

NPmatch: Latent Batch Effects Correction of Omics data by Nearest-Pair Matching

Antonino Zito, Axel Martinelli, Mauro Masiero, Murat Akhmedov, Ivo Kwee

BigOmics Analytics, 6900 Lugano, Switzerland

Abstract

Motivation: Batch effects (BEs) are a predominant source of noise in omics data and often mask real biological signals. BEs remain common in existing datasets. Current methods for BE correction mostly rely on specific assumptions or complex models, and may not detect and adjust BEs adequately, impacting downstream analysis and discovery power. To address these challenges we developed NPmatch, a nearest-neighbor matching-based method that adjusts BEs satisfactorily and outperforms current methods in a wide range of datasets.

Results: We assessed distinct metrics and graphical readouts, and compared our method to commonly used BE correction methods. NPmatch demonstrates overall superior performance in correcting for BEs while preserving biological differences than existing methods. Altogether, our method proves to be a valuable BE correction approach to maximize discovery in biomedical research, with applicability in clinical research where latent BEs are often dominant.

Data availability and implementation:

NPmatch is freely available on Github (<https://github.com/bigomics/NPmatch>) and on Omics Playground (<https://bigomics.ch/omics-playground>). The datasets underlying this article are the following: GSE120099, GSE82177, GSE162760, GSE171343, GSE153380, GSE163214, GSE182440, GSE163857, GSE117970, GSE173078, GSE10846. All these datasets are publicly available and can be freely accessed on the Gene Expression Omnibus (GEO) repository.

Contacts:

ivo.kwee@bigomics.ch

antonino.zito@bigomics.ch

murat.akhmedov@bigomics.ch

1. Introduction

1 Modern biomedical research employs high-throughput assays to generate single-
2 and multi-omics data. For instance, RNA-sequencing data provides expression profiles of
3 thousands of genes at genome-wide scale. Various experimental protocols at increasing
4 granularity, including single-cell genomics, proteomics, or spatial transcriptomics have been
5 developed and made accessible. Yet, bulk RNA-seq continues to be a widely used assay in
6 current research practices.

7 However, these advancements are accompanied by significant challenges. One such
8 challenge is the high cost of sample collection, processing and data generation, especially in
9 studies involving a large number of samples (e.g., population-scale studies of disease). In
10 large-scale studies, it is common practice to distribute the several steps of the data
11 acquisition workflow across multiple centers. This often leads to the utilization of diverse
12 protocols and technologies across the different centers. Additionally, research is increasingly
13 relying on published datasets. Free, publicly available repositories like the Gene Expression
14 Omnibus (GEO) database (Barrett et al., 2005), serve as valuable resources to scientists,
15 offering quick access to existing datasets for re-analysis and to complement newly
16 generated datasets.

17 Measurements in datasets generated in multiple centers will inevitably be affected by
18 multiple sources of technical variation, collectively known as 'Batch Effects' (BEs). BEs may
19 also arise within a single laboratory, due to distinct sequencing runs, depths, use of different
20 sample donors, or when processing occurs in separate days. Cumulative variation can be
21 also caused by smaller, hidden technical sources inherent to experimental settings.
22 Altogether, BEs form a predominant, unwanted source of noise in omics data. BEs impact
23 data mean and variance, and may confound real, underlying biological signal, altering false
24 positive and false negative rates in downstream analyses e.g., (Kupfer et al., 2012, Tung et
25 al., 2017, Johnson et al., 2007, Leek et al., 2010, Phua et al., 2022, Cuklina et al., 2021).
26 Differential gene expression (DGE) testing, as an example, may be affected by BEs. This is
27 especially true in cases where the variable of interest is highly unbalanced between distinct
28 batches. To minimize BEs, it's crucial for the study design to involve a balanced
29 representation of samples across batches. Unfortunately, study designs are often imperfect.
30 When the variable of interest is highly imbalanced between distinct batches, it can become
31 very challenging to disentangle biological signals from BEs.

32 Previous studies have assessed the extent to which BEs impact measurements and
33 discovery power e.g., (Leek et al., 2010, Leigh et al., 2018, Lauss et al., 2013, Rasnic et al.,
34 2019). Particularly in large datasets, BEs may underlie inconsistencies across studies. To
35 address BEs computationally, batch correction methods have been developed. On a general
36 level, these can be categorized into (i) 'Supervised methods' such as ComBat (Johnson et
37 al., 2007) and Limma's RemoveBatchEffects (Ritchie et al., 2015), which use linear models
38 to adjust known batch effects; (ii) 'Unsupervised methods', such as SVA (Leek and Storey,
39 2007) and RUV (Gagnon-Bartsch and Speed, 2012), which attempt to identify potential
40 sources of variation due to BEs without requiring prior knowledge of the batch vector. These
41 methods mostly rely on complex assumptions or models, and would thus need approximated
42 distributions with uncertain distortion from the model-expected distribution. Furthermore,
43 batch correction methods suffer from the inherent heterogeneity both within and between

44 batches, which is exacerbated in an unbalanced mix between study groups and batches in
45 the absence of matching replicates between batches. As a result, they may not necessarily
46 detect or adjust BEs adequately and consistently across diverse datasets. In order to
47 achieve an unbiased BE correction, both batch and phenotype labels would be needed.
48 While this may be the case for fully controlled experiments, it's unrealistic in clinical research
49 where BEs are often unknown and phenotype classes of patient biopsies are often
50 undefined.

51 Here, we developed a batch correction method, NPmatch (nearest-pair matching),
52 that relies on distance-based matching to deterministically search for nearest neighbors with
53 opposite labels, so-called “nearest-pair”, among samples [Fig. 1A-C; Methods]. NPmatch
54 requires knowledge of the phenotypes but not of the batch assignment. Differently to many
55 other algorithms, NPmatch does not rely on specific models or underlying distribution. It
56 does not require special experimental designs, randomized controlled experiments, control
57 genes or batch information. NPmatch is based on the simple rationale that samples should
58 empirically pair based on distance in biological profiles, such as transcriptomics profiles.

