

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

1 **The Unexpected Membrane Targeting of *Marchantia* Short PIN Auxin Exporters Illuminates**

2 **Sequence Determinants and Evolutionary Significance.**

3 Han Tang^{1,2,5}, Adrijana Smoljan¹, Minxia Zou¹, Yuzhou Zhang³, Kuan-Ju Lu^{4,5,*}, and Jiří Friml¹

4

5 1. Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg,
6 Austria

7 2. Graduate Institute of Biochemistry, National Chung Hsing University, No. 145, Xingda Rd.,
8 South Dist., Taichung 40227, Taiwan, R.O.C

9 3. College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, China

10 4. Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda
11 Rd., South Dist., Taichung 40227, Taiwan, R.O.C

12 5. Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University,
13 Taichung, 402, Taiwan

14 *Correspondence: Kuan-Ju Lu (kuanjulu@dragon.nchu.edu.tw)

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29 **Summary**

30 The plant hormone auxin and its directional transport are crucial for growth and development.
31 PIN auxin transporters, on account of their polarized distribution, are instrumental in guiding
32 auxin flow across tissues. Based on protein length and subcellular localization, the *PIN* family
33 is classified into two groups: plasma membrane (PM)-localized long PINs and endoplasmic
34 reticulum (ER)-localized short PINs. The origin of *PINs* was traced to the alga *Klebsormidium*,
35 with a single PM-localized long KfPIN. Bryophytes, the earliest land plant clade, represent the
36 initial clade harboring the short PINs. We tracked the evolutionary trajectory of the short *PINs*
37 and explored their function and localization in the model bryophyte *Marchantia polymorpha*,
38 which carries four short and one long PIN. Our findings reveal that all short MpPINs can export
39 auxin, and they are all PM-localized with MpPINX and MpPINW exhibiting asymmetric
40 distribution. We identified a unique miniW domain within the MpPINW hydrophilic loop
41 region, which is sufficient for its PM localization. Phosphorylation site mutations within the
42 miniW domain abolish the PM localization. These findings not only identify the essential
43 sequence determinant of PINs' PM localization but also provide a unique insight into the
44 evolution of ER-localized PINs. Short MpPINW, which is evolutionarily positioned between the
45 ancestral long PINs and contemporary short PINs, still preserves the critical region essential
46 for its PM localization. We propose that throughout land plant evolution, the unique miniW
47 domain has been gradually lost thus converting the PM-localized short PINs in bryophytes to
48 ER-localized short PINs in angiosperms.

49

50 **Keywords:** short PINs, evolution, PM localization, *Marchantia*, miniW domain

51

52

53

54

55

56

57

58

59

60 **Introduction**

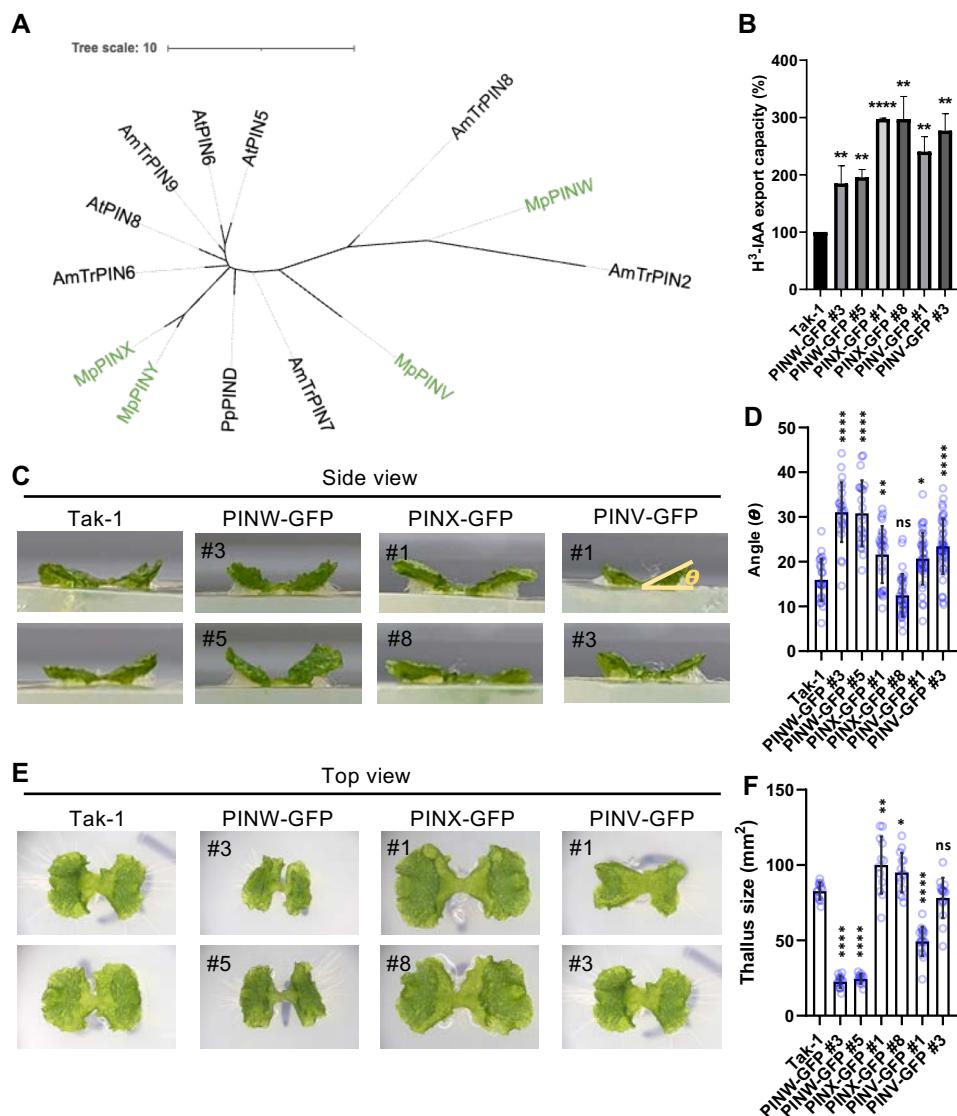
61 Auxin, an essential plant hormone and morphogen, plays a crucial role during various stages
62 of plant development throughout the entire plant's life cycle (Gomes & Scortecci, 2021;
63 Vanneste & Friml, 2009). Its key function operated via polar auxin transport (PAT) is to
64 establish a gradient that accommodates the different needs at appropriate developmental
65 stages (Friml & Palme, 2002). PAT is responsible for initial organ patterning, tissue
66 development, and tropic responses (Han *et al*, 2021; Semeradova *et al*, 2020). This transport
67 process is facilitated by a range of auxin transporters located on the plasma membrane (PM)
68 (Naramoto, 2017). Among these transporters, a family called PIN-FORMED (PIN) proteins play
69 a prominent role in exporting auxin from cells to drive PAT. The polar distribution of PIN
70 proteins thus guides the direction of PAT toward specific target tissues (Adamowski & Friml,
71 2015).

72 The PIN family has undergone systematic examination regarding their polarization and
73 role in auxin export during evolution (Tan *et al*, 2021). Typically, PIN proteins consist of two
74 transmembrane domains (TMD) at the N-terminal and C-terminal, separated by a hydrophilic
75 loop (HL). In *Arabidopsis*, PINs can be classified into two groups based on their subcellular
76 localization and polypeptide length: PM-localized long PINs e.g. AtPIN1, 2, 3, 4, 7, and
77 endoplasmic reticulum (ER)-localized short PINs e.g. AtPIN5, 6, 8 (Křeček *et al*, 2009; Mravec
78 *et al*, 2009). The long and short PINs are also known as canonical long PINs and noncanonical
79 short PINs, respectively. In PM-localized long PINs, multiple phosphorylation sites have been
80 identified in the HL, where the phosphorylation status determines long PINs' subcellular
81 localization and polarization (Bennett *et al*, 2014; Křeček *et al.*, 2009). In contrast, short PINs
82 composed of two TMDs with shorter HL regions are predominantly situated in the ER
83 membrane. Intriguingly, typical short PINs, AtPIN5 and AtPIN8, exhibit opposite orientations
84 on the ER membrane, suggesting antagonistic functions contribute to auxin homeostatic
85 maintenance within a cell (Ding *et al*, 2012).

