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Abstract
Motivation: Batch effects (BEs) are a predominant source of noise in omics data and often
mask real biological signals. BEs remain common in existing datasets. Current methods for
BE correction mostly rely on specific assumptions or complex models, and may not detect
and  adjust  BEs  adequately,  impacting  downstream  analysis  and  discovery  power.  To
address  these  challenges  we  developed  NPmatch,  a  nearest-neighbor  matching-based
method that adjusts BEs satisfactorily and outperforms current methods in a wide range of
datasets.

Results: We assessed distinct metrics and graphical readouts, and compared our method to
commonly  used  BE  correction  methods.  NPmatch  demonstrates  overall  superior
performance  in  correcting  for  BEs  while  preserving  biological  differences  than  existing
methods.  Altogether,  our  method  proves  to  be  a  valuable  BE  correction  approach  to
maximize discovery in biomedical research, with applicability in clinical research where latent
BEs are often dominant.

Data availability and implementation: 
NPmatch  is  freely  available  on  Github  (https://github.com/bigomics/NPmatch)  and  on
Omics  Playground  (https://bigomics.ch/omics-playground).  The  datasets  underlying  this
article are the following: GSE120099, GSE82177, GSE162760, GSE171343, GSE153380,
GSE163214,  GSE182440,  GSE163857,  GSE117970,  GSE173078,  GSE10846.  All  these
datasets  are  publicly  available  and  can  be  freely  accessed  on  the  Gene  Expression
Omnibus (GEO) repository.
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1. Introduction 
Modern biomedical  research employs  high-throughput  assays to  generate  single-

and multi-omics data. For instance, RNA-sequencing data provides expression profiles of
thousands of  genes at  genome-wide scale.  Various experimental  protocols  at  increasing
granularity, including single-cell genomics, proteomics, or spatial transcriptomics have been
developed and made accessible. Yet, bulk RNA-seq continues to be a widely used assay in
current research practices. 

However, these advancements are accompanied by significant challenges. One such
challenge is the high cost of sample collection, processing and data generation, especially in
studies involving a large number of samples (e.g., population-scale studies of disease). In
large-scale  studies,  it  is  common  practice  to  distribute  the  several  steps  of  the  data
acquisition workflow across multiple centers. This often leads to the utilization of diverse
protocols and technologies across the different centers. Additionally, research is increasingly
relying on published datasets. Free, publicly available repositories like the Gene Expression
Omnibus (GEO) database  (Barrett et al., 2005), serve as valuable resources to scientists,
offering  quick  access  to  existing  datasets  for  re-analysis  and  to  complement  newly
generated datasets. 

Measurements in datasets generated in multiple centers will inevitably be affected by
multiple sources of technical variation, collectively known as ‘Batch Effects’ (BEs). BEs may
also arise within a single laboratory, due to distinct sequencing runs, depths, use of different
sample donors, or when processing occurs in separate days. Cumulative variation can be
also  caused  by  smaller,  hidden  technical  sources  inherent  to  experimental  settings.
Altogether, BEs form a predominant, unwanted source of noise in omics data. BEs impact
data mean and variance, and may confound real, underlying biological signal, altering false
positive and false negative rates in downstream analyses e.g., (Kupfer et al., 2012, Tung et
al., 2017, Johnson et al., 2007, Leek et al., 2010, Phua et al., 2022, Cuklina et al., 2021).
Differential gene expression (DGE) testing, as an example, may be affected by BEs. This is
especially true in cases where the variable of interest is highly unbalanced between distinct
batches.  To  minimize  BEs,  it’s  crucial  for  the  study  design  to  involve  a  balanced
representation of samples across batches. Unfortunately, study designs are often imperfect.
When the variable of interest is highly imbalanced between distinct batches, it can become
very challenging to disentangle biological signals from BEs.

