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 Abstract  :  Recent  years  have  witnessed  a  rise  in  research  utilizing  neuroimaging  for  precision 
 neuromedicine,  but  clinical  translation  has  been  hindered  by  scalability  and  cost.  Time  Domain 
 functional  Near  Infrared  Spectroscopy  (TD-fNIRS),  the  gold  standard  of  optical  neuroimaging 
 techniques,  offers  a  unique  opportunity  in  this  domain  since  it  provides  superior  depth  sensitivity 
 and  enables  resolution  of  absolute  properties  unlike  its  continuous  wave  counterparts.  However, 
 current  TD  systems  have  limited  commercial  availability,  slow  sampling  rates,  and  sparse  head 
 coverage.  Our  team  has  overcome  the  technical  challenges  involved  in  developing  a  whole-head 
 time-domain  diffuse  optical  tomography  (TD-DOT)  system.  Here,  we  present  the  system 
 characterization  results  using  standardized  protocols  and  compare  them  to  the  state-of-the-art. 
 Furthermore,  we  showcase  the  system  performance  in  retrieving  cortical  activation  maps  during 
 standard  hemodynamic,  sensory,  and  motor  tasks.  A  combination  of  the  system  performance, 
 signal  quality,  and  ease-of-use  can  enable  future  studies  aimed  at  investigating  TD-DOT  clinical 
 applications. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.591765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.591765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Introduction 

 Neurocognitive  and  psychiatric  disorders  are  highly  prevalent  and  treatment  expenditures 
 are  projected  to  increase  in  the  coming  decades  (  1  ,  2  )  .  Many  emerging  treatments  for 
 these  disorders  leverage  novel  mechanisms  of  action  from  scientific  research  for 
 improved  clinical  results.  However,  clinical  decision  making  around  diagnosis,  treatment 
 selection,  and  treatment  monitoring  for  these  complex  disorders  remains  a  challenge. 
 Quantitative  brain  data  may  be  able  to  help  clinicians  make  informed  decisions  for 
 personalized  care.  As  an  example,  evidence  is  building  that  non-invasive  neuroimaging 
 methods  like  functional  magnetic  resonance  imaging  (fMRI)  (  3  –  6  )  or 
 electroencephalography  (EEG)  (  7  )  ,  may  be  instrumental  for  tailored  depression 
 treatments.  In  their  current  implementation,  non-invasive  neuroimaging  assays  are 
 typically  expensive  and  inaccessible,  and  may  be  contraindicated  for  certain  patients. 
 Methods  to  quantify  the  brain  in  a  simple,  quick,  informative  way  at  a  point-of-care  clinic 
 are urgently needed. 

 Wearable  functional  near-infrared  spectroscopy  (fNIRS)  systems  have  the  potential  to  fill 
 this  gap  (  8  )  .  In  the  past  15  years,  fNIRS  systems  have  become  more  comfortable  and 
 capable,  with  higher  spatial  resolution,  multimodal  measurement  capabilities,  and 
 standardized  data  collection  and  analysis  procedures  (  9  )  .  With  these  improvements, 
 wearable  fNIRS  systems  enable  measurements  in  situations  inaccessible  or  inconvenient 
 for  other  forms  of  neuroimaging,  including  during  free  ambulation  (  10  )  ,  social 
 interactions  (  11  )  , and at point-of-care clinics. 

 While  these  improvements  have  allowed  for  an  increased  range  of  measurement 
 situations,  the  underlying  technology  of  most  wearable  fNIRS  systems  has  remained  the 
 same:  Continuous  Wave  (CW)  light.  CW  systems  have  the  benefit  of  being  relatively 
 inexpensive  and  straightforward,  although  systems  designed  for  High-Density  Diffuse 
 Optical  Tomography  (HD-DOT)  have  a  large  number  of  optical  sources  and  detectors 
 which  can  increase  cost  and  system  complexity,  as  well  as  reduce  sampling  frequency 
 (  12  )  .  Alternatively,  Time-Domain  (TD-)fNIRS  can  go  beyond  traditional  HD-DOT 
 systems  and  interrogate  the  underlying  tissue  in  greater  detail  due  to  its  higher  depth 
 sensitivity  (  13  )  .  TD-fNIRS  systems  use  short  pulses  of  light  and  detectors  capable  of 
 measuring  single  photons  to  capture  a  distribution  of  times  of  flight  (DTOF)  of  photons. 
 This  fine-grained  measurement  capability  allows  TD-fNIRS  systems  to  measure  absolute 
 optical  properties  of  the  underlying  tissue  including  the  absorption  (  μ  a  )  and  reduced 
 scattering  (  μ  s  ′)  coefficients,  instead  of  only  measuring  relative  changes  in  light  intensity 
 like  CW  systems.  The  increased  information  from  TD-fNIRS  systems  also  allows  for 
 advanced  signal  processing  methods  to  more  heavily  weight  photons  that  arrive  late  in 
 the  DTOF  in  order  to  emphasize  data  from  deeper  in  the  head  (i.e.,  from  the  brain). 
 Despite  these  benefits,  TD-fNIRS  systems  have  limited  commercial  availability,  and  the 
 available systems have slow sampling frequencies or limited coverage over the head. 

 Our  team  has  been  working  to  overcome  the  technical  challenges  involved  in  developing 
 a  portable,  whole-head  coverage,  high-density,  fast,  and  scalable  TD-fNIRS  system.  We 
 previously  published  on  the  characterization  and  validation  of  our  prototype  system, 

 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.591765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.591765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Kernel  Flow1  (  14  )  .  While  the  prototype  system  was  used  in  several  scientific  studies  (  13  , 
 15  ,  16  )  ,  it  had  some  limitations:  there  were  gaps  in  spatial  coverage  over  the  head; 
 pre-recorded  instrument  response  functions  (IRFs)  were  not  sufficiently  stable  in  time  to 
 ensure  accuracy  of  absolute  metrics;  detectors  had  limited  sensitivity;  and  the  system  had 
 high  power  requirements.  As  such,  we  had  confined  our  prior  analyses  to  those 
 performed  in  channel  space  and  did  not  fully  explore  Flow1’s  whole-head  DOT 
 capabilities. 

 In  this  paper,  we  present  the  first  whole-head  coverage  Time-Domain  Diffuse  Optical 
 Tomography  (TD-DOT)  system,  Flow2.  We  first  show  that  Flow2  compares  favorably 
 with  limited  channel  count  research-grade  devices  on  key  figures  of  merit  agreed  upon  by 
 the  field,  while  extending  the  field-of-view  to  cover  the  whole  head.  We  then  demonstrate 
 how  it  can  be  used  to  measure  absolute  concentrations  of  oxy-  and  deoxy-  hemoglobin  in 
 the  brain  (during  a  breath  hold  challenge),  and  how  it  can  be  used  to  reconstruct  focal 
 brain  activity  (during  a  sensory  and  a  motor  task).  Improvements  in  reconstruction 
 accuracy  for  TD  vs.  CW  data  have  been  theoretically  discussed  (  17  ,  18  )  ,  and  empirically 
 demonstrated  with  limited  coverage  systems  (  19  )  .  Here  we  empirically  show  the  benefit 
 of  whole-head  TD  over  CW  systems.  In  light  of  these  characterization  results  and  the 
 scalability-by-design  of  the  Flow2  device,  we  argue  that  it  is  well  positioned  to  enable  the 
 translation of research findings from both fNIRS and fMRI literatures to clinical settings. 

 Results 

 Kernel Flow2: a wearable system for TD-DOT 
 Kernel  Flow2  is  a  wearable  time-domain  fNIRS  system  that  has  been  designed  to  be 
 low-cost  and  compact  while  achieving  dense  channel  coverage  over  the  entire  head  (Fig. 
 1A).  It  has  a  modular  design  (Fig.  1B-F),  with  40  modules  spanning  the  entire  headset. 
 The  device  uses  visible  and  near-infrared  light  (690  nm  and  905  nm)  to  measure  changes 
 in  blood  oxygenation.  It  features  more  than  3500  source-detector  pairs  (counting  sources 
 and  detectors  that  are  less  than  60  mm  apart;  or  2500  if  limiting  source-detector  distance 
 to  50  mm);  the  combination  of  information  from  channels  that  sample  from  the  same 
 brain  region  allows  for  spatial  reconstruction  of  oxygenation  changes  (diffuse  optical 
 tomography).  Further  details  about  the  design  and  engineering  choices  can  be  found  in 
 the Materials and Methods section. 
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 Figure  1.  Kernel  Flow2  headset  provides  modular  coverage  over  the  whole  head  with  thousands  of 
 source-detector  optical  channels.  (A)  The  Kernel  Flow2  headset,  exterior  appearance.  (B)  The  system 
 consists  of  40  modules:  modules  are  organized  into  7  headset  rigid  superstructure  plates  that  cover  the 
 frontal,  parietal,  temporal,  and  occipital  cortices.  (  C  )  Each  Kernel  Flow2  optical  module  consists  of  3 
 dual-wavelength  sources  and  6  detectors  located  on  a  13.5  mm  radius  from  module  center.  An  additional 
 detector  located  in  the  center  of  the  module  continuously  measures  the  IRF  (see  also  E,  F).  The  3  source 
 emission  points  are  offset  120  degrees,  with  a  detector  located  37  degrees  on  either  side  of  each  source 
 point.  (  D  )  Exploded  view  of  the  Flow2  module  showing  the  details  of  all  the  module  subassemblies,  as 
 labeled.  (  E  )  A  cutout  view  of  the  optical  module  assembly,  showing  the  source  optics  (magenta  outline) 
 consisting  of  a  combined  anti-prism  and  first  element  of  the  source  optics  and  a  combined  exit  lens  and 
 homogenizing  light  tunnel.  The  detector  aspheric  fresnel  lenses  are  also  visible  (orange  outline).  (  F  )  The 
 IRF  waveguide  deflection  design;  this  approach  uses  a  specifically  designed  waveguide  that  sits  in  the 
 optical  path  of  the  laser  beams  to  transmit  a  fraction  of  the  light  from  each  source  to  the  dedicated  reference 
 IRF detector. 

 System performance assessment: BIP, MEDPHOT and nEUROPt protocols 
 The  performance  of  a  novel  system  must  first  be  evaluated,  with  respect  to  systems  of  its 
 class,  using  established  protocols  and  well-defined  figures  of  merit  (  20  )  .  Three 
 characterization  protocols  have  been  internationally  accepted  for  TD  diffuse  optical 
 systems:  (1)  the  Basic  Instrumental  Performance  (BIP)  protocol,  (2)  the  Optical  Methods 
 for  Medical  Diagnosis  and  Monitoring  of  Diseases  (MEDPHOT)  protocol,  and  (3)  the 
 Noninvasive  Imaging  of  Brain  Function  and  Disease  by  Pulsed  Near  Infrared  Light 
 (nEUROPt) protocol  (  21  –  23  )  . 
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 BIP Protocol 
 The  BIP  protocol  (Fig.  2A,  B)  evaluates  basic  characteristics  of  TD  instrumentation 
 which  influence  the  quality  and  accuracy  of  measurements  in  clinical  applications: 
 responsivity  of  the  detectors,  differential  non-linearity  (DNL),  afterpulsing  ratio,  system 
 instrument response function (IRF) and system stability (Methods). 