59 Our method was inspired by principles of the statistical matching theory (M. D’Orazio,
60 2006). Distinct matching methods have been made available through integrated frameworks.
61 One is ‘*MatchIt*’ (Ho, 2007, Daniel Ho, 2011), which performs matching as a form of subset
62 selection with pruning and weighting. Similarly, our method performs unit (sample) selection
63 to classify the units into the distinct phenotype groups, and then performs nearest neighbor
64 search (NNS) through correlation or Euclidean distance between units. As NPmatch uses
65 prior knowledge on phenotypic groups, it relies on a form of data stratification. Similarly,
66 matching may also involves stratification, though with different modalities (Zubizarreta, 2014,
67 Austin, 2014). The NNS results into pairs of units within and across condition classes. As
68 NNS results into a fully weighted dataset (i.e., weight (distance) associated to each unit), the
69 k closest units can be determined for each unit within each group. The NNS is
70 nonparametric as it is neither based on propensity scores nor depends on regression
71 parameters. Instead, it is based on sample distances within the stratified dataset, with pairs
72 fully drawn from the original dataset. Different to original matching techniques, NPmatch
73 enables full dataset matching: all available units are matched to k units in the group with
74 opposite label. No units are dropped or removed. Our method generates a corrected data
75 matrix where the unwanted effect (i.e., batch-related variables) is removed through linear
76 regression in Limma. This results in a batch corrected dataset suitable for downstream
77 analyses.

78 We conducted extensive testing of NPmatch in 11 publicly available microarray and
79 RNA-seq datasets. We assessed multiple BE correction metrics, including number of
80 differentially expressed genes between the conditions of interest, principal component
81 analysis, silhouette score for clustering, and non-linear dimensional reductions. We
82 demonstrate that NPmatch tackles BEs satisfactorily while preserving the biological
83 heterogeneity between samples. Remarkably, NPmatch outperforms the commonly used
84 batch correction methods Limma (Ritchie et al., 2015), ComBat (Johnson et al., 2007), SVA
85 (Leek and Storey, 2007), RUV (Gagnon-Bartsch and Speed, 2012) and PCA (Giuliani, 2017,
86 Jolliffe and Cadima, 2016).

2. Materials and Methods

2.1 NPmatch algorithm

87 The input to NPmatch is a normalized and log-transformed gene expression matrix
88 $X^{p \times n}$ (p =features, n =samples), which may suffer from noticeable or latent batch effects.
89 NPmatch does not require knowledge on the batches. Instead, NPmatch requires the
90 phenotype vector. For a more efficient computation (beneficial for large datasets or when
91 testing numerous datasets), NPmatch can select the top variable features (genes). The
92 features are feature-centered and then further centered per condition group. Given $X^{p \times n}$,
93 where n samples are distributed across c condition/phenotypic groups of biological interests,
94 the rationale here is to buffer potentially significant differences in average expression
95 between the two groups driven by or affecting the top genes. Inter-sample similarities are
96 then determined by either computing the Pearson correlation matrix $D^{n \times n}$ (default) or
97 Euclidean distance. For convenience, D is transformed into a 1-(D) scale such that both
98 positive and anti-correlations are handled within the 0-1 range of values (0 highest
99 correlation; 1 lowest correlation). The Pearson correlation matrix $D^{n \times n}$ is subsequently
100 decomposed into the c phenotypic/condition groups. For each sample, a k nearest-neighbor
101 like search is conducted to identify the closest k -nearest samples across each c
102 phenotypic/condition group. The process results into a matrix $X^{n \times (k \times c)}$ where for each
103 sample, k -nearest samples are identified per each c condition. The $X^{n \times (k \times c)}$ matrix is then
104 used to derive a (i) vector of length $L=n \times k \times c$, storing all the computed pairs; (ii) a fully
105 paired dataset $X^{p \times L}$. As pairing may *per-se* imply duplication of correlated signals (which is a
106 BE-like effect), Limma 'RemoveBatchEffect' is used to correct for the 'pairing effects' through
107 linear regression (Ritchie et al., 2005). The batch-corrected $X^{p \times L}$ matrix is finally condensed
108 into its original $p \times n$ size by computing, per each feature, the average values across
109 duplicated samples. Thus, the $X^{p \times n}$ matrix represents the batch-corrected dataset which
110 can be used for further downstream analyses.

2.2 Datasets

111 NPmatch's performance was tested on 11 publicly available human RNA-seq
112 datasets (Sprang et al., 2022), and a microarray dataset, and compared to Limma (Ritchie et
113 al., 2015), ComBat (Johnson et al., 2007), SVA (Leek and Storey, 2007), RUV (Gagnon-
114 Bartsch and Speed, 2012) and PCA. All datasets had available expression data and batch
115 information. A brief description of each dataset is provided below.

116 • GSE120099 (Lo Sardo et al., 2018): Induced Pluripotent stem cells were generated
117 from individuals carrying the 9p21.3 risk locus for coronary artery disease, and from non-risk
118 individuals. Genome editing was used to delete the haplotype, vascular smooth muscle cells
119 (VSMCs) were generated and RNA-seq performed. Dataset for testing included a total of 92
120 samples (48 KO, 44 WT) split across 3 batches.

121 • GSE82177 (Wijetunga et al., 2017): RNA-seq from liver biopsies of 27 samples (10
122 uninfected controls, 9 HCV-infected non-tumor samples, 8 HCV-infected HCC tumor

123 samples) split across 2 batches. Control samples and non-tumor samples were combined
124 into a single group prior to batch effect assessment.

125 • GSE162760 (Farias Amorim et al., 2021): RNA-seq from whole blood samples from
126 Leishmania braziliensis-infected individuals and non-infected controls. Dataset for testing
127 included a total of 64 samples (14 non-infected controls, 50 Leishmania infected samples)
128 split across 6 batches.

129 • GSE171343 (Bowles et al., 2021): Induced pluripotent stem cell-derived cerebral
130 organoids expressing tau V337M mutation and CRISPR-corrected isogenic controls were
131 generated and RNA-seq performed at distinct differentiation stages. Dataset for testing
132 included a total of 240 samples (100 V337M, 140 V337V) split across 3 batches.

133 • GSE153380 (Alvarez-Benayas et al., 2021): RNA-seq was performed on 5 primary
134 Plasma Cells (PC), 28 Multiple Mieloma (MM) PC, and 5 cell line samples. Samples 'A26.19'
135 (PC) and 'A27.22' (PC) appeared to be merged with A26.18 (PC) and A27.21 (PC),
136 respectively, at source. For testing we included a total of 26 samples (23 MM, 3 PC) split
137 across 3 batches.

138 • GSE163214 (Procida et al., 2021): RNA-seq was performed on HeLa Kyoto cells
139 following knockdown of *JAZF1* and control cell lines. The following two samples were
140 removed as corresponding data appeared corrupted at source:
141 'GSM4975193_siJAFZ1_Rep2_Batch1' and 'GSM4975199_siJAFZ1_Rep5_Batch2'.
142 Dataset for testing included a total of 8 samples (5 controls, 3 KD) split across 2 batches.

143 • GSE182440 (Lim et al., 2021): RNA-seq was performed on postmortem putamen
144 samples of control subjects and subjects affected with alcohol use disorder (AUD). Dataset
145 for testing included a total of 24 samples (12 control, 12 AUD) split across 2 batches.

