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ABSTRACT 

The human brain is endowed with an intuitive sense of number allowing to perceive the 

approximate quantity of items in a scene, or “numerosity.” This ability is not limited to items 

distributed in space, but also to events unfolding in time and to the average numerosity of 

dynamic scenes. How the brain computes and represents the average numerosity over time 

however remains mostly unclear. Here we investigate the mechanisms and 

electrophysiological (EEG) signature of average numerosity perception. To do so, we used 

dynamic stimuli composed of 3-12 arrays presented for 50 ms each, and asked participants to 

judge the average numerosity of the sequence. Our results first show that the weight of 

different arrays in the sequence in determining the judgement is subject to both primacy and 

recency effects, depending on the length of the sequence. Moreover, we show systematic 

perceptual adaptation effects across trials, with the bias on numerical estimates depending on 

both the average numerosity and length of the preceding stimulus. The EEG results show 

numerosity-sensitive brain responses starting very early after stimulus onset, and that activity 

around the offset of the sequence can predict both the accuracy and precision of judgments. 

Additionally, we show a neural signature of the adaptation effect at around 300 ms, whereby 

the amplitude of brain responses can predict the strength of the bias. Overall, our findings 

support the existence of a dedicated, low-level perceptual mechanism involved with the 

computation of average numerosity, and highlight the processing stages involved with such 

process. 

 

Keywords. Numerosity perception, average numerosity, EEG, perceptual adaptation, 

magnitude perception. 
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INTRODUCTION 

Humans and other animals have an innate ability to rapidly estimate the number – or 

numerosity – of objects in a visual scene (e.g., Feigenson et al., 2004). This ability is 

independent of counting, and produces an approximate estimation prone to errors 

proportional to the number of items being estimated (e.g., Anobile et al., 2016; but see 

Testolin & McClelland, 2021). Due to the properties of numerosity perception, like for 

instance it being subject to perceptual adaptation effects, numerosity has been proposed to 

represent a “primary” perceptual attribute (Anobile et al., 2016; Burr & Ross, 2008; but see 

Leibovich et al., 2017 for a different account), that is, one of the fundamental building blocks 

of our perceptual experience. Research into numerosity perception focused especially on the 

judgment of items presented simultaneously in space, like arrays of dots. Numerosity 

however can be computed from several different types of stimuli. For instance, rather than 

objects distributed in space, numerosity can be extracted from series of events (e.g., brief 

flashes) presented over time (e.g., Arrighi et al., 2014). Research in this context has shown 

that different types of numerical stimuli can affect each other via the process of perceptual 

adaptation (Anobile, Arrighi, et al., 2016; Arrighi et al., 2014) and the serial dependence 

effect (Fornaciai & Park, 2019a), suggesting the existence of an abstract “number sense” 

(Anobile, Arrighi, et al., 2016; Arrighi et al., 2014). In terms of neural correlates, numerosity-

sensitive brain activity has been observed throughout the visual stream starting from early 

visual areas, in terms of localisation (Castaldi et al., 2019; DeWind et al., 2019; Harvey et al., 

2013; Roggeman et al., 2011), and from very early processing stages, in terms of timing 

(Fornaciai et al., 2017; Fornaciai & Park, 2018; Park et al., 2016; Temple & Posner, 1998). 

 

While the use of static dot-array stimuli probably remains the most common practice in 

numerosity perception research, the external environment and the stimuli that our sensory 

organs receive are rarely static. Perception is indeed a dynamic process, due for instance to 

the frequent and fast shifts of our gaze and attention to sample the surrounding world. An 

intriguing question is thus how the visual system computes and process the average 

numerosity of dynamic visual events, involving both the spatial and the temporal dimension. 

Previous research in this context shows that when presented with dynamic stimuli modulated 

over time (Togoli et al., 2021) or series of discrete stimuli (Katzin et al., 2021), humans are 

able to perceive and judge their average numerosity with good accuracy and precision. In line 

with the concept of “summary statistics” (e.g., McDermott et al., 2013; Whitney & 

Yamanashi Leib, 2018), many studies indeed show that the visual system can easily extract or 
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compute the average value of a feature modulated over time (e.g., Chong & Treisman, 2005; 

de Fockert & Wolfenstein, 2009; Robitaille & Harris, 2011). In terms of the properties of 

average numerosity perception, Katzin et al., (2021) showed that the judgment precision of 

average numerosity tends to increase with the sequence length, leading to better averaging 

performance when more information is provided. Additionally, Katzin et al.’s (2021) results 

provided some indications of recency effects, whereby more recent information in the 

sequence has a larger weight on perceptual decisions, although this effect was observed only 

in some participants. However, such results were obtained with sequences of relatively long 

(i.e., 500 ms) discrete stimuli, which likely involve memory rather than perceptual processes.  

 

In the present study, we thus aim to further address the perceptual mechanisms of average 

numerosity perception, and the neural signature of this process. To do so, we employed a 

classification task of the average numerosity of dynamic dot-array stimuli (Togoli et al., 

2021). Namely, in each trial the participants observed a fast sequence of 3-12 individual 

arrays varying in numerosity, each presented for 50 ms, and were asked to judge whether 

their average numerosity was higher or lower compared to a memorised reference. Such a 

fast dynamic stimulation (i.e., 20 Hz modulation of numerosity) was specifically chosen in 

order to give the impression of a continuous stimulus, rather than a sequence of static arrays. 