 To  assess  the  responsivity  of  the  Flow2  detectors  at  the  system’s  two  operating 
 wavelengths  (690  nm  and  905  nm),  we  used  an  external  laser  to  provide  known  input 
 power  (0.2mW).  The  corresponding  responsivity  was  calculated  to  be  9.97x10  -9  and 
 2.28x10  -9  m  2  sr  respectively  at  the  two  wavelengths.  These  are  within  the  range  of  reported 
 values  in  research-grade  systems  (  24  )  .  The  DNL  was  assessed  under  constant 
 illumination  (Methods;  eq.  1),  and  was  found  to  be  0.148.  This  DNL  is  relatively  high 
 compared  to  other  TD  devices  (  24  )  .  However,  there  isn’t  an  established  threshold  of 
 acceptable  DNL  for  TD  systems,  and  we  have  not  found  the  DNL  of  Flow2  to  be 
 detrimental  to  any  of  the  functional  characterization  results  (see  next  sections, 
 MEDPHOT and nEUROPt). 

 Other  metrics  were  assessed  during  normal  operation  of  the  system.  We  recorded  a 
 two-hour  session  of  data  using  a  single  module,  mounted  on  a  custom  fixture  to  capture 
 light  in  reflectance  mode  (Method).  We  examined  the  data  from  the  detectors  that  capture 
 light  that  traveled  externally  (reflected  on  matte  surface  of  the  fixture),  as  well  as  from 
 the  module’s  dedicated  IRF  detector  (which  receives  light  directly  from  the  module’s 
 lasers).  The  afterpulsing  ratio  (Methods;  eq.  2),  a  known  source  of  signal-dependent 
 noise,  was  0.0024  at  690  nm  and  0.0019  at  905  nm.  While  this  metric  is  not  as  widely 
 reported  in  the  literature  despite  being  part  of  the  benchmarking  protocol,  these  values  are 
 similar to those reported for another system  (  25  )  . 

 The  IRF  of  a  TD  system  is  critical  to  its  ability  to  accurately  characterize  the  media 
 through  which  light  travels.  The  data  recorded  by  the  system  for  a  given  source-detector 
 pair  (which  we  refer  to  as  the  DTOF)  consists  of  the  convolution  of  the  DTOF  one 
 expects  from  the  radiative  transfer  equation  (which  we  refer  to  as  the  temporal  point 
 spread  function,  or  TPSF)  with  the  IRF  of  the  system  (  26  )  .  Therefore  a  wide  IRF  tends  to 
 blur  information.  For  our  system,  the  full-width  at  half  maximum  (FWHM)  of  the  IRF  (as 
 measured  on  the  IRF  detector)  was  240  ps  at  690  nm,  and  270  ps  at  905  nm,  at  the 
 beginning  of  the  session  (Fig.  2C).  At  the  end  of  the  2-hour  session,  it  was  285  ps  at  690 
 nm  and  305  ps  at  905  nm.  This  drift  with  recording  time  is  due  to  an  increase  in 
 temperature  over  the  course  of  the  session,  which  affects  several  aspects  of  the 
 electronics.  The  IRF  FWHM  is  below  or  similar  to  the  mean  as  compared  to  other 
 systems  (  24  )  .  While  the  IRF  is  typically  characterized  by  its  FWHM,  we  note  that  the 
 ability  of  a  TD  system  to  accurately  characterize  media  with  higher  absorption  is 
 determined  by  the  slope  of  the  tail  of  the  IRF.  We  therefore  also  report  the  width  at  other 
 fractions  of  the  maximum  (and  encourage  others  to  do  so).  We  found  that  the  IRF  width 
 at  10%  of  the  max  was  710  ps  at  690  nm  and  710  ps  at  905  nm  at  the  beginning  of  the 
 session,  vs.  710  ps  and  725  ps  respectively  after  2  hours.  The  width  at  1%  of  the  max  was 
 1630  ps  at  690  nm  and  1655  ps  at  905  nm,  vs.  1740  ps  and  1715  ps  respectively  after  2 
 hours. 
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 A  common  way  to  summarize  information  from  time-of-flight  histograms  is  to  compute 
 the  first  three  moments  of  the  histogram  corresponding  to  the  total  counts  (sum),  mean 
 time-of-flight  (first  moment),  and  variance  of  the  times  of  flight  (second  central  moment) 
 (  13  ,  27  ,  28  )  .  Moments  have  a  convenient  property:  the  moments  of  the  DTOF  can  be 
 obtained  from  calculating  the  moments  of  the  TPSF  and  of  the  IRF  straightforwardly 
 (  27  )  .  Accordingly,  with  Flow2,  system  drift  in  the  DTOF  moments  can  be  corrected  for, 
 using  the  internal  IRF  detector.  We  demonstrate  here  that  the  first  three  moments  of 
 DTOFs  (total  counts,  mean,  variance)  were  consistently  stable  over  the  course  of  the 
 2-hour session after such correction, as shown for a representative channel in Fig. 2D. 

 Figure  2.  BIP  protocol  setup  and  results.  (A,  B)  Schematic  of  the  experimental  setup  for  BIP 
 experiments.  (  C  )  The  continuously-recorded  system  IRF  exhibited  narrow  widths  for  the  two  wavelengths 
 (rows).  Dashed  vertical  lines  indicated  the  boundaries  over  which  FWHM  was  computed.  (  D  )  Despite  the 
 change  in  temperature  over  a  2-hour-long  recording  session  (gray,  repeated  on  all  plots),  the  three  moments 
 of  DTOFs  (rows,  black)  were  stable  when  accounting  for  the  IRF  changes  throughout  the  recording. 
 Normalization  for  the  three  moments  were  done  by  division  over  the  value  at  the  first  time  point  for  the 
 total  counts,  and  by  subtracting  the  value  at  the  first  time  point  for  the  mean  and  variance  moments.  Note 
 that,  although  our  system  is  capable  of  sampling  much  faster,  an  integration  time  of  1s  was  used  for  this 
 demonstration, as is standard throughout the BIP protocol. 
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 MEDPHOT Protocol 
 Next,  we  probed  the  accuracy  of  Flow2  measurements  in  retrieving  known  optical 
 properties  of  homogeneous  phantoms  using  the  MEDPHOT  protocol.  Being  able  to 
 retrieve  accurate  optical  properties  at  each  wavelength  used  by  the  system  is  a 
 prerequisite  to  being  able  to  retrieve  accurate  estimates  of  the  concentrations  of  oxy-  and 
 deoxyhemoglobin  from  the  combination  of  the  wavelengths  (through  the  Modified 
 Beer-Lambert  Law).  Here,  a  single  module  was  used  to  characterize  absorption  and 
 scattering  coefficients  (μ  a  and  μ  s  ′  ,  respectively)  of  12  solid  phantoms  (BioPixS; 
 cylindrical  in  shape;  50mm  height,  100mm  diameter),  with  varying  absorption  values 
 (denoted  with  numbers  1,  3,  5  labels)  and  different  scattering  values  (labeled  by  letters 
 A-D)  (Fig.  3A).  Importantly,  the  range  of  properties  represented  by  these  phantoms 
 encompasses  properties  of  human  head  tissue  (  29  )  (skin,  skull,  cerebrospinal  fluid,  gray 
 matter,  and  white  matter)  (Fig.  3B).  Both  μ  a  and  μ  s  ′  were  estimated  using  conventional 
 curve  fitting  method:  an  iterative  search  using  the  Levenberg-Marquardt  algorithm, 
 seeking  to  minimize  differences  between  measured  DTOFs,  and  model  DTOFs  derived 
 from convolving the measured IRF with analytical TPSFs (Methods). 

 We  found  the  retrieved  optical  properties  to  be  very  close  to  the  calibrated  values  for  both 
 wavelengths  and  all  12  phantoms  (Fig.  3B),  with  the  following  average  relative  errors: 
 8.4%  and  4.3%  for  μ  a  ,  and  4.2%  and  3.8%  for  μ  s  ′  at  690  nm  and  905  nm  respectively. 
 These  relative  errors  are  similar  to  what  has  been  reported  for  other  instruments  (  24  )  .  We 
 note  that  accuracy  is  poorer  at  higher  absorption  levels,  which  we  primarily  attribute  to  a 
 limitation  imposed  by  the  slope  of  the  IRF  (hence  the  importance  of  characterizing  it 
 fully).  The  retrieved  and  calibrated  optical  properties  showed  excellent  linearity,  with  a 
 correlation  coefficient  over  0.98  for  both  μ  a  and  μ  s  ′  (Fig.  3C),  and  a  median  relative  error 
 with  respect  to  the  line  of  best  fit  of  6.3%  (690  nm)  and  3.0%  (905  nm)  for  μ  a  ,  and  2.3% 
 (690  nm)  and  3.1%  (905  nm)  for  μ  s  ′.  This  performance  is  in  the  range  of  those  reported 
 by similar instruments  (  24  )  . 

 We  also  tested  the  stability  of  the  retrieved  optical  properties  over  a  2-hour  recording 
 period  (for  phantom  B5).  Despite  a  noticeable  increase  in  the  system  temperature  (Fig. 
 3D),  the  retrieved  μ  a  and  μ  s  ′  were  stable  with  no  noticeable  trend  (slopes  computed  over 
 full  time  range  are  0.005%/min  for  μ  a  and  -0.010%/min  for  μ  s  ′)  further  confirming  that 
 the  continuous  measurement  at  the  dedicated  IRF  detector  is  an  effective  way  to  fully 
 correct for system drift. 
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 Figure  3.  Retrieving  known  optical  properties  using  the  MEDPHOT  protocol.  (A)  Twelve  different 
 phantoms  with  known  absorption  and  scattering  coefficients  (left)  were  used  in  turn  in  our  MEDPHOT 
 recording  setup  (right).  (B)  Retrieved  optical  properties  for  all  phantoms  in  the  matrix  (left:  690nm;  right: 
 905nm).  The  blue  x’s  denote  the  calibrated  values  supplied  by  the  phantom  manufacturer.  Each  light  black 
 dot  corresponds  to  the  result  from  a  single  within  module  channel  with  source-detector  distance  26.5mm, 
 for  a  single  1s  integration  sample.  The  colored  squares  correspond  to  known  average  tissue  properties  in  the 
 human  head,  and  are  added  for  reference  (CSF:  cerebrospinal  fluid;  GM:  gray  matter;  WM:  white  matter). 
 (C)  Correlation  between  retrieved  and  known  values  of  μ  a  (left)  and  μ  s  ’  (right),  for  both  wavelengths  (cyan: 
 690nm,  magenta:  905nm).  (D)  Stability  of  optical  property  retrieval  over  a  two  hour  measurement,  from 
 cold  start  (temperature  of  the  laser,  displayed  in  gray,  increases  by  25  deg  celsius  during  the  session).  The 
 results  are  from  a  single  channel,  with  1s  integration  time.  The  dashed  blue  line  indicates  the  value  supplied 
 by the manufacturer, and dotted blue lines indicate +/- 5% from this value. 

 nEUROPt Protocol 
 The  nEUROPt  protocol  is  a  system-level  evaluation  method  that  utilizes  optical 
 phantoms  mimicking  brain  tissue  (  22  )  .  We  used  previously  described  methods  to  perform 
 this  evaluation  (  14  )  (Fig.  4A,  Methods).  Briefly,  this  procedure  involves  a  liquid  phantom 
 (a  mixture  of  water,  India  ink,  and  intralipid  emulsion)  titrated  to  have  optical  properties 
 of  μ  a  =  0.01  and  μ  s  ′  =  1.0  mm  -1  (prepared  separately  for  each  wavelength).  Experiments 
 were  conducted  using  black  polyvinyl  chloride  (PVC)  cylinders  of  various  sizes, 
 suspended  in  the  liquid  phantom,  and  moved  incrementally  away  from  the 
 source-detector  plane.  Measurements  were  taken  at  depths  ranging  from  8mm  to  36mm, 
 following the original protocol's guidelines of 100 1-second accumulation histograms. 

