

1 CCR7⁺ DC Define a Type 17 Module in Psoriasis

2

3 Yang SUN^{1,6}, Fangzhou LOU^{1,6}, Xiaojie CAI¹, Zhikai WANG¹, Xiuli YANG¹, Libo
4 SUN¹, Zhouwei WU², Zhaoyuan LIU³, Yu-Ling SHI⁴, Florent GINHOUX^{1,3,5}, and
5 Honglin WANG^{1,*}

6 ¹Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai
7 Jiao Tong University School of Medicine, Shanghai 201620, China

8 ²Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University
9 School of Medicine, Shanghai 200080, China

10 ³Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine,
11 Shanghai 200025, China

12 ⁴Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School
13 of Medicine, Shanghai 200443, China

14 ⁵Institut Gustave Roussy, Villejuif 94805, France

15 ⁶These authors contributed equally.

16 ^{*}Correspondence to:

17

18 **Honglin WANG, Ph.D.**

19 Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai
20 Jiao Tong University School of Medicine, Shanghai 201620, China

21 **E-mail:** honglin.wang@sjtu.edu.cn

22

1 **HIGHLIGHTS**

2

3 • *IL4I1⁺CD200⁺CCR7⁺* DC are dominant IL-23 producers in psoriasis and its mouse
4 model.

5 • Psoriatic CCR7⁺ DC likely arise from cDC2.

6 • CD161 marks all IL-17-producing T cells in psoriatic skin.

7 • IL-23a overexpression in CCR7⁺ DC elicits an $\alpha\beta$ T cell-driven mouse model of
8 psoriasis and arthritis.

9 • CCR7⁺ DC spatially define a type 17 module in psoriatic epidermis.

10

1 **ABSTRACT**

2

3 Interleukin (IL)-23 is the master pathogenic cytokine in psoriasis and neutralization of
4 IL-23 alleviates psoriasis. Psoriasis relapses after the withdrawal of IL-23 antibodies, and
5 the persistence of IL-23-producing cells probably contributes to such recurrence.
6 However, the cellular source of IL-23 was unclear, which hinders the development of
7 targeted therapies focusing on modulating IL-23 expression aimed at resolving relapse.
8 Here, we showed that *IL4II⁺CD200⁺CCR7⁺* dendritic cells (CCR7⁺ DC) dominantly
9 produced IL-23 by concomitantly expressing the IL-23A and IL-12B subunits in human
10 psoriatic skin. Deletion of CCR7⁺ DC completely abrogated IL-23 production in a mouse
11 model of psoriasis and enforced expression of IL-23a in CCR7⁺ DC elicited not only $\alpha\beta$ T
12 cell-driven psoriasis-like skin disease, but also arthritis. CCR7⁺ DC co-localized with
13 CD161⁺ IL-17-producing T cells and KRT17⁺ keratinocytes, which were located in the
14 outermost layers of psoriatic epidermis and strongly exhibited IL-17 downstream
15 signatures. Based on these data, we identified CCR7⁺ DC as the source of IL-23 in
16 psoriasis, which paves the way for the design of therapies focused on manipulating IL-23
17 production that may resolve the relapse of chronic inflammatory disorders like psoriasis.

18

1 INTRODUCTION

2

3 Psoriasis is a chronic and recurrent immune-mediated skin disorder affecting 125 million
4 people globally(Armstrong and Read, 2020). It manifests as erythematous skin plaques
5 covered with white scales, which impact the quality of life of patients both physically and
6 psychologically(Griffiths and Barker, 2007). Although neutralization of pro-inflammatory
7 cytokines, including IL-17A and IL-23, alleviates psoriasis symptoms, many patients are
8 unresponsive or respond only partially to such therapies. In addition, responsive patients
9 face the risk of drug resistance, or recurrence following the discontinuation of biologic
10 agents(Amschler et al., 2020; Bito et al., 2014; Galluzzo et al., 2018; Masson Regnault et
11 al., 2022), the latter being a key challenge in psoriasis therapy(Puig et al., 2022).

12

13 Interleukin (IL)-17-producing CD4⁺ T helper 17 (Th17) cells were initially identified as
14 crucial players in psoriasis-associated-immune circuits. Later, CD8⁺ T cells were found to
15 contain the T cytotoxic 17 (Tc17) population, giving rise to *in situ* IL-17
16 production(Kryczek et al., 2008; Lowes et al., 2008; Ortega et al., 2009). Recent studies
17 revealed key roles of CD8⁺ tissue-resident memory T (T_{RM}) cells in the epidermis as
18 sources of IL-17 in inflamed psoriatic skin, and as rapid responders in recall responses in
19 resolved psoriasis(Cheuk et al., 2017; Cheuk et al., 2014). These T_{RM} cells are considered
20 to be the immediate cause of the relapse of psoriasis(Conrad et al., 2007). While IL-17 is
21 produced mainly by $\alpha\beta$ T cells in human psoriatic skin, psoriasis-like mouse models are
22 mostly driven by $\gamma\delta$ T cell-derived IL-17(Cai et al., 2011; Mabuchi et al., 2011). This
23 reflects distinct differences in the immunopathological principles in human psoriasis
24 versus mouse models, which hinders the effective evaluation of drug candidates aimed at
25 preventing psoriasis recurrence.

26

27 As subpopulations of the dendritic cell (DC) population, both plasmacytoid DCs (pDC)
28 and conventional DCs (cDC), are considered drivers of psoriasis. The type 1
29 IFN-producing pDC are crucial for the initiation of psoriasis(Nestle et al., 2005), while
30 the cDC secrete IL-23 as a third signal that induces polarization toward a type 17 T cell
31 response in the disease(Wohn et al., 2013). Specific targeting of IL-23 in psoriasis has

1 been demonstrated to effectively prolong the time to relapse, which further emphasizes
2 the key role of IL-23 in the recurrence and maintenance of psoriasis, and highlights
3 manipulation of IL-23 production as a potential therapeutic strategy(Masson Regnault et
4 al., 2022). Although IL-23 in psoriasis-like mouse skin is reported to be produced by
5 CD301b⁺ cDC2, the counterpart of these DCs in human skin as well as the exact cellular
6 source of IL-23 in psoriasis remain elusive(Guttman-Yassky et al., 2011; Hansel et al.,
7 2011; Kim et al., 2018; Nakamizo et al., 2021; Whitley et al., 2022). Thus, identification
8 of the IL-23 producers in psoriasis is a critical step for developing novel therapeutic
9 strategies aimed at resolving relapse.

10

11 Here, we showed that *IL4II⁺CD200⁺CCR7⁺* DC (CCR7⁺ DC), but not other myeloid cells,
12 produced IL-23 by concomitantly expressing the IL-23A and IL-12B subunits, both of
13 which are required to form the intact IL-23 for extracellular secretion, in psoriasis.
14 Furthermore, we identified CCR7⁺ DC as the major source of IL-23 in the skin in the
15 imiquimod (IMQ)-induced psoriasis-like mouse model. Importantly, *Il4i1⁺* cell-specific
16 overexpression of IL-23a elicited an $\alpha\beta$ T cell-driven psoriasis-like mouse model, which
17 also developed psoriatic arthritis-like symptoms, with lesions that transcriptionally
18 mimicked human psoriasis. In human psoriatic skin, IL-23-producing CCR7⁺ DC
19 localized spatially with IL-17-producing CD161⁺ T cells and the IL-17-responsive
20 KRT17⁺ keratinocyte subpopulation, defining a type 17 module that can be harnessed for
21 the discovery of drug targets and rational design of therapeutic strategies for psoriasis.

22

1 **RESULTS**

2

3 **Psoriatic keratinocytes exhibit a reconstructed differentiation trajectory**

4 To identify immune and non-immune cells that might be involved in the development of
5 psoriasis, we generated transcriptomes of individual epidermis and dermis cells obtained
6 from six psoriasis patients and four healthy donors using the 10× Genomics platform
7 (**Figures S1A and S1B**). After the epidermis was dissociated from the dermis by
8 enzymatic digestion, live epidermal cells and live CD45⁺ dermal leukocytes were sorted
9 from each sample using fluorescence activated cell sorting (FACS) and subjected to
10 3'-barcoded scRNA-seq to generate unique molecular identifier (UMI) counts matrixes
11 (**Figures S1C and S1D**). After quality control and doublet exclusion, 31,750 epidermal
12 cells and 42,054 dermal leukocytes from the 20 samples were integrated and clustered
13 jointly. We performed uniform manifold approximation and projection (UMAP)
14 dimensional reduction and partitioned the cells according to their respective marker genes
15 (**Figures S1D and S1E**)(Becht et al., 2018). We identified keratinocytes, T cells, myeloid
16 cells, mast cells, pDC and B cells in our data (**Figures S1D and S1E**).

17

18 To characterize non-immune cells in psoriatic epidermis, we extracted keratinocytes from
19 the integrated data of all 10 epidermal samples for UMAP dimensional reduction and
20 named the sub-clusters according to their hallmark genes (**Figures S2A and S2B**).
21 Comparison of the interfollicular keratinocyte sub-clusters of psoriatic epidermis to those
22 of healthy epidermis showed that: (1) *KRT14* and *KRT5* were highly upregulated not only
23 in basal keratinocyte sub-clusters (*KRT14*⁺_ASS1⁺ and *KRT14*⁺_KRT15^{hi}), but also in
24 suprabasal keratinocyte sub-clusters of psoriatic epidermis; (2) spinous keratinocytes
25 (*KRT10*⁺_KRT5^{hi} and *KRT10*⁺_KRT2⁺) normally express *KRT10*, *KRT1* and *KRT2*,
26 while these genes were downregulated in psoriatic lesions; (3) Expression of *KRT6*,
27 *KRT16* and *KRT17*, which were shown to be induced by T cell-derived cytokines

1 including IFN- γ , IL-17 and IL-22(Yang et al., 2017; Zhang et al., 2019), was higher in
2 psoriatic keratinocytes than in normal controls, with upregulated *KRT17* specifically
3 detected in *KRT17*⁺ keratinocytes (KRT17⁺) and granular keratinocytes (FLG⁺) of
4 psoriatic epidermis; and (4) psoriatic keratinocytes upregulated IL-17A-downstream
5 genes including *S100A8*, *S100A9*, *SERPINB3* and *SERPINB4*, and IFN- γ -downstream
6 genes including *ISG15*, *IFITM1*, *IFI6*, *IFITM3* and *IFI27*, in comparison to healthy
7 keratinocytes (**Figures S2B** and **S2C**). Employing a pseudo-time trajectory to potentially
8 understand the differentiation programs of healthy and psoriatic keratinocytes, we found
9 a delayed decline in *KRT14* expression, abnormal upregulation of *MKI67* and *KRT17* in
10 the end of the pseudo-time line, and the absence of the terminal differentiation marker
11 *LOR* in psoriatic interfollicular keratinocytes (**Figure S2D**). These data highlighted
12 dysregulated keratinocyte differentiation and proliferation in the different layers of
13 psoriatic epidermis, a process that is probably regulated by diverse inflammatory cues
14 from T cells.

15

16 **KRT17⁺ keratinocytes respond to IL-17 derived from CD161⁺ T cells**

17 To gain functional insights into the T cells driving such aberrant keratinocyte
18 differentiation, we investigated the T cell heterogeneity in psoriatic skin in comparison to
19 normal skin. *CD3*⁺ T cells were extracted from the integrated data, and further
20 sub-clustered (**Figures 1A** and **1B**). *KLRB1*⁺ (CD161⁺) T cells (KLRB1_T) and *CD8*⁺ T
21 cells (CD8_Cytotoxic_T and CD8_T_{RM}) expressed high levels of T_{RM} cell markers
22 including *CD69* and *ITGAE*, while *CD4*⁺*FOXP3*⁺ T_{reg} cells expressed *CCR7*, but not T_{RM}
23 cell markers (**Figure S3A**). Importantly, *IL17A*, *IL17F* and *IL26* expression was almost
24 completely confined to “KLRB1_T” cells (**Figure 1B**), which were characterized as
25 *KLRB1*⁺ $\alpha\beta$ T cells as these cells expressed *TRAC*, but not *TRDC* (**Figure S3A**). Notably,
26 increased percentages of *IL17A*⁺ T cells, *IL17F*⁺ T cells and *IL26*⁺ T cells were identified
27 among the *KLRB1*⁺ $\alpha\beta$ T cells of psoriatic skin compared to normal skin (**Figure 1C**).

1 Given that CD4⁺ Th17 cells and CD8⁺ Tc17 cells were reported to produce IL-17 in
2 psoriasis(Ho and Kupper, 2019), we calculated the ratios of *CD4⁺*, *CD8⁺*, *CD4⁺CD8⁺* and
3 *CD4⁺CD8⁻* among the *KLRB1⁺* αβT cells. The *KLRB1⁺* αβT cell population consisted of
4 approximately 20% *CD4⁺* T cells, 20% *CD8⁺* T cells and 60% *CD4⁺CD8⁻* T cells, and
5 these percentages did not differ between normal and psoriatic skin samples (**Figure S3B**).
6 Notably, a significantly higher proportion of the *CD4⁺CD8⁻* T cells expressing *IL17A*
7 among the *KLRB1⁺* αβT cell population was found in psoriatic skin compared to normal
8 skin (**Figure 1D**).

9

10 IL-17A induces changes in the expression of psoriasis-associated gene sets in
11 keratinocytes(Muromoto et al., 2016). To dissect the reactivity of keratinocytes to IL-17A,
12 we aggregated the interfollicular keratinocyte sub-clusters as basal (KRT14⁺_ASS1⁺ and
13 KRT14⁺_KRT15^{hi}), spinous (KRT10⁺_KRT5^{hi} and KRT10⁺_KRT2⁺), mitotic (PTTG1^{hi}
14 and PCNA^{hi}) and KRT17 (KRT17⁺). We then compared these keratinocyte
15 sub-populations using an IL-17A-downstream signature gene set(Muromoto et al., 2016).
16 KRT17 showed enrichment in IL-17A signaling compared to basal, mitotic, and spinous
17 keratinocytes (**Figure 1E**). We also performed spatial transcriptomic analysis on psoriatic
18 skin sections to visualize genes involved in IL-17 responses (**Figure S1A**). In accordance
19 with the gene set enrichment analysis (GSEA), spatial plotting of the IL-17A-downstream
20 signatures showed that *SERPINB4* and *DEFB4A* co-localized with *KRT17* in the
21 outermost layers of psoriatic epidermis (**Figures 1F** and **S4A**). However, neither spatial
22 plotting nor immunofluorescence staining showed any preferential co-localization of
23 IL17RA with KRT17⁺ keratinocytes (**Figures S4A-S4C**). We hypothesized that in
24 addition to expressing IL17RA, KRT17⁺ keratinocyte induction also required additional
25 IL-17. Importantly, we found that *IL17A⁺* or *IL17F⁺* spots were intimately co-localized
26 with KRT17⁺ keratinocytes in psoriatic skin (**Figures 1G** and **S5**). *In situ* RNA
27 hybridization of *IL17A* combined with immunofluorescence staining of KRT17 further

1 confirmed the proximity of IL-17-producing T cells with KRT17⁺ keratinocytes (**Figure**
2 **1H**). Together, our data suggested that CD161⁺ $\alpha\beta$ T cell-derived IL-17 acts on adjacent
3 KRT17⁺ keratinocytes to promote and maintain auto-inflammation in psoriasis.

4

5 **CCR7⁺ DC are major IL-23 producers in psoriasis**

6 Human DCs and monocytes are highly heterogeneous in their origins and
7 functions(Anderson et al., 2021; Dress et al., 2020), and their contributions to psoriasis
8 pathophysiology remain to be elucidated, although cDC secrete IL-23 as a third signal
9 that induces polarization toward a type 17 T cell response that drives psoriatic plaque
10 formation in mice(Wohn et al., 2013). Based on our transcriptomic analysis, we detected
11 cDC1 (*CLEC9A*⁺*IRF8*⁺), cDC2 (*CLEC10A*⁺*CD1C*⁺), DC3 (*CD14*⁺*CD1C*⁺)(Nakamizo et
12 al., 2021), monocytes/macrophages (*CD14*⁺*C1QA*⁺), CCR7⁺ DC
13 (*CCR7*⁺*LAMP3*⁺*CD200*⁺*IL4II*⁺)(Maier et al., 2020), LC (*CD1A*⁺*CD207*⁺), pDC
14 (*JCHAIN*⁺*IRF7*⁺) and AXL⁺ DC (*AXL*⁺)(See et al., 2017) in psoriatic and healthy skin
15 (**Figures 2A and S6A**).

16

17 Gene expression analysis of DCs and monocytes in psoriatic skin revealed that CCR7⁺
18 DC expressed high levels of HLA genes, including *CD1B*, *CD1E*, *HLA-A*, *HLA-B*, and
19 *HLA-C*, and T cell co-stimulatory or co-inhibitory genes, including *CD40*, *CD80*, *CD86*,
20 *CD200*, *CD274*, *CD70* and *PDCD1LG2* (**Figure 2B**). These findings indicated that
21 CCR7⁺ DC express all the key molecules required to activate T cells in psoriatic skin.
22 Moreover, *IL12B* (encoding IL-12p40) and *IL23A* (encoding IL-23p19), which form the
23 intact IL-23 for extracellular secretion(Oppmann et al., 2000), were expressed at high
24 levels by CCR7⁺ DC, but not other types of DCs or monocytes, suggesting that CCR7⁺
25 DC are potent IL-23-producers and type 17 T cell response-inducers (**Figure 2C**).
26 Single-molecule *in situ* RNA hybridization of *IL23A* and *IL12B* as well as the CCR7⁺ DC
27 marker *CD200* in human psoriatic skin sections revealed a small fraction of *CD200*⁺ cells

1 expressing both *IL23A* and *IL12B* (**Figure 2D**). Flow cytometric analysis of psoriatic skin
2 showed that CD11C⁺ pan DC consisted of IL-12p40⁻IL-23p19⁻, IL-12p40⁻IL-23p19⁺, and
3 IL-12p40⁺IL-23p19⁺ populations (**Figures S6B** and **S6C**), with the IL-12p40⁺IL-23p19⁺
4 cells confined to the CD1B⁺CD200⁺CCR7⁺ DC population (**Figures S6B** and **2E**). Given
5 that IL-23p19 shows no biological activity without forming a heterodimer with
6 IL-12p40(Oppmann et al., 2000), our data suggested that IL-12p40, but not IL-23p19, is
7 the limiting factor for the production of biologically active IL-23 by DCs in psoriatic
8 skin.

9

10 We then studied the lineage of CCR7⁺ DC in psoriatic skin, as these cells were reported
11 to arise from both cDC1 and cDC2, and possibly DC3(Kvedaraite and Ginhoux, 2022).
12 We characterized cDC1, cDC2, DC3 and CCR7⁺ DC based on cDC1, cDC2 and DC3
13 scores determined according to the following formula: sum [gene values of (cDC1
14 markers, cDC2 markers, or DC3 markers) in an individual cell]/sum (22,438 annotated
15 gene values in the same cell). Our data suggested that CCR7⁺ DC in psoriatic skin were
16 similar to cDC2 at the transcriptional level (**Figure 2F**). Collectively, our results
17 indicated that CCR7⁺ DC likely arise from cDC2 and provide all the key signals required
18 to activate the T17 cell response in psoriasis.