The average numerosity of the sequence was varied between 15 and 60 dots, and each array 

in the sequence could vary ± 50% around the mean. Electroencephalography (EEG) was used 

to assess the brain responses to the stimuli. To understand how average numerosity is 

computed and represented, we first assessed the weight of different arrays in the sequence 

(first, middle, last) in determining the judgment. This was done separately according to the 

different sequence lengths, to test whether increasing the amount of information may affect 

the temporal weighting profile of the stimuli. Moreover, we assessed perceptual adaptation 

effects across different trials. With EEG, we measured the neural signature of average 

numerosity processing and the adaptation effect, and the relationship between behavioural 

and neural measures, in order to better understand the brain processing stages linked to the 

representation of average numerosity. 
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METHODS   

Participants 

The sample tested in this study included 22 adult volunteers (mean age = 23 years, SD = 2.82; 

age range = 18-31; 1 male). All participants provided written informed consent prior to testing 

and received monetary compensation for their time (10€/hour). All the participants had normal 

or corrected-to-normal vision, were naive to the purpose of the experiment, and reported no 

history of neurological, attentional, or psychiatric disorders. The research protocol was 

approved by the ethics committee of the International School for Advanced Studies (SISSA) 

(Protocol 10035-III/13), and was in line with the Declaration of Helsinki. One participant was 

excluded from data analysis due to equipment failure (i.e., missing electroencephalography 

data), leaving 21 participants included in the final sample of the study. The sample size of the 

study was computed with a power analysis based on two previous studies addressing magnitude 

integration effects (Togoli et al., 2021, 2022). In the power analysis, we conservatively 

considered the effect of the smallest levels of the interfering magnitude in the Exp. 1a of Togoli 

et al., 2021, and the effects in Exp. 2 of Togoli et al., 2022. The average effect size (Cohen’s d) 

computed from these results was d = 0.82. Considering a two-tailed distribution and a power 

of 95%, the power analysis indicated a sample size of 22 participants.  

 

Stimuli   

The visual stimuli were generated using the routines of the Psychophysics Toolbox (v.3; 

Kleiner M et al., 2007; Pelli, 1997) in Matlab (r2021b, The Mathworks, Inc.). During the 

experiment, the stimuli were displayed on a 1092×1080 LCD monitor running at 120 Hz, 

encompassing a visual angle of about 48×30 degrees from a distance of 57 cm. The stimulus 

design was based on Togoli et al., 2021, and consisted of dynamically-modulated arrays of 

dots. Specifically, the dynamic stimuli involved a sequence of multiple briefly-flashed (50-ms 

each; 20 Hz frequency) dot arrays modulated in average numerosity (i.e., the average amount 

of dots displayed across all the arrays included in a sequence). The number of dots in each 

array varied around the mean numerosity of the sequence selected in each trial (±50%). The 

numerosity of each array was computed before the presentation of the stimulus in order for 

the sequence to result in a specific average numerosity. The positions of the dots were 

computed in order to avoid overlapping, considering a minimum inter-dot distance of 2.5 

times the radius of an individual dot. Dot sizes and the radius of the area encompassing them 

were systematically varied in a trial-by-trial fashion, in line with the procedure used in 
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previous studies (DeWind et al., 2015; Park et al., 2016; Fornaciai et al., 2017). The radius of 

the dots ranged from 6 to 10 pixels, while the radius of the area of the stimulus spanned from 

200 to 400 pixel. Each array in a sequence had the same area and the same dot size. The dots 

were black and white with a 50/50% proportion, and in case of odd numerosities the colour of 

the exceeding dot was determined randomly. The average numerosity of each stimulus could 

be either 15, 21, 30, 42, or 60 dots. The number of arrays in the sequence could be 3, 4, 6, 9, 

or 12 arrays, corresponding to a total duration of the stimulus of 150, 200, 300, 450, 600 ms. 

The average numerosity range and the number of arrays were combined resulting in a total of 

25 different stimulus types. Before the beginning of the session and before each block, we 

presented a reference stimulus that the participants had to memorise and use as a comparison 

to provide a judgment. The reference stimulus had the intermediate values of the average 

numerosity and number of arrays, i.e, it had an average numerosity of 30 dots and was 

composed of 6 arrays (duration = 300 ms). 

 

 
Figure 1.  Stimulation procedure. The classification task involved participants watching a 

series of dynamic stimuli modulated in average numerosity and in the number of arrays 

presented, and determining whether the average numerosity in each trial was higher or lower 

compared to a memorized reference stimulus. The reference was presented at the beginning of 

the session and at the beginning of each block. Each array in the stimulus sequence included 

a set of black and white dots drawn within a circular area, presented for 50 ms. The number of 

arrays presented in each sequence varied from 3 (150 ms) to 12 (600 ms). Even if composed of 

individual arrays, the stimulus was designed to appear as a continuous stream rather than a 

series of discrete stimuli. The offset of the stimulus sequence was followed by a 600 ms blank 

interval. After the interval, the fixation cross became red, signalling to the participant to 

provide a response by pressing the appropriate key on a standard keyboard. The next trial 
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started automatically after an inter-trial interval of 1100 to 1300 ms. The stimuli are not 

depicted in scale. 

 

 

Procedure 

The experiment was conducted in a sound-attenuated room, with each participant sitting in 

front of the computer screen at a distance of about 57 cm. The study involved a classification 

task of the average numerosity of the dynamic stimuli. Electroencephalography (EEG) was 

also recorded throughout the session to measure the brain responses to the stimuli. At the 

beginning of the session, participants were shown the reference stimulus (average numerosity 

of 30 dots, 6 arrays) that they were instructed to use in order to classify the stimuli in the 

main task sequence. The reference was displayed ten times. During the task, participants kept 

their gaze on a central fixation point, and the dynamic stimuli were presented at the centre of 

the screen. Following the offset of each stimulus, there was a 600-ms interval after which the 

fixation cross turned red, signalling to the participant to provide a response. The participant 

was then asked to judge, by pressing the left or the right arrow on the keyboard, whether the 

average numerosity was lower or higher compared to the memorised reference stimulus 

(respectively). The time available to provide a response was limited to 1200 ms. If they could 

not respond within this interval, the next trial started automatically. The inter-trial interval 

(ITI) was 1100-1300 ms). The trials in which participants were not able to provide a response 

were excluded from data analysis (1.1% ± 1.2%). Participants received no feedback about 

their response. The reference stimulus was presented again to the participants before the 

beginning of each block (displayed five times). Each participant completed a total of 10 

blocks of 100 trials, for a total of 1000 trials and 40 repetitions of each combination of 

average numerosity and number of arrays. Before the start of the session, subjects were 

familiarized with the task with ~10 practice trials.  