146 • GSE163857 (Moser et al., 2021): RNA-seq was performed from (i) microglia cells
147 sorted from human-APOE carrying mice; (ii) microglia cells differentiated from human
148 induced pluripotent stem cells from healthy subjects genotyped for APOE, untreated and
149 treated with the heavy metals Cadmium (Cd) or Zinc (Zn). For testing we included the 24
150 human microglia samples (15 control, 4 Cd-treated, 5 Zn-treated) split across 2 batches.

151 • GSE117970 (Cassetta et al., 2019): RNA-seq of purified monocytes and tumor-
152 associated macrophages from breast cancer biopsies, endometrial cancer biopsies, and
153 normal tissues. For testing we included a total of 88 samples (50 normal, 38 breast cancer
154 samples) split across 5 batches.

155 • GSE173078 (Kim et al., 2021): RNA-seq was performed from gingival tissue
156 biopsies in states of periodontal health, gingivitis, and periodontitis disease. Dataset for
157 testing included a total of 36 samples (12 healthy control, 12 gingivitis, 12 periodontitis) split
158 across 2 batches.

159 • GSE10846 (Lenz et al., 2008): Array expression profiling was performed on clinical
160 samples from diffuse large B-cell lymphoma (DLBCL) patients pre-treated with the

161 chemotherapy regimens CHOP and Rituximab-CHOP. Dataset for testing included a total of
162 350 samples (167 ABC, 183 GCB) split across 2 batches (CHOP, R-CHOP).

2.3 Datasets preprocessing

163 All datasets were processed consistently within the same pipeline. For each dataset,
164 the raw data were downloaded from GEO along with associated metadata and processed in
165 R. If feature (gene) identifiers were not official gene symbols, the official gene symbol was
166 retrieved and assigned. In rare cases of duplicated gene symbols, the average expression
167 values across duplicated features was calculated per sample and duplicated features
168 removed. Genes undetected across all samples were removed. Expression data were
169 normalized (i) within samples using counts per millions (CPM) followed by log2+1
170 transformation, and (ii) across-samples using quantile normalization in limma (Ritchie et al.,
171 2005). Normalized data were used as input to the distinct batch correction algorithms.

2.4 Methods and Metrics for BEs detection and correction

172 The following methods and metrics were employed to assess BEs in the uncorrected
173 datasets and upon batch correction:

174 • Silhouette score (SS): SS measures how well samples of the same group cluster
175 together. SS values are defined within the range [-1,+1], where lower values indicate poor
176 matching and clustering, and higher values indicating good match. Thus, BEs could be
177 assessed with the SS, whereby higher values are expected upon batch correction. SS are
178 computed using the R package 'cluster'.

179 • Signal-to-Noise Ratio (SNR) of Log2FC: SNR is a well standardized measure in
180 high-dimensional data, particularly genomic data. SNR measures the ratio between a signal
181 of interest and a background noise in the underlying data. As signal, we utilize the average
182 Fold-Change (FC) (in the Log2 scale) calculated through differential gene expression
183 analyses (see below) between the phenotypes/condition of interests. The noise is defined as
184 the average features' standard deviation across all samples in the data matrix.

185 • PC1 Ratio: Singular value decomposition (svd) is applied to the data matrix. For
186 each phenotype class, the absolute Pearson's correlation between each singular value and
187 the phenotype label is computed (across all samples). In order to assess the overall extent
188 to which variation in the data may be due to phenotype, the average correlation across the
189 phenotypes is then computed for each PC. We define PC1 Ratio as the ratio between the
190 value of the first PC and the sum of the values of all available PCs. The higher the PC1
191 Ratio the better the batch correction.

192 • Differential Gene Expression (DGE) testing: In principle, one may expect that
193 appropriate batch correction should improve the signal to detect biologically meaningful
194 differences between phenotypes/condition of interests. This holds true both compared to
195 uncorrected data (i.e., batch-confounded data) and data with inefficient batch adjustment.
196 On the basis of this principle, DGE was performed between phenotypes/conditions of

197 interests in both uncorrected data and upon batch correction using linear models and
198 moderated t-test in limma. Differentially expressed genes (DGEs) are defined if absolute
199 Log2FC \geq 0.5 and FDR \leq 0.05. Number of DEGs was used as a comparative metric between
200 BE correction methods.

201 We sought to compute a score for each batch correction method. To this end we first
202 computed the ratio between number of DEGs, SNR, and SS of the corrected data versus the
203 uncorrected data matrix. As the uncorrected dataset was used as reference, the score is
204 always 1 for the uncorrected data. The geometric mean of the ratios was then calculated as
205 an integrated score of overall performance of each method in each dataset. To have a metric
206 representative of overall method's performance across all tested datasets, we computed the
207 mean rank of the score for each method across all tested datasets.

3. Results and Discussion

208 BEs represent a major source of unwanted variation in high-dimensional data. BEs
209 mask meaningful biological signals across conditions of interest and can impact discovery
210 and reproducibility. In this work, we present NPmatch, a new method for BE correction [Fig.
211 1A-C; Methods]. It relies on the rationale that samples should empirically pair based on their
212 distance in biological profiles. NPmatch is not restricted to prior assumptions on the nature of
213 BEs. It also works in studies where the requirement of balanced sample distribution among
214 batches is violated, which reasonably occurs due to the logistic and technical limitations in
215 clinical research. We tested NPmatch in 11 microarray and RNA-seq datasets spanning
216 diverse scenarios in terms of sample size and balanced representation of samples between
217 batches, and compared to supervised and unsupervised methods, including limma
218 'RemoveBatchEffects', ComBat, SVA, RUV and PCA correction.

219 We initially tested NPmatch on a large batched array expression dataset of activated
220 B-cell (ABC) and germinal center B-cell (GCB) diffuse large B-cell lymphoma (DLBCL)
221 samples pre-treated with two different pharmacological regimens (Lenz et al., 2008). As
222 treatment was performed prior to expression profiling and samples were split in the two
223 groups for processing, this dataset well represent a scenario of how BEs may impact the
224 data. In the uncorrected data BEs appear evident with samples clustering by
225 pharmacological treatment [Fig. 1D-E]. NPmatch successfully corrects the BEs, with
226 samples clustering by DLBCL type, reflecting their biological heterogeneity [Fig. 1F-G]. In
227 another complex representative dataset (GSE162760; Methods), NPmatch achieves better
228 batch correction while reasonably preserving the biological heterogeneity between samples
229 compared to other methods [Fig. 2A]. The batch-corrected data demonstrate that samples
230 part of the same phenotypic class cluster together. Assessment of t-SNE plots reveals that
231 when compared to other methods, NPmatch demonstrates better clustering of samples
232 based on the biological variable of interest, in most of the tested datasets [Fig. S1].
233 Accordingly, BEs appear substantially attenuated upon batch correction [Fig. S2]. As a
234 control, we also performed batch correction with all methods upon randomization of the
235 phenotype classes. As expected, no appropriate batch correction was achieved [Fig. S3].