Previous studies have assessed the extent to which BEs impact measurements and
discovery power e.g., (Leek et al., 2010, Leigh et al., 2018, Lauss et al., 2013, Rasnic et al.,
2019). Particularly in large datasets, BEs may underlie inconsistencies across studies. To
address BEs computationally, batch correction methods have been developed. On a general
level, these can be categorized into (i) ‘Supervised methods’ such as ComBat (Johnson et
al., 2007) and Limma’s RemoveBatchEffects (Ritchie et al., 2015), which use linear models
to adjust known batch effects; (ii) ‘Unsupervised methods’, such as SVA (Leek and Storey,
2007) and RUV  (Gagnon-Bartsch and Speed,  2012),  which  attempt  to  identify  potential
sources of variation due to BEs without requiring prior knowledge of the batch vector. These
methods mostly rely on complex assumptions or models, and would thus need approximated
distributions  with  uncertain  distortion  from the  model-expected  distribution.  Furthermore,
batch correction methods suffer from the inherent heterogeneity both within and between
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batches, which is exacerbated in an unbalanced mix between study groups and batches in
the absence of matching replicates between batches. As a result, they may not necessarily
detect  or  adjust  BEs  adequately  and  consistently  across  diverse  datasets.  In  order  to
achieve an unbiased BE correction,  both batch and phenotype labels  would be needed.
While this may be the case for fully controlled experiments, it’s unrealistic in clinical research
where  BEs  are  often  unknown  and  phenotype  classes  of  patient  biopsies  are  often
undefined.

Here, we developed a batch correction method, NPmatch (nearest-pair matching),
that relies on distance-based matching to deterministically search for nearest neighbors with
opposite labels,  so-called “nearest-pair”,  among samples [Fig. 1A-C; Methods].  NPmatch
requires knowledge of the phenotypes but not of the batch assignment. Differently to many
other algorithms, NPmatch does not  rely on specific  models or  underlying distribution.  It
does not require special experimental designs, randomized controlled experiments, control
genes or batch information. NPmatch is based on the simple rationale that samples should
empirically pair based on distance in biological profiles, such as transcriptomics profiles.

Our method was inspired by principles of the statistical matching theory (M. D’Orazio,
2006). Distinct matching methods have been made available through integrated frameworks.
One is ‘MatchIt’ (Ho, 2007, Daniel Ho, 2011), which performs matching as a form of subset
selection with pruning and weighting. Similarly, our method performs unit (sample) selection
to classify the units into the distinct phenotype groups, and then performs nearest neighbor
search (NNS) through correlation or Euclidean distance between units. As NPmatch uses
prior knowledge on phenotypic groups, it  relies on a form of data stratification. Similarly,
matching may also involves stratification, though with different modalities (Zubizarreta, 2014,
Austin, 2014). The NNS results into pairs of units within and across condition classes. As
NNS results into a fully weighted dataset (i.e., weight (distance) associated to each unit), the
k closest  units  can  be  determined  for  each  unit  within  each  group.  The  NNS  is
nonparametric  as  it  is  neither  based  on  propensity  scores  nor  depends  on  regression
parameters. Instead, it is based on sample distances within the stratified dataset, with pairs
fully drawn from the original  dataset.  Different  to original  matching techniques,  NPmatch
enables full dataset matching: all available units are matched to  k units in the group with
opposite label. No units are dropped or removed. Our method generates a corrected data
matrix where the unwanted effect (i.e., batch-related variables) is removed through linear
regression  in  Limma.  This  results  in  a  batch corrected dataset  suitable  for  downstream
analyses. 

We conducted extensive testing of NPmatch in 11 publicly available microarray and
RNA-seq  datasets.  We  assessed  multiple  BE  correction  metrics,  including  number  of
differentially  expressed  genes  between  the  conditions  of  interest,  principal  component
analysis,  silhouette  score  for  clustering,  and  non-linear  dimensional  reductions.  We
demonstrate  that  NPmatch  tackles  BEs  satisfactorily  while  preserving  the  biological
heterogeneity  between samples.  Remarkably,  NPmatch outperforms the commonly  used
batch correction methods Limma (Ritchie et al., 2015), ComBat (Johnson et al., 2007), SVA
(Leek and Storey, 2007), RUV (Gagnon-Bartsch and Speed, 2012) and PCA (Giuliani, 2017,
Jolliffe and Cadima, 2016).
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2. Materials and Methods