 

Behavioural Data Analysis  

To assess the performance in the task, we first focused on the point of subjective equality 

(PSE), reflecting the accuracy of numerical estimates, and the just noticeable difference 

(JND) and Weber’s fraction (WF), reflecting the precision in the task. To compute these 

values, a cumulative Gaussian (psychometric) function was fitted to the proportion of “more 

numerous” responses as a function of the different levels of average numerosity, collapsing 
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together the different numbers of arrays. The psychometric fitting was performed following 

the maximum likelihood method described by Watson, (1979). From the psychometric fit, we 

computed the PSE as the average numerosity corresponding to chance level responses, 

reflecting the perceptual match with the memorized reference. The JND was instead 

computed from the slope of the fit. As an additional measure of precision in the task, we 

computed the Weber’s Fraction (WF), which is the ratio of the JND and the PSE. This 

additional measure allows to assess the precision in the task while accounting for changes in 

the perceived magnitude of the stimuli. In addition to computing the general measures of 

performance, we also computed the accuracy (PSE) and precision (WF) of average 

numerosity judgments as a function of the number of arrays included in each sequence. To do 

so, we performed the psychometric fit separately for the trials in which the number of arrays 

was 3, 4, 6, 9 or 12. The PSE and WF were computed from these fits as explained above. To 

assess the biases in perceived average numerosity as a function of sequence length, we used a 

linear mixed-effect (LME) model test on the PSEs, entering the sequence length as predictor 

and the subject as the random effect. 

 

In order to assess the weights of different arrays in the sequence in driving the judgment of 

average numerosity, we employed a non-linear regression analysis. The analysis was 

performed separately according to the number of arrays in the sequences, in order to further 

assess whether the amount of information provided affects the weighting profile of different 

arrays in the sequence. In the analysis, the binary response of the classification task was 

entered as the dependent variable, and the numerosity of the arrays along the sequence as the 

predictors. In order to have the same number of parameters across the different tests (i.e., to 

make the results more easily comparable across different tests), the predictors included only 

the first array in the sequence, the last array, and either the middle array (in the case of 3-

array sequences) or an average of two intermediate positions in the sequence (second and 

third, third and fourth, fourth and sixth, and sixth and seventh, respectively for sequences of 

4, 6, 9, and 12 arrays). The resulting beta values were first analysed using an LME model 

including serial position and sequence length as predictors (and subjects as the random effect) 

to assess the difference across the temporal weighting profiles as a function of the number of 

arrays in the sequence. Then, follow-up LME tests were performed within each level of 

sequence length. 
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Finally, we assessed the perceptual adaptation effects across successive trials, measuring how 

the perceived average numerosity of the stimuli is affected by the numerosity presented in the 

preceding trial. We employed again a psychometric fitting procedure, performed separately 

according to the average numerosity of the preceding stimulus. This analysis was repeated 

considering all the duration of the preceding stimulus together, and by separating the trials 

according to whether the preceding stimulus was short (3-4 arrays; 150-200 ms) or long (9-12 

arrays; 450-600 ms). The PSEs obtained in this analysis were then used to compute an 

adaptation effect index, based on the difference in PSE between trials in which the preceding 

stimulus had a numerosity of 30 (the same as the reference; “PSE30”), and either lower (15, 

21 dots) or higher (45, 60 dots) average numerosities ("PSEj”), according to the following 

formula: 

 

Adaptation index = -1 ´ ((PSEJ – PSE30) / PSE30) ´ 100; 

 

The sign was switched in order to make the interpretation of the index more intuitive, i.e., a 

negative adaptation index indicates a relative underestimation of the stimulus, while a 

positive index indicates an overestimation. The adaptation indexes were then analysed using 

LME models to assess the extent to which the perceived average numerosity of the current 

stimulus is affected by the stimulus in the previous trial. 

 

Electrophysiological recording and pre-processing  

Throughout the experimental session we recorded the EEG in order to address the neural 

signature of average numerosity processing and the signature of the adaptation effect. The 

EEG was recorded using the Biosemi ActiveTwo system (2048 Hz sampling rate) and a 64-

channel cap based on the 10-20 system layout. In order to more easily monitor artifacts due to 

eye movements and blinks, the electro-oculogram (EOG) was measured via an additional 

electrode attached below the left eye of the subject. The electrode offset values across the 

channels were usually kept below 20 µV, but occasional values up to 30 µV were tolerated.  

 

The data pre-processing was performed offline in Matlab (version R2021b), using the 

functions of the EEGLAB (Delorme & Makeig, 2004) and ERPlab (Lopez-Calderon & Luck, 

2014) toolbox. First, EEG signals were re-sampled to a sampling rate of 1000 Hz. Then, each 

combination of average numerosity and number of arrays was binned individually, for a total 
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of 25 bins. Additionally, we added bins corresponding to the combination of different 

numerosities and different numbers of arrays of the stimuli in the previous trial, and different 

numerosities in the current trial, in order to assess the signature of adaptation effects (125 

unique combinations). The continuous EEG data was then epoched time-locking the signal to 

the onset of each stimulus (i.e., the onset of the first array in each stimulus sequence). The 

epochs spanned from -300 ms to 1200 ms around the stimulus onset. The pre-stimulus 

interval (-300:0 ms) was used for baseline correction. The EEG signal was band-pass filtered 

with cut-offs at 0.1 and 40 Hz. To reduce artefactual activity in the data, we used an 

independent component analysis (ICA), aimed at removing identifiable artifacts such as eye 

movements and blinks. We additionally employed a step-like artifact rejection procedure 

(amplitude threshold = 40 μV, window = 400 ms, step = 20 ms) to further remove any 

remaining large artifact from the signal, leading to the exclusion of 2.9% ± 2.8% of the trials, 

on average (± SD). Finally, the event-related potentials (ERPs) were computed by averaging 

EEG epochs within each bin. ERPs were further low-pass filtered with a cut-off at 30 Hz, and 

smoothed with a sliding-window average with a width of 20 ms and a step of 5 ms. 