86 Compared to long PINs, short PINs have received significantly less attention with focus
87 on *Arabidopsis*. In recent studies, PIN genes from streptophytic algae *Klebsormidium*
88 *flaccidum*, early land plants *Physcomitrium patens* (*P. patens*), and *Marchantia polymorpha*
89 (*M. polymorpha*) have been identified and partially characterized (Sisi & Růžička, 2020; Skokan
90 *et al*, 2019). The sole PIN with long PIN characteristics, which is capable of auxin export, was
91 found in *Klebsormidium* and localized to the PM in both *Klebsormidium* and *Arabidopsis*
92 (Skokan *et al.*, 2019). The ancestral PIN is therefore considered to be the long PIN. Bryophytes
93 thus represent the initial clade of land plants having short PIN genes. In *P. patens*, only one

94 short PIN was identified to localize to the ER (Viaene *et al.*, 2014). In *M. polymorpha*, on the
95 other hand, harbors four putative short PINs presumed to be ER-localized (Sisi & Růžička,
96 2020). The identification of short PINs in bryophytes suggests that short PINs evolved within
97 this clade, possibly originating from the ancient KfPIN in Klebsormidium. However, the
98 progress of the evolutionary transition from long PINs to short PINs remains elusive.

99 To unravel the evolutionary trajectory of the short PIN clade, we explored the functional
100 aspects and intracellular localization of short PINs in *Marchantia*. Our findings reveal that all
101 *Marchantia* short PINs can export auxin and induce growth phenotypes upon overexpression.
102 Surprisingly, all of *Marchantia*'s short PINs were localized to the PM, with MpPINX and
103 MpPINW displaying asymmetric localization. To uncover the crucial determinant for their PM
104 and ER localization, we conducted bioinformatic analysis and identified a miniW domain with
105 two critical phosphorylation sites within the HL of MpPINW, which is indispensable for
106 MpPINW PM localization. Our results support that in *Marchantia*, short PINs still retain critical
107 regions accounting for PINs' PM localization. Furthermore, throughout land plant evolution,
108 the critical region might have been gradually lost and evolved to ER-localized short PINs in
109 angiosperms. Our research thus marks the transitional position of *Marchantia* short PINs
110 between ancestral long PINs and contemporary short PINs along PINs' evolutionary path.

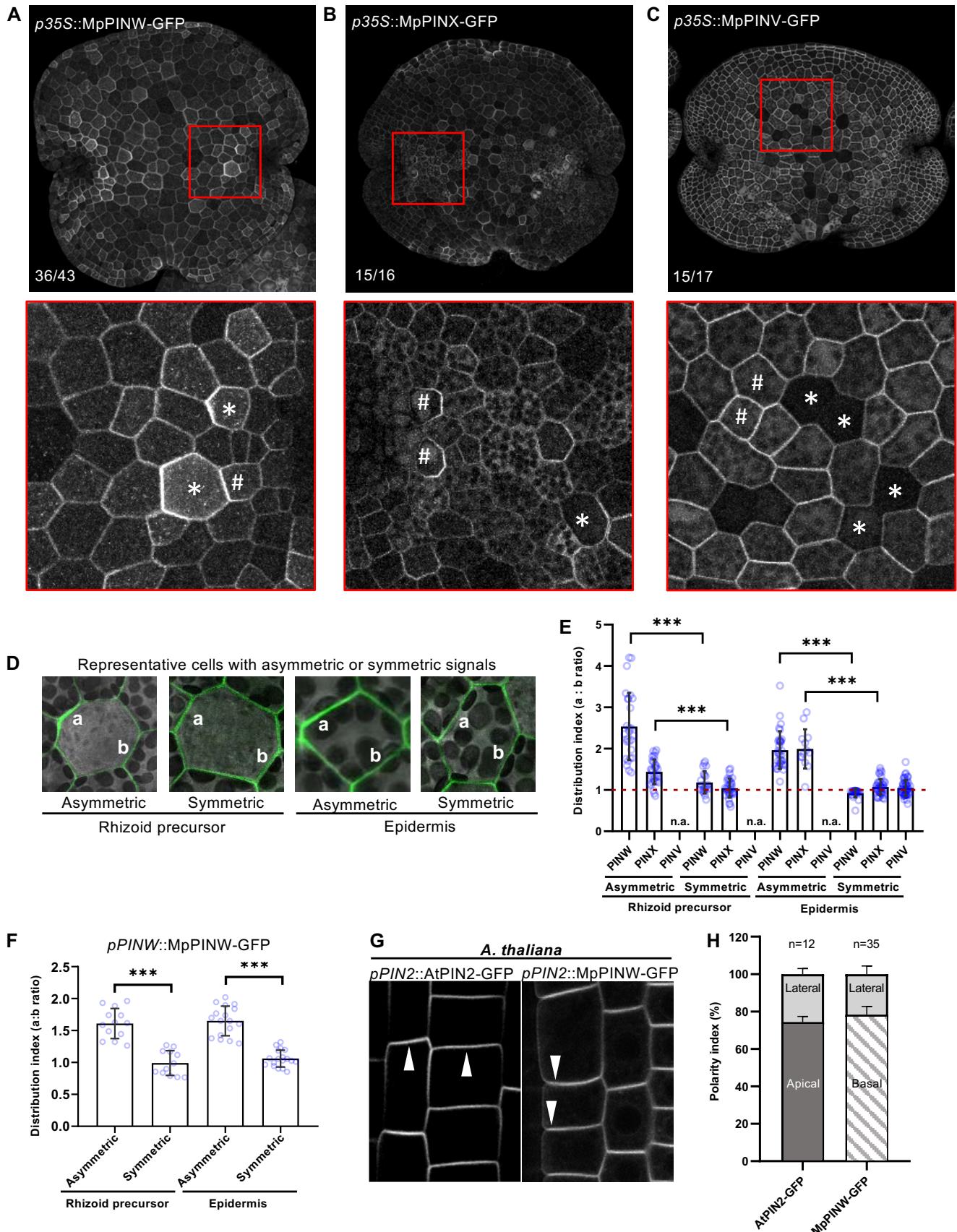

111 **Results and Discussion**

112 **Early-diverged *Marchantia* short PINs can export auxin**

113 *Marchantia polymorpha* (*M. polymorpha*) genome encodes four short auxin efflux carriers
114 MpPINW, MpPINX, MpPINV, and MpPINY. To position these genes within the context of other
115 plants we performed phylogenetic analysis of short PINs among four species: two early
116 divergent land plants *M. polymorpha* and *Physcomitrium patens*, the basal angiosperm
117 *Amborella trichopoda*, and the model angiosperm *Arabidopsis thaliana*. The phylogenetic tree
118 was generated by end-joined modeling in MEGA-X software. The unrooted result revealed
119 that MpPINW has diverged from others at an early point, and *Arabidopsis* PINs are distant
120 from bryophytic PINs. *Amborella* short PINs distribute evenly in the tree, agreeing with its
121 intermediate position between bryophytes and *Arabidopsis*. (Figure 1A). Besides MpPINW,
122 other MpPINs are closer related to PpPIN, which is localized to the endoplasmic reticulum
123 (ER)(Viaene *et al.*, 2014). The function and subcellular localization of *Marchantia* short PINs
124 are reported below.

