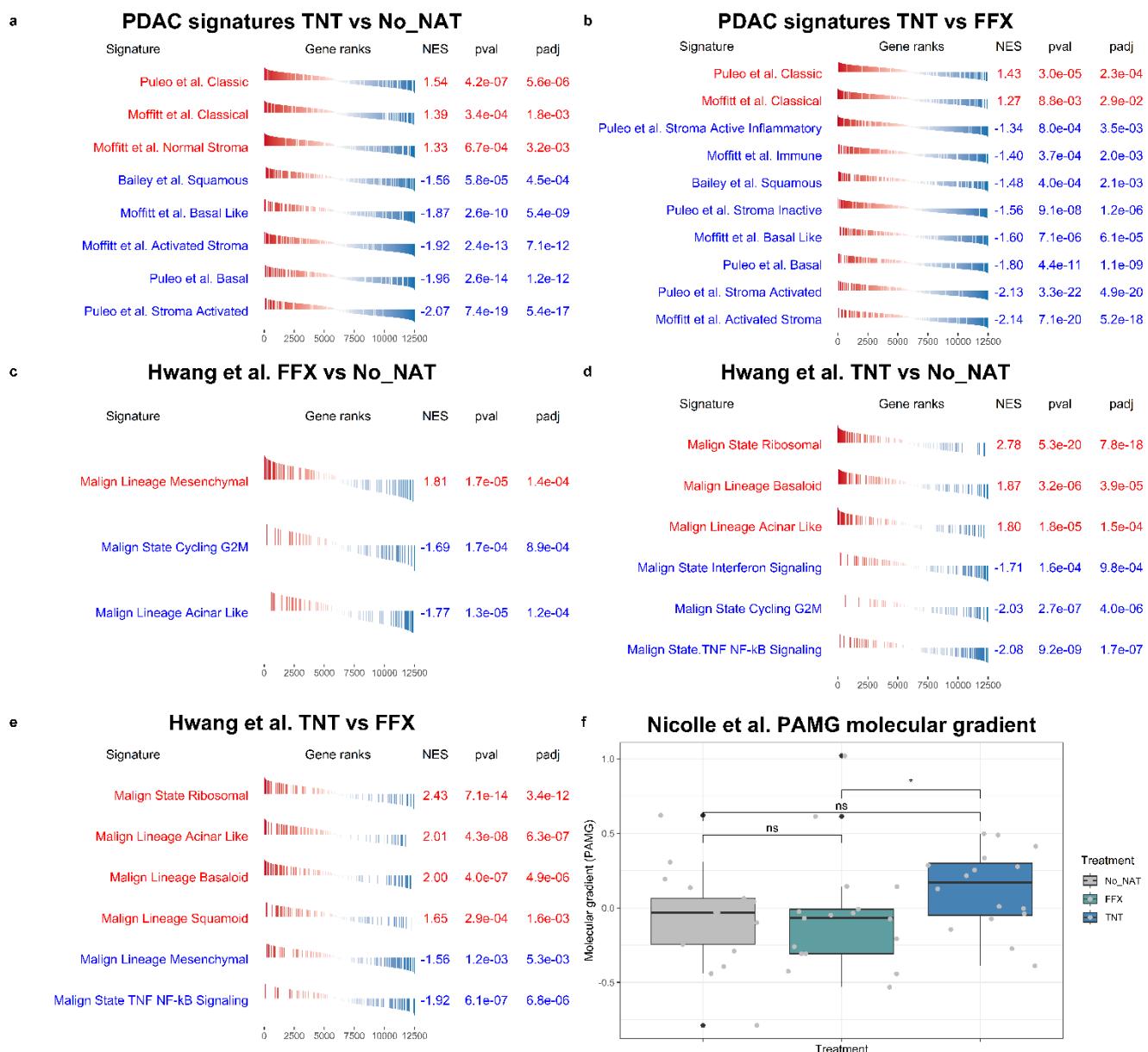

637

638

639

640

641 **Figure 2.** Differential enrichment via gene set enrichment analysis of the Gene Ontology (GO)
642 terms following neoadjuvant treatments.



643 Selected Gene Set Enrichment Analysis (GSEA) results of the Gene Ontology (GO) terms,
644 grouped according to the biological function, with differential gene expression comparisons
645 between the three groups.

646 FFX: FOLFIRINOX; No_NAT: no neoadjuvant treatment group; TNT: total neoadjuvant
647 treatment (FFX + iHD-SBRT); ECM: extracellular matrix.

648
649

650 **Figure 3.** Enrichment analyses of the tumoral molecular subtypes and cell types between the
651 three groups.

652 **(a,b)** Normalized Enrichment Score (NES) after PDAC subtype RNA signatures enrichment
653 analysis showing significantly higher NES for the “Classical” subtypes and decreased “Basal”
654 subtypes in TNT group vs No_NAT **(a)** and TNT vs FFX **(b)** through the main transcriptomic
655 PDAC classifications.