 

Event-related potentials analysis 

The analysis of ERPs was performed by first selecting a set of channels of interest, based on 

previous studies. Namely, we selected a series of four occipital channels, including O1, O2, 

Oz, and Iz, based on previous studies on numerosity perception (Fornaciai et al., 2017; 

Fornaciai & Park, 2018) and trial-history effects in magnitude perception (Fornaciai et al., 

2023; Tonoyan et al., 2022). First, we assessed numerosity-sensitive brain responses by 

sorting the ERPs according to the average numerosity of the stimuli, collapsing together the 

different durations. To assess the modulation of ERPs as a function of numerosity, we 

computed the linear contrast of the brainwaves (weights = [-2 -1 0 1 2], corresponding to the 

different levels of average numerosity). We then performed a series of one-sample t-tests 

against zero, corrected for multiple comparisons with a false discovery rate (FDR) procedure 

(q = 0.05). Moreover, we assessed the relationship between ERPs, in terms of the linear 

contrast amplitude, and behaviour in terms of the accuracy (PSE) and precision (JND) of 

average numerosity perception. To do so, we employed an LME model entering the contrast 

amplitude as the dependent variable, PSE and JND as predictors, and the subject as the 

random effect. To control for multiple comparisons, in this case we used a non-parametric 

cluster-based test. Namely, we repeated the analysis across the clusters of consecutive 
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significant time windows observed in the actual LME test, randomly shuffling the vectors of 

PSE and JND values at each iteration. This procedure was repeated 10,000 times, and we 

measured how many times we could observe similar clusters of consecutive significant time 

windows in this simulation. The threshold used to consider a cluster significant in this 

analysis was conservatively set as the lower t-value observed in the corresponding cluster of 

the actual analysis, multiplied by the length of the cluster. 

 

To assess the impact of adaptation effects on ERPs, we further sorted the data according to 

the average numerosity and number of arrays of the preceding stimulus, taking only the trials 

in which the middle numerosity (30 dots) was presented in the current trial. The modulation 

of ERPs was then tested by performing a series of LME tests across a series of small 

windows throughout the epoch, in a sliding-window fashion (width = 50 ms, step = 5 ms). 

The tests included the ERP amplitude as dependent variable, and the average numerosity and 

number of arrays (as well as their interaction) of the preceding stimulus. The subjects were 

added as the random effect. As the behavioural results showed an interaction between the 

numerosity and number of arrays of the previous stimulus, also in this case we considered an 

interaction between the factors as the crucial evidence for a signature of adaptation. To assess 

the nature of such an interaction, we further computed the effect of the preceding numerosity 

on ERP amplitude (i.e., the difference in amplitude corresponding to trials in which the 

preceding stimulus had 60 dots and 15 dots), as a function of the different number of arrays 

of the previous stimulus. This analysis was limited to the average ERPs within the latency 

window showing a significant interaction between average numerosity and number of arrays 

of the preceding stimulus. Again, to control for multiple comparisons we used a non-

parametric cluster-based analysis (see above). 

 

Finally, we assessed the relationship between the bias in perceived numerosity due to 

adaptation, and the extent to which adaptation modulates the ERP amplitude. To do so, we 

computed two corresponding measures of the adaptation effect on behaviour ("DPSE”) and 

on ERPs ("DERP”). The DPSE was computed as the difference in PSE between the cases 

where the preceding stimulus had a numerosity either lower (15, 21 dots) or higher (45, 60 

dots) than the reference (30 dots), and the case where the numerosity of the preceding 

stimulus was equal to the reference. The DERP measure was computed in a similar fashion, 

as a difference in ERP amplitude in the cases where the preceding stimulus had either a lower 
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or higher numerosity than the reference, and the case where the preceding stimulus had the 

same numerosity as the reference. To compute this index, we considered only the trials in 

which the stimulus in the current trial had 30 dots. We then used an LME model to assess the 

relationship between DPSE and DERP (DPSE ~ DERP + (1|subj)). Again, this analysis was 

restricted to the latency window where the effect of adaptation on ERPs showed a significant 

interaction between the average numerosity and the number of arrays of the previous 

stimulus. 

 

 

 

 

 

 

RESULTS 

In the present study we addressed the mechanisms of average numerosity perception and its 

neural signature. To do so, we used dynamic stimuli modulated in average numerosity (15-60 

dots) and in the number of arrays composing the sequence (3-12, corresponding to a stimulus 

duration of 150-600 ms). Each array in the sequence could have a numerosity varying ±50% 

around the average. Although divided into briefly-presented (50 ms) but discrete arrays, the 

stimuli were designed to give the impression of a more continuous change. Indeed, with such 

a fast modulation of numerosity (20 Hz), the stimuli appeared like continuous stream of dots 

rather than a series of discrete frames. In the experiment, the participants (N = 21) performed 

a classification task, indicating whether the stimulus in each trial was more or less numerous, 

on average, compared to a memorised reference (average numerosity = 30 dots, 6 arrays), 

presented before each block of trials. See Fig. 1 for a depiction of the experimental 

procedure.  
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Figure 2. Behavioural results. (A) General measures of performance, including the point of 

subjective equality (PSE) as a measure of accuracy, and the just noticeable difference (JND) 

and Weber’s fraction (WF) as a measure of precision. (B) Biases in perceived average 

numerosity as a function of the number of arrays presented, and modulation of the precision 

of judgments (WF). (C) Temporal weighting profile, reflecting the weights of the first, middle, 

and last array in the sequence in driving the judgement, separately for the different numbers 

of arrays composing the sequence. Error bars are SEM. 

 

First, we assessed the general performance of average numerosity judgments, computing 

measures of accuracy (point of subjective equality, PSE), and precision (just noticeable 

difference, JND, and Weber’s fraction, WF). Fig. 2A shows the general measures of 

performance. On average, the perceived numerosity of the stimuli was quite accurate and 

precise, showing a PSE (± SD) of 31.42 ± 4.41 dots, a JND of 7.70 ± 2.34 dots, and a WF of 

0.25 ± 0.11. These results show that participants are able to judge average numerosity fairly 

accurately and precisely, in line with previous studies (Katzin et al., 2021; Togoli et al., 

2021).  
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First, an interesting question is whether the amount of information provided, i.e., the number 

of arrays presented in the sequence, affects the accuracy and/or the precision of judgments. 