2.1 NPmatch algorithm
The input to NPmatch is a normalized and log-transformed gene expression matrix

Xp  x  n (p=features,  n=samples),  which may suffer  from noticeable or  latent  batch effects.
NPmatch  does  not  require  knowledge  on  the  batches.  Instead,  NPmatch  requires  the
phenotype vector. For a more efficient computation (beneficial for large datasets or when
testing  numerous datasets),  NPmatch can select  the  top variable  features  (genes).  The
features are feature-centered and then further centered per condition group. Given Xp  x  n,
where n samples are distributed across c condition/phenotypic groups of biological interests,
the  rationale  here  is  to  buffer  potentially  significant  differences  in  average  expression
between the two groups driven by or affecting the top genes. Inter-sample similarities are
then  determined  by  either  computing  the  Pearson  correlation  matrix  Dn  x  n (default)  or
Euclidean distance. For convenience,  D is transformed into a 1-(D) scale such that both
positive  and  anti-correlations  are  handled  within  the  0-1  range  of  values  (0  highest
correlation;  1  lowest  correlation).  The  Pearson  correlation  matrix  Dn  x  n is  subsequently
decomposed into the c phenotypic/condition groups. For each sample, a k nearest-neighbor
like  search  is  conducted  to  identify  the  closest  k-nearest  samples   across  each  c
phenotypic/condition  group.  The  process results  into  a  matrix  Xn  x  (k  x  c) where  for  each
sample, k-nearest samples are identified per each c condition. The Xn x (k x c) matrix is then
used to derive a (i) vector of length L=n x k x c, storing all the computed pairs; (ii) a fully
paired dataset Xp x L. As pairing may per-se imply duplication of correlated signals (which is a
BE-like effect), Limma ‘RemoveBatchEffect’ is used to correct for the ‘pairing effects’ through
linear regression (Ritchie et al., 2005). The batch-corrected X1p x L matrix is finally condensed
into  its  original  p  x  n  size  by  computing,  per  each  feature,  the  average  values  across
duplicated samples. Thus, the  X1p x n matrix represents the batch-corrected dataset which
can be used for further downstream analyses.
  

2.2 Datasets 
NPmatch’s  performance  was  tested  on  11  publicly  available  human  RNA-seq

datasets (Sprang et al., 2022), and a microarray dataset, and compared to Limma (Ritchie et
al., 2015), ComBat  (Johnson et al., 2007), SVA  (Leek and Storey, 2007), RUV  (Gagnon-
Bartsch and Speed, 2012) and PCA. All datasets had available expression data and batch
information. A brief description of each dataset is provided below.
    

• GSE120099 (Lo Sardo et al., 2018): Induced Pluripotent stem cells were generated
from individuals carrying the 9p21.3 risk locus for coronary artery disease, and from non-risk
individuals. Genome editing was used to delete the haplotype, vascular smooth muscle cells
(VSMCs) were generated and  RNA-seq performed. Dataset for testing included a total of 92
samples (48 KO, 44 WT) split across 3 batches.
    

• GSE82177 (Wijetunga et al., 2017): RNA-seq from liver biopsies of 27 samples (10
uninfected  controls,  9  HCV-infected  non-tumor  samples,  8  HCV-infected  HCC  tumor
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samples) split across 2 batches. Control samples and non-tumor samples were combined
into a single group prior to batch effect assessment.
    

• GSE162760 (Farias Amorim et al., 2021): RNA-seq from whole blood samples from
Leishmania  braziliensis-infected individuals  and non-infected controls.  Dataset  for  testing
included a total of 64 samples (14 non-infected controls, 50 Leishmania infected samples)
split across 6 batches.
    

• GSE171343  (Bowles et al., 2021): Induced pluripotent stem cell-derived cerebral
organoids expressing tau V337M mutation and CRISPR-corrected isogenic controls were
generated  and  RNA-seq  performed  at  distinct  differentiation  stages.  Dataset  for  testing
included a total of 240 samples (100 V337M, 140 V337V) split across 3 batches.
    

• GSE153380 (Alvarez-Benayas et al., 2021): RNA-seq was performed on 5 primary
Plasma Cells (PC), 28 Multiple Mieloma (MM) PC, and 5 cell line samples. Samples ‘A26.19’
(PC)  and  ‘A27.22’   (PC)  appeared  to  be  merged  with  A26.18  (PC)  and  A27.21  (PC),
respectively, at source. For testing we included a total of 26 samples (23 MM, 3 PC) split
across 3 batches.
    