236 To assess the extent to which batch correction impacts biologically meaningful
237 signals in the data, we computed the number of differentially expressed genes between the
238 conditions of interest, signal-to-noise ratio, silhouette score, and correlation between
239 principal components and phenotype labels, in the uncorrected data and following batch
240 correction. We found that NPmatch outperforms existing methods for most of the assessed
241 metrics in the tested datasets [Fig.S4]. Likewise, upon combination of the metrics (Methods),
242 NPmatch emerged among the top performing methods for the majority of datasets [Fig.2B].
243 We also computed an overall metric representative of each method's performance across all
244 datasets (Methods). In line with results from each single metric, NPmatch exhibited an
245 overall superior performance than the other methods in most cases [Fig.2C].

246 Altogether, the data indicate that NPmatch tackles BEs satisfactorily while also
247 preserving the biological heterogeneity between samples. This is proved by (i) the high
248 number of DEGs detected and (ii) the improved clustering of samples in the dimensionally-
249 reduced space. NPmatch also preserves the original distribution of the data. Remarkably, we
250 also demonstrate that NPmatch outperforms or ranks among the top when compared to the
251 highly used batch correction methods Limma, ComBat, SVA, RUV and PCA.

252 We applied NPmatch only to bulk transcriptomics data as the algorithm does not
253 support single-cell level data. In fact, while NPmatch needs the phenotype labels (but not the
254 batch labels), in single-cell RNA-seq data the phenotype labels - typically the cell types – are
255 unknown and the batch information is usually available. Importantly, we believe NPmatch
256 may also reasonably accommodate other high-dimensional, noisy data types, such as
257 peptide and proteomic data. However, these data types are associated with other problems.
258 For example, prior to batch correction for proteomics data, one should address the question
259 of whether the preprocessing steps of normalization and imputation should be performed
260 ahead of batch-correction (e.g., to avoid missing values) or upon appropriate data
261 transformation and batch correction. Thus, applying NPmatch to other data types warrant
262 separate studies.

263 While we recognize that there may not be a single, all-encompassing solution to
264 address BEs in RNA-seq data or other biological data types given the inherent heterogeneity
265 present in batched datasets, we propose NPmatch as a powerful alternative method,
266 especially when other methods fail to resolve BEs.

267 **Acknowledgements**

268 We thank the team at BigOmics Analytics for providing valuable feedback on this work.

269 **Funding information**

270 This work was funded by BigOmics Analytics.

271 **Conflict of interest**

272 The authors report no conflict of interest.

FIGURE LEGENDS

273 **Figure 1. NPmatch algorithm and testing on a batched dataset.** (A) Representative
274 clustering of a dataset affected by batch effects. (A) Samples segregate by batches rather
275 than biological group. (B) NPmatch conducts nearest neighbor search for each sample
276 (Methods). A $k=1$ has been chosen as representative illustration. (C) NPmatch results into a
277 batch-corrected dataset, where samples segregate by biological condition of interest rather
278 than batches. t-Distributed Stochastic Neighbor Embeddings (t-SNE) projections on the first
279 two dimensions of batched data (D-E) and (F-G) batch-corrected data in a real dataset
280 (GSE10846; Methods).

281 **Figure 2. Comparison between NPmatch and other batch-correction methods.** (A) t-
282 SNE of uncorrected and batch-corrected data for GSE162760 (Methods). In each plot the
283 samples are colored by the phenotype variable. The batch correction method employed is
284 indicated at the top of each plot. (B) Bar plots of performance score (integrating multiple
285 batch correction metrics; Methods) for each batch correction method in each tested dataset.
286 (C) Ranked bar plot of mean rank score (Methods) for each BE correction method across all
287 datasets.

288 **Figure S1. t-SNE plots of uncorrected and batch corrected data to assess clustering
289 based on phenotype labels.** The samples are colored by the biological variable of interest
290 as per each dataset's metadata. Dataset GEO identifier, batch correction method employed
291 and score (Methods) are reported at the top of each plot.

292 **Figure S2. t-SNE plots of uncorrected and batch corrected data to assess clustering
293 based on batch labels.** The samples are colored by the batch labels as per each dataset's
294 metadata. Dataset GEO identifier and batch correction method employed are reported at the
295 top of each plot.

296 **Figure S3. t-SNE plots of uncorrected and batch corrected data to assess clustering
297 following randomization of the phenotype labels.** The samples are colored by the
298 phenotype labels as per each dataset's metadata. Dataset GEO identifier and batch
299 correction method employed are reported at the top of each plot.

300 **Figure S4. Assessment of BE correction metrics for each method in each tested
301 dataset.** Bar plots show the number of differentially expressed genes (on the log2 scale)
302 between the conditions of interest, signal-to-noise ratio, silhouette score, and correlation
303 between principal components and phenotype labels (Methods), in the uncorrected data and
304 following batch correction.

References

ALVAREZ-BENAYAS, J., TRASANIDIS, N., KATSAROU, A., PONNUSAMY, K., CHAIDOS, A., MAY, P. C., XIAO, X., BUA, M., ATTA, M., ROBERTS, I. A. G., AUNER, H. W., HATJIHARISSI, E., PAPAIOANNOU, M., CAPUTO, V. S., SUDBERY, I. M. & KARADIMITRIS, A. 2021. Chromatin-based, in cis and in trans regulatory rewiring underpins distinct oncogenic transcriptomes in multiple myeloma. *Nat Commun*, 12, 5450.

AUSTIN, P. C., AND DYLAN S. SMALL 2014. The Use of Bootstrapping When Using Propensity-Score Matching Without Replacement: A Simulation Study. *Statistics in Medicine* 33 (24): 4306–19.

BARRETT, T., SUZEK, T. O., TROUP, D. B., WILHITE, S. E., NGAU, W. C., LEDOUX, P., RUDNEV, D., LASH, A. E., FUJIBUCHI, W. & EDGAR, R. 2005. NCBI GEO: mining millions of expression profiles--database and tools. *Nucleic Acids Res*, 33, D562-6.

BOWLES, K. R., SILVA, M. C., WHITNEY, K., BERTUCCI, T., BERLIND, J. E., LAI, J. D., GARZA, J. C., BOLES, N. C., MAHALI, S., STRANG, K. H., MARSH, J. A., CHEN, C., PUGH, D. A., LIU, Y., GORDON, R. E., GODERIE, S. K., CHOWDHURY, R., LOTZ, S., LANE, K., CRARY, J. F., HAGGARTY, S. J., KARCH, C. M., ICHIDA, J. K., GOATE, A. M. & TEMPLE, S. 2021. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. *Cell*, 184, 4547-4563 e17.