To address this question, we computed the PSE and WF separately as a function of the 

number of arrays of the sequences (Fig. 2B). The results showed substantial biases in 

perceived numerosity according to the length of the sequence, with a pattern of both under- 

and over-estimation. Indeed, when the number of arrays was smaller than the reference, PSEs 

were higher (37.78 ± 1.24 and 34.62 ± 1.13, respectively for 3 and 4 arrays), showing an 

underestimation of perceived average numerosity (i.e., a higher number of dots is necessary 

to perceptually match the memorised reference). Conversely, PSEs were lower when the 

sequence was longer than the reference (26.80 ± 0.82 and 24.44 ± 0.84, respectively for 9 and 

12 arrays), showing an overestimation. A linear mixed-effect regression model (LME; PSE ~ 

Number of arrays + (1|subj)) showed a significant modulation of PSE as a function of 

sequence length (adj-R2 = 0.85, b = -1.43, t = -17.69, p < 0.001). On the other hand, the WF 

(shown in red in Fig. 2B) showed a slight but significant increase with sequence length (LME 

test on WFs; adj-R2 = 0.76, b = 0.002, t = -2.27, p = 0.025). This suggests that precision was 

lower when the sequence included more arrays than the reference. 

 

Furthermore, we addressed the temporal weighting profile of the dynamic stimuli – that is, 

the extent to which arrays in different positions along the sequence contribute to the 

perception and judgment of average numerosity. To do so, we employed a non-linear 

regression analysis, entering the binary classification response as the dependent variable, and 

the numerosity of arrays along the sequence as predictors. This analysis was performed 

separately as a function of the number of arrays in the sequence, to further assess whether the 

amount of information presented affected the weight of different portions of the sequence. To 

ensure that the results concerning different sequences are comparable, we included the same 

number of parameters (array position) in the non-linear regression: the first and the last array, 

and either the middle array (in the case of 3 arrays) or the average of two intermediate arrays. 

The beta values obtained with this analysis reflect the extent to which arrays in different 

positions contribute to the classification judgement.  

 

The results, shown in Fig. 2C, show a clear difference in the temporal weighting profile as a 

function of the sequence length. A linear mixed effect (LME) test on the beta values, with 

factors position and number of arrays, showed indeed a significant interaction across the two 
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factors (adj-R2 = 0.37, b = -0.025, t = -10.93, p < 0.001). Interestingly, considering the pattern 

across the three sequence positions (first, middle, last; Fig. 2C), the change in beta values 

showed different directions according to the number of arrays presented. Follow up LME 

tests on beta values performed individually within each level of sequence length (i.e., 3-12 

arrays) first showed a significant difference in the 3-array sequence, in the positive direction, 

i.e., higher beta values at the end of the sequence (adj-R2 = 0.08, b = 0.035, t = 2.55, p = 

0.013). With 4 arrays, the middle position showed a higher weight, but overall the difference 

was not significant (adj-R2 = 0.03, b = 0.040, t = 1.73, p = 0.09). Conversely, with sequences 

longer than 4 arrays, the tests showed significant differences in the negative direction, 

reflecting a higher weight of the first array in the sequence compared to the last (adj-R2 = 

0.24, b = -0.080, t = -4.59, p < 0.001, adj-R2 = 0.53, b = -0.134, t = -8.52, p < 0.001, and adj-

R2 = 0.73, b = -0.180, t = -13.09, p < 0.001, respectively for 6, 9, and 12 arrays). This 

suggests that the weighting of different arrays in the sequence is subject to either a recency 

effect (i.e., larger weight of information presented at the end of the sequence; see for instance 

Hubert-Wallander & Boynton, 2015) or a primacy effect (i.e., larger weight to information 

presented earlier in the sequence), depending on the length of the sequence itself.  
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Figure 3. Perceptual adaptation effects. (A) PSEs as a function of the preceding numerosity. 

(B) Average adaptation effect indexes as a function of the preceding numerosity. (C) PSEs as 

a function of the preceding numerosity, separately for the cases where the previous stimulus 

had a short (3, 4 arrays) or long (9, 12 arrays) sequence. (D) Adaptation effect indexes as a 

function of preceding numerosity and sequence length (short vs. long). Error bars are SEM. 

 

 

An additional aspect that we assessed is the possibility of perceptual adaptation effects across 

stimuli in different trials. Indeed, even if very brief (150-600 ms), the stimuli might 

potentially induce perceptual adaptation effect, as sequences of brief arrays have been 

previously shown to induce significant effects (Aagten-Murphy & Burr, 2016). If present, 

adaptation effects might provide more insights into the representation of perceived average 

numerosity. To address this possibility, we computed the perceived average numerosity of the 

stimuli as a function of the average numerosity preceding them. The results of this analysis 

are shown in Fig 3. First, we observed a robust modulation of the perceived numerosity of the 
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stimuli (PSE) as a function of the preceding numerosity (Fig. 3A). To better assess the bias 

induced by the previous stimuli, we computed an adaptation effect index reflecting how much 

the perception of the stimuli changes when the previous stimulus had either a lower or higher 

numerosity than the intermediate, reference numerosity (Fig. 3B). In line with the repulsive 

nature of perceptual adaptation, we observed a relative overestimation when the preceding 

stimulus had fewer dots than the reference (15, 21 dots), and a relative underestimation when 

the preceding stimulus had more dots (45, 60 dots). The biases ranged from 6% to about -8%. 

An LME test showed a significant difference in the adaptation effect as a function of the 

preceding numerosity (adj-R2 = 0.61, b = -0.306, t = -6.37, p < 0.001). Moreover, a 

perceptual adaptation effect can also be expected to increase with either the duration or the 

number of arrays presented in the previous stimulus (Aagten-Murphy & Burr, 2016). We thus 

further tested whether the number of arrays could modulate the effect. The PSEs shown in 

Fig. 3C indeed suggest that when the preceding stimulus was longer (9, 12 arrays), the bias in 

perceived numerosity was stronger compared to a shorter sequence (3, 4 arrays), especially at 

larger numerosities. To assess the pattern of adaptation effects computed as a function of the 

number of arrays of the preceding stimulus (Fig. 3D), we used an LME model test with 

factors numerosity and number of arrays of the preceding stimulus. The results showed a 

significant interaction between the two factors (adj-R2 = 0.60, b = -0.271, t = -2.44, p = 

0.016), suggesting a stronger effect when the preceding sequence was longer, especially at 

larger numerosities. Further LME tests, performed individually for the two sequence lengths, 

showed however that in both cases the effect is statistically significant (adj-R2 = 0.71, b = -