125 The Auxin transport ability of *M. polymorpha* short PINs was tested in overexpressing
126 stable MpPIN-GFP lines that we generated for MpPINW-GFP, MpPINX-GFP, and MpPINV-GFP
127 driven by CaMV 35S promoter. As MpPINY is not expressed in all tissues it was not included in

Figure 1. *Marchantia* short PINs possess auxin exportation activity

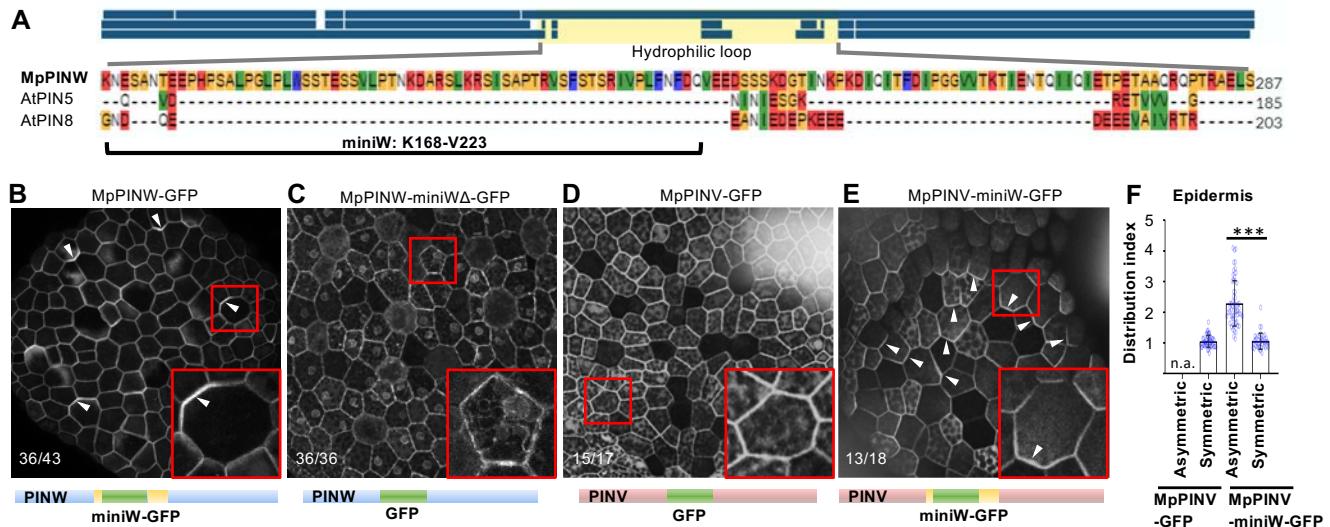


128 this study(Kawamura *et al*, 2022). To perform the auxin export assay, transgenic plants were
129 cultivated in a liquid medium containing radioactive auxin (H^3 -IAA), followed by washing and
130 one-day cultivation in a fresh medium. The level of H^3 -IAA exported to the fresh medium was
131 then measured as previously described (Lewis & Muday, 2009). The wild-type *Marchantia*
132 served as an internal control. All *Marchantia* short PINs were capable of exporting auxin.
133 Although MpPINW showed lower export capacity compared to MpPINX and MpPINV (Fig 1B),
134 overexpression of MpPINW-GFP resembled the phenotype observed when overexpressing
135 *Marchantia* long PIN, MpPINZ-GFP, showing vertical growth and smaller size in thallus tissue
136 (Tang *et al*, 2024) (Figure 1C-1F). In contrast, overexpression of MpPINX-GFP and MpPINV-
137 GFP presented subtle phenotypes in the vertical growth and thallus growth (Fig 1C-1F). As the
138 auxin export capacity was not fully reflected in the growth phenotypes, we reasoned that in
139 addition to auxin export, overexpression of MpPINW-GFP may indirectly cause the
140 phenotypes via yet unknown mechanisms. Our results demonstrate that all *Marchantia* short
141 PINs are functionally conserved for auxin export.

142 ***Marchantia* short PINs are localized to the PM with asymmetric distribution**

143 Based on the functional analysis, subcellular localization to the PM was anticipated. To prove
144 this, the same MpPIN-GFP lines described above were examined. The MpPINW-GFP was
145 localized to the PM with an unexpected asymmetric distribution along the PM in both rhizoid
146 precursor cells and epidermal cells (Figure 2A, D-E). While PM localization was observed in
147 every single line, the asymmetric distribution was shown in a small portion of cells of a gemma
148 (Figure 2A). MpPINX-GFP showed similar localization, but the asymmetric distribution was not
149 as profound as for MpPINW-GFP (Fig. 2B, 2E). The cells with asymmetrically distributed signals
150 were selected for the quantification of the distribution index, which represents the degree of
151 asymmetry in terms of signal distribution. To quantify the distribution index, we measured
152 the signal intensity along the target PM in Fiji (Ferreira & Rasband, 2012). For a cell with
153 asymmetrically distributed signals, the PM with the highest intensity was measured and
154 divided by the signal measured on its opposite side. We reasoned that if the signals are equally
155 distributed on the PM, the distribution index would be close to one, otherwise, the index
156 would be larger than one if the signals are locally enriched (Fig. 2E, 2F). The quantification
157 presented the asymmetric distribution of MpPINW-GFP and MpPINX-GFP, while MpPINV-GFP
158 showed a ratio close to one, indicating an equal distribution on the PM (Fig. 2E). Whether this
159 asymmetric distribution relates to their biological functions and may follow developmental
160 cues, need to be further investigated.

Figure 2. All *Marchantia* short PINs are localized to the plasma membrane, with MpPINX and MpPINW exhibiting uneven distribution.



161 Even under the same promoter control, MpPINW-GFP was exclusively expressed in
162 epidermal cells, where it was evenly distributed on the PM (Fig. 2C and 2E). This result makes
163 it unlikely that overexpression is causing the asymmetric distribution of MpPINW-GFP and
164 MpPINX-GFP, but rather to the action of internal proteins. To further support this, we
165 generated transgenic plants carrying *MpPINW-GFP* driven by its endogenous promoter. These
166 constructs also showed an asymmetric distribution along the PM of epidermal cells and
167 rhizoid precursor cells (Fig. S1, 2F). To test whether asymmetric localization of MpPINW also
168 occurs in other species, we investigated MpPINW localization in *Arabidopsis* by using the
169 endogenous *AtPIN2* promoter to control MpPINW-GFP. Like in *Marchantia*, asymmetric
170 distribution of MpPINW-GFP was observed in *Arabidopsis* epidermal cells. While *AtPIN2*-GFP
171 exhibited apical polarization as reported previously (Wiśniewska *et al.*, 2006), MpPINW-GFP
172 was localized along the basal membrane (Fig. 2G-H). This result demonstrates that the
173 asymmetric localization of MpPINW is consistent in different species, while the regulatory
174 machinery is likely species-specific thereby leading to different polar localization between
175 *AtPIN2* and MpPINW.