19

20 **CCR7⁺ DC ablation disables IL-23 signaling in psoriasis-like mouse skin**

21 We next used the IL-23-dependent IMQ-induced mouse model of psoriasis to confirm
22 that CCR7⁺ DC is the primary source of competent IL-23(van der Fits et al., 2009). We
23 collected mouse skin samples treated with IMQ for 2 days or 5 days and untreated skin as
24 a control for scRNA-seq. After extraction of the myeloid cells, the integrated data were
25 sub-clustered in an unbiased manner and we named the cells according to their
26 countermarks (**Figures S7A** and **3A**). In accordance with the findings in human psoriatic
27 skin, CCR7⁺ DC, but not other types of DCs or monocytes, expressed both the *Il23a* and

1 *Il12b* transcripts (**Figure 3B**). Our similarity analysis suggested that CCR7⁺ DC
2 resembled cDC2 in both normal and IMQ-treated mouse skin (**Figure 3C**). Previous
3 studies demonstrated that *Mgl2*⁺ myeloid cell deletion abrogated IL-23 in psoriasis-like
4 skin inflammation(Kim et al., 2018; Whitley et al., 2022), while our data suggested that
5 skin *Mgl2*⁺ myeloid cells consisted of *Ear2*⁺ DC3 and *Apod*⁺ cDC2, with the latter cells
6 possibly giving rise to *Il4i1*⁺CCR7⁺ DC that produced IL-23 (**Figures S7A, 3C and 3D**).
7

8 To study IL-23 in a loss-of-CCR7⁺ DC setting, we generated *Il4i1*^{cre} mice and crossed
9 them with ROSA26iDTR mice (**Figure 3E**). Injection of the *Il4i1*^{cre} DTR mice with
10 diphtheria toxin (DT) resulted in the deletion of IL-23-producing CCR7⁺ DC, as
11 confirmed by both scRNA-seq and flow cytometric analysis
12 (CD45⁺Ly6G⁻CD11c⁺MHCII⁺CD64⁻CD326⁻XCR1⁺CD200⁺) of mouse skin treated with
13 IMQ for 3 days (**Figures 3F-3I** and **S7B**). Enzyme-linked immunosorbent assay (ELISA)
14 of the IL-23 heterodimer further confirmed that CCR7⁺ DC deletion abrogated IL-23
15 expression in IMQ-treated murine skin (**Figure 3J**). Thus, we demonstrated that CCR7⁺
16 DC are the source of IL-23 in the IMQ-induced mouse model of psoriasis, which is
17 consistent with the scenario in human psoriasis.
18

19 ***IL23a* overexpression in *Il4i1*⁺ cells elicits psoriasis-like skin inflammation**

20 To study CCR7⁺ DC in a gain-of-function setting, we crossed *Il4i1*^{cre} mice with
21 *CAG-LSL-IL23a* mice and overexpressed IL-23a in CCR7⁺ DC (**Figure 4A**). Importantly,
22 *Il4i1-Il23a*^{OE} mice developed scaly plaques on the hairless skin regions, including ears
23 and tails, at 12 weeks of age (**Figure 4B**). Histological examination of the skin lesions
24 showed epidermal hyperplasia (acanthosis) with loss of the granular layer in the
25 epidermis together with accumulation of microabscesses on the surface of the thickened
26 epidermis and massive cellular infiltrates in the dermis (**Figure 4C**).
27 Immunohistochemical analysis of Krt6, Krt5, Krt1/10, Ki67 and filaggrin further

1 confirmed the hyperproliferation and abnormal differentiation of keratinocytes in
2 *Il4i1-Il23a*^{OE} mice (**Figure 4D**). We also crossed *Itgax*^{cre} mice with *CAG-LSL-IL23a* mice
3 to achieve IL-23a overexpression in CD11c⁺ pan DC. The resulting *Itgax-Il23a*^{OE} mice
4 developed systemic inflammatory phenotypes, although their psoriasis-like skin
5 inflammatory features, especially acanthosis, were not as prominent as those of the
6 *Il4i1-Il23a*^{OE} mice (**Figure S8A**). Thus, we showed that *Il4i1-Il23a*^{OE} mice recapitulate
7 key pathological characteristics of human psoriasis in a cell-type-restricted fashion.

8

9 Psoriasis mouse models, including IMQ-induced and recombinant IL-23-mediated skin
10 inflammation, differ from human psoriasis in that IL-17 is produced mainly by $\gamma\delta$ T cells
11 rather than $\alpha\beta$ T cells in these models(Cai et al., 2011; Mabuchi et al., 2011). Notably,
12 *Il4i1-Il23a*^{OE} mouse skin contained significantly more $\alpha\beta$ T cells than *Itgax-Il23a*^{OE}
13 mouse skin (**Figure 4E**), and IL-17a⁺ T cells (T17) were mostly $\alpha\beta$ T cells in the skin
14 lesions of *Il4i1-Il23a*^{OE} mice (**Figure S8B**). Moreover, transcriptomic profiling of
15 *LSL-IL23a*, *Itgax-Il23a*^{OE} and *Il4i1-Il23a*^{OE} mouse skin revealed human psoriasis-like
16 gene alterations in *Il4i1-Il23a*^{OE} mice, with the differentially expressed genes (DEGs)
17 enriched in epidermis development (*Krt6a*, *Krt6b*, *Krt16* and *Krt17*), $\alpha\beta$ T cell activation
18 (*Trac*, *Trbc1*, *Trbc2*, *Cd28* and *Gpr18*), and immune response (*Il12b*, *Il17a*, *Il17f* and *Il22*,
19 **Figure 4F**). The DEGs in *Il4i1-Il23a*^{OE} mouse skin resembled those in human psoriatic
20 skin when analyzed using a linear regression model, which showed a stronger coefficient
21 of determination (R) compared to those in IMQ-treated or *Itgax-Il23a*^{OE} mouse skin
22 (**Figure 4G**). Collectively, our findings demonstrated that IL-23a overexpression in *Il4i1*⁺
23 cells leads to a psoriasis-like mouse model characterized by $\alpha\beta$ T cell activation, thus
24 highlighting the central role of CCR7⁺ DC in the cellular and molecular program that
25 drives psoriasis.

26

27 ***Il4i1-Il23a*^{OE} mice develop psoriatic arthritis-like symptoms**

1 Up to 30% of psoriasis patients develop psoriatic arthritis (PsA), which is diagnosed
2 according to inflammatory musculoskeletal features in the joints, entheses or spine in the
3 presence of skin and/or nail psoriasis(FitzGerald et al., 2021). We observed digit swelling
4 (dactylitis) and paw swelling in *Il4i1-Il23a^{OE}* mice after 12 weeks of age, and histological
5 examination of the paws confirmed transformation of the synovial lining into hyperplastic
6 pannus in the joints (**Figures 5A and 5B**). Bulk RNA-seq of the metacarpal and
7 phalangeal bones of the fore paws confirmed the presence of bone resorption, as revealed
8 by the increased expression of *Oscar*, *Fcgr4*, *Dcstamp* and *Adam8*. Furthermore, key
9 drivers of bone resorption including *Tnfsf11* (RANKL), *Ocstamp*, *Tyobp*, *Itgb3*, *Slc9b2*
10 were significantly enriched in the bones and joints of *Il4i1-Il23a^{OE}* mice, indicating that
11 this effect was due to osteoclast activation (**Figure 5C**). The data further revealed
12 neutrophil infiltration and IFN- γ -induced signaling in the bones and joints of
13 *Il4i1-Il23a^{OE}* mice, suggesting a resemblance to the immunophenotype involving mixed
14 type 1 and type 17 T cell responses in human PsA (**Figure 5C**)(FitzGerald et al., 2021).
15 We then visualized the structural damages of hind paws from 25~29-week-old
16 *Il4i1-Il23a^{OE}* as compared to *LSL-Il23a* control mice using microCT (**Figure 5D**).
17 Scanning of the intersecting surfaces of the metatarsal bones showed decreased cortical
18 bone thickness (Ct.Th), cortical bone area (Ct.Ar) and bone volume to total volume ratio
19 (BV/TV) in *Il4i1-Il23a^{OE}* mice (**Figures 5E and 5F**). These data clearly demonstrated
20 bone destruction of the metatarsophalangeal joint, which is the most affected site in PsA
21 patients(Wang et al., 2023). Thus, *Il4i1-Il23a^{OE}* mice were validated as a model of PsA,
22 with pathological features including T cell activation, osteoclast differentiation, and bone
23 resorption in the bones and joints.

24

25 **Spatial crosstalk between CCR7⁺ DC, CD161⁺ T cells and KRT17⁺ keratinocytes in**
26 **psoriasis**

27 Having demonstrated that CD161⁺ T cell-derived IL-17 regulated KRT17⁺ keratinocytes,

1 and CCR7⁺ DC-derived IL-23 is a prerequisite of IL-17 production, we next explored the
2 relationships between these three cell types and visualized CD161⁺ T cells (*KLRB1*⁺) and
3 CCR7⁺ DC (*LAMP3*⁺) in psoriatic skin sections. Importantly, in psoriatic epidermis,
4 CCR7⁺ DC were co-localized with CD161⁺ T cells (**Figures 6A and S9**).
5 Immunofluorescence staining of LAMP3, CD161 and KRT17 confirmed the spatial
6 transcriptome data (**Figure 6B**), in that CCR7⁺ DC, CD161⁺ T cells, and KRT17⁺
7 keratinocytes form a spatial cellular module that sustains the IL-23-T17 inflammatory
8 axis in psoriasis. To further clarify the mechanism underlying the formation of such a
9 module, we studied cell chemotaxis in psoriatic skin by predicting cell-cell
10 ligand-receptor interactions using CellPhoneDB(Efremova et al., 2020). Importantly,
11 epidermal CCR7⁺ DC expressed *CCL19*, which is required to recruit dermal CCR7⁺ DC,
12 and *CXCL16*, which attracts dermal and epidermal CD161⁺ T cells (**Figures 6C and 6D**).
13 Taken together, our data supported a working model in which CCR7⁺ DC first reach the
14 epidermis to initiate the IL-23-dominated inflammatory program that involves the
15 subsequent recruitment of CD161⁺ T cells and the production of IL-17.

16

1 **DISCUSSION**

2

3 In this study, we reveal the immune landscapes of the epidermis and dermis in psoriasis
4 compared with homeostasis. We show that the hyperproliferative keratinocytes in
5 psoriasis, which undergo a disordered differentiation program, are characterized by
6 ectopic overexpression of KRT17 in their most differentiated state. Localized in the
7 outermost layers of psoriatic epidermis, KRT17⁺ keratinocytes express high levels of
8 IL-17-downstream gene signatures, which is attributed to their spatial proximity to
9 IL-17-producing CD161⁺ T cells. In psoriatic skin, CCR7⁺ DC, which are likely
10 differentiated from cDC2, enter the epidermis and recruit CD161⁺ T cells. Importantly,
11 CCR7⁺ DC readily provide first, second and third signals (IL-23) that activate CD161⁺ T
12 cells and induce the production of IL-17. The intimate co-localization of CCR7⁺ DC,
13 IL-17-producing CD161⁺ T cells, and KRT17⁺ keratinocytes therefore indicates a type 17
14 spatial module in psoriatic epidermis, suggesting pathogenic roles of cells within the
15 module, as well as the therapeutic potential of harnessing this module in psoriasis.

16

17 The cellular source of IL-23 in psoriatic skin is controversial. Several studies showed that
18 monocytes/macrophages or monocyte-derived DCs express IL-23A(Cai et al., 2011;
19 Fuentes-Duculan et al., 2010; Hansel et al., 2011), while more recently, Nakamizo et al.
20 reported that CD14⁺ DC3 express a high level of IL-23A in human psoriatic
21 skin(Nakamizo et al., 2021). Studies on mouse models of psoriasis suggested that Mgl2
22 (CD301b)⁺ cDC2 were the major source of IL-23(Kim et al., 2018; Whitley et al., 2022);
23 however, there is no human homolog of the *Mgl2* gene. Due to the enigma related to the
24 source of IL-23, the upstream regulatory mechanisms of IL-23 production are ill-defined,
25 thus hindering the development of targeted therapies focusing on modulating IL-23
26 expression. In this study, we showed that IL-23A is indeed expressed by many monocyte
27 and DC populations with CD14⁺ DC3 harboring the maximum transcripts, while IL-12B

1 is dominantly expressed by CCR7⁺ DC in human psoriatic skin. Given that IL-23A
2 cannot be secreted and thus, is not biologically active without binding to
3 IL-12B(Oppmann et al., 2000), our findings demonstrate that the cellular specificity of
4 IL-23 production is determined by IL-12B rather than IL-23A, and that CCR7⁺ DC are
5 the main producer of IL-23 in psoriasis.

6

7 Here, we employed scRNA-seq to confirm that CCR7⁺ DC predominantly produce IL-23
8 in the IMQ-induced mouse model of psoriasis. Notably, *Mgl2*⁺ DC consist of *Ear2*⁺ DC3
9 and *Apod*⁺ cDC2, and the latter possibly differentiate into CCR7⁺ DC in psoriasis-like
10 skin lesions. Because CCR7⁺ DC specifically express high levels of *Il4i1*, we generated
11 *Il4i1*^{cre} mice and crossed them with both ROSA26iDTR and *LSL-IL23a* mouse strains to
12 study IL-23 production in both loss and gain-of-function settings. DT-induced deletion of
13 CCR7⁺ DC in *Il4i1*^{cre} DTR mice abrogated IMQ-induced IL-23 expression, implicating
14 CCR7⁺ DC as the main source of IL-23 in psoriasis-like mouse skin. On the other hand,
15 IL-23a overexpression in *Il4i1*⁺ cells recapitulates key features of human psoriasis
16 including $\alpha\beta$ T cell-dominated IL-17 production and the propensity to develop PsA. The
17 observation that IL-23a overexpression in CD11c⁺ pan DC does not drive psoriasis-like
18 skin inflammation reveals not only a unique pathogenic role of CCR7⁺ DC, but also
19 offers a valuable mouse model suitable for the investigation of IL-23 generation
20 mechanisms. In addition, this model provides opportunities for the design of new
21 therapies targeting IL-23-producing cells to treat a broad spectrum of auto-inflammatory
22 diseases. Thus, our model represents the first step in developing the next generation of
23 targeted drugs for the purpose of achieving longer term disease remission.

24

25 Other than producing IL-23, psoriatic CCR7⁺ DC express high levels of antigen
26 presentation molecules, including *HLA-A*, *HLA-B*, *HLA-C*, *CD1B*, and *CD1E*, and
27 co-stimulatory signals, including *CD80*, *CD86*, and *CD40*. These data suggest the strong

1 antigen-presenting capacity of CCR7⁺ DC and their central role in maintaining the T17
2 cell response, which is further evidenced by the co-localization of CCR7⁺ DC, CD161⁺ T
3 cells and KRT17⁺ keratinocytes. This “type 17 module” concept and the fact that
4 psoriasis is strongly associated with HLA polymorphisms highlight the importance of
5 further investigation of antigens presented by CCR7⁺ DC and then recognized by CD161⁺
6 T cells, which may elucidate the exact cause of auto-inflammation in psoriasis and the
7 mechanisms of relapse.

8

1 **ACKNOWLEDGMENTS**

2 This work was supported by the National Natural Science Foundation of China Original
3 Exploration Program (82050009), the National Key Research and Development Program
4 of the Ministry of Science and Technology (2020YFA0112900), the National Science
5 Foundation of China (81930088, 82173417 [Y.S.], 82203914 [F.L.] and 82373470 [F.L.]),
6 Shanghai Scientific and Technological Innovation Action Plan (22140903100,
7 22QA1407600 [F.L.] and 23ZR1480700 [F.L.]), SJTU Trans-med Awards Research
8 (20210102), and Innovative Research Team of High-Level Local Universities in Shanghai
9 [by H.W. if not otherwise noted].

10

11 **AUTHOR CONTRIBUTIONS**

12 Conceptualization, H.W., Y.S. and F.L.; Investigation, Y.S., F.L., X.C., Z.W., X.Y., L.S.
13 and Z.L.; Data curation, Y.S.; Writing – original draft, F.L.; Writing – review & editing,
14 H.W., F.G., F.L. and Y.S.; Funding acquisition, H.W., Y.S. and F.L.; Resources, Z.W.
15 and Y-L.S.; Supervision, H.W.; Project administration, H.W.

16

17 **DECLARATION OF INTERESTS**

18 The authors declare no competing interests.

19

20 **FIGURE LEGENDS**

21

22 **Figure 1. Altered T cell sub-clusters and type 17 biased response in psoriatic skin.**

23 **(A)** UMAP dimensional reduction and sub-clustering of T cells from psoriatic epidermis
24 samples (n = 6), psoriatic dermis samples (n = 6), healthy epidermis samples (n = 4) and
25 healthy dermis samples (n = 4) and split by sample types.

26 **(B)** Heatmap of signature genes in T cell sub-clusters in (A).

27 **(C)** Percentages of *IL17A*⁺, *IL17F*⁺ and *IL26*⁺ T cells in *KLRB1*⁺ T cells in psoriatic

1 samples and healthy controls. Data represent the 25th to 75th percentiles (whiskers
2 showing min to max). *P*-values were determined by two-tailed unpaired *t*-test. ns, not
3 significant.

4 (D) Percentages of *CD4⁺IL17A⁺*, *CD8⁺IL17A⁺*, *CD4⁺CD8⁺IL17A⁺* and
5 *CD4⁺CD8⁺IL17A⁺* T cells in *KLRB1⁺* T cells in psoriatic samples and healthy controls.
6 Data represent the 25th to 75th percentiles (whiskers showing min to max). *P*-values were
7 determined by two-tailed unpaired *t*-test. ns, not significant.

8 (E) GSEA of IL-17A-downstream gene signatures in keratinocyte sub-clusters of
9 psoriatic epidermis. Normalized enrichment score (NES) values were calculated from
10 sub-clusters on the vertical axis versus sub-clusters on the horizontal axis. The numbers
11 represent the nominal (NOM) *P*-values.

12 (F) Spatial feature-plots of indicated genes in psoriatic skin section from a patient.

13 (G) Spatial feature-plots of *IL17A* and *IL17F* in psoriatic skin section from a patient and
14 merged with *KRT17⁺* (*KRT17* expression > 30) spots.

15 (H) Representative image of RNAscope detection of *IL17A* combined with
16 immunofluorescence of KRT17 in psoriatic skin (n = 3). Scale bar, 25 μ m. Data are
17 representative of two independent experiments.

18

19 **Figure 2. CCR7⁺ DC dominantly produce IL-23 in psoriatic skin.**

20 (A) UMAP dimensional reduction and sub-clustering of DCs and monocytes from
21 psoriatic epidermis samples (n = 6), psoriatic dermis samples (n = 6), healthy epidermis
22 samples (n = 4) and healthy dermis samples (n = 4) and split by sample types.

23 (B) Heatmaps of genes associated with the indicated functions in different DC and
24 monocyte subtypes of psoriatic skin.

25 (C) Cell percentages expressing *IL12A*, *IL12B* and *IL23A* and average expression of these
26 genes in different DC and monocyte subtypes of psoriatic skin.

27 (D) Representative image of RNAscope detection of *CD200*, *IL12B* and *IL23A* mRNAs in

1 psoriatic skin (n = 3). Scale bar, 25 μ m. Data are representative of three independent
2 experiments.

3 (E) Flow cytometry showing the percentages of CD1B $^{+}$ CD200 $^{+}$ cells in
4 IL-12p40 $^{+}$ IL-23p19 $^{+}$, IL-12p40 $^{-}$ IL-23p19 $^{+}$ and IL-12p40 $^{-}$ IL-23p19 $^{-}$ cells among
5 CD45 $^{+}$ CD11C $^{+}$ cells in psoriatic skin samples (n = 3). Data represent the mean \pm SEM.
6 Data are representative of three independent experiments.

7 (F) Three-dimensional scatter plots showing cDC1 scores, cDC2 scores and DC3 scores
8 of cDC1, cDC2, DC3 and CCR7 $^{+}$ DC in psoriatic skin. The scores were calculated as the
9 fraction of RNA in a cell belonging to genes in the list shown in Supplementary Table 1.

10

11 **Figure 3. CCR7 $^{+}$ DC ablation disables IL-23 signaling in psoriasis-like mouse skin.**

12 (A) UMAP dimensional reduction and sub-clustering of scRNA-seq data for sorted
13 CD45 $^{+}$ Ly6G $^{-}$ CD3 $^{-}$ CD19 $^{-}$ cells from mouse ears treated or not with IMQ for 2 days or 5
14 days.

15 (B) Feature-plots of *Il23a* and *Il12b* expression in (A).

16 (C) Three-dimensional scatter plots showing cDC1 scores, cDC2 scores and DC3 scores
17 of cDC1, cDC2, DC3 and CCR7 $^{+}$ DC from mouse ears treated or not with IMQ for 2
18 days. The scores are calculated as the fraction of RNA in a cell belonging to genes in the
19 list shown in Supplementary Table 1.

20 (D) Violin-plots of indicated genes in different myeloid cells from mouse ears treated
21 with IMQ for 2 days.

22 (E) The strategy to delete CCR7 $^{+}$ DC and schematic diagram of DT and IMQ treatment.

23 (F) UMAP dimensional reduction and sub-clustering of scRNA-seq data for ears from
24 IMQ-treated *Il4i1* cre DTR mice pre-injected with DT or not.

25 (G) Proportions of different cell types in CD45 $^{+}$ cells of ears from IMQ-treated
26 *Il4i1* cre DTR mice pre-injected with DT or not.

27 (H) Feature-plots of *Il23a* and *Il12b* expression in (F).

1 (I) Flow cytometry showing the percentages of CCR7⁺ DC in cDC2
2 (CD45⁺Ly6G⁻CD11c⁺MHCII⁺CD64⁻CD326⁻XCR1⁻) of ears from *Il4i1*^{cre}DTR mice
3 treated under the indicated conditions (n = 3~5). Data represent the 25th to 75th percentiles
4 (whiskers showing min to max). *P*-values were determined by one-way ANOVA. Data
5 are representative of two independent experiments.

6 (J) ELISA quantification of IL-23 in ears from *Il4i1*^{cre}DTR mice treated under the
7 indicated conditions (n = 3~5). Data represent the 25th to 75th percentiles (whiskers
8 showing min to max). *P*-values were determined by one-way ANOVA. Data are
9 representative of two independent experiments.

