

1 **The *Streptococcus pneumoniae* transcriptome in patient cerebrospinal fluid**
2 **identifies novel virulence factors required for meningitis**

3
4 **Emma C Wall**^{1,2,3,4*}, **José Afonso Guerra-Assunção**^{2*}, **Marie Yang**^{5,6**}, **Rutger Koning**^{4,7**},
5 Teerawit Audshasai⁵, Alizé Proust¹, Rieza Aprianto⁹, Elisa Ramos-Sevilliano¹⁰, Giuseppe
6 Ercoli¹⁰, Modupeh Betts^{2,3,6}, Nicola Bordin¹¹, Vanessa S. Terra¹², Jan-Willem Veenings⁹,
7 David G Laloo¹³, Brendan W Wren¹², Robert J Wilkinson^{1,14,15}, Matthijs C Brouwer^{4,7},
8 Diederik van de Beek^{4,7}, Aras Kadioglu⁶, Robert S Heyderman^{2,3}, Jeremy S Brown¹⁰

9
10 1. Francis Crick Institute, London, NW1 1AT UK
11 2. Research Department of Infection, Division of Infection and Immunity, University College
12 London, UK
13 3. Malawi-Liverpool-Wellcome Clinical Research Programme, Blantyre, Malawi
14 4. European Study Group for Infections of the Brain, European Society for Clinical
15 Microbiology and Infectious Diseases
16 5. ReNewVax, Ltd, Liverpool. UK
17 6. Department of Clinical Infection, Microbiology & Immunology, University of Liverpool, UK
18 7. Department of Neurology, University of Amsterdam, Amsterdam Neuroscience, The
19 Netherlands
20 8. Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok,
21 Thailand.
22 9. Department of Fundamental Microbiology Faculty of Biology and Medicine, University of
23 Lausanne, Switzerland
24 10. UCL Respiratory, Division of Medicine, University College London, UK
25 11. UCL Structural and Molecular Biology, University College London, UK
26 12. Department of Infection Biology, London School of Hygiene and Tropical Medicine, UK
27 13. Liverpool School of Tropical Medicine, Liverpool, UK
28 14. Department of Infectious Diseases, Imperial College London W12 0NN, UK
29 15. Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and
30 Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South
31 Africa

32 Correspondence to emma.wall@crick.ac.uk

33 *(joint first)/**(joint second) - these authors contributed equally

34

35 **Keywords:** *Streptococcus pneumoniae*, meningitis, RNAsequencing, transcriptome,
36 betagalactosidaise, virulence

37

38

39

40 **Abstract**

41 To better understand *Streptococcus pneumoniae* pathogenesis we performed RNA
42 sequencing on cerebrospinal fluid (CSF) from meningitis patients to identify bacterial genes
43 expressed during invasion of the central nervous system. Comparison to transcriptome data
44 for serotype 1 *S. pneumoniae* cultured in *ex vivo* human CSF defined a subset of 57 genes
45 with high expression during human meningitis. Deletion of two of the most highly expressed
46 genetic loci, *bgaA* (encodes for a β -galactosidase) or the SP_1801-5 putative stress
47 response operon, resulted in *S. pneumoniae* strains still able to transmigrate the blood brain
48 barrier but which were more susceptible to complement opsonisation and unable to maintain
49 brain infection in a murine meningitis model. In 1144 meningitis patients, infection with *bgaA*
50 containing *S. pneumoniae* strains was associated with a higher mortality (22% versus 14%
51 $p=0.02$). These data demonstrate that direct bacterial RNAseq from CSF can identify
52 previously undescribed *S. pneumoniae* virulence factors required for meningitis
53 pathogenesis.

54

55 **Introduction**

56 Acute bacterial meningitis is a leading cause of infectious mortality and morbidity world-wide,
57 with an estimated 2.8 million cases in 2016^{1,2}. *Streptococcus pneumoniae* remains the most
58 frequent cause in most regions, particularly in sub-Saharan Africa³ where mortality reaches
59 30-60% and survivors frequently experience long-term neurological sequelae^{4,5}. In contrast
60 to high income settings, the poor outcomes in sub-Saharan Africa are not improved by
61 adjunctive therapies⁶⁻⁹, and an improved understanding of meningitis pathogenesis is
62 needed to identify novel therapeutic approaches¹⁰. Previous work has described how *S.*
63 *pneumoniae* translocates across the blood brain barrier^{11-13,14} and causes neurotoxicity
64 through the toxin pneumolysin (Ply), production of hydrogen peroxide, and the pro-
65 inflammatory effects of cell wall components¹⁵⁻¹⁹. However, the bacterial factors required for
66 *S. pneumoniae* invasion and growth in the central nervous system (CNS) during meningitis
67 remain largely unknown. Animal model experiments, including a mutant library screen in
68 rabbits²⁰ and transcriptomic studies using mouse, zebrafish or rabbit models have identified
69 multiple genes postulated to be important for meningitis pathogenesis, but how these data
70 relate to human disease remains unclear²¹⁻²⁴. To address this problem, we used RNAseq to
71 profile the bacterial transcriptome in pre-antibiotic CSF samples from patients with
72 pneumococcal meningitis to make a comprehensive assessment of *S. pneumoniae* gene
73 expression during invasive human infection and provide a global overview of the bacterial
74 adaptation to meningeal invasion. Cross-referencing *S. pneumoniae* gene expression under
75 meningitis-like conditions *in vitro*, with bacterial transcriptomes from patients identified
76 bacterial genes uniquely highly expressed during human meningitis. From these
77 comparisons we identified two highly expressed genetic loci (*bgaA* and *Sp_1801-05*) in
78 patient CSF with no documented or hypothetical role in meningitis for further investigation.

79

80 **Results**

81 ***The S. pneumoniae meningitis transcriptome is dominated by genes involved in***
82 ***replication, metabolism and virulence***

83 To improve understanding of *S. pneumoniae* adaptation during human meningitis, we
84 isolated bacterial RNA from pre-antibiotic CSF samples obtained from Malawian adults
85 subsequently confirmed to have *S. pneumoniae* meningitis by culture or PCR (Table 1). Of
86 the 36 samples processed, quantifiable RNA suitable for bacterial RNAseq was obtained and
87 sequenced from 11 participants (median age 30.5 years, 46% male, 91% HIV seropositive,
88 10/11 (91%) died).²⁵ Since the pneumococcal strains causing the meningitis were unknown,
89 reads could not be mapped to a single unifying pneumococcal genome, and the data were
90 first aligned to a collection of 70 curated and complete *S. pneumoniae* genomes. The
91 alignment ratio between samples varied from 0.242 to 0.957 (mean 0.82), with one outlier

92 sample (194C) with low RNA abundance showing relatively low alignment (**Table 1, Figure**
93 **1**). Log₂ values for maximum and minimum gene transcript/million reads (TPM) abundance
94 ranged from 1.00 to 15.68 (**Supplemental data file 1**). Of the 70 *S. pneumoniae* strains
95 screened, the highest serotype alignments for an individual sample were serotypes 1 (n=4
96 samples) and 3 (n=3 samples), similar to the known distribution of serotypes causing
97 meningitis in Malawi^{26,27}. We further analysed each sample individually against the
98 corresponding best-matched *S. pneumoniae* strain and used normalized gene expression to
99 identify between 30 to 118 highly expressed genes per sample (**Figure 1A**, listed in
100 **Supplemental Table 4**). Of these, only six genes were uniformly highly expressed in all 11
101 samples (*rnpB*, *ssrA*, *tuf*, *spxB*, *rpmE2*, *gap*). However, many other highly transcribed genes
102 from individual samples overlapped across samples (**Figure 1B**). To optimize our analysis
103 by re-mapping and aligning the RNAseq data to a unifying consensus strain, we selected the
104 genome of the serotype 1 strain gamPNI0373 (genbank CP001845.1, isolated from a child
105 with sepsis in Ghana) which showed the highest degree of alignment across all 11
106 transcriptome samples (76% to 93%) (**Table 1**). This generated a single table of genes
107 aligned to an *S. pneumoniae* genome for subsequent analysis (**Table 1**). A heatmap of the
108 top 250 most highly transcribed genes confirmed that the 50 highly expressed genes were
109 conserved across multiple samples (**Figure 1C**). Using a threshold expression level of
110 >10.62 log₂ transcripts per million (TPM) , 1.5+ SDs above the mean log₂ TPM (6.89, SD
111 2.49), 102 genes were defined as highly transcribed in CSF across all samples and were
112 ranked according to their median TPM (**Table 2**).
113

114 Classifying these highly expressed genes according to their annotated functions^{28,29}
115 identified multiple genes encoding proteins involved in nucleic acid and protein biosynthesis
116 and cell division (e.g. Sp_1489 and Sp_0273 translation elongation factors, Sp_1960 and
117 Sp_1961 RNA polymerases, Sp_1966 and 1967 cell division proteins), consistent with active
118 *S. pneumoniae* replication. Genes encoding known virulence factors were also highly
119 expressed, including the choline binding proteins PspA (inhibits complement-mediated
120 immunity)³⁰⁻³² and PspC (involved in migration across the blood brain barrier and
121 complement evasion),^{12,33,34} the manganese ABC transporter Psa (Sp_1648 - 1650, required
122 for growth *in vivo* and resistance to oxidative stress),^{35,36} and neurotoxicity factors including
123 pyruvate oxidase and pneumolysin^{21,37-39}. In addition, multiple genes with no previously
124 identified role in meningitis pathogenesis were highly expressed, including *bgaA* (encodes a
125 β-galactosidase), *IctO* (encodes a putative lactate oxidase), two component response
126 regulators (eg *ciaRH*, *Sp_0661-62*), genes encoding the Ami and *Sp_0090-92* ABC
127 transporters, carbohydrate metabolism operons, and proteins with unknown or poorly
128 described function (**Table 2**). Highly expressed genes during human meningitis rarely

129 overlapped with genes identified by animal studies of meningitis or growth in CSF-mimicking
130 media (**Supplementary Table 1**); for example, none of the genes reported to be highly
131 expressed during murine meningitis were found in the subset of 102 highly transcribed
132 genes during human meningitis^{40,41}. Further analysis using RegPrecise
133 (<https://regprecise.lbl.gov/>)⁴² identified that highly transcribed genes in patient CSF
134 belonged to regulons involved in manganese homeostasis, biosynthesis of fatty acids and
135 deoxyribonucleotides, N-acetyl galactosamine utilisation, and ribosomal biogenesis (**Table**
136 **2, Supplementary Table 2**).

137

138 ***Functional network analyses of the *S. pneumoniae* transcriptome during human***
139 ***meningitis***

140 To provide further functional analyses of the RNAseq data, the top quartile of highly
141 expressed genes in human meningitis were analysed using KEGG and STRING
142 (<https://string-db.org>). KEGG network analysis showed upregulation of pathways involved in
143 glycolysis, gluconeogenesis, RNA degradation, fatty acid biosynthesis, and pyruvate
144 metabolic pathways (**Supplementary Figure 1**), likely to represent the most important
145 metabolic pathways for pneumococcal response during meningitis. The STRING network
146 analysis identified three functional co-expressed gene clusters representing gene networks
147 involved in cell replication, metabolism, and genes known to be involved in meningitis
148 pathogenesis (e.g. *ply*, *nanA* and *nanB*) (**Figure 1D**). The STRING network also identified
149 two genes of unknown function, Sp_1802 and Sp_1804, outside of the three main networks,
150 indicating their involvement in an additional mechanism of bacterial pathogenesis during
151 meningitis.

152

153 ***Identification of highly expressed genes during *S. pneumoniae* culture in CSF***

154 Given the differences between *S. pneumoniae* transcriptomes in patients' CSF versus *in*
155 *vitro* 'CSF-mimicking conditons', we investigated whether highly expressed bacterial genes
156 in patient CSF reflected adaptation to growth in CSF and/or interaction with phagocytes or
157 more complex bacterial adaptations during meningitis pathogenesis. We compared the
158 transcriptome of *S. pneumoniae* between culture in complete medium (THY) and *ex vivo*
159 human CSF (from patients with normal pressure hydrocephalus), with or without addition of
160 purified human neutrophils to partially represent the conditions found during pneumococcal
161 meningitis⁴³. The serotype 1 strain ST5316 (*GenBank* CABZS000000000.1) was selected
162 for these experiments as it was isolated from a human CSF sample, a close match to
163 African meningitis strains⁴⁴⁻⁴⁷, and tractable for mutagenesis⁴⁸. Principal component analysis
164 showed wide separation of transcriptomes between the three *in vitro* conditions (**Figure 2A**),
165 demonstrating a distinct bacterial transcriptional response for each condition. Differential

166 gene expression analysis using DESeq2 identified 531 and 132 genes respectively with
167 statistically increased expression in *ex vivo* CSF alone or *ex vivo* CSF plus neutrophils
168 compared to THY, and 129 genes showing increasing expression in both *ex vivo* CSF and
169 CSF plus neutrophils compared to THY (**Figure 2B and C**). Pathways analysis using KEGG
170 of genes with increased expression in both *in vitro* CSF conditions compared to THY
171 demonstrated over-representation of metabolic, biosynthesis of secondary metabolites, and
172 purine metabolism pathways (**Figure 2D**), potentially representing pathways necessary for
173 *S. pneumoniae* adaptation to CSF. Differential *S. pneumoniae* gene expression analysis
174 using DESeq2 between culture in *ex vivo* CSF alone or in CSF plus neutrophils identified
175 466 pneumococcal genes with increased expression in the presence of neutrophils (**Figure**
176 **2D, supplementary data file 1**), representing (by KEGG analysis) enrichment for pathways
177 including organisation of cell shape, replication, cytokinesis, and cell wall synthesis; these
178 may represent specific *S. pneumoniae* adaptation to exposure to neutrophils.

179
180 Of the 102 highly expressed genes during human meningitis only 23 were significantly over-
181 expressed in *ex vivo* CSF compared to THY (eg PspA, the CiaRH and VicXKR two-
182 component sensor kinase systems, cell division proteins FtsH and FtsA, elongation factor
183 Tu, and a range of metabolic proteins), 13 over-expressed in *ex vivo* CSF with added
184 neutrophils (eg NADH oxidase and the Ami peptide ABC transporter), and 9 over- expressed
185 in both *ex vivo* CSF conditions (eg Psa manganese uptake ABC transporter, GapA, and the
186 hypothetical secreted protein Sp_1027) (**Table 2**). This shared requirement for high levels of
187 expression of these genes during human meningitis and in *ex vivo* CSF conditions indicates
188 they are involved in *S. pneumoniae* adaptation to growth in CSF and the presence of
189 neutrophils. However, 57 genes highly expressed during human meningitis were not
190 differentially expressed under *ex vivo* CSF conditions, including genes encoding Ply, PspC,
191 and SpxB, along with β -galactosidase (BgaA), ZmpB, fatty acid biosynthesis enzymes, the
192 PnpRS two-component sensor kinase system, and proteins of unknown function. These
193 genes potentially represent bacterial factors required for CNS infection that are harder to
194 identify and characterise *in vitro*, without obtaining *ex vivo* bacterial RNAseq data from
195 infected human CSF, and hence have not been previously characterised through animal or
196 *in vitro* model systems.