0.179, t = -3.51, p < 0.001, and adj-R2 = 0.70, b = -0.450, t = -5.53, p < 0.001, respectively 

for short and long sequences).  
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Figure 4. Event-related potentials (ERPs) reflecting average numerosity and adaptation 

effects. (A) ERPs sorted according to average numerosity. The green wave represents the 

linear contrast of ERPs. The shaded area represents the SEM. Lines at the bottom of the plot 

show the significance of different tests. The thick black lines indicate the latency windows 

where the linear contrast is significantly different from zero (FDR-corrected one-sample t-

tests). The cyan lines instead indicate the results of the LME test relating the ERPs to the 

behavioural performance. Namely, the lines show the latency windows where we observed a 

significant relationship between the amplitude of the linear contrast and either the PSE or the 

JND. (B) Representative ERPs reflecting the effect of the preceding stimulus on the responses 

to the intermediate average numerosity in the current trial (30 dots). For the sake of clarity, 
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only the pairwise corresponding combinations of average numerosity and number of arrays 

(length) are shown in the plot. However, the analysis was performed on the full set of 25 

unique combinations of average numerosity and length of the preceding stimulus. The lines at 

the bottom of the plot show the results of the LME tests, reflecting the significance of the 

average numerosity, length, and their interaction in driving the ERPs. 

 

After characterising the properties of average numerosity perception at the behavioural level, 

we addressed the neural signature of this process. First, we assessed the brain responses 

sensitive to average numerosity, which are shown in Fig. 4A. To do so, we sorted the ERPs 

according to corresponding average numerosity, and computed the linear contrast of ERPs as 

a measure of sensitivity to numerical information. The linear contrast was then tested with a 

series of one-sample t-tests against zero, corrected for multiple comparisons with a false 

discovery rate (FDR) procedure (q = 0.05). The results of the series of tests showed 

numerosity-sensitive activity in four distinct latency windows, starting very early after the 

onset of the sequence: 20-55 ms (t(20) ³ 3.10, adjusted-p £ 0.039), 115-155 ms (t(20) £ -3.35, 

adj-p £ 0.026), 190-230 ms (t(20) ³ 2.99, adj-p £ 0.049), and 430-595 ms (t(20) £ -2.98, adj-p 

£ 0.049). This shows that brain responses to the stimulus can track the numerosity of the 

sequence starting shortly after its onset.  

 

However, a question in this context is: at what processing stage does the average numerosity 

is actually computed? And what are the processing stages contributing to the judgement of 

average numerosity? To answer these questions, we focused on the relationship between brain 

activity and behavioural performance, in terms of the accuracy (PSE) and precision (JND) of 

numerical judgments. We thus performed LME tests on the contrast amplitude throughout the 

post-stimulus interval, entering PSE and JND as predictors and the subjects as the random 

effect. The results first showed that the amplitude of numerosity-sensitive responses can be 

predicted by the PSE at two latency windows: 580-625 ms (adj-R2 = 0.62-0.65, b £ -0.022, t 

£ -2.11, p £ 0.049), and 635-710 ms (adj-R2 = 0.61-0.87, b £ -0.026, t £ -2.13, p £ 0.047). 

Both these windows show a negative relationship between amplitude and PSE, suggesting 

that higher amplitudes are associated with lower PSE. Second, the results also showed a 

significant relationship between the contrast amplitude and JND at three latency windows: 

410-455 ms (adj-R2 = 0.62-0.65, b ³ 0.045, t ³ 2.22, p £ 0.039), 470-500 ms (adj-R2 = 0.63-

0.67, b ³ 0.051, t ³ 2.36, p £ 0.030), and 650-715 ms (adj-R2 = 0.66-0.86, b £ -0.045, t £ -
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2.25, p £ 0.037). Interestingly, both earlier windows show a positive relationship between 

amplitude and JND, suggesting that higher amplitudes are associated with poorer precision. 

Instead, at the later window (650-715 ms), the negative relationship suggests that the higher 

the sensitivity of responses to numerosity, the higher the precision (i.e., the lower the JND). 

These results show that while numerosity-sensitive activity emerges throughout the 

presentation of the stimulus sequence, only later activity show a relationship with the 

judgment of average numerosity. To control for multiple comparisons, the significant 

windows observed in the LME tests were assessed with a non-parametric cluster-based test 

(see Methods). All the cluster p-values resulted to be < 0.001. 

 

Since we observed significant adaptation effects at the behavioural level, addressing the 

neural signature of such effects can provide further insights into the processes contributing to 

the perception of average numerosity. In this context, we took the ERPs corresponding to the 

presentation of 30 dots in the current trial, and sorted them according to the average 

numerosity and sequence length of the preceding stimuli. Fig. 4B shows a representative set 

of the ERPs reflecting the responses to the “current” (i.e., average numerosity of 30 dots) 

stimulus as a function of the preceding stimulus. In the analysis, however, we considered the 

full set of 25 unique combinations of average numerosity and number of arrays of the 

preceding stimulus. We then performed LME tests on the ERP amplitude throughout the post-

stimulus interval, adding the numerosity and the sequence length of the preceding stimulus as 

predictors, and the subjects as the random effect. Since we observed an interaction between 

numerosity and length in the behavioural effect of adaptation, our prediction is that a 

signature of the effect should show a similar interaction between the two factors. The results 

first show a significant effect of numerosity on the ERP amplitude at two latency windows: 

245-330 ms (adj-R2 = 0.55-0.66, b £ -0.025, t £ -2.33, p £ 0.020) and 670-725 ms (adj-R2 = 

0.14-0.15, b £ -0.021, t £ -1.97, p £ 0.049). The effect of sequence length was observed at 

two similar latency windows: 240-350 ms (adj-R2 = 0.51-0.67, b £ -0.002, t £ -1.97, p £ 

0.048) and 665-735 ms (adj-R2 = 0.12-0.16, b £ -0.002, t £ -2.07, p £ 0.039). Additional 

significant effects of the sequence length were observed at other latencies where no other 

effect was found. Since an effect of the preceding sequence length in isolation (i.e., not 

coupled with an effect of numerosity or an interaction) is difficult to interpret in this context, 

we did not consider such latency windows for further analysis. More importantly, we 

observed a significant interaction between numerosity and sequence length at 240-345 ms 
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(adj-R2 = 0.51-0.67, b ³ 0.001, t ³ 2.04, p £ 0.042). These significant latency windows were 

further assessed with non-parametric cluster-based tests to control for multiple comparisons. 