• GSE163214 (Procida et al., 2021): RNA-seq was performed on HeLa Kyoto cells
following  knockdown  of  JAZF1  and  control  cell  lines.  The  following  two  samples  were
removed  as  corresponding  data  appeared  corrupted  at  source:
‘GSM4975193_siJAFZ1_Rep2_Batch1’  and  ‘GSM4975199_siJAFZ1_Rep5_Batch2’.
Dataset for testing included a total of 8 samples (5 controls, 3 KD) split across 2 batches.
    

• GSE182440 (Lim et al., 2021): RNA-seq was performed on postmortem putamen
samples of control subjects and subjects affected with alcohol use disorder (AUD). Dataset
for testing included a total of 24 samples (12 control, 12 AUD) split across 2 batches.
    

• GSE163857 (Moser et al., 2021): RNA-seq was performed from (i) microglia cells
sorted  from  human-APOE  carrying  mice;  (ii)  microglia  cells  differentiated  from  human
induced pluripotent stem cells from healthy subjects genotyped for APOE, untreated and
treated with the heavy metals Cadmium (Cd) or Zinc (Zn). For testing we included the 24
human microglia samples (15 control, 4 Cd-treated, 5 Zn-treated) split across 2 batches.
    

• GSE117970  (Cassetta et al.,  2019): RNA-seq of purified monocytes and tumor-
associated macrophages  from breast  cancer  biopsies,  endometrial  cancer  biopsies,  and
normal tissues. For testing we included a total of 88 samples (50 normal, 38 breast cancer
samples) split across 5 batches.
    

•  GSE173078  (Kim  et  al.,  2021):  RNA-seq  was  performed  from  gingival  tissue
biopsies  in  states  of  periodontal  health,  gingivitis,  and periodontitis  disease.  Dataset  for
testing included a total of 36 samples (12 healthy control, 12 gingivitis, 12 periodontitis) split
across 2 batches.
    

• GSE10846 (Lenz et al., 2008): Array expression profiling was performed on clinical
samples  from  diffuse  large  B-cell  lymphoma  (DLBCL)  patients  pre-treated  with  the
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chemotherapy regimens CHOP and Rituximab-CHOP.  Dataset for testing included a total of
350 samples (167 ABC, 183 GCB) split across 2 batches (CHOP, R-CHOP). 

2.3 Datasets preprocessing
All datasets were processed consistently within the same pipeline. For each dataset,

the raw data were downloaded from GEO along with associated metadata and processed in
R. If feature (gene) identifiers were not official gene symbols, the official gene symbol was
retrieved and assigned. In rare cases of duplicated gene symbols, the average expression
values  across  duplicated  features  was  calculated  per  sample  and  duplicated  features
removed.  Genes  undetected  across  all  samples  were  removed.  Expression  data  were
normalized  (i)  within  samples  using  counts  per  millions  (CPM)  followed  by  log2+1
transformation, and (ii) across-samples using quantile normalization in limma (Ritchie et al.,
2005). Normalized data were used as input to the distinct batch correction algorithms.

2.4 Methods and Metrics for BEs detection and correction 
The following methods and metrics were employed to assess BEs in the uncorrected

datasets and upon batch correction:
    

• Silhouette score (SS): SS measures how well samples of the same group cluster
together. SS values are defined within the range [-1,+1], where lower values indicate poor
matching  and clustering,  and higher  values indicating  good  match.  Thus,  BEs could  be
assessed with the SS, whereby higher values are expected upon batch correction. SS are
computed using the R package ‘cluster’.
    

• Signal-to-Noise Ratio (SNR) of Log2FC: SNR is a well standardized measure in
high-dimensional data, particularly genomic data. SNR measures the ratio between a signal
of interest and a background noise in the underlying data. As signal, we utilize the average
Fold-Change  (FC)  (in  the  Log2  scale)  calculated  through  differential  gene  expression
analyses (see below) between the phenotypes/condition of interests. The noise is defined as
the average features’ standard deviation across all samples in the data matrix.
    