656 **(c,d,e)** NES after GSEA of Hwang *et al.* signatures obtained with single nucleus RNA-seq.
657 Differential gene expression comparison between FFX vs No_NAT group **(c)**, TNT vs
658 No_NAT group **(d)** and TNT vs FFX group **(e)**, showing a significant enrichment in the

659 Mesenchymal subtype in FFX samples whereas an enrichment of Basaloid subtype, associated
660 with favorable prognosis, is observed in the TNT group.

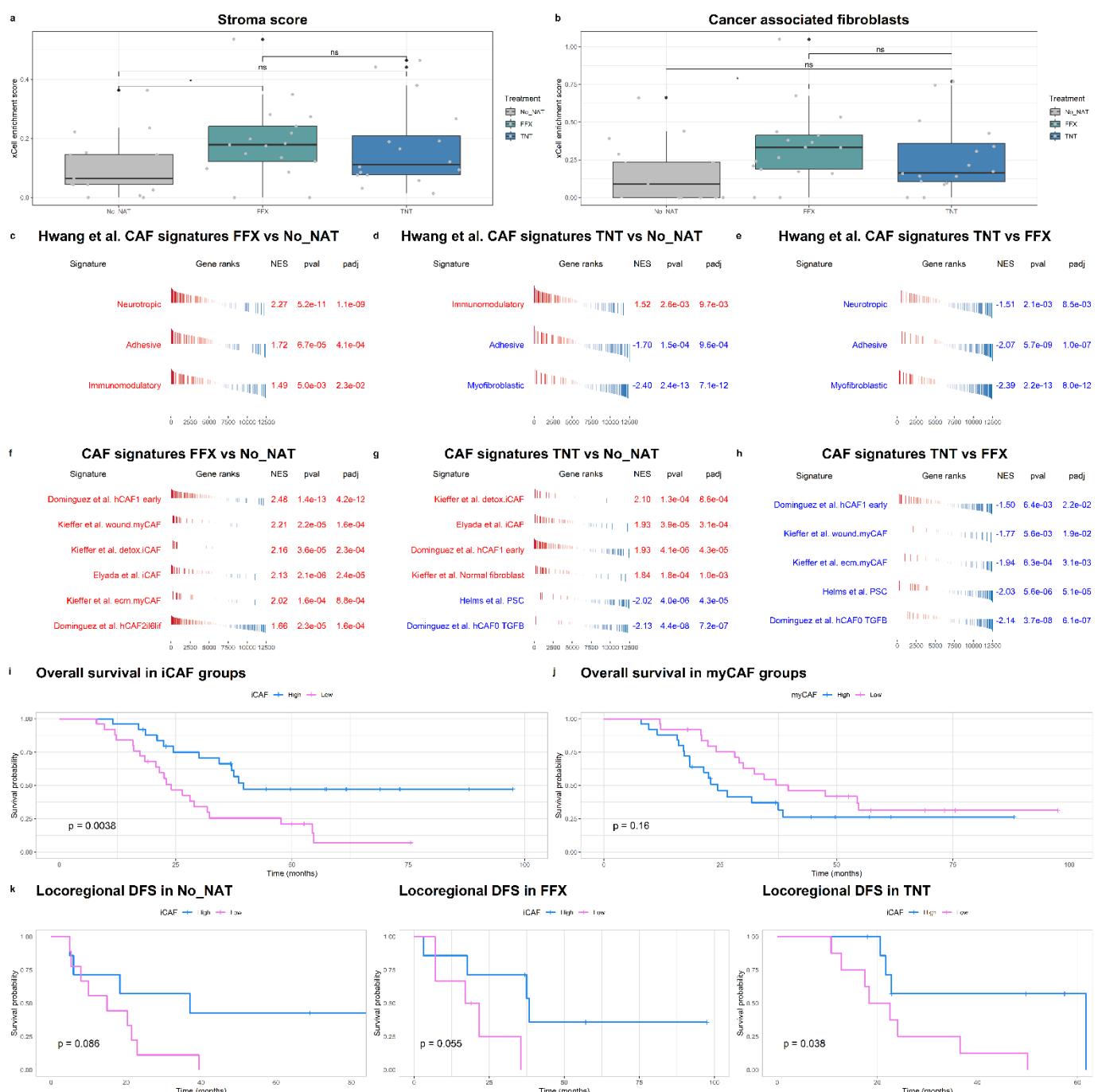
661 (f) A continuous gradient of PDAC pre-existing classifications, the pancreatic adenocarcinoma
662 molecular gradient (PAMG), was applied on the whole cohort, showing a significantly higher
663 molecular gradient PAMG score ($p=0.049$) in favour of the TNT group compared to FFX group.