10

11 **Figure 4. *Il23a* overexpression in CCR7⁺ DC elicits psoriasis-like skin disease.**

12 (A) Strategy for developing *Il4i1*-*Il23a*^{OE} mice.

13 (B) Representative macroscopic views of skin lesions of 12-week-old *Il4i1*-*Il23a*^{OE} mice
14 (n = 5).

15 (C) Representative H&E images and quantification of acanthosis in 12-week-old
16 *Il4i1*-*Il23a*^{OE} mice (n = 6) and *LSL-Il23a* mice (n = 5). Scale bar, 50 μ m. Data represent
17 the 25th to 75th percentiles (whiskers showing min to max). *P*-values were determined by
18 two-tailed unpaired *t*-test.

19 (D) Representative immunofluorescence images of Krt6, Krt5, Krt1/10, Ki67 and
20 Filaggrin of ears from 12-week-old *LSL-Il23a* mice and *Il4i1*-*Il23a*^{OE} mice (n = 3). Scale
21 bar, 25 μ m.

22 (E) Flow cytometry showing the percentages of CD45⁺TCR β ⁺ cells in live cells of ears
23 from 12-week-old *LSL-Il23a* mice (n = 8), *Itgax-Il23a*^{OE} mice (n = 6) and *Il4i1*-*Il23a*^{OE}
24 mice (n = 6). Data represent the 25th to 75th percentiles (whiskers showing min to max).
25 *P*-values were determined by one-way ANOVA.

1 (F) Heatmap of selected genes from bulk RNA-seq data from the ears of 12-week-old
2 *LSL-Il23a* mice (n = 3), *Itgax-Il23a^{OE}* mice (n = 3) and *Il4i1-Il23a^{OE}* mice (n = 3). The
3 GO categories are indicated.

4 (G) Linear correlations between mouse transcriptional profiles (model versus control)
5 and human transcriptional profile (psoriasis versus healthy control). Genes identified as
6 DEGs ($|\log_{2}\text{FC}| \geq 1$ and $p < 1 \times 10^{-6}$) in the human dataset (GSE54456) were used (Li et
7 al., 2014), and mouse genes were joined by case-insensitive gene symbol matching. The
8 gene expression levels of *Il4i1-Il23a^{OE}* mice or *Itgax-Il23a^{OE}* mice versus *LSL-Il23a* mice
9 were from our data, and the gene expression levels of IMQ-treated C57BL/6J mice versus
10 control mice were from GSE86315 (Swindell et al., 2017).

11 Data (B-E) are representative of three independent experiments.

12

13 **Figure 5. *Il4i1-Il23a^{OE}* mice develop psoriatic arthritis-like symptoms.**

14 (A) Representative macroscopic views of the paws of 16-week-old *LSL-Il23a* mice (n = 5)
15 and *Il4i1-Il23a^{OE}* mice (n = 5).

16 (B) Representative H&E images of the hind paws from 16-week-old *LSL-Il23a* mice (n =
17 3) and *Il4i1-Il23a^{OE}* mice (n = 6). Scale bar, 100 μm .

18 (C) Heatmap of selected genes from bulk RNA-seq data of the metacarpal and phalangeal
19 bones from 16-week-old *LSL-Il23a* mice (n = 3) and *Il4i1-Il23a^{OE}* mice (n = 4). The GO
20 categories are indicated.

21 (D) Representative microCT images of the hind paws from 25~29-week-old *LSL-Il23a*
22 mice (n = 8) and *Il4i1-Il23a^{OE}* mice (n = 11). Scale bar, 1 mm.

23 (E) Representative microCT images of the metatarsal bones proximal to the
24 metatarsophalangeal joints from 25~29-week-old *LSL-Il23a* mice (n = 8) and
25 *Il4i1-Il23a^{OE}* mice (n = 11). II, III and IV represent three different toes of the mice. Scale
26 bar, 1 mm.

27 (F) Quantification of bone structural parameters of 25~29-week-old *LSL-Il23a* mice (n =

1 8) and *Il4i1-Il23a^{OE}* mice (n = 11) shown in (E). Data represent the 25th to 75th percentiles
2 (whiskers showing min to max). Ct.Th, cortical bone thickness; Ct.Ar, cortical bone area;
3 Tt.Ar, total area of the cross section; BV/TV, bone volume to total volume ratio; ns, not
4 significant.

5 Data (A, B and D-F) are representative of three independent experiments.

6

7 **Figure 6. CCR7⁺ DC define a type 17 spatial module in psoriatic epidermis.**

8 (A) Spatial feature-plots of *KLRB1* and *LAMP3* in psoriatic skin section from a patient.
9 (B) Representative immunofluorescent labeling of CD161, LAMP3 and KRT17 in
10 psoriatic skin (n = 3). Data are representative of two independent experiments.
11 (C) Chemokine receptor-ligand pairs across cell subpopulations within psoriatic skin. All
12 interactions shown are statistically significant ($p < 0.05$), and arrows denote directionality
13 from ligand to receptor.

14 (D) A working model of chemotaxis of CCR7⁺ DC and CD161⁺ T cells in psoriatic skin.

15

16 **Figure S1. A single-cell transcriptomic landscape in the skin of patients with**
17 **psoriasis and healthy donors.**

18 (A) Schematic overview of skin samples processed for 3'-barcoded scRNA-seq and
19 spatial transcriptome.

20 (B) General information of patients with psoriasis and healthy donors.

21 (C) Representative flow cytometry plots showing the gating strategy of all live cells in
22 the epidermis and CD45⁺ live leukocytes in the dermis.

23 (D) UMAP dimensional reduction and cell type clustering of 3'-barcoded scRNA-seq data
24 containing epidermal cells and dermal CD45⁺ leukocytes from patients with psoriasis and
25 healthy donors.

26 (E) Feature-plots of marker genes for cell clustering in (D).

27

1 **Figure S2. Sub-clustering of keratinocytes in psoriatic and normal skin.**

2 (A) UMAP dimensional reduction and sub-clustering of keratinocytes from psoriatic
3 epidermis samples (n = 6) and healthy controls (n = 4).
4 (B) Heatmap of signature genes in keratinocyte sub-clusters shown in (A).
5 (C) KRT genes in keratinocyte sub-clusters of psoriatic epidermis samples and healthy
6 controls.
7 (D) Pseudo-time trajectories of keratinocytes in psoriatic epidermis samples and healthy
8 controls.

9

10 **Figure S3. Characterization of *KLRB1*⁺ T cells.**

11 (A) Feature-plots of indicated genes in T cells.
12 (B) Percentages of *CD4*⁺, *CD8*⁺, *CD4*⁺*CD8*⁺ and *CD4*[−]*CD8*[−] T cells in *KLRB1*⁺ T cells
13 from psoriatic samples and healthy controls. Data represent the 25th to 75th percentiles
14 (whiskers showing min to max). ns, not significant.

15

16 **Figure S4. Spatial distribution of IL-17A-downstream signatures.**

17 (A, B) Spatial feature-plots of indicated genes in psoriatic skin sections.
18 (C) Representative immunofluorescence images of KRT17 and IL17RA expression in
19 normal (n = 3) and psoriatic skin sections (n = 5). Data are representative of two
20 independent experiments.

21

22 **Figure S5. Co-localization of IL-17 and KRT17⁺ keratinocytes in psoriatic**
23 **epidermis.**

24 Spatial feature-plots of *IL17A* and *IL17F* in skin sections from psoriatic patients and
25 healthy donors and merged with KRT17⁺ (KRT17 expression > 30) spots.

26

27 **Figure S6. DC and monocyte subtypes in psoriatic and normal skin.**

1 (A) Heatmap of signature genes in DC and monocyte subtypes in Figure 3A.
2 (B) Representative flow cytometry plots of IL-12p40⁺IL-23p19⁺, IL-12p40⁻IL-23p19⁺
3 and IL-12p40⁻IL-23p19⁻ cells in CD45⁺CD11C⁺ cells from psoriatic skin samples (n = 3).
4 (C) Percentages of IL-12p40⁺IL-23p19⁺, IL-12p40⁻IL-23p19⁺ and IL-12p40⁻IL-23p19⁻
5 cells in CD45⁺CD11C⁺ cells from psoriatic skin samples (n = 3). Data represent the mean
6 ± SEM. Data are representative of three independent experiments.

7

8 **Figure S7. Characterization of myeloid cells in IMQ-induced murine skin.**

9 (A) Feature-plots of indicated genes in CD45⁺Ly6G⁻CD3⁻CD19⁻ myeloid cells from
10 mouse ears treated or not with IMQ for 2 days or 5 days.
11 (B) Representative flow cytometry plots of CCR7⁺ DC subsets in cDC2
12 (CD45⁺Ly6G⁻CD11c⁺MHCII⁺CD64⁻CD326⁻XCR1⁻) of ears from *Il4i1*^{cre}DTR mice
13 treated under the indicated conditions (n = 3~5). Data are representative of two
14 independent experiments.

15

16 **Figure S8. Pathological features of ear skin in *Itgax-Il23a*^{OE} mice.**

17 (A) Representative H&E images and quantification of acanthosis of 12-week-old
18 *Itgax-Il23a*^{OE} mice (n = 5) and *LSL-Il23a* mice (n = 5). Scale bar, 50 μ m. Data represent
19 the 25th to 75th percentiles (whiskers showing min to max). P-value was determined by
20 two-tailed unpaired *t*-test.

21 (B) Flow cytometry showing the percentages of TCR β ⁺ cells in CD3⁺IL-17a⁺ T cells (T17)
22 of ears from 12-week-old *LSL-Il23a* mice (n = 8), *Itgax-Il23a*^{OE} mice (n = 6) and
23 *Il4i1-Il23a*^{OE} mice (n = 6). Data represent the 25th to 75th percentiles (whiskers showing
24 min to max). P-values were determined by one-way ANOVA.

25 Data are representative of three independent experiments.

26

27 **Figure S9. Co-localization of KLRB1 and LAMP3 in psoriatic epidermis.**

1 Spatial feature-plots of *KLRB1* and *LAMP3* in skin sections from psoriatic patients and the

2 merged plots.

3

1 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

2

3 **Human subjects**

4 Psoriatic skin samples were obtained by punch biopsy from patients under local lidocaine
5 anesthesia. Normal adult human skin specimens were obtained from healthy donors
6 undergoing plastic surgery. All participants provided written informed consent. This study
7 was performed in accordance with the principles of the Declaration of Helsinki and
8 approved by the Research Ethics Boards of Shanghai General Hospital, China (No.
9 2018KY239).

10

11 **Animals**

12 C57BL/6 mice were purchased from Shanghai SLAC Laboratory Animal Co., Ltd.
13 *Il4i1-2A-Cre* (*Il4i1*^{cre}) mice and *R26-CAG-LSL-Il23a-IRES-EGFP* (*LSL-Il23a*) mice were
14 produced by Shanghai Model Organisms Co., Ltd. *ROSA26-LSL-DTR* (ROSA26iDTR)
15 mice and *Itgax*^{cre} mice were obtained from Cyagen Co., Ltd. The mice were bred and
16 maintained under specific pathogen-free (SPF) conditions. Age-matched and sex-matched
17 mice were used for all the experiments in accordance with the National Institutes of
18 Health Guide for the Care and Use of Laboratory Animals with the approval
19 (SYXK-2019-0028) of the Scientific Investigation Board of Shanghai General Hospital.
20 Throughout these experimental studies, all efforts were made to alleviate any suffering
21 and the mice were euthanized by CO₂ inhalation.

22

23 **METHOD DETAILS**

24

25 **Single-cell transcriptomics**

26 ***Sample preparation, library production and RNA sequencing***

27 Fresh skin biopsies were placed in saline at 4°C prior to processing. The epidermis was

1 separated from the dermis by dispase II digestion overnight at 4°C. Single-cell
2 suspensions were generated by enzyme digestion as previously reported(Lou et al., 2020)
3 and analyzed by flow cytometry to exclude doublets, debris, and DAPI-positive dead
4 cells. For dermis samples, CD45⁺ cells were sorted for subsequent processing. Sorted
5 cells were centrifuged and resuspended in 0.04% BSA in phosphate-buffered saline
6 (PBS). Chromium Single Cell 3' v3 (10× Genomics) libraries were prepared using the
7 Chromium Controller according to the manufacturer's instructions. The resulting libraries
8 were sequenced with the Illumina NovaSeq 6000 platform. Trimmed data were processed
9 using the CellRanger (version 3.0, 10× Genomics) and further filtered, processed, and
10 analyzed using the Seurat package (version 4.3.0)(Butler et al., 2018).

11 ***Data processing and clustering with Seurat***

12 Cells with fewer than 200 genes, more than 5,000 genes, or more than 5% mitochondria
13 content were removed. Doublets were predicted using DoubletFinder and
14 removed(McGinnis et al., 2019). The filtered data were normalized using a scaling factor
15 of 10,000 to generate transcripts per kilobase million (TPM)-like values. We integrated
16 the filtered samples using the FindIntegrationAnchors and IntegrateData functions with
17 default parameters (dimensionality = 30). The top 2,000 most variable genes were
18 selected using the FindVariableFeatures function and the genes were then used for
19 principal component analysis (PCA). The number of PCs for clustering was selected
20 based on the 'Elbow plot' of different datasets. Clustering was performed using the
21 FindClusters function with a resolution selected for different datasets. Results were
22 visualized using the Seurat package.

23 ***Pseudo-time trajectory analysis using Monocle***

24 Keratinocytes pre-clustered and labeled according to the countermark genes were used as
25 an input for Monocle 2 in the pseudo-time trajectory analysis(Trapnell et al., 2014).
26 Genes with expression levels lower than 0.1 and genes expressed by fewer than 10 cells
27 were removed. The remaining cells were clustered in an unsupervised manner and DEGs

1 were identified using the differentialGeneTest function. The top 1,000 significant DEGs
2 were selected as the ordering genes. The DDRTree algorithm was used for dimension
3 reduction and BEAM was used to identify the genes driving the transition in pseudo-time.

4

5 **Spatial transcriptomics**

6 Fresh skin biopsies from healthy donors and patients with psoriasis were embedded in
7 optical cutting tissue (OCT) compound and snap-frozen on dry ice. Skin sections (10 μ m
8 thick) were prepared using a cryostat microtome and mounted onto Visium slides (Visium
9 Spatial Tissue Optimization Slide & Reagent kit, 10 \times Genomics). After hematoxylin and
10 eosin (H&E) staining, bright-field images were obtained. Optimized permeabilization (for
11 24 min) and tissue removal were conducted on the Visium slides. After reverse
12 transcription, the barcoded cDNA was enzymatically released and collected. The cDNA
13 libraries were then sequenced on the Illumina NovaSeq 6000 platform. The data were
14 processed with the SpaceRanger (version 1.1.0, 10 \times Genomics) and mapped to the
15 GRCh38-2020-A genome. Results were visualized using the Seurat package (version
16 4.3.0).

17

18 **Flow cytometry**

19 Single cell suspensions were generated from the skin of patients with psoriasis, *Il4i1*^{cre}
20 DTR mice, *LSL-Il23a* mice, *Itgax-Il23a*^{OE} mice and *Il4i1-Il23a*^{OE} mice as previously
21 reported(Lou et al., 2020). Cells were stained with fluorophore-conjugated antibodies and
22 assayed with a BD LSRLFortessaTM or a BD FACSymphonyTM A3 cytometer, and the data
23 were analyzed using FlowJo software. For human sample analyses, antibodies against
24 CD45 (clone 2D1) and CD1b (clone SN13) were obtained from BioLegend; CD45 (clone
25 HI30), CD200 (clone MRC OX-104) and CD11C (clone B-ly6) were obtained from BD
26 Biosciences; IL-23p19 (clone 23dcdp), IL-12/IL-23p40 (clone eBioHP40) were obtained
27 from eBioscience. For mouse sample analyses, antibodies against CD45 (clone 30-F11)

1 were obtained from BioLegend or BD Biosciences; Ly-6G (clone 1A8) and CD200
2 (clone OX-90) were obtained from BD Biosciences; CD11c (clone N418), TCRbeta
3 (clone H57-597) and MHC Class II (I-A/I-E) (clone M5/114.15.2) were obtained from
4 eBioscience; CD326 (Ep-CAM) (clone G8.8), XCR1 (clone ZET) and CD64 (Fc γ RI)
5 (clone X54-5/7.1) were obtained from BioLegend.

6

7 **RNAscopeTM Multiplex Fluorescent Assay**

8 Human paraffin sections were dewaxed, and single-molecule fluorescence *in situ*
9 hybridization (FISH) experiments were carried out using an RNAscopeTM Multiplex
10 Fluorescent Assay v2 with an RNAscopeTM Probe-Hs-IL23A-C3 (ACD cat. 562851-C3),
11 an RNAscopeTM Probe-Hs-IL12B-C2 (ACD cat. 402071-C2), an RNAscopeTM
12 Probe-Hs-CD200 (ACD cat. 410471), and an RNAscopeTM Probe-Hs-IL17A (ACD cat.
13 310931). The sections were mounted with a fluorescent mounting medium
14 (Sigma-Aldrich cat. DUO82040) and visualized under a confocal microscope (Leica,
15 STELLARIS 8 DIVE).

16

17 **Mouse models of psoriasis**

18 For the IMQ-induced mouse model of psoriasis, male C57BL/6 mice (aged 7 weeks)
19 were maintained under SPF conditions. The mice received a daily topical dose of 25 \square mg
20 IMQ cream (5%) (MedShine cat. 120503) per ear for two or five consecutive days before
21 the mice were euthanized and the ears were collected for scRNA-seq. For the *Il4i1*^{cre}
22 DTR mice, 100 μ g DT (Sigma-Aldrich cat. D0564) was injected intraperitoneally (i.p.)
23 one day before 25 \square mg IMQ cream was applied per ear for two days. The mice were then
24 euthanized and the ears were collected for scRNA-seq, flow cytometry and ELISA. After
25 euthanization, ears were collected from *LSL-Il23a*, *Itgax-Il23a*^{OE}, and *Il4i1-Il23a*^{OE} mice
26 (aged 12 weeks) for histological analysis, flow cytometry and bulk RNA-seq, while paws
27 were collected from mice (aged 16 weeks) for histological analysis, microCT and bulk

1 RNA-seq.

2

3 **ELISA**

4 Ears from *Il4i1*^{cre} DTR mice were snap-frozen, pulverized, and homogenized for protein
5 extraction using a ProteinExt® Mammalian Total Protein Extraction Kit (Transgen cat.
6 DE101-01). IL-23 heterodimer levels were measured using a Mouse IL-23 Quantikine
7 ELISA Kit (R&D Systems cat. M2300) according to the manufacturer's instructions.

8

9 **Histological analysis and immunofluorescence**

10 Ears from *LSL-Il23a*, *Itgx-Il23a*^{OE} and *Il4i1-Il23a*^{OE} mice were embedded in paraffin
11 and sectioned (5 μ m thick). The sections were stained with H&E, and the pixel size of the
12 epidermal area was measured using the lasso tool in Adobe Photoshop CS4. For
13 immunofluorescence staining, the sections were deparaffinized and retrieval was
14 performed by heating the sections in sodium citrate buffer (pH = 6.0) or Tris-EDTA
15 buffer (pH = 8.0). The sections were blocked for 1 h at room temperature (RT) in PBS
16 containing 1% bovine serum albumin (BSA), 5% goat serum, 0.3% Triton X-100 and
17 stained overnight at 37°C in blocking buffer containing primary antibody (anti-Krt6,
18 Polyclonal, Proteintech cat. 10590-1-AP, 1:200 dilution; anti-Krt5, Clone 2C2, Invitrogen
19 cat. MA5-17057, 1:200 dilution; anti-Krt1/10, Clone LH1, Santa Cruz cat. sc-53251,
20 1:200 dilution; anti-Ki67, Polyclonal, Servicebio cat. GB111499, 1:500 dilution;
21 anti-Filaggrin, Clone FFLG01, GeneTex cat. GTX23137, 1:100 dilution; anti-CD161,
22 Clone 14F1F11, NOVUS Cat. NBP2-14845; anti-DC-LAMP, Colne 1010E1.01, NOVUS
23 Cat, DDX0191P-100, anti-KRT17/CK17/Cytokeratin 17, Clone E3, LS Bio Cat.
24 LS-B7169; anti-KRT17/CK17/ Cytokeratin 17, Polyclonal, LS Bio Cat#LS-B7610).
25 Thereafter, the sections were rinsed three times in PBS and stained with
26 fluorochrome-conjugated secondary antibodies (all from Life Technologies, 1:1,000
27 dilution) for 1 h at RT in the dark. Sections were also stained with DAPI (BD Biosciences

1 cat. 564907, 1:2,000 dilution) at RT for 5 min to visualize nuclei. The sections were
2 mounted with a fluorescent mounting medium (Sigma-Aldrich cat. DUO82040) and
3 visualized under a confocal microscope (Leica, STELLARIS 8 DIVE).