CASSETTA, L., FRAGKOGIANNI, S., SIMS, A. H., SWIERCZAK, A., FORRESTER, L. M., ZHANG, H., SOONG, D. Y. H., COTECHINI, T., ANUR, P., LIN, E. Y., FIDANZA, A., LOPEZ-YRIGOYEN, M., MILLAR, M. R., URMAN, A., AI, Z., SPELLMAN, P. T., HWANG, E. S., DIXON, J. M., WIECHMANN, L., COUSSENS, L. M., SMITH, H. O. & POLLARD, J. W. 2019. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. *Cancer Cell*, 35, 588-602 e10.

CUKLINA, J., LEE, C. H., WILLIAMS, E. G., SAJIC, T., COLLINS, B. C., RODRIGUEZ MARTINEZ, M., SHARMA, V. S., WENDT, F., GOETZE, S., KEELE, G. R., WOLLSCHEID, B., AEBERSOLD, R. & PEDRIOLI, P. G. A. 2021. Diagnostics and correction of batch effects in large-scale proteomic studies: a tutorial. *Mol Syst Biol*, 17, e10240.

DANIEL HO, K. I., GARY KING, ELIZABETH A. STUART 2011. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. *Journal of Statistical Software*.

FARIAS AMORIM, C., F, O. N., NGUYEN, B. T., NASCIMENTO, M. T., LAGO, J., LAGO, A. S., CARVALHO, L. P., BEITING, D. P. & SCOTT, P. 2021. Localized skin inflammation during cutaneous leishmaniasis drives a chronic, systemic IFN-gamma signature. *PLoS Negl Trop Dis*, 15, e0009321.

GAGNON-BARTSCH, J. A. & SPEED, T. P. 2012. Using control genes to correct for unwanted variation in microarray data. *Biostatistics*, 13, 539-52.

HO, D. E., KOSUKE IMAI, GARY KING, AND ELIZABETH A. STUART. 2007 2007. Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference. *Political Analysis* 15 (3): 199–236.

JOHNSON, W. E., LI, C. & RABINOVIC, A. 2007. Adjusting batch effects in microarray expression data using empirical Bayes methods. *Biostatistics*, 8, 118-27.

JOLLIFFE, I. T. & CADIMA, J. 2016. Principal component analysis: a review and recent developments. *Philos Trans A Math Phys Eng Sci*, 374, 20150202.

KIM, H., MOMEN-HERAVI, F., CHEN, S., HOFFMANN, P., KEBSCHULL, M. & PAPAPANOU, P. N. 2021. Differential DNA methylation and mRNA transcription in gingival tissues in periodontal health and disease. *J Clin Periodontol*, 48, 1152-1164.

KUPFER, P., GUTHKE, R., POHLERS, D., HUBER, R., KOCZAN, D. & KINNE, R. W. 2012. Batch correction of microarray data substantially improves the identification of genes differentially expressed in rheumatoid arthritis and osteoarthritis. *BMC Med Genomics*, 5, 23.

LAURENS VAN DER MAATEN, G. H. 2008. Visualizing Data using t-SNE. *Journal of Machine Learning Research* 2579-2605.

LAUSS, M., VISNE, I., KRIEGLER, A., RINGNER, M., JONSSON, G. & HOGLUND, M. 2013. Monitoring of technical variation in quantitative high-throughput datasets. *Cancer Inform*, 12, 193-201.

LEEK, J. T., SCHARPF, R. B., BRAVO, H. C., SIMCHA, D., LANGMEAD, B., JOHNSON, W. E., GEMAN, D., BAGGERLY, K. & IRIZARRY, R. A. 2010. Tackling the widespread and critical impact of batch effects in high-throughput data. *Nat Rev Genet*, 11, 733-9.

LEEK, J. T. & STOREY, J. D. 2007. Capturing heterogeneity in gene expression studies by surrogate variable analysis. *PLoS Genet*, 3, 1724-35.

LEIGH, D. M., LISCHER, H. E. L., GROSSEN, C. & KELLER, L. F. 2018. Batch effects in a multiyear sequencing study: False biological trends due to changes in read lengths. *Mol Ecol Resour*, 18, 778-788.

LELAND MCINNES, J. H., JAMES MELVILLE 2020. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.

LENZ, G., WRIGHT, G., DAVE, S. S., XIAO, W., POWELL, J., ZHAO, H., XU, W., TAN, B., GOLDSCHMIDT, N., IQBAL, J., VOSE, J., BAST, M., FU, K., WEISENBURGER, D. D., GREINER, T. C., ARMITAGE, J. O., KYLE, A., MAY, L., GASCOYNE, R. D., CONNORS, J. M., TROEN, G., HOLTE, H., KVALOY, S., DIERICKX, D., VERHOEF, G., DELABIE, J., SMELAND, E. B., JARES, P., MARTINEZ, A., LOPEZ-GUILLEMO, A., MONTSERRAT, E., CAMPO, E., BRAZIEL, R. M., MILLER, T. P., RIMSZA, L. M., COOK, J. R., POHLMAN, B., SWEETENHAM, J., TUBBS, R. R., FISHER, R. I., HARTMANN, E., ROSENWALD, A., OTT, G., MULLER-HERMELINK, H. K., WRENCH, D., LISTER, T. A., JAFFE, E. S., WILSON, W. H., CHAN, W. C., STAUDT, L. M. & LYMPHOMA/LEUKEMIA MOLECULAR PROFILING, P. 2008. Stromal gene signatures in large-B-cell lymphomas. *N Engl J Med*, 359, 2313-23.

LIM, Y., BEANE-EBEL, J. E., TANAKA, Y., NING, B., HUSTED, C. R., HENDERSON, D. C., XIANG, Y., PARK, I. H., FARRER, L. A. & ZHANG, H. 2021. Exploration of alcohol use disorder-associated brain miRNA-mRNA regulatory networks. *Transl Psychiatry*, 11, 504.

LO SARDO, V., CHUBUKOV, P., FERGUSON, W., KUMAR, A., TENG, E. L., DURAN, M., ZHANG, L., COST, G., ENGLER, A. J., URNOV, F., TOPOL, E. J., TORKAMANI, A. & BALDWIN, K. K. 2018. Unveiling the Role of the Most Impactful Cardiovascular Risk Locus through Haplotype Editing. *Cell*, 175, 1796-1810 e20.