197
198 **Selection and mutation of two genetic loci highly expressed during human meningitis**
199 To further investigate genes that were highly expressed in human disease but not in *in vitro*
200 meningitis-like conditions, *bgaA* and the operon *Sp_1801-05* were selected. Proteins
201 encoded by these genes have no previously described role during meningitis, but were
202 among the most highly expressed genes in human meningitis samples, and were also co-

203 expressed in gene networks identified by the STRING analysis, *bgaA* within the metabolic
204 cluster and *Sp_1802* and *Sp_1804* separate from the main network clusters (**Figure 1D**).
205 *bgaA* was the second most highly expressed gene in the human meningitis dataset (median
206 \log_2 TPM 15.25), and encodes a β -galactosidase that aids *S. pneumoniae* growth in semi-
207 defined media, adherence to bronchial epithelium, and inhibits complement activity⁴⁹.
208 *Sp_1801-05* is a five gene operon with a mean \log_2 TPM of 10.94 (range 9.18 to 12.56), and
209 is conserved across Gram positive species. The function of proteins encoded by *Sp_1801-05*
210 is poorly understood, with published data only available for *Sp_1804* (described as
211 encoding a haemin binding protein)^{24,50-52}. *In silico* analysis using multiple proteomic
212 mapping tools (**Supplementary Table 3, Supplementary Figure 2**) suggested *Sp_1801-05*
213 proteins are involved in stress response; *Sp_1802* and *Sp_1804* are related to alkaline
214 stress response proteins, and *Sp_1805* has similarity to *CsbD* a protein involved in bacterial
215 resistance to environmental stresses⁵³.

216

217 ***In vitro* characterisation of $\Delta bgaA$ and $\Delta Sp_1801-05$ strains**

218 Serotype 1 *S. pneumoniae* ST5316 mutant strains containing deletions of *bgaA* or the
219 *Sp_1801-05* operon were constructed recently described techniques to transform serotype 1
220 strains (**Figure 3A**)⁴⁸, and their phenotypes investigated in assays relevant for meningitis
221 pathogenesis. Both $\Delta bgaA$ and $\Delta Sp_1801-05$ strains grew at a similar rate to the wild-type
222 (WT) strain in THY and under conditions of osmotic and cation stress (**Figure 3B**).
223 Compatible with potential roles suggested by *in silico* analysis for *Sp_1802* and *Sp_1804* in
224 responding to pH stress, the $\Delta Sp_1801-05$ strains had slightly delayed growth in THY media
225 under high (8.0) and low (6.8) pH conditions (**Figure 3B**). Both the $\Delta bgaA$ and $\Delta Sp_1801-05$
226 strains had significantly delayed growth in *ex vivo* CSF compared to the wild-type strain
227 (**Figure 3B**). Compatible with previously published data^{49,54} the $\Delta bgaA$ strain was more
228 sensitive to opsonisation with complement C3b/iC3b in serum. CSF contained too little
229 complement to further assess opsonisation in this compartment (**Figure 3C**). In addition, the
230 $\Delta Sp_1801-05$ strain was also more sensitive to opsonisation with complement (**Figure 3G**
231 and **H**). A monolayer model of Human Brain Microvascular Endothelial Cells (HBMEC) and
232 a multi-cellular transwell model of the blood brain barrier (BBB) including HBMEC, pericytes,
233 neurons and microglia (**Supplementary Figure 3**) were used to evaluate if either protein
234 was involved in transmigration or disruption of the BBB. When measured by electrical
235 impedance neither mutant strain showed differences in the early disruption HBMEC
236 monolayer tight junctions caused by *S. pneumoniae*. HBMEC cell death was marginally
237 delayed after infection with the $\Delta bgaA$ and $\Delta Sp_1801-05$ strains compared to WT control,
238 but remained greater than the Δply control (**Figure 3D**). Electrical impedance was
239 maintained across the multi-cellular transwell BBB model by both mutant strains compared

240 to WT and the Δ ply control (**Figure 3E**), but all strains showed similar levels of
241 transmigration across the BBB layer (**Figure 3F**).
242

243 ***Virulence and BBB transmigration are attenuated in both Δ bgaA and Δ Sp_1801-05***
244 ***mutant strains***

245 The effects of mutation of *bgaA* or *Sp_1801-05* was assessed in a recently developed
246 mouse model of brain infection involving nasopharyngeal translocation of *S. pneumoniae* to
247 the brain⁵⁵. Both the Δ bgaA and Δ Sp_1801-05 strains successfully colonised the
248 nasopharynx and were able to reach the olfactory epithelium and olfactory bulb with similar
249 CFU levels at all three sites compared to the WT strain (**Figure 4A**). However, although the
250 occasional mouse infected with the mutant strains had detectable CFU at earlier timepoints,
251 by ten days post infection, no mouse infected with either mutant strain had detectable CFU
252 in their brain tissue (**Figure 4A**). In contrast, brain infection occurred in 50% of mice infected
253 with WT, demonstrating that both *bgaA* and *Sp_1801-05* were required for brain infection.
254 Next, we tested the virulence of the two mutant strains in a zebra fish meningitis model
255 requiring direct injection of *S. pneumoniae* into the hindbrain CSF^{55,56}. Zebra fish injected
256 with the Δ bgaA strain had improved survival compared to those injected with the Δ Sp_1801-
257 05 or WT strains, although there were no differences in either bacterial CFU recovered from
258 the fish brain or neutrophil ingress (**Figures 4B and C**).
259

260 ***The presence of *bgaA* was associated with poorer outcome in PM human patients***

261 To test for association between infection with strains containing *bgaA* or *Sp_1801-05* and
262 clinical outcome, genome sequences for 1144 *S. pneumoniae* strains recovered from Dutch
263 meningitis patients were analysed. The *Sp_1801-05* operon was present in 702 (61.4%)
264 genomes, but this was not associated with an increased mortality (22% versus 20%, P =
265 0.682). *bgaA* was present in 1000/1144 (87.9%) *S. pneumoniae* strains across all
266 serotypes, and infection with *bgaA* positive strains was associated with a lower CSF white
267 cell count (2653 cells/mm³ range 545-7849 versus 4330 cells/mm³ range 975-9725), P =
268 0.037). In patients where the mortality was known (n= 1035), infection with strains containing
269 *bgaA* was associated with a higher mortality (204/909, 22%) compared to *bgaA* negative
270 strains (17/126, 14%), Fisher exact test p = 0.008) (**Figure 4D, Supplementary Table 4**).
271 These data further support that *bgaA* has an important role during the pathogenesis of *S.*
272 *pneumoniae* meningitis.
273

274 **Discussion**

275 Transcriptomic approaches offer a comprehensive insight into bacterial processes during
276 infection, potentially shedding light on factors crucial for virulence. To our knowledge there

277 are no published studies on the overall *S. pneumoniae* gene transcriptome during invasive
278 human infection. Our *S. pneumoniae* RNAseq of CSF obtained from patients with
279 pneumococcal meningitis represents a distinctive dataset, revealing several new findings
280 including: (i) a remarkable consistency in highly expressed *S. pneumoniae* genes among
281 patients, indicating activity in the metabolic pathways likely vital for bacterial survival and
282 replication during meningitis; (ii) many highly expressed genes in meningitis were not highly
283 expressed during culture in *ex vivo* human CSF or *in vitro* CSF-mimicking conditions,
284 underscoring the need to use human samples for their identification; (iii) mutant phenotype
285 analysis demonstrating two human meningitis-specific highly expressed genetic loci, *bgaA*
286 and *Sp1801-05*, were required for brain infection in a mouse model; and (iv) genome
287 analyses indicated *bgaA*-containing strains were associated with increased severity in
288 human meningitis. Overall, RNAseq of human CSF samples has identified the metabolic
289 pathways that are active during *S. pneumoniae* meningitis and previously unsuspected
290 important roles for two genetic loci during brain infection.

291

292

293 The importance of the genes showing increased expression only during human meningitis
294 for disease pathogenesis was supported by the phenotype data obtained for *bgaA* and
295 *Sp1801-05* operon gene-deletion mutant strains. *bgaA* (the second most highly expressed
296 gene in human meningitis) encodes BgaA, one of several *S. pneumoniae* exoglucosidases
297 and which cleaves N-terminal galactoses linked to glucose or N-acetylglucosaminidase on
298 host glycoproteins. BgaA has roles in bacterial metabolism, cell adherence and avoidance of
299 opsonophagocytosis^{49,57}. There are almost no data on the function(s) of the *Sp1801-05*
300 operon, but our *in silico* analysis suggests it is involved in the bacterial response to
301 environmental stress, and this is supported by our data showing the Δ *Sp_1801-05* strain has
302 delayed growth under lower or higher pH conditions.⁵⁰ In addition, the D39 homolog of
303 *Sp_1804* (SPD_1590) may play a role in iron transport and adherence to human lung
304 epithelial cells.⁵⁰ Using a recently developed murine model of brain infection that replicates
305 *S. pneumoniae* spread to the brain via the cribriform plate, we showed that both Δ *bgaA* and
306 Δ *Sp_1801-05* strains failed to establish sustained infection of the brain supporting the
307 hypothesis that they have a significant role during meningitis pathogenesis. Phenotype
308 analyses indicated both the Δ *bgaA* and Δ *Sp_1801-05* strains had delayed growth in the CSF
309 and increased sensitivity to opsonisation with complement compared to the wild-type strain.
310 Both phenotypes are likely to be important for the pathogenesis of meningitis; rapid growth
311 in CSF will be necessary for *S. pneumoniae* to establish infection, complement proteins are
312 essential mediators of innate immunity to *S. pneumoniae*⁵⁸ and are present in high
313 concentrations in CSF during meningitis⁵⁹. The role of *bgaA* for growth in CSF is surprising,

314 as glucose is the dominant carbon source in CSF rather than N-linked glycans which are the
315 substrate for *bgaA*⁴⁹. The effect of *bgaA* on complement resistance has been described
316 previously⁶⁰ and is thought to be mediated by de-glycosylation of complement proteins. The
317 pathogenic role of *bgaA* in pneumococcal meningitis . The impaired growth of the
318 Δ *Sp_1801-05* strain in CSF would be compatible a role in stress response and/or low iron
319 levels in CSF. How *Sp_1801-05* can affect complement activity is not clear and requires
320 further investigation. Importantly, meningitis caused by *bga* containing strains was
321 associated with reduced CSF white cell concentrations and higher mortality further
322 supporting an important role for *bga* during meningitis pathogenesis. These data were not
323 controlled for differences in distribution of *bgaA* between serotypes, but *bgaA* is widely
324 distributed amongst pneumococcal serotypes and was absent in a minority of strains making
325 it less likely that the association with mortality is caused by background genotype
326 independent of *bga*.

327
328 CSF provided a sample directly from the site of infection containing a high bacterial load
329 due to disease severity and lack of prior antibiotic use, and this allowed successfully
330 isolation of bacterial RNA from a proportion of meningitis patients. For practical and ethical
331 reasons repeat lumbar punctures to identify temporal changes in transcriptome response
332 were not possible. The data analysis faced technical challenges. Our patients were infected
333 with different *S. pneumoniae* serotypes, providing challenges to mapping and annotation of
334 pneumococcal genes. Most of our subjects were HIV positive, and we are unable to
335 determine if immunosuppression through HIV infection affected which *S. pneumoniae* genes
336 were highly expressed in CSF.

337 We chose to map all samples to a single geographically relevant serotype, and transformed
338 gene names into the TIGR4 nomenclature to facilitate functional annotation but were limited
339 by the lack of an agreed pan-serotype functional annotation system for *S. pneumoniae*.
340 Furthermore, the significant methodological differences in obtaining human CSF RNAseq
341 data compared to from *in vitro* cultures precluded conventional statistical comparison of the
342 datasets. Instead, we have used SD 1.5+ above the median TPM for all genes across all
343 samples to identify 102 highly expressed genes during human meningitis, or for the STRING
344 and KEGG analyses the top quartile of expressed genes to increase the potential range of
345 networks identified. Generally, when highly expressed genes are part of an operon, the rest
346 of the operon also showed higher expression levels (eg the *fab*, *Sp_0090-92*, *ami*, *Sp_2141-*
347 *44* operons) indicating the data reflect biologically relevant upregulation of gene expression.

348
349 Despite the inherent variation caused by different infecting strains, host background, and
350 variable timing of presentation there was significant consistency in which genes were highly

351 expressed across subjects. These included genes encoding proteins with known roles in
352 meningitis pathogenesis (eg *ply*, *pspA*, *pspC*), but also many genes with no known role. The
353 pathogenesis of meningitis involves *S. pneumoniae* growth in CSF containing a large influx
354 of neutrophils, conditions which we replicated using culture in *ex vivo* CSF.⁶¹ brain damage
355 in meningitis is due to both direct pathogen-mediated, and secondary damage from
356 neutrophil-mediated inflammation.⁶¹⁻⁶³ Our *in vitro* conditions identified a large number of
357 genes that were differentially expressed compared to *S. pneumoniae* culture in THY, which
358 are likely to represent metabolic adaptation to CSF and/or response to interactions with
359 neutrophils that will be investigated in the future. The large number of highly expressed
360 genes only identified in the meningitis dataset emphasises the importance of obtaining data
361 from disease subjects to fully understand pathogenesis. These genes could reflect the
362 greater complexity of *S. pneumoniae* / host interactions during actual meningitis compared
363 to *ex vivo* CSF, as well as differences due to evolving gene expression during human
364 disease compared to short term *ex vivo* culture.

365

366 To conclude, we have used direct RNAseq from clinical samples to identify the *S.*
367 *pneumoniae* genes and gene networks that are highly expressed during human meningitis.
368 Comparison of the data to *in vitro* transcriptomic studies in *ex vivo* CSF identified multiple
369 genes that were specifically highly expressed during human meningitis, including *bgaA* and
370 the *Sp_1801-05* operon. Subsequent mutational analysis demonstrated that *bgaA* and
371 *Sp_1801-05* are important for establishing brain infection in a mouse nasopharyngeal to
372 meninges translocation model. Our work thus provides a road-map for identifying important
373 novel mechanisms required for the pathogenesis of *S. pneumoniae* meningitis, data needed
374 to help develop future therapeutic interventions against this devastating disease.

375

376 **Methods:**

377 **Participants**

378 Adults and adolescents presenting to Queen Elizabeth Central Hospital in Blantyre, Malawi
379 with subsequently proven bacterial meningitis caused by *S. pneumoniae* between 2011-
380 2013 were included (Current Controlled Trials registration ISRCTN96218197)²⁵. All CSF and
381 blood samples were collected at the bedside prior to administration of parenteral ceftriaxone
382 2g BD for 10 days.^{7,64}

383

384 **Ethics**

385 All participants or nominated guardians gave written informed consent for inclusion. Ethical
386 approval for the transcriptomics study was granted by both the College of Medicine
387 Research and Ethics Committee (COMREC), University of Malawi, (P.01/10/980, January
388 2011), and the Liverpool School of Tropical Medicine Research Ethics Committee, UK
389 (P10.70, November 2010) Committee, Liverpool, UK.