4

5 **Bulk RNA-seq**

6 Ears or peeled metacarpal and phalangeal bones were snap-frozen in liquid nitrogen and
7 pulverized. Total RNA was isolated using RNAiso Reagent (TaKaRa cat. 9108). cDNA
8 libraries were prepared using a VAHTS Universal V8 RNA-seq Library Prep Kit for
9 Illumina (Vazyme cat. NR605-01) according to the manufacturer's instructions and
10 sequenced on a NovaSeq 6000 (Illumina). The adaptor sequences were trimmed from the
11 raw paired-end reads using Skewer(Jiang et al., 2014). The sequences were then aligned
12 to GRCm38 using STAR(Dobin et al., 2013) and assembled using StringTie(Pertea et al.,
13 2015). Gene enrichment analysis (GSEA) was performed to identify enriched
14 pathways(Mootha et al., 2003; Subramanian et al., 2005).

15

16 **MicroCT**

17 Mouse hind paws were collected and fixed in 4% paraformaldehyde and analyzed by
18 microCT (Venus001, Pingseng Scientific). Bone structural parameters including total area
19 (Tt.Ar), cortical bone thickness (Ct.Th), cortical bone area (Ct.ar) and cortical bone area
20 to total cross-sectional area ratio (Ct.ar/Tt.ar) were calculated using DataViewer software
21 (Bruker). The samples were then decalcified using 10% EDTA and embedded for H&E
22 staining.

23

24 **QUANTIFICATION AND STATISTICAL ANALYSIS**

25

26 Data were presented as the 25th to 75th percentiles (whiskers showing min to max) or as
27 the mean \pm SEM and analyzed using GraphPad Prism 9. Differences between two groups

1 were evaluated using Student's *t*-test, and differences between multiple groups were
2 evaluated by analysis of variance (ANOVA) with Geisser-Greenhouse correction. A
3 simple linear regression model was used to analyze the transcriptome correlation between
4 mouse models and human psoriasis.

5

6 **DATA AVAILABILITY**

7

8 The sequencing data in this paper are deposited in Genome Sequence Archive (GSA).
9 The bulk RNA sequencing data are deposited under the accession: CRA013603; the
10 human single-cell transcriptomics data are deposited under the accessions: HRA003418
11 and HRA006130; the human spatial transcriptomics data are deposited under the
12 accession: HRA006129.

13

1 REFERENCES

2

3 Amschler, K., Phillip, S., Mohr, J., Wilsmann-Theis, D., Poortinga, S., Gerdes, S., and Mössner, R. (2020).
4 Long-term follow-up of 22 psoriatic patients treated with ixekizumab after failure of secukinumab.
5 Dermatol Online J 26.

6 Anderson, D.A., 3rd, Dutertre, C.A., Ginhoux, F., and Murphy, K.M. (2021). Genetic models of human and
7 mouse dendritic cell development and function. Nat Rev Immunol 21, 101-115.

8 Armstrong, A.W., and Read, C. (2020). Pathophysiology, Clinical Presentation, and Treatment of Psoriasis:
9 A Review. JAMA 323, 1945-1960.

10 Becht, E., McInnes, L., Healy, J., Dutertre, C.A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., and Newell, E.W.
11 (2018). Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol.

12 Bito, T., Nishikawa, R., Hatakeyama, M., Kikusawa, A., Kanki, H., Nagai, H., Sarayama, Y., Ikeda, T.,
13 Yoshizaki, H., Seto, H., *et al.* (2014). Influence of neutralizing antibodies to adalimumab and infliximab on
14 the treatment of psoriasis. Br J Dermatol 170, 922-929.

15 Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell
16 transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411-420.

17 Cai, Y., Shen, X., Ding, C., Qi, C., Li, K., Li, X., Jala, V.R., Zhang, H.G., Wang, T., Zheng, J., and Yan, J.
18 (2011). Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35,
19 596-610.

20 Cheuk, S., Schlums, H., Gallais Serezal, I., Martini, E., Chiang, S.C., Marquardt, N., Gibbs, A., Detlofsson,
21 E., Introini, A., Forkel, M., *et al.* (2017). CD49a Expression Defines Tissue-Resident CD8(+) T Cells
22 Poised for Cytotoxic Function in Human Skin. Immunity 46, 287-300.

23 Cheuk, S., Wiken, M., Blomqvist, L., Nylen, S., Talme, T., Stahle, M., and Eidsmo, L. (2014). Epidermal
24 Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J Immunol 192,
25 3111-3120.

26 Conrad, C., Boyman, O., Tonel, G., Tun-Kyi, A., Laggner, U., de Fougerolles, A., Kotelianski, V., Gardner,
27 H., and Nestle, F.O. (2007). Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the
28 development of psoriasis. Nat Med 13, 836-842.

29 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
30 Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.

31 Dress, R.J., Liu, Z., and Ginhoux, F. (2020). Towards the better understanding of myelopoiesis using
32 single-cell technologies. Mol Immunol 122, 186-192.

33 Efremova, M., Vento-Tormo, M., Teichmann, S.A., and Vento-Tormo, R. (2020). CellPhoneDB: inferring
34 cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc
35 15, 1484-1506.

36 Fitzgerald, O., Oggie, A., Chandran, V., Coates, L.C., Kavanaugh, A., Tillett, W., Leung, Y.Y., de Wit, M.,
37 Scher, J.U., and Mease, P.J. (2021). Psoriatic arthritis. Nat Rev Dis Primers 7, 59.

38 Fuentes-Duculan, J., Suarez-Farinás, M., Zaba, L.C., Nogales, K.E., Pierson, K.C., Mitsui, H., Pensabene,
39 C.A., Kzhyshkowska, J., Krueger, J.G., and Lowes, M.A. (2010). A subpopulation of CD163-positive
40 macrophages is classically activated in psoriasis. J Invest Dermatol 130, 2412-2422.

1 Galluzzo, M., D'Adamio, S., Campione, E., Bianchi, L., and Talamonti, M. (2018). Treating a
2 Multidrug-Resistant Psoriatic HLA-C*18:01 Allele Carrier with Combination Ustekinumab Apremilast
3 Therapy. *Mol Diagn Ther* 22, 717-721.

4 Griffiths, C.E., and Barker, J.N. (2007). Pathogenesis and clinical features of psoriasis. *Lancet* 370,
5 263-271.

6 Guttman-Yassky, E., Nograles, K.E., and Krueger, J.G. (2011). Contrasting pathogenesis of atopic
7 dermatitis and psoriasis--part II: immune cell subsets and therapeutic concepts. *J Allergy Clin Immunol* 127,
8 1420-1432.

9 Hansel, A., Gunther, C., Ingwersen, J., Starke, J., Schmitz, M., Bachmann, M., Meurer, M., Rieber, E.P.,
10 and Schakel, K. (2011). Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic
11 cells in psoriasis and drive strong TH17/TH1 T-cell responses. *J Allergy Clin Immunol* 127, 787-794
12 e781-789.

13 Ho, A.W., and Kupper, T.S. (2019). T cells and the skin: from protective immunity to inflammatory skin
14 disorders. *Nat Rev Immunol* 19, 490-502.

15 Jiang, H., Lei, R., Ding, S.W., and Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer for
16 next-generation sequencing paired-end reads. *BMC Bioinformatics* 15, 182.

17 Kim, T.G., Kim, S.H., Park, J., Choi, W., Sohn, M., Na, H.Y., Lee, M., Lee, J.W., Kim, S.M., Kim, D.Y., *et*
18 *al.* (2018). Skin-Specific CD301b(+) Dermal Dendritic Cells Drive IL-17-Mediated Psoriasis-Like Immune
19 Response in Mice. *J Invest Dermatol* 138, 844-853.

20 Kryczek, I., Bruce, A.T., Gudjonsson, J.E., Johnston, A., Aphale, A., Vatan, L., Szeliga, W., Wang, Y., Liu,
21 Y., Welling, T.H., *et al.* (2008). Induction of IL-17+ T cell trafficking and development by IFN-gamma:
22 mechanism and pathological relevance in psoriasis. *J Immunol* 181, 4733-4741.

23 Kvedaraite, E., and Ginhoux, F. (2022). Human dendritic cells in cancer. *Sci Immunol* 7, eabm9409.

24 Li, B., Tsoi, L.C., Swindell, W.R., Gudjonsson, J.E., Tejasvi, T., Johnston, A., Ding, J., Stuart, P.E., Xing,
25 X., Kochkodan, J.J., *et al.* (2014). Transcriptome analysis of psoriasis in a large case-control sample:
26 RNA-seq provides insights into disease mechanisms. *J Invest Dermatol* 134, 1828-1838.

27 Lou, F., Sun, Y., and Wang, H. (2020). Protocol for Flow Cytometric Detection of Immune Cell Infiltration
28 in the Epidermis and Dermis of a Psoriasis Mouse Model. *STAR Protoc* 1, 100115.

29 Lowes, M.A., Kikuchi, T., Fuentes-Duculan, J., Cardinale, I., Zaba, L.C., Haider, A.S., Bowman, E.P., and
30 Krueger, J.G. (2008). Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. *J*
31 *Invest Dermatol* 128, 1207-1211.

32 Mabuchi, T., Takekoshi, T., and Hwang, S.T. (2011). Epidermal CCR6+ gammadelta T cells are major
33 producers of IL-22 and IL-17 in a murine model of psoriasisform dermatitis. *J Immunol* 187, 5026-5031.

34 Maier, B., Leader, A.M., Chen, S.T., Tung, N., Chang, C., LeBerichel, J., Chudnovskiy, A., Maskey, S.,
35 Walker, L., Finnigan, J.P., *et al.* (2020). A conserved dendritic-cell regulatory program limits antitumour
36 immunity. *Nature* 580, 257-262.

37 Masson Regnault, M., Shourick, J., Jendoubi, F., Tauber, M., and Paul, C. (2022). Time to Relapse After
38 Discontinuing Systemic Treatment for Psoriasis: A Systematic Review. *Am J Clin Dermatol* 23, 433-447.

39 McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in Single-Cell
40 RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* 8, 329-337.e324.

41 Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P.,

1 Carlsson, E., Ridderstrale, M., Laurila, E., *et al.* (2003). PGC-1alpha-responsive genes involved in
2 oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat Genet* 34, 267-273.

3 Muromoto, R., Hirao, T., Tawa, K., Hirashima, K., Kon, S., Kitai, Y., and Matsuda, T. (2016). IL-17A plays
4 a central role in the expression of psoriasis signature genes through the induction of I κ B- ζ in keratinocytes.
5 *Int Immunol* 28, 443-452.

6 Nakamizo, S., Dutertre, C.A., Khalilnezhad, A., Zhang, X.M., Lim, S., Lum, J., Koh, G., Foong, C., Yong,
7 P.J.A., Tan, K.J., *et al.* (2021). Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells
8 co-producing IL1B and IL23A in psoriasis. *J Exp Med* 218.

9 Nestle, F.O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y.J., and
10 Gilliet, M. (2005). Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. *J*
11 *Exp Med* 202, 135-143.

12 Oppmann, B., Lesley, R., Blom, B., Timans, J.C., Xu, Y., Hunte, B., Vega, F., Yu, N., Wang, J., Singh, K., *et*
13 *al.* (2000). Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar
14 as well as distinct from IL-12. *Immunity* 13, 715-725.

15 Ortega, C., Fernandez, A.S., Carrillo, J.M., Romero, P., Molina, I.J., Moreno, J.C., and Santamaria, M.
16 (2009). IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that
17 secrete Th17-related cytokines. *J Leukoc Biol* 86, 435-443.

18 Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie
19 enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat Biotechnol* 33, 290-295.

20 Puig, L., Costanzo, A., Munoz-Elias, E.J., Jazra, M., Wegner, S., Paul, C.F., and Conrad, C. (2022). The
21 biological basis of disease recurrence in psoriasis: a historical perspective and current models. *Br J*
22 *Dermatol* 186, 773-781.

23 See, P., Dutertre, C.A., Chen, J., Günther, P., McGovern, N., Irac, S.E., Gunawan, M., Beyer, M., Händler,
24 K., Duan, K., *et al.* (2017). Mapping the human DC lineage through the integration of high-dimensional
25 techniques. *Science* 356.

26 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A.,
27 Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P. (2005). Gene set enrichment analysis: a
28 knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*
29 102, 15545-15550.

30 Swindell, W.R., Michaels, K.A., Sutter, A.J., Diaconu, D., Fritz, Y., Xing, X., Sarkar, M.K., Liang, Y., Tsoi,
31 A., Gudjonsson, J.E., and Ward, N.L. (2017). Imiquimod has strain-dependent effects in mice and does not
32 uniquely model human psoriasis. *Genome Med* 9, 24.

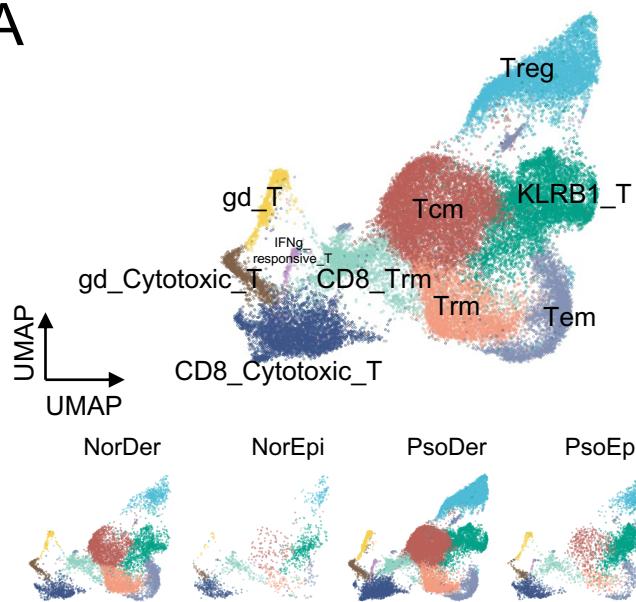
33 Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J.,
34 Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by
35 pseudotemporal ordering of single cells. *Nat Biotechnol* 32, 381-386.

36 van der Fits, L., Mourits, S., Voerman, J.S., Kant, M., Boon, L., Laman, J.D., Cornelissen, F., Mus, A.M.,
37 Florencia, E., Prens, E.P., and Lubberts, E. (2009). Imiquimod-induced psoriasis-like skin inflammation in
38 mice is mediated via the IL-23/IL-17 axis. *J Immunol* 182, 5836-5845.

39 Wang, Y., Xiao, Y., Li, F., Gu, Y., Yang, M., Zhang, L., Tang, J., and Li, W. (2023). The Clinical
40 Characteristics of Psoriatic Arthritis: A Cross-Sectional Study Based on the Psoriatic Arthritis Cohort of
41 West China Hospital. *Rheumatol Ther* 10, 775-784.

1 Whitley, S.K., Li, M., Kashem, S.W., Hirai, T., Igyarto, B.Z., Knizner, K., Ho, J., Ferris, L.K., Weaver, C.T.,
2 Cua, D.J., *et al.* (2022). Local IL-23 is required for proliferation and retention of skin-resident memory
3 T(H)17 cells. *Sci Immunol* 7, eabq3254.

4 Wohn, C., Ober-Blobaum, J.L., Haak, S., Pantelyushin, S., Cheong, C., Zahner, S.P., Onderwater, S., Kant,
5 M., Weighardt, H., Holzmann, B., *et al.* (2013). Langerin(neg) conventional dendritic cells produce IL-23
6 to drive psoriatic plaque formation in mice. *Proc Natl Acad Sci U S A* 110, 10723-10728.


7 Yang, L., Fan, X., Cui, T., Dang, E., and Wang, G. (2017). Nrf2 Promotes Keratinocyte Proliferation in
8 Psoriasis through Up-Regulation of Keratin 6, Keratin 16, and Keratin 17. *J Invest Dermatol* 137,
9 2168-2176.

10 Zhang, X., Yin, M., and Zhang, L.J. (2019). Keratin 6, 16 and 17-Critical Barrier Alarmin Molecules in
11 Skin Wounds and Psoriasis. *Cells* 8.

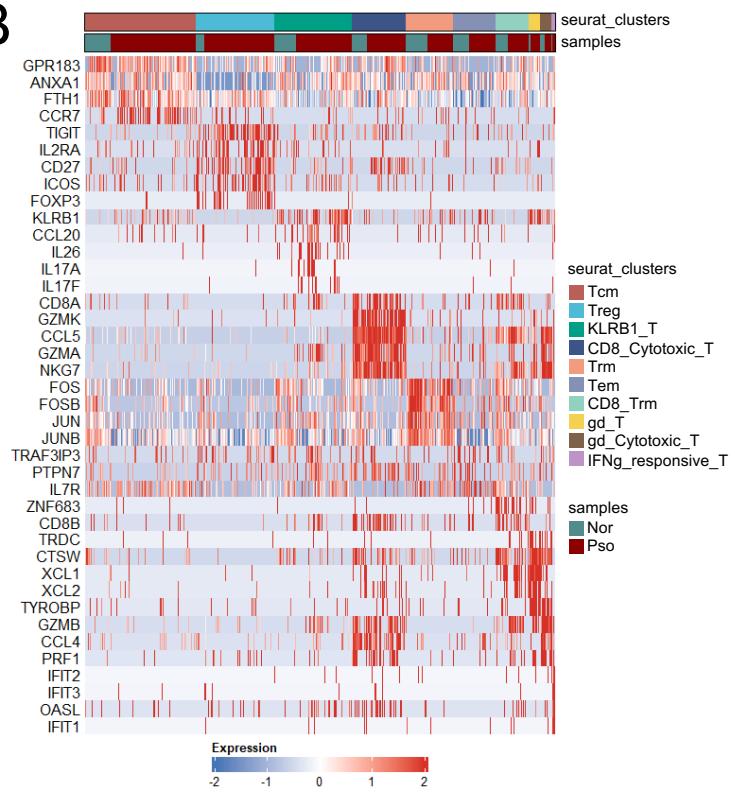
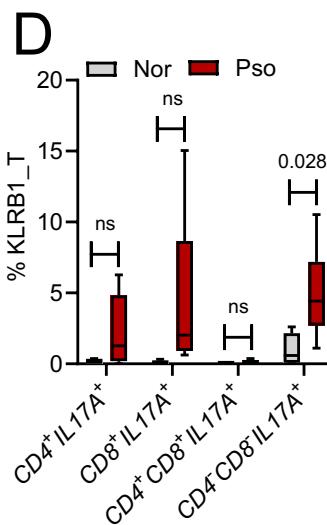
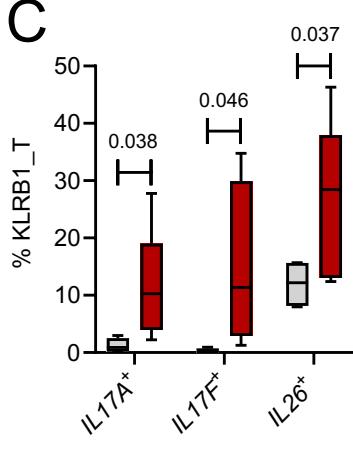
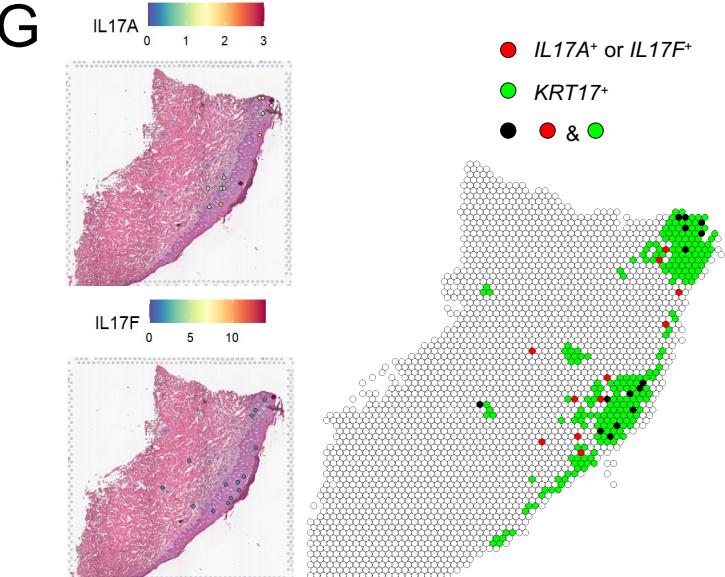
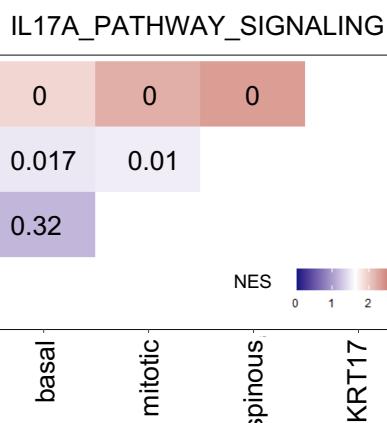
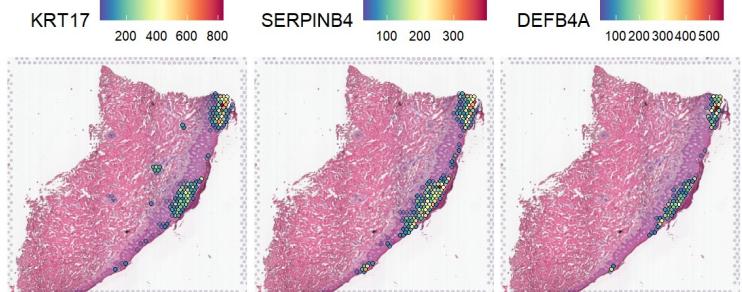