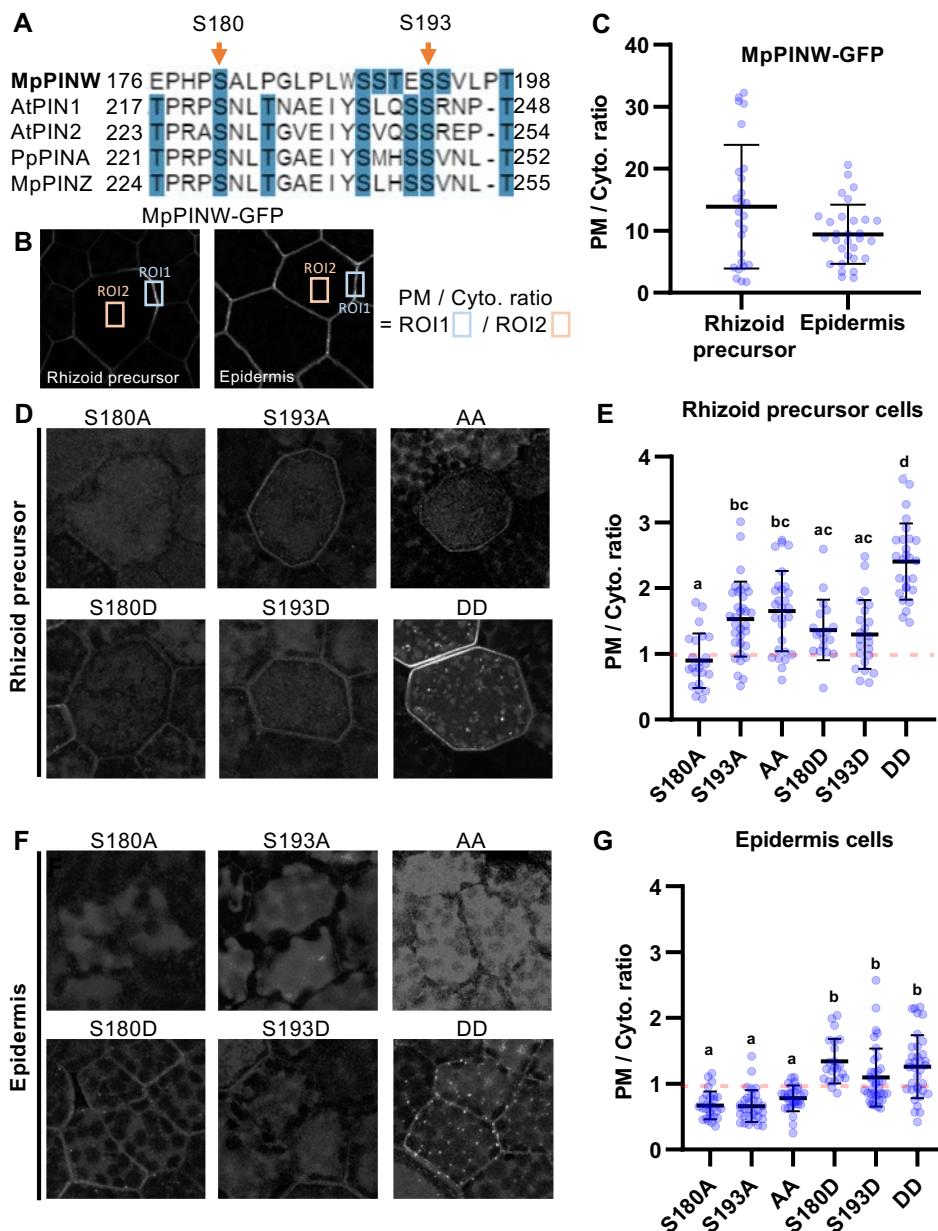
176 Although, based on the length of the PIN transporter, *Marchantia* short PINs were
177 assumed to be ER-localized (Bennett *et al.*, 2014), our results demonstrate that MpPINW-GFP
178 rather resides at the PM with asymmetric distribution in both *Marchantia* and *Arabidopsis*.
179 This unexpected result may be attributed to MpPINW's longer HL region compared to typical
180 short PINs e.g. *AtPIN5* and *AtPIN8*. Given the HL region plays an essential role in long PINs' PM
181 localization and polarization (Tan *et al.*, 2021), we suspected that the HL region of MpPINW
182 may retain unidentified signal sequences accounting for its PM trafficking and asymmetric
183 distribution.

184 To be noted, the asymmetric distribution of MpPINX and MpPINW did not display
185 specific directional patterns (i.e. from the central section of the gemma towards the outside).
186 The relative positions of cells with asymmetrically distributed signals across the entire gemma
187 did not demonstrate any discernible patterns and may be randomly distributed in a gemma.
188 In contrast, in *Arabidopsis* roots, the polarized PIN proteins accumulated at upper or lower
189 sites of different tissues, where they govern auxin flow thereby contributing to tropic growth
190 and root development (Adamowski & Friml, 2015; Friml & Palme, 2002; Křeček *et al.*, 2009).
191 Whether structural differences in tissue profiles between *Arabidopsis* and *Marchantia* relate
192 to distinct biological roles of the enriched MpPINX and MpPINW remains uncertain. Further
193 investigations are imperative to unravel the functional role of MpPINX and MpPINW at the
194 enriched site.

Figure 3. The miniW domain of MpPINW is essential for short PINs intracellular trafficking.

195 **Localization of MpPINW to the PM requires the miniW domain**

196 To search for a region within MpPINW that may account for its PM localization, we aligned
197 the amino acid sequence of MpPINW with Arabidopsis ER-localized short PINs, AtPIN5 and
198 AtPIN8 (Figure 3A). We found a short, unique domain (K168-V223, hereafter named miniW
199 domain) within the hydrophilic loop (HL) of MpPINW, which made it a potential targeting
200 candidate (Fig. 3A). To test this, we generated a truncated MpPINW-miniWΔ-GFP line that
201 carries MpPINW-GFP without the miniW sequence. Protoplast transformation together with
202 the ER tracker staining verified its colocalization with the ER structure (Fig. S2A). The full-
203 length MpPINW-GFP was localized to the PM, while the MpPINW-miniWΔ-GFP was mainly
204 localized to the ER with high colocalization occurrence with the ER tracker (Fig. S2A).


205 In *Marchantia*, while MpPINW-GFP predominantly localized to the PM, we found that
206 MpPINW-miniWΔ-GFP mainly localized to the ER-like structure (Figure 3B-3C). In the root
207 epidermal cells of Arabidopsis, the MpPINW-miniWΔ-GFP showed consistent localization
208 change from PM to ER (Fig S2B). The only *Marchantia* short PIN that showed even distribution
209 is MpPINV (Fig. 2C), which lacks the miniW region. Therefore, to test whether the miniW
210 domain is sufficient to change the distribution of MpPINV-GFP, we inserted the miniW domain
211 into the MpPINV coding sequence at the corresponding position. The signal of MpPINV-
212 miniW-GFP was asymmetrically distributed on the PM (Fig. 3D, 3E), supported by the
213 distribution index (Fig. 3F). These results validate the significance of the miniW domain for the
214 asymmetric distribution of *Marchantia* short PINs.

215 How ER-localized short PINs evolved from the ancient PM-localized long KfPIN has been
216 mysterious since decades (Bennett *et al.*, 2014). The phylogenetic analysis revealed that
217 *MpPINW* is the earliest diverged short *PIN* (Fig. 1A). We discovered that short MpPINW is
218 localized to the PM and its miniW domain contributes to the PM-to-ER location transition and
219 the asymmetric distribution (Fig. 2, 3). Thus, our results suggest that during land plant
220 evolution, the *PIN* family may have gradually lost the miniW domain thereby shifting their PM
221 localization to the ER, as contemporary short PINs present in Arabidopsis.

222 **Mutations at phosphorylation sites change MpPINW localization**

223 In PM-localized long PINs, multiple phosphorylated residues have been identified, and the
224 phosphorylation status of PINs is pivotal to their localization patterns in different tissues (Friml
225 *et al.*, 2004; Michniewicz *et al.*, 2007; Tan *et al.*, 2021; Zhang *et al.*, 2010). It is feasible that
226 regulation of MpPINW intracellular trafficking may share similar mechanisms to long PINs. We
227 aligned the MpPINW amino acid sequence with canonical long PINs including MpPINZ, PpPIN1A,
228 AtPIN1, and AtPIN2 (Fig. 4A). This allowed identification of putative phosphorylation sites

Figure 4. Mutations on putative phosphorylation sites within the miniW domain abolish MpPINW plasma membrane localization

229 within the miniW domain, S180, and S193, which have been predicted to be phosphorylated
230 in *Arabidopsis* long PINs (Dory *et al*, 2018).