390

391 **Procedures**

392 Routine CSF microscopy, cell count, and CSF culture was done at the Malawi-Liverpool-
393 Wellcome Trust Clinical Research Programme laboratory in Blantyre, Malawi as previously
394 described²⁵. Culture negatives samples were screened using the multiplex real-time
395 polymerase chain reaction for *S. pneumoniae*, *N. meningitidis* and *Haemophilus influenzae*
396 type b (Hib) kit from Fast-Track Diagnostics (FTD Luxemburg) according to the
397 manufacturer's instructions, bacterial load estimated from Ct values, using standards
398 previously generated.⁶⁵ We collected 2.5 ml of CSF and whole blood for transcriptional
399 profiling in blood PAX-gene® (Pre-AnalytiX, Qiagen, USA) tubes, incubated for 4 hours at
400 room temperature following the manufacturers instructions, and stored at -80 degrees
401 Celsius. In-hospital HIV testing was done on all patients by the clinical teams using point-of
402 care Genie™ HIV1&2 test kits (BioRad, USA).

403

404 RNA was extracted from human CSF samples using the PAXgene® Blood miRNA kit (Pre-
405 Analytix, Qiagen, USA) according to the manufacturer's instructions, with an additional
406 mechanical disruption step of CSF samples to disrupt the pneumococcal cell wall at 6200
407 rpm for 45 seconds in the Precellys evolution tissue homogenizer (Bertin Instruments). The
408 extracted RNA was quantified and RNA Integrity Number (RIN) scores calculated using RNA
409 Tapestation 4200® (Agilent, USA) and Nanodrop® (Thermoscientific, USA). CSF samples
410 were selected for additional ribodepletion and bacterial RNA sequencing where a bacterial
411 16S spike was seen on the Tapestation trace, irrespective of overall RIN. Ribodepletion was
412 done with the Illumina RiboZero Gold kit, following the manufacturers instructions.

413 Extracted RNA samples underwent library preparation for total RNA sequencing in samples
414 where the pre-ribodepletion RNA was >1ng/1ul using with Kapa RNA hyperPrep kit (Roche),
415 followed by 75 cycles of Next-generation sequencing with NextSeq® (Illumina, USA) by the
416 Pathogen Genomics Laboratory at University College London.

417

418 ***Bacterial mapping & annotation***

419 The paired-end libraries were aligned individually onto 70 *S. pneumoniae* genomes (NCBI, 8
420 April 2019); these genomes were described as complete on the date of access. Alignment
421 was performed by RNA-STAR (v2.6.0a)¹ with the following options: (i) alignIntronMax 1 and
422 (ii) sjdbOverhang 40. Alignment rate (i.e. fraction aligned to individual genome) was
423 calculated for every genome per sample. For every sample, a cut off was defined to
424 separate genomes with high alignment rate and non-high rate using Kernel density
425 distribution in R (R v3.5.2). Complete alignment and alignment rate are listed in
426 **Supplemental data 1**. For the selected genomes, the aligned reads were then summarized
427 (featureCount v1.6.3) according to the chimeric annotation file in stranded, multimapping (-
428 M), fractionized (--fraction) and overlapping (-O) modes². Additionally, we listed homologous
429 genes among the pneumococcal genomes including GCF_003003495 (*S. pneumoniae*
430 D39V) by Mauve v20150226³; homologous genes were defined as having common
431 coverage at least 60% and identity at least 70%.

432 In situations where comparison with publicly available data was performed, the data
433 was mapped to the *S. pneumoniae* TIGR4 reference genome (NC_018630) using nf-
434 core/rnaseq v3.4.

435 Gene expression was normalized against gene length and library size, or as TPM
436 (transcript per million). For samples with more than one high alignment rate genomes, we
437 included only homologous genes shared among the genomes. Moreover, the recently
438 completed *S. pneumoniae* D39V annotation⁴ was used as the base of analysis by using the
439 homologous genes between the selected genome(s) and D39V. To group pneumococcal
440 genes into highly expressed genes and non-highly expressed genes (i.e.: the high cut-off),
441 we used k-means clustering to the normalized gene expression to divide genes into twelve
442 clusters⁵. From the twelve clusters, high clusters were selected so that the high genes were
443 at least formed the top 8% highly expressed genes. For samples 183C and 283C, high and
444 non-high genes were grouped by Kernel density distribution. Enrichment test were
445 performed by the built-in function. Corresponding *p*-value of the enrichment test were
446 adjusted by Bonferroni correction.

447

448 ***Generation of gene-deletion mutants***

449 Gene deletion mutants of *S. pneumoniae* serotype 1 were generated as previously
450 described.⁴⁸ In brief, a serotype 1 strain 519/43 ST5316, isolated in 1943 from a patient CSF
451 in Denmark, acquired from the Statens Serum Institute was used.⁴⁸ A spectinomycin
452 cassette was inserted into the gene region inactivate either BgaA or the operon *Sp_1801-5*
453 using primers BgaA FW1: 5' ttgcggccgcggccatttggaatcgaaaagagttata 3' Bga1RV: 5'
454 tgtccatgcagtcaataaacagccaaggatccacttacttctcataaaccaggatggctgcgg 3',
455 BgaAFW2: 5' ttggctgttattgactgcatggacaggatccacttacttctcataaaccaggatggctgcgg 3'
456 BgaRV2: 5' cttccaggacttgcgcctgtgcggccaaa 3', _LHAFW:
457 5'ttgcggccgcgtgtatcgctgttagtcggggcat3', LHARV: 5'
458 cggaatcgaaggttttagaagttggatccactgttagctcacaaatcaaaggaaa 3', and RHAFW 5'
459 cggaatcgaaggttttagaagttggatccactgttagctcacaaatcaaaggaaa 3', RHARV: 5'
460 cgctgttagaagggtgttagaagggttaaaagcggcccaaa3' respectively. Correct introduction in the
461 chromosome was confirmed by using primers BgaSCN1: actagggtgtcataccatgtataccacttg
462 and BgaSCN2: actatttgtccagactttatcttcttattt for *bgaA* and primers upSCN1: 5'
463 ttattgtggagggtttatggctcttgg3' and downSCN2: 5' gcaattggaaatctctagctttgtttctgag3' for the
464 modified region, *sp_1801-1805*. All positive clones for insertion were confirmed by
465 sequencing.
466

467 ***Bacterial strains and growth conditions***

468 *Streptococcus pneumoniae* was cultivated in Todd-Hewitt broth (Roche), supplemented with
469 0.5% yeast extract (THY) at 37°C in 5% CO₂ to optical density (OD) of 0.5 at 620 nm.
470 Genetically-modified pneumolysin-deleted mutant bacteria were selected from growth on
471 Colombia agar (Oxoid, UK) supplemented with 5% horse blood and 100 µg/ml of
472 Spectinomycin as previously described⁴⁸, grown in THY under spectinomycin selection to
473 OD 0.5. Bacterial stocks were enumerated by plating serial dilutions on blood agar and
474 stored in 80% glycerol at -80°C.
475

476 ***S. pneumoniae growth in human CSF***

477 Human CSF samples were a kind gift to ECW from DvdB at the Amsterdam Medical Centre,
478 University of Amsterdam, The Netherlands. Surplus normal lumbar CSF was obtained from
479 diagnostic lumbar punctures for patients with a clinical diagnosis of normal pressure
480 hydrocephalus or benign intracranial hypertension with consent, snap frozen, shipped at -
481 80°C and thawed on ice to preserve active complement. Complement was depleted from
482 serum and CSF where required by heating to 65°C for ten minutes. For all growth
483 experiments, bacteria were thawed from stocks, washed twice in PBS and re-suspended at
484 an OD of 0.1. Growth in THY was used as a positive control, five technical replicates were
485 undertaken for all conditions. Growth was measured using a Tecan Spark plate reader

486 (Tecan, USA) at 37°C in 5% CO₂ with shaking at 200 rpm for 24 hours. Optical density
487 readings at 620 nm were taken at 30-minute intervals. Samples were serially diluted and
488 colony forming units were plated on blood agar in parallel every 2 hours for the first 8 hours
489 of culture using adapted Miles & Misra method.⁶⁶

490 Fresh human neutrophils were extracted from whole blood of healthy lab donors by negative
491 selection using the MACSxpress® system (Miltenyibiotec, USA) according to the
492 manufacturer's instructions. Erythrocytes were depleted post neutrophil isolation by
493 incubation for 8 minutes with 1X Invitrogen RBC lysis buffer (ThermoFisher, USA) prior to all
494 experiments. Neutrophil viability was assessed by Trypan blue staining. Neutrophils were
495 counted using a cell chamber and adjusted in all experiments to 2x10⁶ cells/ml. Neutrophils
496 were re-suspended in HBSS with 10% serum or CSF and kept at 37°C until use (<4 hrs). All
497 experiments used an MOI of 1.

498

499 ***RNA extraction and sequencing of *S. pneumoniae* in CSF culture***

500 Bacteria were cultured in THY until mid-log phase, pelleted at 4000g for 5 minutes, washed
501 in PBS three times and resuspended in 1ml of either fresh THY, CSF warmed to 37°C, or
502 CSF with 1x10⁶ fresh neutrophils. Eight replicates of each condition were used. All samples
503 were incubated for a further 30 minutes in 5% CO₂ at 37°C, before being incubated directly
504 into 2 mls of RNA/later to preserve bacterial RNA. All samples were incubated for 4 hours in
505 RNA/later at room temperature and then frozen at -80°C. *S. pneumoniae* RNA was extracted
506 following a method developed by Mann et al, using the MirVana phenol based extraction kit
507 (Thermofisher) as previous reported.⁶⁷ Briefly, samples were thawed, pelleted and RNA
508 protection media was removed. Cell lysis buffer was applied, samples were placed in a
509 FastPrep MatrixE tube, undergoing mechanical cell wall disruption in a Precellys machine
510 speed of 6200 rpm for 45 seconds. Homogenates were incubated in a water bath for 10
511 minutes at 70°C, cooled on ice and then pelleted at 12k x g, 5 min, 4°C in pre-cooled
512 microfuge. The supernatant containing RNA was removed and passed through a
513 Qiashredder (Qiagen) for 2 minutes at 12k x g, in the same 4°C in pre-cooled microfuge.
514 RNA extraction was completed using the MirVana kit (ThermoFisher) following the
515 manufacturers instructions. Following nucleic acid extraction, TurboDNAase enzyme and
516 buffer (1:10 ratio) (ThermoFisher) were added to each sample and incubated at 37°C for 30
517 minutes. RNA quality was quantified using the Tapestation/BioAnalyser. Ribosomal RNA
518 was depleted using the bacteria rRNA depletion kit (New England Biolabs), with the addition
519 of human rRNA depletion beads for the samples containing *S. pneumoniae* cultured in CSF
520 + Neutrophils. Libraries were prepared as previously using the Kapa kit for total RNA and
521 sequenced by the Pathogen Genomics Unit (PGU) at University College London.

522

523 ***Bioinformatics & data analysis***

524 RNA-seq reads were using nf-core/rnaseq v3.4. Alignment was performed using HISAT2
525 after read trimming and quality control steps using fastp. The nf-core/rnaseq pipeline
526 implements best practices for standardized RNA-seq analysis using Nextflow.
527 The pneumococcal transcriptome was compared under different *in vitro* conditions using
528 DESeq2.

529 *In vitro* laboratory data were visualised using GraphPad Prism version 9, data were
530 summarised using medians and range, different conditions were compared using pair-wise
531 comparisons Mann-Whitney-U tests.

532

533 ***Data availability***

534 Summaries of the sequenced, mapped data and analysis for both the *in vivo* human
535 pneumococcal transcriptome from meningitis patients and *in vitro* transcriptome
536 (**Supplemental data 1**) are available from the UCL data repository rdr.ucl.ac.uk [URL](#) DOI:
537 <https://doi.org/10.5522/04/25721628.v1>

538

539 ***Meningitis models***

540 ***In vitro blood brain barrier models***

541 **Ethical approval.** Human foetal brain tissues from 15 to 20 weeks' foetuses were obtained
542 from the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR), UCL, with
543 ethical approval (University College London, UCL, site REC reference: 18/LO/0822 - IRAS
544 project ID: 244325 and Newcastle site REC reference: 18/NE/0290 - IRAS project ID:
545 250012).

546

547 ***Monolayer cell impedance.***

548 xCELLigence (Agilent) is a system that continuously measures impedance across a cell
549 layer⁶⁸. HBMEC form tight junctions and are the first cell surface SpN must cross to invade
550 the CNS. HBMEC (hCMEC/d3, Merck) were cultured in EndogroTM-MV complete media
551 (Millipore) with the addition of 1 ng/mL human Fibroblast Growth Factor (Merck). Cells were
552 seeded on Collagen I (50 µg/mL, Merck) coated xCELLigence E-plate 16 at 8000 cells/well
553 and placed in the xCELLigence RTCA DP system. When the cells had formed tight junctions
554 (reached static impedance), *S. pneumoniae* isolates with previously enumerated CFU
555 counts were thawed, washed and added to the wells in triplicate at MOI of 1. Plates were
556 returned to the xCELLigence machine for ongoing quantification of impedance. Data were
557 collected and analysed by real time cell analysis (RTCA) software supplied by the
558 manufacturer.

559

560 **Multicellular blood brain barrier model**

561 A multi-cellular transwell model of the BBB was developed from an original model developed
562 using HBMEC, and Astrocytes.^{69,70}
563 Primary astrocytes were isolated from foetal brain samples as previously described⁶⁹⁻
564 ⁷¹, human brain vascular pericytes (HBVP, ScienCell), and human microglia (HMC3, ATCC)
565 were thawed from stock and cultured in 75 ml flasks coated with 2 µg/cm² poly-L-lysine
566 (astrocytes and pericytes) in cell-specific media (Astrocytes in DMEM (Sigma) + 10% FBS,
567 HBVP pericyte growth media (ScienCell) and HMC3 in EMEM + 10% FBS, all supplemented
568 with 100 U/ml penicillin, 100 µg/ml streptomycin (ThermoFisher) at 37 °C 5% CO₂.
569 HBMEC/d3s were incubated in Endogro-MV (Millipore) + FBGF as previously. All cells were
570 used between passages 3-8.