• PC1 Ratio: Singular value decomposition (svd) is applied to the data matrix. For
each phenotype class, the absolute Pearson’s correlation between each singular value and
the phenotype label is computed (across all samples). In order to assess the overall extent
to which variation in the data may be due to phenotype, the average correlation across the
phenotypes is then computed for each PC. We define PC1 Ratio as the ratio between the
value of the first PC and the sum of the values of all available PCs. The higher the PC1
Ratio the better the batch correction. 
    

•  Differential  Gene  Expression  (DGE)  testing:  In  principle,  one  may  expect  that
appropriate  batch  correction  should  improve  the  signal  to  detect  biologically  meaningful
differences between phenotypes/condition of  interests.  This  holds true both compared to
uncorrected data (i.e., batch-confounded data) and data with inefficient batch adjustment.
On  the  basis  of  this  principle,  DGE  was  performed  between  phenotypes/conditions  of
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interests  in  both  uncorrected  data  and  upon  batch  correction  using  linear  models  and
moderated t-test in limma. Differentially expressed genes (DGEs) are defined if  absolute
Log2FC≥0.5 and FDR≤0.05. Number of DEGs was used as a comparative metric between
BE correction methods.

We sought to compute a score for each batch correction method. To this end we first
computed the ratio between number of DEGs, SNR, and SS of the corrected data versus the
uncorrected data matrix. As the uncorrected dataset was used as reference, the score is
always 1 for the uncorrected data. The geometric mean of the ratios was then calculated as
an integrated score of overall performance of each method in each dataset. To have a metric
representative of overall method’s performance across all tested datasets, we computed the
mean rank of the score for each method across all tested datasets.

3. Results and Discussion
BEs represent a major source of unwanted variation in high-dimensional data. BEs

mask meaningful biological signals across conditions of interest and can impact discovery
and reproducibility. In this work, we present NPmatch, a new method for BE correction [Fig.
1A-C; Methods]. It relies on the rationale that samples should empirically pair based on their
distance in biological profiles. NPmatch is not restricted to prior assumptions on the nature of
BEs. It also works in studies where the requirement of balanced sample distribution among
batches is violated, which reasonably occurs due to the logistic and technical limitations in
clinical  research.  We tested NPmatch in 11 microarray and RNA-seq datasets spanning
diverse scenarios in terms of sample size and balanced representation of samples between
batches,  and  compared  to  supervised  and  unsupervised  methods,  including  limma
‘RemoveBatchEffects’, ComBat, SVA, RUV and PCA correction.

We initially tested NPmatch on a large batched array expression dataset of activated
B-cell  (ABC)  and  germinal  center  B-cell  (GCB)  diffuse  large  B-cell  lymphoma (DLBCL)
samples pre-treated with two different  pharmacological  regimens  (Lenz et  al.,  2008).  As
treatment was performed prior  to expression profiling  and samples were split  in  the two
groups for processing, this dataset well represent a scenario of how BEs may impact the
data.  In  the  uncorrected  data  BEs  appear  evident  with  samples  clustering  by
pharmacological  treatment  [Fig.  1D-E].  NPmatch  successfully  corrects  the  BEs,  with
samples clustering by DLBCL type, reflecting their biological heterogeneity  [Fig. 1F-G]. In
another complex representative dataset (GSE162760; Methods), NPmatch achieves better
batch correction while reasonably preserving the biological heterogeneity between samples
compared to other methods [Fig. 2A]. The batch-corrected data demonstrate that samples
part of the same phenotypic class cluster together. Assessment of t-SNE plots reveals that
when  compared  to  other  methods,  NPmatch  demonstrates  better  clustering  of  samples
based  on  the  biological  variable  of  interest,  in  most  of  the  tested  datasets  [Fig.  S1].
Accordingly,  BEs  appear  substantially  attenuated  upon  batch  correction  [Fig.S2].  As  a
control,  we also  performed batch correction with all  methods upon randomization  of  the
phenotype classes. As expected, no appropriate batch correction was achieved [Fig. S3].
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To  assess  the  extent  to  which  batch  correction  impacts  biologically  meaningful
signals in the data, we computed the number of differentially expressed genes between the
conditions  of  interest,  signal-to-noise  ratio,  silhouette  score,  and  correlation  between
principal  components and phenotype labels,  in the uncorrected data and following batch
correction. We found that NPmatch outperforms existing methods for most of the assessed
metrics in the tested datasets [Fig.S4]. Likewise, upon combination of the metrics (Methods),
NPmatch emerged among the top performing methods for the majority of datasets [Fig.2B].
We also computed an overall metric representative of each method’s performance across all
datasets  (Methods).  In  line  with  results  from each  single  metric,  NPmatch  exhibited  an
overall superior performance than the other methods in most cases [Fig.2C]. 