12

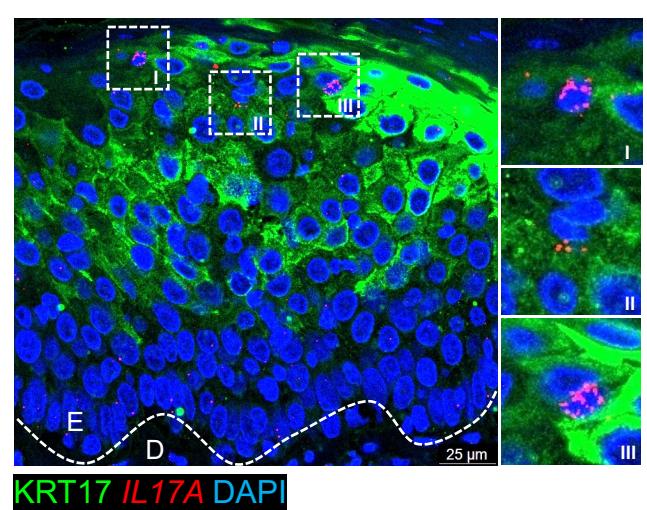
Figure 1



A

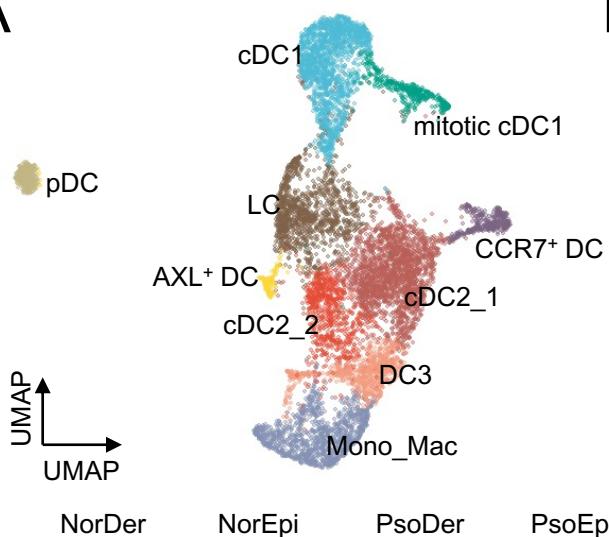

B


C


D


E

F



H

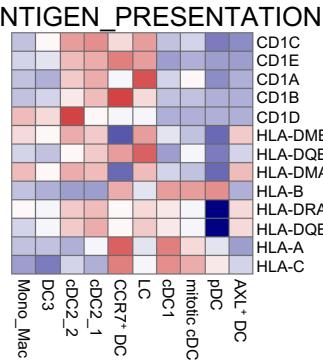
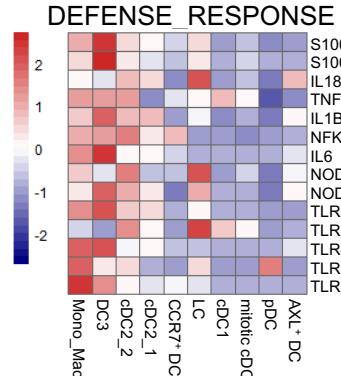
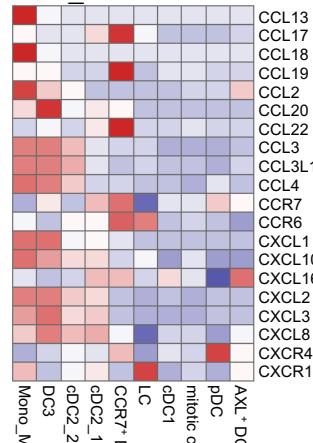
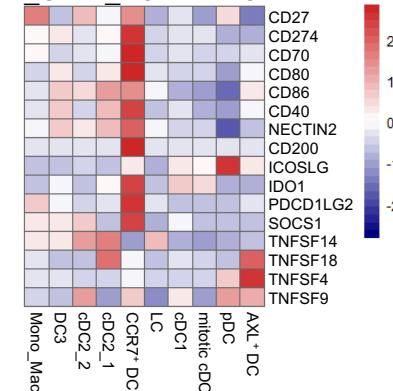
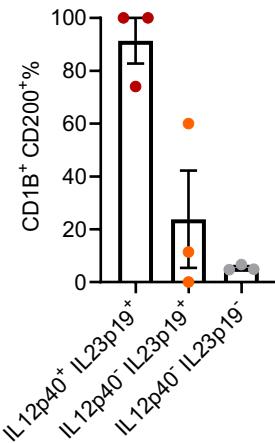


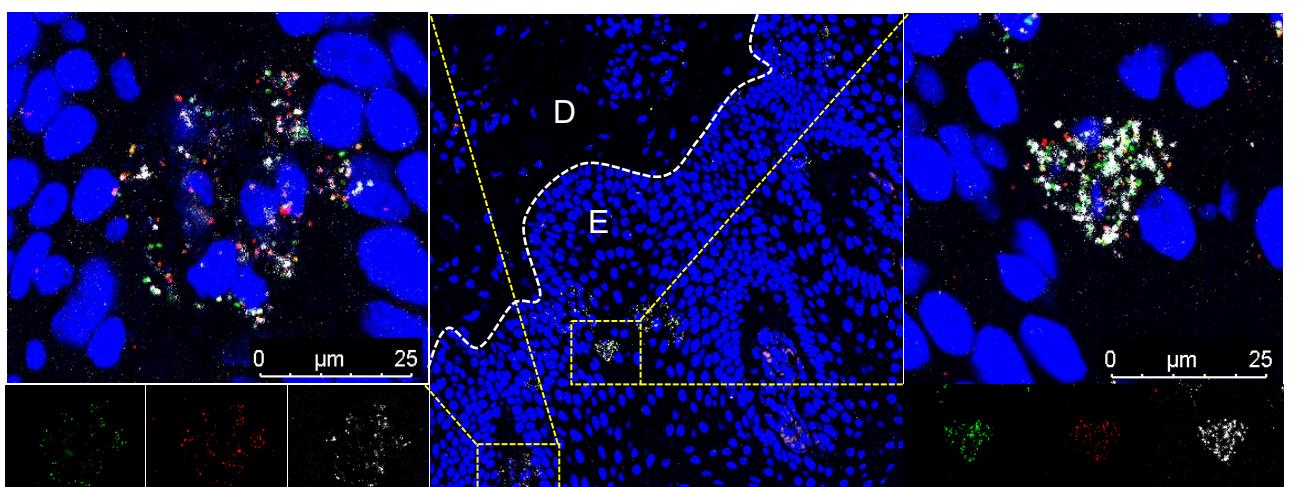
Figure 2


A

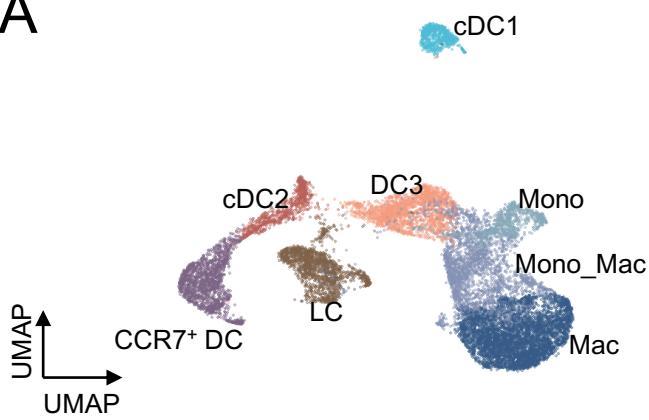

B


DEFENSE_RESPONSE


CELL_CHEMOTAXIS


T CELL_ACTIVATION

E



D

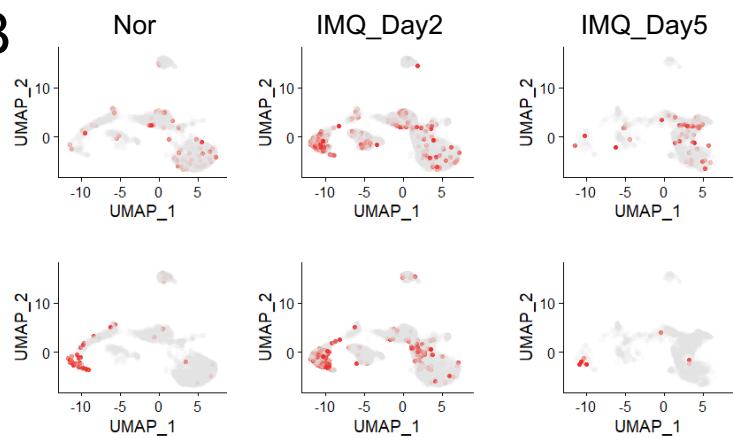
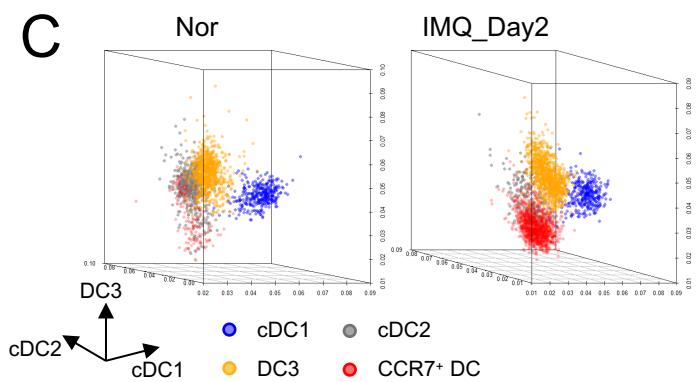
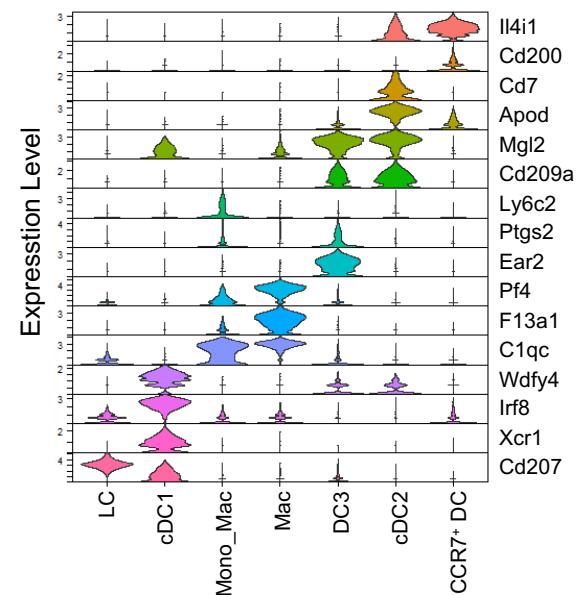
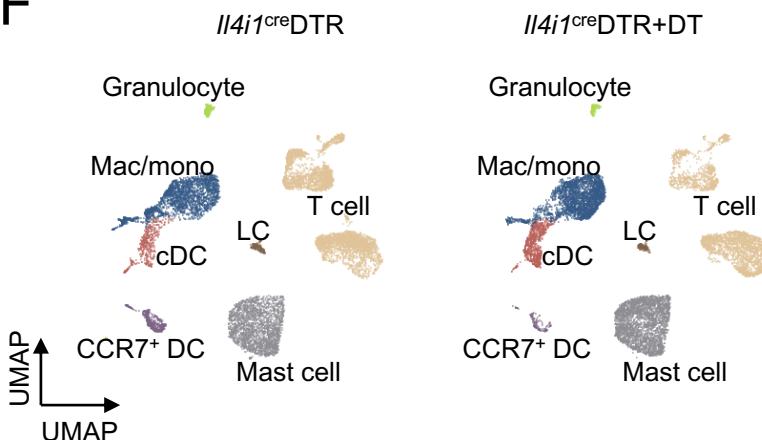