664 FFX: FOLFIRINOX; No_NAT: no neoadjuvant treatment group; TNT: total neoadjuvant
665 treatment (FFX + iHD-SBRT)

666

667

668


669

670

671

672

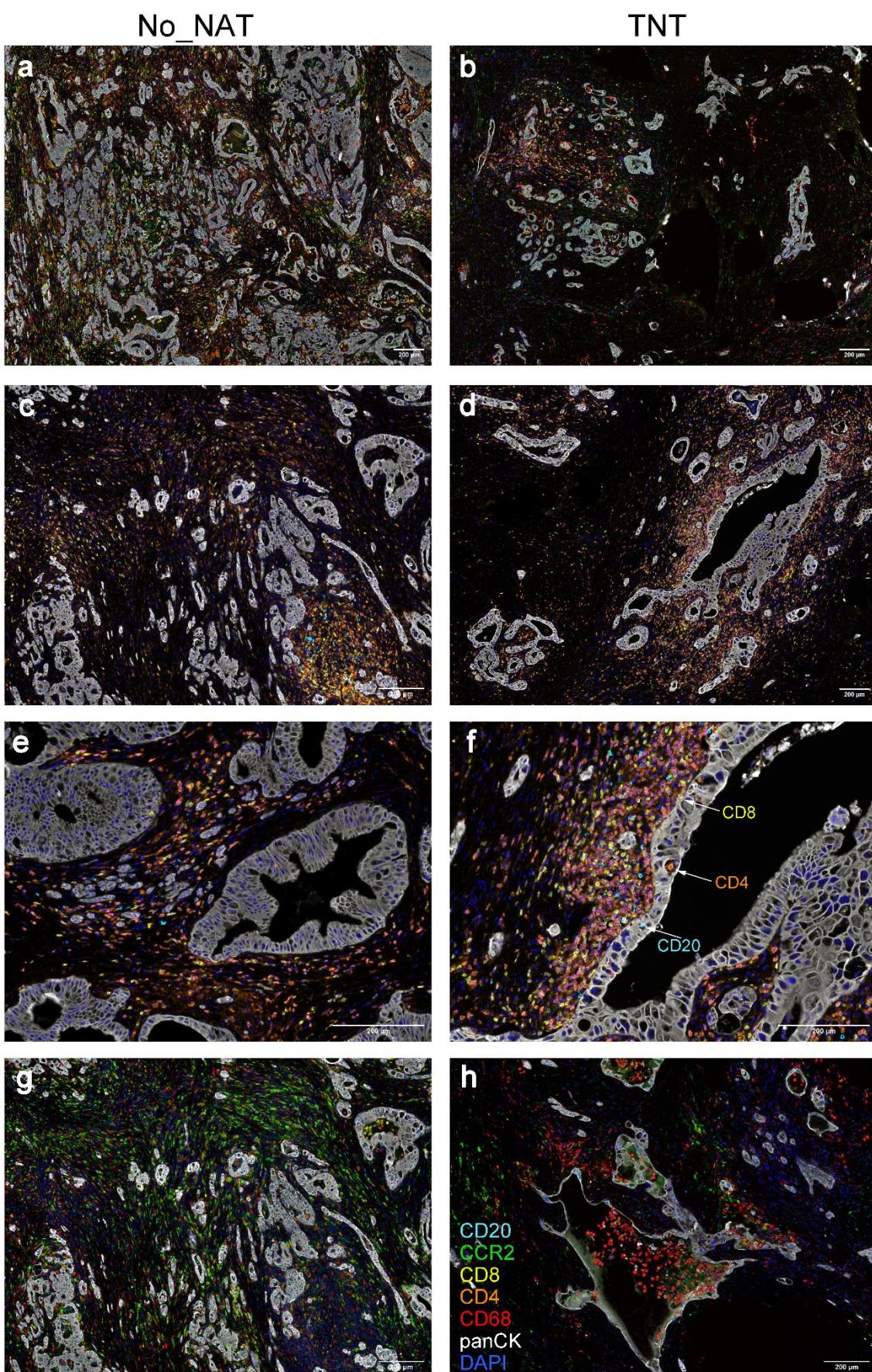
673 **Figure 4.** Cell type enrichment analysis of stromal and cancer associated fibroblasts (CAFs)
674 transcriptomic signatures following neoadjuvant treatments.


675
676 **(a,b)** Cell type enrichment analysis using xCell showing a significantly higher stroma score
677 (p=0.034) **(a)** and CAFs population (p=0.039) **(b)** in FFX vs No_NAT group.