571 All components for the BBB scaffold were sterilised in an autoclave at 100°C
572 The apical surface of 6.5 mm diameter polycarbonate membrane transwells with 3 µm pores
573 (Corning, New York) were coated with 50 µL of 150 µg/mL rat collagen-I solution and the
574 basal surfaces coated with 50 µl at 2 µg/cm² poly-L-lysine. Transwells were inverted and a
575 sterilised section of rubber tubing was applied to the rim of the basal membrane. HBVP and
576 astrocytes were passaged, counted and combined in a 150 µl aliquot containing
577 10,000 HBVP cells and 50,000 astrocytes per transwell. Cells were seeded on each basal
578 transwell membrane surface and incubated for 4 hours at 37 °C 5% CO₂ with regular media
579 top up to prevent drying out. HBMEC/d3s were passaged, counted and diluted to 1.66x10⁵
580 cells/ml. The transwells were then righted, 150ul of hBEMC/d3s added to the apical surface
581 of the transwell and gently lowered into 750uL of mixed media containing 50% each of
582 Pericyte media and supplemented Endogro. The multi cellular transwell constructs were
583 incubated at 37 °C 5% CO₂ for up to 5 days. Permeability of the transwell model was
584 assessed using Dextran diffusion as previously described.⁷⁰ Briefly, Rhodamine B-labelled
585 Dextran (Sigma) was diluted in 50% Endogro/Pericyte media to 0.5 mg/ml and a standard
586 curve of 8x 1:2 dilutions was generated. 150ul media was removed from the apical chamber
587 of each transwell and replaced with media containing Dextran-Rhodamine B. The transwells
588 were incubated for 4 hours 37 °C 5% CO₂. 100ul media was removed from the basal
589 chamber of each transwell and fluorescence quantified using the Synergy Biotek2 plate
590 reader (Agilent). Concentrations of Dextran-Rhodamine B were calculated against the
591 standard curve. Cellular constructs where <20% Dextran was detected in the basal chamber
592 compared to a blank transwell were deemed impermeable and used for subsequent
593 experiments.

594 In parallel, HCM3 were seeded in 24-well plates and incubated for 24 hours in microglia
595 specific media (Millipore) prior to BBB model infection. On the day of the experiment, this

596 media was removed from the HMC3 cells, and replaced with 750 μ l of 'BBB media'
597 containing 1:1:1:1 mixture of Endogro/pericyte/astrocyte/microglia media.

598

599 The transwells containing the selected cellular constructs were placed into the 24-well plate
600 containing microglial cells and incubated at 37°C at 5% CO₂ while experimental conditions
601 were prepared.

602

603 ***Bacterial transmigration across multi-cellular BBB model***

604 *S. pneumoniae* serotype 1 strains were incubated in THY + 0.5% yeast extract to mid-log
605 phase, enumerated using CFU counting and frozen in 1 ml aliquots containing 80% glycerol.
606 Δ Sp_1801-5, Δ bgaA and Δ ply⁴⁸ were incubated in media containing 0.1 mg/ml
607 spectinomycin to inhibit growth of bacteria without the gene-deleted antibiotic cassette.

608 Aliquots were thawed, washed and bacteria re-suspended in 'BBB media' at a MOI of 1.
609 Earlier work indicated MOI higher than this resulted in rapid destruction of human cells. 150
610 μ l of media was removed from the apical surface of the transwell and replaced with infected
611 media. Each strain was tested in triplicate for each experiment. Bacterial counts at baseline
612 in each media were enumerated using CFU plating as previously. The basal chamber was
613 sampled for bacterial growth at hourly intervals for the first 4 hours, then again at 24 hours.
614 100 μ l of media was removed from the basal chamber and plated in 1:10 dilutions to
615 enumerate CFU Fresh media was placed in the basal chamber after each aspiration.
616 Trans-endothelial electrical resistance (TEER) across each transwell insert was measured
617 hourly for the first 8 hours and then at 24 hours.⁷²

618

619 ***Zebrafish embryo model***

620 Pneumococcal injection stocks for zebrafish experiments were prepared by growing the cells
621 in C+Y medium until an OD₅₉₅ of 0.3 and then stored at -70 °C in medium with 20%
622 glycerol. Before injection, bacteria were suspended in sterile PBS + 1% amaranth solution.
623 Adult wild-type zebrafish (Tupfel long fin line) were maintained at 26 °C in aerated tanks with
624 a 10/14h dark/light cycle. Zebrafish embryos were collected within the first hours post
625 fertilization (hpf) and kept at 28 °C in E3 medium (5.0 mM NaCl, 0.17 mM KCl, 0.33 mM
626 CaCl₂·2H₂O, 0.33 mM MgCl₂·7H₂O) supplemented with 0.3 mg/L methylene blue. At 1 day
627 post fertilization (dpf) zebrafish were mechanically dechorionated.

628 Zebrafish were infected at 2 dpf by microinjection of 1500 for survival experiments or 2000
629 CFU for microscopy experiments of wild type or knockout mutant *S. pneumoniae* in the
630 hindbrain vehicle.⁷³ After infection zebrafish were kept in 6-well plates at 28 °C. For survival
631 experiments, zebrafish were monitored at fixed time points until 72 hours post infection (hpi).
632 Survival experiments were performed with 20 animals per group in quadruplicate.

633 To determine neutrophil infiltration of the cerebral ventricles live images were acquired with
634 the Leica DMI6000 microscope. Tg(mpo:EGFP) zebrafish embryos were infected with wild-
635 type or $\Delta bgaA$ strain through hindbrain injection and imaged at 3, 4 and 5 hours after
636 infection. Embryos were embedded in 1.5 % low-melting-point agarose dissolved in egg
637 water (60 μ g/mL sea salts (Sigma-Aldrich; S9883) in MiliQ) in a μ -Slide 8 Well (Ibidi; 80826)
638 immediately after injection and kept at 28°C during imaging. ImageJ software was used to
639 process images and the number of neutrophils in the cerebral ventricle were counted in a
640 blinded fashion by two independent researchers. Nine zebrafish were used per group and
641 experiments were performed in triplicate.

642 To determine bacterial load after imaging, zebrafish were individually homogenized with
643 zirconium balls in the MagNA lyser (Roche) instrument. The number of CFU per strain were
644 determined by serial dilution of homogenates on COS plates containing COBA supplement
645 (containing colistin sulphate 10 μ g/ml and oxolinic acid 5 μ g/ml). All procedures involving
646 zebrafish embryos were performed according to local animal welfare regulations.

647

648 **Dutch cohort study**

649 We studied the role of *bgaA* or *Sp_1801-5* in a Dutch prospective nationwide study of
650 bacterial meningitis, the Meningene study. This study included patients ≥ 16 years who are
651 listed via bacterial monitoring by the Netherlands Reference Laboratory for Bacterial
652 Meningitis (NRLBM). This lab receives samples from both CSF and blood from around 85%
653 of the Dutch bacterial meningitis patients. Detailed methodology for patient selection and
654 inclusion has previously been published³³. In summary, the NRLBM provided daily updates
655 of hospitals in which patients with bacterial meningitis had been admitted in the preceding
656 days and names of treating physicians. Physicians were informed by telephone about the
657 study or could contact Meningene investigators themselves to include patients. Patients or
658 their legal representatives were given written study information and asked for written
659 informed consent. Baseline, admission, treatment and outcome data was collected by the
660 treating physician using an online case record form.

661 Pneumococcal meningitis was defined as a CSF culture positive for *S. pneumoniae* or a
662 combination of a blood culture, CSF PCR or CSF antigen test positive for *S. pneumoniae*
663 with CSF chemistry indicative of bacterial meningitis according to the criteria defined by
664 Spanos *et al.* (glucose <1.9 mmol/L, CSF-blood glucose ratio <0.23 , CSF protein >2.2 g/L,
665 CSF leukocyte count >2000 per mm³, or more than 1180 polymorphonuclear leukocytes per
666 mm³).⁷⁴ Patients with hospital acquired bacterial meningitis, recent neurosurgery (≤ 1
667 month), recent neurotrauma (≤ 1 month), or with a neurosurgical device in place were
668 excluded.

669

670 Pathogens were stored at -80 °C in the NRLBM upon receipt. For DNA extraction, isolates
671 were re-cultured from frozen stocks on blood agar plates. Sequencing was performed using
672 multiplexed libraries on the Illumina HiSeq platform to produce paired end reads of 100
673 nucleotides in length (Illumina, San Diego, CA, USA).

674

675 The infecting strain was routinely genotyped in 1025 pneumococcal meningitis patients
676 included in the Meningene. To determine if the *bgaA* or *Sp_1801-05* loci were present we
677 performed a BLAST analysis using all known loci from PubMLST. *BgaA* or *Sp_1801-05* was
678 classified as present if a locus was found with at least 99% similarity to a PubMLST locus.
679 Clinical characteristics were compared between patients infected with strains with or without
680 a *bgaA* or *Sp_1801-05* locus.

681

682 ***Murine transnasal brain infection model***

683 *S. pneumoniae* deletion mutant strains were tested in a mouse model of nasopharynx-to-
684 brain translocation model previously described.⁵⁵ Groups of 5 mice anaesthetized with 2.5%
685 isoflurane and intranasally inoculated with a 10 µl suspension containing 10⁸ CFU of wild-
686 type, Δ *bgaA* or Δ *Sp_1801-05* strains. At predetermined time points, mice were culled and
687 the CFU were determined at 0, 3, 7, and 10 days post-inoculation in tissue samples
688 including the nasopharynx (NP), olfactory bulb (OB), olfactory epithelium (OE) and Brain (Br)
689 as previously described.⁵⁵ Blood was also checked for CFU at 3, 7 and 10 days post-
690 infection, and no bacteria were detected in blood at any timepoint.

691

692

693 **Declaration of Interests**

694 All authors have no conflicts of interest to declare

695

696 **Funding**

697 This study was funded by a Clinical Lecturer Starter Grant from the Academy of Medical
698 Sciences (UK) and Wellcome Trust Institutional Strategic Support Funding (ISSF) with the
699 Robin Weiss Fund to EW. The Bundles for Adult Meningitis (BAM) study was funded by a
700 PhD Fellowship in Global Health to EW from the Wellcome Trust (089671/B/09/Z). Additional
701 funding included a Postdoctoral Clinical Research Fellowship to EW from the Francis Crick
702 Institute. . The Malawi-Liverpool-Wellcome Trust Clinical Research Programme is supported
703 by a core grant from the Wellcome Trust (101113/Z/13/Z). The laboratory work was
704 undertaken in part at UCLH/UCL who received a proportion of funding from the National
705 Institute for Health Research University College London Hospitals Department of Health's
706 NIHR Biomedical Research Centre. ECW, RH and JSB are supported by the Centre's

707 funding scheme. RJW, AP and EW were supported by the Francis Crick Institute which
708 receives funding from Wellcome (CC2112), Cancer Research UK (FC2112) and UK
709 Research and Innovation: Medical Research Council (FC2112). The human foetal material
710 was provided by the Joint MRC/Wellcome Human Developmental Biology Resource
711 (www.hdbr.org) (project#200511). RSH is a NIHR Senior Investigator.
712 Additional laboratory work at UCL and LSHTM was funded by an Investigator award to JSB
713 and BW from the Wellcome Trust.

714

715 For the purposes of open access, the authors have applied a CC-BY public copyright to any
716 author-accepted manuscript arising from this submission.

717

718 The funders of the study had no role in study design, data collection, data analysis, data
719 interpretation, or writing of the report. The corresponding author had full access to all the
720 data and the final responsibility to submit for publication.

721

722 **Author contributions**

723 Conception or design of the work: ECW, JAGA, AK, MY, RK, DvdB, JWV, BW, RJW, RSH,
724 JSB

725 Data collection: ECW, JAGA, VST, ERS, GE, AP, MY, AT, RK, RA

726 Data analysis and interpretation: ECW, JAGA, BW, AK, MY, JSB

727 Writing and editing: EW, JSB, JAGA, MY, VST, RK, DvdB, RJW, JWV, AK, RSH, JSB

728

729 Final approval of the version to be published: all authors

730

731 **Acknowledgements**

732 The authors would like to thank the study patients and guardians, the Bundles for Adult
733 Meningitis (BAM) research team, clinical and laboratory staff at the Queen Elizabeth Central
734 Hospital and Malawi-Liverpool-Wellcome Trust Clinical Research Programme in Blantyre
735 Malawi for support given during the study and Professor Mike Levin and Dr Victoria Wright of
736 Imperial College UK for support at the early stages of the project and donation of the
737 PAXgene tubes to collect CSF. We would like to thank Professor Judith Breuer and the staff
738 of the Pathogen Genomics Unit at University College London for their assistance with library
739 preparation and RNA sequencing. The authors acknowledge the use of the UCL Legion

740 High Performance Computing Facility (Legion@UCL), and associated support services, in
741 the completion of this work.

742

743

744 **Tables**

745 **Table 1:** Summary of patient and sample characteristics.

746 **Table 2:** Highly expressed gene loci during human meningitis

Table 1: Summary of patient and sample characteristics.

Sample identifier	Age (years)	Sex	HIV status	CSF Spn DNA copies / ml	CSF white cell count (cells/mm ³)	Gene transcript/ million reads (TPM)	Strain best aligned to (serotype)	Maximum - minimum strain alignment rates (%)	Number of <i>S. pneumoniae</i> genes identified	Number (%) genes aligned to serotype 1 strain gamPNI0373
103C	15	F	Neg	5.82E+06	1760	16.08	A66 (3)	88.16 - 70.52%	1947	76%
138C	28	M	Pos	4.61E+06	0	17.92	P1031 (1)	93.46 - 81.46%	2186	92.8%
183C	66	F	Pos	1.10E+07	>25,000	7.63	D141 (23F)	86.21 - 74.94%	1144	83.8
194C	32	F	Pos	5.77E+05	221	16.68	A66 (3)	75.76 - 26.07%	2042	27%
283C	60	M	Pos	1.52E+09	50	17.62	A66 (3)	92.53 - 79.64%	2167	88.3%
315C	44	M	Pos	2.25E+03	Clumps	14.15	P1031 (1)	91.45 - 79.64%	2112	90.67%
320C	18	F	Pos	236E+08	Clumps	17.50	P1031 (1)	93.91 - 81.89%	2150	93.2%
396C	unknown	M	Pos	1.31E+07	87	17.71	Hu15 (19A)	94.78 - 89.11%	2112	93.6%
461C										
507C	22	F	Pos	4.56E+07	Clumps	16.20	D141 (23F)	93.41 - 77.09%	2030	85.8%
538C	45	F	Pos	7.86E+07	300	19.79	P1031 (1)	91.38 - 78.96%	2179	90.5%
	29	M	Pos	1.97E+07	250	13.71	4041STDY6583	92.04 - 83.54%	1977	88.0%
						227				
Median (range)	30.5 (15-66)	46% male	91% +ve	1.31E+07	235 (0->25,000)	16.66 (2.49)			2121 (1144-2186)	

1

2 **Table 2:** Highly expressed genes in CSF from humans with *S. pneumoniae* meningitis, identified as the 102 genes with RNAseq \log_2 transcripts
 3 >10.62 (1.5 SDs [3.73] greater than the mean [6.89] for the 2121 genes for which RNA was detected) divided into functional categories (by
 4 dominant function for genes with multiple functions).