 As  is  customary  in  TD-fNIRS  analysis,  we  present  results  after  summarizing  the  full 
 resolution  DTOFs  in  two  different  ways  (  13  ,  28  ,  30  )  :  (1)  using  the  first  three  moments,  as 
 described  in  the  previous  section;  (2)  using  coarse  time  gates:  here,  we  first  deconvolve 
 the  measured  IRF  from  the  measured  DTOFs,  and  coarsen  the  data  to  500ps  gates 
 (0-500ps,  500-1000ps,  etc).  For  each  set  of  features  (moments  and  gates)  and  each 
 wavelength,  we  computed  two  different  metrics:  contrast,  and  contrast-to-noise  ratio 
 (CNR), as a function of occlusion depth (Methods). 
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 For  the  moments,  we  found  that  both  contrast  and  CNR  metrics  exhibited  a 
 depth-selective  profile  with  higher  moments  being  more  sensitive  to  deeper  occlusions 
 (Fig.  4B),  as  expected  from  prior  literature  (  28  )  .  Similarly,  when  using  the  gating 
 approach  (Fig.  4C),  later  time  gates  show  better  contrast  and  CNR  with  depth  (  31  )  .  It  is 
 important  to  note  that  with  both  methods,  there  is  high  contrast  and  CNR  at  depths  > 
 20mm  (which  is  well  into  the  brain)  (  32  )  ,  especially  for  higher  moments  and  later  time 
 gates—demonstrating  the  advantage  of  TD-fNIRS  systems  over  CW-fNIRS  systems  with 
 respect  to  depth  sensitivity.  These  results  are  among  the  best  performance  of  TD  systems 
 according to a recent benchmarking study  (  24  )  . 

 Figure  4.  nEUROPt  protocol  setup  and  results.  (A)  Schematic  of  the  setup  used  to  test  the  nEUROPt 
 protocol.  (B)  Left)  Contrast  as  a  function  of  depth  for  three  different  moments  of  DTOFs  (sum,  mean  and 
 variance  are  the  three  rows  respectively).  Each  color  represents  the  volume  of  a  different  PVC  cylinder 
 used  in  the  experiment.  The  black  dashed  line  emphasizes  the  position  of  zero  contrast.  Right)  Same  as 
 (left)  but  the  contrast-to-noise  ratio  (CNR)  at  different  depths.  The  black  dashed  line  shows  a  CNR  of  2, 
 which  we  arbitrarily  chose  as  the  limit  above  which  a  signal  can  be  reliably  detected.  (C)  Contrast  (left)  and 
 CNR  (right)  are  shown  as  a  function  of  depth  for  the  three  different  PVC  cylinders  used  (rows).  Each  color 
 corresponds  to  different  time  gates  used  for  analysis.  Both  B  and  C  are  results  with  the  905  nm  wavelength 
 and  a  representative  channel.  For  the  results  on  the  690  nm  wavelength,  see  Fig.  S1.  The  results  for  both 
 wavelengths,  when  using  the  time  integration  method  yielded  qualitatively  similar  results  to  the  counts 
 integration method (shown here). 

 In-vivo  recordings  of  absolute  brain  oxygenation  during  a  breath  hold 
 challenge 

 The  breath  hold  task  consisted  of  blocks  of  a  transient  hypercapnic  challenge  (a  20 
 second  breath  hold  following  an  exhale),  alternating  with  periods  of  visually-guided 
 paced  breathing  (Methods).  This  is  a  commonly  used  calibration  task  in  the 
 hemodynamic  neuroimaging  literature,  as  it  produces  a  large  and  reproducible  response 
 in blood oxygenation and blood flow in the brain  (  33  )  . 
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 Figure  5.  Absolute  changes  in  the  concentrations  of  oxygenated  and  deoxygenated  hemoglobin  in  a 
 breath hold task. 
 (A)  Retrieved  absolute  concentrations  of  HbO  (red)  and  HbR  (blue)  were  separately  averaged  over  all  long 
 within-module  channels  for  two  well-coupled  prefrontal  modules.  Note  the  gradual  increase  (decrease)  in 
 HbO  (HbR)  during  the  breath  holding  portion  of  the  task.  During  rhythmic  breathing,  the  signals  reflected 
 the  pattern  of  breathing  (faster  oscillation  during  in/out  periods).  Periods  of  breath  holding  and  breathing 
 (inhale/exhale)  are  shown  with  different  colored  backgrounds.  (B)  Using  a  dedicated  fast-sampling 
 prefrontal  module,  we  were  able  to  extract  the  heart  rate  time  course  during  the  experiment.  The 
 modulation  of  heart  rate  with  breathing  (RSA)  was  visible  in  the  data  (higher  frequency  oscillations  during 
 the breathing phase). 

 To  obtain  dynamic  estimates  of  the  absolute  concentrations  of  oxygenated  and 
 deoxygenated  hemoglobin  (HbO  and  HbR  respectively),  we  used  previously  described 
 methods  (  14  –  16  ,  34  )  .  The  DTOFs  recorded  from  the  Flow2  system  underwent  standard 
 preprocessing  and  cleaning  steps.  We  then  applied  the  curve  fitting  method  (as  in  the 
 MEDPHOT  protocol),  assuming  a  homogeneous  medium.  This  is  of  course  a 
 simplification,  as  head  tissue  is  not  homogeneous.  We  observed  systematic  changes  in  the 
 absolute  HbO  and  HbR  that  were  locked  to  the  task  events  (Fig.  5A)  and  these  increases 
 and  decreases  were  consistent  with  prior  literature  (  33  ,  35  )  .  Specifically,  HbO  revealed  a 
 significant  increase  after  the  start  of  the  breath-hold  period  and  underwent  a  decrease 
 when  the  next  breathing  period  began.  Furthermore,  both  HbO  and  HbR  were  modulated 
 by  the  breathing  pattern  such  that  inhaling  and  exhaling  resulted  in  changes  in  the  signals 
 (inhale:  HbO  increases,  HbR  decreases;  exhale:  opposite).  Lastly,  we  extracted  the 
 time-varying  heart  rate  (using  the  dedicated  prefrontal  module;  Methods),  which  revealed 
 the  presence  of  strong  respiratory  sinus  arrhythmia  (RSA;  Fig.  5B),  i.e.,  modulation  of 
 the heart rate as a function of the phase of the breathing cycle  (  36  )  . 
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 In-vivo  recordings  of  brain  oxygenation  changes  during  a  sensory  and  a  motor 
 task 

 In  order  to  validate  Flow2’s  ability  to  record  robust  sensory-related  brain  activity,  we 
 employed  a  passive  auditory  task.  During  this  task,  the  participant  wore  earbuds  and  was 
 asked  to  listen  to  clips  of  brown  noise  (noise  blocks)  and  clips  of  human  speech  (story 
 blocks)  that  were  interleaved  in  a  pseudorandomized  manner.  We  utilized  a  standard 
 Generalized  Linear  Model  (GLM)  approach  that  consisted  of  modeling  the  hemodynamic 
 signal  recorded  during  the  task  (for  each  channel)  as  a  function  of  the  experimental 
 design  conditions  (story  and  noise  blocks)  (Methods).  This  analysis  revealed  significantly 
 more  activity  in  bilateral  auditory  cortex  during  the  story  blocks  than  during  the  noise 
 blocks (Fig. 6A)—a pattern of brain activation consistent with the literature  (  37  ,  38  )  . 

 To  confirm  the  statistical  output  of  the  GLM  visually,  we  examined  the  channel-level 
 oscillations  of  HbO/HbR  concentration  over  the  full  time  course  of  the  task.  When 
 overlaid  with  the  block  design  of  the  task,  channels  that  were  within  the  regions  of 
 interest  (and  identified  as  significant  by  the  GLM  analysis)  demonstrated  the  expected 
 hemodynamic  activity,  effectively  tracking  the  experimental  blocks  throughout  time 
 (representative  channel  from  left  auditory  cortex  shown  in  Fig.  6B).  As  expected,  the  two 
 chromophores fluctuated in opposing directions. 

 Second,  for  each  channel,  we  averaged  the  hemodynamic  signal  over  epochs 
 corresponding  to  the  same  block  type.  Representative  epoched  responses  for  single 
 channels  located  in  the  right/left  auditory  cortex  are  displayed  in  Fig.  6C.  These  channels 
 exhibited  increases  in  HbO,  and  corresponding  decreases  in  HbR  during  the  story 
 condition  of  the  task.  Notably,  they  also  exhibited  negligible  or  relatively  smaller 
 responses to the noise condition and complementary HbO/HbR activity. 

 As  a  further  validation  of  the  system,  we  employed  an  active  motor  task  and  repeated  the 
 exact  same  analysis  (as  we  did  for  the  passive  sensory  task).  Specifically,  we  recorded 
 the  brain  activity  of  a  participant  engaged  in  a  classical  finger  tapping  task,  during  which 
 they  were  repeatedly  cued  to  use  either  their  left  or  right  hand  and  tap  their  fingers 
 sequentially to their thumb for a period of time (Methods). 

 Again,  we  first  validated  the  whole-head  brain  activation  patterns  via  a  GLM  approach. 
 Unlike  auditory  stimulation,  which  exhibited  coherence  in  temporal  activation  across 
 hemispheres,  here  we  expected  the  motor  cortex  to  demonstrate  opposing  activation 
 across  hemispheres  to  task  conditions  (  39  )  .  Indeed,  this  analysis  revealed  regions  of 
 significant  activation  in  the  right  motor  cortex  and  regions  of  significant  deactivation  in 
 the left motor cortex when comparing left-hand tapping to right-hand tapping (Fig. 6D). 

 The  time  course  for  a  representative  channel  from  the  right  motor  cortex  exhibited 
 increases  in  HbO  throughout  time  that  were  matched  to  left  blocks  and  accompanied  by 
 decreases  in  HbR  (Fig.  6E).  These  characteristic  hemodynamic  responses  were  even 
 more  evident  after  epoching.  The  epoch-averaged  time  courses  for  representative 
 channels  exhibited  condition-specific  hemodynamic  responses.  Specifically,  a  channel  in 
 the  left  motor  cortex  showed  a  rise  in  HbO  and  a  corresponding  decrease  in  HbR  during 
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 right-tapping  blocks  (dashed  line)  (Fig.  6F;  left),  while  a  channel  in  the  right  motor  cortex 
 showed  increases  and  decreases  in  HbO  and  HbR,  respectively,  during  left-tapping  blocks 
 (Fig.  6F;  right).  Taken  together  these  analyses  underscore  the  ability  to  use  Flow2  to 
 record  meaningful  brain  activity  during  a  passive  sensory  task  as  well  as  an  active  motor 
 task. 