M. D'ORAZIO, M. D. Z. A. M. S. 2006. Statistical Matching: Theory and Practice. *John Wiley & Sons*

MOSER, V. A., WORKMAN, M. J., HURWITZ, S. J., LIPMAN, R. M., PIKE, C. J. & SVENDSEN, C. N. 2021. Microglial transcription profiles in mouse and human are driven by APOE4 and sex. *iScience*, 24, 103238.

PHUA, S. X., LIM, K. P. & GOH, W. W. 2022. Perspectives for better batch effect correction in mass-spectrometry-based proteomics. *Comput Struct Biotechnol J*, 20, 4369-4375.

PROCIDA, T., FRIEDRICH, T., JACK, A. P. M., PERITORE, M., BONISCH, C., EBERL, H. C., DAUS, N., KLETENKOV, K., NIST, A., STIEWE, T., BORGGREFE, T., MANN, M., BARTKUHN, M. & HAKE, S. B. 2021. JAZF1, A Novel p400/TIP60/NuA4 Complex Member, Regulates H2A.Z Acetylation at Regulatory Regions. *Int J Mol Sci*, 22.

RASNIC, R., BRANDES, N., ZUK, O. & LINIAL, M. 2019. Substantial batch effects in TCGA exome sequences undermine pan-cancer analysis of germline variants. *BMC Cancer*, 19, 783.

RITCHIE, M. E., PHIPSON, B., WU, D., HU, Y., LAW, C. W., SHI, W. & SMYTH, G. K. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res*, 43, e47.

SPRANG, M., ANDRADE-NAVARRO, M. A. & FONTAINE, J. F. 2022. Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality. *BMC Bioinformatics*, 23, 279.

TUNG, P. Y., BLISCHAK, J. D., HSIAO, C. J., KNOWLES, D. A., BURNETT, J. E., PRITCHARD, J. K. & GILAD, Y. 2017. Batch effects and the effective design of single-cell gene expression studies. *Sci Rep*, 7, 39921.

WIJETUNGA, N. A., PASCUAL, M., TOZOUR, J., DELAHAYE, F., ALANI, M., ADEYEYE, M., WOLKOFF, A. W., VERMA, A. & GREALLY, J. M. 2017. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets. *Oncogene*, 36, 2030-2044.