Category	Function if known	TIGR4 gene number	Human Meningitis \log_2 transcripts	Human Meningitis RNAseq rank	Increased expression in ex vivo CSF and/or CSF+PMN versus THY		Regulon if known
					CSF	CSF+PMN	
Virulence	β -galactosidase	Sp_0648	15.25	2	No	No	unknown
	Pyruvate oxidase SpxB	Sp_0730	14.71	4	No	No	unknown
	PspC	Sp_2190	12.40	20	No	No	unknown
	PspA	Sp_0117	11.45	43	Yes	No	unknown
	Zinc metalloprotease ZmpB	Sp_0664	11.42	44	No	No	unknown
	Pneumolysin	ply	11.39	45	No	No	unknown
	NADH oxidase	Sp_1469	10.92	69	No	Yes	unknown
	Putative capsular polysaccharide biosynthesis, glycosyl transferase	Sp_1837-38	11.05, 9.49	61,292	No, Yes	Yes, Yes	unknown
Unknown	Hypothetical function operon	Sp_1801 – 05	10.07, 11.60, 9.18, 12.56, 10.63	93,39,376,18, 101	All genes no	All genes no	unknown
	Hypothetical function genes	ST1 genes only	12.33-15.68	1,3,5,7,14,22	-	-	unknown
	Hypothetical secreted protein	Sp_1027	11.84	31	Yes	Yes	none
	Secreted 45 kd protein	Sp_2216	11.66	36	No	No	none
	Hypothetical protein	Sp_0742	11.01	65	No	No	none
	Hypothetical protein	Sp_2144	10.79	82	No	No	none
Transporters	Unknown substrate ABC transporter	Sp_0090-92	11.34, 11.80, 13.27	49,33,10	Yes, Yes, No	All genes no	CcpA
	Manganese ABC transporter	Sp_1648-50	12.24, 11.81, 12.60	25,32,16	Yes, Yes, Yes	No, Yes, Yes	MntR
	PsaBCA	Sp_1887-91	11.23, 11.21, 10.73, 11.25, 11.90	53,55,89,51, 30	All genes no	No, No, Yes, Yes, Yes	CodY
	Peptide ABC transporter						
	AmiFEDCA						

Biochemical / synthesis	PTS transporter PtkC	Sp_1179	11.51	41	No	No	NrdR
	β-galactosidase 3, PTS transporter components	Sp_0060-64	11.25, 9.28, 9.59, 10.07, 8.83	52,352,266, 174,488	Yes, No, No, No, No	All genes no	AgaR
	PTS galactitol transporter	Sp_0647	11.51	42	No	No	CcpA
Biochemical / synthesis	Formate acetyltransferase	Sp_0459	15.23	3	No	No	CcpA
	Serine protease, subtilase family	Sp_0641	13.41	8	Yes	No	MntR
	Glyceraldehyde-3-P dehydrogenase GapA	Sp_2012	13.25	11	Yes	Yes	none
	Carbohydrate metabolism	Sp_0498-99	11.64, 13.17	12,37	No, Yes	No, No	CcpA
	Glycosyl hydrolase, ROK family, Alpha mannosidase, hypothetical	Sp_2141-44	11.30, 10.27, 13.08, 10.79	50,144,13,82	All genes no	All genes no	none
	β-N-acetylhexosaminidase	Sp_0057	12.57	17	Yes	No	CcpA
	Phosphopyruvate hydratase	Sp_1128	12.42	19	Yes	Yes	CcpA
	Putative BioY family biotin synthase	Sp_0783	12.33	21	No	No	BirA
	Lactate oxidase LctO	Sp_0715	12.21	26	Yes	No	CcpA
	Serine peptidase HtrA, SpoJ	Sp_2239-40	11.97, 11.02	28,64	Yes, Yes	No, No	none
	PEP phosphotransferase, HPr	Sp_1176-77	11.69, 9.54	35,278	No, Yes	Yes, No	none
	1,4-β-N-acetyl muramidase LytC, triose phosphate isomerase	Sp_1573-74	11.64, 8.96	38,448	No, No	No, No	none
	Hypothetical, DAK2 domain protein	Sp_0442-43	8.47,11.21	599,54	Yes, Yes	No, No	none
	Endopeptidase O	Sp_1647	11.18	56	No	No	none
	Penicillin-binding protein 1A	Sp_0369	11.16	57	Yes	No	none
	Cell wall surface anchor family protein	Sp_0368	11.14	58	No	No	none
	Preprotein translocase, SecA subunit	Sp_1702	11.03	63	No	Yes	none
	Exonuclease ABC subunit A, aminopeptidase P PepP, -, regulatory protein Spx, -, lipoprotein	Sp_0186-91	10.93, 9.64, -, 9.71, -, 8.69	67,254,-, 237,-,530	All genes no	All genes no	none
	6-phosphofructokinase, pyruvate kinase	Sp_0896-97	9.47,10.9	298,72	Yes	No	CcpA
	Carbamoyl phosphate synthase large subunit	Sp_1275	10.91	71	Yes	No	RNA-PyrR
	Rhodanese family protein	Sp_0095	10.87	73	No	No	CodY
	Putative tagatose-6-phosphate	Sp_0065-66	10.87,9.48	74,295	No	No	none

Replication	ketose, aldose isomerase 6-phosphogluconate dehydrogenase, decarboxylating, regulator	Sp_0375-76	10.83,9.80	78,220	Yes	No	none
	Fatty acid synthesis Fab operon*	Sp_416-27	9.09-10.83	81-406	All genes no	All genes no	FabT
	Aminopeptidase N	Sp_0797	10.79	84	Yes	Yes	none
	Aldehyde-alcohol dehydrogenase 2	Sp_2026	10.78	85	No	No	Rex,CcpA
	LysM domain protein	Sp_0107	10.77	86	Yes	Yes	none
	Chaperone DnaK	Sp_0517	10.73	90	No	No	none
	β-lactamase superfamily, putative regulator	Sp_0121-22	10.72,7.85	91,800	Yes, Yes	No, No	none
	Ribosomal protein, calcium- transporting ATPase, P-type, HAD superfamily, subfamily IC	Sp_1550-51	9.24,10.7	357,94	Yes, Yes	No, No	none
	Fructose-1,6-bisphosphate aldolase, class II	Sp_0605	10.68	96	Yes	No	CcpA,Rex
	Putative aminodeoxychorismate lyase	Sp_1518	10.65	98	No	No	none
	N-acetylmuramoyl-L-alanine amidase, LytA	Sp_1937	10.64	100	No	No	none
Translation	Translation elongation factor Tu	Sp_1489	14.37	6	Yes	No	none
	DNA-directed RNA polymerases	Sp_1960-61	13.30, 12.75	9,15	No, No	No, No	CodY
	Elongation factor EF2	Sp_0273	12.09	27	No	Yes	none
	Translation initiation factor IF-1, -, ribosomal protein, ribosomal protein, RNA polymerase, ribosomal protein	Sp_0232-237	9.97, - , 10.83, 9.57, 11.91, 9.50	190,- ,79,271,29, 290	All genes no	All genes no	none
	Ribosomal protein	Sp_0862	11.76	34	No	Yes	none
	Serine-threonine protein kinase Stkp, serine-threonine phosphatase PrpC, ribosomal RNA methyltransferase RsmB, methionyl-tRNA formyltransferase fmt, DNA replication factor Y PriA	Sp_1732-36	11.34, 9.13, 8.97, 8.47, 9.45	38,394,444,5 98, 302	No, Yes, No, No, No	All genes no	none
	Ribonucleoside-diphosphate reductase	Sp_1179-80	11.60, 10.19	40,156	No	No	NrdR
	Hypothetical, YImE, FtsZ, FtsA	Sp_1664-67	10.64, 10.67,	99,97,42,46	No, No, Yes,	Yes, Yes,	none

	Cell-division initiation protein	Sp_1661-62	11.50, 11.36 10.71, 11.05	92,60	Yes No, Yes	Yes, No, No, No	none
	DivIVA, hypothetical						
	Ribosomal protein RplO, preprotein translocase SecY	Sp_0229-30	9.75, 11.35	226,47	No, No	No, No	none
	Ribosomal proteins*	Sp_0209-225	9.45 – 11.04	62-303	All genes no	All genes no	none
	Ribonucleoside-triphosphate reductase	Sp_0202	10.92	68	No	No	NrdR
	Ribosomal protein, hypothetical, ribosomal protein	Sp_1105-07	10.11, 10.83, 9.51,	164,80,285	All genes no	All genes no	RNA-L21
	Cell division protein FtsH	Sp_0013	10.79	83	Yes	No	none
Regulators	CiaRH TCSTS	Sp_0798-99	10.03, 11.06	177,59	Yes	No	none
	VicXKR TCSTS	Sp_1225-1227	9.52, 10.91, 9.13	282,70,396	Yes	No	none
	PnpRS TCSTS	Sp_2082-83	10.21,10.86	152,75	No	No	none

5 - = no RNAseq data available for this gene from human meningitis samples

6 TCSTS = two component signal transduction system

7 * for these very large operons of genes with closely related function only top / bottom rank and RNAseq transcript levels are given

8 Data includes, when applicable, the results for the associated co-transcribed genes organised according to the gene number. Columns 6 and 7 describe
9 whether each gene showed significantly increased expression when cultured in *ex vivo* CSF or *ex vivo* CSF with added neutrophils compared to THY.
10 Regulon column shows known regulators for the gene according to Reg Precise (TIGR4 strain data).

12 **Figure Legends**
13

14 **Figure 1: *Streptococcus pneumoniae* prioritises co-expression of metabolic, cell
15 replication and virulence genes during infection of the CSF in meningitis.**

16 (A) Distribution of pneumococcal gene expression (log2 TPM) across 11 CSF samples from
17 adults with meningitis. Each dot represents an individual gene, dots coloured purple
18 represent highly expressed (>75th centile) genes. (B) Correlation matrix of gene expression
19 across samples. (C) Heatmap showing the top 50 genes are consistently highly expressed
20 across all human CSF samples. (D) 50 most highly expressed genes fall into three clusters
21 (STRING Network Plot), annotated for cellular replication (blue), metabolism (green) and
22 virulence (red). Each node represents an individual gene, the number of edges between
23 nodes, and distance represents the strength of the association (co-expression).

24

25 **Figure 2: *S. pneumoniae* rapidly adapts to growth in CSF in vitro under growth-like
26 conditions.**

27 (A) Principal component analysis of ST5216 transcription under 3 conditions: Todd-Hewitt
28 broth (THY, yellow), human CSF (purple) or CSF with purified neutrophils at MOI 1 (orange)
29 following 30 minutes of incubation at 37°C. (B) Volcano plot demonstrating the extent of
30 differential gene expression between CSF and THY (Lt panel), and CSF + neutrophils and
31 THY (Rt panel). Differentially expressed genes beyond the preset threshold shown in red.
32 (C) UpSet plot quantifying numbers of co-expressed genes across the different conditions.
33 All differentially expressed genes in the experiment were expressed at varying TPM in
34 human CSF during meningitis. (D) Pathways analysis of differentially expressed genes in
35 CSF conditions using KEGG. Dot size indicates number of pathway genes expressed (50-
36 250), colour = adjusted p value.

37

38 **Figure 3: Construction and phenotyping of bgaA and Sp_1800-5 gene deletion
39 mutants in *S. pneumoniae* serotype one**

40 (A) Gene-deletion mutant construction of Δ Sp_1800-5 and Δ bgaA in *S. pneumoniae*
41 serotype 1 strain 519/43 316 through insertion of a spectinomycin inactivation cassette. (B)
42 Growth of ST1, compared to Δ bgaA and Δ Sp_1800-5 in Todd-Hewitt media, CSF
43 supplemented with oxyrase, or THY in acidic (pH 6.8) and alkaline (pH 8) conditions. Optical
44 density at 520 nm recorded hourly to 18 hours. (C) Complement binding of ST1 compared to
45 gene deleted mutations in serum and CSF, measured flow cytometry. Left panels proportion
46 of FITC-labelled cells (C3 bound) in right panels comparison of MFI between conditions. Top
47 row serum, bottom row, CSF. (D) Kinetics of *S. pneumoniae* disruption of endothelial tight
48 junctions in a monolayer of HBMEC cells measured in the XCELLigence system, using cell

49 index (y axis) as a measure of electrical conduction across cells. Control hBEMC cells in
50 red, WT (purple), Δ ply (dark blue), Δ bgaA (green), Δ Sp_1800-5 (light blue). (E) Electrical
51 impedance (Ohms/cm², y axis) across a 4 cell-type *in vitro* transwell model of the BBB over
52 time between WT and gene deletion mutations, including Δ ply, compared to uninfected cells
53 and blank transwell to 24 hours. (F) Bacterial growth (CFU/ml) in the collecting chamber of
54 the BBB transwell model over time.

55

56 **Figure 4: *bgaA* and *Sp_1800-5* are required for bacterial survival in the CNS and are
57 important for virulence**

58 (A) Transmigration of wild-type, Δ bgaA (blue) and Δ SP_1800-5 (pink) from nasal epithelium,
59 olfactory epithelium and bulb, and brain in a murine trans-nasal meningitis model. Bacteria
60 were quantified at days 1,3,7 and 10 post inoculation by colony counting in each
61 compartment. (B) Bacterial counts (CFU/ml, Lt panel) and neutrophil ingress (cell counts by
62 con-focal microscopy) to Zebrafish hind brain 5 hours following inoculation with WT (black)
63 compared to Δ bgaA (blue). (C) Survival of zebrafish following hindbrain inoculation with WT,
64 Δ bgaA and Δ Sp_1800-5. (D) Numbers of patients in the Dutch meningitis database with
65 sequence-confirmed *S. pneumoniae* containing BgaA (blue) and without BgaA (grey). Case
66 fatality rate (CFR) for each strain is given in the figure.

67

68 **Supplementary tables / figures (10 total maximum)**

69 **Supplementary Table 1:** Comparison of the pneumococcal transcriptome in human CSF to
70 infection-mimicking conditions in the Pneumoexpress D39 culture transcriptomic model⁷⁵

71 **Supplementary table 2:** Representation of regulons (described in RegPrecise⁴² for strain
72 TIGR4) amongst highly transcribed genes from the human meningitis RNAseq data

73 **Supplementary Table 3:** In silico functional predictions for the corresponding protein for
74 genes within the Sp_1801-1805 operon

75 **Supplementary Table 4:** Genome associations and outcomes in human meningitis using
76 genome data from 1144 strains isolates from European cases of meningitis and the
77 associated clinical data⁹.

78

79

80 **Supplementary Figure Legends**

81

82 **Supplementary Figure 1: Kegg analysis of over-expressed metabolic pathways in *S.*
83 *pneumoniae* derived from the human meningitis pneumococcal transcriptome.** Highly
84 enriched KEGG metabolic pathways in pneumococcal meningitis, overlayed onto the entire
85 pneumococcal metabolic network available in KEGG. Nodes represent individual genes,

86 lines represent metabolic pathways connecting genes within a metabolic network/pathway.
87 Green networks are upregulated, red networks are down-regulated. For a list of individual
88 metabolic pathways see Table 2A.