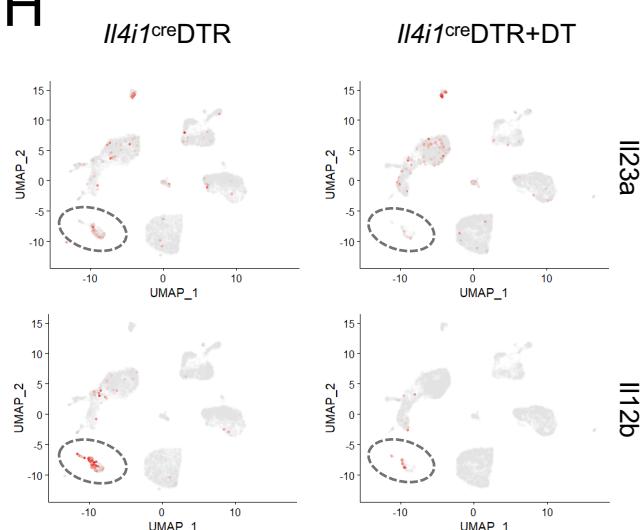
Figure 3

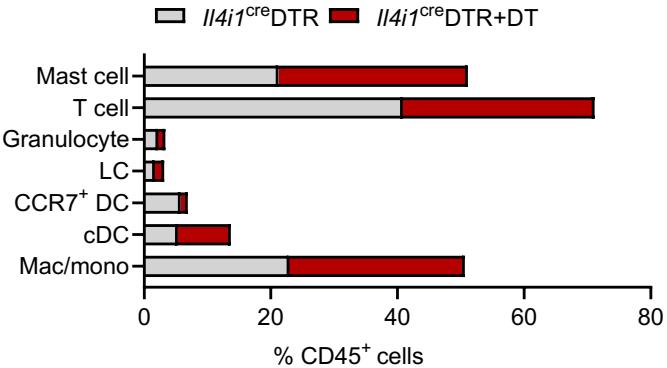

A

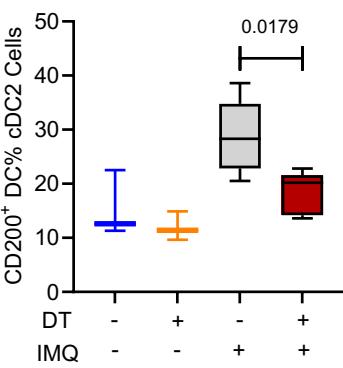

B

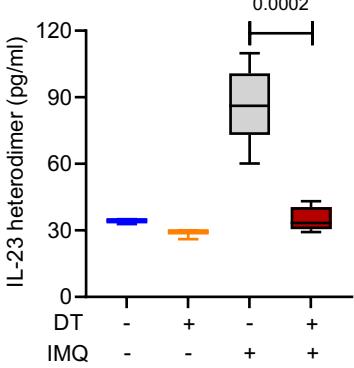
C


D

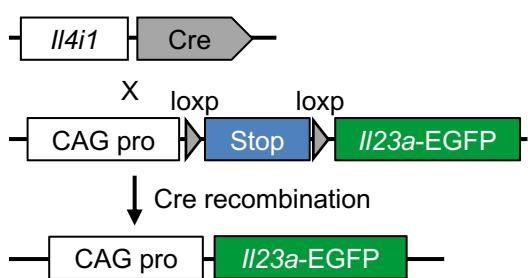

E


F


H

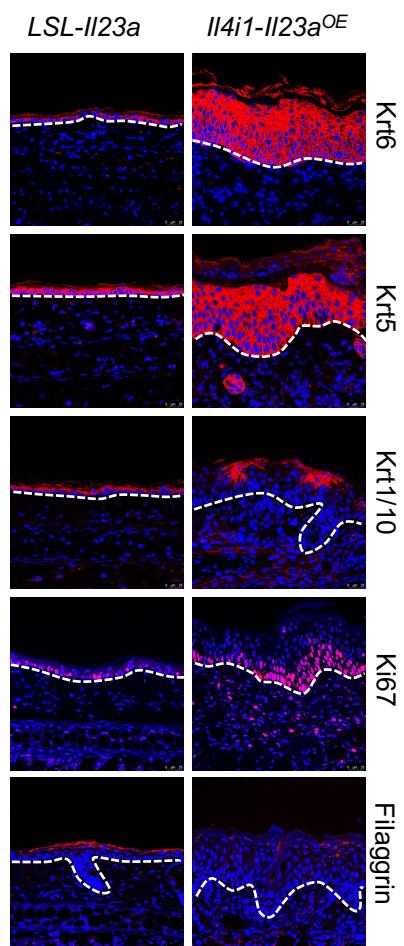

G

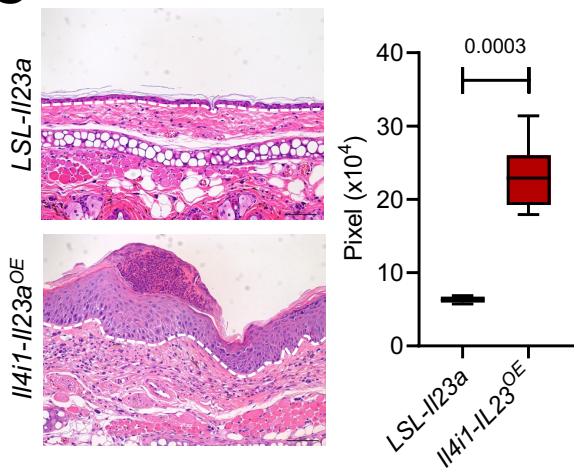
I

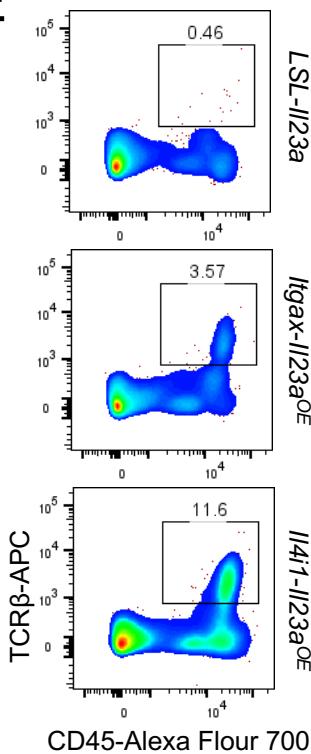


J

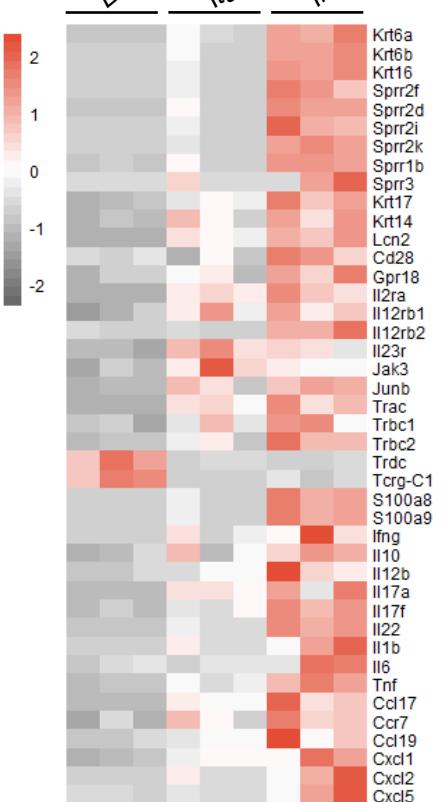
Figure 4

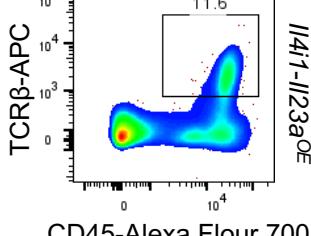

A


B


D

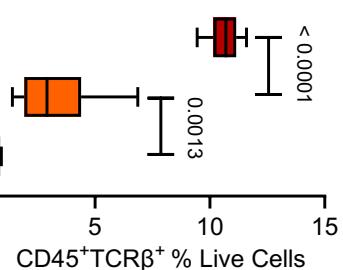
C

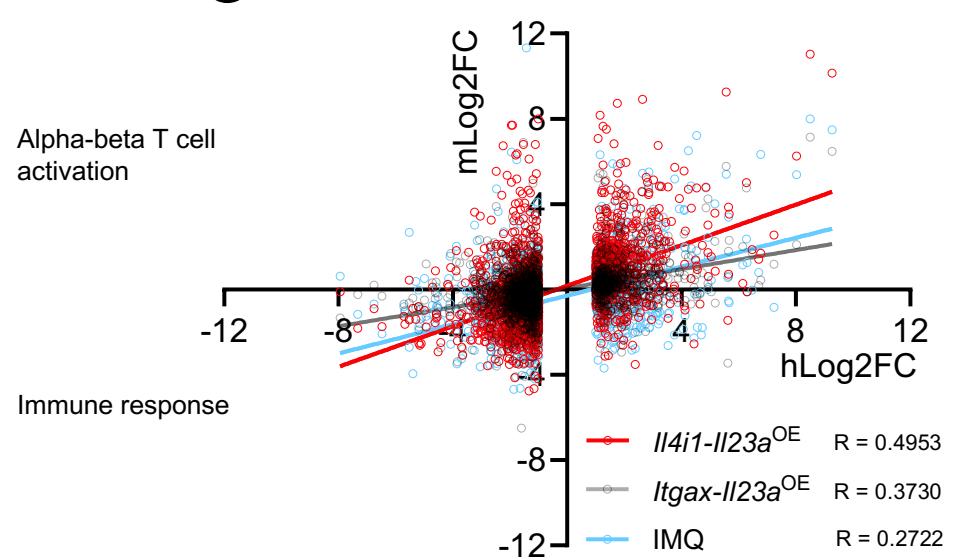

E


LSL-II23a

Itgax-II23a^{OE}

F


Epidermis development


II4i1-II23a^{OE}

Itgax-II23a^{OE}

LSL-II23a

G

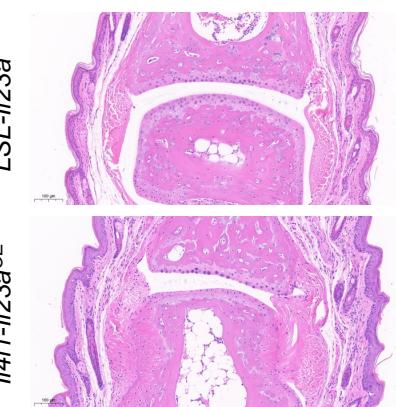
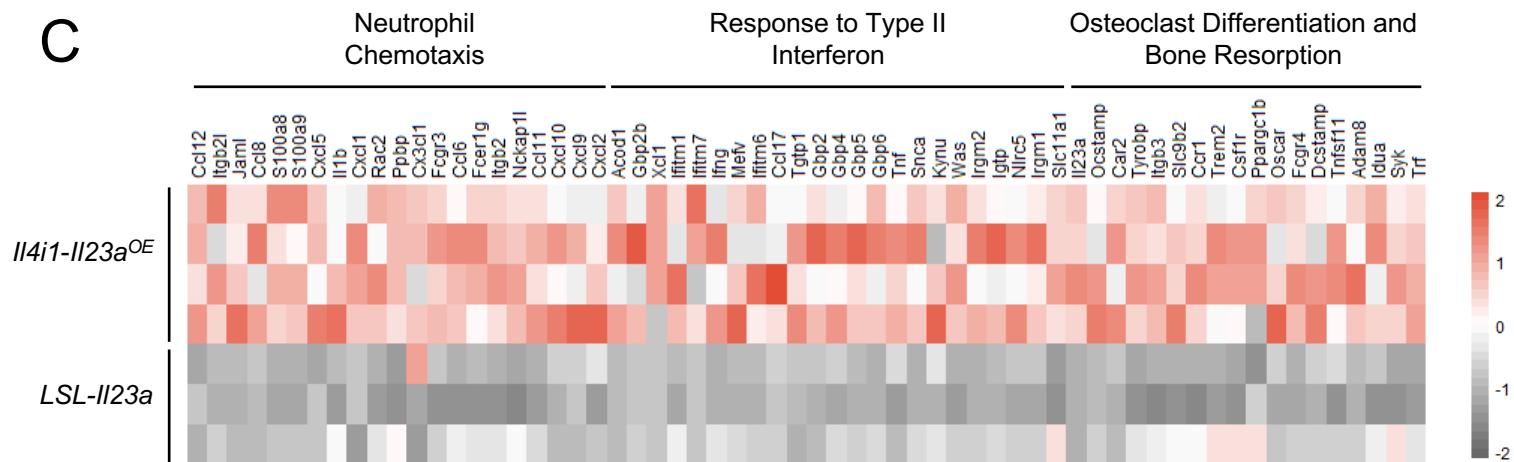
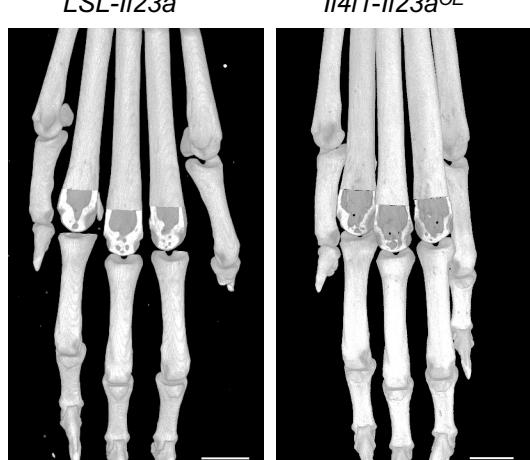
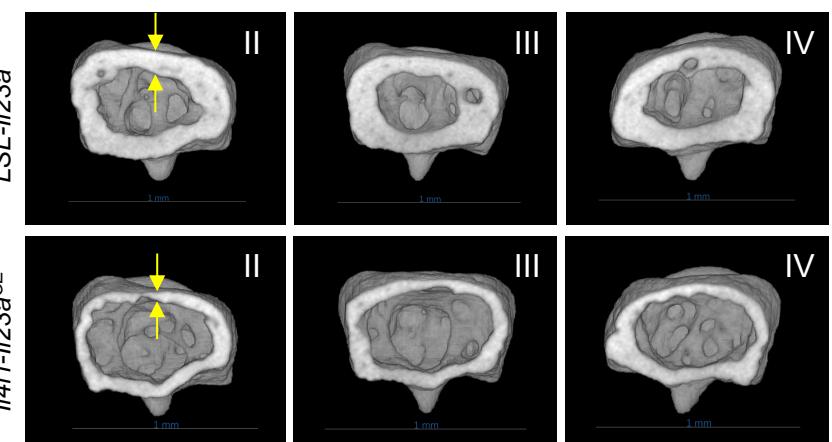
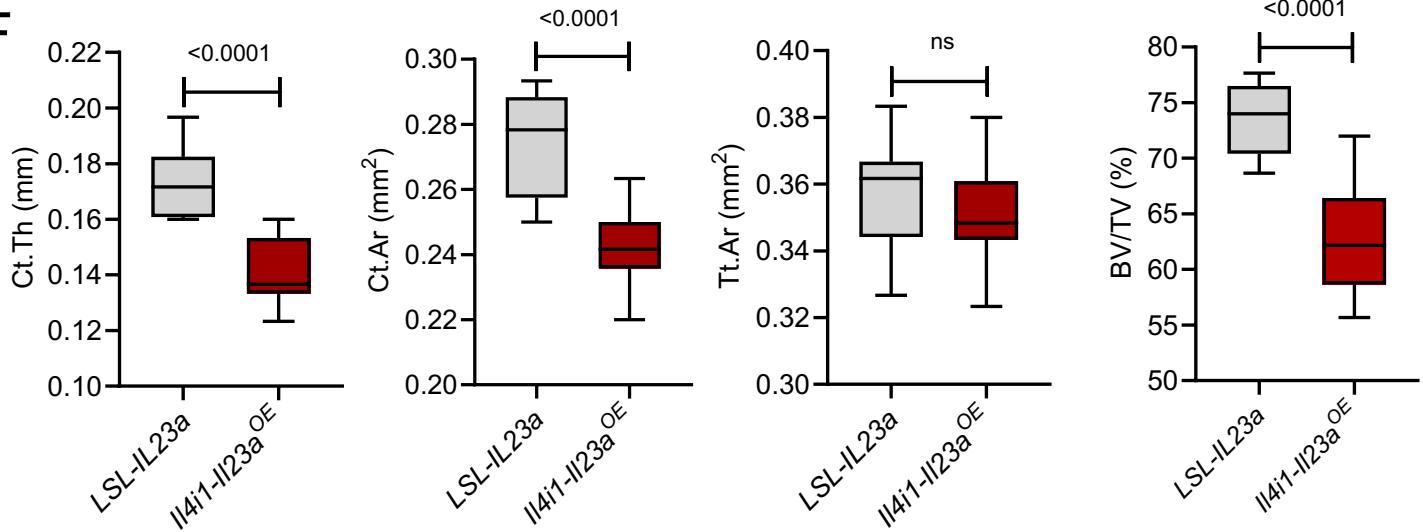


Figure 5

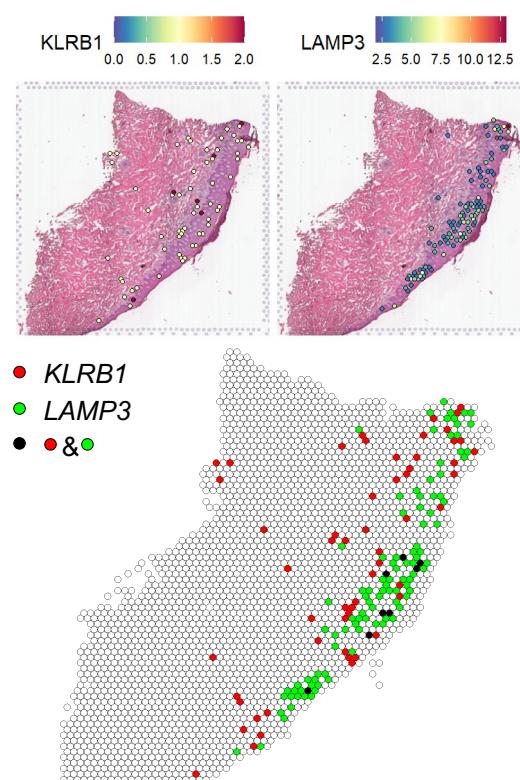

A


B


C


D

E



F

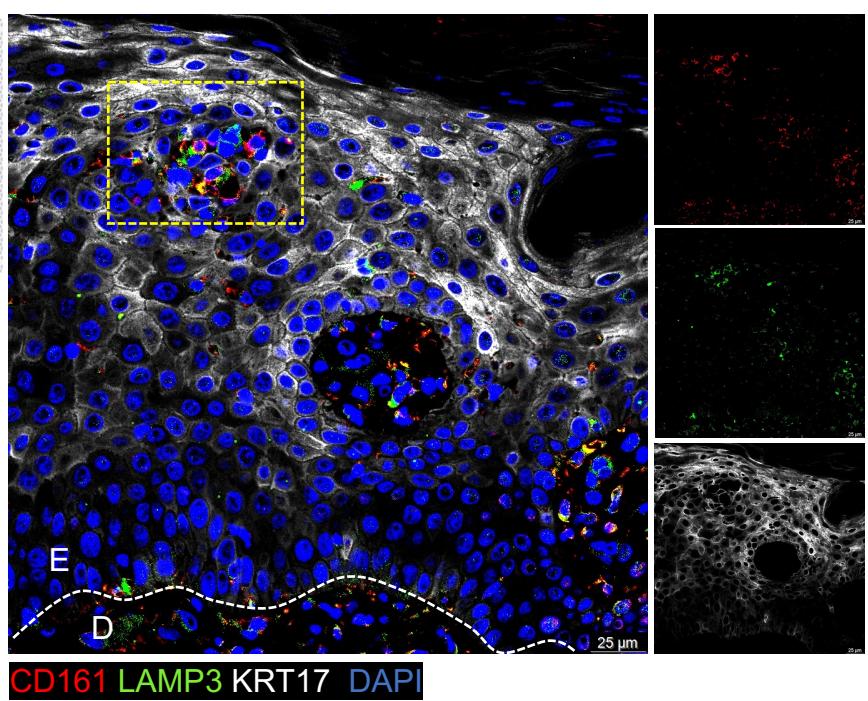
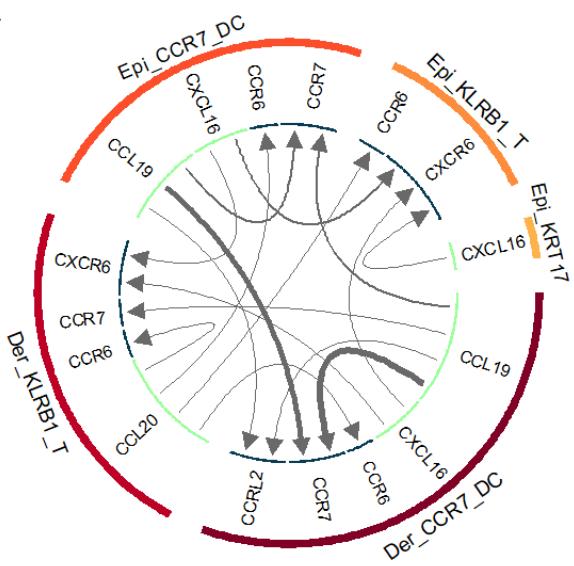
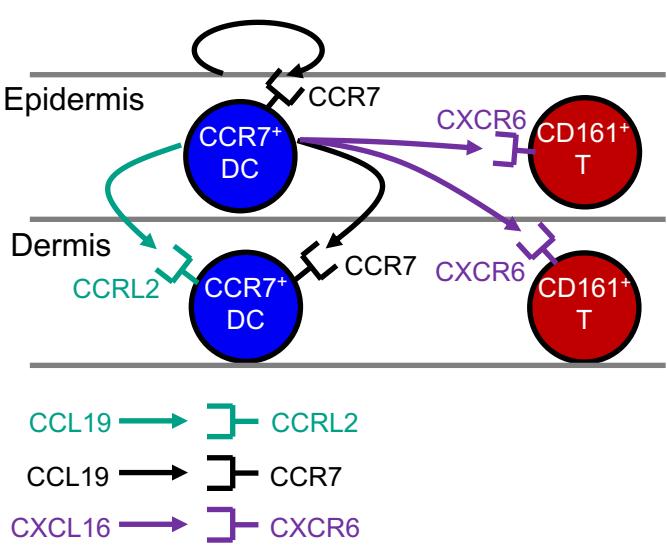
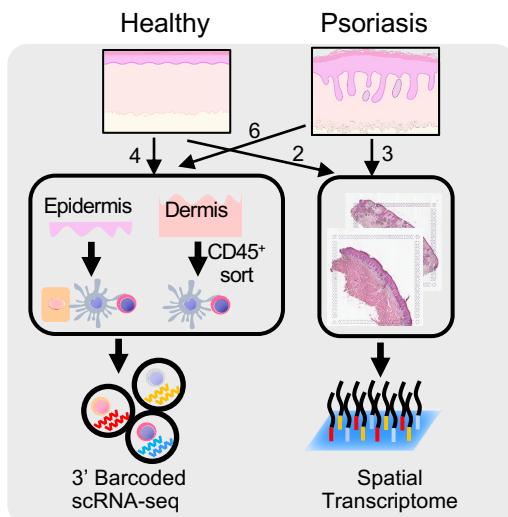