Altogether,  the  data  indicate  that  NPmatch  tackles  BEs  satisfactorily  while  also
preserving the biological  heterogeneity  between samples.  This  is  proved by  (i)  the  high
number of DEGs detected and (ii) the improved clustering of samples in the dimensionally-
reduced space. NPmatch also preserves the original distribution of the data. Remarkably, we
also demonstrate that NPmatch outperforms or ranks among the top when compared to the
highly used batch correction methods Limma, ComBat, SVA, RUV and PCA.

We applied NPmatch only to bulk transcriptomics data as the algorithm does not
support single-cell level data. In fact, while NPmatch needs the phenotype labels (but not the
batch labels), in single-cell RNA-seq data the phenotype labels - typically the cell types – are
unknown and the batch information is usually available. Importantly, we believe NPmatch
may  also  reasonably  accommodate  other  high-dimensional,  noisy  data  types,  such  as
peptide and proteomic data. However, these data types are associated with other problems.
For example, prior to batch correction for proteomics data, one should address the question
of whether the preprocessing steps of normalization and imputation should be performed
ahead  of  batch-correction  (e.g.,  to  avoid  missing  values)  or  upon  appropriate  data
transformation and batch correction. Thus, applying NPmatch to other data types warrant
separate studies.

While we recognize that  there may not  be a single,  all-encompassing solution to
address BEs in RNA-seq data or other biological data types given the inherent heterogeneity
present  in  batched  datasets,  we  propose  NPmatch  as  a  powerful  alternative  method,
especially when other methods fail to resolve BEs.
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FIGURE LEGENDS

Figure 1. NPmatch algorithm and testing on a  batched dataset.  (A)  Representative
clustering of a dataset affected by batch effects. (A) Samples segregate by batches rather
than biological  group.  (B)  NPmatch  conducts  nearest  neighbor  search  for  each  sample
(Methods). A k=1 has been chosen as representative illustration. (C) NPmatch results into a
batch-corrected dataset, where samples segregate by biological condition of interest rather
than batches. t-Distributed Stochastic Neighbor Embeddings (t-SNE) projections on the first
two dimensions of  batched data (D-E)  and (F-G) batch-corrected data in  a real  dataset
(GSE10846; Methods).

Figure 2. Comparison between NPmatch and other batch-correction methods. (A) t-
SNE of uncorrected and batch-corrected data for GSE162760 (Methods). In each plot the
samples are colored by the phenotype variable. The batch correction method employed is
indicated at the top of each plot. (B) Bar plots of performance score (integrating multiple
batch correction metrics; Methods) for each batch correction method in each tested dataset.
(C) Ranked bar plot of mean rank score (Methods) for each BE correction method across all
datasets.

Figure S1. t-SNE plots of uncorrected and batch corrected data to assess clustering
based on phenotype labels. The samples  are colored by the biological variable of interest
as per each dataset’s metadata. Dataset GEO identifier, batch correction method employed
and score (Methods) are reported at the top of each plot.

Figure S2. t-SNE plots of uncorrected and batch corrected data to assess clustering
based on batch labels. The samples  are colored by the batch labels as per each dataset’s
metadata. Dataset GEO identifier and batch correction method employed are reported at the
top of each plot.

Figure S3.  t-SNE plots of uncorrected and batch corrected data to assess clustering
following  randomization  of  the  phenotype  labels.  The  samples   are  colored  by  the
phenotype  labels  as  per  each  dataset’s  metadata.  Dataset  GEO  identifier  and  batch
correction method employed are reported at the top of each plot.

Figure  S4.  Assessment  of  BE  correction  metrics  for  each  method in  each  tested
dataset.  Bar plots show the number of  differentially expressed genes (on the log2 scale)
between the conditions of  interest,  signal-to-noise  ratio,  silhouette score,  and correlation
between principal components and phenotype labels (Methods), in the uncorrected data and
following batch correction.
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