89 **Supplementary Figure 2** – Visualisation of protein structure predictions for Sp_1804
90 generated by HMMER and rendered in Phyre2

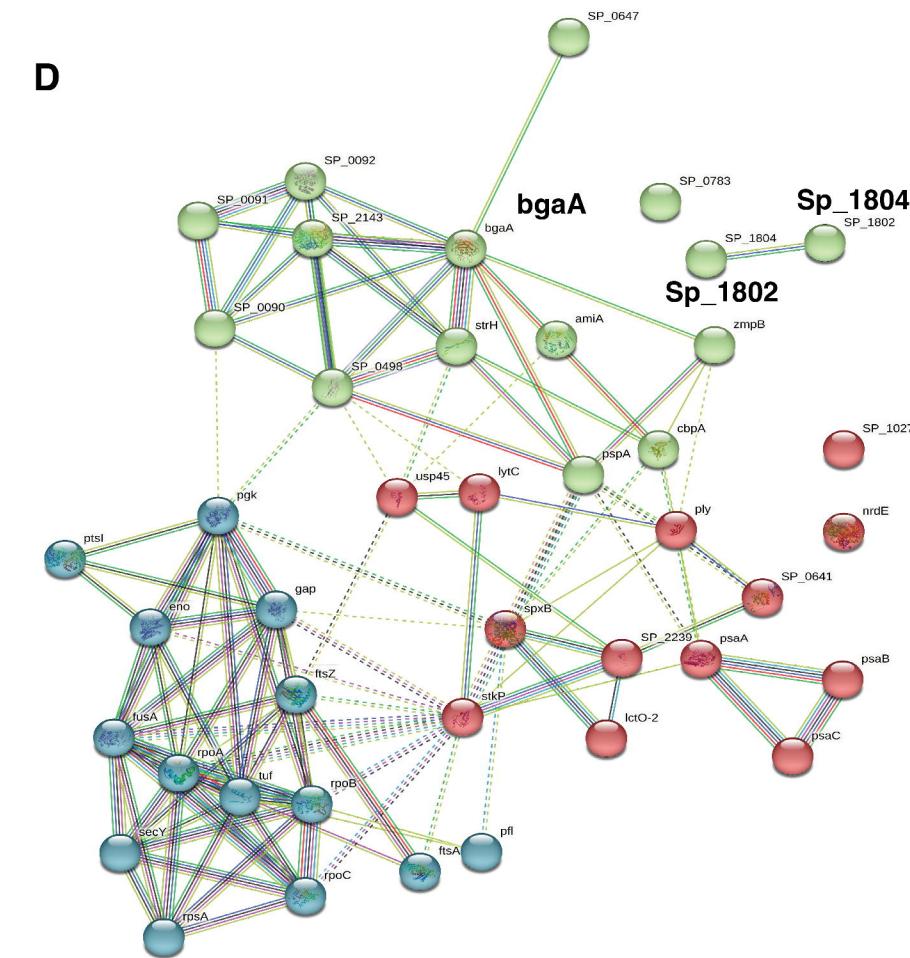
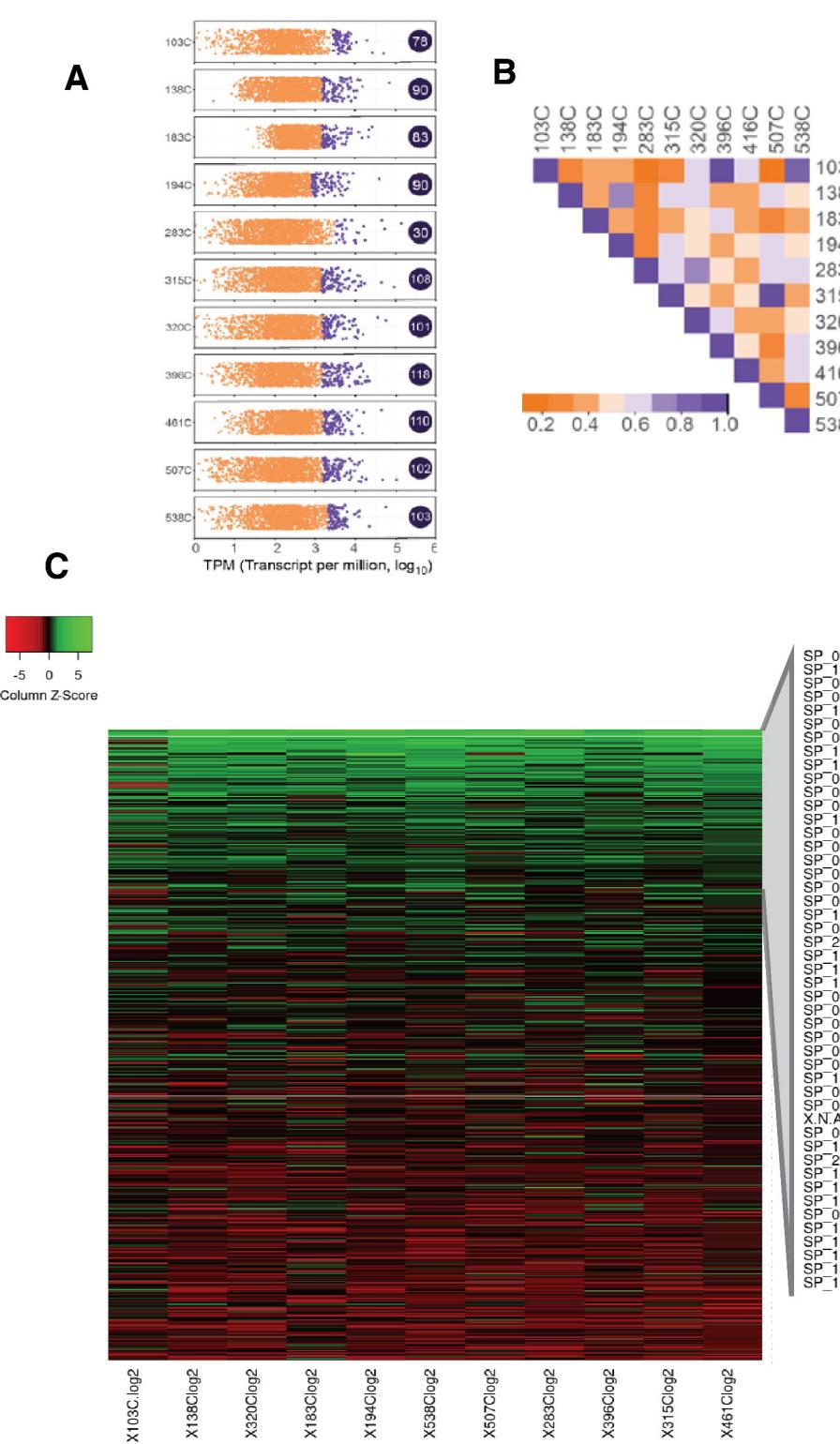
91 **Supplementary Figure 3:** Composition of a four cell *in vitro* transwell model of the Blood
92 Brain Barrier.

93

94

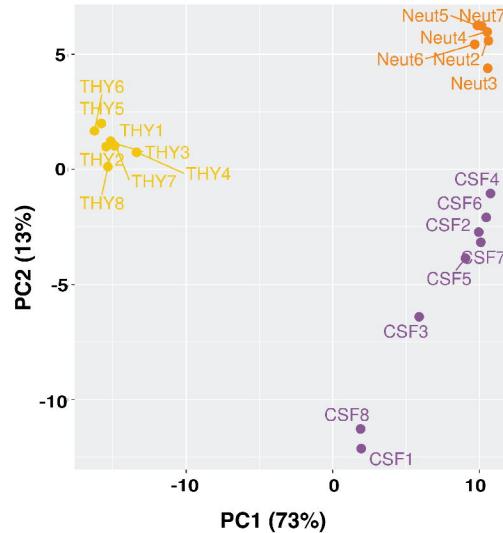
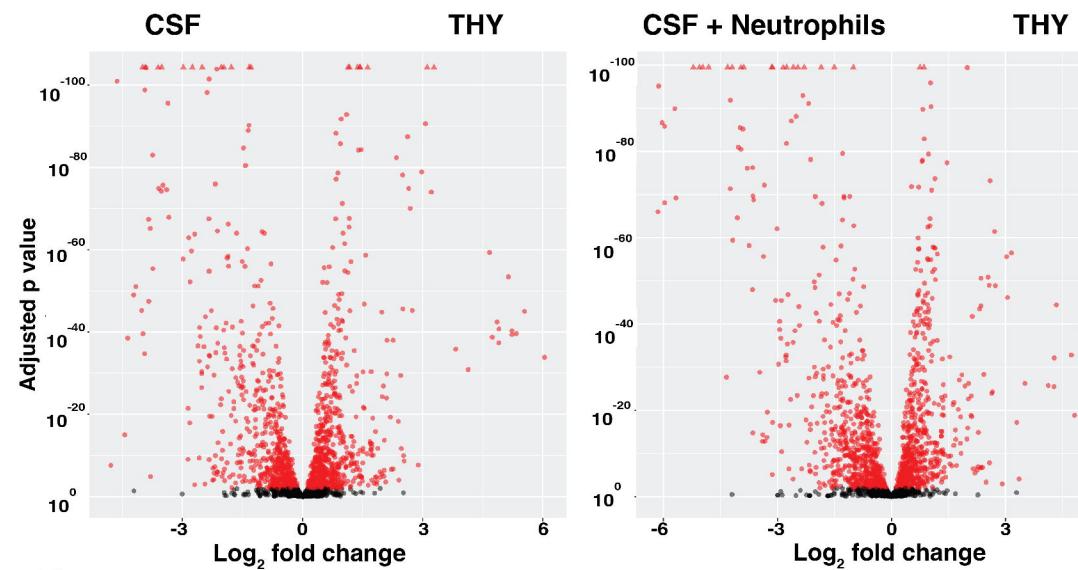
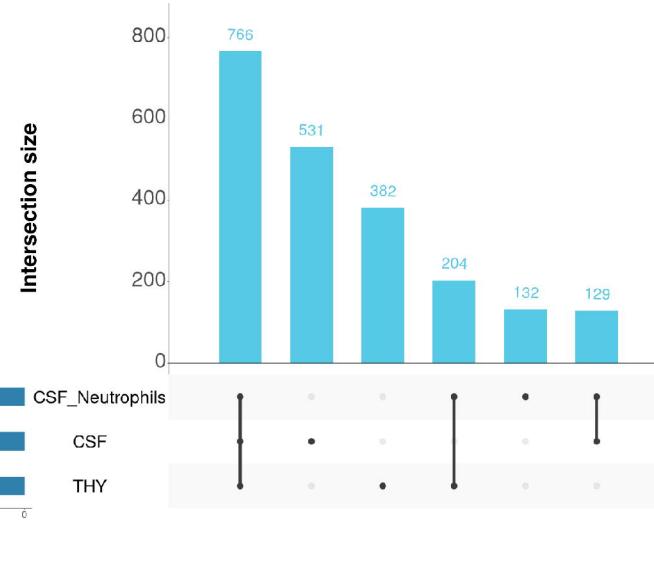
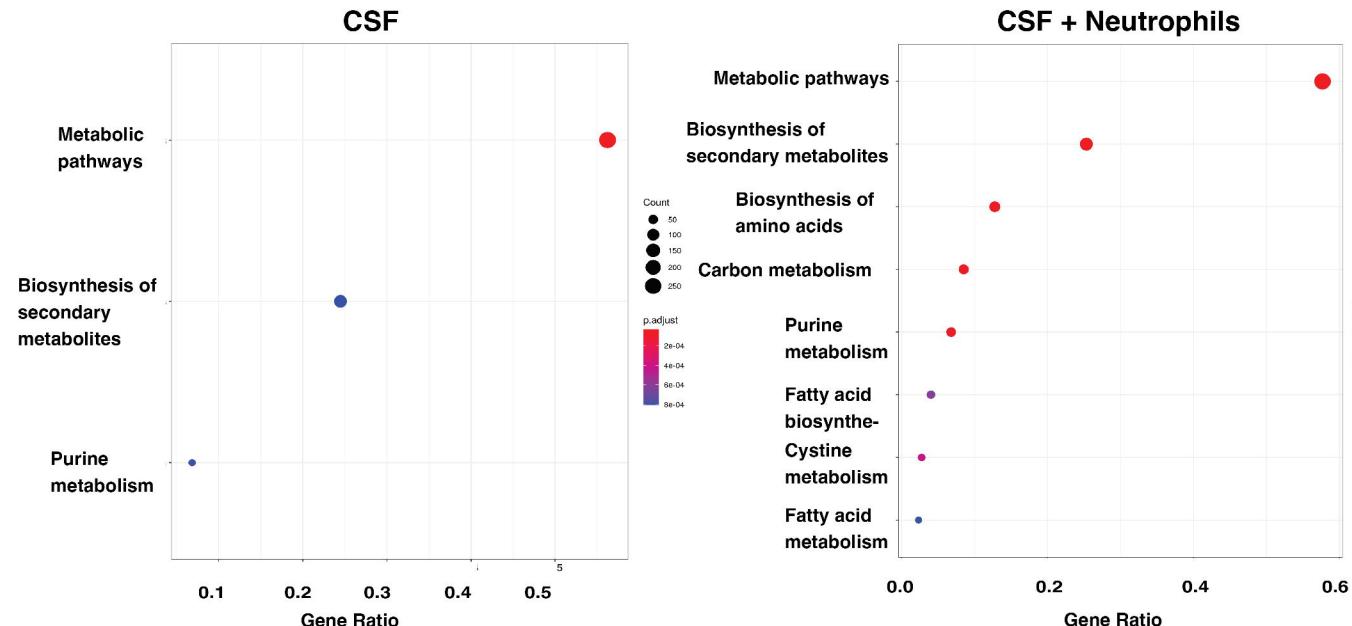
95 **Supplementary data file:** Alignment, mapping, sequencing and transcriptome data.