 Figure 6. Task-related hemodynamic activity extracted from Flow2 human recordings. 
 (A)  GLM-derived  pattern  of  brain  activity  (channel-level  test  statistics  for  the  story-noise  contrast)  over  the 
 whole-head  showed  regions  of  significant  activation  in  bilateral  auditory  cortex  (warmer  colors).  Arrow 
 indicates  the  regions  where  the  representative  channel,  shown  in  (  B  )  is  located.  (B)  Full  time  course  of 
 HbO  (red)/HbR  (blue)  for  a  representative  channel  from  left  auditory  cortex  overlaid  on  the  task  design 
 (green:  story  blocks,  blue:  noise  blocks,  purple:  rest  periods).  (C)  Averaged  epoched  responses  (mean  ± 
 standard  error)  for  representative  channels  from  left/right  auditory  cortex  (left/right  panels,  respectively). 
 Left  Auditory  is  the  same  representative  channel  as  (  B  ),  as  indicated  by  the  arrow.  Note  the  increase  in 
 HbO  (red)  and  decrease  in  HbR  (blue)  during  the  story  condition  (solid  lines),  as  well  as  the  muted 
 activation/deactivation  to  the  noise  condition  (dashed  line).  (D)  Same  as  (  A  ),  but  for  the  left  -  right  contrast 
 during  the  finger  tapping  task.  Notice  regions  of  significant  activation  (warmer  colors)  and  deactivation 
 (cooler  colors)  in  the  right  and  left  motor  cortex,  respectively.  (E)  Same  as  (  B  ),  but  for  a  representative 
 channel  from  the  right  motor  cortex,  as  indicated  by  the  arrow.  Notice  the  increase  in  HbO  during  the  left 
 finger  tapping  blocks  (green  epochs)  compared  to  the  right  finger  tapping  blocks  (purple  epochs).  (F) 
 Epoched  responses  as  in  (C),  but  for  a  channel  within  the  left  and  right  motor  cortex.  Notice  the  reversal  in 
 activation  by  condition  across  the  hemispheres,  where  the  left  motor  channel  shows  an  increase  in  HbO  to 
 right finger tapping and the right motor channel shows an increase in HbO to left finger tapping. 
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 Reconstructing brain activity with Time Domain diffuse optical tomography 
 High-density  fNIRS  recordings  enable  tomographic  reconstruction  of  brain  activity; 
 recently,  HD-DOT  has  been  validated  against  fMRI  for  mapping  the  functional 
 dynamics  of  the  human  cortex  (  29  )  .  To  date,  HD-DOT  for  the  whole  human  head  has 
 only  used  CW-fNIRS.  Given  the  advantages  afforded  by  TD-fNIRS,  notably  in  terms  of 
 depth  sensitivity,  we  hypothesized  that  our  system  could  yield  better  tomographic 
 reconstructions  than  are  possible  with  CW  data  alone.  We  used  the  datasets  discussed 
 above for passive auditory and finger tapping tasks to test our hypothesis. 

 It  has  been  shown  that  different  moments  of  the  DTOFs  exhibit  different  depth 
 sensitivities  (Fig.  4B,  also  see  (  28  )  ).  To  assess  how  the  quality  of  reconstruction  varies 
 when  using  only  the  sum  moment  (i.e.,  intensity—similar  to  what  CW  systems  measure) 
 versus  when  additional  moments  (mean  and  variance)  enabled  by  TD  capabilities  are 
 included,  we  obtained  reconstructed  HbO/HbR  cortical  maps  in  these  two  scenarios 
 (Methods).  The  time  course  of  reconstructed  activity  was  further  analyzed  using  GLM, 
 which  resulted  in  statistical  maps  for  each  task;  specifically  for  Story-Noise  contrast 
 during  the  passive  auditory  task,  and  Left-Right  tapping  during  the  finger  tapping  task 
 (Methods). 
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 Figure 7. Cortical activations maps reconstructed from a sensory and a motor task. 
 (A)  GLM-derived  statistical  map  (t-statistic)  of  brain  activation  for  Story  -  Noise  contrast  revealed  an  area 
 with  high  activation  in  the  left  auditory  cortex  when  using  only  the  intensity  data  to  reconstruct  HbO/HbR. 
 (B)  Same  as  (A)  but  results  are  from  the  finger  tapping  task  for  the  Left  -  Right  tapping  contrast.  (C,  D) 
 Same  as  (A,  B)  but  when  reconstruction  was  done  using  all  three  TD  moments  (i.e.,  sum,  mean,  and 
 variance).  Note  the  larger  values  of  t-statistics  in  these  statistical  maps.  (E)  Stimulus-locked  average  time 
 course  of  voxels  within  a  10  mm  radius  spherical  seed  centered  at  the  brain  voxel  with  the  highest 
 activation  in  the  left  auditory  cortex  (dashed  gray  crosshair  in  (A)),  when  using  only  the  sum  moment  to 
 reconstruct  brain  activity.  (F)  same  as  (E)  but  results  are  from  the  finger  tapping  task,  and  the  brain  voxel 
 with  highest  contrast  is  denoted  by  the  crosshair  in  (B)  .  (G,  H)  Same  as  (E,  F)  but  when  reconstruction  was 
 done  using  all  three  moments.  Note  that,  following  the  original  downsampling  to  1Hz,  the  time  courses 
 have  not  undergone  any  further  smoothing  or  filtering.  Also,  note  that  the  y-axes  have  different  scales,  to 
 best visualize the dynamic range of the data for each independent reconstruction. 

 Activation  maps  from  the  sum  moment  exhibited  expected  patterns  for  the  auditory  task: 
 increased  activity  during  story  blocks  as  compared  to  noise  blocks  in  the  auditory  region 
 (Fig.  7A).  In  the  finger  tapping  task,  too,  the  activation  maps  revealed  elevated 
 contralateral motor cortex activity (Fig. 7B). 

 When  performing  reconstruction  using  all  three  TD  moments,  we  indeed  found  deeper 
 sensitivities  with  higher  moments  (Fig.  S2).  Consequently,  both  tasks  demonstrated  even 
 larger,  more  significant,  statistical  contrasts  between  activations  during  the  conditions  in 
 expected  regions  (Fig.  7C,  D).  This  difference  was  even  more  stark  when  considering  the 
 time  course  of  activation  in  predetermined  task-specific  ROIs  when  they  were 
 time-locked  and  epoched  (Fig.  7E-H).  For  example,  while  the  sum  moment-based  HbO 
 time  course  in  the  left  motor  region  during  right-tapping  blocks  exhibited  small  elevated 
 activity  compared  to  that  during  left-tapping  blocks  (Fig.  7F),  this  contrast  in  activity  was 
 notably larger when using the reconstructed HbO from all moments (Fig. 7H). 
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 Discussion 

 In  the  current  study  we  introduce  and  validate  the  Kernel  Flow2  as  a  wearable  TD-DOT 
 system  capable  of  measuring  and  reconstructing  brain  activity  over  the  whole  head.  We 
 have  shown  the  system  has  performance  comparable  to  limited  channel  count 
 research-grade  devices  according  to  standardized  benchmarking  protocols,  while  also 
 extending  the  field-of-view  over  the  whole  head.  The  system  hardware  was  developed 
 using  scalable  methods  used  for  consumer  electronics  such  as  custom  ASICs,  plastic 
 molded  optics,  low-power  application  processors,  and  standard  communication  protocols. 
 This  combination  of  system  performance,  cost,  and  form  factor  can  enable  many 
 applications for both neuroscience research and precision neuromedicine. 

 It  is  critical  to  validate  the  performance  of  newly  developed  measurement  systems  using 
 standardized  protocols,  before  they  can  be  applied  for  research  or  clinical  purposes.  For 
 TD-fNIRS  systems  specifically,  recent  multi-laboratory  efforts  have  resulted  in 
 comprehensive  tests  to  characterize  performance:  the  BIP,  MEDPHOT,  and  nEUROPt 
 protocols.  Each  of  these  focuses  on  performance  from  a  different  angle  (  21  –  24  )  .  Briefly, 
 these  tests  revealed  the  following  for  Flow2:  (1)  the  system’s  IRF  is  adequately  narrow 
 and  stable,  which  is  required  for  various  computations  (e.g.  computing  absolute 
 HbO/HbR  concentrations);  (2)  the  system  can  indeed  be  used  to  accurately  retrieve 
 optical  properties  from  calibrated  optical  phantoms  with  optical  properties  in  the 
 physiological  range  at  both  wavelengths,  which  is  required  to  retrieve  accurate 
 concentrations  of  HbO  and  HbR;  (3)  the  measurements  from  the  system  have  better  depth 
 sensitivity  than  the  measurements  from  CW  systems  (intensity  only).  These  metrics  were 
 similar  or  better  than  those  reported  for  limited  channel  count  systems  (  24  )  .  Together, 
 these  validations  against  known  ground  truth  suggest  that  Flow2  recordings  should  be  of 
 high  enough  quality  to  study  hemodynamic  activity  on  a  human  head.  We  thus  proceeded 
 to  investigate  spatial  and  temporal  patterns  of  brain  activity  extracted  from  neural 
 recordings in vivo on a human subject. 

 First,  we  used  an  easily  implemented  mild  hypercapnic  challenge,  which  consists  in  a 
 short  breath  hold  (at  the  end  of  an  exhale).  This  challenge  is  known  to  trigger  an  increase 
 in  arterial  PCO  2  ,  resulting  in  a  homeostatic  response  including  cerebral  vasodilation  and 
 an  increase  in  cerebral  blood  flow;  importantly,  this  mild  challenge  does  not  appear  to 
 result  in  extracranial  perfusion  effects  (  35  )  .  We  were  able  to  use  curve  fitting  with  the  TD 
 data  to  track  the  absolute  concentrations  of  oxygenated  and  deoxygenated  hemoglobin, 
 something  that  traditional  CW  systems  cannot  do  without  making  additional  assumptions. 
 Because  the  homeostatic  response  is  limited  to  cerebral  tissue  in  this  hypercapnic 
 challenge,  we  can  demonstrate  that  our  approach  of  using  a  homogeneous  model  is 
 sensitive  to  absolute  oxygenation  changes  in  the  brain.  Retrieving  absolute  properties  is 
 of  particular  interest  in  many  clinical  applications  of  TD-fNIRS  such  as  in  stroke 
 assessment  (  40  )  ,  neurocritical  care  (  41  ,  42  )  ,  multiple  sclerosis  (  43  )  ,  schizophrenia  (  44  )  , 
 and  dementia  (  45  )  .  Thus  far,  because  of  the  high  cost  and  bulkiness  of  these  systems, 
 their  clinical  use  cases  have  been  limited  to  research  settings  (  30  )  .  Therefore,  using  a 
 portable  system  such  as  Flow2  may  present  an  opportunity  to  further  translate  these  lines 
 of clinical research into practice. 
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 We  then  had  participants  wearing  the  Flow2  headset  engage  in  two  simple  tasks:  a 
 passive  auditory  (sensory)  task,  and  a  finger  tapping  (motor)  task.  Note  that  both  of  these 
 tasks  are  classic  neuroimaging  paradigms  with  consensus  from  the  scientific  community 
 regarding  the  foci  of  functional  brain  activity  (  37  ,  38  ,  46  )  .  Our  analyses  showcased 
 localized  regions  of  activation  in  agreement  with  prior  literature:  bilateral  auditory  cortex 
 activity  for  the  passive  auditory  task;  and  contralateral  motor  cortex  activity  for  the  finger 
 tapping  task.  Further,  those  channels  that  exhibited  the  most  statistically  significant 
 responses  to  task  conditions  revealed  strong  task-locked  modulations.  It  is  worth  noting 
 that  we  previously  demonstrated  the  stability  of  such  task-evoked  metrics  in  a 
 larger-scale  study  with  the  Flow2  device  (  34  )  .  Taken  together,  these  findings  uphold  the 
 two pillars of device performance for research and clinical-use: validity and reliability. 