231 We generated phosphor-mimic and phosphor-dead mutants to test if their
232 phosphorylation status is critical for MpPINW PM localization. In rhizoid precursor cells, the
233 S180A mutant showed almost no PM localized signal, rather most signals accumulated in the
234 cytoplasm. In contrast, other single or double mutants presented localization in both PM and
235 cytoplasm with a much lower PM-to-cytoplasm ratio compared to the intact MpPINW-GFP
236 (Figure 4B-4E). Double site phosphor-mimic mutant showed a strong signal at PM, while the
237 cytoplasmic signal was still higher than MpPINW-GFP. In epidermal cells, all phosphor-dead
238 mutants showed exclusively cytosolic signals, whereas phosphor-mimic mutants displayed a
239 weak PM signal in addition to cytosolic signal (Fig. 4F, 4G). Our results revealed that single
240 mutations on the phosphorylation sites of MpPINW lead to localization changes in distinct
241 tissues. It suggests that tissue-specific regulatory pathways may already exist in early
242 divergent land plants.

243 **Conclusions**

244 Short PINs of early diverging land plant *Marchantia* present unexpected PM localization with
245 asymmetric localization patterns, for which the miniW domain of MpPINW plays an essential
246 role, presumably via phosphorylation modifications. We propose that across land plant
247 evolution, long PINs may progressively shorten their central, hydrophilic loop and finally lose
248 the miniW domain, leading to a shift in localization from the PM to the ER. Here we identified
249 an evolutionary intermediate—*Marchantia* short PINs—which may connect the ancestral PM-
250 localized long PIN to contemporary ER-localized short PINs.

251 **Materials and Methods**

252 **Plant materials and transformations**

253 Throughout this research, we utilized *Marchantia polymorpha* Takaragaike-1 (Tak-1). The
254 plants were cultured on 1/2 Gamborg B5 medium containing 0.8% Daishin agar in a 21°C
255 growth chamber under 16/8 day/night cycles, with 60 $\mu\text{mol m}^{-2}\text{s}^{-1}$ photons from white LED
256 lights.

257 Transgenic *Marchantia* plants were generated using the agrobacterium transformation
258 method described previously(Kubota *et al*, 2013). Briefly, the apical meristematic region of
259 each two-week-old thallus was excised, and the thallus was then divided into four pieces.
260 After culturing on 1/2 B5 agar plates with 1% sucrose for three days, the cut thalli were
261 transferred to 50 ml of OM51C medium in 200 ml flasks supplemented with 200 μM

262 acetosyringone (4'-Hydroxy-3',5'-dimethoxyacetophenone). Agrobacteria harboring the
263 target construct, with an OD600 of 1 density, were added for co-cultivation for an additional
264 three days. Subsequently, the transformed thalli were washed and plated on 1/2 B5 plates
265 with corresponding antibiotics for selection. Independent transformed lines (T1) were
266 isolated, and the second generation (G1) from independent T1 lines was generated by sub-
267 cultivating single gemmaling, which emerged asexually from a single initial cell(Shimamura,
268 2016). The subsequent generation (G2 generation) was used for analyses.

269 For Arabidopsis, seeds were surface sterilized and plated on to 1/2 MS medium with 1%
270 agar plates. After 3 days of stratification, plates were vertically cultured in a 23°C growth
271 chamber with $150 \mu\text{mol m}^{-2}\text{s}^{-1}$ photons light intensity and 16/8 day/night cycles.

272 Arabidopsis transgenic lines were generated by the floral dipping method(Clough & Bent,
273 1998) with slight modification. The floral buds were dipped with a small amount of
274 Agrobacterium by pipetting and kept in the dark for another 24 hours with high humidity.

275

276 **Microscopy**

277 Confocal microscopy utilized the Leica Stellaris 8 system with hybrid single-molecule detectors
278 (HyD) and an ultrashort pulsed white-light laser (WLL; 70%; 1 ps at 40 MHz frequency). Leica
279 Application Suite X served as the software platform, with imaging conducted using an HC PL
280 APO CS2 40x/1.20 water immersion objective. For GFP-containing images, a 488 nm white
281 light laser was selected, with the detection range set between 500 nm to 525 nm. The
282 following imaging settings were used: scan speed of 400 Hz, resolution of 1024 x 1024 pixels.
283 A tau-gating model, capturing photons with a lifetime of 1.0-10.0 ns, was employed for all
284 Marchantia imaging to mitigate autofluorescence.

285 For Arabidopsis root imaging, 4-day-old seedlings of each indicated genotype were used.
286 Seedlings were mounted on a slice with growth medium and then placed into a chambered
287 coverslip (Lab-Tek) for imaging. Imaging was conducted using a laser scanning confocal
288 microscopy (Zeiss LSM800, 20x air lens), with the default setting for GFP detection applied.

289 For protoplast co-localization analysis, live-cell imaging was performed using a Leica
290 SP8X-SMD confocal microscope equipped with HyD detectors and an ultrashort pulsed white-
291 light laser (WLL 50%; 1 ps at 40 MHz frequency). Leica Application Suite X was used for
292 microscope control, and an HC PL APO CS2 20x/1.20 water immersion objective was used for
293 observing the samples. The following imaging settings were used: scan speed of 400 Hz,
294 resolution of 1024 x 1024 pixels, and standard acquisition mode for the hybrid detector.

295 Surface area measurement of 14-day-old *Marchantia gemmae* was performed using a
296 stereomicroscope (SZN71, LeWeng, Taiwan) with a CCD camera (Polychrome M, Liweng,
297 Taiwan), and images were processed using Fiji (ImageJ, <https://imagej.net/software/fiji/>)
298 software.

299

300 **Phenotyping**

301 Gemmae were cultured on a 1/2 Gamborg B5 agar plate for 14 days. A rectangular agar cube
302 with an individual plant on top was cut from the plate by a scalpel and transferred onto the
303 center of a slide. The slide was positioned on the surface of a laminar flow at a fixed distance
304 to the age, and the images were captured using a Google Pixel 8 cell phone camera. The angle
305 was further measured using Fiji software.

306

307 **Plasmid construction**

308 All constructs were performed using the Gateway™ system (Invitrogen) as recommended by
309 the user manual. The pMpGWB vectors, developed for *Marchantia* transformation (Ishizaki *et*
310 *al*, 2015), were used as the final destination vectors.

311 *pDONR221-MpPINW-*, *MpPINX-*, and *MpPINV-GFP* were obtained from previously
312 published plasmids (Zhang *et al*, 2019a). The fragments in the entry vector were transferred
313 into the destination vector pMpGWB102, containing a 35S promoter, using the LR Clonase™
314 II enzyme according to the manual (Invitrogen) to generate p35S::*MpPINW-*, *MpPINX-* and
315 *MpPINV-GFP*.

316 For endogenous *MpPINW* promoter-driven constructs, a 3.5k *MpPINW* promoter was
317 amplified with primers listed in Table S1 and cloned into the pENTR™/D-TOPO™ vector as the
318 manual suggested. The *MpPINW-GFP* fragment was amplified from the *pDONR221-MpPINW-*
319 *GFP* using primers listed in Table S1, and the *MpPINW* promoter-containing entry vector was
320 linearized by PCR with a back-to-back primer set targeting the end of the promoter region
321 (listed in Table S1). The insert and linearized vector were fused using the seamless cloning
322 (SLiCE) method (Zhang *et al*, 2014). The resulting *MpPINWpro::MpPINW-GFP* fragment was
323 further transferred into pMpGWB101 vector by the LR Clonase™ II enzyme according to the
324 manual.