96 Differential gene expression of *S. pneumoniae* in vitro between CSF, CSF + Neutrophils
97 and THY conditions.

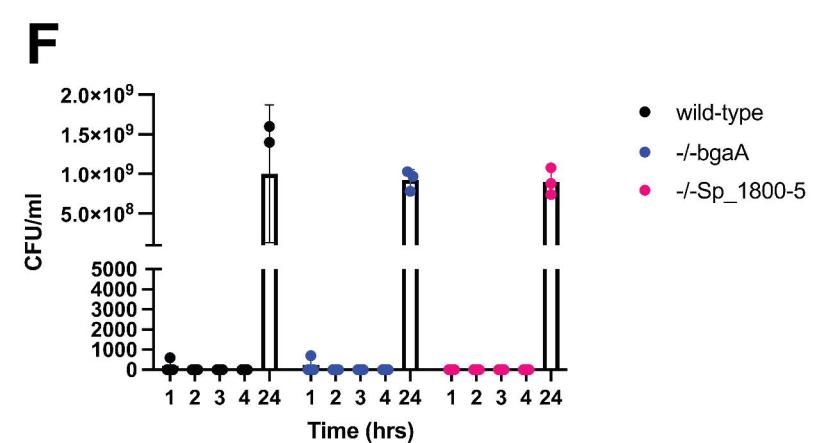
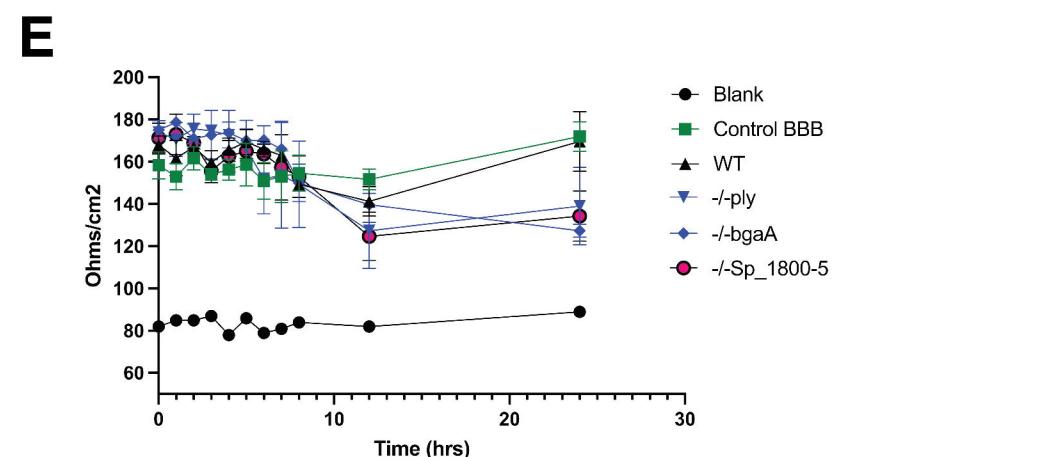
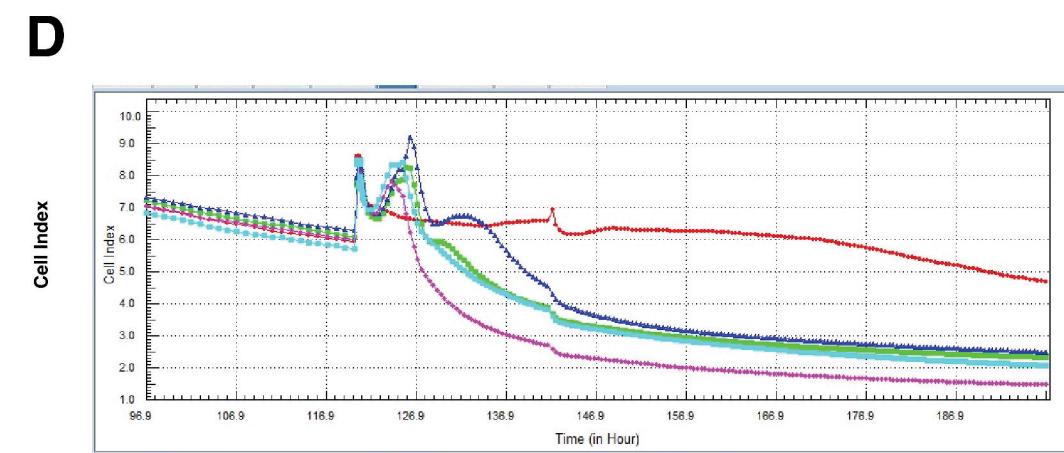
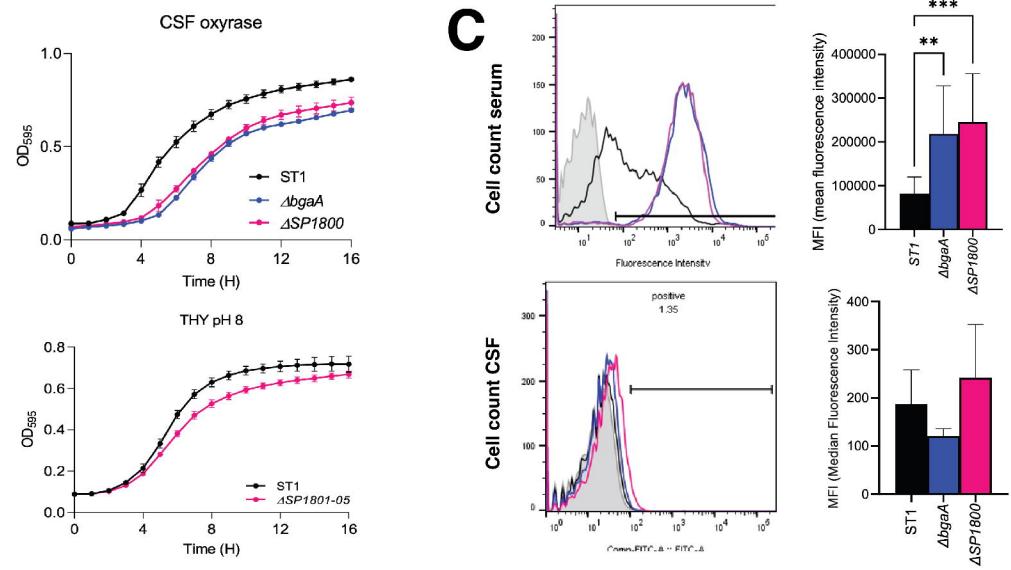
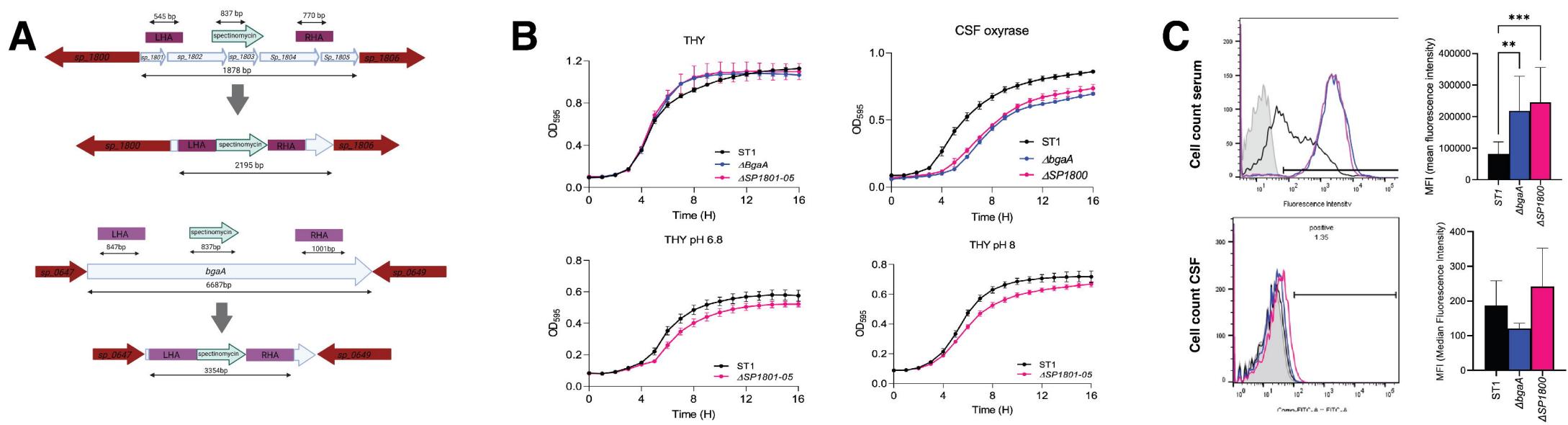


References

1. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. *Lancet* **390**, 1151-1210 (2017).
2. Kwambana-Adams, B. Global burden of meningitis and implications for strategy. *The Lancet Neurology* **22**, 646-648 (2023).
3. Collaborators, G.B.D.M. Global, regional, and national burden of meningitis, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. *Lancet neurology* **17**, 1061-1082 (2018).
4. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet neurology* **16**, 877-897 (2017).
5. Lucas, M.J., Brouwer, M.C. & van de Beek, D. Neurological sequelae of bacterial meningitis. *The Journal of infection* **73**, 18-27 (2016).
6. van de Beek, D., et al. Adjunctive dexamethasone in bacterial meningitis: a meta-analysis of individual patient data. *Lancet neurology* **9**, 254-263 (2010).
7. Ajdukiewicz, K.M., et al. Glycerol adjuvant therapy in adults with bacterial meningitis in a high HIV seroprevalence setting in Malawi: a double-blind, randomised controlled trial. *The Lancet infectious diseases* **11**, 293-300 (2011).
8. Pelkonen, T., et al. Slow initial beta-lactam infusion and oral paracetamol to treat childhood bacterial meningitis: a randomised, controlled trial. *The Lancet infectious diseases* **11**, 613-621 (2011).
9. Koelman, D.L.H., et al. Pneumococcal Meningitis in Adults: A Prospective Nationwide Cohort Study Over a 20-year Period. *Clinical infectious diseases* **74**, 657-667 (2022).
10. van de Beek, D. Progress and challenges in bacterial meningitis. *Lancet* **380**, 1623-1624 (2012).
11. Orihuela, C.J., et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. *The Journal of clinical investigation* **119**, 1638-1646 (2009).
12. Lovino, F., et al. plgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. *The Journal of experimental medicine* **214**, 1619-1630 (2017).
13. Uchiyama, S., et al. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. *The Journal of experimental medicine* **206**, 1845-1852 (2009).
14. Cundell, D.R., Gerard, N.P., Gerard, C., Idanpaan-Heikkila, I. & Tuomanen, E.I. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. *Nature* **377**, 435-438 (1995).
15. Bhatt, S.M., et al. Progression of hearing loss in experimental pneumococcal meningitis: correlation with cerebrospinal fluid cytochemistry. *Journal of Infectious Diseases* **167**, 675-683 (1993).
16. Burroughs, M., Cabellos, C., Prasad, S. & Tuomanen, E. Bacterial components and the pathophysiology of injury to the blood-brain barrier: does cell wall add to the effects of endotoxin in gram-negative meningitis? *The Journal of infectious diseases* **165 Suppl 1**, S82-85 (1992).
17. Engelhard, D., Pomeranz, S., Gallily, R., Strauss, N. & Tuomanen, E. Serotype-related differences in inflammatory response to Streptococcus pneumoniae in experimental meningitis. *Journal of Infectious Diseases* **175**, 979-982 (1997).
18. Bermpohl, D., et al. Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. *The Journal of clinical investigation* **115**, 1607-1615 (2005).

19. Wall, E.C., et al. Persistence of pneumolysin in the cerebrospinal fluid of patients with pneumococcal meningitis is associated with mortality. *54*, 701-705 (2012).
20. Molzen, T.E., et al. Genome-wide identification of *Streptococcus pneumoniae* genes essential for bacterial replication during experimental meningitis. *Infection and immunity* **79**, 288-297 (2011).
21. Mahdi, L.K., Wang, H., Van der Hoek, M.B., Paton, J.C. & Ogunniyi, A.D. Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. *The Journal of clinical investigation* **122**, 2208-2220 (2012).
22. Ogunniyi, A.D., et al. Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo transcriptomic analysis. *Infection and immunity* **80**, 3268-3278 (2012).
23. Jim, K.K., et al. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. *Cell reports* **41**, 111851 (2022).
24. Orihuela, C.J., et al. Microarray analysis of pneumococcal gene expression during invasive disease. *Infection and immunity* **72**, 5582-5596 (2004).
25. Wall, E.C., et al. Goal directed therapy for suspected acute bacterial meningitis in adults and adolescents in sub-Saharan Africa. *PloS one* **12**, e0186687 (2017).
26. Swarthout, T.D., et al. High residual carriage of vaccine-serotype *Streptococcus pneumoniae* after introduction of pneumococcal conjugate vaccine in Malawi. *Nature communications* **11**, 2222 (2020).
27. Kalata, N.L., et al. Pneumococcal pneumonia and carriage in Africa before and after introduction of pneumococcal conjugate vaccines, 2000-2019: protocol for systematic review. *BMJ open* **9**, e030981 (2019).
28. Gladstone, R.A., et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. *EBioMedicine* (2019).
29. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic acids research* **28**, 27-30 (2000).
30. Lagousi, T., et al. Discovery of Immunodominant B Cell Epitopes within Surface Pneumococcal Virulence Proteins in Pediatric Patients with Invasive Pneumococcal Disease. *The Journal of biological chemistry* **290**, 27500-27510 (2015).
31. Coats, M.T., Benjamin, W.H., Hollingshead, S.K. & Briles, D.E. Antibodies to the pneumococcal surface protein A, PspA, can be produced in splenectomized and can protect splenectomized mice from infection with *Streptococcus pneumoniae*. *Vaccine* **23**, 4257-4262 (2005).
32. Gor, D.O., Ding, X., Briles, D.E., Jacobs, M.R. & Greenspan, N.S. Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by *Streptococcus pneumoniae*. *Infection and immunity* **73**, 1304-1312 (2005).
33. Lees, J.A., et al. Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. *Nature communications* **10**, 2176 (2019).
34. Mohan, S., et al. Tuf of *Streptococcus pneumoniae* is a surface displayed human complement regulator binding protein. *Mol Immunol* **62**, 249-264 (2014).
35. Coady, A., et al. The *Staphylococcus aureus* ABC-Type Manganese Transporter MntABC Is Critical for Reinitiation of Bacterial Replication Following Exposure to Phagocytic Oxidative Burst. *PloS one* **10**, e0138350 (2015).
36. Khandavilli, S., et al. Maturation of *Streptococcus pneumoniae* lipoproteins by a type II signal peptidase is required for ABC transporter function and full virulence. *Molecular microbiology* **67**, 541-557 (2008).
37. Jacques, L.C., et al. Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. *Nature communications* **11**, 1892 (2020).
38. Panagiotou, S., et al. Hypervirulent pneumococcal serotype 1 harbours two pneumolysin variants with differential haemolytic activity. *Scientific reports* **10**, 17313 (2020).