 Individual  channels  of  the  Flow2  system  yield  high  quality  hemodynamic  signals  from 
 the  human  head.  As  the  Flow2  system  is  composed  of  a  very  large  number  of  channels 
 (over  3500  with  source-detector  distance  <  60mm)  in  a  wearable  helmet-like  form  factor, 
 it  further  enables  reconstruction  of  brain  activity  (DOT)  over  the  whole  head.  The  density 
 of  channels  is  on  par  with  state-of-the-art  CW  HD-DOT  systems  (  47  )  .  Furthermore, 
 TD-DOT  improved  the  statistical  significance  of  cortical  activations  as  compared  to 
 CW-DOT;  we  can  speculate  that  this  is  because  of  its  better  depth  resolution  as 
 demonstrated  in  our  characterization  results  (e.g.,  nEUROPt  protocol  results).  We  note 
 that  the  comparison  performed  here  is  as  targeted  and  unconfounded  as  can  be,  as  it  was 
 performed  using  the  same  input  data  (TD  DTOFs)  summarized  in  different  ways. 
 Establishing  that  in  vivo  reconstructed  activations  have  better  anatomical  specificity  in 
 the  TD-DOT  case  than  in  the  CW-DOT  case  would  require  an  independent  measurement, 
 e.g., using fMRI, to establish a ground truth to which reconstructions could be compared. 

 While  the  Flow2  system  has  overcome  many  challenges  of  the  previous  prototype  Flow1 
 system  and  low-channel-count  TD  systems,  there  are  still  remaining  limitations.  The  full 
 headset  remains  relatively  heavy,  as  all  electronics  are  built-in.  The  weight  may  limit 
 system  wear  time,  thus  the  headset  may  not  accommodate  applications  requiring  long 
 recordings  (although,  in  some  cases  this  can  be  mitigated  with  thoughtful  study  design). 
 Additionally,  as  with  other  optical  neuroimaging  devices,  hair  can  limit  signal  quality,  as 
 it  absorbs  light  which  reduces  signal  at  the  detectors.  We  have  found  that  at  least  1000 
 usable  channels  are  available  over  the  head  for  most  participants  (  34  )  there  is  still  room 
 for  improvement  in  mechanical  design  to  ensure  good  optical  coupling  by  working 
 through  all  hair  types  and  making  contact  with  the  scalp  at  all  locations.  Moreover,  as 
 with  all  diffuse  optical  systems,  deep  brain  structures  remain  inaccessible.  The  TD  nature 
 of  our  device  does  however  allow  for  deeper  sensitivity  in  cortical  regions  as  compared  to 
 CW  systems.  Finally,  to  perform  a  reconstruction  of  brain  activity,  a  structural  head 
 model  must  be  used  which  describes  the  tissue  composition  (scalp,  skull,  cerebrospinal 
 fluid,  gray  matter,  white  matter)  and  the  precise  positioning  of  all  optodes  (sources  and 
 detectors)  must  be  known.  For  the  reconstructions  performed  in  this  work,  we  used  an 
 atlas  head  model  and  average  optode  positions  (see  Methods).  This  is  the  most  scalable 
 approach,  which  does  not  require  individual  head  measurements  or  individual  structural 
 MRIs,  and  solely  relies  on  good  practices  for  headset  positioning.  It  is  also  an  approach 
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 that  makes  several  assumptions  and  therefore  has  room  for  error.  There  are  intermediate 
 ways  to  improve  atlas-based  tomography  by  using  individual  measurements,  such  as 
 individually  registering  optode  locations  (  48  )  or  picking  the  best  atlas  from  a  library  (  49  )  . 
 There  are  ongoing  efforts  to  make  such  methods  readily  available  for  Flow2. 
 Additionally,  more  advanced  tomographic  reconstruction  approaches  that  fully  utilize  the 
 DTOFs will be explored and implemented in future iterations  (  50  )  . 

 Although  the  application  of  optical  neuroimaging  systems  in  clinical  settings  has  been 
 discussed  repeatedly  (  8  ,  30  ,  51  ,  52  )  ,  we  argue  that  no  system  to  date  has  successfully 
 integrated  the  combination  of:  1)  an  easy-to-use  form  factor;  2)  the  most  advanced  fNIRS 
 modality  (TD);  and  3)  high  enough  density  to  enable  the  reconstruction  of  whole-brain 
 cortical  hemodynamic  signals.  The  confluence  of  these  factors  in  Flow2  facilitate  better, 
 larger-scale,  and  more  timely  data  collection  efforts.  The  combination  distinctly  positions 
 the  device  as  a  premier  recording  option  for  both  the  scientific  and  clinical  communities. 
 Future  studies  with  TD-DOT  can  translate  insights  gleaned  from  neuroimaging  research 
 and  bring  them  into  practice,  therefore  enabling  novel  advances  in  precision  medicine 
 through scalable neuroimaging-based biomarker identification  (  53  –  55  )  . 

 Materials and Methods 

 Detailed description of the Kernel Flow2 system 

 System specifications 
 The  system  consists  of  40  modules  that  are  arranged  in  a  headset  design  (Fig.  1A,  B). 
 Modules  are  organized  into  7  headset  superstructure  plates  that  cover  the  frontal,  parietal, 
 temporal,  and  occipital  cortices.  Each  Kernel  Flow2  optical  module  consists  of  3 
 dual-wavelength  sources  and  6  detectors  located  on  a  13.5mm  radius  from  module  center. 
 An  additional  detector  located  in  the  center  of  the  module  continuously  measures  the  IRF. 
 The  3  source  emission  points  are  offset  120  degrees,  with  a  detector  located  37  degrees 
 on either side of each source point (Fig. 1C). 

 Intra-module  channel  distances  are  8.5mm  (6  source-detector  pairs),  17.9mm  (6 
 source-detector  pairs),  and  26.5mm  (6  source-detector  pairs),  for  a  total  of  18 
 dual-wavelength  channels  within  a  module.  Cross-module  channels  also  provide  data,  for 
 a  total  of  2,565  possible  channels  with  a  source-detector  separation  of  ≤  50  mm  over  the 
 whole  head  (3,583  ≤  60mm).  The  actual  number  of  usable  channels  depends  on  the  light 
 attenuation  for  a  particular  participant.  Module  locations  are  fixed  within  a  plate,  and 
 plates  are  held  together  with  an  adjustable  tensioning  system.  The  overall  size  of  the 
 headset  fits  a  range  of  adult  head  sizes,  with  a  minimum  size  of  52-cm  circumference  and 
 a  32.5-cm  bitragion  coronal  arc.  The  system  weighs  2.4kg.  By  comparison,  a  single 
 detector  channel  wearable  system  was  reported  to  weigh  2.5kg  (  56  )  ,  although  that  system 
 includes  the  weight  of  the  battery  while  the  Kernel  Flow2  system  is  powered  over 
 universal serial bus type-C (USB-C) using the USB power delivery (USB-PD) standard. 
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 Each  module  in  the  system  consists  of  three  major  subassemblies:  laser  assembly, 
 detector  assembly,  and  the  optical  assembly.  All  three  of  these  subassemblies  are  shown 
 together  in  an  exploded  view  in  Fig.  1D.  The  details  of  each  subassembly  and  the  overall 
 system architecture are presented in the following sections. 

 System architecture 
 The  Flow2  system  has  a  hierarchical  architecture  with  electronics  and  wiring  harnesses 
 integrated  into  the  headset.  The  system  is  cabled  over  a  single  USB-C  interface  that  both 
 supplies  power  (USB-PD)  and  enables  bidirectional  communication  (USB  2.0)  between 
 the data collection computer and the Flow2 system. 

 The  USB-C  cable  connects  to  the  Flow2  system  through  the  hub  sub-assembly  that 
 includes  an  application  processor  (AP),  and  a  global  reference  clock.  In  addition,  the  hub 
 sub-assembly  integrates  4  electroencephalography  (EEG)  analog-to-digital  converter 
 (ADC)  channels  that  are  designed  for  connecting  to  active  dry  electrodes.  The  hub  also 
 handles  the  primary  power  negotiation  for  the  USB-PD  standard  and  distribution  of 
 power  to  the  rest  of  the  system.  Connected  to  the  hub  are  follower  boards  that  serve  as 
 data  aggregation  points  for  clusters  of  modules.  Each  of  these  follower  boards  include  a 
 low-power  field-programmable  gate  array  (FPGA),  additional  power  conditioning 
 circuitry,  a  9-axis  IMU,  and  local  USB  2.0  communication  interface  between  the  follower 
 and hub. 

 In  total,  the  Flow2  system  supports  connection  of  up  to  40  time-domain  optical  modules 
 and  includes  4  active  dry  EEG  channels  (approximate  locations  from  10-10  montage: 
 AF4,  AF3,  FCz,  CPz).  The  system  may  be  operated  with  fewer  than  40  optical  modules, 
 allowing  for  the  removal  of  unnecessary  modules  to  reduce  headset  weight  or  cost.  In  the 
 current  study,  we  opted  to  utilize  the  complete  headset  configuration  to  depict  activation 
 and  deactivation  regions  across  the  entire  brain  during  different  tasks  as  described  in  the 
 following sections. 

 Laser source design 
 Each  module  source  location  (3  per  module)  has  two  pulsed  edge  emitting  laser  diodes. 
 The  paired  laser  diodes  are  placed  diametrically  opposite  each  other  and  emit  light  into  a 
 combined  micro-prism  and  lens  optical  element.  The  lasers  are  driven  by 
 custom-designed  pulse  shaping  circuitry  that  efficiently  generates  laser  pulse  widths  that 
 are  <=  ~225  ps  (690  nm  has  a  pulse  width  of  less  than  205  ps,  and  the  905  nm  laser  has  a 
 pulse  width  of  less  than  250  ps).  The  lasers  operate  in  gain-switched  mode,  which  enables 
 the  production  of  optical  pulses  that  are  shorter  than  the  electrical  pulse  that  drives  them. 
 In  addition  to  the  laser  driver  circuitry  and  laser  diodes,  this  sub-assembly  contains  the 
 power  conditioning  circuits  for  the  module,  as  well  as  the  connectivity  of  the  optical 
 module  to  the  follower  board  which  serves  as  a  data  aggregation  point  for  clusters  of 
 modules. 
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 Detector assembly design 

 The  detector  sub-assembly  comprises  seven  detector  ASICs  custom-designed  by  Kernel, 
 specifically  optimized  for  conducting  time-of-flight  measurements  in  diffuse  optical 
 tomography.  Notably,  the  Kernel  Flow2  ASICs  feature  integrated  time-to-digital  (TDC) 
 circuitry  with  the  photodiodes,  ensuring  a  seamless  fusion  of  key  functionalities.  The 
 detector  ASICs  have  been  engineered  to  accommodate  high  photon  count  rates  exceeding 
 5 Gcps, demonstrating resilience against pile-up distortion. 