325 *MpPINW-ΔminiW-GFP* was generated by site-directed mutagenesis PCR with primers
326 listed in Table S1 to exclude the miniW domain and the inserted GFP in the *pDONR221-*

327 *MpPINW-GFP* vector. A second *GFP* fragment was amplified with the primers listed in Table
328 S1 to fused with the linealized pDONR221-*MpPINWΔminiW* by SLiCE method. The
329 *MpPINWΔminiW-GFP* fragment was then transferred into the pMpGWB102 vector with the
330 LR reaction. The *PINW* single and double amino acid mutants were generated by site-directed
331 mutagenesis PCR (primers listed in Table S1) with the *pDONR221-MpPINW-GFP* vector, and
332 the mutated fragments were transferred into the pMpGWB102 vector using the LR reaction.

333 For *PIN2pro::PIN2-* and *MpPINW-GFP* *Arabidopsis* lines, plants were generated in a
334 previous publication in the group(Zhang *et al.*, 2019a).

335

336 **Phylogenetic analysis**

337 The phylogenetic analysis for full-length amino acid sequences of all examined PINs was
338 carried out in MEGA X program(Kumar *et al*, 2018) and the evolutionary history was inferred
339 by using the end-joined modeling and JTT matrix-based model with default settings(Jones *et*
340 *al*, 1992). The results were imported into iTOL (<https://itol.embl.de/>) for visual illustration.
341 The alignment and identity index were produced by an online CLUSTAL alignment program
342 with default settings.

343

344 **Auxin export assay**

345 The auxin export assay performed with transgenic *Marchantia* plants was modified based on
346 the protocol developed for *Arabidopsis* seedlings(Lewis & Muday, 2009). In brief, around
347 fifteen 10-days-old gemmae were transferred to a liquid growth medium for another 3 days
348 with gentle shaking, followed by 10 nM ^3H -IAA treatment for 24 hours. The radioactive tissues
349 were then washed twice with sterile H_2O , and were cultivated in fresh growth medium for
350 another 24 hours. The cultivated medium was then collected to mix with ScintiVerse BD
351 cocktail (Fisher, SX18-4) in 1:30 (v:v), and the export of auxin was measured by the Scintillation
352 counter (Beckman, LS6500).

353

354 **Distribution index analysis**

355 The PIN-GFP signals on the PM were quantified and presented as a distribution index. For
356 asymmetric distribution, the intensity of the strongest signal on the PM (intensity a) was
357 measured by the line tool in Fiji with a 3-pixel thickness. The intensity of the opposite side

358 (intensity b) was measured in the same way. The intensity b was then divided by the intensity
359 a as the distribution index. The index is close to 1 indicating the symmetry of signals, while
360 larger than 1 indicates the asymmetry of the protein distribution.

361

362 **Statistical analysis**

363 For phenotype analysis (Figure 1D and 1F), Student's t test was performed to compare *PINs*
364 overexpression lines with wildtype. For distribution index analysis (Figure 2E, 2F and 3F), the
365 means of groups with asymmetric and symmetric signals were compared and analyzed by
366 Student's t test as paired samples. For the intensity ratio in cytoplasm versus PM (Figure 4E
367 and 4G), Student's t test was performed to compare each pair of transgenic lines.

368

369 **Protoplast transformation**

370 Protoplasts were prepared and transformed as previously described (Mathur & Koncz, 1998).
371 Plasmids were prepared with an E.Z.N.A. Plasmid Maxi Kit I (Omega Bio-Tek). 10 micrograms
372 of each plasmid was transformed into the protoplasts. The transformed protoplast cells were
373 incubated in the dark at room temperature for 12 h to 16 h before imaging under an LSM800
374 confocal microscope (Zeiss).

375

376 **Acknowledgment**

377 The authors sincerely thank Dr. Shutang Tan for experimental support, and Dr. Barbara
378 Kloeckener Gruissem for critical reading and constructive advice on the manuscript. This work
379 was supported by the European Research Council Advanced Grant (ETAP-742985 to H.T. and
380 J.F.) and by the Ministry of Science and Technology (grant 112-2636-B-005-001- to K.-J.L.).

381 **Author contributions**

382 H.T., K.-J.L., and J.F. initiated and designed the experiments. Y. Z. provided *Arabidopsis*
383 transgenic line. A. S. and M. Z. performed the auxin export assay. K.-J.L. performed *Marchantia*
384 experiments and H. T. carried out quantitative analysis and wrote the manuscript.

385 **Declaration of interests**

386 No conflict of interest is declared.

387 **Figure legend**

388 **Figure 1. Early diverged Marchantia short PINs possess auxin export activity.**

389 A. Phylogenetic analysis of short *PINs* obtained from four selected species including two
390 representative bryophytes *Physcomitrium patens*, *Marchantia polymorpha*, two angiosperms
391 *Amborella trichopoda*, and *Arabidopsis thaliana*. End-joined modeling was applied in the
392 MEGA-X software.

393 B. H^3 -IAA export assay was performed with the *Marchantia* overexpression lines as indicated.
394 Transgenic plants were treated with H^3 -labeled IAA and recovered on H^3 -IAA-free medium for
395 24 hours. The exported H^3 -IAA in a liquid medium was detected as described previously (Lewis
396 & Muday, 2009). Ten to fifteen 10-day-old *Marchantia* gemmae were used for one
397 measurement, the graph shows the mean \pm SD from three independent experiments.

398 C. Vertical growth of the thallus when overexpressing MpPIN-GFP in *Marchantia*. Two
399 independent lines labeled with numbers were selected for each transgenic line as indicated.
400 Tak-1, the wildtype *Marchantia* served as control.

401 D. Quantitative analysis of the vertical growth by manual angle measurement. The angle (θ)
402 between horizontal agar and the growth direction of the thallus was measured. Each blue
403 circle represents a single measurement. $40 > n > 21$ for each line. *** $P < 0.001$, ** $P < 0.01$, *
404 $P < 0.05$, Student's *t*-test.

405 E. The growth phenotype of the thallus in the same transgenic lines as seen in panel C.

406 F. Quantitative analysis of the thallus growth. The thallus size was manually measured and
407 corrected with $\text{cosin}\theta$ based on the angle of vertical growth. The function of the magic wand
408 and size measurement in the Fiji software were applied. Each blue circle represents a single
409 measurement. $20 > n > 10$ for each line. *** $P < 0.001$, ** $P < 0.01$, * $P < 0.05$, Student's *t*-test.

410 **Figure 2. All *Marchantia* short PINs are localized to the plasma membrane with MpPINX and**
411 **MpPINW exhibiting asymmetric distribution.**

412 A-C. Subcellular localization of MpPINW-GFP, MpPINX-GFP, and MpPINV-GFP in
413 representative gemmae. The numbers labeled in lower left corners indicate the gemmae
414 number that showed consistent signals as representative images over the total number of
415 observed gemmae. The plasma membrane localization and asymmetric distribution are
416 magnified in lower panels of A to C. Rhizoid precursor cells are indicated by asterisks, and
417 epidermal cells are indicated by hashes.

418 D. Representative cells display symmetric and asymmetric distribution of signals in rhizoid
419 precursor cells and epidermal cells of MpPINW-GFP. Letters a and b point to the selected

420 position of PM for the intensity measurement, applied to the quantification of the distribution
421 index shown in E.

422 E. Distribution index presents the occurrence of indicated MpPIN-GFP with symmetric or
423 asymmetric signals in different tissues. The distribution index was calculated as ratio of signal
424 intensity between “a” and “b” as shown in D. Each blue circle represents a single
425 measurement. 30>n>12 for each line. *** $P<0.001$, Student’s *t*-test.

426 F. Distribution index, quantified as described for E. Endogenously expressed MpPINW-GFP is
427 asymmetrically localized to the plasma membrane in rhizoid precursor cells and epidermal
428 cells. n>13 from three independent lines. *** $P<0.001$, Student’s *t*-test.

429 G. AtPIN2-GFP and MpPINW-GFP driven by *AtPIN2* promoter exhibit apical and basal
430 polarization in epidermal cells of *Arabidopsis* root. White arrowheads indicate the polar
431 localization.