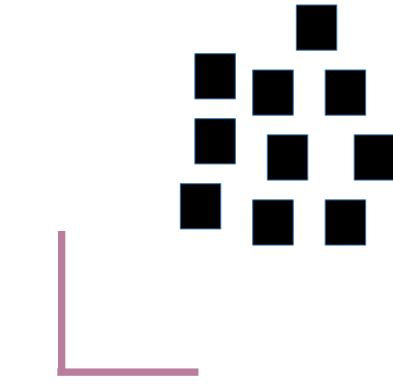
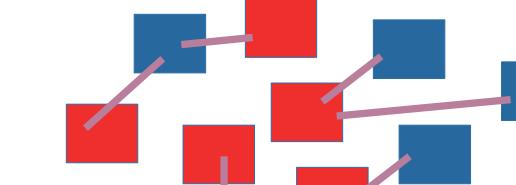
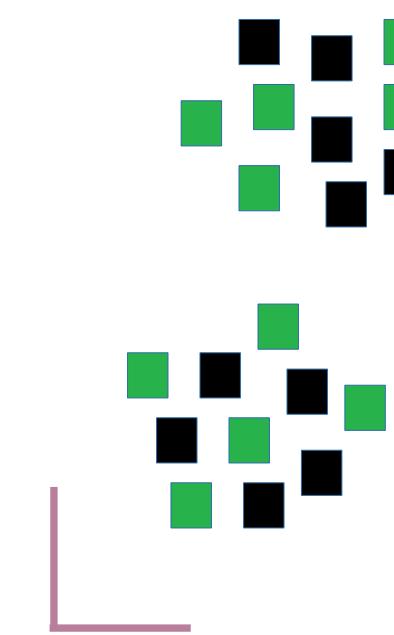
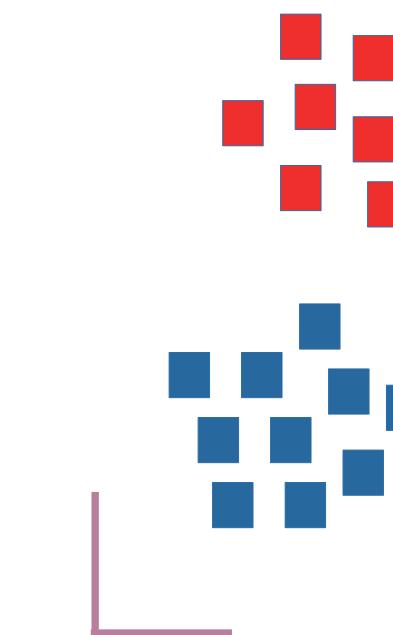
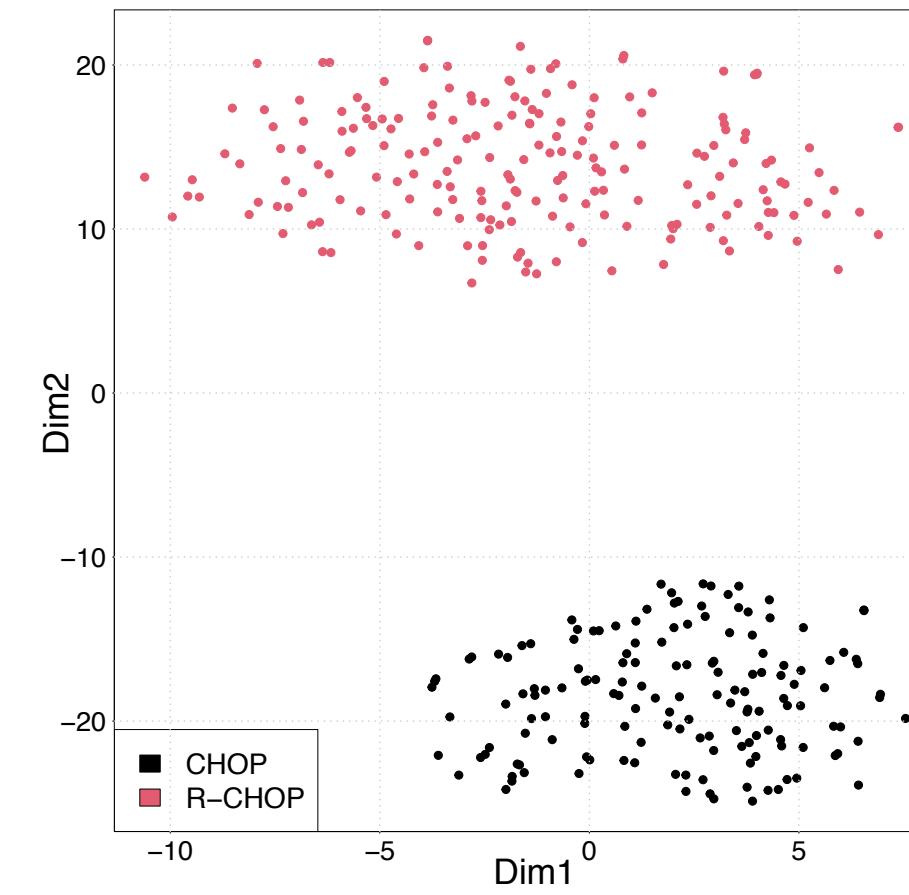
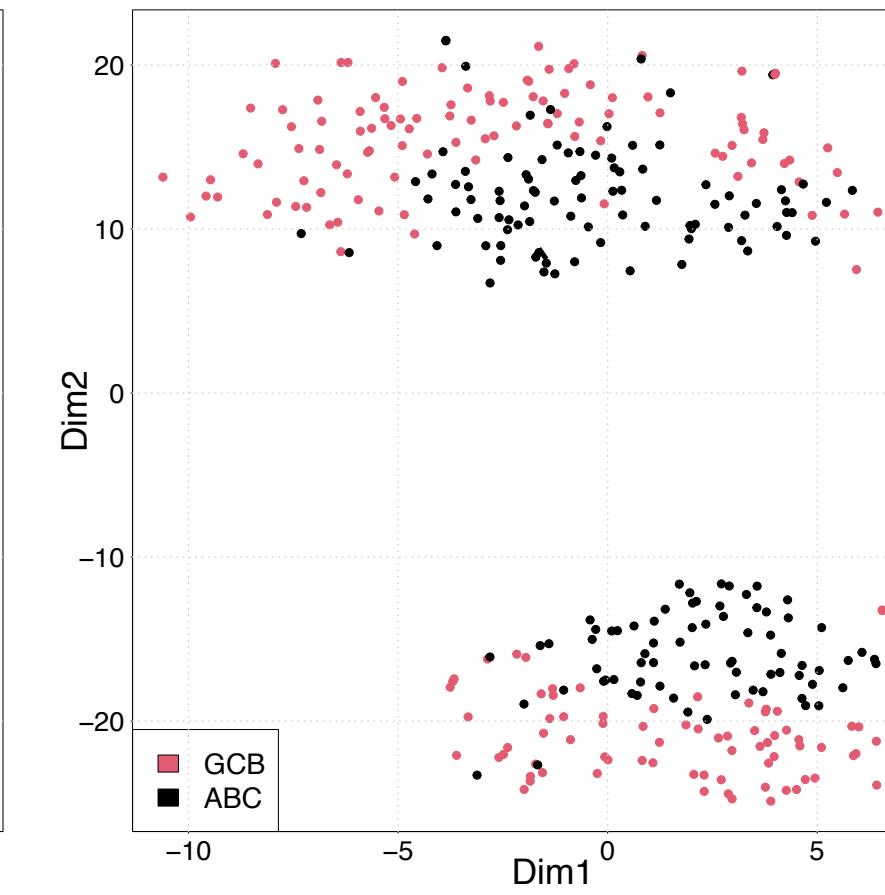
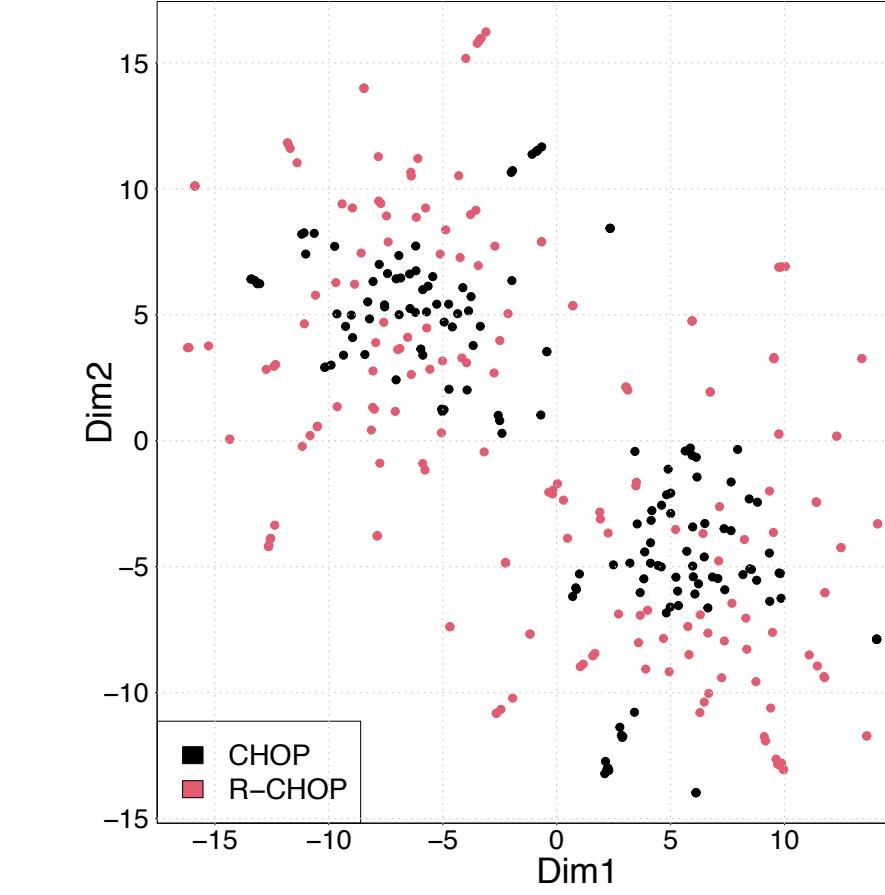
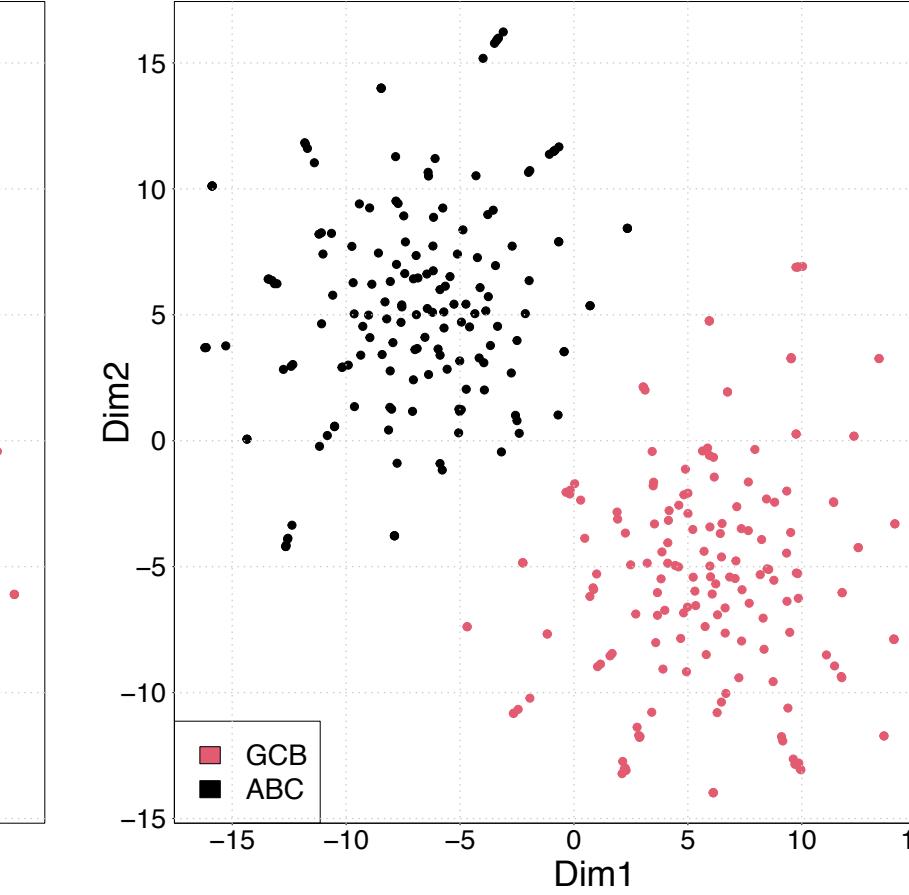
ZUBIZARRETA, J. R., RICARDO D. PAREDES, AND PAUL R. ROSENBAUM 2014. Matching for Balance, Pairing for Heterogeneity in an Observational Study of the Effectiveness of for-Profit and Not-for-Profit High Schools in Chile. *The Annals of Applied Statistics* 8 (1): 204–31.