678 **(c,d,e)** Normalized Enrichment Score (NES) after GSEA of Hwang *et al.* gene sets obtained
679 with single nucleus RNA-seq: differential expression comparison between FFX vs No_NAT
680 group **(c)**, TNT vs No_NAT group **(d)** and TNT vs FFX group **(e)**.
681 **(f,g,h)** NES after GSEA of state of the art CAFs gene sets: differential expression comparison
682 between FFX vs No_NAT group **(f)**, TNT vs No_NAT group **(g)** and TNT vs FFX group **(h)**.
683 **(i,j)** Gene set variation analysis (GSVA) was applied as a single sample classifier of different
684 CAF subtypes defined in Elyada *et al.* to classify all the samples according to their enrichment
685 in high and low iCAF and myCAF groups. Kaplan–Meier survival analyses were performed on
686 high and low CAF populations. High-iCAF samples showed a significantly better overall
687 survival (OS) compared to Low-iCAF ($p=0.0038$) **(i)** while no statistical difference was found
688 for myCAFs **(j)**.
689 **(k)** Locoregional disease free survival (LR-DFS) in the three groups stratified per high and
690 low-iCAF samples. A significantly better LR-DFS was observed in high-iCAF in the TNT
691 cohort ($p=0.038$) while a non-significant tendency has been observed for the No_NAT and FFX
692 groups.
693 No_NAT: untreated; FFX: FOLFIRINOX; TNT: Total neoadjuvant treatment (FFX + iHD-
694 SBRT)

695

696


697 **Figure 5. IHC immune and stromal profiling of our whole cohort (n=50).**

698 No_NAT: untreated; FFX: FOLFIRINOX; TNT: Total neoadjuvant treatment (FFX + iHD-
699 SBRT); NS: non-significant

700

701 **Figure 6.** 6-plex panel + DAPI multiplex IHC in No_NAT and TNT samples (n= 4).

702 Representative images of:

703 (a) Global immune infiltration in No_NAT group with high density of tumoral glands;

704 (b) Global immune infiltration in TNT group with less density of tumoral glands;

705 (c) Global distribution of tumor infiltrating lymphocytes (TILs) in No_NAT group;

706 (d) TILs in TNT group are not sequestered within the collagenous area;

707 (e) TILs in No-NAT group close to the tumoral glands;

708 (f) TILs in TNT group are mainly located close and in direct with the tumoral glands; CD4+,

709 CD8+ and CD20+ was observed within the tumoral glands. Cell swelling and pyknotic nucleus

710 of the tumoral cells can be observed in TNT treated PDAC;

711 (g) Tumor associated macrophages (TAMs) and CCR2+ cells populations in No_NAT group;

712 (h) TAMs are frequently observed within the lumen of tumoral glands in TNT group and

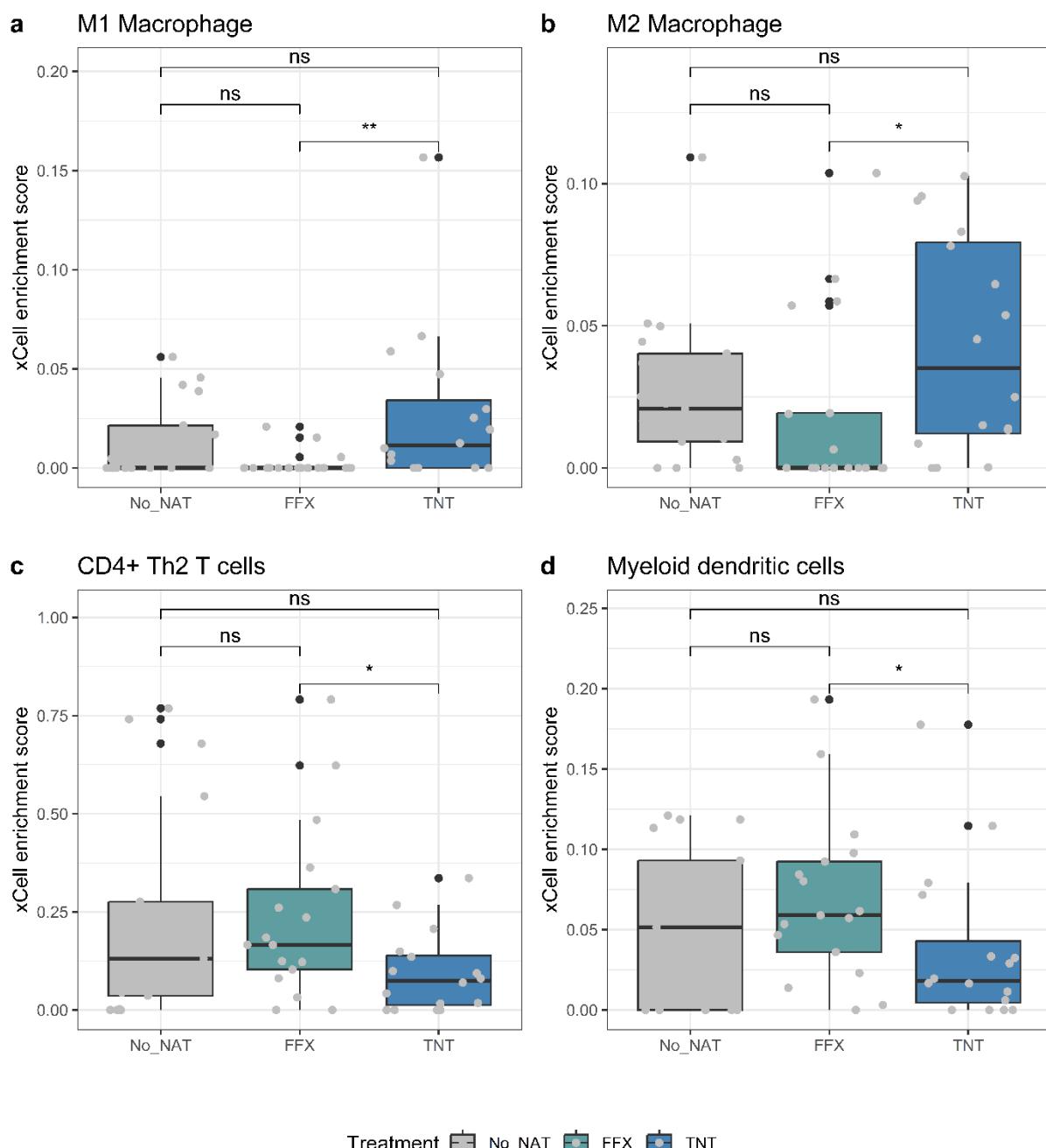
713 CCR2+ cells expression is maintained.