432 H. Polarity index of AtPIN2-GFP and MpPINW-GFP in epidermal cells was quantified by dividing
433 the polar signal by the signal on the lateral side of the same cell, as described previously(Zhang
434 *et al*, 2019b).

435 **Figure 3. The miniW domain of MpPINW is essential for PINs’ asymmetric PM localization.**

436 A. Amino acid alignment of MpPINW, AtPIN5, and AtPIN8. An extra domain only exists in
437 MpPINW and is named the miniW domain.

438 B-C. Subcellular localization of full-length MpPINW-GFP and MpPINW-miniWΔ-GFP without
439 the miniW domain. The MpPINW-miniWΔ-GFP was localized to the ER-like structure. The
440 protein composition is presented below.

441 D-E. Subcellular localization of full-length MpPINV-GFP and MpPINV-miniW-GFP with the
442 miniW domain insertion. The protein composition is presented below each image. Plasma
443 membrane-localized MpPINV-GFP shows asymmetric distribution with the miniW insertion.
444 The occurrence was shown in the lower left corner.

445 F. Distribution index shows the localization changes between symmetric-distributed MpPINV-
446 GFP and asymmetric-distributed MpPINV-miniW-GFP in epidermal cells. Each blue circle
447 represents one measurement. 59>n>40 for each line. *** $P<0.001$, Student’s *t*-test.

448 **Figure 4. Mutations in putative phosphorylation sites within the miniW domain abolish
449 MpPINW PM localization.**

450 A. Alignment of MpPINW and four long PINs as indicated with a focus on the miniW domain.
451 Two putative phosphorylation sites are marked by orange arrows.
452 B. Representative cells with MpPINW-GFP localized on the plasma membrane, and ROI 1 and
453 ROI 2 represent the selected area for the ratio calculation. The intensity ratio is quantified by
454 dividing the intensity of the intensity enriched area (ROI 1) on the plasma membrane (PM) by
455 the intensity of the randomly selected ROI 2 in the cytoplasm (Cyto).
456 C. The intensity ratio of MpPINW-GFP shows the majority of MpPINW-GFP are localized to the
457 PM in both rhizoid precursor cells and epidermal cells.
458 D. The subcellular localization in rhizoid precursor cells and E. The quantification analysis of
459 the intensity presented in PM to cytoplasm ratio of mutated MpPINW-GFP as indicated.
460 F. The subcellular localization in epidermal cells and G. the quantification analysis of the
461 intensity presented in PM to cytoplasm ratio of mutated MpPINW-GFP as indicated. The letter
462 above represents statistic groups with $P < 0.05$ using ANOVA and Tukey's HSD test.

463

464 **Reference**

465 Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and
466 evolution. *The Plant Cell* 27: 20-32
467 Bennett T, Brockington SF, Rothfels C, Graham SW, Stevenson D, Kutchan T, Rolf M, Thomas
468 P, Wong GK-S, Leyser O (2014) Paralogous radiations of PIN proteins with multiple origins of
469 noncanonical PIN structure. *Molecular Biology and Evolution* 31: 2042-2060
470 Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated
471 transformation of *Arabidopsis thaliana*. *Plant J* 16: 735-743
472 Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X,
473 Tejos R (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male
474 gametophyte development in *Arabidopsis*. *Nature communications* 3: 941
475 Dory M, Hatzimasoura E, Kállai BM, Nagy SK, Jäger K, Darula Z, Nádai TV, Mészáros T, López-
476 Juez E, Barnabás B (2018) Coevolving MAPK and PID phosphosites indicate an ancient
477 environmental control of PIN auxin transporters in land plants. *FEBS letters* 592: 89-102
478 Ferreira T, Rasband W (2012) ImageJ user guide. *Imagej/fiji* 1: 155-161
479 Friml J, Palme K (2002) Polar auxin transport—old questions and new concepts? *Plant
480 molecular biology* 49: 273-284
481 Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB,
482 Ljung K, Sandberg Gr (2004) A PINOID-dependent binary switch in apical-basal PIN polar
483 targeting directs auxin efflux. *Science* 306: 862-865

484 Gomes G, Scortecci K (2021) Auxin and its role in plant development: structure, signalling,
485 regulation and response mechanisms. *Plant Biology* 23: 894-904

486 Han H, Adamowski M, Qi L, Alotaibi SS, Friml J (2021) PIN-mediated polar auxin transport
487 regulations in plant tropic responses. *New Phytologist* 232: 510-522

488 Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T (2015)
489 Development of Gateway Binary Vector Series with Four Different Selection Markers for the
490 Liverwort *Marchantia polymorpha*. *PLoS One* 10: e0138876

491 Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices
492 from protein sequences. *Comput Appl Biosci* 8: 275-282

493 Kawamura S, Romani F, Yagura M, Mochizuki T, Sakamoto M, Yamaoka S, Nishihama R,
494 Nakamura Y, Yamato KT, Bowman JL (2022) MarpolBase expression: A web-based,
495 comprehensive platform for visualization and analysis of transcriptomes in the liverwort
496 *Marchantia polymorpha*. *Plant and Cell Physiology* 63: 1745-1755

497 Křeček P, Skůpa P, Libus J, Naramoto S, Tejos R, Friml J, Zažímalová E (2009) The PIN-
498 FORMED (PIN) protein family of auxin transporters. *Genome biology* 10: 1-11

499 Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient Agrobacterium-mediated
500 transformation of the liverwort *Marchantia polymorpha* using regenerating thalli. *Biosci
501 Biotechnol Biochem* 77: 167-172

502 Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary
503 Genetics Analysis across Computing Platforms. *Mol Biol Evol* 35: 1547-1549

504 Lewis DR, Muday GK (2009) Measurement of auxin transport in *Arabidopsis thaliana*. *Nat
505 Protoc* 4: 437-451

506 Mathur J, Koncz C (1998) PEG-mediated protoplast transformation with naked DNA.
507 *Arabidopsis Protocols*: 267-276

508 Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno
509 C, Zhang J, Huang F (2007) Antagonistic regulation of PIN phosphorylation by PP2A and
510 PINOID directs auxin flux. *Cell* 130: 1044-1056

511 Mravec J, Skůpa P, Bailly A, Hoyerová K, Křeček P, Bielach A, Petrášek J, Zhang J, Gaykova V,
512 Stierhof Y-D (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-
513 localized PIN5 transporter. *Nature* 459: 1136-1140

514 Naramoto S (2017) Polar transport in plants mediated by membrane transporters: focus on
515 mechanisms of polar auxin transport. *Current opinion in plant biology* 40: 8-14

516 Semeradova H, Montesinos JC, Benkova E (2020) All roads lead to auxin: post-translational
517 regulation of auxin transport by multiple hormonal pathways. *Plant communications* 1

518 Shimamura M (2016) *Marchantia polymorpha*: Taxonomy, Phylogeny and Morphology of a
519 Model System. *Plant Cell Physiol* 57: 230-256

520 Sisi NA, Růžička K (2020) ER-Localized PIN carriers: Regulators of intracellular auxin
521 homeostasis. *Plants* 9

522 Skokan R, Medvecká E, Viaene T, Vosolsobé S, Zwiewka M, Müller K, Skúpa P, Karady M,

523 Zhang Y, Janacek DP (2019) PIN-driven auxin transport emerged early in streptophyte

524 evolution. *Nature Plants* 5: 1114-1119

525 Tan S, Luschnig C, Friml J (2021) Pho-view of Auxin: Reversible Protein Phosphorylation in

526 Auxin Biosynthesis, Transport and Signaling. *Mol Plant* 14: 151-165

527 Tang H, Lu K-J, Zhang Y, Cheng Y-L, Tu S-L, Friml J (2024) Divergence of trafficking and

528 polarization mechanisms for PIN auxin transporters during land plant evolution. *Plant*