 A  novel  custom  band-pass  coating  has  been  developed  and  applied  to  the  detector  ASIC 
 package.  This  specialized  coating  serves  as  a  selective  filter,  tailored  to  discriminate 
 against  undesired  wavelengths  within  the  spectrum,  thereby  optimizing  the  detection  of 
 photons  within  the  desired  spectrum  wavelengths  of  the  Flow2  lasers.  The 
 implementation  of  this  coating  helps  to  address  the  challenges  associated  with  ambient 
 light  and  extraneous  signals,  ensuring  a  maximal  signal-to-noise  ratio  and  heightened 
 accuracy in TD-fNIRS measurements. 

 Photon  arrival  times,  derived  from  on-chip  TDCs,  are  systematically  aggregated  into 
 histograms  and  communicated  via  a  serial  peripheral  interface  (SPI)  bus  to  a  dedicated 
 FPGA.  The  synchronization  of  ASICs  across  all  modules  to  a  20-MHz  global  reference 
 clock  facilitates  the  recording  of  temporally  aligned  signals  between  any  source  and  any 
 detector  in  the  system.  Furthermore,  each  detector  ASIC  incorporates  dedicated  high 
 voltage  bias  circuitry,  optimizing  the  bias  for  each  detector  within  the  system  for  stable 
 operation  at  any  temperature.  Additionally,  new  circuit  architectures  were  used  to  reduce 
 power  consumption  while  improving  overall  TDC  performance  compared  to  the  Flow1 
 design. 

 Within  each  module,  one  dedicated  detector  at  the  center  of  the  module  assumes  the  role 
 of  an  on-board  IRF  detector.  This  detector  captures  light,  transmitted  via  a  waveguide 
 from  the  source  optical  path,  yielding  a  per-pulse  waveform  that  temporally  corresponds 
 to  each  pulse  from  each  respective  wavelength.  The  programmable  integration  time  for 
 constructing  histograms  on  each  detector  spans  from  1ms  to  800ms,  with  the  current 
 configuration  set  at  3.5ms.  Each  histogram  collected  contains  signals  from  only  one 
 wavelength.  This  means  our  histogram  sampling  rate  is  285.7  Hz,  and  considering  both 
 wavelengths,  the  system  is  able  to  complete  spectroscopic  measurements  at  a  rate  of 
 142.9  Hz.  To  avoid  optical  crosstalk,  all  lasers  are  not  enabled  at  the  same  time.  This 
 temporal  multiplexing  enables  lasers  in  an  38-state  pattern,  completing  a  full  cycle  of 
 data  collection  for  all  modules  and  wavelengths  every  76  histograms,  corresponding  to  a 
 system  sampling  frequency  of  3.76  Hz.  In  the  full  headset  configuration,  one  source 
 operates  at  7.52  Hz,  which  is  a  frequency  fast  enough  to  accurately  capture  pulse  rate,  a 
 complementary  measure  to  the  optical  properties.  This  temporal  multiplexing  provides 
 the  additional  benefit  of  bringing  the  average  power  per  source  down  to  a  level  that 
 classifies  as  a  class  1  laser  device  according  to  the  United  States  Food  and  Drug 
 Administration  Federal  Laser  Product  Performance  Standard  Code  of  Federal 
 Regulations Title 21 Section 1040.10 (US FDA FLPPS 21CFR1040.10). 
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 Module optics design 

 The  module  optics  (Fig.  1D,E)  have  been  carefully  designed  for  several  purposes.  The 
 optics  conduct  laser  light  from  the  laser  diode  sources  into  the  scalp,  couple  light 
 returning  from  the  scalp  to  the  detectors,  conform  to  the  curvature  of  the  head,  reduce 
 interference  from  hair  by  parting  it,  isolate  detected  signal  to  a  single  detector,  and 
 maintain  both  source  output  power  and  detector  measurement  intensity  independent  of 
 compression. 

 There  are  a  total  of  9  spring-loaded  light  pipes  contained  within  the  optical  module,  with 
 3  source  light  pipes  having  an  optical  exit  area  of  1.3mm  x  1.3mm,  and  the  6  detector 
 light  pipes  each  with  a  3mm  diameter.  Each  of  these  9  light  pipes  are  optically  isolated 
 from  one  another  in  separate  cavities  to  prevent  optical  cross-talk  and  signal 
 contamination.  Both  the  sources  and  detectors  have  a  2  lens  optical  system  that  maintains 
 optical intensity throughout the compression range of the light pipe springs. 

 Per  each  source,  there  are  two  laser  diodes  that  are  placed  offset  from  each  source  optic 
 axis  and  directed  into  a  custom  built  optical  assembly.  The  light  from  the  diodes 
 immediately  enters  the  source  optic  and  is  redirected  by  means  of  an  integrated 
 micro-prism  with  reflective  silver  coating.  The  light  continues  diverging  within  the  first 
 polymethyl  methacrylate  (PMMA)  optical  component  until  it  hits  the  first  aspheric 
 surface. 

 A  secondary  source  optic  is  a  solid  body  optical  component,  also  made  out  of  PMMA, 
 and  is  spring-loaded  with  5mm  of  travel.  The  secondary  source  optic  collects  the 
 collimated  light  from  the  first  aspheric  optic,  and  homogenizes  the  light  prior  to  exiting 
 the  final  surface  of  the  light  pipe  and  passing  into  the  user’s  scalp.  This  secondary  source 
 optic  is  also  shrouded  with  an  opaque  covering  to  prevent  light  from  leaking  from  a 
 source directly into a detector light pipe outside of the module housing. 

 The  receiving  optics  are  also  designed  to  use  springs  to  comfortably  conform  to  the  user’s 
 head.  The  input  aperture  of  the  detector  light  pipes  is  3mm,  with  a  rounded  edge  on  the 
 external  interface  for  additional  comfort.  We  have  created  another  two  lens  imaging 
 system,  consisting  of  one  plano  surface,  and  3  aspheric  fresnel  surfaces,  in  order  to  keep 
 the received optical intensity constant at the detector, regardless of spring compression. 

 Continuous instrument response function monitor 

 A  critical  performance  metric  of  a  time-domain  optical  measurement  system  is  the  IRF. 
 The  IRF  is  a  measure  of  the  uncertainty  associated  with  each  timestamp  recorded  and  is 
 reflected  in  the  histogram  of  accumulated  events,  when  used  in  time-correlated 
 single-photon  counting  (TCSPC)  applications,  as  a  smearing  or  broadening  of  the  desired 
 signal being measured. 

 Each  component  in  the  system  plays  a  pivotal  role  in  shaping  the  system’s  IRF,  with  the 
 laser  and  detectors  emerging  as  the  predominant  influencers.  The  IRF  is  primarily  shaped 
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 by  the  design  specifics  of  the  detector  process,  the  laser  driver  circuitry,  and  the  laser 
 itself.  Moreover,  the  IRF  characteristics  of  these  active  components  exhibit  dependencies 
 on  the  temperature  and  operating  voltages  of  the  electronics  and  optoelectronics,  factors 
 subject to temporal variations and fluctuations during a measurement. 

 A  crucial  element  in  the  updated  Flow2  module  design  is  the  incorporation  of  a  dedicated 
 reference  IRF  detector  within  each  module  (Fig.  1F).  This  detector  is  the  exact  same 
 design  as  detectors  employed  in  measuring  signals  from  the  scalp  but  is  strategically 
 isolated  to  capture  light  directly  emitted  from  the  lasers  without  traveling  through  tissue. 
 This  isolation  provides  a  reliable  estimate  for  both  the  IRF  contribution  from  the  detector 
 (owing  to  its  identical  design  and  similar  process  as  the  signal-measuring  detectors)  and 
 the  IRF  contribution  originating  from  the  laser.  This  IRF  measurement  is  recorded 
 continuously, at the same rate as that of the other detectors. 

 Characterization protocols used for Time Domain instrumentation validation 

 BIP Protocol 
 The  BIP  protocol  is  designed  to  assess  basic  hardware  performance  of  time-domain 
 instruments  such  as  detector  responsivity,  differential  non-linearity  (DNL),  afterpulsing, 
 the  system  IRF,  and  system  stability  (  21  )  .  The  protocol  is  applicable  to  instruments  based 
 on  pulsed  laser  sources  with  repetition  rates  of  the  order  of  several  tens  of  MHz,  fast 
 single-photon detectors, and time-correlated single photon counting (TCSPC). 

 The  detector  responsivity  metric  in  the  BIP  protocol  measures  the  relative  sensitivity  of 
 light  detection  for  the  system,  calculated  as  the  ratio  of  measured  photons  exiting  from  a 
 calibrated  phantom  to  the  input  illumination  (  21  )  .  The  calibrated  phantom  is  a  diffuse 
 medium,  to  ensure  that  the  measurement  accounts  for  collection  efficiency  of  the  optics 
 as  well  as  the  detection  efficiency  of  the  detector.  The  experimental  setup  consists  of  a 
 calibrated  phantom  illuminated  on  one  side  with  a  collimated  laser  beam  emitted  from  an 
 externally  calibrated  fiber  source  and  coupled  into  a  lens  collimation  unit  to  produce  an 
 approximately  pencil-sized  laser  beam  and  measured  on  the  other  side  with  a  Flow2 
 module  detector  as  shown  in  Fig.  2.  A  power  meter  was  placed  between  the  collimated 
 beam  and  the  input  face  of  the  phantom  to  verify  the  correct  power  reading  prior  to  each 
 measurement  and  data  collection  session.  We  used  an  input  power  of  0.2mW  to  yield 
 target  counts  similar  to  those  reported  in  the  BIP  protocol  (we  reached  0.68x10  6  photons 
 and  1.12x10  6  photons  at  690  nm  and  905  nm  respectively,  with  our  system’s  default 
 integration time of 3.5 ms). 

 The  DNL  measurement  in  the  BIP  protocol  characterizes  variability  in  the  time  bin  width 
 of  the  TDCs.  Variability  in  the  time  bin  width  results  in  a  non-uniform  number  of  photons 
 in  each  bin  when  the  TDC  is  illuminated  with  a  continuous  light  source.  The  DNL  was 
 measured  by  applying  a  uniform  illumination  source  to  the  detector  from  a 
 battery-powered  CW  light  source  for  100  seconds,  and  calculating  the  relative  differences 
 in  the  number  of  collected  photons  per  bin.  The  deviation  from  the  ideal  of  an  equal 
 number  of  photons  in  every  bin  is  calculated  as  the  peak-to-peak  difference  between  the 
 maximum and minimum bins, normalized by the mean photon counts over bins: 
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   ε
 𝐷𝑁𝐿 

=    
 𝑁 

 𝐷𝑁𝐿 ,    𝑚𝑎𝑥 
− 𝑁 

 𝐷𝑁𝐿 , 𝑚𝑖𝑛 

 𝑁 
 𝐷𝑁𝐿 

    #  1 ( )

 The  IRF  is  carefully  characterized  in  the  BIP  protocol  to  describe  the  overall  time 
 resolution  of  the  system.  It  is  typically  measured  by  coupling  the  attenuated  output  of  a 
 source  directly  into  a  detector.  The  IRF  was  measured  both  at  a  typical  detector  and  at 
 the  dedicated  IRF  detector.  To  measure  the  IRF  at  a  typical  detector  and  because  our 
 system  doesn’t  have  the  same  flexibility  of  fiber-based  systems,  a  custom  fixture  was 
 used  to  capture  light  in  reflectance  mode.  The  source  beam  was  adjusted  to  avoid 
 saturating  the  detectors  with  direct  illumination,  and  the  light  is  then  reflected  off  a  matte 
 surface  to  redirect  it  into  the  collection  optics.  To  measure  the  IRF  at  the  dedicated  IRF 
 detector,  the  built-in  wave-guide  that  directly  couples  light  from  the  source  optical  train 
 to the IRF detection ASIC was used. 