714 No_NAT: untreated; TNT: Total neoadjuvant treatment (FFX + iHD-SBRT)

715

716

717


718

719

720

721

722 **Figure 7.** Cell type enrichment analysis using xCell.

723

724 Cell type enrichment analysis performed using xCell deconvolution showing a significant
725 enrichment of M1-tumor associated macrophages (TAMs) ($p=0.0045$) (a) and M2-TAMs
726 ($p=0.024$) (b) in TNT vs FFX samples. A significantly lower enrichment of CD4+ Th2 T cells
727 ($p=0.029$) (c) and myeloid dendritic cells ($p=0.032$) (d) were observed in the TNT vs FFX
728 group.

729 No_NAT: untreated; FFX: FOLFIRINOX; TNT: Total neoadjuvant treatment (FFX + iHD-
730 SBRT); NS: not significant.

731

732

733

734

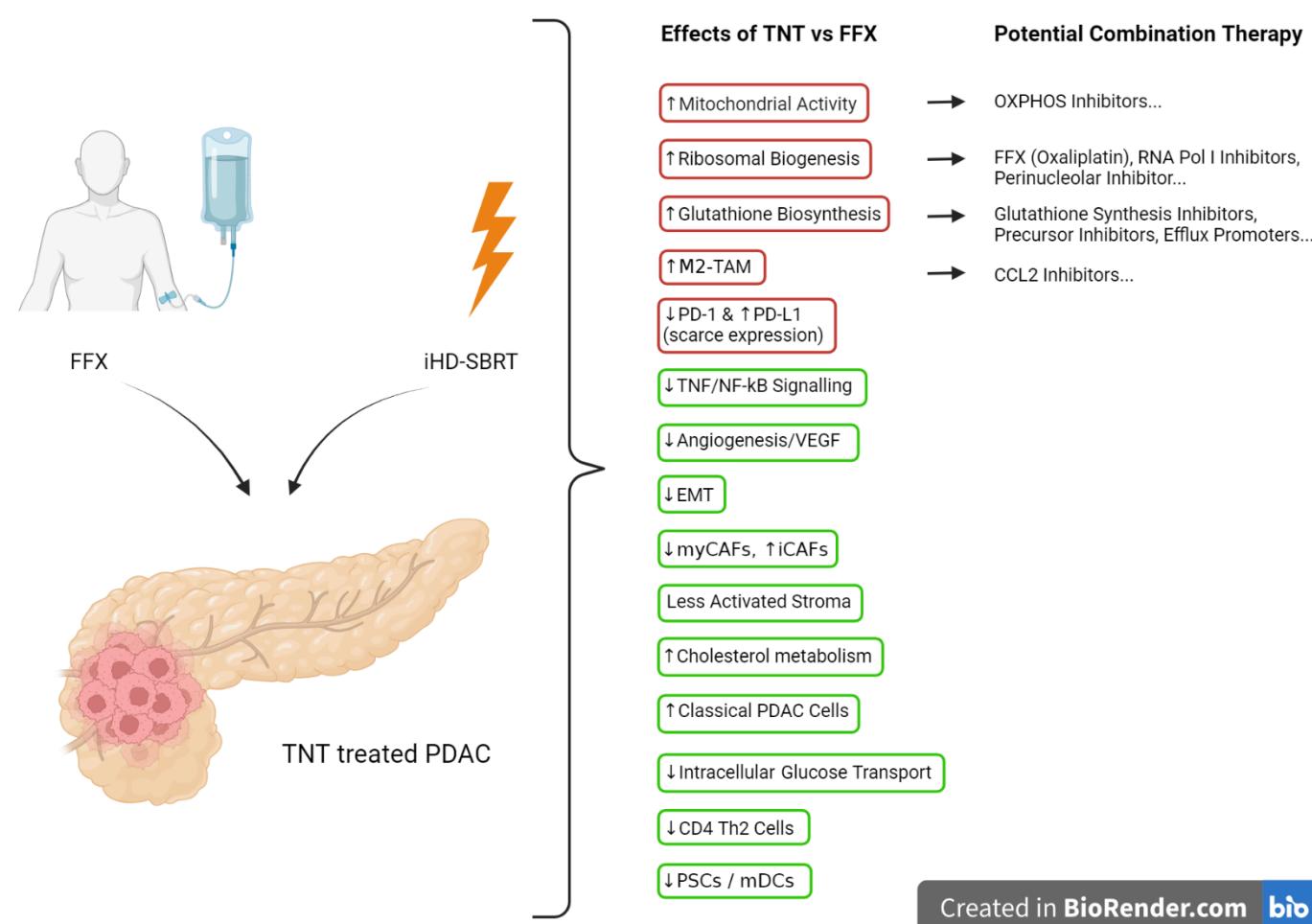
735

736

737

738

739


740

741

742

743 **Figure 8.** Main identified immuno-molecular modulations following TNT compared to FFX

744 alone in PDAC and selected potential targeted therapy to be combined with TNT.

745

746

747 M2-TAM: M2 polarized tumor associated macrophages; EMT: epithelial to mesenchymal
748 transition; myCAF: myofibroblastic cancer associated fibroblast; iCAF: inflammatory cancer
749 associated fibroblast; PDAC: pancreatic ductal adenocarcinoma; PSC: pancreatic stellate cell;
750 MDC: myeloid dendritic cell

751

752

753

754

755

756 REFERENCES

- 757 1. Dalmatello M et al. European cancer mortality predictions for the year 2022 with focus on
758 ovarian cancer. *Ann Oncol.* **33**, 330-339 (2022).
- 759 2. Conroy T et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. *N Engl
760 J Med.* **379**, 2395-2406 (2018).
- 761 3. Tempero MA et al. Adjuvant nab-paclitaxel + gemcitabine in resected pancreatic ductal
762 adenocarcinoma : results from a randomized, open-label, phase III trial. *J Clin Oncol.* **41**,
763 2007-2019 (2023).
- 764 4. Wainberg ZA et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naïve
765 patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI-3): a randomised, open-
766 label, phase 3 trial. *Lancet* **402**, 1272-1281 (2023).
- 767 5. Benkhaled S et al. Combination, modulation and interplay of modern radiotherapy with the
768 tumor microenvironment and targeted therapies in pancreatic cancer: which candidates to
769 boost radiotherapy? *Cancers (Basel)* **15**, 768 (2023).
- 770 6. Hilmi M, Delaye M, Muzzolini M et al. The immunological landscape in pancreatic ductal
771 adenocarcinoma and overcoming resistance to immunotherapy. *Lancet Gastroenterol
772 Hepatol.* **8**, 1129-1142 (2023).