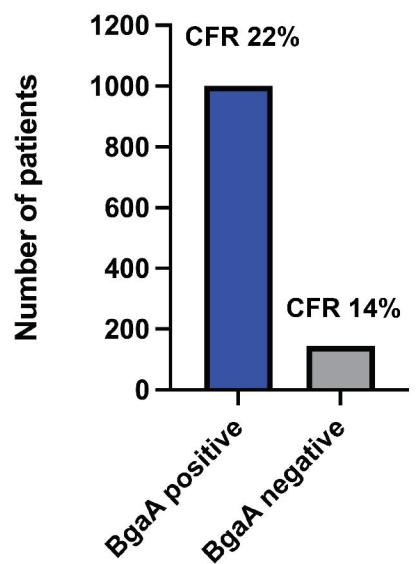
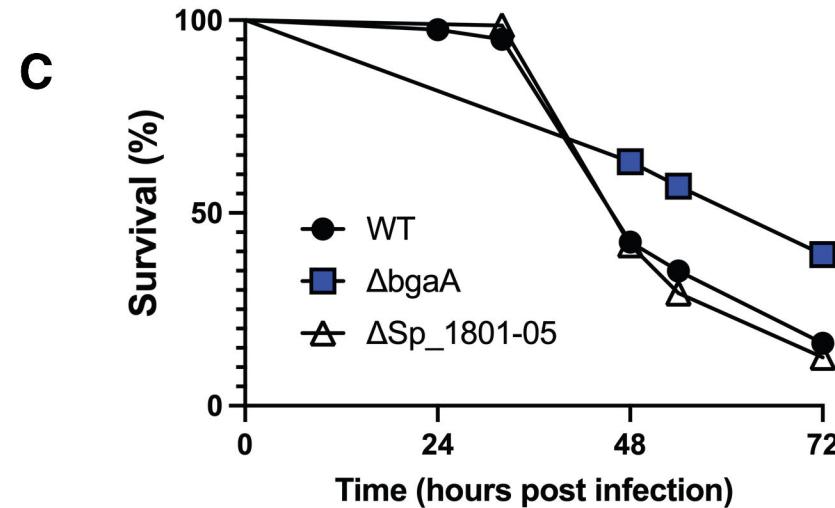
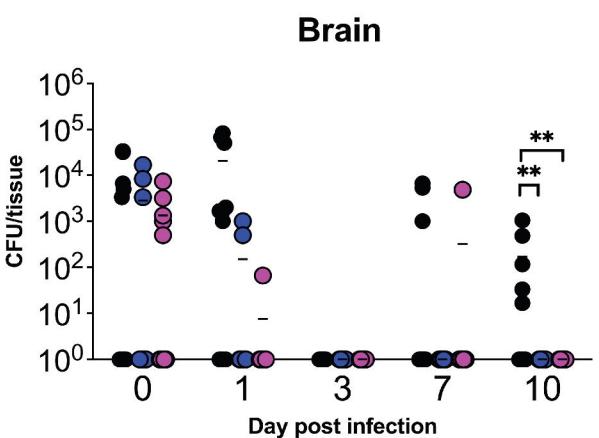
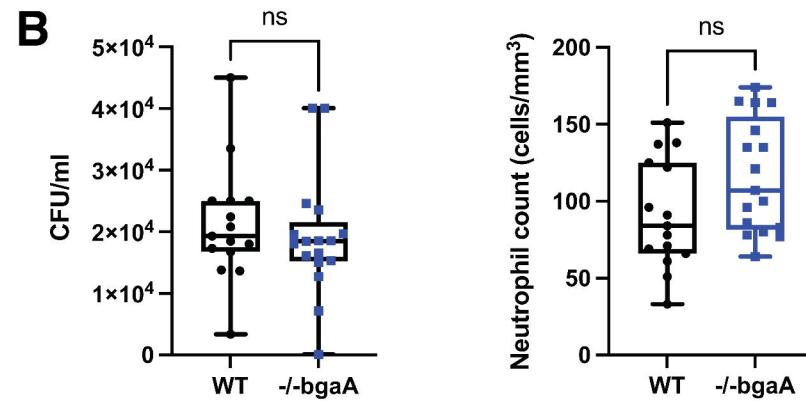
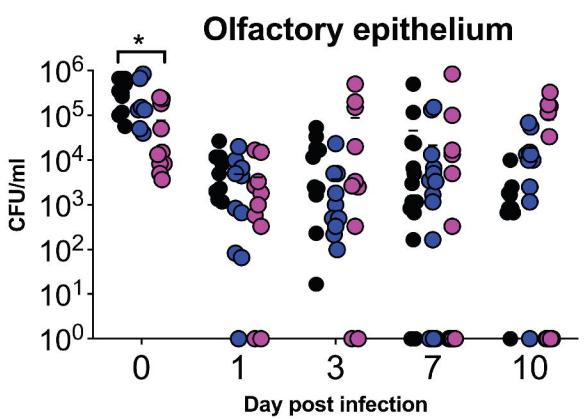
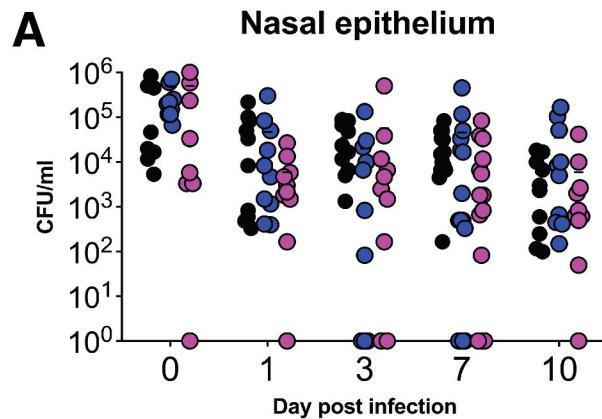




39. Orihuela, C.J., Gao, G., Francis, K.P., Yu, J. & Tuomanen, E.I. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. *The Journal of infectious diseases* **190**, 1661-1669 (2004).
40. Slager, J., Aprianto, R. & Veening, J.W. Deep genome annotation of the opportunistic human pathogen *Streptococcus pneumoniae* D39. *Nucleic acids research* **46**, 9971-9989 (2018).
41. Aprianto, R., Slager, J., Holsappel, S. & Veening, J.W. Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection. *Genome biology* **17**, 198 (2016).
42. Novichkov, P.S., et al. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria. *BMC genomics* **14**, 745 (2013).
43. Brouwer, M.C., Thwaites, G.E., Tunkel, A.R. & van de Beek, D. Dilemmas in the diagnosis of acute community-acquired bacterial meningitis. *Lancet* **380**, 1684-1692 (2012).
44. Chaguza, C., et al. Bacterial genome-wide association study of hyper-virulent pneumococcal serotype 1 identifies genetic variation associated with neurotropism. *Commun Biol* **3**, 559 (2020).
45. Gessner, B.D., Mueller, J.E. & Yaro, S. African meningitis belt pneumococcal disease epidemiology indicates a need for an effective serotype 1 containing vaccine, including for older children and adults. *BMC infectious diseases* **10**, 22 (2010).
46. Leimkugel, J., et al. An outbreak of serotype 1 *Streptococcus pneumoniae* meningitis in northern Ghana with features that are characteristic of *Neisseria meningitidis* meningitis epidemics. *The Journal of infectious diseases* **192**, 192-199 (2005).
47. Njanpop Lafourcade, B.M., et al. Serotyping pneumococcal meningitis cases in the African meningitis belt by use of multiplex PCR with cerebrospinal fluid. *Journal of clinical microbiology* **48**, 612-614 (2010).
48. Terra, V.S., Plumptre, C.D., Wall, E.C., Brown, J.S. & Wren, B.W. Construction of a pneumolysin deficient mutant in *streptococcus pneumoniae* serotype 1 strain 519/43 and phenotypic characterisation. *Microb Pathog* **141**, 103999 (2020).
49. Singh, A.K., et al. Unravelling the multiple functions of the architecturally intricate *Streptococcus pneumoniae* beta-galactosidase, BgaA. *PLoS pathogens* **10**, e1004364 (2014).
50. Miao, X., et al. A Novel Iron Transporter SPD_1590 in *Streptococcus pneumoniae* Contributing to Bacterial Virulence Properties. *Frontiers in microbiology* **9**(2018).
51. Muller, M., et al. Deletion of membrane-associated Asp23 leads to upregulation of cell wall stress genes in *Staphylococcus aureus*. *Molecular microbiology* **93**, 1259-1268 (2014).
52. Petersen, I., et al. Non-invasive and label-free 3D-visualization shows in vivo oligomerization of the staphylococcal alkaline shock protein 23 (Asp23). *Scientific reports* **10**, 125 (2020).
53. Jia, L., et al. CsbD, a Novel Group B Streptococcal Stress Response Factor That Contributes to Bacterial Resistance against Environmental Bile Salts. *Journal of bacteriology* **205**, e0044822 (2023).
54. Hyams, C., et al. *Streptococcus pneumoniae* resistance to complement-mediated immunity is dependent on the capsular serotype. *Infection and immunity* **78**, 716-725 (2010).
55. Audshasai, T., et al. *Streptococcus pneumoniae* Rapidly Translocate from the Nasopharynx through the Cribiform Plate to Invade the Outer Meninges. *mBio* **13**, e0102422 (2022).
56. Jim, K.K., et al. Infection of zebrafish embryos with live fluorescent *Streptococcus pneumoniae* as a real-time pneumococcal meningitis model. *Journal of neuroinflammation* **13**, 188 (2016).
57. King, S.J., Hippe, K.R. & Weiser, J.N. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by *Streptococcus pneumoniae*. *Molecular microbiology* **59**, 961-974 (2006).

58. Gil, E., Wall, E., Noursadeghi, M. & Brown, J.S. *Streptococcus pneumoniae* meningitis and the CNS barriers. *Front Cell Infect Microbiol* **12**, 1106596 (2022).
59. Wall, E.C., et al. CSF Levels of Elongation Factor Tu Is Associated With Increased Mortality in Malawian Adults With *Streptococcus pneumoniae* Meningitis. *Front Cell Infect Microbiol* **10**, 603623 (2020).
60. Dalia, A.B., Standish, A.J. & Weiser, J.N. Three surface exoglycosidases from *Streptococcus pneumoniae*, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. *Infection and immunity* **78**, 2108-2116 (2010).
61. Tuomanen, E.I., Saukkonen, K., Sande, S., Cioffe, C. & Wright, S.D. Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes. *The Journal of experimental medicine* **170**, 959-969 (1989).
62. Tuomanen, E., Liu, H., Hengstler, B., Zak, O. & Tomasz, A. The induction of meningeal inflammation by components of the pneumococcal cell wall. *The Journal of infectious diseases* **151**, 859-868 (1985).
63. Mohanty, T., et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. *Nature communications* **10**, 1667 (2019).
64. Scarborough, M., et al. Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. *The New England journal of medicine* **357**, 2441-2450 (2007).
65. Wall, E.C., et al. Genomic pneumococcal load and CSF cytokines are not related to outcome in Malawian adults with meningitis. *The Journal of infection* **69**, 440-446 (2014).
66. Feldman, W.E. Concentrations of bacteria in cerebrospinal fluid of patients with bacterial meningitis. *Journal of Pediatrics* **88**, 549-552 (1976).
67. Mann, B., et al. Control of virulence by small RNAs in *Streptococcus pneumoniae*. *PLoS pathogens* **8**, e1002788 (2012).
68. Bird, C. & Kirstein, S. Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. *Nature Methods* **6**, v-vi (2009).
69. Dental, C., Proust, A., Ouellet, M., Barat, C. & Tremblay, M.J. HIV-1 Latency-Reversing Agents Prostratin and Bryostatin-1 Induce Blood-Brain Barrier Disruption/Inflammation and Modulate Leukocyte Adhesion/Transmigration. *J Immunol* **198**, 1229-1241 (2017).
70. Proust, A., Barat, C., Leboeuf, M., Drouin, J. & Tremblay, M.J. Contrasting effect of the latency-reversing agents bryostatin-1 and JQ1 on astrocyte-mediated neuroinflammation and brain neutrophil invasion. *Journal of neuroinflammation* **14**, 242 (2017).
71. Proust, A., et al. Differential effects of SARS-CoV-2 variants on central nervous system cells and blood-brain barrier functions. *Journal of neuroinflammation* **20**, 184 (2023).
72. Chen, S., Einspanier, R. & Schoen, J. Transepithelial electrical resistance (TEER): a functional parameter to monitor the quality of oviduct epithelial cells cultured on filter supports. *Histochem Cell Biol* **144**, 509-515 (2015).
73. Benard, E.L., et al. Infection of zebrafish embryos with intracellular bacterial pathogens. *Journal of visualized experiments : JoVE* (2012).
74. Spanos, A., Harrell, F.E., Jr. & Durack, D.T. Differential diagnosis of acute meningitis. An analysis of the predictive value of initial observations. *JAMA : the journal of the American Medical Association* **262**, 2700-2707 (1989).
75. Aprianto, R., Slager, J., Holsappel, S. & Veening, J.-W. High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions. *Nucleic acids research* **46**, 9990-10006 (2018).






Figure 1: *S. pneumoniae* prioritises co-expression of metabolic, cell replication and virulence genes during infection of the CSF in meningitis

(A) Distribution of pneumococcal gene expression (\log_2 TPM) across 11 CSF samples from adults with meningitis. Each dot represents an individual gene, dots coloured purple represent highly expressed (>75th centile) genes. (B) Correlation matrix of gene expression across samples. (C) Heatmap showing the top 50 genes are consistently highly expressed across all human CSF samples. (D) 50 most highly expressed genes fall into three clusters (STRING Network Plot), annotated for cellular replication (blue), metabolism (green) and virulence (red). Each node represents an individual gene, the number of edges between nodes, and distance represents the strength of the association (co-expression).

A**B****C****D**







Figure 2: *S. pneumoniae* rapidly adapts to growth in CSF in vitro under meningitis-like conditions

(A) Principal component analysis of ST5216 transcription under 3 conditions: Todd-Hewitt broth (THY, yellow), human CSF (purple) or CSF with purified neutrophils at MOI 1 (orange) following 30 minutes of incubation at 37°C. (B) Volcano plot demonstrating the extent of differential gene expression between CSF and THY (Lt panel), and CSF + neutrophils and THY (Rt panel). Differentially expressed genes beyond the preset threshold shown in red. (C) UpSet plot quantifying numbers of co-expressed genes across the different conditions. All differentially expressed genes in the experiment were expressed at varying TPM in human CSF during meningitis. (D) Pathways analysis of differentially expressed genes in CSF conditions using KEGG. Dot size indicates number of pathway genes expressed (50-250), colour = adjusted p value.

Figure 3: Construction and phenotyping of *bgaA* and *Sp_1800-5* gene deletion mutants in *S.pneumoniae* serotype one

(A) Gene-deletion mutant construction of *-/-Sp_1800-5* and *-/-bgaA* in *S.pneumoniae* serotype 1 strain 519/43 ST5316 through insertion of a spectinomycin inactivation cassette. **(B)** Growth of ST1, compared to *-/-bgaA* and *-/-Sp_1800-5* in Todd-Hewitt media, CSF supplemented with oxyrase, or THY in acidic (pH 6.8) and alkaline (pH 8) conditions. Optical density at 520nm recorded hourly to 18 hours. **(C)** Complement binding of ST1 compared to gene deleted mutations in serum and CSF, measured with flow cytometry. Left panels proportion of FITC-labelled cells (C3 bound) m right panels comparison of MFI between conditions. Top row serum, bottom row, CSF. **(D)** Kinetics of *S. pneumoniae* disruption of endothelial tight junctions in a monolayer of hBEMC cells measured in the XCELLigence system, using cell index (y axis) as a measure of electrical conduction across cells. Control hBEMC cells in red, WT (purple), *-/-ply* (dark blue), *-/-bgaA* (green), *-/-Sp_1800-5* (light blue). **(E)** Electrical impedance (Ohms/cm², y axis) across a 4 cell-type *in vitro* transwell model of the BBB over time between WT and gene deletion mutations, including *-/-ply*, compared to uninfected cells and blank transwell to 24 hours. **(F)** Bacterial growth (CFU/ml) in the collecting chamber of the BBB transwell model over time.

Figure 4: *bgaA* and *SP_1800-5* are required for bacterial survival in the CNS and are important for bacterial virulence

(A) Transmigration of wild-type, *-/-bgaA* (blue) and *-/-SP_1800-5* (pink) from nasal epithelium, olfactory epithelium and bulb, and brain in a murine trans-nasal meningitis model. Bacteria were quantified at days 1,3,7 and 10 post inoculation by colony counting in each compartment. **(B)** Bacterial counts (CFU/ml, Lt panel) and neutrophil ingress (cell counts by con-focal microscopy, Rt panel) to Zebrafish hind brain 5 hours following inoculation with WT (black) compared to *-/-bgaA* (blue). **(C)** Survival of zebrafish following hindbrain inoculation with WT, *-/-bgaA* and *-/-Sp_1801-05*. **(D)** Numbers of patients in the Dutch meningitis database with sequence-confirmed *S. pneumoniae* containing BgaA (blue) and without BgaA (grey). Case fatality rate (CFR) for each strain are given in the figure.