Figure 6


A


B

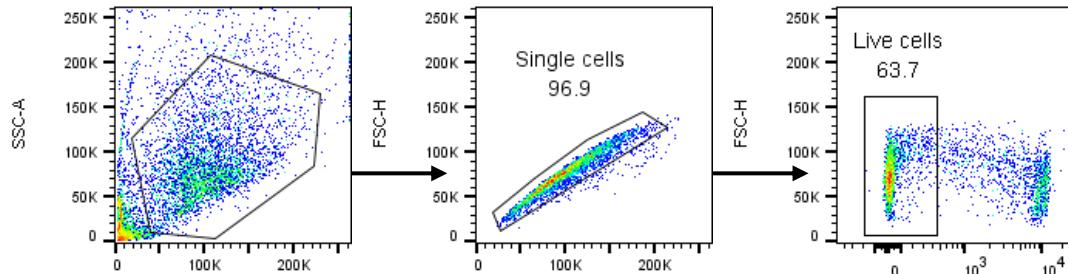
C



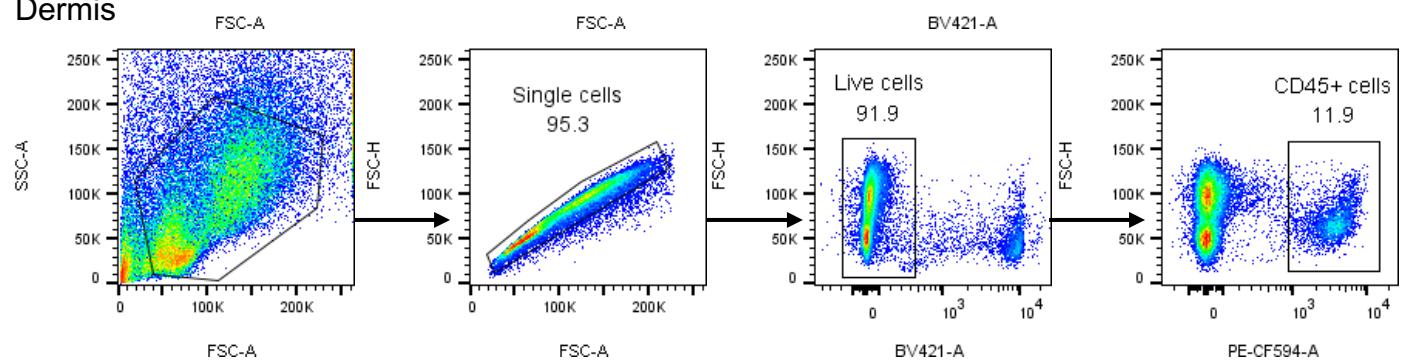
D

Figure S1

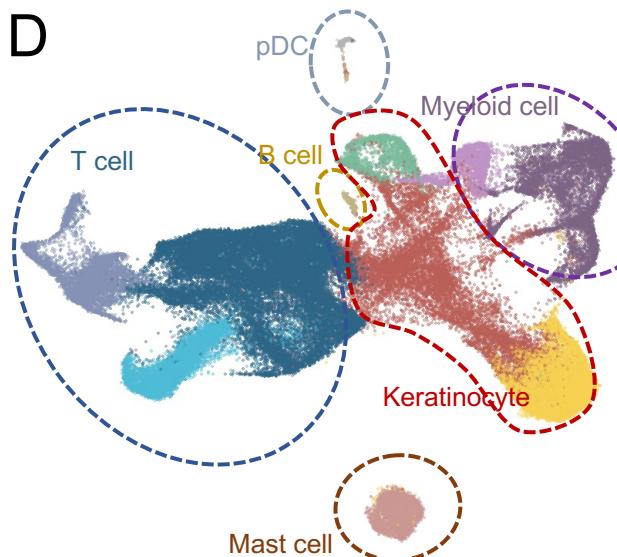
A

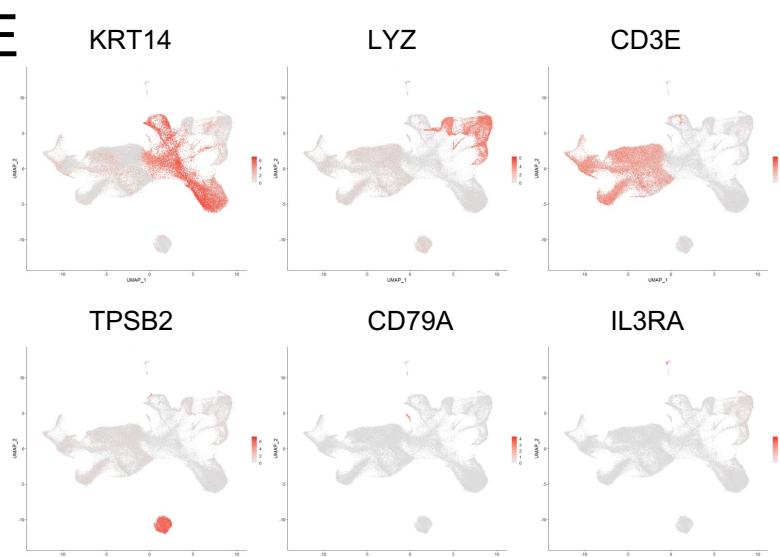


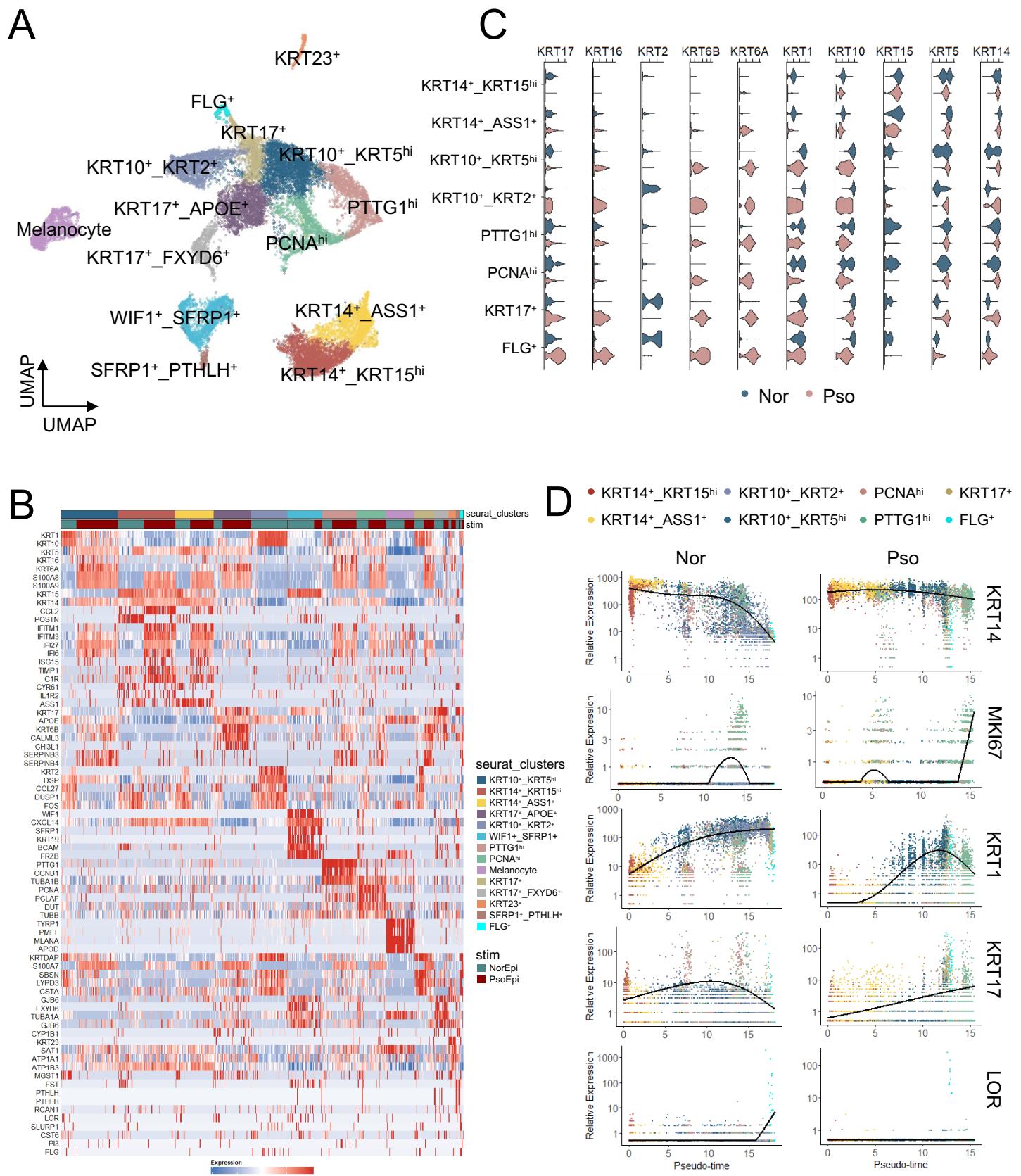
B

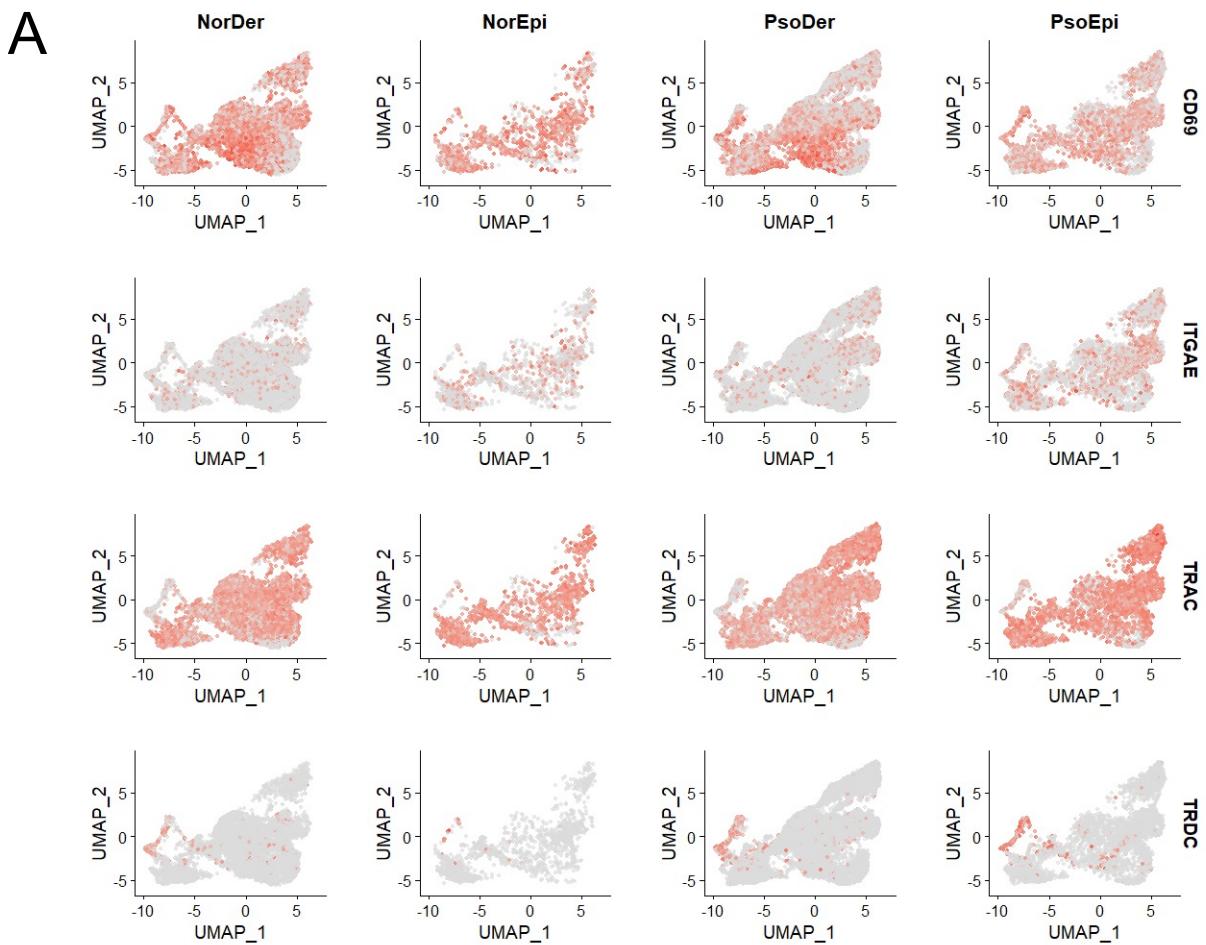

Assay	3'		Spatial	
	Nor (n = 4)	Pso (n = 6)	Nor (n = 2)	Pso (n = 3)
Group				
Age	25-55	27-59	27-32	32-65
Anatomic site	trunk, limbs, eyelid	trunk, limbs	trunk, scalp	trunk
Type	NA	vulgaris	NA	vulgaris
Topical score	NA	5-10	NA	8-10
Duration of disease	NA	1 month-5 years	NA	3 weeks-5 years
Treatment	Not treated or washed-out for ≥ 6 months prior to the research biopsy			

C


Epidermis


Dermis


D


E

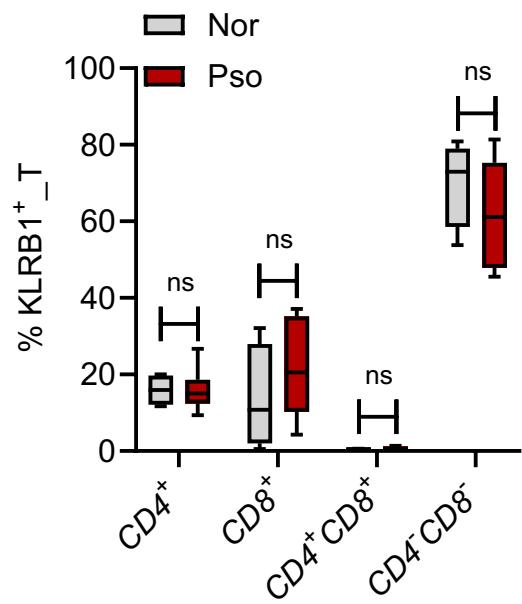

Figure S2

Figure S3

B

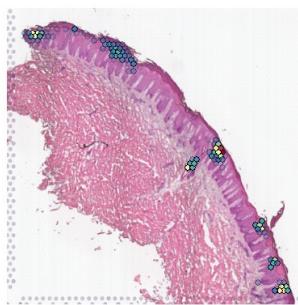
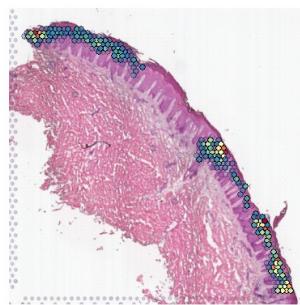
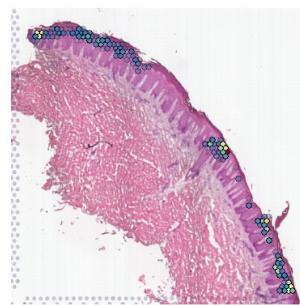


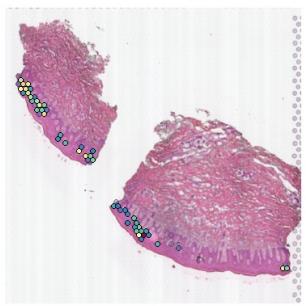
Figure S4


A

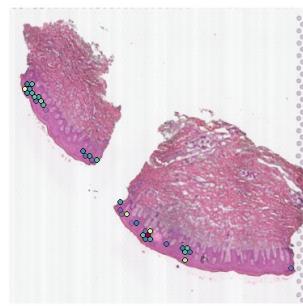
Pso #2


KRT17
100 200 300 400 500

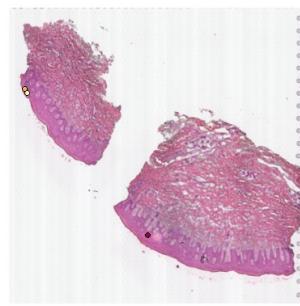
SERPINB4
100 200 300 400



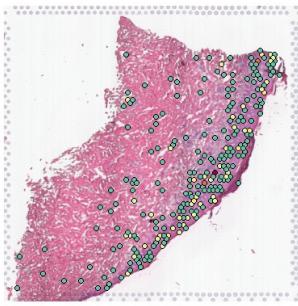
DEFB4A
200 400 600



Pso #3


KRT17
30 60 90 120

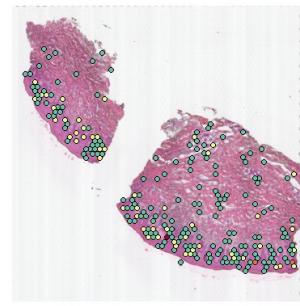
SERPINB4
30 50 70 90 110


DEFB4A
30 40 50 60 70

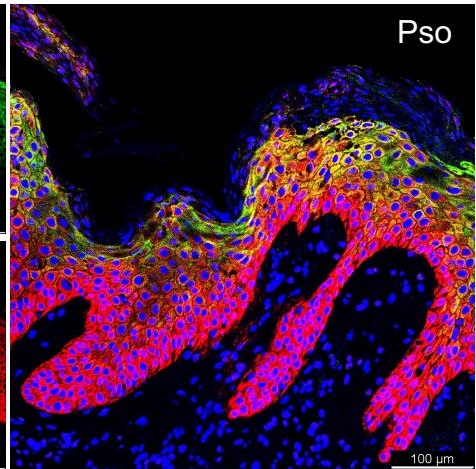
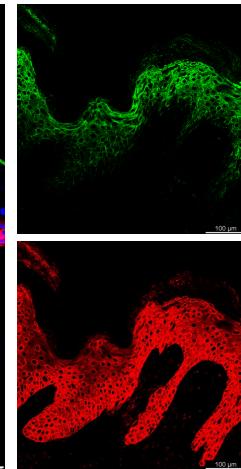
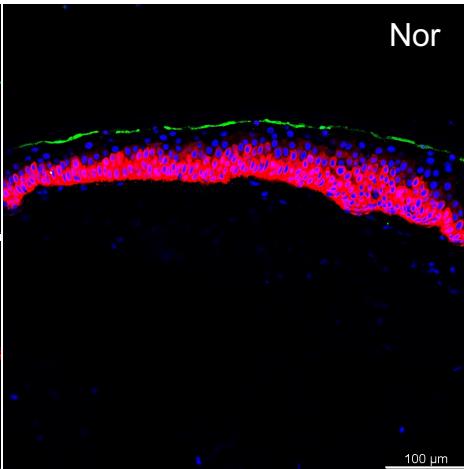
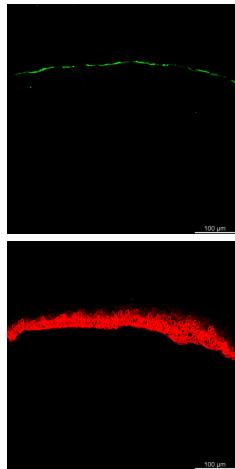
B

Pso #1

IL17RA
0 1 2 3 4 5

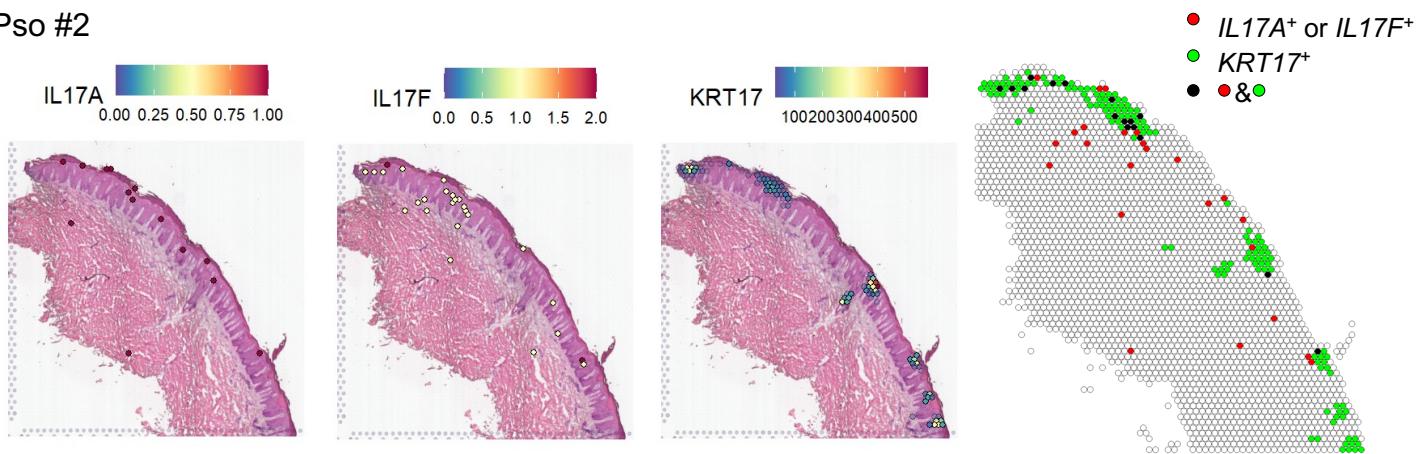

Pso #2

IL17RA
0 1 2 3 4 5

Pso #3

IL17RA
0 1 2 3 4 5


C

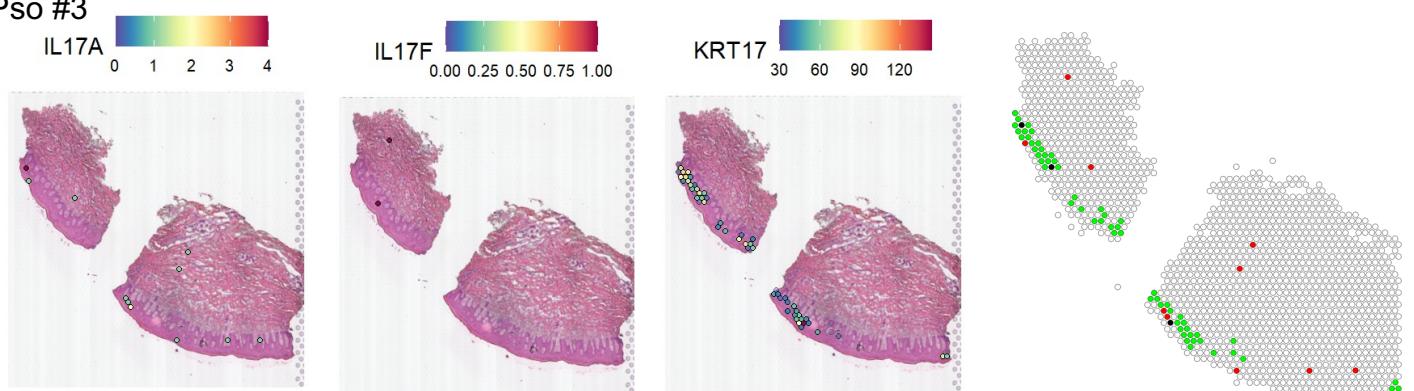
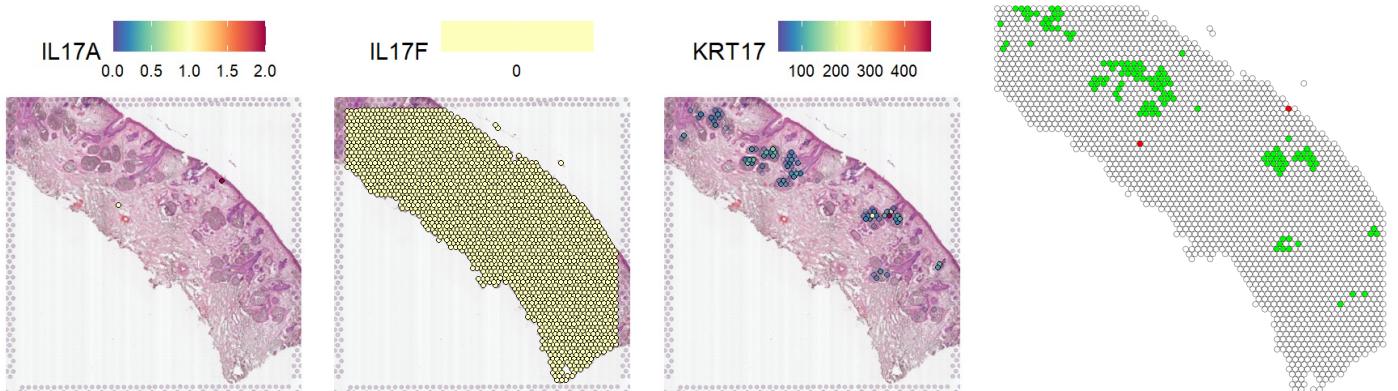
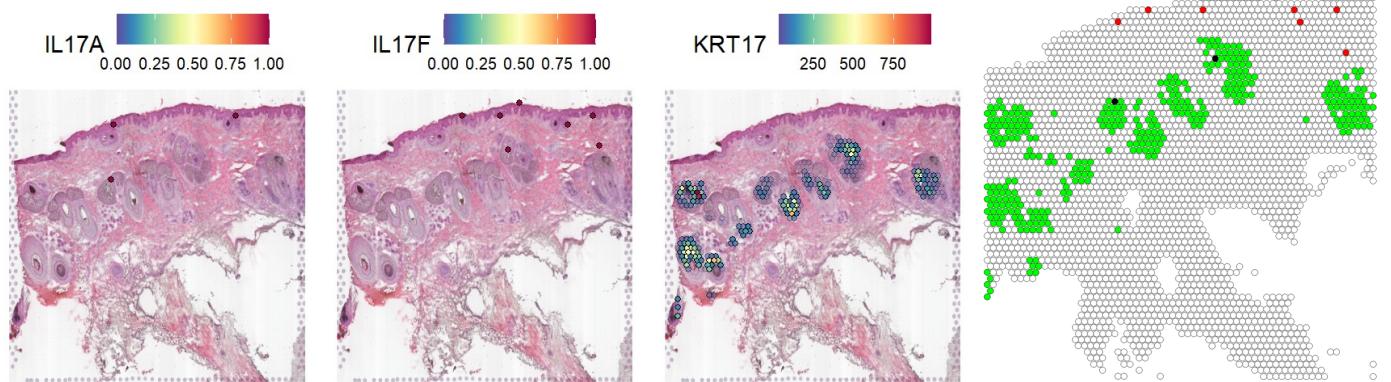
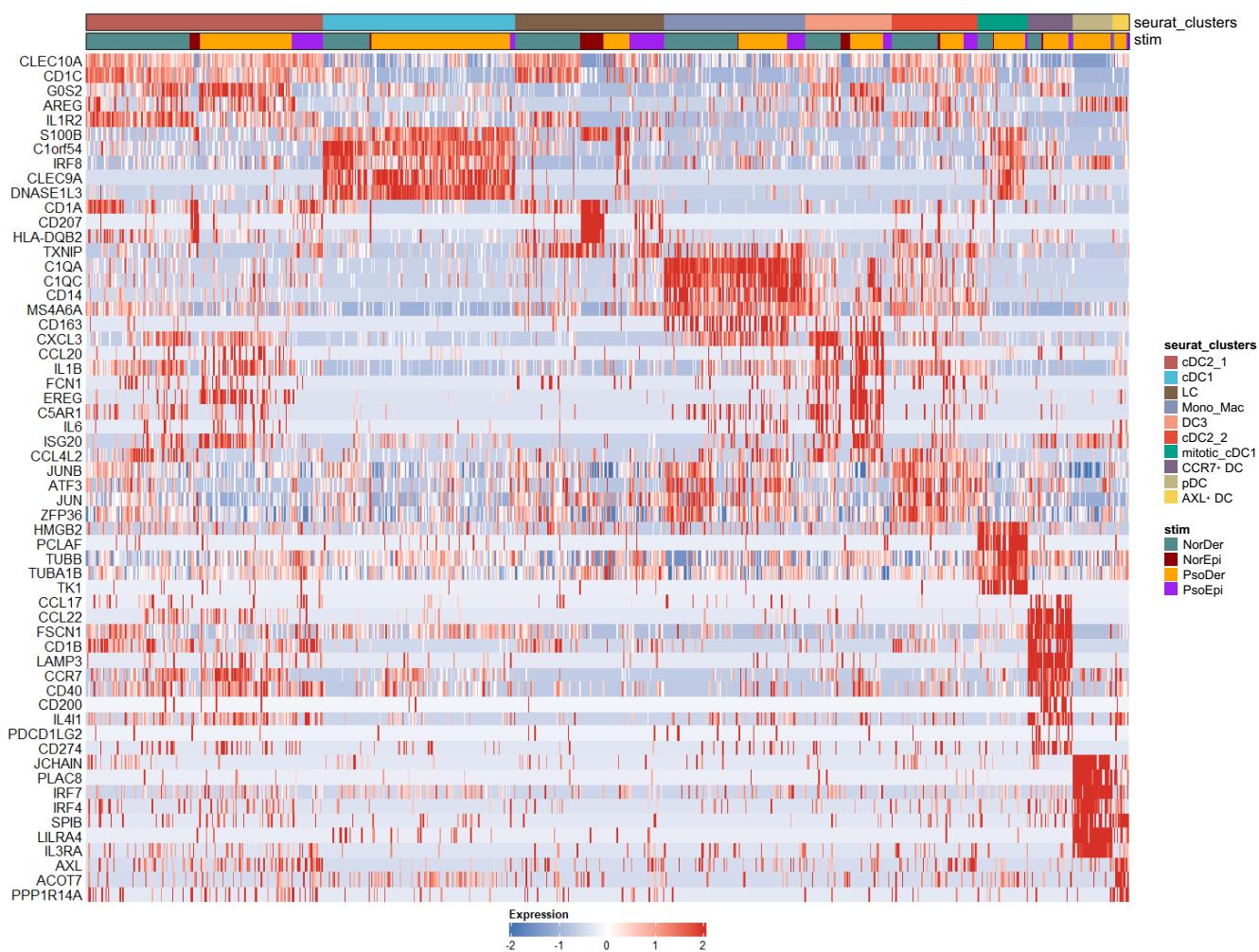