529 *Communications* 5

530 Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. *Cell* 136: 1005-

531 1016

532 Viaene T, Landberg K, Thelander M, Medvecka E, Pederson E, Feraru E, Cooper ED, Karimi M,

533 Delwiche CF, Ljung K (2014) Directional auxin transport mechanisms in early diverging land

534 plants. *Current Biology* 24: 2786-2791

535 Wiśniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, Rouquié D, Benková E,

536 Scheres B, Friml J (2006) Polar PIN Localization Directs Auxin Flow in Plants. *Science* 312:

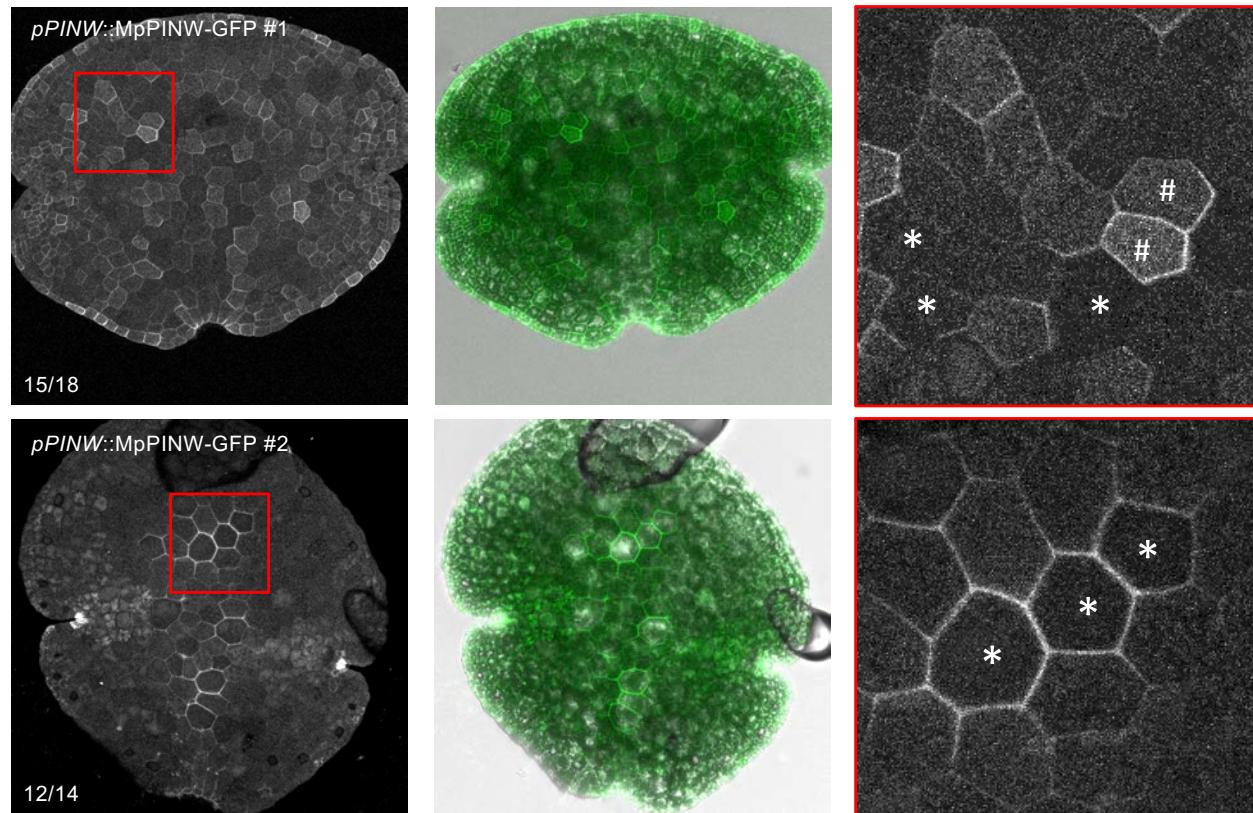
537 883-883

538 Zhang J, Nodzynski T, Pencik A, Rolcik J, Friml J (2010) PIN phosphorylation is sufficient to

539 mediate PIN polarity and direct auxin transport. *Proc Natl Acad Sci U S A* 107: 918-922

540 Zhang Y, Werling U, Edelmann W (2014) Seamless Ligation Cloning Extract (SLiCE) cloning

541 method. *Methods Mol Biol* 1116: 235-244


542 Zhang Y, Xiao G, Wang X, Zhang X, Friml J (2019a) Evolution of fast root gravitropism in seed

543 plants. *Nat Commun* 10: 3480

544 Zhang Y, Xiao G, Wang X, Zhang X, Friml J (2019b) Evolution of fast root gravitropism in seed

545 plants. *Nature communications* 10: 3480

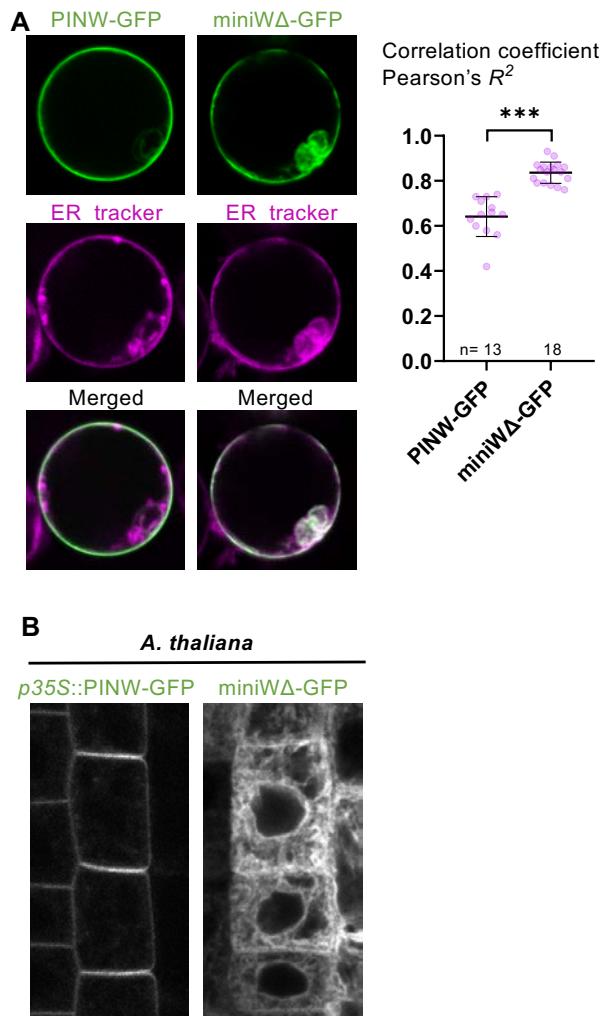

546

Figure S1. Endogenous PINW are asymmetrically distributed in different tissues.

Subcellular localization of MpPINW-GFP, driven by its endogenous promoter, in representative gemmae. The number of gemmae that showed signals as the representative image compared to the total number of observed gemmae is shown in the lower left corner. The plasma membrane localization and asymmetric distribution are magnified in the right panels. Rhizoid precursor cells are indicated by asterisks, and epidermal cells are indicated by hashes.

Figure S2. MpPINW colocalizes with ER in protoplast staining

Figure S2. MpPINW colocalizes with ER in protoplast staining.

- Protoplast derived from *Arabidopsis* roots was transformed with *p35S::MpPINW-GFP* or *p35S::MpPINW-miniWΔ-GFP*, coupled with ER tracker staining colored in magenta. The Pearson's correlation coefficient was analyzed by Fiji application.
- Arabidopsis* transformants carrying the same constructs were observed. Intact MpPINW-GFP shows PM localization, while PINW-miniWΔ-GFP is translocated to ER-like structure.