All the cluster p-values were < 0.001. 

 

 
Figure 5. Interaction between numerosity and length and relationship between the 

behavioural and electrophysiological effect of adaptation. (A) Effect of the preceding 

numerosity as a function of the length of the preceding sequence. Error bars are SEM. (B) 

Effect of adaptation measured behaviourally (DPSE) as a function of the effect measured with 

EEG (DERP). The DPSE and DERP measures were computed as the difference in PSE or 

ERP amplitude between either lower (15, 21 dots) or higher (45, 60 dots) numerosities of the 

preceding stimulus and the intermediate numerosity of the range (30 dots). The line 

represents a linear fit to the data, to show the general trend. The data was however analysed 

with an LME model. Both panels report data averaged within the latency window where we 

observed a significant interaction between the numerosity and length of the preceding 

stimulus (240-345 ms after stimulus onset). 

 

To better understand the nature of this interaction, we assessed how the effect that numerosity 

plays through adaptation is modulated by the length of the sequence, within the latency 

window showing a significant interaction between the two factors (i.e., average of amplitudes 

within 240-345 ms after stimulus onset). We thus computed a measure of the effect of 

numerosity in the preceding trial on ERPs (i.e., amplitude of responses to 60 dots minus 

responses to 15 dots), and plotted it as a function of the length of the preceding stimulus (Fig. 

5A). The results show indeed a clear modulation, with a significant effect of the preceding 

stimulus length in modulating the impact that numerosity has on ERPs (LME test; adj-R2 = 
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0.08, b = 0.193, t = 3.14, p = 0.002). This test shows however a low R2, which may be due to 

the difficulty of the linear model to capture a potentially non-linear effect (see the pattern in 

Fig. 5A). 

 

Finally, we assessed the relationship between the behavioural and electrophysiological 

signature of the adaptation effect. To do so, we computed two corresponding measures: DPSE 

and DERP. These measures were computed as the difference in either PSE or ERP amplitude 

between the lower (15, 21 dots) and higher (45, 60 dots) numerosity levels of the previous 

stimulus and the intermediate level (30 dots). The DERP was computed in a similar fashion, 

but considering an average numerosity of 30 dots in the current stimulus. This measure was 

computed as the average within the latency window showing an interaction between 

numerosity and length of the preceding stimulus (240-345 ms). Fig. 5B shows the general 

trend of these data. To assess the relationship between the two measures, we performed an 

LME test, entering the DPSE as the dependent variable, and DERP as the predictor, and 

adding the subject as the random effect. The results showed a significant relationship, 

whereby the DPSE, indexing the behavioural effect of adaptation, can be predicted by the 

DERP, which indexes the changes in ERP amplitude due to the preceding stimulus (adj-R2 = 

0.56, b = 0.813, t = 2.26, p = 0.026). The relationship is positive, suggesting that the higher 

the change in ERP amplitude within the 240-345 ms window, the higher the behavioural 

effect of adaptation. 

 

 

DISCUSSION 

In the present study, we addressed the mechanisms of average numerosity perception with 

fast dynamic stimuli, and the neural signature of this process. How the brain computes and 

represents the approximate average of numerosity over time indeed remains mostly unclear. 

So far, only a few studies addressed this process, providing initial evidence for the existence 

of dedicated brain mechanisms supporting the averaging of numerosity information over time 

(Katzin et al., 2021; Togoli et al., 2021). Our results provide new evidence showing that (1) 

the weighting profile of information along the sequence depends on the total amount of 

information provided; (2) average numerosity is subject to perceptual adaptation effects 

across trials; and (3) average numerosity and the adaptation effect show robust neural 
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(electrophysiological) signatures, with activity at specific latency windows predicting the 

behavioural performance and effects. 

 

First, in terms of general performance, we observed a few differences compared to previous 

results. Namely, while Katzin et al. (2021) reported that the averaging precision increases as a 

function of the sequence length, here we observed a slight but significant reduction in 

precision (i.e., Weber’s fraction). Additionally, we also observed biases in accuracy 

depending on the sequence length, with both under- and over-estimation of average 

numerosity according to whether the sequence was shorter or longer than the reference, 

respectively. These biases are in line with the influence of duration on perceived numerosity 

(e.g., Javadi & Aichelburg, 2012; Lambrechts et al., 2013; Walsh, 2003), and suggest that our 

dynamic stimuli were indeed perceived as a continuous sequence rather than a series of 

discrete stimuli. Indeed, it was the entire duration of the sequence – not the duration of 

individual arrays (which was constant) – that affected the overall perceived average 

numerosity. Recent results also show that using dynamic stimuli amplifies the effect of 

duration on numerosity (Togoli et al., 2022), and the strength of the bias observed here is 

consistent with such previous results. When it comes to the difference between our results 

and those of Katzin et al. (2021), a possible explanation is a difference in the nature of the 

stimuli used. Namely, while Katzin et al. used sequence of relatively long stimuli (500 ms), 

which are most likely perceived as different, discrete arrays, here we used a fast modulation 

of numerosity (20 Hz) that is likely perceived as a single continuous stimulus. The difference 

in how the sequence length modulates accuracy and precision may thus suggest that 

computing the average of continuous vs. discrete sequences may engage different 

mechanisms.  

 

Despite the relatively short duration of the stimulus sequences, we observed systematic 

perceptual adaptation effects. Numerosity adaptation effects are usually observed with much 

longer exposures, around a few seconds (e.g., Arrighi et al., 2014; Burr & Ross, 2008; Grasso 

et al., 2022). However, there is also evidence that adaptation can be observed even with very 

short exposures, at least in the case of ambiguous or masked stimuli (Fornaciai & Park, 

2019b, 2021; Glasser et al., 2011). Additionally, numerosity adaptation effects have been 

observed after repeated presentations of brief arrays of dots (Aagten-Murphy & Burr, 2016), 

making our effect in line with previous results. 
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More importantly, we observed different temporal weighting profiles according to the 

sequence length. While sequences up to four arrays (or 200 ms) showed either a recency 

effect or a flat profile, longer sequences showed primacy effects. This pattern is particularly 

interesting, as it suggests an important capacity limit for the computation of average 

numerosity. Namely, with a relatively short sequence, the visual system is able to use the 

information provided with similar weights, giving however more relevance to more recent 

information. When the sequence gets longer (6-12 arrays, 300-600 ms), the visual system 

weights further information increasingly less compared to the early information. Comparing 

these temporal weighting profiles with results obtained in other feature dimensions, the 

primacy effect observed with long sequences is similar to the one observed by Hubert-

Wallander & Boynton (2015) on average spatial position. Hubert-Wallander & Boynton 

(2015) also tested and compared different dimensions, such as size, face identity, and motion, 

which mostly showed recency effects. Our results thus add to those of Hubert-Wallander & 

Boynton (2015) in suggesting the existence of different, dimension-specific mechanisms for 

the extraction of summary statistics. 