 The  IRF  results  from  a  convolution  of  the  laser  pulse  shape  and  the  temporal  response  of 
 the  detector  and  associated  electronics.  Per  the  protocol  (  21  )  ,  the  IRF  was  measured  by 
 averaging  20  histograms  of  1s  acquisition  time.  Because  our  detector  maximum 
 integration  time  is  only  800ms,  we  collected  these  20  histograms  by  summing  individual 
 3.5ms  histograms  to  produce  a  single  1001ms  histogram.  These  20  summed  histograms 
 were  then  averaged  to  calculate  the  IRF.  The  BIP  protocol  specifies  a  count  rate  of  1e6/s, 
 i.e.  each  of  the  20  1-s  histograms  should  contain  1e6  photons.  As  the  count  rate  of  our 
 system  is  much  higher  than  1e6/s,  we  also  present  the  results  when  we  match  the  protocol 
 in terms of photon counts (i.e., much shorter integration time). 

 From  the  IRF  measurement,  we  also  calculate  the  afterpulse  ratio  (RAP),  a 
 signal-intensity noise source associated with the detector, as defined in the BIP protocol: 

 𝑅 
 𝐴𝑃 

=
 𝑁 

 𝑚𝑒𝑎𝑛 , 𝑏𝑘𝑔 
− 𝑁 

 𝑚𝑒𝑎𝑛 , 𝑑𝑎𝑟𝑘 

 𝑁 
 𝑡𝑜𝑡𝑎𝑙 , 𝐼𝑅𝐹 

   
 𝑇 

 𝑙𝑎𝑠𝑒𝑟 

 ∆  𝑡     #  2 ( )   

 where  N  mean,bkg  and  N  mean,dark  are  the  average  counts  of  the  background  measurement  in  the 
 tail  of  the  IRF  and  dark  count  measurements  respectively,  T  laser  is  the  full  laser  period  (1  / 
 repetition  rate)  and  dt  is  the  time  bin  width.  The  afterpulsing  ratio  was  calculated  for  both 
 690nm  and  905nm.  The  afterpulse  ratio  is  a  measure  of  the  increase  in  the  noise  floor  due 
 to this intensity-dependent noise. 

 Finally,  we  measured  the  stability  of  the  IRF  over  a  two  hour  period  starting  from  a  cold 
 start.  This  measurement  characterizes  the  time  scale  of  thermal  equilibrium  for  a  single 
 Kernel  Flow2  module.  We  analyze  the  total  intensity,  the  1st  moment,  and  the  shape  of 
 the IRF as described in the BIP protocol continuously over the two hour recording period. 

 MEDPHOT Protocol:  μ  a  and  μ  s  ′ measurements on optical  phantoms 
 The  MEDPHOT  protocol  serves  as  an  evaluative  framework  for  various  photon 
 migration  instruments,  assessing  their  capacity  to  accurately  retrieve  known  optical 
 properties  within  a  physiologically  relevant  range  using  homogeneous  phantoms  (  23  )  .  In 
 this  study,  we  employed  the  Kernel  Flow2  modules  to  conduct  measurements  on  a 
 specific  subset  of  the  MEDPHOT  kit,  comprising  12  solid  phantoms  (BioPixS,  Ireland). 
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 These  cylindrical  phantoms,  measuring  50  mm  in  height  and  100  mm  in  diameter,  consist 
 of  solid  compositions  containing  titanium  dioxide  (TiO2)  and  absorbing  toner  at  varying 
 concentrations.  The  phantoms  are  identified  by  letters  (A,  B,  C,  and  D)  and  numbers  (1, 
 3,  5),  where  the  letters  denote  nominal  scatter  values,  and  the  numbers  represent 
 absorption values, as illustrated in Fig. 3. 

 Utilizing  a  single  Flow2  module,  we  probed  the  phantoms  from  the  top  within  a 
 reflectance  geometry  setup.  The  absorption  and  scattering  parameters  were  estimated  by 
 minimizing  the  disparity  between  the  measured  histogram  and  a  predicted  histogram,  the 
 latter  being  the  outcome  of  convolving  the  measured  impulse  response  function  (IRF) 
 with  an  analytical  temporal  point  spread  function  (TPSF).  The  TPSF  equation  was 
 derived  from  an  analytical  semi-infinite  diffusion  model  employing  Robin  boundary 
 conditions.  To  ensure  the  stability  of  optical  property  characterization,  we  subjected  the 
 B5  phantom  to  measurements  for  a  duration  of  2  hours  starting  from  a  cold  start,  with  an 
 independent fit of optical properties from each 1s of data. 

 nEUROPt Protocol: Depth Contrast 
 The  nEUROPt  protocol  (  22  )  is  employed  in  the  evaluation  of  devices  at  the  system  level 
 through  the  utilization  of  optical  phantoms  designed  to  replicate  brain  tissue.  A  liquid 
 phantom  was  prepared  consisting  of  a  mixture  of  water,  India  ink,  and  intralipid  emulsion 
 (Intralipid®  20%),  titrated  to  have  optical  properties  of  μ  a  =  0.01  and  μ  s  ′  =  1.0  mm  -1  at 
 690nm.  The  liquid  phantom  tank  is  made  of  black  anodized  aluminum  with  0.1-mm 
 thickness  mylar  windows  for  the  source  and  detectors,  as  shown  in  Fig.  3A.  Experiments 
 were  conducted  with  a  set  of  black  polyvinyl  chloride  (PVC)  cylinders  with  dimensions 
 (diameter  equal  to  height)  of  3.2,  5,  and  6.8mm,  corresponding  to  volumes  V  incl  /mm  3  = 
 25,  100,  250.  The  occlusions  were  suspended  in  the  titrated  solution  by  thin  metal  wires 
 (0.4mm,  painted  white)  and  were  placed  in  the  path  of  source-detector  pairs  formed 
 within  the  Flow2  module.  The  target  was  moved  incrementally  from  a  depth  of  8mm  to 
 36mm  away  from  the  source-detector  plane  in  2mm  steps.  We  took  measurements  at 
 each  depth.  The  original  protocol  calls  for  100  1-s  accumulation  histograms,  at  a  count 
 rate  of  1e6  photons/s.  As  with  the  BIP  protocol,  we  matched  the  original  protocol  in  two 
 ways:  with  the  1s  integration  time  (and  a  higher  count  rate),  and  with  the  target  1e6 
 photons per histogram (and a lower integration time). 

 Contrast C for a given measurand M is defined as: 

 𝐶    =     𝑀 
 𝑖 

−  𝑀 
 0 
    #  3 ( )

 where  M  0  is  the  reference  or  baseline  measurement  and  M  i  us  a  measurement  made  after 
 some i  th  change in absorption (in our case an absorbing  target) is introduced. 

 For  photon  counts,  for  which  absolute  contrast  values  are  not  as  interpretable,  we  report  a 
 relative contrast measurement Cr defined as: 

 𝐶𝑟    =
 𝑁 

 𝑖 
− 𝑁 

 0 

 𝑁 
 0 

    #  4 ( )
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 Finally, for all measurands, the contrast-to-noise ratio (CNR) is defined as: 

 𝐶𝑁𝑅    =    
 𝑀 

 𝑖 
− 𝑀 

 0 

σ  𝑀 
 0 ( )     #  5 ( )

 where  σ(M  o  )  is  the  standard  deviation  of  the  reference  measurement  across  time  samples. 
 We  report  on  these  contrast  metrics  for  500ps  time  gates  (after  deconvolving  the  IRF,  see 
 next  section);  and  for  the  moments  of  the  time  of  flight  of  photons  (sum,  mean  and 
 variance),  which  are  often  used  in  TD-fNIRS  analysis  because  they  present  many 
 desirable properties  (  28  )  . 

 Deconvolution 
 We  can  use  the  continuously  monitored  IRF  and  retrieve  the  TPSF  from  the  DTOF.  We 
 used  a  FFT  deconvolution  approach,  with  a  regularization  factor  that  dampens  higher 
 frequency content (see  (  57  )  ). 

 Recordings in human participants 

 Tasks 

 Breath Hold task 
 This  task  was  programmed  and  presented  in  Unity.  The  participant  was  asked  to  switch 
 between  interleaved  periods  of  holding  their  breath  and  periods  of  paced  breathing. 
 During  each  paced  breathing  block  (30  sec)  a  bright  green  circle  on  a  black  background 
 repeatedly  expanded  and  contracted  at  a  fixed  pace  (6  sec  per  cycle),  and  the  participant 
 was  instructed  to  use  this  animation  to  guide  their  inhalation  and  exhalation  respectively 
 (5  breathing  cycles  were  repeated  in  each  block).  At  the  end  of  paced  breathing  blocks 
 the  circle  changed  to  yellow,  signaling  to  the  participant  that  this  would  be  their  final 
 exhalation  and  the  breath  hold  period  would  occur  next.  During  each  breath  hold  block 
 (20  sec)  the  fully  contracted  yellow  circle  remained  on  the  screen,  above  which  the  words 
 “Hold  your  breath!”  were  displayed.  Below  the  yellow  circle  a  countdown  to  zero 
 indicating  the  time  left  in  the  block  was  displayed.  When  the  countdown  timer  hit  zero, 
 the  circle  turned  back  to  bright  green  and  paced  breathing  immediately  commenced.  This 
 was  repeated  such  that  the  participant  completed  a  total  of  6  breath  hold  blocks  and  6 
 paced breathing blocks. 

 Passive Auditory task 
 This  task  was  programmed  and  presented  in  Unity.  The  task  had  a  block  design  with  two 
 block  types:  story  blocks  (n=8)  during  which  the  participant  listened  to  short  clips  from 
 TED  talks;  and  noise  blocks  (n=7)  during  which  the  participant  listened  to  brown  noise. 
 After  an  initial  10s  rest  period,  the  story  and  noise  blocks  (each  lasting  for  20s)  were 
 presented  (via  earbuds)  in  a  preset  pseudo-randomized  order  (Fig.  6B).  The  participant 
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 was  asked  to  keep  their  eyes  open  and  look  at  a  white  fixation  cross  that  was  presented  on 
 a black background throughout the task. 