GIULIANI, A. 2017. The application of principal component analysis to drug discovery and biomedical data. *Drug Discov Today*, 22, 1069-1076.

JOLLIFFE, I. T. & CADIMA, J. 2016. Principal component analysis: a review and recent developments. *Philos Trans A Math Phys Eng Sci*, 374, 20150202.

ABatch 1
Batch 2Group 1
Group 2

bioRxiv preprint doi: <https://doi.org/10.1101/2024.04.20.591524>; this version posted May 2, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

**B** $k=1$ **C**Batch 1
Batch 2Group 1
Group 2**D****E****F****G****Figure 1**

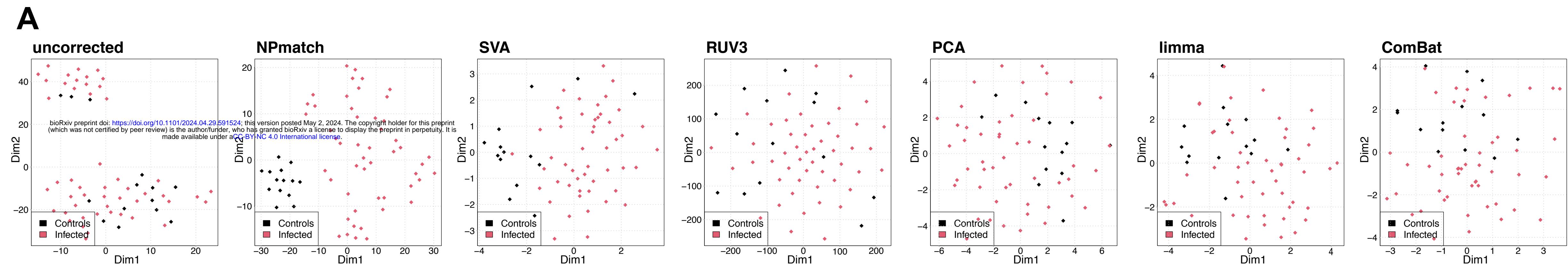
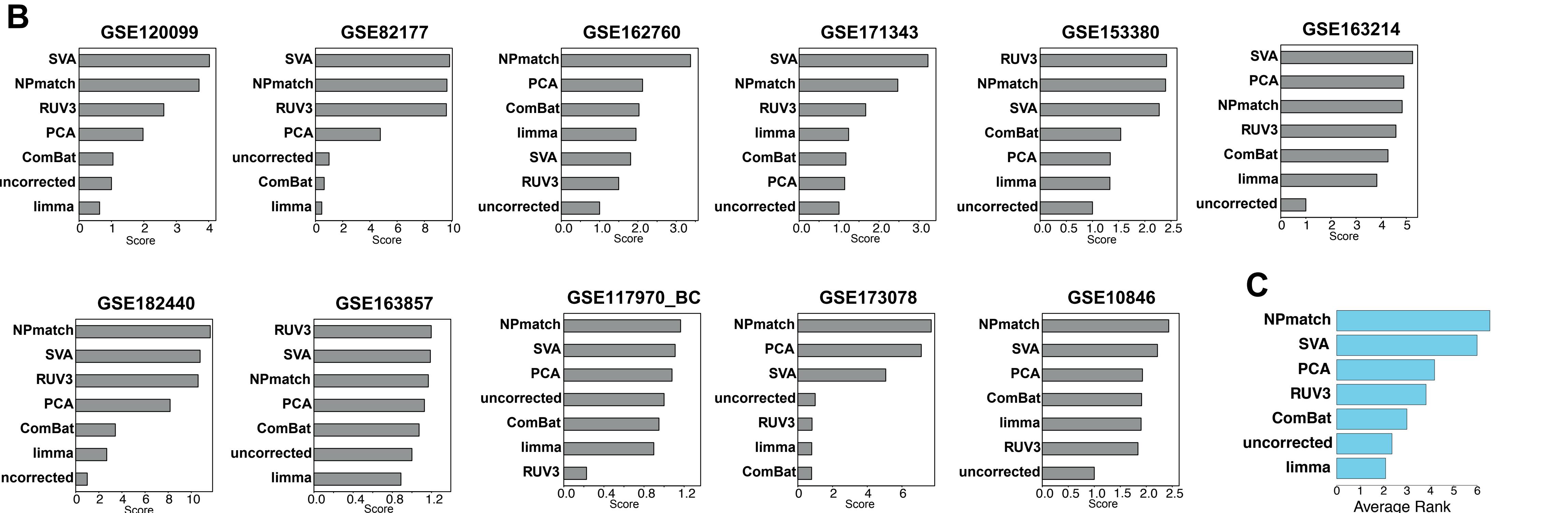


Figure 2