 

What is the mechanism underlying the peculiar temporal weighting profiles observed in 

average numerosity? The weighting profile may be due to two possible types of capacity 

limits, either cognitive or perceptual. First, the capacity limitation leading to difference 

weighting profiles may be due to the limits of working memory (WM) encoding, usually 

considered to be around 3-4 items (Alvarez & Cavanagh, 2004; Awh et al., 2007; Luck & 

Vogel, 1997). This limit of WM encoding seems indeed consistent with our results, showing 

that information exceeding the third or fourth array in the sequence is given increasingly less 

weight. However, one might expect that with longer sequences more recent information 

would be encoded in working memory replacing older information, leading to a recency 

effect (as found by Katzin et al. 2021 with sequences of discrete stimuli). A recency effect 

was however observed only at the shorter sequence. As mentioned above, differently from 

previous studies (Katzin et al., 2021) our stimuli were designed to appear like a continuous 

stream rather than a sequence of discrete stimuli. A second, and perhaps more plausible 

explanation for the weighting profiles is thus a perceptual capacity limitation, based on the 

limits of temporal integration of the early visual system. Indeed, the ability of the visual 

system to integrate information during the presentation of a stimulus is limited by several 

factors, including for instance rapid adaptation of responses and the correlation in response 

fluctuations (e.g., see for instance Goris et al., 2018). Due to these constraints, the limit of 
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temporal integration in visual cortex has been estimated to be around 150-300 ms (e.g., Burr 

& Santoro, 2001; Goris et al., 2018)). After this time, the temporal integration (or summation) 

of signals – and its benefits in visual perception – tend to plateau. The timing of our 

weighting profiles seems consistent with this time course, as the turning point after which the 

weights start to decrease is around 200 ms (4 arrays). A possibility is thus that the summary 

statistics of a relatively brief, continuous sequences may purely rely of the ability of the early 

visual system to track and integrate information over time, rather than by the encoding of 

information in visual working memory.  

 

The EEG results provide further evidence for the mechanisms involved in the computation of 

average numerosity. First, when assessing numerosity-sensitive brain responses at occipital 

channels (Iz, Oz, O1, O2), we observed significant activity starting very early after stimulus 

onset (20-50 ms). Numerosity-sensitive responses continued throughout the presentation of 

the stimulus, with the more sustained activity emerging around the offset of the longer 

stimulus sequences (430-595 ms). The initial onset of such responses is extremely early in 

terms of latency, but it may be consistent with early responses to numerosity observed in 

previous studies (e.g., ~75 ms in Park et al., 2016, 50-80 ms in Fornaciai et al., 2017; in both 

cases with signals measured at Oz). Such an early onset may thus be consistent with the 

responses of early visual areas such as V1, V2, and V3 (e.g., Fornaciai et al., 2017; Foxe & 

Simpson, 2002). To better understand how the brain responses evoked by the stimuli are 

related to the perception and judgment of average numerosity, we also assessed the 

relationship between the amplitude of ERPs and the behavioural measures of accuracy (PSE) 

and precision (JND). The results show a series of latency windows whereby the behavioural 

performance can predict the amplitude of ERPs, clustered around the offset of the longer 

stimulus sequences (~400-700 ms). This suggests that these processing stages may be related 

to the actual computation of average numerosity based on responses integrated during the 

stimulus presentation. Another possibility, however, is that such late stage might represent a 

higher level perceptual decision-making stage involved with the judgement of average 

numerosity. 

 

Moreover, the adaptation effect shows instead an earlier signature, with occipital responses at 

~240-340 ms reflecting the interaction between the average numerosity and the length of the 

preceding sequence. First, such a localised window suggests that adaptation did not affect the 

general visual responses to the stimuli or the perceived numerosity of the individual arrays in 
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the sequence, but more likely the computation of summary statistics from the stimulus 

sequence. Second, activity within this latency window can predict the adaptation effect 

measured behaviourally. Thus, these aspects of the adaptation effect suggest that the observed 

latency window may reflect a processing stage involved with the computation of perceived 

average numerosity. Previous results concerning numerosity adaptation (Grasso et al., 2022) 

observed a correlate of the effect at the P2p component, an ERP component usually 

associated with numerosity processing (Fornaciai et al., 2017; Fornaciai & Park, 2018; 

Libertus et al., 2007; Park et al., 2016). The latency window observed here is not far off from 

the typical timing of the P2p (200-250 ms), but due to the different nature of the stimuli it 

may represent a different computational stage. A possibility is that such an intermediate stage 

might be more genuinely involved with the computation and representation of average 

numerosity compared later latency windows showing a relationship with accuracy and 

precision. Such later stages, as mentioned above, might instead reflect perceptual decision-

making processes. Note however that all these different ERP analyses were performed 

considering the same set of occipital electrodes (Iz, Oz, O1, O2). Although the spatial 

resolution of EEG is notoriously poor, these results are nevertheless more consistent with 

perceptual processing occurring in visual cortex rather than cognitive processes occurring in 

higher-level brain areas. 

 

To conclude, our results provide new insights into the computation of summary statistics in 

numerosity perception, demonstrating the properties and neural signature of average 

numerosity. Our results overall suggest the existence of specific low-level mechanisms 

dedicated to the computation of average numerosity over time, subject to the limits of 

temporal integration of early visual areas. The neural signature of average numerosity and the 

adaptation effect further show two crucial processing stages, at intermediate (~300 ms) and 

late (~600 ms) latencies. These stages are potentially consistent with the initial representation 

of average numerosity and a subsequent perceptual decision-making stage. 
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