 Finger Tapping task 
 This  task  was  programmed  and  presented  in  Unity.  In  this  task  the  participant  was  asked 
 to  sit  in  a  chair  with  their  arms  on  the  armrests  such  that  their  palms  faced  upwards,  while 
 audio  and  visual  stimuli  guided  them  through  randomized  periods  of  left  and  right–hand 
 finger  tapping  (n  =  10  blocks  per  side;  Fig.  6E).  Specifically,  at  the  start  of  each  block  the 
 participant  was  cued  in  two  ways:  1)  audibly  –  brown  noise  was  played  through  earbuds 
 to  either  the  right  or  left  ear  indicating  the  hand  that  should  be  used  during  the  task,  and 
 2)  visually  –  a  white  image  of  a  hand  was  displayed  on  a  black  screen  with  either  an  “L” 
 or  an  “R”  inscribed  on  it,  again  indicating  the  left  or  right  hand  should  be  used.  Both  cues 
 persisted  throughout  the  block  (17.3  sec).  Within  each  block  the  participant  was  asked  to 
 repeatedly  tap  the  thumb  of  the  cued  hand  to  a  certain  finger  on  the  same  hand.  A  red  dot 
 overlaid  on  a  finger  of  the  visual  stimulus  indicated  which  finger  to  tap.  Throughout  a 
 block  the  red  dot  moved  sequentially  through  each  of  the  four  fingers,  and  each  shift  to  a 
 new  finger  indicated  a  new  trial  (n  =  13  trials  per  block;  trial  duration  =  0.75  sec  and 
 inter-trial  interval  =  0.50  sec).  A  brief  resting  period  (20  sec)  with  a  white  fixation  cross 
 on a black screen followed each block. 

 Data preprocessing 

 Relative changes in HbO and HbR concentrations (moments method) 
 The  data  preprocessing  procedures  have  been  extensively  detailed  in  our  previous  studies 
 (  15  )  .  Initially,  we  applied  a  channel  selection  method  based  on  histogram  shape  criteria 
 (  14  )  .  Subsequently,  histograms  derived  from  the  chosen  channels  were  utilized  to 
 calculate  the  moments  of  the  DTOFs,  specifically  focusing  on  the  sum,  mean,  and 
 variance  moments.  The  alterations  in  preprocessed  DTOF  moments  were  then  translated 
 into  changes  in  absorption  coefficients  for  each  wavelength,  employing  the  sensitivities 
 of  the  various  moments  to  absorption  coefficient  changes,  as  outlined  in  (  13  )  .  To 
 determine  these  sensitivities,  a  2-layer  medium  with  a  superficial  layer  of  12  mm 
 thickness  was  employed.  Utilizing  a  finite  element  modeling  (FEM)  forward  model  from 
 NIRFAST  (  58  ,  59  )  ,  the  Jacobians  (sensitivity  maps)  for  each  moment  were  integrated 
 within  each  layer  to  assess  sensitivities.  The  changes  in  absorption  coefficients  at  each 
 wavelength  were  further  converted  into  alterations  in  oxyhemoglobin  and 
 deoxyhemoglobin  concentrations  (HbO  and  HbR,  respectively),  employing  the  extinction 
 coefficients  for  the  respective  wavelengths  and  the  modified  Beer–Lambert  law  (mBLL 
 (  60  )  ).  The  HbO/HbR  concentrations  underwent  additional  preprocessing  through  a 
 motion  correction  algorithm  known  as  Temporal  Derivative  Distribution  Repair  (TDDR 
 (  61  )  ).  To  address  spiking  artifacts  arising  from  baseline  shifts  during  TDDR,  they  were 
 identified  and  rectified  using  cubic  spline  interpolation  (  62  )  .  Lastly,  data  detrending  was 
 performed  using  a  moving  average  with  a  100-second  kernel,  and  short  channel 
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 regression  was  employed  to  eliminate  superficial  physiological  signals  from  brain  activity 
 (  63  )  ,  utilizing  short  within-module  channels  with  a  source-detector  separation  (SDS)  of 
 8.5 mm. 

 Absolute concentrations of HbO and HbR (curve fitting method) 
 The  DTOF  results  from  convolving  the  time-resolved  TPSF  with  the  IRF.  Utilizing 
 Flow2’s  online  IRF  measurements,  we  employed  a  curve  fitting  technique  to  extract  the 
 absolute  optical  properties  of  the  tissue  beneath.  Generating  candidate  TPSFs  through  an 
 analytical  solution  of  the  diffusion  equation  for  a  homogeneous  semi-infinite  medium,  we 
 convolved  these  with  the  known  IRF  and  compared  them  with  the  recorded  DTOF.  The 
 search  for  optical  properties  was  carried  out  using  the  Levenberg-Marquardt  algorithm, 
 focusing  on  fitting  within  the  range  spanning  from  80%  of  the  peak  on  the  rising  edge  to 
 0.1%  of  the  peak  on  the  falling  edge,  with  a  refractive  index  set  to  1.4.  These  absorption 
 coefficient  estimates  were  then  converted  to  HbO  and  HbR  concentrations.  A  single  value 
 for  HbO  and  HbR  was  obtained  by  computing  the  median  value  across  well-coupled 
 long, within-module channels (SDS=26.5mm) of two prefrontal modules. 

 Generalized linear model (GLM) and Epoched Analyses 
 A  GLM  approach  was  employed  in  order  to  elucidate  patterns  of  significant  brain  activity 
 during  the  different  block  conditions  of  the  Auditory  and  Finger  Tapping  tasks.  For  each 
 task,  the  activity  of  each  channel  (the  hemodynamic  time  course,  was  fitted  with  a  𝑦 )
 linear model: 

 𝑦    =     𝑋  𝜷    +     𝞮     #  6 ( )
 where  the  matrix,  ,  was  composed  of:  i)  task  relevant  regressors  (the  time  course  for  𝑋 
 each  block  condition  represented  as  a  square  wave  convolved  with  a  canonical 
 hemodynamic  response  function),  and  ii)  task  irrelevant  regressors  (namely,  drift  and  low 
 frequency  cosine  terms).  A  least-squares  method  was  used  to  solve  the  multiple 
 regression  problem,  producing  the  fitted  model  coefficients,  -weights.  These  weights 
 quantify  the  effect  that  each  regressor  has  on  the  hemodynamic  signal.  To  evaluate 
 whether  the  activity  of  a  given  channel  is  modulated  across  task  conditions,    -weights 
 associated  with  the  block  types  of  interest  are  subtracted  (commonly  termed  as  contrasts) 
 and  a  t-test  is  employed  to  statistically  compare  this  difference  to  zero.  The  contrast  of 
 interests  were  Story  -  Noise  for  the  Auditory  task  and  Left  -  Right  for  the  Finger  Tapping 
 task.  The  resulting  test  statistics  (from  each  channel)  were  plotted  as  a  heatmap  over  the 
 head to visualize patterns of brain activity and regions of interest (Fig. 6A,D). 

 The  associated  p-values  from  the  GLM  analysis  were  used  to  identify  representative 
 channels  that  showed  significant  activation  to  a  given  task  condition  for  time  course 
 visualization  and  epoched  analyses.  These  channels  were  chosen  from  the  regions  of 
 interest  within  each  task  (i.e.,  motor  and  auditory  areas  for  the  Finger  Tapping  and 
 Passive  Auditory  task  respectively),  and  to  avoid  superficial  signals,  only  channels  with 
 SDS>12  mm  were  considered.  The  time  series  for  these  channels  underwent  further 
 processing;  namely,  detrending  (with  a  100  seconds  kernel),  and  low-pass  filtering 
 (0.01-0.1Hz  finite  impulse  response  –  FIR  filter).  For  each  task,  the  time  course  of  HbO 

 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.04.30.591765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.30.591765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 and  HbR  for  one  representative  channel  was  overlaid  on  the  task  design  time  course  (Fig. 
 6B,E). 

 Moreover,  we  performed  standard  epoching  analyses  by  windowing  the  channel  time 
 courses  over  blocks  and  grouping  them  by  block  type.  For  both  tasks  the  windows  started 
 5  seconds  before  a  block-start  event  and  extended  30  seconds  beyond  (window  =  [-5s, 
 30s];  where  block  start  =  0).  A  period  preceding  the  start  of  each  block  (-5  to  -1  seconds) 
 was  used  to  baseline  the  response  of  each  epoch.  The  average  time  course  (mean)  and 
 variability  of  response  (standard  error)  for  each  block-type  was  computed  over  the 
 condition windows (Fig. 6C,F). 

 DOT reconstruction algorithm 
 A  finite  element  model  (FEM)  of  the  adult  head  was  developed  based  on  the  unbiased 
 non-linear  averages  of  the  MNI  152  database  (  49  )  .  The  atlas  was  segmented  to  5  tissue 
 types  of  skin,  skull,  CSF,  gray  and  white  matter  and  discretized  into  linear  tetrahedral 
 elements  using  NIRFASTSlicer,  giving  rise  to  413,403  nodes  and  2,465,366  elements. 
 Optical  properties  of  each  tissue  layer  at  each  wavelength  (690  nm  and  905  nm)  were 
 assigned  based  on  published  values  of  the  adult  head  (  29  )  .  The  coordinates  for  each  of  the 
 40  modules  containing  the  optical  sources  and  detectors  were  determined  and  identified 
 on  the  surface  of  the  FEM  and  the  time-resolved  light  propagation  model  was  solved 
 using  the  diffusion  approximation  to  the  light  transport  equation  throughout  the  domain 
 (  58  )  .  The  Jacobians  (sensitivity  functions  that  map  a  change  in  measured  data  due  to  a 
 change  in  optical  properties)  for  the  time-resolved  data  (TPSF)  for  each  optical  parameter 
 (μ  a  and  μ  s  ′)  were  calculated  using  the  adjoint  theorem  (  64  )  at  each  wavelength  and  then 
 interpolated  to  a  uniform  voxel  grid  (also  known  as  reconstruction  basis)  spanning  the 
 entire  model,  with  a  resolution  of  4  ×  4  ×  4  mm.  The  use  of  lower  resolution 
 reconstruction  basis  is  crucial  for  DOT  as  the  problem  is  highly  under-determined:  that  is 
 the  number  of  measurements  is  much  lower  than  the  number  of  unknowns.  While  a  high 
 resolution  FEM  mesh  is  needed  for  the  calculation  of  the  time-resolved  light  propagation 
 to  ensure  numerical  accuracy,  a  much  lower  voxel  resolution  is  needed  to  better  improve 
 the stability of the inverse problem. 

 The  time-resolved  Jacobian  for  each  optical  property  was  then  mapped  to  each 
 data-type  (intensity,  mean  time  of  flight  and  variance)  which  was  then  normalized  with 
 respect  to  their  corresponding  data.  A  Moore–Penrose  pseudoinverse  with  Tikhonov 
 regularization  was  used  to  calculate  an  approximation  of  the  inverse  of  the  Jacobian  to 
 perform  a  single  step  linear  recovery  of  the  optical  properties  (  29  )  using  the  same 
 functional  data  as  outlined  earlier.  Note  that  we  downsampled  the  data  to  1Hz  before 
 performing  reconstruction.  The  recovered  changes  in  the  μ  a  within  each  voxel  were 
 mapped  to  changes  to  oxy/deoxy  hemoglobin  for  further  processing  using  the  same  GLM 
 model  described  above.  Lastly,  in  addition  to  GLM  analyses,  we  performed  an  epoched 
 analysis.  Here,  we  considered  different  ROIs  given  the  task:  voxels  within  10  mm  of  the 
 left  motor  area  with  the  maximum  GLM  contrast  for  the  finger  tapping  task  and  voxels 
 within  10  mm  of  the  left  auditory  region  with  maximum  GLM  contrast  for  the  passive 
 auditory  task.  The  time  course  of  these  ROIs  were  then  epoched  and  aggregated  within 
 each block type for further visualization (Fig. 7). 
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