- 773 7. Bouchart C et al. Novel strategies using modern radiotherapy to improve pancreatic cancer
774 outcomes: toward a new standard? *Ther Adv Med Oncol* **12**, doi:1758835920936093 (2020)
- 775 8. Conroy T et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N Engl J
776 Med.* **364**, 1817-25 (2011).
- 777 9. Suker M et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and
778 patient-level meta-analysis. *Lancet Oncol.* **17**, 801-810 (2016).
- 779 10. Janssen QP et al. Neoadjuvant FOLFIRINOX in patients with borderline resectable pancreatic
780 cancer: a systematic review and patient-level metaanalysis. *J Natl Cancer* **111**, 782-794
781 (2019).
- 782 11. Ghaneh P et al. Immediate surgery compared with short-course néoadjuvant gemcitabine
783 plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable
784 pancreatic cancer (ESPAC-5): a four-arm, multicenter, randomized, phase 2 trial. *Lancet
785 Gastroenterol Hepatol.* **8**, 157-168 (2023).
- 786 12. Mahadevan A et al. Maximizing tumor control and limiting complications with stereotactic
787 body radiation therapy for pancreatic cancer. *Int J Radiat Oncol Biol Phys.* **110**, 206-216
788 (2021).
- 789 13. Rudra S et al. Using adaptive magnetic resonance image-guided radiation therapy for
790 treatment of inoperable pancreatic cancer. *Cancer Med.* **8**, 2123-2132 (2019).
- 791 14. Bouchart C et al. Isotoxic high-dose stereotactic body radiotherapy integrated in a total
792 multimodal neoadjuvant strategy for the treatment of localized pancreatic ductal
793 adenocarcinoma. *Ther Adv Med Oncol.* **13**, doi:17588359211045860 (2021).
- 794 15. Chuong MD et al. Stereotactic MR-guided on-table adaptive radiation therapy (SMART) for
795 borderline resectable and locally advanced pancreatic cancer: a multi-center open-label
796 phase 2 study. *Radiother Oncol.* **191**, 110064 (2024).
- 797 16. Bouchart C et al. Preoperative treatment with mFOLFIRINOX (or Gemcitabine/Nab-paclitaxel)
798 +/- isotoxic high-dose Stereotactic Body Radiation Therapy (iHD-SBRT) for borderline
799 resectable pancreatic adenocarcinoma (the STEREOPAC trial): study protocol for a randomised
800 comparative multicentre phase II trial. *BMC Cancer.* **23**, 1-13 (2023).
- 801 17. Oar A et al. ACITG MASTERPLAN : a randomised phase II study of modified FOLFIRINOX alone
802 or in combination with stereotactic body radiotherapy for patients with high-risk and locally
803 advanced pancreatic cancer. *BMC Cancer.* **21**, 936 (2021).