KRT17 IL17RA DAPI

Figure S5


Pso #2


Pso #3

Nor #1



Nor #2

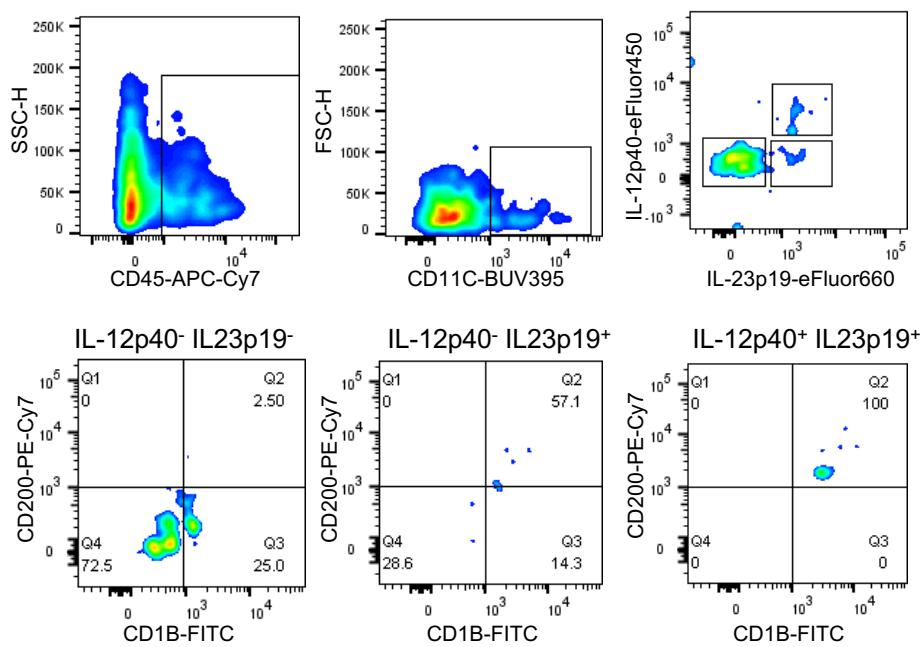
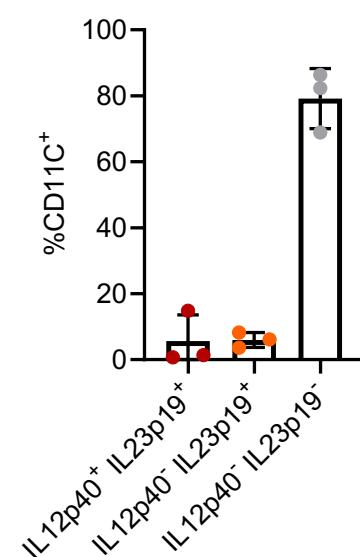
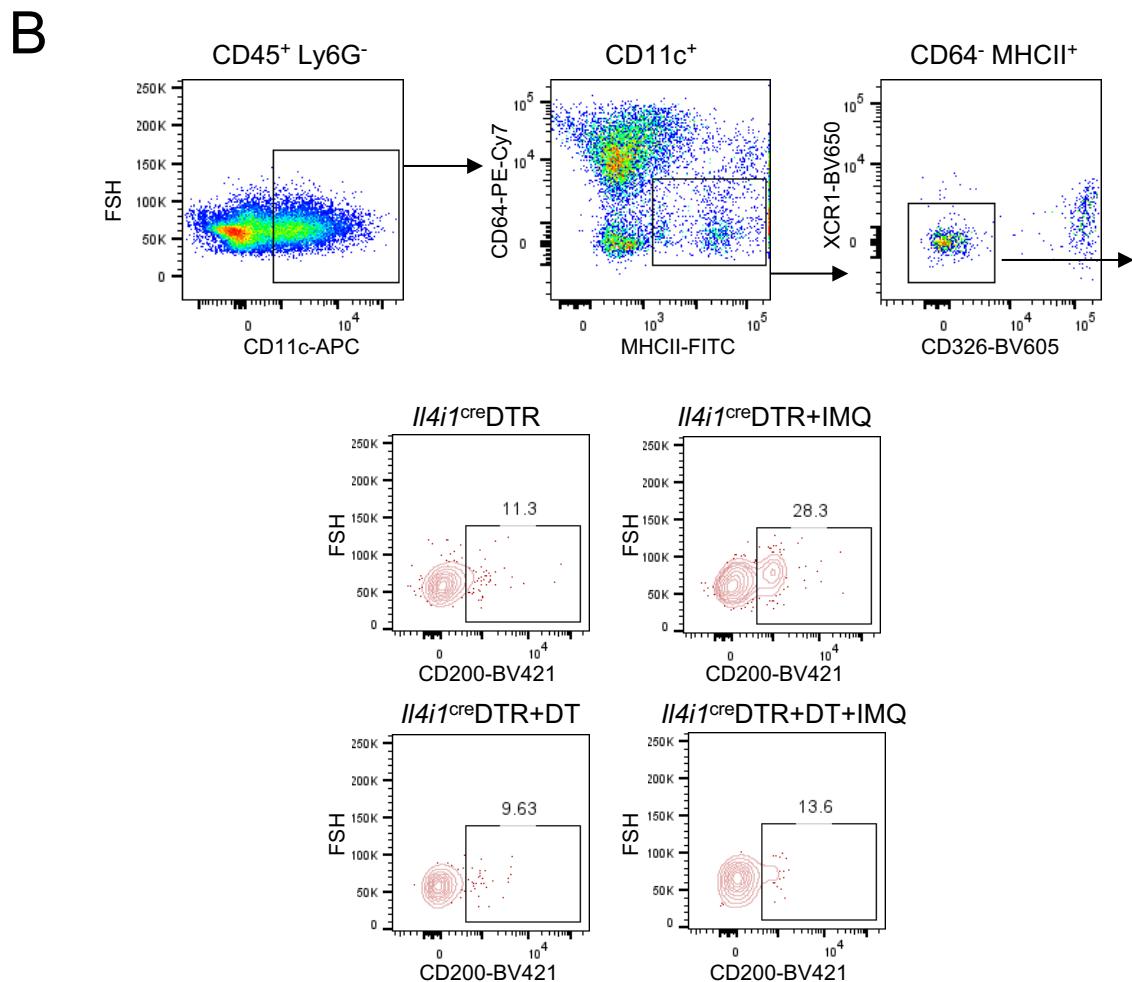
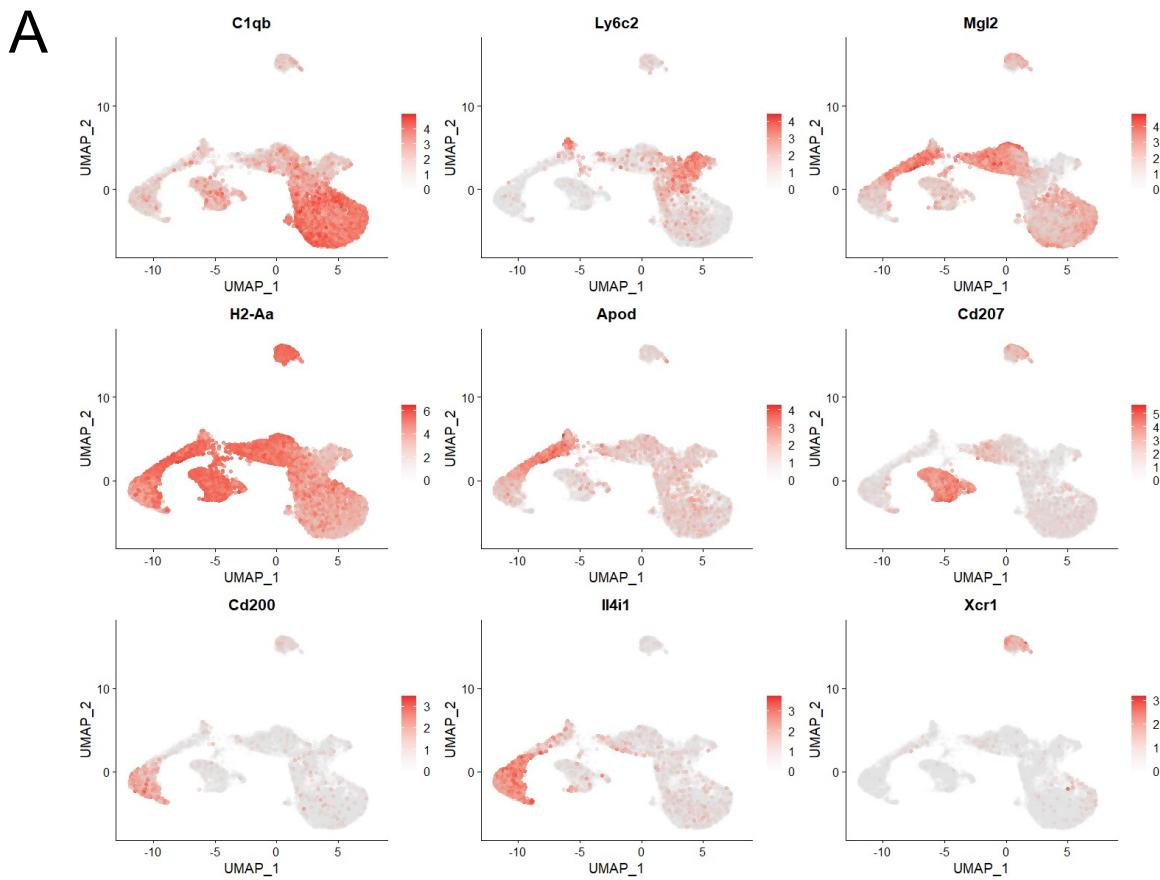


Figure S6


A



B

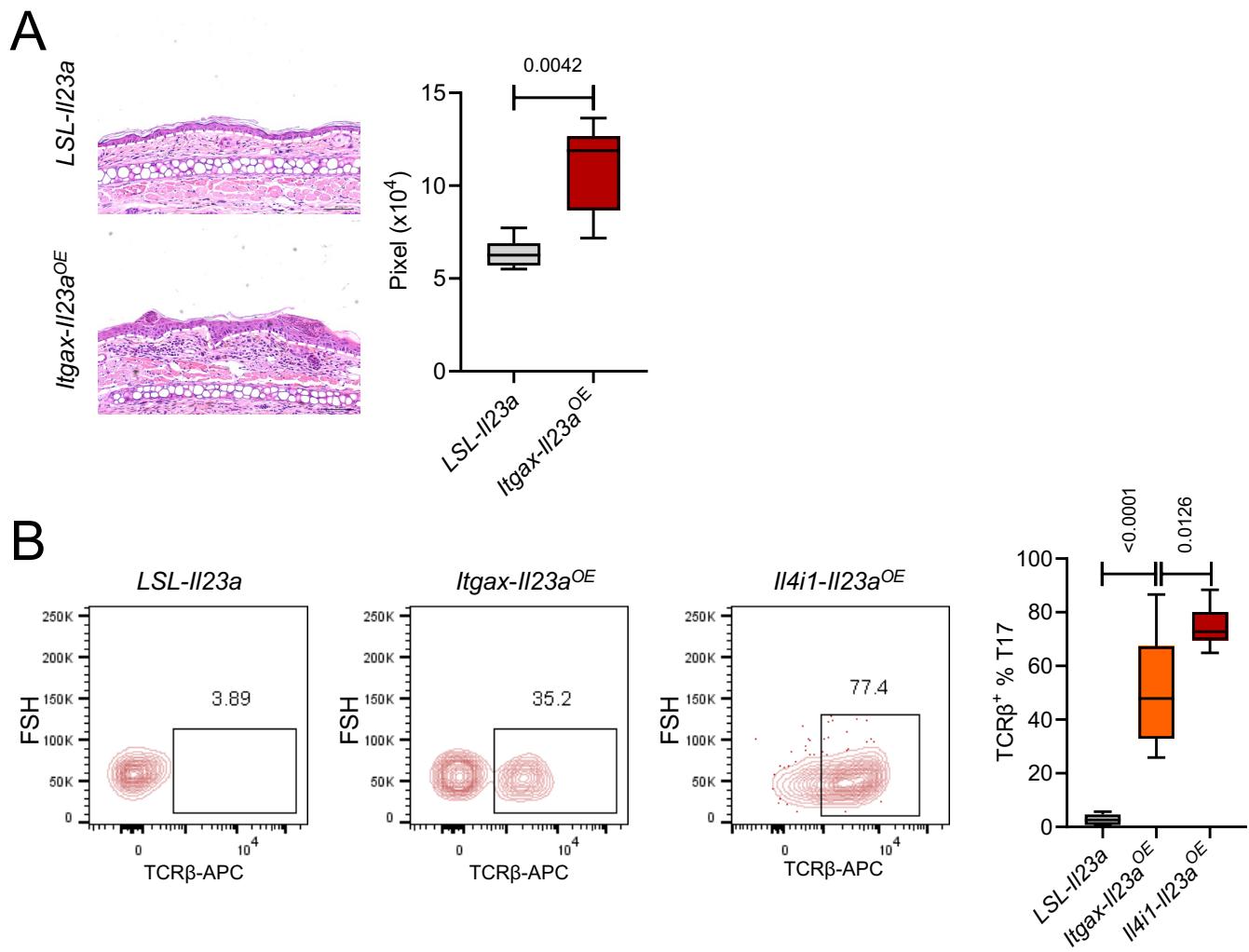

C

Figure S7

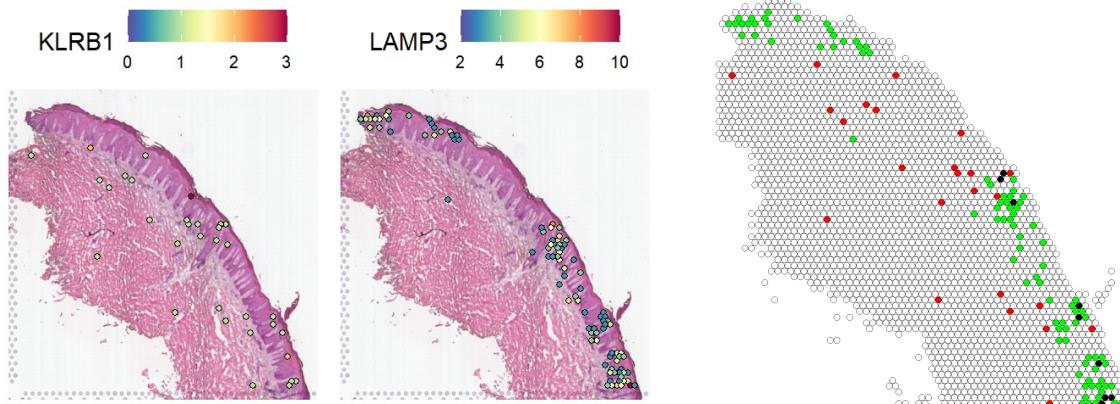


Figure S8

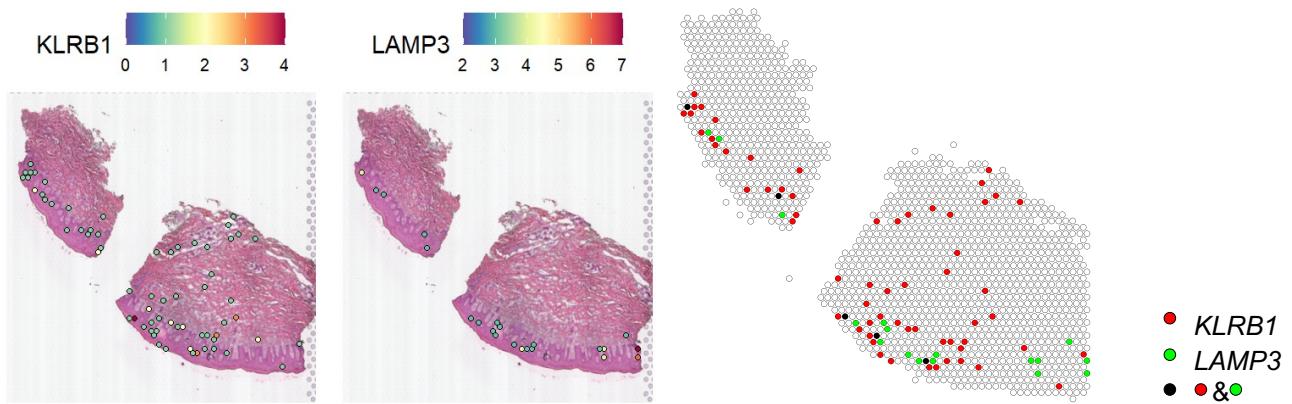


Figure S9

Pso #2

Pso #3