804 18. Portales et al. Sequential treatment with gemcitabine/nab-paclitaxel (GA) and FOLFIRINOX
805 (FFX) followed by stereotactic MRI-guided adaptive radiation therapy (SMART) in patients
806 with locally advanced pancreatic cancer (LAPC): GABRINOX-ART phase 2, multicenter trial.
807 *Journal of Clinical Oncology* **40**, TPS4191 (2022).

808 19. Collisson EA et al. Subtypes of pancreatic ductal adenocarcinoma and their differing
809 responses to therapy. *Nat Med.* **17**, 500–3 (2011).

810 20. Moffitt RA et al. Virtual microdissection identifies distinct tumor- and stroma-specific
811 subtypes of pancreatic ductal adenocarcinoma. *Nat Genet.* **47**, 1168–78 (2015).

812 21. Bailey P et al. Genomic analyses identify molecular subtypes of pancreatic cancer. *Nature*
813 **531**, 47–52 (2016).

814 22. Puleo F et al. Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and
815 Microenvironment Features. *Gastroenterology* **155**, 1999–2013.e3 (2018).

816 23. Martens S et al. Different shades of pancreatic ductal adenocarcinoma, different paths
817 towards precision therapeutic applications. *Ann Oncol.* **30**, 1428–1436 (2019).

818 24. Chan-Seng-Yue M et al. Transcription phenotypes of pancreatic cancer driven by genomic
819 events during tumor evolution. *Nat Genet.* **52**, 231–240 (2020).

820 25. Hwang WL et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer
821 identifies multicellular dynamics associated with neoadjuvant treatment. *Nat Genet.* **54**,
822 1178–1191 (2022).

823 26. Nicolle R et al. Prediction of adjuvant gemcitabine sensitivity in resectable pancreatic
824 adenocarcinoma using the GemPred RNA signature: an ancillary study of the PRODIGE-
825 24/CCTG PA6 clinical trial. *J Clin Oncol.* **14**, JCO2202668 (2023).

826 27. Thomas PD. The Gene Ontology and the meaning of biological function. *Methods Mol Biol.*
827 **1446**, 15–24 (2017).

828 28. Nicolle R et al. Establishment of a pancreatic adenocarcinoma molecular gradient (PAMG)
829 that predicts the clinical outcome of pancreatic cancer. *EBioMedicine* **57**, 102858 (2020).

830 29. Karasinska JM et al. Altered gene expression along the glycolysis-cholesterol synthesis axis is
831 associated with outcome in pancreatic cancer. *Clin Cancer Res.* **26**, 135–146 (2020).

832 30. Elyada E, Bolisetty M, Laise P et al. Cross-Species Single-Cell Analysis of Pancreatic Ductal
833 Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. *Cancer*
834 *Discovery* **9**, 1102–1123 (2019).

835 31. Daemen A et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into
836 subtypes with distinct sensitivities to metabolic inhibitors. *Proc Natl Acad Sci USA.* **112**,
837 E4410–7 (2015).

838 32. O’Kane GM et al. GATA6 expression distinguishes classical and basal-like subtypes in
839 advanced pancreatic cancer. *Clin Cancer Res.* **26**, 4901–4910 (2020).

840 33. Aung KL et al. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer - Early
841 Results from the COMPASS Trial. *Clin Cancer Res.* **24**, 1344–54 (2018).

842 34. Porter RL et al. Epithelial to mesenchymal plasticity and differential response to therapies in
843 pancreatic ductal adenocarcinoma. *Proc Natl Acad Sci USA.* **116**, 26835–26845 (2019).

844 35. Qiang L et al. Transforming Growth Factor- β blockade in pancreatic cancer enhances
845 sensitivity to combination chemotherapy. *Gastroenterology* **165**, 874–890 (2023).

846 36. Mills BN et al. Modulation of the human pancreatic ductal adenocarcinoma immune
847 microenvironment by stereotactic body radiotherapy. *Clin Cancer Res.* **28**, 150–162 (2022).

848 37. Perez VM, Kearney JF and Yeh JJ. The PDAC extracellular matrix: a review of the ECM protein
849 composition, tumor cell interaction, and therapeutic strategies. *Front Oncol.* **11**, 751311
850 (2021).

851 38. Jiang B, Zhou L, Lu J et al. Stroma-targeting therapy in pancreatic cancer: one coin with two
852 sides? *Front Oncol.* **15**, 10:576399 (2020).

853 39. Torphy RJ et al. Stromal content is correlated with tissue site, contrast retention and survival
854 in pancreatic adenocarcinoma. *JCO Precis Oncol.* doi: 10.1200/PO.17.00121 (2018).

855 40. Jiang H et al. Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. *J
856 Clin Invest.* **130**, 4704-9 (2020).

857 41. Tian C et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma
858 progression reveal different contributions by tumor and stromal cells. *Proc Natl Acad Sci
859 USA.* **116**, 19609-19618 (2019).

860 42. Chen Y et al. Oncogenic collagen I homotrimers from cancer cells bind to $\alpha 3\beta 1$ integrin and
861 impact tumor microbiome and immunity to promote pancreatic cancer. *Cancer Cell* **40**, 818-
862 834 (2022).

863 43. Hu B, Wu C, Mao H et al. Subpopulations of cancer-associated fibroblasts link the prognosis
864 and metabolic features of pancreatic ductal adenocarcinoma. *Ann Transl Med.* 2022;
865 10(5):262

866 44. Krishnamurty AT et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress
867 tumour immunity. *Nature* **611**, 148-154 (2022).

868 45. Mucciolo G et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer.
869 *Cancer Cell* **19**, S1535-6108(23)00430-0 (2023).

870 46. Zhou DC et al. Spatially restricted drivers and transitional cellpopulations cooperate with the
871 microenvironment in untreated and chemo-resistant pancreatic cancer. *Nat Genet.* **54**, 1390-
872 1405 (2022).

873 47. Croft W S et al. Spatial determination and prognostic impact of the fibroblast transcriptome
874 in pancreatic ductal adenocarcinoma. *ELife* **12**, e86125 (2023).

875 48. Dings MPG et al. Serum levels of iCAF-derived osteoglycin predict favorable outcome in
876 pancreatic cancer. *Int J Cancer.* 152, 511-523 (2023).

877 49. Farren MR et al. Immunologic alterations in the pancreatic cancer microenvironment of
878 patients treated with neoadjuvant chemotherapy and radiotherapy. *JCI Insight.* **5**, e130362
879 (2020).

880 50. Manderlier M et al. Isotoxic high-dose stereotactic body radiotherapy (iHD-SBRT) versus
881 conventional chemoradiotherapy for localized pancreatic cancer: a single cancer center
882 evaluation. *Cancers (Basel)* **14**, 5730 (2022).

883 51. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010 Available
884 online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc> (Last accessed on 29-
885 03-2024)

886 52. Bray NL, Pimentel H, Melsted P and Pachter L. Near-optimal probabilistic RNA-seq
887 quantification. *Nat Biotechnol.* **34**, 525-527 (2016).

888 53. Soneson C, Love MI and Robinson MD. Differential analyses for RNA-seq: transcript-level
889 estimates improve gene-level inferences. *F1000Res.* **30**, 4:1521 (2015).

890 54. McCarthy DJ, Chen Y and Smyth GK. Differential expression analysis of multifactor RNA-Seq
891 experiments with respect to biological variation. *Nucleic Acids Res.* **40**, 4288-4297 (2012).

892 55. Ritchie ME et al. Limma powers differential expression analyses for RNA-sequencing and
893 microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

894 56. Gu Z, Eils R and Schlesner M. Complex heatmaps reveal patterns and correlations in
895 multidimensional genomic data. *Bioinformatics* **32**, 2847-9 (2016).

896 57. Korotkevich G, Sukhov V and Sergushichev A. Fast gene set enrichment analysis. *BioRxiv*
897 doi:10.1101/060012 (2021).

898 58. Hänelmann S, Castelo R and Guinney J. GSVA: gene set variation analysis for microarray and
899 RNA-Seq data. *BMC Bioinformatics*. **16**, 14:7 (2023).
900 59. Sturm G et al. Comprehensive evaluation of transcriptome-based cell-type quantification
901 methods for immuno-oncology. *Bioinformatics* **35**, i436-i445 (2019).
902 60. Aran D, Hu Z and Butte A J. xCell: digitally portraying the tissue cellular heterogeneity
903 landscape. *Genome Biol.* **18**, 220 (2017).

904